Gsas

SAS/IML ${ }^{\oplus} 9.2$ User's Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/IML ${ }^{\oplus} 9.2$ User's Guide. Cary, NC: SAS Institute Inc.

SAS/IML ${ }^{\circledR}$ 9.2 User's Guide

Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-940-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
2nd electronic book, February 2009
3rd electronic book, September 2009
1st printing, March 2009
2nd printing, September 2009
SAS ${ }^{\oplus}$ Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.
SAS ${ }^{\oplus}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. © indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

What's New in SAS/IML 9.2 1
Chapter 1. Introduction to SAS/IML Software 7
Chapter 2. Understanding the Interactive Matrix Language 13
Chapter 3. Tutorial: A Module for Linear Regression 29
Chapter 4. Working with Matrices 43
Chapter 5. Programming Statements 67
Chapter 6. Working with SAS Data Sets 89
Chapter 7. File Access 115
Chapter 8. General Statistics Examples 133
Chapter 9. Robust Regression Examples 185
Chapter 10. Time Series Analysis and Examples 237
Chapter 11. Nonlinear Optimization Examples 323
Chapter 12. Graphics Examples 403
Chapter 13. Window and Display Features 435
Chapter 14. Storage Features 449
Chapter 15. Using SAS/IML Software to Generate IML Statements 455
Chapter 16. Wavelet Analysis 471
Chapter 17. Genetic Algorithms 497
Chapter 18. Sparse Matrix Algorithms 529
Chapter 19. Further Notes 539
Chapter 20. Language Reference 547
Chapter 21. Module Library 1021
Subject Index 1041
Syntax Index 1049

What's New in SAS/IML 9.2

Contents

NEW FEATURES 3
MODULES FOR MULTIVARIATE RANDOM SAMPLING 3
PERFORMANCE IMPROVEMENTS 3
ODS STATISTICAL GRAPHICS INTERFACE 4
BSPLINE FUNCTION 4
VECTOR-MATRIX OPERATIONS 4
GEOMEAN AND HARMEAN FUNCTIONS 4
NEW RELATED SOFTWARE 4

What's New in SAS/IML 9.2

New Features

New to SAS/IML are the following:

- a set of new modules for sampling from multivariate distributions
- a set of general performance improvements
- a new call to interface with ODS Statistical Graphics
- a new function to compute B-splines
- a new programming syntax to specify vector-matrix operations
- a set of new functions to compute the geometric and harmonic means

Modules for Multivariate Random Sampling

New modules have been added to the IMLMLIB library. These modules generate random samples of N observations from multivariate distributions in p variables. See the Module Library documentation for details.

The modules and associated multivariate distributions are as follows:
RANDDIRICHLET
generates a random sample from a Dirichlet distribution (a multivariate generalization of the beta distribution).
RANDMULTINOMIAL
generates a random sample from a multinomial distribution (a multivariate generalization of the binomial distribution)
RANDMVT
generates a random sample from a multivariate Student's t distribution.

RANDNORMAL
generates a random sample from a multivariate normal distribution. RANDWISHART
generates a random sample from a Wishart distribution (a multivariate generalization of the gamma distribution).

Performance Improvements

Several optimization methods have been implemented to speed up basic matrix operations and improve the efficiency of memory management in SAS/IML. These changes result in faster-running SAS/IML programs.

ODS Statistical Graphics Interface

A new ODSGRAPH call has been introduced that enables you to render graphs created with the new graphics commands that have been added to PROC TEMPLATE. This addition is designed to make it easier for you to create standard graphs and save them in a format of your choice. See the Language Reference chapter for full details about this new call.

BSPLINE Function

A new BSPLINE function has been introduced that computes a B-spline basis for a given numeric input vector, degree, and knot specification. See the Language Reference chapter for a full description of the function and its inputs.

Vector-Matrix Operations

SAS/IML elementwise operations now permit you to specify conforming vectormatrix operations. For example, if v is a 1 by n row vector, and s is an m by n matrix, then the expression $v+s$ evaluates to the addition of v to each row of s. This change was introduced to reduce the need for explicit loops and increase the efficiency of this type of calculation. See the Language Reference chapter for full details of this change.

GEOMEAN and HARMEAN Functions

Two new functions have been added to compute the geometric mean and the harmonic mean of a matrix of positive numbers. See the Language Reference chapter for full details.

New Related Software

SAS/STAT ${ }^{\circledR}$ users will be interested in SAS/IML ${ }^{\circledR}$ Studio, formerly known as SAS ${ }^{\circledR}$ Stat Studio, which is new software for data exploration and analysis. SAS/IML Studio provides a highly flexible programming environment in which you can run SAS/STAT or SAS/IML ${ }^{\circledR}$ analyses and display the results with dynamically linked graphics and data tables. SAS/IML Studio is intended for data analysts who write SA ${ }^{\circledR}$ programs to solve statistical problems but need more versatility for data exploration and model building. The programming language in SAS/IML Studio, which is called IMLPlus, is an enhanced version of the SAS/IML programming language. IMLPlus extends SAS/IML to provide new language features, including the ability to create and manipulate statistical graphics, call SAS procedures as functions, and call computational programs written in C, C++, Java, and Fortran. SAS/IML Studio runs on a PC in the Microsoft Windows operating environment.

SAS/IML Studio also includes an experimental interface to the R language. The IMLPlus language includes functions that transfer data between SAS data sets and R data frames, and between SAS/IML matrices and R matrices.

SAS/IML Studio also provides similar interactive functionality to the SAS/INSIGH7 ${ }^{\circledR}$ product. It is distributed with the SAS/IML product.

Chapter 1 Introduction to SAS/IML Software

Chapter Contents

OVERVIEW 9
SAS/IML SOFTWARE: HIGHLIGHTS 9
AN INTRODUCTORY INTERACTIVE SESSION 11
PROC IML STATEMENT 11

Chapter 1
 Introduction to SAS/IML Software

Overview

SAS/IML software gives you access to a powerful and flexible programming language (Interactive Matrix Language) in a dynamic, interactive environment. The fundamental object of the language is a data matrix. You can use SAS/IML software interactively (at the statement level) to see results immediately, or you can store statements in a module and execute them later. The programming is dynamic because necessary activities such as memory allocation and dimensioning of matrices are performed automatically.

SAS/IML software is powerful. You can access built-in operators and call routines to perform complex tasks such as matrix inversion or eigenvector generation. You can define your own functions and subroutines by using SAS/IML modules. You can perform operations on a single value or take advantage of matrix operators to perform operations on an entire data matrix. For example, the following statement can be used to add 1 to a single value X , or to add 1 to all elements of a matrix \mathbf{X} :

```
x=x+1;
```

You have access to a wide selection of data management commands. You can read, create, and update SAS data sets from inside SAS/IML software without ever using the DATA step. For example, as the following statement shows, it is easy to read a SAS data set to get phone numbers for all individuals whose last name begins with "Smith":
read all var\{phone\} where(lastname=:"Smith");
The result is PHONE, a matrix of phone numbers.

SAS/IML Software: Highlights

SAS/IML software is a programming language.

You can program easily and efficiently with the many features for arithmetic and character expressions in SAS/IML software. You have access to a wide range of built-in subroutines designed to make your programming fast, easy, and efficient. Because SAS/IML software is part of the SAS System, you can access SAS data sets or external files with an extensive set of data processing commands for data input and output, and you can edit existing SAS data sets or create new ones.

SAS/IML software has a complete set of control statements, such as DO/END, START/FINISH, iterative DO, IF-THEN/ELSE, GOTO, LINK, PAUSE, and STOP, giving you all of the commands necessary for execution control and program modularization. See the "Control Statements" section on page 561 for details.

SAS/IML software operates on matrices.

While most programming languages deal with single data elements, the fundamental data element in SAS/IML software is the matrix, a two-dimensional (row \times column) array of numeric or character values.

SAS/IML software possesses a powerful vocabulary of operators.

You can access built-in matrix operations that require calls to math-library subroutines in other languages. You have access to many operators, functions, and CALL subroutines.

SAS/IML software uses operators that apply to entire matrices.

You can add elements of the matrices \mathbf{A} and \mathbf{B} with the expression $\mathbf{A}+\mathbf{B}$. You can perform matrix multiplication with the expression $\mathbf{A} * \mathbf{B}$ and perform elementwise multiplication with the expression $\mathbf{A} \# \mathbf{B}$.

SAS/IML software is interactive.

You can execute a command as soon as you enter it, or you can collect commands in a module to execute later. When you execute a command, you see the results immediately. You can interact with an executing module by programming SAS/IML software to pause, enabling you to enter additional statements before continuing execution.

SAS/IML software is dynamic.

You do not need to declare, dimension, and allocate storage for a data matrix. SAS/IML software does this automatically. You can change the dimension or type of a matrix at any time. You can open multiple files or access many libraries. You can reset options or replace modules at any time.

SAS/IML software processes data.

You can read all observations or read conditionally selected observations from a SAS data set into a matrix, creating either multiple vectors (one for each variable in the data set) or a matrix that contains a column for each data set variable. You can create a new SAS data set, or you can edit or append observations to an existing SAS data set.

SAS/IML software produces graphics.

You have access to a wide range of graphics commands, enabling you to visually explore relationships in data.

An Introductory Interactive Session

Here is a simple introductory session that uses SAS/IML software to estimate the square root of a number, accurate to three decimal places. In this session, you define a function module named APPROX to perform the calculations and return the approximation. You then call APPROX to estimate the square root of several numbers given in a matrix literal (enclosed in braces), and you print the results.

Throughout the session, the right angle brackets ($>$) indicate statements that you submit; responses from PROC IML follow.

```
> proc iml; /* begin IML session */
```

IML Ready

```
start approx(x); /* begin module */
```

 \(y=1 ; \quad / *\) initialize \(y\) */
 do until (w<1e-3); /* begin DO loop */
 \(z=y\);
 \(y=.5 \#(z+x / z) ; \quad / *\) estimate square root */
 \(w=a b s(y-z) ; \quad / *\) compute change in estimate */
 end; \(/ *\) end DO loop */
 return \((y)\); /* return approximation \(* /\)
 finish approx; $/ *$ end module $* /$

NOTE: Module APPROX defined.
$>\quad t=\operatorname{approx}(\{3,5,7,9\}) ; \quad / *$ call function APPROX */
print t;
/* print matrix */
T
1.7320508
2.236068
2.6457513
> quit;

Exiting IML

PROC IML Statement

PROC IML $<$ SYMSIZE $=n 1><$ WORKSIZE $=n 2>$;
where $n 1$ and $n 2$ are specified in kilobytes.
The SYMSIZE= and WORKSIZE= options in the PROC IML statement give you control over the size of memory allocated to the symbol space and the size of each extent of workspace. If you do not specify these options, PROC IML uses host dependent defaults.

Generally, you do not need to be concerned with the details of memory usage because memory allocation is done automatically. For special situations, however, see the section "Memory and Workspace" on page 541.

Chapter 2
 Understanding the Interactive Matrix Language

Chapter Contents

DEFINING A MATRIX 15
MATRIX NAMES AND LITERALS 15
Matrix Names 15
Matrix Literals 16
CREATING MATRICES FROM MATRIX LITERALS 16
Scalar Literals 16
Numeric Literals 17
Character Literals 18
Repetition Factors 18
Reassigning Values 19
Assignment Statements 19
TYPES OF STATEMENTS 20
Control Statements 21
Functions 21
CALL Statements and Subroutines 23
Commands 24
MISSING VALUES 26
SUMMARY 27

Chapter 2

Understanding the Interactive Matrix Language

Defining a Matrix

The fundamental data object on which all Interactive Matrix Language commands operate is a two-dimensional (row \times column) numeric or character matrix. By their very nature, matrices are useful for representing data and efficient for working with data. Matrices have the following properties:

- Matrices can be either numeric or character. Elements of a numeric matrix are stored in double precision. Elements of a character matrix are character strings of equal length. The length can range from 1 to 32676 characters.
- Matrices are referred to by valid SAS names. Names can be from 1 to 32 characters long, beginning with a letter or underscore, and continuing with letters, numbers, and underscores.
- Matrices have dimension defined by the number of rows and columns.
- Matrices can contain elements that have missing values (see the section "Missing Values" on page 26).

The dimension of a matrix is defined by the number of rows and columns it has. An $m \times n$ matrix has $m n$ elements arranged in m rows and n columns. The following nomenclature is standard in this user's guide:

- $1 \times n$ matrices are called row vectors.
- $m \times 1$ matrices are called column vectors.
- 1×1 matrices are called scalars.

Matrix Names and Literals

Matrix Names

A matrix is referred to by a valid SAS name. Names can be from 1 to 8 characters long, beginning with a letter or underscore and continuing with letters, numbers, and underscores. You associate a name with a matrix when you create or define the matrix. A matrix name exists independently of values. This means that at any time, you can change the values associated with a particular matrix name, change the dimension of the matrix, or even change its type (numeric or character).

Matrix Literals

A matrix literal is a matrix represented by its values. When you represent a matrix with a literal, you are simply specifying the values of each element of the matrix. A matrix literal can have a single element (a scalar), or it can have many elements arranged in a rectangular form (rows \times columns). The matrix can be numeric (all elements are numeric) or character (all elements are character). The dimension of the matrix is automatically determined by the way you punctuate the values.

If there are multiple elements, you use braces ($\}$) to enclose the values and commas to separate the rows. Within the braces, values must be either all numeric or all character. If you use commas to create multiple rows, all rows must have the same number of elements (columns).

The values you input can be any of the following:

- a number, with or without decimal points, possibly in scientific notation (such as $1 \mathrm{E}-5$)
- a character string. Character strings can be enclosed in either single quotes (') or double quotes ("), but they do not need to have quotes. Quotes are required when there are no enclosing braces or when you want to preserve case, special characters, or blanks in the string. If the string has embedded quotes, you must double them (for example, WORD='Can"t'). Special characters can be any of the following: ? $=*:()$.
- a period (.), representing a missing numeric value
- numbers in brackets ([]), representing repetition factors

Creating Matrices from Matrix Literals

Creating matrices by using matrix literals is easy. You simply input the element values one at a time, usually inside braces. Representing a matrix as a matrix literal is not the only way to create matrices. A matrix can also be created as a result of a function, a CALL statement, or an assignment statement. The following sections present some simple examples of matrix literals, some with a single element (scalars) and some with multiple elements.

For more information about matrix literals, see Chapter 4.

Scalar Literals

The following example statements define scalars as literals. These are examples of simple assignment statements, with the matrix name on the left-hand side of the equal sign and the value on the right-hand side. Notice that you do not need to use braces when there is only one element.

```
a=12;
a=. ;
a='hi there';
a="Hello";
```


Numeric Literals

Matrix literals with multiple elements have the elements enclosed in braces. Use commas to separate the rows of a matrix. For example, the following statement assigns a row vector to the matrix \mathbf{X} :

$$
x=\left\{\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right\} ;
$$

Here is the resulting matrix:

X

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
The following statement assigns a column vector to the matrix \mathbf{Y} :

$$
y=\{1,2,3,4,5\} ;
$$

Here is the resulting matrix:

The following statement assigns a 3×2 matrix literal to the matrix \mathbf{Z} :

```
z={1 2, 3 4, 5 6};
```

Here is the resulting matrix:

Z	
1	2
3	4
5	6

The following statement creates a matrix \mathbf{W} that is three times the matrix \mathbf{Z} :

```
w=3#z;
```

Here is the resulting matrix:

W	
3	6
9	12
15	18

Character Literals

You input a character matrix literal by entering character strings. If you do not use quotes, all characters are converted to uppercase. You must use either single or double quotes to preserve case or when blanks or special characters are present in the string. For character matrix literals, the length of the elements is determined from the longest element. Shorter strings are padded on the right with blanks. For example, the following assignment of the literal results in \mathbf{A} being defined as a 1×2 character matrix with string length 4 (the length of the longer string):

```
a={abc defg};
```

Here is the resulting matrix:

> A ABC DEFG

The following assignment preserves the case of the elements:

$$
a=\left\{' a b c^{\prime} \quad \text { 'DEFG' }\right\} ;
$$

Here is the resulting matrix:

> A
> abc DEFG

Note that the string length is still 4.

Repetition Factors

A repetition factor can be placed in brackets before a literal element to have the element repeated. For example, the following two statements are equivalent:

```
answer={[2] 'Yes', [2] 'No'};
answer={'Yes' 'Yes', 'No' 'No'};
```

Here is the resulting matrix:

ANSWER	
Yes Yes	
No \quad No	

Reassigning Values

You can assign new values to elements of a matrix at any time. The following statement creates a 2×3 numeric matrix named \mathbf{A} :

```
a={1 2 3, 6 5 4};
```

The following statement redefines the matrix \mathbf{A} as a 1×3 character matrix:

```
a={'Sales' 'Marketing' 'Administration'};
```


Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the results to a matrix. The expressions can be composed of operators (for example, matrix multiplication) or functions (for example, matrix inversion) operating on matrices. Because of the nature of linear algebraic expressions, the resulting matrices automatically acquire appropriate characteristics and values. Assignment statements have the following general form:

$$
\text { result }=\text { expression }
$$

where result is the name of the new matrix and expression is an expression that is evaluated, the results of which are assigned to the new matrix.

Functions as Expressions

Matrices can be created as a result of a function call. Scalar functions such as LOG or SQRT operate on each element of a matrix, while matrix functions such as INV or RANK operate on the entire matrix. For example, the following statement assigns the square root of each element of \mathbf{B} to the corresponding element of \mathbf{A} :

```
a=sqrt (b) ;
```

The following statement calls the INV function to compute the inverse matrix of \mathbf{X} and assign the results to \mathbf{Y} :

```
y=inv(x);
```

The following statement creates a matrix \mathbf{R} with elements that are the ranks of the corresponding elements of \mathbf{X} :

Operators within Expressions

There are three types of operators that can be used in assignment statement expressions. Be sure that the matrices on which an operator acts are conformable to the operation. For example, matrix multiplication requires that the number of columns of the left-hand matrix be equal to the number of rows of the right-hand matrix.

The three types of operators are as follows:
prefix operators are placed in front of an operand $(-\mathbf{A})$.
infix operators are placed between operands $(\mathbf{A} * \mathbf{B})$.
postfix operators are placed after an operand (\mathbf{A}^{\prime}).

All operators can work in a one-to-many or many-to-one manner; that is, they enable you to, for example, add a scalar to a matrix or divide a matrix by a scalar. The following is an example of using operators in an assignment statement:

```
y=x# (x>0);
```

This assignment statement creates a matrix \mathbf{Y} in which each negative element of the matrix \mathbf{X} is replaced with zero. The statement actually has two expressions evaluated. The expression $(\mathbf{X}>0)$ is a many-to-one operation that compares each element of \mathbf{X} to zero and creates a temporary matrix of results; an element of the temporary matrix is 1 when the corresponding element of \mathbf{X} is positive, and 0 otherwise. The original matrix \mathbf{X} is then multiplied elementwise by the temporary matrix, resulting in the matrix \mathbf{Y}.

For a complete listing and explanation of operators, see Chapter 20.

Types of Statements

Statements in SAS/IML software can be classified into three general categories:

Control Statements

direct the flow of execution. For example, the IF-THEN/ELSE statement conditionally controls statement execution.
Functions and CALL Statements
perform special tasks or user-defined operations. For example, the statement CALL: GSTART activates the SAS/IML graphics system.

Commands

perform special processing, such as setting options, displaying, and handling input/output. For example, the command RESET: PRINT turns on the automatic displaying option so that matrix results are displayed as you submit statements.

Control Statements

SAS/IML software has a set of statements for controlling program execution. Control statements direct the flow of execution of statements in IML. With them, you can define DO groups and modules (also known as subroutines) and route execution of your program. Some control statements are described as follows.

Statements	Action
DO, END	group statements
iterative DO, END	define an iteration loop
GOTO, LINK	transfer control
IF-THEN/ELSE	routes execution conditionally
PAUSE	instructs a module to pause during execution
QUIT	ends a SAS/IML session
RESUME	instructs a module to resume execution
RETURN	returns from a LINK statement or a CALL module
RUN	executes a module
START, FINISH	define a module
STOP, ABORT	stop execution of an IML program

See Chapter 5 for more information about control statements.

Functions

The general form of a function is as follows:

$$
\text { result }=\text { FUNCTION(arguments); }
$$

where arguments can be matrix names, matrix literals, or expressions. Functions always return a single result (whereas subroutines can return multiple results or no result). If a function returns a character result, the matrix to hold the result is allocated with a string length equal to the longest element, and all shorter elements are padded with blanks.

Categories of Functions

Functions fall into the following six categories:
matrix inquiry functions
return information about a matrix. For example, the ANY function returns a value of 1 if any of the elements of the argument matrix are nonzero.
scalar functions
operate on each element of the matrix argument. For example, the ABS function returns a matrix with elements that are the absolute values of the corresponding elements of the argument matrix.
summary functions
return summary statistics based on all elements of the matrix argument. For example, the SSQ function returns the sum of squares of all elements of the argument matrix.

matrix arithmetic functions

perform matrix algebraic operations on the argument. For example, the TRACE function returns the trace of the argument matrix.
matrix reshaping functions
manipulate the matrix argument and return a reshaped matrix. For example, the DIAG function returns a matrix with diagonal elements that are equal to the diagonal elements of a square argument matrix. All off-diagonal elements are zero.

linear algebra and statistical functions

perform linear algebraic functions on the matrix argument. For example, the GINV function returns the matrix that is the generalized inverse of the argument matrix.

Exceptions to the SAS DATA Step

SAS/IML software supports most functions supported in the SAS DATA step. These functions all accept matrix arguments, and the result has the same dimension as the argument. (See Appendix 1 for a list of these functions.) The following functions are not supported by SAS/IML software:

DIF n	HBOUND	LAG n	PUT
DIM	INPUT	LBOUND	

The following functions are implemented differently in SAS/IML software. See Chapter 20 for descriptions.

MAX	RANK	SOUND	SUBSTR
MIN	REPEAT	SSQ	SUM

The random number functions, UNIFORM and NORMAL, are built-in and produce the same streams as the RANUNI and RANNOR functions, respectively, of the DATA step. For example, to create a 10×1 vector of random numbers, use the following statement:

```
x=uniform(repeat(0,10,1));
```

Also, SAS/IML software does not support the OF clause of the SAS DATA step. For example, the following statement cannot be interpreted properly in IML:

```
a=mean(of x1-x10); /* invalid in IML */
```

The term $\mathbf{x 1}-\mathrm{x} 10$ would be interpreted as subtraction of the two matrix arguments rather than its DATA step meaning, "X1 through X10."

CALL Statements and Subroutines

CALL statements invoke a subroutine to perform calculations, operations, or a service. CALL statements are often used in place of functions when the operation returns multiple results or, in some cases, no result. The general form of the CALL statement is as follows:

CALL SUBROUTINE arguments;

where arguments can be matrix names, matrix literals, or expressions. If you specify several arguments, use commas to separate them. Also, when using arguments for output results, always use variable names rather than expressions or literals.

Creating Matrices with CALL Statements

Matrices are created whenever a CALL statement returns one or more result matrices. For example, the following statement returns two matrices (vectors), VAL and VEC, containing the eigenvalues and eigenvectors, respectively, of the symmetric matrix T :

```
call eigen(val,vec,t);
```

You can program your own subroutine by using the START and FINISH statements to define a module. You can then execute the module with a CALL or RUN statement. For example, the following statements define a module named MYMOD that returns matrices containing the square root and \log of each element of the argument matrix:

```
start mymod (a,b,c);
    a=sqrt (c);
    b=log(c);
finish;
run mymod (s,l,x);
```

Execution of the module statements creates matrices \mathbf{S} and \mathbf{L}, containing the square roots and logs, respectively, of the elements of \mathbf{X}.

Performing Services

You can use CALL statements to perform special services, such as managing SAS data sets or accessing the graphics system. For example, the following statement deletes the SAS data set named MYDATA:

```
call delete(mydata);
```

The following statements activate the graphics system (CALL GSTART), open a new graphics segment (CALL GOPEN), produce a scatter plot of points (CALL GPOINT), and display the graph (CALL GSHOW):

```
call gstart;
call gopen;
call gpoint (x,y);
call gshow;
```


Commands

Commands are used to perform specific system actions, such as storing and loading matrices and modules, or to perform special data processing requests. The following table lists some commands and the actions they perform.

Command	Action
FREE	frees a matrix of its values and increases available space
LOAD	loads a matrix or module from the storage library
MATTRIB	associates printing attributes with matrices
PRINT	prints a matrix or message
RESET	sets various system options
REMOVE	removes a matrix or module from library storage
SHOW	requests that system information be displayed
STORE	stores a matrix or module in the storage library

These commands play an important role in SAS/IML software. With them, for example, you can control displayed output (with RESET PRINT, RESET NOPRINT, or MATTRIB) or get system information (with SHOW SPACE, SHOW STORAGE, or SHOW ALL).

If you are running short on available space, you can use commands to store matrices in the storage library, free the matrices of their values, and reload them later when you need them again, as shown in the following example.

Throughout this session, the right angle brackets ($>$) indicate statements that you submit; responses from IML follow. First, invoke the procedure at the input prompt. Then, create matrices A and B as matrix literals. Here are the statements:

```
> proc iml;
    IML Ready
> a={1 2 3, 4 5 6, 7 8 9};
> b={2 2 2};
```

List the names and attributes of all your matrices with the SHOW NAMES command:

```
> show names;
```

A	3 rows	3 cols num	8
B	1 row	3 cols num	8
Number of symbols $=2$	(includes those without values)		

Store these matrices in library storage with the STORE command, and release the space with the FREE command. To list the matrices and modules in library storage, use the SHOW STORAGE command. Here are the statements:

```
> store a b;
> free a b;
> show storage;
    Contents of storage = SASUSER.IMLSTOR
    Matrices:
    A B
    Modules:
```

The preceding output from the SHOW STORAGE statement indicates that you have two matrices in storage. Because you have not stored any modules in this session, there are no modules listed in storage. Return these matrices from the storage library with the LOAD command, as follows. (See Chapter 14 for details about storage.)

```
> load a b;
```

End the session with the QUIT command:

```
> quit;
    Exiting IML
```


Data Management Commands

SAS/IML software has many data management commands that enable you to manage your SAS data sets from within the SAS/IML environment. These data management commands operate on SAS data sets. There are also commands for accessing external files. The following table lists some commands and the actions they perform:

Command	Action
APPEND	adds records to an output SAS data set
CLOSE	closes a SAS data set
CREATE	creates a new SAS data set
DELETE	deletes records in an output SAS data set
EDIT	reads from or writes to an existing SAS data set
FIND	finds records that meet some condition
LIST	lists records
PURGE	purges records marked for deletion
READ	reads records from a SAS data set into IML variables
SETIN	makes a SAS data set the current input data set
SETOUT	makes a SAS data set the current output data set
SORT	sorts a SAS data set
USE	opens an existing SAS data set for Read access

These commands can be used to perform any necessary data management functions. For example, you can read observations from a SAS data set into a target matrix with the USE or EDIT command. You can edit a SAS data set, appending or deleting records. If you have generated data in a matrix, you can output the data to a SAS data set with the APPEND or CREATE command. See Chapter 6 and Chapter 7 for more information about these commands.

Missing Values

With SAS/IML software, a numeric element can have a special value called a missing value, which indicates that the value is unknown or unspecified. Such missing values are coded, for logical comparison purposes, in the bit pattern of very large negative numbers. A numeric matrix can have any mixture of missing and nonmissing values. A matrix with missing values should not be confused with an empty or unvalued matrix-that is, a matrix with zero rows and zero columns.

In matrix literals, a numeric missing value is specified as a single period. In data processing operations involving a SAS data set, you can append or delete missing values. All operations that move values also move missing values properly.

SAS/IML software supports missing values in a limited way, however. Most matrix operators and functions do not support missing values. For example, matrix multiplication involving a matrix with missing values is not meaningful. Also, the inverse of a matrix with missing values has no meaning. Performing matrix operations such as these on matrices that have missing values can result in inconsistencies, depending on the host environment.

See Chapter 4 and Chapter 19 for more details about missing values.

Summary

In this chapter, you were introduced to the fundamentals of the SAS/IML language. The basic data element, the matrix, was defined, and you learned several ways to create matrices: the matrix literal, CALL statements that return matrix results, and assignment statements.

You were introduced to the types of statements with which you can program: commands, control statements for iterative programming and module definition, functions, and CALL subroutines.

Chapter 3 offers an introductory tutorial that demonstrates how to build and execute a module by using SAS/IML software.

Chapter 3
 Tutorial: A Module for Linear Regression

Chapter Contents

OVERVIEW 31
Solving a System of Equations 31
A MODULE FOR LINEAR REGRESSION 33
PLOTTING REGRESSION RESULTS 39
SUMMARY 42

Chapter 3

Tutorial: A Module for Linear Regression

Overview

SAS/IML software makes it possible for you to solve mathematical problems or implement new statistical techniques and algorithms. The language is patterned after linear algebra notation. For example, the least-squares formula familiar to statisticians,

$$
B=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

can be easily translated into the following Interactive Matrix Language statement:

```
b=inv(x`*x) *x`*y;
```

This is an example of an assignment statement that uses a built-in function (INV) and operators (transpose and matrix multiplication).

If a statistical method has not been implemented directly in a SAS procedure, you might be able to program it by using IML. Because the operations in IML deal with arrays of numbers rather than with one number at a time, and the most commonly used mathematical and matrix operations are built directly into the language, programs that take hundreds of lines of code in other languages often take only a few lines in IML.

Solving a System of Equations

Because IML is built around traditional matrix algebra notation, it is often possible to directly translate mathematical methods from matrix algebraic expressions into executable IML statements. For example, consider the problem of solving three simultaneous equations:

$$
\begin{array}{r}
3 x_{1}-x_{2}+2 x_{3}=8 \\
2 x_{1}-2 x_{2}+3 x_{3}=2 \\
4 x_{1}+x_{2}-4 x_{3}=9
\end{array}
$$

These equations can be written in matrix form as

$$
\left[\begin{array}{rrr}
3 & -1 & 2 \\
2 & -2 & 3 \\
4 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
2 \\
9
\end{array}\right]
$$

and can be expressed symbolically as

$$
\mathbf{A x}=\mathbf{c}
$$

Because \mathbf{A} is nonsingular, the system has a solution given by

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{c}
$$

In the following example, you solve this system of equations by using an interactive session. Submit the PROC IML statement as follows to begin the procedure. (Throughout this chapter, the right angle brackets ($>$) indicate statements you submit; responses from IML follow.)

```
> proc iml;
    IML Ready
```

Enter this statement:

```
> reset print;
```

The PRINT option of the RESET command causes automatic printing of results. Notice that as you submit each statement, it is executed and the results are displayed. While you are learning IML or developing modules, it is a good idea to have all results printed automatically. When you are familiar with SAS/IML software, you will not need to use automatic printing.

Next, set up the matrices \mathbf{A} and \mathbf{c}. Both of these matrices are input as matrix literals; that is, input the row and column values as discussed in Chapter 2.

$>$	$a=\{3$	-1	2,
$>$	2	-2	3,
$>$	4	1	$-4\} ;$

A
3 rows
3
2
4
$>c=\{8,2,9\} ;$
3 rows
1 col
(numeric)

Now write the solution equation, $\mathbf{x}=\mathbf{A}^{-1} \mathbf{c}$, as an IML statement, as follows. The appropriate statement is an assignment statement that uses a built-in function and an operator (INV is a built-in function that takes the inverse of a square matrix, and * is the operator for matrix multiplication).

```
> x=inv(a)*c;
```

x
3 rows
1 col
(numeric)

After IML executes the statement, the first row of matrix \mathbf{X} contains the x_{1} value for which you are solving, the second row contains the x_{2} value, and the third row contains the x_{3} value.

Now end the session by entering the QUIT command:
> quit;

Exiting IML

A Module for Linear Regression

The previous method might be more familiar to statisticians when different notation is used. A linear model is usually written as

$$
\mathbf{y}=\mathbf{X} \mathbf{b}+\mathbf{e}
$$

where \mathbf{y} is the vector of responses, \mathbf{X} is the design matrix, and \mathbf{b} is a vector of unknown parameters estimated by minimizing the sum of squares of \mathbf{e}, the error or residual.

The following example illustrates the programming techniques involved in performing linear regression. It is not meant to replace regression procedures such as the REG procedure, which are more efficient for regressions and offer a multitude of diagnostic options.

Suppose you have response data y measured at five values of the independent variable x and you want to perform a quadratic regression.

Submit the PROC IML statement to begin the procedure:
> proc iml;

IML Ready

Input the design matrix \mathbf{X} and the data vector \mathbf{y} as matrix literals:

```
> x={lllll
> 1 2 4,
> 1 3 9,
> 14 16,
> 1 5 25};
```

X

5 rows	3 cols	(n
1	1	1
1	2	4
1	3	9
1	4	16
1	5	25

$>y=\{1,5,9,23,36\} ;$
$Y \quad 5$ rows 1 col (numeric)

1 5
9
23
36

Compute the least-squares estimate of \mathbf{b} by using the traditional formula:

```
> b=inv(x`*x) *x`*y;
```

B
3 rows
1 col
(numeric)
2.4
-3. 2
2

The predicted values are simply the \mathbf{X} matrix multiplied by the parameter estimates, and the residuals are the difference between actual and predicted \mathbf{y}, as follows:
> yhat $=x *$ b;
YHAT 5 rows 1 col (numeric)
1.2

4
10.8
21.6
36.4
> r=y-yhat;

R	5 rows	1 col
		(numeric)
	-0.2	
	1	
	-1.8	
	1.4	
	-0.4	

To calculate the estimate of the variance of the responses, calculate the sum of squared errors (SSE), its degrees of freedom (DFE), and the mean squared error (MSE) as follows. Note that in computing the degrees, you use the function NCOL to return the number of columns of \mathbf{X}.

```
> sse=ssq(r);
    SSE 1 row 1 col (numeric)
> dfe=nrow(x) -ncol(x);
    DFE 1 row 1 col (numeric)
    2
> mse=sse/dfe;
    MSE 1 row 1 col (numeric)
    3.2
```

Notice that each calculation has required one simple line of code.
Now suppose you want to solve the problem repeatedly on new data sets without reentering the code. To do this, define a module (or subroutine). Modules begin with a START statement and end with a FINISH statement, with the program statements in between. The following statements define a module named REGRESS to perform linear regression:

```
start regress;
> xpxi=inv(t(x) *x);
> beta=xpxi*(t(x)*y);
> yhat=x*beta;
> resid=y-yhat;
> sse=ssq(resid);
> n=nrow(x);
> dfe=nrow(x)-ncol(x);
> mse=sse/dfe;
> cssy=ssq(y-sum(y)/n);
```

```
/* begin module */
```

/* begin module */
/* inverse of X'X */
/* inverse of X'X */
/* parameter estimate */
/* parameter estimate */
/* predicted values */
/* predicted values */
/* residuals */
/* residuals */
/* SSE */
/* SSE */
/* sample size */
/* sample size */
/* error DF */
/* error DF */
/* MSE */
/* MSE */
/* corrected total SS */

```
    /* corrected total SS */
```

```
> rsquare=(cssy-sse)/cssy; /* RSQUARE */
> print,"Regression Results",
> sse dfe mse rsquare;
> stdb=sqrt (vecdiag (xpxi) *mse); /* std of estimates */
> t=beta/stdb; /* parameter t tests */
> prob=1-probf(t#t,1,dfe); /* p-values */
> print,"Parameter Estimates",,
    print,"Parameter Est
    print,y yhat resid;
finish regress; /* end module */
```

Submit the module REGRESS for execution as follows:

```
> reset noprint;
> run regress; /* execute module */
```

	Regressi	on Results	
SSE	DFE	MSE	RSQUARE
6.4	2	3.2	0.9923518
	Parameter	Estimates	
BETA	STDB		T PROB
2.4	3.8366652	0.6255432	20.5954801
-3.2	2.9237940	-1.094468	80.3879690
2	0.4780914	4.1833001	10.0526691
	Y	YHAT R	RESID
	1	1.2	-0.2
	5	4	1
	9	10.8	-1. 8
	23	21.6	1.4
	36	36.4	-0.4

At this point, you still have all of the matrices defined if you want to continue calculations. Suppose you want to correlate the estimates. First, calculate the covariance estimate of the estimates; then, scale the covariance into a correlation matrix with values of 1 on the diagonal. You can perform these operations by using the following statements:

```
> reset print;
> covb=xpxi*mse; /* covariance of estimates */
    COVB 3 rows 3 cols (numeric)
    14.72 -10.56 1.6
-10.56 8.5485714 -1.371429
    1.6 -1.371429 0.2285714
```

```
> s=1/sqrt (vecdiag(covb));
    S 3 rows 1 col (numeric)
    0.260643
    0.3420214
    2.0916501
> corrb=diag(s) *covb*diag(s); /* correlation of estimates */
    CORRB 3 rows 3 cols (numeric)
\begin{tabular}{rrr}
1 & -0.941376 & 0.8722784 \\
-0.941376 & 1 & -0.981105 \\
0.8722784 & -0.981105 & 1
\end{tabular}
```

Your module REGRESS remains available to do another regression-in this case, an orthogonalized version of the last polynomial example. In general, the columns of \mathbf{X} will not be orthogonal. You can use the ORPOL function to generate orthogonal polynomials for the regression. Using them provides greater computing accuracy and reduced computing times. When using orthogonal polynomial regression, you expect the statistics of fit to be the same and the estimates to be more stable and uncorrelated.

To perform an orthogonal regression on the data, you must first create a vector containing the values of the independent variable x, which is the second column of the design matrix \mathbf{X}. Then, use the ORPOL function to generate orthogonal second degree polynomials. You can perform these operations by using the following statements:

```
> x1={1,2,3,4,5};
    X1 5 rows 1 col (numeric)
    1
    2
    3
    4
    5
> x=orpol(x1,2); /* generates orthogonal polynomials */
    X
    5 rows 3 cols (numeric)
    0.4472136 -0.632456 0.5345225
    0.4472136 -0.316228-0.267261
    0.4472136 0 -0.534522
```



```
> corrb=diag(s) *covb*diag(s);
```

CORRB	3 rows	3 cols	(numeric)
		1	$-8.54 \mathrm{E}-18$
	$1.467 \mathrm{E}-16$		
	$-8.54 \mathrm{E}-18$	1	$-6.8 \mathrm{E}-16$
	$1.467 \mathrm{E}-16$	$-6.8 \mathrm{E}-16$	1

Note that the values on the off-diagonal are displayed in scientific notation; the values are close to zero but not exactly zero because of the imprecision of floating-point arithmetic. To clean up the appearance of the correlation matrix, use the FUZZ option as follows:

```
> reset fuzz;
> corrb=diag(s) *covb*diag(s);
```

 CORRB 3 rows 3 cols (numeric)
 | 1 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

Plotting Regression Results

You can create some simple plots by using the PGRAF subroutine. The PGRAF subroutine produces scatter plots suitable for printing on a line printer. If you want to produce better-quality graphics that include color, you can use the graphics capabilities of IML (see Chapter 12 for more information).

Here is how you can plot the residuals against \mathbf{x}. First, create a matrix containing the pairs of points by concatenating X1 with RESID, using the horizontal concatenation operator ($\|$):

```
> xy=x1||resid;
```

 XY 5 rows 2 cols (numeric)
 Next, use a CALL statement to call the PGRAF subroutine to produce the desired plot. The arguments to PGRAF are as follows, in the order shown:

- the matrix containing the pairs of points
- a plotting symbol
- a label for the X axis
- a label for the Y axis
- a title for the plot

You can also plot the predicted values $\hat{\mathbf{y}}$ against \mathbf{x}. You must first create a ma-trix-say, XYH-containing the points. Do this by concatenating X1 with YHAT. Next, call the PGRAF subroutine to plot the points. You can perform these operations by using the following statements:

```
> xyh=x1||yhat;
    XYH 5 rows 2 cols (numeric)
1 1.2
2 4
3 10.8
4 21.6
5 36.4
> call pgraf(xyh,'*','x','Predicted','Plot of Predicted Values');
```


You can get a more detailed plot, denoting the observed values with a " y " and the predicted values with a " p " by using the following statements. Create a matrix NEWXY containing the pairs of points to overlay. You need to use both the horizontal concatenation operator $(\|)$ and the vertical concatenation operator (//). The NROW function returns the number of observations-that is, the number of rows of $\mathbf{X 1}$. The matrix LABEL contains the character label for each point, plotting a " y " for each observed point and a " p " for each predicted point.

```
> newxy=(x1//x1)||(y//yhat);
    NEWXY 10 rows 2 cols (numeric)
                                    1 1
                                    2 5
                                    3 9
                                    4 23
                                    5 36
                                    1 1.2
                                    2 4
                                    3 10.8
                                    4 21.6
                                    5 36.4
> n=nrow(x1);
    N 1 row 1 col (numeric)
5
> label=repeat('y',n,1)//repeat('p', n, 1);
```


As you can see, the observed and predicted values are too close together to be distinguishable at all values of \mathbf{x}.

Summary

In this chapter, you have seen the programming techniques necessary for solving systems of equations. You have seen how to define a module for performing linear regression and obtaining covariance and correlation matrices, and how to obtain some simple diagnostic plots. Many of the ideas presented in Chapter 2 such as the use of assignment statements, functions, CALL statements, and subscripting have been demonstrated.

Chapter 4
 Working with Matrices

Chapter Contents

OVERVIEW 45
ENTERING DATA AS MATRIX LITERALS 45
Scalars 45
Matrices with Multiple Elements 46
USING ASSIGNMENT STATEMENTS 47
Simple Assignment Statements 47
Matrix-Generating Functions 48
Index Vectors 52
USING MATRIX EXPRESSIONS 52
Operators 52
Compound Expressions 53
Elementwise Binary Operators 54
Subscripts 56
Subscript Reduction Operators 62
DISPLAYING MATRICES WITH ROW AND COLUMN HEADINGS 63
Using the AUTONAME Option 64
Using the ROWNAME= and COLNAME= Options 64
Using the MATTRIB Statement 64
MORE ABOUT MISSING VALUES 65

Chapter 4
 Working with Matrices

Overview

SAS/IML software provides many ways to create matrices. You can create matrices by doing any of the following:

- entering data yourself as a matrix literal
- using assignment statements
- using matrix-generating functions
- creating submatrices from existing matrices with subscripts
- using SAS data sets (see Chapter 6 for more information)

Once you have defined matrices, you have access to many operators and functions for working on them in matrix expressions. These operators and functions facilitate programming and make referring to submatrices efficient and simple.
Finally, you have several means available for tailoring your displayed output.

Entering Data as Matrix Literals

The most basic way to create a matrix is to define a matrix literal, either numeric or character, by entering the matrix elements. A matrix literal can be a single element (called a scalar), a single row of data (called a row vector), a single column of data (called a column vector), or a rectangular array of data (called a matrix). The dimension of a matrix is given by its number of rows and columns. An $n \times m$ matrix has n rows and m columns.

Scalars

Scalars are matrices that have only one element. You define a scalar with the matrix name on the left side of an assignment statement and its value on the right side. You can use the following statements to create and display several examples of scalar literals. First, you must invoke the IML procedure.

```
> proc iml;
    IML Ready
> x=12;
> y=12.34;
> z=.;
```

```
> a='Hello';
> b="Hi there";
> print x y z a b;
```

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	A	B
12	12.34	.	Hello	Hi there

Notice that, when defining a character literal, you need to use either single quotes (') or double quotes ("). Using quotes preserves uppercase and lowercase distinctions and embedded blanks. It is also always correct to enclose the data values within braces ($\}$).

Matrices with Multiple Elements

To enter a matrix having multiple elements, use braces ($\}$) to enclose the data values and, if needed, use commas to separate rows. Inside the braces, all elements must be either numeric or character. You cannot have a mixture of data types within a matrix. Each row must have the same number of elements.

For example, suppose you have one week of data on daily coffee consumption (cups per day) of the four people in your office. Create a matrix called COFFEE with each person's consumption represented by a row of the matrix and each day represented by a column. First, use the PRINT option of the RESET command so that results are displayed as you submit statements. Next, enter the data into the matrix COFFEE. Here is the code:

```
> reset print;
> coffee={4 2 2 3 2,
> 3 3 1 2 1,
> 21021,
> 54434};
```

 COFFEE 4 rows 5 cols (numeric)
 | 4 | 2 | 2 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 3 | 1 | 2 | 1 |
| 2 | 1 | 0 | 2 | 1 |
| 5 | 4 | 4 | 3 | 4 |

Now create a character matrix called NAMES with rows containing the names of the people in your office. Notice that when you do not use quotes, characters are converted to uppercase. Here is the code:

```
> names={Jenny, Linda, Jim, Samuel};
    NAMES 4 rows
    JENNY
LINDA
JIM
SAMUEL
```

Notice that the output with the RESET PRINT statement includes the dimension, the type, and (when type is character) the element size of the matrix. The element size represents the length of each string, and it is determined from the length of the longest string.

Now display the COFFEE matrix with NAMES as row labels by specifying the ROWNAME= option in the PRINT statement. Here is the code:

```
> print coffee [rowname=names];
```

 COFFEE
 | JENNY | 4 | 2 | 2 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LINDA | 3 | 3 | 1 | 2 | 1 |
| JIM | 2 | 1 | 0 | 2 | 1 |
| SAMUEL | 5 | 4 | 4 | 3 | 4 |

Using Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the results to a matrix. The expressions can be composed of operators (for example, the matrix addition operator (+)), functions (for example, the INV function), and subscripts. Assignment statements have the following general form:

$$
\text { result }=\text { expression }
$$

where result is the name of the new matrix and expression is an expression that is evaluated. The resulting matrix automatically acquires the appropriate dimension, type, and value. Details about writing expressions are described in the section "Using Matrix Expressions" on page 52.

Simple Assignment Statements

Simple assignment statements involve an equation having the matrix name on the left side and either an expression involving other matrices or a matrix-generating function on the right side.

Suppose you want to generate some statistics for the weekly coffee data. If a cup of coffee costs 30 cents, then you can create a matrix with the daily expenses, DAYCOST, by multiplying the per-cup cost with the matrix COFFEE, using the elementwise multiplication operator (\#). Turn off the automatic printing so that you can tailor the output with the ROWNAME= and FORMAT= options in the PRINT statement. The following code performs these tasks:

```
> reset noprint;
> daycost=0.30#coffee;
> print "Daily totals", daycost[rowname=names format=8.2];
```

Daily totals					
DAYCOST					
JENNY	1.20	0.60	0.60	0.90	0.60
LINDA	0.90	0.90	0.30	0.60	0.30
JIM	0.60	0.30	0.00	0.60	0.30
SAMUEL	1.50	1.20	1.20	0.90	1.20

You can calculate the weekly total cost for each person by using the matrix multiplication operator $(*)$. First create a 5×1 vector of 1 s . This vector sums the daily costs for each person when multiplied with COFFEE. (You will see later that there is a more efficient way to do this by using subscript reduction operators.) The following code performs these tasks:

```
> ones={1,1,1,1,1};
> weektot=daycost*ones;
> print "Weekly totals", weektot[rowname=names format=8.2];
    Weekly totals
    WEEKTOT
    JENNY 3.90
    LINDA 3.00
    JIM 1.80
    SAMUEL 6.00
```

Finally, you can calculate the average number of cups consumed per day by dividing the grand total of cups by days. To find the grand total, use the SUM function, which returns the sum of all elements of a matrix. Next, divide the grand total by 5, the number of days (which is the number of columns), by using the division operator (/) and the NCOL function. These two matrices are created separately, but the entire calculation could be done in one statement. Here is the code:

```
> grandtot=sum(coffee);
> average=grandtot/ncol(coffee);
> print "Total number of cups", grandtot,,"Daily average",average;
    Total number of cups
        GRANDTOT
            4 9
        Daily average
        AVERAGE
            9.8
```


Matrix-Generating Functions

SAS/IML software has many built-in functions that generate useful matrices. For example, the J function creates a matrix with a given dimension
and element value when you supply the number of rows and columns, and an element value for the new matrix. This function is useful to initialize a matrix to a predetermined size. Here are several matrix-generating functions:

BLOCK	creates a block-diagonal matrix.
DESIGNF	creates a full-rank design matrix.
I	creates an identity matrix.
J	creates a matrix of a given dimension.
SHAPE	shapes a new matrix from the argument.

The sections that follow illustrate these matrix-generating functions. Again, they are shown with automatic printing of results, activated by invoking the RESET statement with the PRINT option.

```
reset print;
```


The BLOCK Function

The BLOCK function has the following general form:
BLOCK(matrix1, <matrix2,.. ., matrix15 >);
and creates a block-diagonal matrix from the argument matrices. For example, the following statements form a block-diagonal matrix:

```
> a={1 1,1 1};
```


Here is the resulting matrix:

	4	rows	4 cols	(numeric)
1	1	0	0	
1	1	0	0	
0	0	2	2	
0	0	2	2	

The J Function

The J function has the following general form:

$$
\mathbf{J}(\text { nrow<,ncol<,value } \gg) ;
$$

It creates a matrix having nrow rows, ncol columns, and all element values equal to value. The ncol and value arguments are optional, but you should usually specify them. In many statistical applications, it is helpful to be able to create a row (or column) vector of 1 s (you did so to calculate coffee totals in the last section). You can do this with the J function. For example, the following statement creates a 1×5 row vector of 1 s :

```
> one=j(1,5,1);
```

| ONE | | 1 row | 5 cols | (numeric) | |
| :---: | ---: | ---: | ---: | :---: | :---: | ---: |
| | 1 | 1 | 1 | 1 | 1 |

The I Function

The I function creates an identity matrix of a given size. It has the following general form:

I(dimension);

where dimension gives the number of rows. For example, the following statement creates a 3×3 identity matrix:

```
> I3=I(3);
```

I3
3 rows
3 cols (numeric)

1	0	0
0	1	0
0	0	1

The DESIGNF Function

The DESIGNF function generates a full-rank design matrix, useful in calculating ANOVA tables. It has the following general form:

DESIGNF(column-vector);
For example, the following statement creates a full-rank design matrix for a one-way ANOVA, where the treatment factor has three levels and there are $n_{1}=3, n_{2}=2$, and $n_{3}=2$ observations at the factor levels:

```
> d=designf({1,1,1,2,2,3,3});
```

D | 7 rows | 2 cols | (numeric) | |
| :---: | :---: | :---: | :---: |
| | | | |
| | 1 | 0 | |
| 1 | 0 | | |
| 1 | 1 | 1 | |
| 0 | -1 | | |
| 0 | -1 | | |

The SHAPE Function

The SHAPE function shapes a new matrix from an argument matrix. It has the following general form:

SHAPE(matrix $<$, nrow $<$, ncol $<$, pad-value \ggg);
Although the nrow, ncol, and pad-value arguments are optional, you should usually specify them. The following statement uses the SHAPE function to create a 3×3 matrix containing the values 99 and 33 . The function cycles back and repeats values to fill in the matrix when no pad-value is given.
> aa=shape $(\{99$ 33,99 33\}, 3, 3);
AA
3 rows
3 cols
(numeric)

99	33
33	99

$99 \quad 33$ 33 9

In the next example, a pad-value is specified for filling in the matrix:
> aa=shape $(\{99$ 33, 99 33\},3,3,0);
AA

3 rows		3 cols
99	33	99
33	0	0
0	0	0

The SHAPE function cycles through the argument matrix elements in row-major order and then fills in the matrix with 0 s after the first cycle through the argument matrix.

Index Vectors

You can create a vector by using the index operator (:). Three examples of statements involving index vectors follow:
> $r=1: 5$;

If you want an increment other than 1 , use the DO function. For example, if you want a vector ranging from -1 to 1 by 0.5 , use the following statement:

```
> r=do(-1,1,.5);
```

R
1 row
5 cols
(numeric)
-1
-0.5
$0 \quad 0.5$
1

Using Matrix Expressions

Matrix expressions are a sequence of names, literals, operators, and functions that perform some calculation, evaluate some condition, or manipulate values. These expressions can appear on either side of an assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:
prefix operators are placed in front of operands. For example, - A uses the sign reverse prefix operator (-) in front of the operand \mathbf{A} to reverse the sign of each element of \mathbf{A}.
infix operators are placed between operands. For example, $\mathbf{A}+\mathbf{B}$ uses the addition infix operator (+) between operands \mathbf{A} and \mathbf{B} to add corresponding elements of the matrices.
postfix operators are placed after an operand. For example, $\mathbf{A}^{`}$ uses the transpose postfix operator () after the operand \mathbf{A} to transpose \mathbf{A}.

Matrix operators are listed in Appendix 1, "SAS/IML Quick Reference," and described in detail in Chapter 20.

Table 4.1 shows the precedence of matrix operators in Interactive Matrix Language.

Table 4.1. Operator Precedence

Priority Group	Operators							
I (highest)			subscripts	-(prefix)	\#\#	**		
II	*	\#	<>	><	/	@		
III	+	-						
IV	\|			//	:			
V	<	<=	>	>=	=	^ $=$		
VI	\&							
VII (lowest)	।							

Compound Expressions

With SAS/IML software, you can write compound expressions involving several matrix operators and operands. For example, the following statements are valid matrix assignment statements:

```
a=x+y+z;
a=x+y*z\prime ;
a=(-x) # (y-z);
```

The rules for evaluating compound expressions are as follows:

- Evaluation follows the order of operator precedence, as described in Table 4.1. Group I has the highest priority; that is, group I operators are evaluated first. Group II operators are evaluated after group I operators, and so forth. Consider the following statement:

```
a=x+y*z;
```

This statement first multiplies matrices \mathbf{Y} and \mathbf{Z} since the * operator (group II) has higher precedence than the + operator (group III). It then adds the result of this multiplication to the matrix \mathbf{X} and assigns the new matrix to \mathbf{A}.

- If neighboring operators in an expression have equal precedence, the expression is evaluated from left to right, except for the group I operators. Consider the following statement:

$$
a=x / y / z \text {; }
$$

This statement first divides each element of matrix \mathbf{X} by the corresponding element of matrix \mathbf{Y}. Then, using the result of this division, it divides each element of the resulting matrix by the corresponding element of matrix \mathbf{Z}. The operators in group I, described in Table 4.1, are evaluated from right to left. For example, the following expression is evaluated as $-\left(\mathbf{X}^{2}\right)$:

When multiple prefix or postfix operators are juxtaposed, precedence is determined by their order from inside to outside.
For example, the following expression is evaluated as $\left(\mathbf{A}^{\prime}\right)[i, j]$:

$$
a `[i, j]
$$

- All expressions enclosed in parentheses are evaluated first, using the two preceding rules. Consider the following statement:

$$
a=x /(y / z) ;
$$

This statement is evaluated by first dividing elements of \mathbf{Y} by the elements of \mathbf{Z}, then dividing this result into \mathbf{X}.

Elementwise Binary Operators

Elementwise binary operators produce a result matrix from element-by-element operations on two argument matrices.

Table 4.2 on page 54 lists the elementwise binary operators.
Table 4.2. Elementwise Binary Operators

Operator	Action
+	addition, concatenation
-	subtraction
$\#$	elementwise multiplication
$\# \#$	elementwise power
$/$	division
$<>$	element maximum
$><$	element minimum
\mid	logical OR
$\&$	logical AND
$<$	less than
$<=$	less than or equal to
$>$	greater than
$>=$	greater than or equal to
$\wedge=$	not equal to
$=$	equal to
$\operatorname{MOD}(m, n)$	modulo (remainder)

For example, consider the following two matrices \mathbf{A} and \mathbf{B} :

$$
\text { Let } \mathbf{A}=\left[\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{ll}
4 & 5 \\
1 & 0
\end{array}\right]
$$

The addition operator $(+)$ adds corresponding matrix elements, as follows:

$$
\mathbf{A}+\mathbf{B} \text { yields }\left[\begin{array}{ll}
6 & 7 \\
4 & 4
\end{array}\right]
$$

The elementwise multiplication operator (\#) multiplies corresponding elements, as follows:

$$
\mathbf{A} \# \mathbf{B} \text { yields }\left[\begin{array}{rr}
8 & 10 \\
3 & 0
\end{array}\right]
$$

The elementwise power operator (\#\#) raises elements to powers, as follows:

$$
\text { A\#\#2 yields }\left[\begin{array}{rr}
4 & 4 \\
9 & 16
\end{array}\right]
$$

The element maximum operator ($<>$) compares corresponding elements and chooses the larger, as follows:

$$
\mathbf{A}<>\mathbf{B} \text { yields }\left[\begin{array}{ll}
4 & 5 \\
3 & 4
\end{array}\right]
$$

The less than or equal to operator $(<=)$ returns a 1 if an element of \mathbf{A} is less than or equal to the corresponding element of \mathbf{B}, and returns a 0 otherwise:

$$
\mathbf{A}<=\mathbf{B} \text { yields }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

The modulo operator returns the remainder of each element divided by the argument, as follows:

$$
\operatorname{MOD}(\mathbf{A}, 3) \text { yields }\left[\begin{array}{ll}
2 & 2 \\
0 & 1
\end{array}\right]
$$

All operators can also work in a one-to-many or many-to-one manner, as well as in an element-to-element manner; that is, they enable you to perform tasks such as adding a scalar to a matrix or dividing a matrix by a scalar. For example, the following statement replaces each negative element of the matrix \mathbf{X} with 0 :

```
x=x# (x>0);
```

The expression $(\mathrm{X}>0)$ is a many-to-one operation that compares each element of \mathbf{X} to 0 and creates a temporary matrix of results; an element in the result matrix is 1 when the expression is true and 0 when it is false. When the expression is true (the element is positive), the element is multiplied by 1 . When the expression is false (the element is negative or 0), the element is multiplied by 0 . To fully understand the intermediate calculations, you can use the RESET statement with the PRINTALL option to have the temporary result matrices displayed.

Subscripts

Subscripts are special postfix operators placed in square brackets ([]) after a matrix operand. Subscript operations have the following general form:

```
operand[row, column]
```

where
operand is usually a matrix name, but it can also be an expression or literal. row refers to an expression, either scalar or vector, for selecting one or more rows from the operand.
column refers to an expression, either scalar or vector, for selecting one or more columns from the operand.

You can use subscripts to do any of the following:

- refer to a single element of a matrix
- refer to an entire row or column of a matrix
- refer to any submatrix contained within a matrix
- perform a reduction across rows or columns of a matrix

In expressions, subscripts have the same (high) precedence as the transpose postfix operator (). Note that when both row and column subscripts are used, they are separated by a comma. If a matrix has row or column labels associated with it from a MATTRIB or READ statement, then the corresponding row or column subscript can be a character matrix whose elements match the labels of the rows or columns to be selected.

Selecting a Single Element

You can select a single element of a matrix in several ways. You can use two subscripts (row, column) to refer to its location, or you can use one subscript to look for the element down the rows. For instance, referring to the coffee example used earlier, find the element corresponding to the number of cups that Linda drank on Monday.

First, you can refer to the element by row and column location. In this case, you want the second row and first column. You can call this matrix c21. Here is the code:

```
> print coffee[rowname=names];
    COFFEE
\begin{tabular}{llllll} 
JENNY & 4 & 2 & 2 & 3 & 2 \\
LINDA & 3 & 3 & 1 & 2 & 1 \\
JIM & 2 & 1 & 0 & 2 & 1 \\
SAMUEL & 5 & 4 & 4 & 3 & 4
\end{tabular}
```

```
> c21=coffee[2,1];
```

> print c21;
C21

You could also use row and column labels, which can be assigned with an MATTRIB statement as follows:

```
> mattrib coffee rowname=names
> colname={'MON' 'TUE' 'WED' 'THU' 'FRI'};
> c21=coffee['LINDA','MON'];
> print c21;
```

C21

3

You can also look for the element down the rows. In this case, you refer to this element as the sixth element of COFFEE in row-major order. Here is the code:

```
> c6=coffee[6];
> print c6;
```

C6

$$
3
$$

Selecting a Row or Column

To refer to an entire row or column of a matrix, write the subscript with the row or column number, omitting the other subscript but not the comma. For example, to refer to the row of COFFEE that corresponds to Jim, you want the submatrix consisting of the third row and all columns. The following statements isolate and print this submatrix:

```
> jim=coffee[3,];
> print jim;
```

1
0
2
1

You could also use the row labels assigned previously with the MATTRIB statement as follows:

```
> jim=coffee['JIM',];
> print jim;
```

2	1	0	2	1

If you want the data for Friday, you know that the fifth column corresponds to Friday, so you want the submatrix consisting of the fifth column and all rows. The following statements isolate and print this submatrix:

```
> friday=coffee[,5];
> print friday;
```


FRIDAY

2
1
1
4

You could also use the previously assigned column labels as follows:
> friday=coffee[,'FRI'];
> print friday;
FRIDAY
2
1
1
4

Submatrices

You refer to a submatrix by the specific rows and columns you want. Include within the brackets the rows you want, a comma, and the columns you want. For example, to create the submatrix of COFFEE consisting of the first and third rows and the second, third, and fifth columns, use the following statements:

```
> submat1=coffee[{1 3},{2 3 5}];
> print submat1;
    SUBMAT1
    2 2 2
    1 0
```

The first vector, $\{13\}$, selects the rows, and the second vector, $\left\{\begin{array}{l}2 \\ 3\end{array} 5\right\}$, selects the columns. Alternately, you can create the vectors beforehand and supply their names as arguments by using the following statements:

```
> rows={1 3};
> cols={2 3 5};
> submat1=coffee[rows,cols];
```

Similarly, you can use the previously assigned row and column labels as follows:

```
> submat1=coffee[{'JENNY' 'JIM'},{'TUE' 'WED' 'FRI'}];
> print submat1;
    SUBMAT1
                2 
> rows={'JENNY' 'JIM' };
> cols={'TUE' 'WED' 'FRI'};
> submat1=coffee[rows,cols];
```

You can use index vectors generated by the index creation operator (:) in subscripts to refer to successive rows or columns. For example, to select the first three rows and last three columns of COFFEE, use the following statements:

```
> submat2=coffee[1:3,3:5];
> print submat2;
```

SUBMAT2

2	3	2
1	2	1
0	2	1

Note that, in each example, the number in the first subscript defines the number of rows in the new matrix; the number in the second subscript defines the number of columns.

Selecting Multiple Elements

All matrices in IML are stored in row-major order, so you can select multiple elements of a matrix by listing the position of the elements in the matrix. The elements in the first row have positions 1 through m, the elements in the second row have positions $m+1$ through $2 m$, and the elements in the last row have positions $(n-1) m+1$ through $n m$.

For example, in the coffee example discussed previously, you might be interested in instances for which any person (on any day) drank more than two cups of coffee. The LOC function is useful for creating an index vector for a matrix that satisfies some condition. The following code uses the LOC function to find the desired instances:

```
> h=loc( coffee > 2 );
> print h;
```

1	4	6	7	16	17	18	19

The variable \mathbf{H} contains indices of the COFFEE matrix. If you want to find the number of cups of coffee consumed on these occasions, you need to subscript the COFFEE matrix as follows:

```
> cups = coffee[ h ];
> print cups;
```

CUPS

4
3
3
3
5
4
4
3
4

IML always returns a column vector when a matrix is subscripted by a single array of positions. This might surprise you, but clearly the CUPS matrix cannot be the same shape as the COFFEE matrix since it contains a different number of elements. Therefore, the only reasonable alternatives are to return either a row vector or a column vector. Both would be valid choices, but IML returns a column vector.

Even if the original matrix is a row vector, the subscripted matrix will be a column vector, as the following example shows:

```
> v = { -1 2 5 -2 7}; /* v is a row vector */
> v2 = v[ {1 3 5} ]; /* v2 is a column vector */
> print v2;
```

V2
-1
5
7

If you want to index into a row vector and want the resulting variable also to be a row vector, then use the following technique:

```
> v = { -1 2 5 -2 7}; /* v is a row vector */
> v2 = v[ ,{1 3 5 5 ]; /* Select columns. Note the comma. */
> print v2;
```

v2
-1
5

7

Subscripted Assignment

You can assign values into a matrix by using subscripts to refer to the element or submatrix. In this type of assignment, the subscripts appear on the left side of the equal sign. For example, to change the value in the first row, second column of COFFEE from 2 to 4 , use subscripts to refer to the appropriate element in an assignment statement, as follows:

```
> coffee[1,2]=4;
> print coffee;
```

COFFEE

4	4	2	3	2
3	3	1	2	1
2	1	0	2	1
5	4	4	3	4

To change the values in the last column of COFFEE to zeros, use the following statements:

```
> coffee[,5]={0,0,0,0};
> print coffee;
```

COFFEE

4	4	2	3	0
3	3	1	2	0
2	1	0	2	0
5	4	4	3	0

As before, you could also use previously assigned row and column labels, as follows:

```
> coffee[,'FRI']={0,0,0,0};
```

In the next example, you first locate the positions of negative elements of a matrix and then set these elements equal to 0 . This can be useful in situations where negative elements might indicate errors or be impossible values. The LOC function is useful for creating an index vector for a matrix that satisfies some condition.

In the following statements, the LOC function is used to find the positions of the negative elements of the matrix \mathbf{T} and then to set these elements equal to 0 by using subscripted assignment:

| $>$ | $t=\left\{\begin{array}{rrr}3 & 2 & -1, \\ > & 6 & -4 \\ > & 3, \\ > & 2 & 2 \\ \hline & 2\end{array}\right\} ;$ |
| ---: | ---: | ---: | ---: |
| $>$ | print $t ;$ |

T

3	2	-1
6	-4	3
2	2	2

```
> i=loc(t<0);
> print i;
```

```
> t[i]=0;
> print t;
```

T

3	2	0
6	0	3
2	2	2

Subscripts can also contain expressions with results that are either row or column vectors. These statements can also be written as follows:

```
> t[loc(t<0)]=0;
```

If you use a noninteger value as a subscript, only the integer portion is used. Using a subscript value less than one or greater than the dimension of the matrix results in an error.

Subscript Reduction Operators

You can use reduction operators, which return a matrix of reduced dimension, in place of values for subscripts to get reductions across all rows and columns. Table 4.3 lists the eight operators for subscript reduction in IML.

Table 4.3. Subscript Reduction Operators

Operator	Action
+	addition
$\#$	multiplication
$<>$	maximum
$><$	minimum
$<:>$	index of maximum
$>:<$	index of minimum
$:$	mean
$\# \#$	sum of squares

For example, to get column sums of the matrix \mathbf{X} (sum across the rows, which reduces the row dimension to 1), specify $\mathrm{X}[+$,$] . The first subscript (+$) specifies that summation reduction take place across the rows. Omitting the second subscript, corresponding to columns, leaves the column dimension unchanged. The elements in each column are added, and the new matrix consists of one row containing the column sums.

You can use these operators to reduce either rows or columns or both. When both rows and columns are reduced, row reduction is done first.

For example, the expression $\mathrm{A}[+,<>]$ results in the maximum $(<>)$ of the column sums (+).

You can repeat reduction operators. To get the sum of the row maxima, use the expression $\mathrm{A}[,<>][+$,$] .$

A subscript such as $\mathrm{A}[\{23\},+]$ first selects the second and third rows of \mathbf{A} and then finds the row sums of that matrix. The following examples demonstrate how to use the operators for subscript reduction.
Consider the following matrix \mathbf{A} :

$$
\text { Let } \mathbf{A}=\left[\begin{array}{lll}
0 & 1 & 2 \\
5 & 4 & 3 \\
7 & 6 & 8
\end{array}\right]
$$

The following statements are true:

$$
\begin{aligned}
& \mathbf{A}[23,+] \text { yields }\left[\begin{array}{l}
12 \\
21
\end{array}\right] \text { (row sums for rows } 2 \text { and } 3 \text {) } \\
& \mathbf{A}[+,<>] \text { yields }[13] \text { (maximum of column sums) } \\
& \mathbf{A}[<>,+] \text { yields }[21] \text { (sum of column maxima) } \\
& \mathbf{A}[,><][+,] \text { yields }[9] \text { (sum of row minima) } \\
& \mathbf{A}[,<:>] \text { yields }\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right] \text { (indices of row maxima) } \\
& \mathbf{A}[>:<,] \text { yields }\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \text { (indices of column minima) }
\end{aligned}
$$

$\mathbf{A}[:]$ yields [4] (mean of all elements)

Displaying Matrices with Row and Column Headings

You can tailor the way your matrices are displayed with the AUTONAME option, the ROWNAME $=$ and COLNAME $=$ options, or the MATTRIB statement.

Using the AUTONAME Option

You can use the RESET statement with the AUTONAME option to automatically display row and column headings. If your matrix has n rows and m columns, the row headings are ROW1 to ROW n and the column headings are COL1 to COLm. For example, the following statements produce the subsequent matrix:

```
> reset autoname;
> print coffee;
\begin{tabular}{lrrrrr} 
COFFEE & COL1 & COL2 & COL3 & COL4 & COL5 \\
ROW1 & 4 & & & & \\
ROW2 & 3 & 3 & 2 & 3 & 2 \\
ROW3 & 2 & 1 & 1 & 2 & 1 \\
ROW4 & 5 & 4 & 0 & 2 & 1 \\
& & & 4 & 3 & 4
\end{tabular}
```


Using the ROWNAME= and COLNAME= Options

You can specify your own row and column headings. The easiest way is to create vectors containing the headings and then display the matrix with the ROWNAME= and COLNAME= options. For example, the following statements produce the subsequent matrix:

```
> names={jenny linda jim samuel};
> days={mon tue wed thu fri};
> print coffee[rowname=names colname=days];
\begin{tabular}{lrrrrr} 
COFFEE & MON & TUE & WED & THU & FRI \\
& & & & & \\
JENNY & 4 & 2 & 2 & 3 & 2 \\
LINDA & 3 & 3 & 1 & 2 & 1 \\
JIM & 2 & 1 & 0 & 2 & 1 \\
SAMUEL & 5 & 4 & 4 & 3 & 4
\end{tabular}
```


Using the MATTRIB Statement

The MATTRIB statement associates printing characteristics with matrices. You can use the MATTRIB statement to display COFFEE with row and column headings. In addition, you can format the displayed numeric output and assign a label to the matrix name. The following example shows how to tailor your displayed output:

```
> mattrib coffee rowname=({jenny linda jim samuel})
> colname=({mon tue wed thu fri})
> label='Weekly Coffee'
> format=2.0;
> print coffee;
\begin{tabular}{lrrrrr} 
Weekly Coffee & MON & TUE & WED & THU & FRI \\
JENNY & 4 & 2 & 2 & 3 & 2 \\
LINDA & 3 & 3 & 1 & 2 & 1 \\
JIM & 2 & 1 & 0 & 2 & 1 \\
SAMUEL & 5 & 4 & 4 & 3 & 4
\end{tabular}
```


More about Missing Values

Missing values in matrices are discussed in Chapter 2. You should read that chapter and Chapter 19 carefully so that you are aware of the way IML treats missing values. Following are several examples that show how IML handles missing values in a matrix.

Consider the following two matrices \mathbf{X} and \mathbf{Y} :

$$
\text { Let } \mathbf{X}=\left[\begin{array}{ccc}
1 & 2 & . \\
. & 5 & 6 \\
7 & . & 9
\end{array}\right] \text { and } \mathbf{Y}=\left[\begin{array}{ccc}
4 & . & 2 \\
2 & 1 & 3 \\
6 & . & 5
\end{array}\right]
$$

The following statements are true:

$$
\begin{aligned}
& \mathbf{X}+\mathbf{Y} \text { yields }\left[\begin{array}{ccc}
5 & . & . \\
. & 6 & 9 \\
13 & \cdot & 14
\end{array}\right] \text { (matrix addition) } \\
& \mathbf{X} \# \mathbf{Y} \text { yields }\left[\begin{array}{ccc}
4 & . & . \\
. & 5 & 18 \\
42 & . & 45
\end{array}\right] \text { (element multiplication) } \\
& \mathbf{X}[+,] \text { yields }\left[\begin{array}{ccc}
8 & 7 & 15
\end{array}\right] \text { (column sums) }
\end{aligned}
$$

Chapter 5 Programming Statements

Chapter Contents

OVERVIEW 69
IF-THEN/ELSE STATEMENTS 69
DO GROUPS 70
ITERATIVE EXECUTION 71
JUMPING 73
MODULE DEFINITION AND EXECUTION 74
Defining and Executing a Module 75
Nesting Modules 75
Understanding Symbol Tables 76
Modules with No Arguments 76
Modules with Arguments 77
More about Argument Passing 83
Module Storage 84
STOPPING EXECUTION 85
PAUSE Statement 85
STOP Statement 86
ABORT Statement 87
SUMMARY 87

Chapter 5

Programming Statements

Overview

As a programming language, the Interactive Matrix Language has many features that enable you to control the path of execution through the statements. The control statements in IML function in a way that is similar to the corresponding statements in the SAS DATA step. This chapter presents the following control features:

- IF-THEN/ELSE statements
- DO groups
- iterative execution
- jumping (nonconsecutive execution)
- module definition and execution
- stopping execution

IF-THEN/ELSE Statements

To perform an operation conditionally, use an IF statement to test an expression. Alternative actions appear in a THEN clause and, optionally, an ELSE statement. The general form of the IF-THEN/ELSE statement is as follows:

IF expression THEN statement1;

ELSE statement2;

The IF expression is evaluated first. If the expression is true, execution flows through the THEN alternative. If the expression is false, the ELSE statement, if present, is executed. Otherwise, the next statement is executed.

The expression to be evaluated is often a comparison, as in the following example:

```
if max(a)<20 then p=0;
else p=1;
```

The IF statement results in the evaluation of the condition $(\operatorname{MAX}(\mathrm{A})<20)$. If the largest value found in matrix \mathbf{A} is less than $20, \mathrm{P}$ is set to 0 . Otherwise, P is set to 1 .

You can nest IF statements within the clauses of other IF or ELSE statements. Any number of nesting levels is allowed. The following is an example of nested IF statements:

```
if x=y then
    if abs (y)=z then w=-1;
    else w=0;
else w=1;
```

When the condition to be evaluated is a matrix expression, the result of the evaluation is a temporary matrix of $0 \mathrm{~s}, 1 \mathrm{~s}$, and possibly missing values. If all values of the result matrix are nonzero and nonmissing, the condition is true; if any element in the result matrix is 0 , the condition is false. This evaluation is equivalent to using the ALL function.

For example, the following two statements produce the same result:
if $\mathbf{x}<\mathbf{y}$ then statement;
if all $(\mathrm{x}<\mathrm{y})$ then statement;

The following two expressions are valid, but the THEN clause in each case is executed only when all corresponding elements of \mathbf{A} and \mathbf{B} are unequal:

```
if a^=b then statement;
if ^(a=b) then statement;
```

If you require that only one element in \mathbf{A} not be equal to its corresponding element in \mathbf{B}, use the ANY function. For example, evaluation of the following expression requires only one element of \mathbf{A} and \mathbf{B} to be unequal for the expression to be true:

```
if any(a^=b) then statement;
```


DO Groups

A set of statements can be treated as a unit by putting them into a DO group, which starts with a DO statement and ends with an END statement. In this way, you can submit the entire group of statements for execution as a single unit. For some programming applications, you must use either a DO group or a module. For example, LINK and GOTO statements must be programmed inside a DO group or a module.

DO groups have two principal uses:

- to group a set of statements so that they are executed as a unit
- to group a set of statements for a conditional (IF-THEN/ELSE) clause

DO groups have the following general form:

```
DO ;
    additional statements
END ;
```

As with IF-THEN/ELSE statements, with DO groups any number of nesting levels is allowed. The following is an example of nested DO groups:

```
do;
    statements;
    do;
        statements;
        do;
            statements;
        end;
    end;
end;
```

It is good practice to indent the statements in DO groups as shown here, so that their position indicates the levels of nesting.

For IF-THEN/ELSE conditionals, DO groups can be used as units for either THEN or ELSE clauses so that you can perform many statements as part of the conditional action. An example follows:

```
if x<y then
    do;
        z1=abs (x+y);
        z2=abs (x-y);
    end;
else
    do;
        z1=abs (x-y);
        z2=abs (x+y);
    end;
```


Iterative Execution

The DO statement also serves the feature of iteration. With a DO statement, you can repeatedly execute a set of statements until some condition stops the execution. A DO statement is iterative if you specify it with any of the following iteration clauses. The type of clause determines when the iterations stop.

Clause	DO Statement
DATA	DO DATA statement
variable $=$ start TO stop $<$ BY increment $>$	iterative DO statement
WHILE (expression)	DO WHILE statement
UNTIL(expression)	DO UNTIL statement

A DO statement can have any combination of these four iteration clauses, but a given DO statement must be specified in the order listed in the preceding table.

DO DATA Statement

The general form of the DO DATA statement is as follows:

DO DATA ;

The DATA keyword specifies that iteration is to stop when an end-of-file condition occurs. The group is exited immediately when the end-of-file condition is encountered. Other DO specifications exit after tests are performed at the top or bottom of the loop.

See Chapter 6 and Chapter 7 for more information about processing data.
You can use the DO DATA statement to read data from an external file or to process observations from a SAS data set. In the DATA step in Base SAS software, the iteration is usually implied. The DO DATA statement simulates this iteration until end of file is reached.

The following example reads data from an external file named MYDATA and inputs the data values into a vector. The data values are read one at a time into the dummy variable XX and collected into the vector \mathbf{X} by using the vertical concatenation operator (//) after each value is read.

```
infile 'mydata'; /* infile statement */
do data; /* begin read loop */
    input xx; /* read a data value */
    x=x//xx; /* concatenate values */
end;
```

```
/* end loop
```

```
/* end loop
```


Iterative DO Statement

The general form of the iterative DO statement is as follows:

$$
\text { DO variable=start } \mathbf{T O} \text { stop }<\mathbf{B Y} \text { increment }>\text {; }
$$

The variable sequence specification assigns the start value to the given variable. This value is then incremented by the increment value (or by 1 if increment is not specified) until it is greater than or equal to the stop value. (If increment is negative, then the iterations stop when the value is less than or equal to stop.)

For example, the following statement specifies a DO loop that executes by multiples of 10 until I is greater than 100 :

```
do i=10 to 100 by 10;
```


DO WHILE Statement

The general form of the DO WHILE statement is as follows:

DO WHILE expression;

With a WHILE clause, the expression is evaluated at the beginning of each loop, with iterations continuing until the expression is false (that is, until the value is a 0 or missing value). Note that if the expression is false the first time it is evaluated, the loop is not executed.

For example, if the variable COUNT has an initial value of 1 , the following statements print COUNT four times:

```
do while(count<5);
    print count;
    count=count+1;
end;
```


DO UNTIL Statement

The general form of the DO UNTIL statement is as follows:

DO UNTIL expression;

The UNTIL clause is like the WHILE clause except that the expression is evaluated at the bottom of the loop. This means that the loop always executes at least once.

For example, if the variable COUNT has an initial value of 1 , the following statements print COUNT five times:

```
do until(count>5);
    print count;
    count=count+1;
end;
```


Jumping

During normal execution, statements are executed one after another. The GOTO and LINK statements instruct IML to jump from one part of a program to another. The place to which execution jumps is identified by a label, which is a name followed by a colon placed before an executable statement. You can program a jump by using either the GOTO statement or the LINK statement:

GOTO label;

LINK label;

Both the GOTO and LINK statements instruct IML to jump immediately to the labeled statement. The LINK statement, however, reminds IML where it jumped from so that execution can be returned there if a RETURN statement is encountered. The GOTO statement does not have this feature. Thus, the LINK statement provides a way of calling sections of code as if they were subroutines. The LINK statement calls the routine. The routine begins with the label and ends with a RETURN statement. LINK statements can be nested within other LINK statements; any number of nesting levels is allowed.

CAUTION: The GOTO and LINK statements are limited to being inside a module or DO group. These statements must be able to resolve the referenced label within the current unit of statements. Although matrix symbols can be shared across modules, statement labels cannot. Therefore, all GOTO statement labels and LINK statement labels must be local to the DO group or module.

The GOTO and LINK statements are not often used because you can usually write more understandable programs by using other features, such as DO groups for conditionals, iterative DO groups for looping, and module invocations for subroutine calls.

Here are two DO groups that illustrate how the GOTO and LINK statements work:

```
do;
    if x<0 then goto negative;
    y=sqrt (x);
    print Y;
    stop;
negative:
    print "Sorry, x is negative";
end;
```

```
do;
```

do;
if x<0 then link negative;
if x<0 then link negative;
y=sqrt (x);
y=sqrt (x);
print y;
print y;
stop;
stop;
negative:
negative:
print "Using abs. value of negative X";
print "Using abs. value of negative X";
x=abs (x) ;
x=abs (x) ;
return;
return;
end;

```
end;
```

The following is a comparable way to write the program on the left without using GOTO or LINK statements:

```
if x<0 then print "Sorry, X is negative";
else
    do;
        y=sqrt (x);
        print y;
    end;
```


Module Definition and Execution

Modules are used for two purposes:

- to create groups of statements that can be invoked as a unit from anywhere in the program-that is, to make a subroutine or function
- to create a separate (symbol-table) environment-that is, to define variables that are local to the module rather than global

A module always begins with a START statement and ends with a FINISH statement. Modules can be thought of as being either functions or subroutines. When a module returns a single parameter, it is called a function and is executed as if it were a builtin IML function; a function is invoked by its name in an assignment statement rather than in a CALL or RUN statement. Otherwise, a module is called a subroutine, and you execute the module in either the RUN statement or the CALL statement.

Defining and Executing a Module

Modules begin with a START statement, which has the following general form:
START $<$ name $><$ (arguments $)><$ GLOBAL (arguments) $>$;
Modules end with a FINISH statement, which has the following general form:
FINISH < name $>$;
If no name appears in the START statement, the name of the module defaults to MAIN.

There are two ways you can execute a module: you can use either a RUN statement or a CALL statement. The only difference is the order of resolution.

The general forms of these statements are as follows:

```
RUN name \(<\) (arguments ) \(>\);
CALL name \(<\) ( arguments \()>\);
```

The RUN and CALL statements must have arguments to correspond to the ones defined for the modules they invoke. A module can call other modules provided that it never recursively calls itself.

The RUN and CALL statements have orders of resolution that need to be considered only when you have given a module the same name as a built-in IML subroutine. In such cases, use the CALL statement to execute the built-in subroutine and the RUN statement to execute the user-defined module.

The RUN statement is resolved in the following order:

1. user-defined module
2. IML built-in function or subroutine

The CALL statement is resolved in the following order:

1. IML built-in subroutine
2. user-defined module

Nesting Modules

You can nest one module within another. You must make sure that each nested module is completely contained inside the parent module. Each module is collected independently of the others. When you nest modules, it is a good idea to indent the statements relative to the nesting level, as shown in the following example:

```
start a;
    reset print;
    start b;
            a=a+1;
```

```
    finish b;
    run b;
finish a;
run a;
```

In this example, IML starts collecting statements for a module called A. In the middle of this module, it recognizes the start of a new module called B. It saves its current work on A and collects B until encountering the first FINISH statement. It then finishes collecting A. Thus, it behaves the same as if B were collected before A, as follows:

```
start b;
    a=a+1;
finish;
start a;
    reset print;
    run b;
finish;
run a;
```


Understanding Symbol Tables

Whenever a variable is defined outside the module environment, its name is stored in the global symbol table. Whenever you are programming in immediate mode outside a module, you are working with symbols (variables) from the global symbol table. For each module you define with arguments given in a START statement, a separate symbol table called a local symbol table is created for that module. All symbols (variables) used inside the module are stored in its local symbol table. There can be many local symbol tables, one for each module with arguments. A symbol can exist in the global table, in one or more local tables, or in both the global table and one or more local tables. Also, depending on how a module is defined, there can be a one-to-one correspondence between variables across symbol tables (although there does not need to be any connection between a variable, say X , in the global table and a variable-say, X-in a local table). Values of symbols in a local table are temporary; that is, they exist only while the module is executing and are lost when the module has finished execution. Whether or not these temporary values are transferred to corresponding global variables depends on how the module is defined.

Modules with No Arguments

When you define a module with no arguments, a local symbol table is not created. All symbols (variables) are global-that is, equally accessible inside and outside the module. The symbols referenced inside the module are the same as the symbols referenced outside the module environment. This means that variables created inside the module are also global, and any operations done on variables inside a module affect the global variables as well.

The following example shows a module with no arguments:

```
> /* module without arguments, all symbols are global. */
> proc iml;
> a=10; /* A is global */
> b=20; /* B is global */
> c=30; /* C is global */
start mod1;
    p=a+b;
    q=b-a;
    c=40;
finish;
/* B is global */
/* begin module */
/* P is global */
/* Q is global */
/* C already global */
/* end module */
```

 NOTE: Module MOD1 defined.
 $>$ run mod1;
> print a b c p q;

A	B	C	P	Q
10	20	40	30	10

Note that after the module is executed, the following conditions exist:

- A is still 10 .
- B is still 20.
- C has been changed to 40 .
- P and Q are created, added to the global symbol table, and set to 30 and 10 , respectively.

Modules with Arguments

In general, the following statements are true about modules with arguments:

- You can specify arguments as variable names.
- If you specify several arguments, you should use commas to separate them.
- If you have both output variables and input variables, it is good practice to list the output variables first.
- When a module is invoked with either a RUN or a CALL statement, the arguments can be any name, expression, or literal. However, when using arguments for output results, you should use variable names rather than expressions or literals.

When a module is executed with either a RUN or a CALL statement, the value for each argument is transferred from the global symbol table to the local symbol table. For example, consider the module MOD2 defined in the following statements. The first four statements are submitted in the global environment, and they define variables ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D): the values of these variables are stored in the global symbol table. The START statement begins definition of MOD2 and lists two variables (X and Y) as arguments. This creates a local symbol table for MOD2. All symbols used
inside the module ($\mathrm{X}, \mathrm{Y}, \mathrm{P}, \mathrm{Q}$, and C) are in the local symbol table. There is also a one-to-one correspondence between the arguments in the RUN statement (A and B) and the arguments in the START statement (X and Y). Also note that A, B, and D exist only in the global symbol table, whereas X, Y, P, and Q exist only in the local symbol table. The symbol C exists independently in both the local and global tables. When MOD2 is executed with the statement $\operatorname{run} \bmod 2(A, B) ;$, the value of A is transferred from the global symbol table to X in the local table. Similarly, the value of B in the global table is transferred to Y in the local table. Because C is not an argument, there is no correspondence between the value of C in the global table and the value of C in the local table. When the module finishes execution, the final values of X and Y in the local table are transferred back to A and B in the global table.

```
> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod2(x,y);
> p=x+y;
> q=y-x;
> y=100;
> c=25;
> finish mod2; /* end module */
    NOTE: Module MOD2 defined.
> run mod2 (a,b);
> print a b c d;
```

A	B	C	D
10	100	30	90

The PRINT statement prints the values of variables in the global symbol table.
Notice that after the module is executed, the following conditions exist:

- A is still 10 .
- B is changed to 100 since the corresponding argument Y was changed to 100 inside the module.
- C is still 30. Inside the module, the local symbol C was set equal to 25 , but there is no correspondence between the global symbol C and the local symbol C.
- D is still 90 .

Also note that, inside the module, the symbols A, B, and D do not exist. Outside the module, the symbols $\mathrm{P}, \mathrm{Q}, \mathrm{X}$, and Y do not exist.

Defining Function Modules

Functions are special modules that return a single value. They are a special type of module because modules can, in general, return any number of values through their argument list. To write a function module, include a RETURN statement that assigns the returned value to a variable. The RETURN statement is necessary for a module to be a function. You invoke a function module in an assignment statement, as you would a standard function.

The symbol-table logic described in the preceding section also applies to function modules. The following is an example of a function module. In this module, the value of C in the local symbol table is transferred to the global symbol Z .

```
> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod3(x,y);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> return (c); /* return function value */
> finish mod3;
    NOTE: Module MOD3 defined.
> z = mod3 (a,b); /* call function */
> print a b c d z;
```

A	B	C	D	Z
10	100	30	90	40

Note the following about this example:

- A is still 10 .
- B is changed to 100 because Y is set to 100 inside the module, and there is a one-to-one correspondence between B and Y .
- C is still 30 . The symbol C in the global table has no connection with the symbol C in the local table.
- Z is set to 40 , which is the value of C in the local table.

Again note that, inside the module, the symbols A, B, D, and Z do not exist. Outside the module, the symbols $\mathrm{P}, \mathrm{Q}, \mathrm{X}$, and Y do not exist.

In the next example, you define your own function ADD for adding two arguments:

```
> proc iml;
> reset print;
```

```
> start add(x,y);
> sum=x+y;
> return(sum);
> finish;
NOTE: Module ADD defined.
> a={9 2,5 7};
    9 2
    5 7
> b={1 6,8 10};
B
1 6
8 10
> c=add (a,b);
C
10 8
13 17
```

A

Function modules can also be called inside each other. For example, in the following statements, the ADD function is called twice from within the first ADD function:

```
> d=add (add (6, 3),add (5,5));
> print d;
```

D
19

Functions are resolved in this order:

1. IML built-in function
2. user-defined function module
3. SAS DATA step function

This means that you should not use a name for a function that is already the name of an IML built-in function.

Using the GLOBAL Clause

For modules with arguments, the variables used inside the module are local and have no connection with any variables of the same name existing outside the module in the global table. However, it is possible to specify that certain variables not be placed in the local symbol table but rather be accessed from the global table. Use the GLOBAL clause to specify variables you want shared between local and global symbol tables. The following is an example of a module that uses a GLOBAL clause to define the symbol C as global. This defines a one-to-one correspondence between the value of C in the global table and the value of C in the local table.

```
> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod4(x,y) global (c);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> d=500;
> finish mod4;
    NOTE: Module MOD4 defined.
> run mod4 (a,b);
> print a b c d;
```

A	B	C	D
10	100	40	90

Note the following about this example:

- A is still 10 .
- B is changed to 100 .
- C is changed to 40 because it was declared global. The C inside the module and outside the module are the "same."
- D is still 90 and not 500 , since D independently exists in the global and local symbol tables.

Also note that every module with arguments has its own local table; thus it is possible to have a global and many local tables. A variable can independently exist in one or more of these tables. However, a variable can be commonly shared between the global and any number of local tables when the GLOBAL clause is used.

Nesting Modules with Arguments

For nested module calls, the concept of global and local symbol tables is somewhat different. Consider the following example:

```
> start mod1 (a,b);
> c=a+b;
> d=a-b;
> run mod2 (c,d);
> print c d;
> finish modl;
```

 NOTE: Module MOD1 defined.
 $>$ start mod2 (x,y);
$>\quad x=y-x$;
$>\quad \mathrm{y}=\mathrm{x}+1$;
$>\quad$ run $\bmod 3(x, y)$;
> finish mod2;
NOTE: Module MOD2 defined.
> start $\bmod 3(w, v)$;
$>\quad \mathrm{w}=\mathrm{w} \# \mathrm{v}$;
> finish mod3;
NOTE: Module MOD3 defined.

The local symbol table of MOD1 in effect becomes the global table for MOD2. The local symbol table of MOD2 is the global table for MOD3. The distinction between the global and local environments is necessary only for modules with arguments. If a module (say, A) calls another module (say, B) which has no arguments, B shares all the symbols existing in A's local symbol table.

For example, consider the following statements:

```
> x=457;
> start a;
> print 'from a' x;
> finish;
> start b(p);
> print 'from b' p;
> run a;
> finish;
> run b(x);
```

$\begin{array}{lr} & P \\ \text { from b } & 457\end{array}$

ERROR: Matrix X has not been set to a value.

```
Error occurred in module A
called from module B
stmt: PRINT
```

Paused in module A.

In this example, module A is called from module B. Therefore, the local symbol table of module B becomes the global symbol table for module A. Module A has access to all symbols available in module B. No X exists in the local environment of module B; thus no X is available in module A as well. This causes the error that X is unvalued.

More about Argument Passing

You can pass expressions and subscripted matrices as arguments to a module, but it is important to understand the way IML evaluates the expressions and passes results to the module. Expressions are evaluated, and the evaluated values are stored in temporary variables. Similarly, submatrices are created from subscripted variables and stored in temporary variables. The temporary variables are passed to the module while the original matrix remains intact. Notice that, in the example that follows, the matrix X remains intact. You might expect X to contain the squared values of Y .

```
> proc iml;
> reset printall;
> start square(a,b);
> a=b##2;
> finish;
> /* create two data matrices */
> x={5 9 };
    X 1 row 2 cols (numeric)
5 9
> y={10 4};
Y 1 row 2 cols (numeric)
1 0
                            4
> /* pass matrices to module element-by-element */
> do i=1 to 2;
> run square(x[i],y[i]);
> end;
> /* RESET PRINTALL prints all intermediate results */
```


The symbol X remains unchanged because the temporary variables that you generally do not see are changed. Note that IML properly warns you of any such instances in which your results might be lost to the temporary variables.

Module Storage

You can store and reload modules by using the forms of the STORE and LOAD statements as they pertain to modules:

STORE MODULE= name;

LOAD MODULE= name;

You can view the names of the modules in storage with the SHOW statement, as follows:

```
show storage;
```

See Chapter 14 for details about using the library storage facilities.

Stopping Execution

You can stop execution with a PAUSE, STOP, or ABORT statement. The QUIT statement is also a stopping statement, but it immediately removes you from the IML environment; the other stopping statements can be performed in the context of a program. Following are descriptions of the PAUSE, STOP, and ABORT statements.

PAUSE Statement

The general form of the PAUSE statement is as follows:
PAUSE $<$ message $><{ }^{*}>$;
The PAUSE statement does the following:

- stops execution of the module
- remembers where it stopped executing
- prints a pause message that you can specify
- puts you in immediate mode within the module environment. This mode uses the module's local symbol table. At this point you can enter more statements.

A RESUME statement enables you to continue execution at the place where the most recent PAUSE statement was executed.

You can use a STOP statement as an alternative to the RESUME statement to remove the paused states and return to the immediate environment outside the module.

You can specify a message in the PAUSE statement to display a message as the pause prompt. If no message is specified, IML displays the following default message:

```
paused in module \ob XXX\obe
```

where XXX is the name of the module containing the pause. To suppress the display of any messages, use the * option, as follows:

```
pause *;
```

The following are examples of PAUSE statements with operands:

```
pause "Please enter an assignment for X, then enter RESUME;";
msg ="Please enter an assignment for X, then enter RESUME;";
pause msg;
```

When you use the PAUSE, RESUME, STOP, or ABORT statement, you should be aware of the following details:

- The PAUSE statement can be issued only from within a module.
- IML diagnoses an error if you execute a RESUME statement without any outstanding pauses.
- You can define and execute modules while paused from other modules.
- A PAUSE statement is automatically issued if an error occurs while statements are being executed inside a module. This gives you an opportunity to correct the error and resume execution of the module with a RESUME statement. Alternately, you can submit a STOP or ABORT statement to exit from the module environment.
- You cannot reenter or redefine an active (paused) module; you will get an error for recursive module execution.
- In paused mode, you can run another module that, in turn, pauses; the paused environments are stacked.
- You can put a RESUME statement inside a module. For example, suppose you are paused in module A and then run module B, which executes a RESUME statement. Execution is resumed in module A and does not return to module B.
- IML supports stopping execution while in a paused state in both subroutine and function modules.
- If you pause in a subroutine module that has its own symbol table, then the immediate mode during the pause uses this symbol table rather than the global one. You must use a RESUME or a STOP statement to return to the global symbol table environment.
- You can use the PAUSE and RESUME statements, in conjunction with the PUSH, QUEUE, and EXECUTE subroutines described in Chapter 15, to execute IML statements that you generate within a module.

STOP Statement

The general form of the STOP statement is as follows:

STOP ;

The STOP statement stops execution and returns you to immediate mode, where new statements that you enter are executed. If execution is interrupted by a PAUSE statement, the STOP statement clears all pauses and returns to immediate mode of execution.

ABORT Statement

The general form of the ABORT statement is as follows:

ABORT ;

The ABORT statement stops execution and exits from IML much like a QUIT statement, except that the ABORT statement is executable and programmable. For example, you might want to exit IML if a certain error occurs. You can check for the error in a module and program an ABORT statement to execute if the error occurs. The ABORT statement does not execute until the module is executed, while the QUIT statement executes immediately and ends the IML session.

Summary

In this chapter you learned the basics of programming with SAS/IML software. You learned about conditional execution (IF-THEN/ELSE statements), grouping statements as a unit (DO groups), iterative execution, nonconsecutive execution, defining subroutines and functions (modules), and stopping execution. With these programming capabilities, you are able to write your own sophisticated programs and store the code as a module. You can then execute the program later with a RUN or CALL statement.

Chapter 6
 Working with SAS Data Sets

Chapter Contents

OVERVIEW 91
OPENING A SAS DATA SET 92
MAKING A SAS DATA SET CURRENT 93
DISPLAYING SAS DATA SET INFORMATION 93
REFERRING TO A SAS DATA SET 94
LISTING OBSERVATIONS 94
Specifying a Range of Observations 95
Selecting a Set of Variables 97
Selecting Observations 98
READING OBSERVATIONS FROM A SAS DATA SET 101
Using the READ Statement with the VAR Clause 101
Using the READ Statement with the VAR and INTO Clauses 102
Using the READ Statement with the WHERE Clause 102
EDITING A SAS DATA SET 103
Updating Observations 104
Deleting Observations 105
CREATING A SAS DATA SET FROM A MATRIX 106
Using the CREATE Statement with the FROM Option 106
Using the CREATE Statement with the VAR Clause 108
UNDERSTANDING THE END-OF-FILE CONDITION 108
PRODUCING SUMMARY STATISTICS 108
SORTING A SAS DATA SET 109
INDEXING A SAS DATA SET 110
DATA SET MAINTENANCE FUNCTIONS 111
SUMMARY OF COMMANDS 111
COMPARISON WITH THE SAS DATA STEP 112
SUMMARY 113

Chapter 6
 Working with SAS Data Sets

Overview

SAS/IML software has many statements for passing data from SAS data sets to matrices and from matrices to SAS data sets. You can create matrices from the variables and observations of a SAS data set in several ways. You can create a column vector for each data set variable, or you can create a matrix where columns correspond to data set variables. You can use all the observations in a data set or use a subset of them.

You can also create a SAS data set from a matrix. The columns correspond to data set variables and the rows correspond to observations. Data management commands enable you to edit, append, rename, or delete SAS data sets from within the SAS/IML environment.

When reading a SAS data set, you can read any number of observations into a matrix either sequentially, directly by record number, or conditionally according to conditions in a WHERE clause. You can also index a SAS data set. The indexing capability facilitates retrievals by the indexed variable.

Operations on SAS data sets are performed with straightforward, consistent, and powerful statements. For example, the LIST statement can perform the following tasks:

- list the next record
- list a specified record
- list any number of specified records
- list the whole file
- list records satisfying one or more conditions
- list specified variables or all variables

If you want to read values into a matrix, use the READ statement instead of the LIST statement with the same operands and features as the LIST statement. You can specify operands that control which records and variables are used indirectly, as matrices, so that you can dynamically program the records, variables, and conditional values you want.

In this chapter, you use the SAS data set CLASS, which contains the variables NAME, SEX, AGE, HEIGHT, and WEIGHT, to learn about the following:

- opening a SAS data set
- examining the contents of a SAS data set
- displaying data values with the LIST statement
- reading observations from a SAS data set into matrices
- editing a SAS data set
- creating a SAS data set from a matrix
- displaying matrices with row and column headings
- producing summary statistics
- sorting a SAS data set
- indexing a SAS data set
- similarities and differences between the data set and the SAS DATA step

Throughout this chapter, the right angle brackets ($>$) indicate statements that you submit; responses from Interactive Matrix Language follow.

First, invoke the IML procedure by using the following statement:

```
> proc iml;
```

IML Ready

Opening a SAS Data Set

Before you can access a SAS data set, you must first submit a command to open it. There are three ways to open a SAS data set:

- To simply read from an existing data set, submit a USE statement to open it for Read access. The general form of the USE statement is as follows:

$$
\text { USE SAS-data-set }<\text { VAR operand }><\text { WHERE(expression) }>\text {; }
$$

With Read access, you can use the FIND, INDEX, LIST, and READ statements with the data set.

- To read and write to an existing data set, use the EDIT statement. The general form of the EDIT statement is as follows:

EDIT SAS-data-set < VAR operand $><$ WHERE(expression) $>$;
This statement enables you to use both the reading statements (LIST, READ, INDEX, and FIND) and the writing statements (REPLACE, APPEND, DELETE, and PURGE).

- To create a new data set, use the CREATE statement to open a new data set for both output and input. The general form of the CREATE statement is as follows:

```
CREATE SAS-data-set < VAR operand > ;
CREATE SAS-data-set FROM from-name
    < [COLNAME=column-name ROWNAME=row-name] > ;
```

Use the APPEND statement to place the matrix data into the newly created data set. If you do not use the APPEND statement, the new data set has no observations.

If you want to list observations and create matrices from the data in the SAS data set named CLASS, you must first submit a statement to open the CLASS data set. Because CLASS already exists, specify the USE statement.

Making a SAS Data Set Current

IML data processing commands work on the current data set. This feature makes it unnecessary for you to specify the data set as an operand each time. There are two current data sets, one for input and one for output. IML makes a data set the current one as it is opened. You can also make a data set current by using two setting statements, SETIN and SETOUT:

- The USE and SETIN statements make a data set current for input.
- The SETOUT statement makes a data set current for output.
- The CREATE and EDIT statements make a data set current for both input and output.

If you issue a USE, EDIT, or CREATE statement for a data set that is already open, the data set is made the current data set. To find out which data sets are open and which are current input and current output data sets, use the SHOW DATASETS statement.

The current observation is set by the last operation that performed input/output (I/O). If you want to set the current observation without doing any I/O, use the SETIN (or SETOUT) statement with the POINT option. After a data set is opened, the current observation is set to 0 . If you attempt to list or read the current observation, the current observation is converted to 1 . You can make the CLASS data set current for input and position the pointer at the 10th observation with the following statement:

```
> setin class point 10;
```


Displaying SAS Data Set Information

You can use SHOW statements to display information about your SAS data sets. The SHOW DATASETS statement lists all open SAS data sets and their status. The SHOW CONTENTS statement displays the variable names and types, the size, and the number of observations in the current input data set. For example, to get information for the CLASS data set, issue the following statements:

```
> use class;
> show datasets;
```

LIBNAME	MEMNAME	OPEN MODE	STATUS
-------	------	--------	-----
WORK	.CLASS	Input	Current Input

> show contents;

VAR NAME	TYPE	SIZE
NAME	CHAR	8
SEX	CHAR	8
AGE	NUM	8
HEIGHT	NUM	8
WEIGHT	NUM	8

Number of Variables: 5
Number of Observations: 19

As you can see, CLASS is the only data set open. The USE statement opens it for input, and it is the current input data set. The full name for CLASS is WORK.CLASS. The libref is the default, WORK. The next section tells you how to change the libref to another name.

Referring to a SAS Data Set

The USE, EDIT, and CREATE statements take as their first operand the data set name. This name can have either one or two levels. If it is a two-level name, the first level refers to the name of the SAS data library; the second name is the data set name. If the libref is WORK, the data set is stored in a directory for temporary data sets; these are automatically deleted at the end of the session. Other librefs are associated with SAS data libraries by using the LIBNAME statement.

If you specify only a single name, then IML supplies a default libref. At the beginning of an IML session, the default libref is SASUSER if SASUSER is defined as a libref or WORK otherwise. You can reset the default libref by using the RESET DEFLIB statement. If you want to create a permanent SAS data set, you must specify a twolevel name by using the RESET DEFLIB statement (see the chapter on SAS files in SAS Language Reference: Concepts for more information about permanent SAS data sets):

```
> reset deflib=name;
```


Listing Observations

You can list variables and observations in a SAS data set with the LIST statement. The general form of the LIST statement is as follows:

$$
\text { LIST }<\text { range }><\text { VAR operand }><\text { WHERE(expression) }>\text {; }
$$

where
range specifies a range of observations.
operand selects a set of variables.
expression is an expression that is evaluated as being true or false.

The next three sections discuss how to use each of these clauses with the CLASS data set.

Specifying a Range of Observations

You can specify a range of observations with a keyword or by record number by using the POINT option. You can use the range operand with the data management statements DELETE, FIND, LIST, READ, and REPLACE.

You can specify range with any of the following keywords:

ALL
CURRENT

AFTER
POINT operand

NEXT $<$ number $>$ specifies the next observation or next number of observations.
specifies all observations.
specifies the current observation. specifies all observations after the current one.
specifies observations by number, where operand can be one of the following:

Operand	Example
a single record number	point 5
a literal giving several record numbers	point $\left\{\begin{array}{lll}2 & 5 & 10\end{array}\right\}$
the name of a matrix containing record numbers	point p
an expression in parentheses	point $(\mathrm{p}+1)$

If you want to list all observations in the CLASS data set, use the keyword ALL to indicate that the range is all observations. The following example demonstrates the use of this keyword:
> list all;

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
1	JOYCE	F	11.0000	51.3000	50.5000
2	THOMAS	M	11.0000	57.5000	85.0000
3	JAMES	M	12.0000	57.3000	83.0000
4	JANE	F	12.0000	59.8000	84.5000
5	JOHN	M	12.0000	59.0000	99.5000

6	LOUISE	F	12.0000	56.3000	77.0000
7	ROBERT	M	12.0000	64.8000	128.0000
8 ALICE	F	13.0000	56.5000	84.0000	
9	BARBARA	F	13.0000	65.3000	98.0000
10	JEFFREY	M	13.0000	62.5000	84.0000
11	CAROL	F	14.0000	62.8000	102.5000
12 HENRY	M	14.0000	63.5000	102.5000	
13 ALFRED	M	14.0000	69.0000	112.5000	
14	JUDY	F	14.0000	64.3000	90.0000
15 JANET	F	15.0000	62.5000	112.5000	
16 MARY	F	15.0000	66.5000	112.0000	
17 RONALD	M	15.0000	67.0000	133.0000	
18 WILLIAM	M	15.0000	66.5000	112.0000	
19 PHILIP	M	16.0000	72.0000	150.0000	

Without a range specification, the LIST statement lists only the current observation, which in this example is now the last observation because of the previous LIST statement. Here is the result of using the LIST statement:

```
> list;
```

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
19	PHILI	M	. 000	72.0000	50.000

Use the POINT keyword with record numbers to list specific observations. You can follow the keyword POINT with a single record number or with a literal giving several record numbers. Here are two examples:

```
> list point 5;
```

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
5	JOHN	M	12.0000	59.0000	99.5000

```
> list point {2 4 9};
```

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
2	THOMAS	M	11.0000	57.5000	85.0000
4 JANE	F	12.0000	59.8000	84.5000	
9 BARBARA	F	13.0000	65.3000	98.0000	

You can also indicate the range indirectly by creating a matrix containing the records you want to list, as in the following example:

```
> p={2 4 9};
> list point p;
```

OBS NAME SEX AGE HEIGHT WEIGHT

2	THOMAS	M	11.0000	57.5000	85.0000
4	JANE	F	12.0000	59.8000	84.5000
9	BARBARA	F	13.0000	65.3000	98.0000

The range operand is usually listed first when you are using the access statements DELETE, FIND, LIST, READ, and REPLACE. The following table shows access statements and their default ranges:

Statement	Default Range
LIST	current
READ	current
FIND	all
REPLACE	current
APPEND	always at end
DELETE	current

Selecting a Set of Variables

You can use the VAR clause to select a set of variables. The general form of the VAR clause is as follows:

VAR operand

where operand can be specified by using one of the following items:

- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the following keywords:
ALL for all variables
CHAR for all character variables
NUM for all numeric variables

The following examples show all possible ways you can use the VAR clause:

```
var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */
```

For example, to list students' names from the CLASS data set, use the VAR clause with a literal, as in the following statement:

```
> list point p var{name};
```

OBS NAME
2 THOMAS
4 JANE
9 BARBARA

To list AGE, HEIGHT, and WEIGHT, you can use the VAR clause with a matrix giving the variables, as in the following statements:

```
> v={age height weight};
> list point p var v;
```

OBS	AGE	HEIGHT	WEIGHT
2	11.0000	57.5000	85.0000
4	12.0000	59.8000	84.5000
9	13.0000	65.3000	98.0000

The VAR clause can be used with the following statements for the tasks described:

Statement	VAR Clause Function
APPEND	specifies which IML variables contain data to append to the data set
CREATE	specifies the variables to go in the data set
EDIT	limits which variables are accessed
LIST	specifies which variables to list
READ	specifies which variables to read
REPLACE	specifies which data set variable's data values to replace with corre- sponding IML variable data values limits which variables are accessed
USE	

Selecting Observations

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the expression. The general form of the WHERE clause is as follows:

WHERE variable comparison-op operand;
where
variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
$<\quad$ less than
$<=$ less than or equal to
$=$ equal to
$>$ greater than
>= greater than or equal to
${ }^{\wedge}=$ not equal to
? contains a given string
^? does not contain a given string
$=$: begins with a given string
=* sounds like or is spelled like a given string
operand
is a literal value, a matrix name, or an expression in parentheses.
WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:

$$
\text { ^ }=\wedge ? \ll=\gg=
$$

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

$$
=? \quad=: \quad=*
$$

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is as follows:

```
clause \& clause (for an AND clause)
clause I clause (for an OR clause)
```

where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

For example, to list the names of all males in the data set CLASS, use the following statement:
> list all var\{name\} where(sex=' \mathbf{M}^{\prime});

OBS	NAME
2	THOMAS
3	JAMES
5	JOHN

7	ROBERT
10	JEFFREY
12	HENRY
13	ALFRED
17	RONALD
18	WILLIAM
19	PHILIP

The WHERE comparison arguments can be matrices. In the following cases that use the $=*$ operator, the comparison is made to each name to find a string that sounds like or is spelled like the given string or strings:

```
> n={name sex age};
> list all var n where(name=*{"ALFRED","CAROL","JUDY"});
\begin{tabular}{|c|c|c|c|}
\hline OBS & NAME & SEX & AGE \\
\hline 11 & CAROL & F & 14.0000 \\
\hline 13 & ALFRED & M & 14.0000 \\
\hline 14 & JUDY & F & 14.0000 \\
\hline
\end{tabular}
> list all var n where(name=*{"JON","JAN"});
\begin{tabular}{|c|c|c|c|}
\hline OBS & NAME & SEX & AGE \\
\hline 4 & JANE & F & 12.0000 \\
\hline 5 & JOHN & M & 12.0000 \\
\hline
\end{tabular}
```

To list AGE, HEIGHT, and WEIGHT for all students in their teens, use the following statement:

```
> list all var v where(age>12);
\begin{tabular}{rrrr} 
OBS & AGE & HEIGHT & WEIGHT \\
\hline 8 & 13.0000 & 56.5000 & 84.0000 \\
9 & 13.0000 & 65.3000 & 98.0000 \\
10 & 13.0000 & 62.5000 & 84.0000 \\
11 & 14.0000 & 62.8000 & 102.5000 \\
12 & 14.0000 & 63.5000 & 102.5000 \\
13 & 14.0000 & 69.0000 & 112.5000 \\
14 & 14.0000 & 64.3000 & 90.0000 \\
15 & 15.0000 & 62.5000 & 112.5000 \\
16 & 15.0000 & 66.5000 & 112.0000 \\
17 & 15.0000 & 67.0000 & 133.0000 \\
18 & 15.0000 & 66.5000 & 112.0000 \\
19 & 16.0000 & 72.0000 & 150.0000
\end{tabular}
```

Note: In the WHERE clause, the expression on the left side refers to values of the data set variables, and the expression on the right side refers to matrix values. You cannot use comparisons involving more than one data set variable in a single comparison; for example, you cannot use either of the following expressions:

```
list all where(height>weight);
list all where(weight-height>0);
```

You could use the first statement if WEIGHT were a matrix name already defined rather than a variable in the SAS data set.

Reading Observations from a SAS Data Set

Transferring data from a SAS data set to a matrix is done by using the READ statement. The SAS data set you want to read data from must already be open. You can open a SAS data set with either the USE or the EDIT statement. If you already have several data sets open, you can point to the one you want with the SETIN statement, making it the current input data set. The general form of the READ statement is as follows:

$$
\begin{aligned}
& \text { READ }<\text { range }><\text { VAR operand }><\text { WHERE(expression) }> \\
& \quad<\text { INTO name }>\text {; }
\end{aligned}
$$

where
range specifies a range of observations.
operand selects a set of variables.
expression is an expression that is evaluated as being true or false.
name names a target matrix for the data.

Using the READ Statement with the VAR Clause

Use the READ statement with the VAR clause to read variables from the current SAS data set into column vectors of the VAR clause. Each variable in the VAR clause becomes a column vector with the same name as the variable in the SAS data set. The number of rows is equal to the number of observations processed, depending on the range specification and the WHERE clause. For example, to read the numeric variables AGE, HEIGHT, and WEIGHT for all observations in the CLASS data set, use the following statements:

```
> read all var {age height weight};
```

Now use the SHOW NAMES statement to display all the matrices you have created so far in this chapter:
> show names;

AGE	19	rows	1 col num	8
HEIGHT	19 rows	1 col num	8	
N	1 row	3 cols char	4	
P	1 row	3 cols num	8	
V	1 row	3 cols char	6	
WEIGHT	19 rows	1 col num	8	
Number of symbols $=8$	(includes those without values)			

You see that, with the READ statement, you have created the three numeric vectors AGE, HEIGHT, and WEIGHT. (Notice that the matrices you created earlier, N, P, and \mathbf{V}, are also listed.) You can select the variables that you want to access with a VAR clause in the USE statement. The two previous statements can also be written as follows:

```
use class var{age height weight};
read all;
```


Using the READ Statement with the VAR and INTO Clauses

Sometimes you want to have all of the numeric variables in the same matrix so that you can determine correlations. Use the READ statement with the INTO clause and the VAR clause to read the variables listed in the VAR clause into the single matrix named in the INTO clause. Each variable in the VAR clause becomes a column of the target matrix. If there are p variables in the VAR clause and n observations are processed, the target matrix in the INTO clause is an $n \times p$ matrix.

The following statement creates a matrix \mathbf{X} containing the numeric variables of the CLASS data set. Notice the use of the keyword _NUM_ in the VAR clause to specify that all numeric variables be read.

```
> read all var _num_ into x;
> print x;
```

\mathbf{X}		
11	51.3	50.5
11	57.5	85
12	57.3	83
12	59.8	84.5
12	59	99.5
12	56.3	77
12	64.8	128
13	56.5	84
13	65.3	98
13	62.5	84
14	62.8	102.5
14	63.5	102.5
14	69	112.5
14	64.3	90
15	62.5	112.5
15	66.5	112
15	67	133
15	66.5	112
16	72	150

Using the READ Statement with the WHERE Clause

Use the WHERE clause as you did with the LIST statement, to conditionally select observations from within the specified range. If you want to create a matrix FEMALE containing the variables AGE, HEIGHT, and WEIGHT for females only, use the following statements:
> read all var _num_ into female where (sex="F");
> print female;

FEMALE		
11	51.3	50.5
12	59.8	84.5
12	56.3	77
13	56.5	84
13	65.3	98
14	62.8	102.5
14	64.3	90
15	62.5	112.5
15	66.5	112

Now try some special features of the WHERE clause to find values that begin with certain characters (the $=$: operator) or that contain certain strings (the ? operator). To create a matrix \mathbf{J} containing the students whose names begin with the letter "J," use the following statements:

```
> read all var{name} into j where(name=:"J");
> print j;
```

```
J
JOYCE
JAMES
JANE
JOHN
JEFFREY
JUDY
JANET
```

To create a matrix AL of children with names containing the string "AL," use the following statement:
> read all var\{name\} into al where(name?"AL");
> print al;

AL
ALICE
ALFRED
RONALD

Editing a SAS Data Set

You can edit a SAS data set by using the EDIT statement. You can update values of variables, mark observations for deletion, delete the marked observations, and save the changes you make. The general form of the EDIT statement is as follows:

EDIT SAS-data-set $<$ VAR operand $><$ WHERE(expression) $>$;
where

SAS-data-set names an existing SAS data set. operand selects a set of variables.
expression is an expression that is evaluated as being true or false.

Updating Observations

Suppose you have updated data and want to change some values in the CLASS data set. For instance, suppose the student named Henry has had a birthday since the data were added to the CLASS data set. You can do the following:

- make the CLASS data set current for input and output
- read the data
- change the appropriate data value
- replace the changed data in the data set

First, submit an EDIT statement to make the CLASS data set current for input and output. Then use the FIND statement, which finds observation numbers and stores them in a matrix, to find the observation number of the data for Henry and store it in the matrix d. Here are the statements:

```
> edit class;
> find all where(name={'HENRY'}) into d;
> print d;
```

D
12

The following statement lists the observation containing the data for Henry:

As you see, the observation number is 12 . Now read the value for AGE into a matrix and update its value. Finally, replace the value in the CLASS data set and list the observation containing the data for Henry again. Here are the statements:

```
> age=15;
> replace;
```

> list point 12;

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
12	HENRY	M	15.0000	63.5000	102.5000

Deleting Observations

Use the DELETE statement to mark an observation to be deleted. The general form of the DELETE statement is as follows:

DELETE < range > < WHERE(expression) > ;
where
range specifies a range of observations.
expression is an expression that is evaluated as being true or false.

The following are examples of valid uses of the DELETE statement:

Statement	Action
delete;	deletes the current observation
delete point $10 ;$	deletes observation 10
delete all where (age>12);	deletes all observations where
	AGE is greater than 12

If a file accumulates a number of observations marked as deleted, you can clean out these observations and renumber the remaining observations by using the PURGE statement.

Suppose the student named John has moved and you want to update the CLASS data set. You can remove the observation by using the EDIT and DELETE statements. First, find the observation number of the data for John and store it in the matrix d by using the FIND statement. Then submit a DELETE statement to mark the record for deletion. A deleted observation is still physically in the file and still has an observation number, but it is excluded from processing. The deleted observations appear as gaps when you list the file by observation number, as in the following example:

```
> find all where(name={'JOHN' }) into d;
> print d;
```


Notice that there is a gap in the data where the deleted observation was (observation 5). To renumber the observations and close the gaps, submit the PURGE statement. Note that the PURGE statement deletes any indexes associated with a data set. Here is the statement:

```
> purge;
```


Creating a SAS Data Set from a Matrix

SAS/IML software provides the capability to create a new SAS data set from a matrix. You can use the CREATE and APPEND statements to create a SAS data set from a matrix, where the columns of the matrix become the data set variables and the rows of the matrix become the observations. Thus, an $n \times m$ matrix produces a SAS data set with m variables and n observations. The CREATE statement opens the new SAS data set for both input and output, and the APPEND statement writes to (outputs to) the data set.

Using the CREATE Statement with the FROM Option

You can create a SAS data set from a matrix by using the CREATE statement with the FROM option. This form of the CREATE statement is as follows:

CREATE SAS-data-set FROM matrix

$$
<\text { [COLNAME=column-name ROWNAME=row-name] }>\text {; }
$$

where

SAS-data-set names the new data set.
matrix
column-name
row-name
names the matrix containing the data.
names the variables in the data set.
adds a variable containing row titles to the data set.

Suppose you want to create a SAS data set named RATIO containing a variable with the height-to-weight ratios for each student. You first create a matrix containing the ratios from the matrices HEIGHT and WEIGHT that you have already defined. Next, use the CREATE and APPEND statements to open a new SAS data set called RATIO and append the observations, naming the data set variable HTWT instead of COL1.

```
htwt=height/weight;
create ratio from htwt[colname='htwt'];
append from htwt;
```

Now submit the SHOW DATASETS and SHOW CONTENTS statements:

```
> show datasets;
    LIBNAME MEMNAME OPEN MODE STATUS
    ------- ------- ---------- ------
    WORK .CLASS Update
    WORK .RATIO Update Current Input Current Output
> show contents;
    VAR NAME TYPE SIZE
    HTWT NUM 8
    Number of Variables: 1
    Number of Observations: 18
> close ratio;
```

As you can see, the new SAS data set RATIO has been created. It has 18 observations and 1 variable (recall that you deleted 1 observation earlier).

Using the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables you want to include in the new data set. In the previous example, the new data set RATIO had one variable. If you want to create a similar data set but include the second variable NAME, you use the VAR clause. You could not do this with the FROM option because the variable HTWT is numeric and the variable NAME is character. The following statements create a new data set RATIO2 having the variables NAME and HTWT:

```
> create ratio2 var{name htwt};
> append;
> show contents;
\begin{tabular}{llc} 
VAR NAME & TYPE & SIZE \\
NAME & CHAR & 8 \\
HTWT & NUM & 8
\end{tabular}
    Number of Variables: 2
    Number of Observations: 18
> close ratio2;
```

Notice that now the variable NAME is in the data set.

Understanding the End-of-File Condition

If you try to read past the end of a data set or point to an observation greater than the number of observations in the data set, you create an end-of-file condition. If an end-of-file condition occurs inside a DO DATA iteration group, IML transfers control to the next statement outside the current DO DATA group.

The following example uses a DO DATA loop while reading the CLASS data set. It reads the variable WEIGHT in one observation at a time and accumulates the weights of the students in the IML matrix SUM. When the data are read, the total class weight is stored in the matrix SUM.

```
setin class point 0;
sum=0;
do data;
    read next var{weight};
    sum=sum+weight;
end;
print sum;
```


Producing Summary Statistics

Summary statistics on the numeric variables of a SAS data set can be obtained with the SUMMARY statement. These statistics can be based on subgroups of the data by using the CLASS clause in the SUMMARY statement. The SAVE option in the OPT
clause enables you to save the computed statistics in matrices for later perusal. For example, consider the following statement.

```
> summary var {height weight} class {sex} stat{mean std} opt{save};
\begin{tabular}{|c|c|c|c|c|}
\hline SEX & Nobs & Variable & MEAN & STD \\
\hline \multirow[t]{2}{*}{F} & 9 & HEIGHT & 60.58889 & 5.01833 \\
\hline & & WEIGHT & 90.11111 & 19.38391 \\
\hline \multirow[t]{2}{*}{M} & 9 & HEIGHT & 64.45556 & 4.90742 \\
\hline & & WEIGHT & 110.00000 & 23.84717 \\
\hline \multirow[t]{2}{*}{All} & 18 & HEIGHT & 62.52222 & 5.20978 \\
\hline & & WEIGHT & 100.05556 & 23.43382 \\
\hline
\end{tabular}
```

This summary statement gives the mean and standard deviation of the variables HEIGHT and WEIGHT for the two subgroups (male and female) of the data set CLASS. Since the SAVE option is set, the statistics of the variables are stored in matrices under the name of the corresponding variables, with each column corresponding to a statistic requested and each row corresponding to a subgroup. Two other vectors, SEX and _NOBS_, are created. The vector SEX contains the two distinct values of the CLASS variable SEX used in forming the two subgroups. The vector _NOBS_ has the number of observations in each subgroup.

Note that the combined means and standard deviations of the two subgroups are displayed but not saved.

More than one CLASS variable can be used, in which case a subgroup is defined by the combination of the values of the CLASS variables.

Sorting a SAS Data Set

The observations in a SAS data set can be ordered (sorted) by specific key variables. To sort a SAS data set, close the data set if it is currently open, and issue a SORT statement for the variables by which you want the observations to be ordered. Specify an output data set name if you want to keep the original data set. For example, the following statement creates a new SAS data set named SORTED:

```
> sort class out=sorted by name;
```

The new data set has the observations from the data set CLASS, ordered by the variable NAME.

The following statement sorts in place the data set CLASS by the variable NAME:

```
> sort class by name;
```

However, when the SORT statement is finished executing, the original data set is replaced by the sorted data set.

You can specify as many key variables as needed, and, optionally, each variable can be preceded by the keyword DESCENDING, which denotes that the variable that follows is to be sorted in descending order.

Indexing a SAS Data Set

Searching through a large data set for information about one or more specific observations can take a long time because the procedure must read each record. You can reduce this search time by first indexing the data set by a variable. The INDEX statement builds a special companion file containing the values and record numbers of the indexed variables. Once the index is built, IML can use the index for queries with WHERE clauses if it decides that indexed retrieval is more efficient. Any number of variables can be indexed, but only one index is in use at a given time. Note that purging a data set with the PURGE statement results in the loss of all associated indexes.

Once you have indexed a data set, IML can use this index whenever a search is conducted with respect to the indexed variables. The indexes are updated automatically whenever you change values in indexed variables. When an index is in use, observations cannot be randomly accessed by their physical location numbers. This means that the POINT range cannot be used when an index is in effect. However, if you purge the observations marked for deletion, or sort the data set in place, the indexes become invalid and IML automatically deletes them.

For example, if you want a list of all female students in the CLASS data set, you can first index CLASS by the variable SEX. Then use the LIST statement with a WHERE clause. Of course, the CLASS data set is small, and indexing does little if anything to speed queries with the WHERE clause. If the data set had thousands of students, though, indexing could save search time.

To index the data set by the variable SEX, submit the following statement:

```
> index sex;
    NOTE: Variable SEX indexed.
    NOTE: Retrieval by SEX.
```

Now list all students by using the following statement. Notice the ordering of the special file built by indexing by the variable SEX. Retrievals by SEX will be quick.

```
> list all;
```

OBS	NAME	SEX	AGE	HEIGHT	WEIGHT
1 JOYCE	F	11.0000	51.3000	50.5000	
4 JANE	F	12.0000	59.8000	84.5000	
6 LOUISE	F	12.0000	56.3000	77.0000	

8	ALICE	F	13.0000	56.5000	84.0000
9	BARBARA	F	13.0000	65.3000	98.0000
11	CAROL	F	14.0000	62.8000	102.5000
14	JUDY	F	14.0000	64.3000	90.0000
15	JANET	F	15.0000	62.5000	112.5000
16	MARY	F	15.0000	66.5000	112.0000
2	THOMAS	M	11.0000	57.5000	85.0000
3	JAMES	M	12.0000	57.3000	83.0000
7	ROBERT	M	12.0000	64.8000	128.0000
10	JEFFREY	M	13.0000	62.5000	84.0000
12	HENRY	M	15.0000	63.5000	102.5000
13	ALFRED	M	14.0000	69.0000	112.5000
17	RONALD	M	15.0000	67.0000	133.0000
18	WILLIAM	M	15.0000	66.5000	112.0000
19	PHILIP	M	16.0000	72.0000	150.0000

Data Set Maintenance Functions

Two functions and two subroutines are provided to perform data set maintenance:

DATASETS function obtains members in a data library. This function returns a character matrix containing the names of the SAS data sets in a library.

CONTENTS function

RENAME subroutine DELETE subroutine
obtains variables in a member. This function returns a character matrix containing the variable names for the SAS data set specified by libname and memname. The variable list is returned in alphabetical order.
renames a SAS data set member in a specified library.
deletes a SAS data set member in a specified library.

See Chapter 20 for details and examples of these functions and routines.

Summary of Commands

You have seen that IML has an extensive set of commands that operate on SAS data sets. Table 6.1 summarizes the data management commands you can use to perform management tasks for which you might normally use the SAS DATA step.

Table 6.1. Data Management Commands

Command	Action
APPEND	adds observations to the end of a SAS data set
CLOSE	closes a SAS data set
CREATE	creates and opens a new SAS data set for input and output
DELETE	marks observations for deletion in a SAS data set
EDIT	opens an existing SAS data set for input and output
FIND	finds observations

INDEX	indexes variables in a SAS data set
LIST	lists observations
PURGE	purges all deleted observations from a SAS data set
READ	reads observations into IML variables
REPLACE	writes observations back into a SAS data set
RESET DEFLIB	names default libname
SAVE	saves changes and reopens a SAS data set
SETIN	selects an open SAS data set for input
SETOUT	selects an open SAS data set for output
SHOW CONTENTS	shows contents of the current input SAS data set
SHOW DATASETS	shows SAS data sets currently open
SORT	sorts a SAS data set
SUMMARY	produces summary statistics for numeric variables
USE	opens an existing SAS data set for input

Comparison with the SAS DATA Step

If you want to remain in the IML environment and mimic DATA step processing, you need to learn the basic differences between IML and the SAS DATA step:

- With SAS/IML software, you start with a CREATE statement instead of a DATA statement. You must explicitly set up all your variables with the correct attributes before you create a data set. This means that you must define character variables to have the desired string length beforehand. Numeric variables are the default, so any variable not defined as character is assumed to be numeric. In the DATA step, the variable attributes are determined from context across the whole step.
- With SAS/IML software, you must use an APPEND statement to output an observation; in the DATA step, you either use an OUTPUT statement or let the DATA step output it automatically.
- With SAS/IML software, you iterate with a DO DATA loop. In the DATA step, the iterations are implied.
- With SAS/IML software, you have to close the data set with a CLOSE statement unless you plan to exit the IML environment with a QUIT statement. The DATA step closes the data set automatically at the end of the step.
- The DATA step usually executes faster than IML.

In short, the DATA step treats the problem with greater simplicity, allowing shorter programs. However, IML has more flexibility because it is interactive and has a powerful matrix-handling capability.

Summary

In this chapter, you have learned many ways to interact with SAS data sets from within the IML environment. You learned how to open and close a SAS data set, how to make it current for input and output, how to list observations by specifying a range of observations to process, a set of variables to use, and a condition for subsetting observations. You also learned summary statistics. You also know how to read observations and variables from a SAS data set into matrices as well as create a SAS data set from a matrix of values.

Chapter 7
 File Access

Chapter Contents

OVERVIEW 117
REFERRING TO AN EXTERNAL FILE 117
Types of External Files 118
READING FROM AN EXTERNAL FILE 119
Using the INFILE Statement 119
Using the INPUT Statement 120
WRITING TO AN EXTERNAL FILE 127
Using the FILE Statement 128
Using the PUT Statement 128
Examples 129
LISTING YOUR EXTERNAL FILES 131
CLOSING AN EXTERNAL FILE 131
SUMMARY 131

Chapter 7
 File Access

Overview

In this chapter you learn about external files and how to refer to an external file, whether it is a text file or a binary file. You learn how to read data from a file by using the INFILE and INPUT statements and how to write data to an external file by using the FILE and PUT statements.

With external files, you must know the format in which the data are stored or to be written. This is in contrast to SAS data sets, which are specialized files with a structure that is already known to the SAS System.

The Interactive Matrix Language statements used to access files are very similar to the corresponding statements in the SAS DATA step. The following table summarizes the IML statements and their functions.

Statement	Function
CLOSEFILE	closes an external file
FILE	opens an external file for output
INFILE	opens an external file for input
INPUT	reads from the current input file
PUT	writes to the current output file
SHOW: FILES	shows all open files, their attributes, and their status (current input and output files)

Referring to an External File

Suppose that you have data for students in a class. You have recorded the values for the variables NAME, SEX, AGE, HEIGHT, and WEIGHT for each student and have stored the data in an external text file named USER.TEXT.CLASS. If you want to read these data into IML variables, you need to indicate where the data are stored. In other words, you need to name the input file. If you want to write data from matrices to a file, you also need to name an output file.

There are two ways to refer to an input or output file: a pathname and a filename. A pathname is the name of the file as it is known to the operating system. A filename is an indirect SAS reference to the file made by using the FILENAME statement. You can identify a file in either way by using the FILE and INFILE statements.

For example, you can refer to the input file where the class data are stored by using a literal pathname - that is, a quoted string. The following statement opens the file USER.TEXT.CLASS for input:

```
infile 'user.text.class';
```

Similarly, if you want to output data to the file USER.TEXT.NEWCLASS, you need to reference the output file with the following statement:

```
file 'user.text.newclass';
```

You can also refer to external files by using a filename. When using a filename as the operand, simply give the name. The name must be one already associated with a pathname by a previously issued FILENAME statement.

For example, suppose you want to reference the file with the class data by using a FILENAME statement. First, you must associate the pathname with an alias (called a fileref), such as INCLASS. Then you can refer to USER.TEXT.CLASS with the fileref INCLASS.

The following statements achieve the same result as the previous INFILE statement with the quoted pathname:

```
filename inclass 'user.text.class';
infile inclass;
```

You can use the same technique for output files. The following statements have the same effect as the previous FILE statement:

```
filename outclass 'user.text.newclass';
file outclass;
```

Three filenames have special meaning to IML: CARDS, LOG, and PRINT. These refer to the standard input and output streams for all SAS sessions, as follows:

CARDS is a special filename for instream input data.
LOG is a special filename for log output.
PRINT is a special filename for standard print output.

When the pathname is specified, there is a limit of 64 characters to the operand.

Types of External Files

Most files that you work with are text files, which means that they can be edited and displayed without any special program. Text files under most host environments have special characters, called carriage-control characters or end-of-line characters, to separate one record from the next.

If your file does not adhere to these conventions, it is called a binary file. Typically, binary files do not have the usual record separators, and they can use any binary codes, including unprintable control characters. If you want to read a binary file, you
must specify RECFM=N in the INFILE statement and use the byte operand ($<$) in the INPUT statement to specify the length of each item you want read. Treating a file as binary enables you to have direct access to a file position by byte address by using the byte operand ($>$) in the INPUT or PUT statement.

You write data to an external file by using the FILE and PUT statements. The output file can be text or binary. If your output file is binary, you must specify RECFM=N in the FILE statement. One difference between binary files and text files in output is that with binary files, the PUT statement does not put the record-separator characters at the end of each record written.

Reading from an External File

After you have chosen a method to refer to the external file you want to read, you need an INFILE statement to open it for input and an INPUT statement to tell IML how to read the data.

The next several sections cover how to use an INFILE statement and how to specify an INPUT statement so that you can input data from an external file.

Using the INFILE Statement

An INFILE statement identifies an external file containing data that you want to read. It opens the file for input or, if the file is already open, makes it the current input file. This means that subsequent INPUT statements are read from this file until another file is made the current input file.

The following options can be used with the INFILE statement:

FLOWOVER

enables the INPUT statement to go to the next record to obtain values for the variables.

LENGTH=variable

names a variable containing the length of the current record, where the value is set to the number of bytes used after each INPUT statement.

MISSOVER

prevents reading from the next input record when an INPUT statement reaches the end of the current record without finding values for all variables. It assigns missing values to all values that are expected but not found.

RECFM=N

specifies that the file is to be read in as a pure binary file rather than as a file with record-separator characters. You must use the byte operands (< and >) to get new records rather than separate INPUT statements or the new line operator $(/)$.

STOPOVER

stops reading when an INPUT statement reaches the end of the current record without finding values for all variables in the statement. It treats going past the end of a record as an error condition, triggering an end-of-file condition. The STOPOVER option is the default.

The FLOWOVER, MISSOVER, and STOPOVER options control how the INPUT statement works when you try to read past the end of a record. You can specify only one of these options. Read these options carefully so that you understand them completely.

The following example uses the INFILE statement with a FILENAME statement to read the class data file. The MISSOVER option is used to prevent reading from the next record if values for all variables in the INPUT statement are not found.

```
filename inclass 'user.text.class';
infile inclass missover;
```

You can specify the pathname with a quoted literal also. The preceding statements could be written as follows:
infile 'user.text.class' missover;

Using the INPUT Statement

Once you have referenced the data file containing your data with an INFILE statement, you need to tell IML the following information about how the data are arranged:

- the number of variables and their names
- each variable's type, either numeric or character
- the format of each variable's values
- the columns that correspond to each variable

In other words, you must tell IML how to read the data.
The INPUT statement describes the arrangement of values in an input record. The INPUT statement reads records from a file specified in the previously executed INFILE statement, reading the values into IML variables.

There are two ways to describe a record's values in an IML INPUT statement:

- list (or scanning) input
- formatted input

Following are several examples of valid INPUT statements for the class data file, depending, of course, on how the data are stored.

If the data are stored with a blank or a comma between fields, then list input can be used. For example, the INPUT statement for the class data file might look as follows:

```
infile inclass;
input name $ sex $ age height weight;
```

These statements tell IML the following:

- There are five variables: NAME, SEX, AGE, HEIGHT and WEIGHT.
- Data fields are separated by commas or blanks.
- NAME and SEX are character variables, as indicated by the dollar sign (\$).
- AGE, HEIGHT, and WEIGHT are numeric variables, the default.

The data must be stored in the same order in which the variables are listed in the INPUT statement. Otherwise, you can use formatted input, which is column specific. Formatted input is the most flexible and can handle any data file. Your INPUT statement for the class data file might look as follows:

```
infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0
    @20 height 4.1 @25 weight 5.1;
```

These statements tell IML the following:

- NAME is a character variable; its value begins in column 1 (indicated by @ 1) and occupies eight columns (\$CHAR8.).
- SEX is a character variable; its value is found in column 10 (\$CHAR1.).
- AGE is a numeric variable; its value is found in columns 15 and 16 and has no decimal places (2.0).
- HEIGHT is a numeric variable found in columns 20 through 23 with one decimal place implied (4.1).
- WEIGHT is a numeric variable found in columns 25 through 29 with one decimal place implied (5.1).

The next sections discuss these two modes of input.

List Input

If your data are recorded with a comma or one or more blanks between data fields, you can use list input to read your data. If you have missing values-that is, unknown values-they must be represented by a period (.) rather than a blank field.

When IML looks for a value, it skips past blanks and tab characters. Then it scans for a delimiter to the value. The delimiter is a blank, a comma, or the end of the record. When the ampersand (\&) format modifier is used, IML looks for two blanks, a comma, or the end of the record.

The general form of the INPUT statement for list input is as follows:
INPUT variable $<\$><\boldsymbol{\&}><\ldots$ variable $<\boldsymbol{\$}\rangle\langle\boldsymbol{\&}\rangle>$;
where
variable names the variable to be read by the INPUT statement.
\$ indicates that the preceding variable is character.
\& indicates that a character value can have a single embedded blank. Because a blank normally indicates the end of a data value, use the ampersand format modifier to indicate the end of the value with at least two blanks or a comma.

With list input, IML scans the input lines for values. Consider using list input in the following cases:

- when blanks or commas separate input values
- when periods rather than blanks represent missing values

List input is the default in several situations. Descriptions of these situations and the behavior of IML follow:

- If no input format is specified for a variable, IML scans for a number.
- If a single dollar sign or ampersand format modifier is specified, IML scans for a character value. The ampersand format modifier enables single embedded blanks to occur.
- If a format is given with width unspecified or zero, IML scans for the first blank or comma.

If the end of a record is encountered before IML finds a value, then the behavior is as described by the record overflow options in the INFILE statement discussed in the section "Using the INFILE Statement" on page 119.

When you read with list input, the order of the variables listed in the INPUT statement must agree with the order of the values in the data file. For example, consider the following data:

Alice	f	10	61	97
Beth	f	11	64	105
Bill	m	12	63	110

You can use list input to read these data by specifying the following INPUT statement:

```
input name $ sex $ age height weight;
```

Note: This statement implies that the variables are stored in the order given. That is, each line of data contains a student's name, sex, age, height, and weight in that order and separated by at least one blank or by a comma.

Formatted Input

The alternative to list input is formatted input. An INPUT statement reading formatted input must have a SAS informat after each variable. An informat gives the data type and field width of an input value. Formatted input can be used with pointer controls and format modifiers. Note, however, that neither pointer controls nor format modifiers are necessary for formatted input.

Pointer Control Features

Pointer controls reset the pointer's column and line positions and tell the INPUT statement where to go to read the data value. You use pointer controls to specify the columns and lines from which you want to read:

- Column pointer controls move the pointer to the column you specify.
- Line pointer controls move the pointer to the next line.
- Line hold controls keep the pointer on the current input line.
- Binary file indicator controls indicate that the input line is from a binary file.

Column Pointer Controls

Column pointer controls indicate in which column an input value starts. Column pointer controls begin with either an at sign (@) or a plus sign (+). A complete list follows:
@ $n \quad$ moves the pointer to column n.
@ point-variable moves the pointer to the column given by the current value of point-variable.
@ (expression) moves the pointer to the column given by the value of the expression. The expression must evaluate to a positive integer.
$+n \quad$ moves the pointer n columns.

+ point-variable moves the pointer the number of columns given by the value of point-variable.
+ (expression) moves the pointer the number of columns given by the value of expression. The value of expression can be positive or negative.

Here are some examples of using column pointer controls:

Example	Meaning
$@ 12$	go to column 12
$@ \mathrm{~N}$	go to the column given by the value of N
$@(\mathrm{~N}-1)$	go to the column given by the value of $\mathrm{N}-1$
+5	skip 5 spaces
+N	skip N spaces
$+(\mathrm{N}+1)$	skip $\mathrm{N}+1$ spaces

In the earlier example that used formatted input, you used several pointer controls. Here are the statements:

```
infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0
    @20 height 4.1 @25 weight 5.1;
```

The @ 1 moves the pointer to column 1, the @ 10 moves it to column 10, and so on. You move the pointer to the column where the data field begins and then supply an informat specifying how many columns the variable occupies. The INPUT statement could also be written as follows:

```
input @1 name $char8. +1 sex $char1. +4 age 2. +3 height 4.1
    +1 weight 5.1;
```

In this form, you move the pointer to column 1 (@1) and read eight columns. The pointer is now at column 9. Now, move the pointer +1 columns to column 10 to read SEX. The \$char1. informat says to read a character variable occupying one column. After you read the value for SEX, the pointer is at column 11, so move it to column 15 with +4 and read AGE in columns 15 and 16 (the 2 . informat). The pointer is now at column 17 , so move +3 columns and read HEIGHT. The same idea applies for reading WEIGHT.

Line Pointer Control

The line pointer control (/) directs IML to skip to the next line of input. You need a line pointer control when a record of data takes more than one line. You use the new line pointer control (/) to skip to the next line and continue reading data. In the example reading the class data, you do not need to skip a line because each line of data contains all the variables for a student.

Line Hold Control

The trailing at sign (@), when at the end of an INPUT statement, directs IML to hold the pointer on the current record so that you can read more data with subsequent INPUT statements. You can use it to read several records from a single line of data. Sometimes, when a record is very short-say, 10 columns or so-you can save space in your external file by coding several records on the same line.

Binary File Indicator Controls

When the external file you want to read is a binary file ($\mathrm{RECFM}=\mathrm{N}$ is specified in the INFILE statement), you must tell IML how to read the values by using the following binary file indicator controls:
$>n \quad$ start reading the next record at the byte position n in the file.
>point-variable start reading the next record at the byte position in the file given by point-variable.
$>$ (expression) start reading the next record at the byte position in the file given by expression.
$<n \quad$ read the number of bytes indicated by the value of n.
<point-variable read the number of bytes indicated by the value of point-variable.
$<$ (expression) read the number of bytes indicated by the value of expression.

Pattern Searching

You can have the input mechanism search for patterns of text by using the at sign (@) with a character operand. IML starts searching at the current position, advances until it finds the pattern, and leaves the pointer at the position immediately after the found pattern in the input record. For example, the following statement searches for the pattern NAME= and then uses list input to read the value after the found pattern:

```
input @ 'NAME=' name $;
```

If the pattern is not found, then the pointer is left past the end of the record, and the rest of the INPUT statement follows the conventions based on the options MISSOVER, STOPOVER, and FLOWOVER described in the section "Using the INFILE Statement" on page 119. If you use pattern searching, you usually specify the MISSOVER option so that you can control for the occurrences of the pattern not being found.

Notice that the MISSOVER feature enables you to search for a variety of items in the same record, even if some of them are not found. For example, the following statements are able to read in the ADDR variable even if NAME = is not found (in which case, NAME is unvalued):

```
infile in1 missover;
input @1 @ "NAME=" name $
    @1 @ "ADDR=" addr &
    @1 @ "PHONE=" phone $;
```

The pattern operand can use any characters except for the following:

$$
\% \quad \$[]\}<>-? * \text { ? } \quad \% \text { (backquote) }
$$

Record Directives

Each INPUT statement goes to a new record except in the following special cases:

- An at sign (@) at the end of an INPUT statement specifies that the record is to be held for future INPUT statements.
- Binary files $($ RECFM $=\mathrm{N})$ always hold their records until the $>$ directive.

As discussed in the syntax of the INPUT statement, the line pointer operator (/) instructs the input mechanism to go immediately to the next record. For binary $(\operatorname{RECFM}=\mathrm{N})$ files, the $>$ directive is used instead of the $/$.

Blanks

For character values, the informat determines the way blanks are interpreted. For example, the $\$ C H A R ~ w$. format reads blanks as part of the whole value, while the $\mathrm{BZ} w$. format turns blanks into 0s. See SAS Language Reference: Dictionary for more information about informats.

Missing Values

Missing values in formatted input are represented by blanks or a single period for a numeric value and by blanks for a character value.

Matrix Use

Data values are either character or numeric. Input variables always result in scalar (one row by one column) values with type (character or numeric) and length determined by the input format.

End-of-File Condition

End of file is the condition of trying to read a record when there are no more records to read from the file. The consequences of an end-of-file condition are described as follows.

- All the variables in the INPUT statement that encountered end of file are freed of their values. You can use the NROW or NCOL function to test if this has happened.
- If end of file occurs inside a DO DATA loop, execution is passed to the statement after the END statement in the loop.

For text files, end of file is encountered first as the end of the last record. The next time input is attempted, the end-of-file condition is raised.

For binary files, end of file can result in the input mechanism returning a record that is shorter than the requested length. In this case IML still attempts to process the record, using the rules described in the section "Using the INFILE Statement" on page 119.

The DO DATA mechanism provides a convenient mechanism for handling end of file.
For example, to read the class data from the external file USER.TEXT.CLASS into a SAS data set, you need to perform the following steps:

1. Establish a fileref referencing the data file.
2. Use an INFILE statement to open the file for input.
3. Initialize any character variables by setting the length.
4. Create a new SAS data set with a CREATE statement. You want to list the variables you plan to input in a VAR clause.
5. Use a DO DATA loop to read the data one line at a time.
6. Write an INPUT statement telling IML how to read the data.
7. Use an APPEND statement to add the new data line to the end of the new SAS data set.
8. End the DO DATA loop.
9. Close the new data set.
10. Close the external file with a CLOSEFILE statement.

Your statements should look as follows:

```
filename inclass 'user.text.class';
infile inclass missover;
name="12345678";
sex="1";
create class var{name sex age height weight};
do data;
    input name $ sex $ age height weight;
    append;
end;
close class;
closefile inclass;
```

Note that the APPEND statement is not executed if the INPUT statement reads past the end of file since IML escapes the loop immediately when the condition is encountered.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following features are supported differently or are not supported in IML:

- The pound sign (\#) directive supporting multiple current records is not supported.
- Grouping parentheses are not supported.
- The colon (:) format modifier is not supported.
- The byte operands (<and $>$) are new features supporting binary files.
- The ampersand (\&) format modifier causes IML to stop reading data if a comma is encountered. Use of the ampersand format modifier is valid with list input only.
- The RECFM=F option is not supported.

Writing to an External File

If you have data in matrices and you want to write these data to an external file, you need to reference, or point to, the file (as discussed in the section "Referring to an External File" on page 117. The FILE statement opens the file for output so that you can write data to it. You need to specify a PUT statement to direct how the data are output. These two statements are discussed in the following sections.

Using the FILE Statement

The FILE statement is used to refer to an external file. If you have values stored in matrices, you can write these values to a file. Just as with the INFILE statement, you need a fileref to point to the file you want to write to. You use a FILE statement to indicate that you want to write to rather than read from a file.

For example, if you want to output to the file USER.TEXT.NEWCLASS, you can specify the file with a quoted literal pathname. Here is the statement:

```
> file 'user.text.newclass';
```

Otherwise, you can first establish a fileref and then refer to the file by its fileref, as follows:

```
> filename outclass 'user.text.class';
> file outclass;
```

There are two options you can use in the FILE statement:

RECFM $=\mathrm{N} \quad$ specifies that the file is to be written as a pure binary file without record-separator characters.
LRECL=operand specifies the size of the buffer to hold the records.

The FILE statement opens a file for output or, if the file is already open, makes it the current output file so that subsequent PUT statements write to the file. The FILE statement is similar in syntax and operation to the INFILE statement.

Using the PUT Statement

The PUT statement writes lines to the SAS log, to the SAS output file, or to any external file specified in a FILE statement. The file associated with the most recently executed FILE statement is the current output file.

You can use the following arguments with the PUT statement:

variable	names the IML variable with a value that is put to the current pointer position in the record. The variable must be scalar valued. The put variable can be followed immediately by an output format.
literal	gives a literal to be put to the current pointer position in the record. The literal can be followed immediately by an output format.
(expression)	must produce a scalar-valued result. The expression can be imme- diately followed by an output format.
format	names the output formats for the values.
pointer-control	moves the output pointer to a line or column.

Pointer Control Features

Most PUT statements need the added flexibility obtained with pointer controls. IML keeps track of its position on each output line with a pointer. With specifications in the PUT statement, you can control pointer movement from column to column and line to line. The pointer controls available are discussed in the section "Using the INPUT Statement" on page 120.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following features are supported differently or are not supported:

- The pound sign (\#) directive supporting multiple current records is not supported.
- Grouping parentheses are not supported.
- The byte operands (< and >) are a new feature supporting binary files.

Examples

Writing a Matrix to an External File

If you have data stored in an $n \times m$ matrix and you want to output the values to an external file, you need to write out the matrix element by element.

For example, suppose you have a matrix \mathbf{X} containing data that you want written to the file USER.MATRIX. Suppose also that \mathbf{X} contains 1 s and 0 s so that the format for output can be one column. You need to do the following:

1. Establish a fileref, such as OUT.
2. Use a FILE statement to open the file for output.
3. Specify a DO loop for the rows of the matrix.
4. Specify a DO loop for the columns of the matrix.
5. Use a PUT statement to specify how to write the element value.
6. End the inner DO loop.
7. Skip a line.
8. End the outer DO loop.
9. Close the file.

Your statements should look as follows:

```
filename out 'user.matrix';
file out;
    do i=1 to nrow(x);
            do j=1 to ncol(x);
                put (x[i,j]) 1.0 +2 @;
            end;
            put;
    end;
closefile out;
```

The output file contains a record for each row of the matrix. For example, if your matrix is 4×4, then the file might look as follows:

1	1	0	1
1	0	0	1
1	1	1	0
0	1	0	1

Quick Printing to the PRINT File

You can use the FILE PRINT statement to route output to the standard print file. The following statements generate data that are output to the PRINT file:

```
> file print;
> do a=0 to 6.28 by .2;
> x=sin(a);
> p=(x+1)#30;
> put @1 a 6.4 +p x 8.4;
end;
```

Here is the resulting output:

```
0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000
4.2000
4.4000-0.9516
4.6000-0.9937
4.8000-0.9962
5.0000 -0.9589
5.2000 -0.8835
5.4000 -0.7728
5.6000 -0.6313
5.8000 -0.4646
6.0000 -0.2794
6.2000 -0.0831
```


Listing Your External Files

To list all open files and their current input or current output status, use the SHOW FILES statement.

Closing an External File

The CLOSEFILE statement closes files opened by an INFILE or FILE statement. You specify the CLOSEFILE statement just as you do the INFILE or FILE statement. For example, the following statements open the external file USER.TEXT.CLASS for input and then close it:

```
filename in 'user.text.class';
infile in;
closefile in;
```


Summary

In this chapter, you learned how to refer to, or point to, an external file by using a FILENAME statement. You can use the FILENAME statement whether you want to read from or write to an external file. The file can also be referenced by a quoted literal pathname. You also learned about the difference between a text file and a binary file.

You learned how to read data from an external file with the INFILE and INPUT statements, using either list or formatted input. You learned how to write your matrices to an external file by using the FILE and PUT statements. Finally, you learned how to close your files.

Chapter 8 General Statistics Examples

Chapter Contents

OVERVIEW 135
GENERAL STATISTICS EXAMPLES 135
Example 8.1. Correlation 135
Example 8.2. Newton's Method for Solving Nonlinear Systems of Equations 136
Example 8.3. Regression 138
Example 8.4. Alpha Factor Analysis 140
Example 8.5. Categorical Linear Models 142
Example 8.6. Regression of Subsets of Variables 145
Example 8.7. Response Surface Methodology 153
Example 8.8. Logistic and Probit Regression for Binary Response Models 155
Example 8.9. Linear Programming 159
Example 8.10. Quadratic Programming 163
Example 8.11. Regression Quantiles 165
Example 8.12. Simulations of a Univariate ARMA Process 169
Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors 171
Example 8.14. Iterative Proportional Fitting 177
Example 8.15. Full-Screen Nonlinear Regression 179
REFERENCES 184

Chapter 8

General Statistics Examples

Overview

SAS/IML software has many linear operators that perform high-level operations commonly needed in applying linear algebra techniques to data analysis. The similarity of the Interactive Matrix Language notation and matrix algebra notation makes translation from algorithm to program a straightforward task. The examples in this chapter show a variety of matrix operators at work.

You can use these examples to gain insight into the more complex problems you might need to solve. Some of the examples perform the same analyses as performed by procedures in SAS/STAT software and are not meant to replace them. The examples are included as learning tools.

General Statistics Examples

Example 8.1. Correlation

The following statements define modules to compute correlation coefficients between numeric variables and standardized values for a set of data:

```
    /* Module to compute correlations */
start corr;
    n=nrow (x); /* number of observations */
    sum=x[+,] ; /* compute column sums */
    xpx=t (x)*x-t (sum)*sum/n; /* compute sscp matrix */
    s=diag(1/sqrt (vecdiag(xpx))); /* scaling matrix */
    corr=s*xpx*s; /* correlation matrix */
    print "Correlation Matrix",,corr[rowname=nm colname=nm] ;
finish corr;
```

```
    /* Module to standardize data */
```

 /* Module to standardize data */
 start std;
start std;
mean=x[+,] /n; /* means for columns */
mean=x[+,] /n; /* means for columns */
x=x-repeat (mean, n, 1); /* center x to mean zero */
x=x-repeat (mean, n, 1); /* center x to mean zero */
ss=x[\#\#,] ; /* sum of squares for columns */
ss=x[\#\#,] ; /* sum of squares for columns */
std=sqrt(ss/(n-1)); /* standard deviation estimate*/
std=sqrt(ss/(n-1)); /* standard deviation estimate*/
x=x*diag(1/std);
x=x*diag(1/std);
/* scaling to std dev 1 */
/* scaling to std dev 1 */
print ,"Standardized Data",,X[colname=nm] ;
print ,"Standardized Data",,X[colname=nm] ;
finish std;

```
finish std;
```

```
    /* Sample run */
x = { 1 2 3,
    3 2 1,
    4 1,
    0 4 1,
    24 1 0,
    1 3 8};
nm={age weight height};
run corr;
run std;
```

The results are shown in Output 8.1.1.

Output 8.1.1. Correlation Coefficients and Standardized Values

Correlation Matrix

AGE WEIGHT HEIGHT

```
AGE 1 -0.717102 -0.436558
WEIGHT -0.717102 1 0.3508232
HEIGHT -0.436558 0.3508232
```

Standardized Data

AGE	WEIGHT	HEIGHT
-0.490116	-0.322749	0.2264554
-0.272287	-0.322749	-0.452911
-0.163372	-0.322749	-0.452911
-0.59903	1.6137431	-0.452911
2.0149206	-1.290994	-0.792594
-0.490116	0.6454972	1.924871

Example 8.2. Newton's Method for Solving Nonlinear Systems of Equations

This example solves a nonlinear system of equations by Newton's method. Let the nonlinear system be represented by

$$
F(\mathbf{x})=0
$$

where \mathbf{x} is a vector and F is a vector-valued, possibly nonlinear function.
In order to find \mathbf{x} such that F goes to 0 , an initial estimate \mathbf{x}_{0} is chosen, and Newton's iterative method for converging to the solution is used:

$$
\mathbf{x}_{n+1}=\mathbf{x}_{n}-\mathbf{J}^{-1}\left(\mathbf{x}_{n}\right) F\left(\mathbf{x}_{n}\right)
$$

where $\mathbf{J}(\mathbf{x})$ is the Jacobian matrix of partial derivatives of F with respect to \mathbf{x}.
For optimization problems, the same method is used, where $F(\mathbf{x})$ is the gradient of the objective function and $\mathbf{J}(\mathbf{x})$ becomes the Hessian (Newton-Raphson).

In this example, the system to be solved is

$$
\begin{aligned}
\mathbf{x}_{1}+\mathbf{x}_{2}-\mathbf{x}_{1} \mathbf{x}_{2}+2 & =0 \\
\mathbf{x}_{1} \exp \left(-\mathbf{x}_{2}\right)-1 & =0
\end{aligned}
$$

The following statements are organized into three modules: NEWTON, FUN, and DERIV.

```
    /* Newton's Method to Solve a Nonlinear Function */
    /* The user must supply initial values, */
    /* and the FUN and DERIV functions. */
    /* On entry: FUN evaluates the function f in terms of x */
    /* initial values are given to x */
    /* DERIV evaluates jacobian j */
    /* tuning variables: CONVERGE, MAXITER. */
    /* On exit: solution in x, function value in f close to 0 */
    /* ITER has number of iterations. */
start newton;
    run fun; /* evaluate function at starting values */
    do iter=1 to maxiter /* iterate until maxiter iterations */
    while(max(abs(f))>converge); /* or convergence */
        run deriv; /* evaluate derivatives in j */
        delta=-solve(j,f); /* solve for correction vector */
        x=x+delta; /* the new approximation */
        run fun; /* evaluate the function */
    end;
finish newton;
maxiter=15; /* default maximum iterations */
converge=.000001; /* default convergence criterion */
```

```
    /* User-supplied function evaluation */
```

 /* User-supplied function evaluation */
 start fun;
start fun;
x1=x[1] ;
x1=x[1] ;
x2=x[2] ; /* extract the values */
x2=x[2] ; /* extract the values */
f= (x1+x2-x1*x2+2) //
f= (x1+x2-x1*x2+2) //
(x1*exp(-x2)-1); /* evaluate the function */
(x1*exp(-x2)-1); /* evaluate the function */
finish fun;
finish fun;
/* User-supplied derivatives of the function */
start deriv;
/* evaluate jacobian */
j=((1-x2)||(1-x1)) // (exp (-x2) || (-x1*exp (-x2)));
finish deriv;
do;

```
```

 print "Solving the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0" ,;
 x={.1, -2}; /* starting values */
 run newton;
 print x f;
 end;

```

The results are shown in Output 8.2.1.

Output 8.2.1. Newton's Method: Results
```

Solving the system: X1+X2-X1*X2+2=0, X1*EXP (-X2)-1=0

```
\[
\begin{array}{rr}
\text { X } & \text { F } \\
0.0977731 & 5.3523 \mathrm{E}-9 \\
-2.325106 & 6.1501 \mathrm{E}-8
\end{array}
\]

\section*{Example 8.3. Regression}

This example shows a regression module that calculates statistics not calculated by the two previous examples. Here is the program.
```

 /* Regression Routine */
 /* Given X and Y, this fits Y = X B + E */
 /* by least squares. */
 start reg;
n=nrow (x); /* number of observations */
k=ncol(x); /* number of variables */
xpx=x`*x; /* crossproducts */ xpy=x`*y;
xpxi=inv(xpx); /* inverse crossproducts */
b=xpxi*xpy; /* parameter estimates */
yhat=x*b;
resid=y-yhat;
sse=resid`*resid;
dfe=n-k;
mse=sse/dfe;
rmse=sqrt (mse);
covb=xpxi\#mse;
stdb=sqrt (vecdiag (covb));
|* ttest for estimates=0 */
probt=1-probf(t\#t,1,dfe); /* significance probability */
print name b stdb t probt;
s=diag(1/stdb);
corrb=s*covb*s; /* correlation of estimates */
print ,"Covariance of Estimates", covb[r=name c=name] ,
"Correlation of Estimates",corrb[r=name c=name] ;

```
```

 if nrow(tval)=0 then return; /* is a t value specified? */
 projx=x*xpxi*x`; /* hat matrix */
 vresid=(i(n)-projx)*mse; /* covariance of residuals */
 vpred=projx#mse; /* covariance of predicted values */
 h=vecdiag(projx); /* hat leverage values */
 lowerm=yhat-tval#sqrt(h*mse); /* low. conf. lim. for mean */
 upperm=yhat+tval#sqrt (h*mse); /* upper limit for mean */
 lower=yhat-tval#sqrt (h*mse+mse); /* lower limit for indiv */
 upper=yhat+tval#sqrt (h*mse+mse); /* upper limit for indiv */
 print ,,"Predicted Values, Residuals, and Limits" ,,
 y yhat resid h lowerm upperm lower upper;
 finish reg;
/* Routine to test a linear combination of the estimates */
/* given L, this routine tests hypothesis that LB = 0. */
start test;
dfn=nrow (L);
Lb=L*b;
vLb=L*xpxi*L`; q=Lb`*inv(vLb) *Lb /dfn;
f=q/mse;
prob=1-probf(f,dfn,dfe);
print ,f dfn dfe prob;
finish test;
/* Run it on population of U.S. for decades beginning 1790 */
x= { 1 1 1,
1 2 4,
1 3 9,
1 4 16,
1 5 25,
1 6 36,
1 7 49,
1 8 64 };
y= {3.929,5.308,7.239,9.638,12.866,17.069,23.191,31.443};
name={"Intercept", "Decade", "Decade**2" };
tval=2.57; /* for 5 df at 0.025 level to get 95% conf. int. */
reset fw=7;
run reg;
do;
print ,"TEST Coef for Linear";
L={0 1 0 };;
run test;
print ,"TEST Coef for Linear,Quad";
L={0 1 0,0 0 1};
run test;
print ,"TEST Linear+Quad = 0";
L={0 1 1 };
run test;
end;

```

The results are shown in Output 8.3.1.

Output 8.3.1. Regression Results


\section*{Example 8.4. Alpha Factor Analysis}

This example shows how an algorithm for computing alpha factor patterns (Kaiser and Caffrey 1965) is transcribed into IML code.

You can store the following ALPHA subroutine in an IML catalog and load it when needed.
```

/* Alpha Factor Analysis */
/* Ref: Kaiser et al., 1965 Psychometrika, pp. 12-13 */
/* r correlation matrix (n.s.) already set up */
/* p number of variables */
/* q number of factors */
/* h communalities */
/* m eigenvalues */
/* e eigenvectors */
/* f factor pattern */
/* (IQ,H2,HI,G,MM) temporary use. freed up */
/* */
start alpha;
p=ncol(r);
q=0;
h=0; /* initialize */
h2=i(p)-diag(1/vecdiag(inv(r))); /* smcs */
do while(max (abs(h-h2))>.001); /* iterate until converges */
h=h2;
hi=diag(sqrt(1/vecdiag(h)));
g=hi*(r-i (p))*hi+i(p);
call eigen(m,e,g); /* get eigenvalues and vecs */
if q=0 then
do;
q=sum(m>1); /* number of factors */
iq=1:q;
end;
mm=diag(sqrt(m[iq,])); /* collapse eigvals */
e=e[,iq] ; /* collapse eigvecs */
h2=h*diag((e*mm) [,\#\#]); /* new communalities */
end;
hi=sqrt(h);
h=vecdiag(h2);
f=hi*e*mm; /* resulting pattern */
free iq h2 hi g mm; /* free temporaries */
finish;
/* Correlation Matrix from Harmon, Modern Factor Analysis, */
/* Second edition, page 124, "Eight Physical Variables" */
r={1.000 . 846 . 805 . 859 . 473 . 398 . 301 . 382 ,
. 846 1.000 . 881 . 826 . 376 . 326 . 277 . 415 ,
. 805 . 881 1.000 . 801 . 380 . 319 . 237 . 345 ,
. 859 . 826 . 801 1.000 . 436 . 329 . . 327 . 365 ,
.473 . 376 . 380 . 436 1.000 . 762 . 730 . 629 ,
. 398 . 326 . 319 . 329 . 762 1.000 . 583 . 577 ,
. 301 . 277 . 237 . 327 . 730 . 583 1.000 . 539 ,
. 382 . 415 . 345 . 365 . 629 . 577 . 539 1.000};
nm = {Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8};
run alpha;
print ,"EIGENVALUES" , m;
print ,"COMMUNALITIES" , h[rowname=nm];
print ,"FACTOR PATTERN", f[rowname=nm];

```

The results are shown in Output 8.4.1.

Output 8.4.1. Alpha Factor Analysis: Results


\section*{Example 8.5. Categorical Linear Models}

This example fits a linear model to a function of the response probabilities
\[
\mathbf{K} \log \pi=\mathbf{X} \beta+e
\]
where \(\mathbf{K}\) is a matrix that compares each response category to the last. Data are from Kastenbaum and Lamphiear (1959). First, the Grizzle-Starmer-Koch (1969) approach is used to obtain generalized least squares estimates of \(\beta\). These form the initial values for the Newton-Raphson solution for the maximum likelihood estimates. The CATMOD procedure can also be used to analyze these binary data (see Cox 1970). Here is the program.
```

/* Categorical Linear Models*/
/* by Least Squares and Maximum Likelihood */
/* CATLIN */
/* Input: */

```
/* \(n\) the s by p matrix of response counts */
/* \(x\) the \(s\) by \(r\) design matrix */
start catlin;
/*---find dimensions---*/
s=nrow(n); /* number of populations */
\(r=n c o l(n) ; \quad / *\) number of responses */
\(\mathrm{q}=\mathrm{r}-1\); /* number of function values */
\(\mathrm{d}=\mathrm{ncol}(\mathrm{x})\); \(\quad / *\) number of design parameters */
\(\mathrm{qd}=\mathrm{q} * \mathrm{~d}\); /* total number of parameters */
/*---get probability estimates---*/
rown=n[,+]; /* row totals */
pr=n/(rown*repeat ( \(1,1, r\) )); /* probability estimates */
\(\mathrm{p}=\) shape ( \(\mathrm{pr}[, 1: q], 0,1\) ); /* cut and shaped to vector */
print "INITIAL PROBABILITY ESTIMATES" ,pr;
/* estimate by the GSK method */
/* function of probabilities */
\(\mathrm{f}=\log (\mathrm{p})-\log (\mathrm{pr}[, r])\) @repeat (1, \(\mathrm{q}, 1)\);
/* inverse covariance of \(f\) */
si=(diag (p) -p*p') \# (diag (rown) @repeat (1, q, q) );
\(z=x @ i(q)\); \(/ *\) expanded design matrix */
h=z`*si*z; /* crossproducts matrix */
g=z`*si*f; /* cross with \(f\) */
beta=solve (h,g); /* least squares solution */
stderr=sqrt (vecdiag(inv(h))); /* standard errors */
run prob;
print ,"GSK ESTIMATES" , beta stderr ,pi;
/* iterations for ML solution */
crit=1;
do it=1 to 8 while(crit>.0005); /* iterate until converge */
/* block diagonal weighting */
si=(diag (pi) -pi*pi ') \# (diag (rown) @repeat (1, q, q) );
\(\mathrm{g}=\mathrm{z}\) `* (rown@repeat ( \(1, \mathrm{q}, 1\) ) \# ( \(\mathrm{p}-\mathrm{pi}\) )); /* gradient */
h=z`*si*z; /* hessian */
delta=solve(h,g); /* solve for correction */
beta=beta+delta; /* apply the correction */
run prob;
/* compute prob estimates */
crit=max (abs (delta)) ; /* convergence criterion */
end;
stderr=sqrt (vecdiag(inv(h))); /* standard errors */
print , "ML Estimates", beta stderr, pi;
print , "Iterations" it "Criterion" crit;
finish catlin;
/* subroutine to compute new prob estimates @ parameters */ start prob;
la=exp (x*shape (beta, 0,q));
```

 pi=la/((1+la[,+])*repeat(1,1,q));
 pi=shape(pi,0,1);
 finish prob;

```
```

 /*---prepare frequency data and design matrix---*/
 n= { 58 11 05,
75 19 07,
49 14 10,
58 17 08,
33 18 15,
45 22 10,
15 13 15,
39 22 18,
04 12 17,
05 15 08}; /* frequency counts*/

```
\(x=\left\{\begin{array}{llllll}1 & 1 & 1 & 0 & 0,\end{array}\right.\)
        \(1-11000\),
        110100 ,
        \(1-10100\),
        110010 ,
        1 -1 0010 ,
        110001 ,
        1 -1 0001 ,
        \(11-1-1-1-1\),
        1-1 -1 -1 -1 -1\}; /* design matrix*/
run catlin;

The maximum likelihood estimates are shown in Output 8.5.1.

Output 8.5.1. Maximum Likelihood Estimates


\section*{Example 8.6. Regression of Subsets of Variables}

This example performs regression with variable selection. Some of the methods used in this example are also used in the REG procedure. Here is the program.
\begin{tabular}{lll} 
/* & Initialization & */ \\
/* C, CSAVE the crossproducts matrix & */ \\
/* N & number of observations & */ \\
/* K & total number of variables to consider & */ \\
/* L & number of variables currently in model & */ \\
/* IN & a 0-1 vector of whether variable is in & */ \\
/* B & print collects results (L MSE RSQ BETAS ) & */
\end{tabular}
```

start initial;
n=nrow(x);
k=ncol (x);
k1=k+1;
ik=1:k;
bnames={nparm mse rsquare} ||varnames;
/* Correct by mean, adjust out intercept parameter */
y=y-y[+,]/n; /* correct y by mean */
x=x-repeat (x[+,]/n,n,1); /* correct x by mean */
xpy=x`*y; /* crossproducts */ ypy=y`*y;
xpx=x`*x; free x y; /* no longer need the data */ /* Save a copy of crossproducts matrix */ csave=(xpx || xpy) // (xpy`|| ypy);
finish initial;

```
```

 /* Forward method */
 start forward;
print / "FORWARD SELECTION METHOD";
free bprint;
c=csave;
in=repeat (0,k,1);
l=0; /* No variables are in */
dfe=n-1;
mse=ypy/dfe;
sprob=0;
do while(sprob<.15 \& l<k);
indx=loc(^in); /* where are the variables not in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1];
/* adjusted xpy */
tsqr=cb\#cb/(cd\#mse); /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt (sqrt (tsqr[imax,]), dfe)) *2;
if sprob<. }15\mathrm{ then
do; /* if t test significant */
ii=indx[,imax]; /* pick most significant */
run swp; /* routine to sweep */
run bpr; /* routine to collect results */
end;
end;
print bprint[colname=bnames] ;
finish forward;

```
    /* Backward method */
start backward;
    print / "BACKWARD ELIMINATION ";
    free bprint;
    c=csave;
    in=repeat (0,k,1);
```

 ii=1:k;
 run swp;
 run bpr; /* start with all variables in */
 sprob=1;
 do while(sprob>. 15 & l>0);
 indx=loc(in); /* where are the variables in? */
 cd=vecdiag(c)[indx,]; /* xpx diagonals */
 cb=c[indx,k1]; /* bvalues */
 tsqr=cb#cb/(cd#mse); /* squares of t tests */
 imin=tsqr[>:<,]; /* location of minimum in indx */
 sprob=(1-probt(sqrt (tsqr[imin,]),dfe)) *2;
 if sprob>. }15\mathrm{ then
 do;
 ii=indx[,imin];
 run swp;
 * if t test nonsignificant */
 /* pick least significant */
 /* routine to collect results */
 end;
 end;
 print bprint[colname=bnames] ;
 finish backward;
/* Stepwise method */
start stepwise;
print /"STEPWISE METHOD";
free bprint;
c=csave;
in=repeat(0,k,1);
l=0;
dfe=n-1;
mse=ypy/dfe;
sprob=0;
do while(sprob<.15 \& l<k);
indx=loc(^in); /* where are the variables not in? */
nindx=loc(in); /* where are the variables in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* adjusted xpy */
tsqr=cb\#cb/cd/mse; /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt (sqrt (tsqr[imax,]),dfe)) *2;
if sprob<.15 then
do;
ii=indx[,imax]; /* find index into c */
/* if t test significant */
run swp; /* routine to sweep */
run backstep; /* check if remove any terms */
run bpr; /* routine to collect results */
end;
end;
print bprint[colname=bnames] ;
finish stepwise;
/* Routine to backwards-eliminate for stepwise */
start backstep;
if nrow(nindx)=0 then return;

```
```

 bprob=1;
 do while(bprob>. 15 & l<k);
 cd=vecdiag(c)[nindx,]; /* xpx diagonals */
 cb=c[nindx,k1];
 tsqr=cb#cb/(cd#mse); /* squares of t tests */
 imin=tsqr[>:<,]; /* location of minimum in nindx */
 bprob=(1-probt(sqrt (tsqr[imin,]),dfe)) *2;
 if bprob>. }15\mathrm{ then
 do;
 ii=nindx[,imin];
 run swp;
 run bpr;
 end;
 end;
 finish backstep;
/* Search all possible models */
start all;
/* Use method of Schatzoff et al. for search technique */
betak=repeat (0,k,k); /* rec. ests. for best l-param model */
msek=repeat (1e50,k,1); /* record best mse per \# parms */
rsqk=repeat (0,k,1); /* record best rsquare */
ink=repeat (0,k,k); /* record best set per \# parms */
limit=2\#\#k-1; /* number of models to examine */
c=csave;
in=repeat (0,k,1); /* start out with no variables in model */
do kk=1 to limit;
run ztrail; /* find which one to sweep */
run swp; /* sweep it in */
bb=bb//(l||mse||rsq||(c[ik,k1]\#in) `); if mse<msek[l,] then do; /* was this best for l parms? */ msek[l,]=mse; /* record mse */ rsqk[l,]=rsq; /* record rsquare */ ink[,l]=in; /* record which parms in model */ betak[l,]=(c[ik,k1]#in)`; /* record estimates */
end;
end;
print / "ALL POSSIBLE MODELS" " IN SEARCH ORDER";
print bb[colname=bnames]; free bb;
bprint=ik`||msek||rsqk||betak; print ,"THE BEST MODEL FOR EACH NUMBER OF PARAMETERS"; print bprint[colname=bnames]; /* Mallows CP plot */ cp=msek# (n-ik`-1)/min(msek)-(n-2\#ik`);
cp=ik'||cp;
cpname={"nparm" "cp"};
/* output cp out=cp colname=cpname; */
finish all;
/* Subroutine to find number of */
/* trailing zeros in binary number */

```
```

 /* on entry: kk is the number to examine */
 /* on exit: ii has the result */
 start ztrail;
ii=1;
zz=kk;
do while(mod}(\textrm{zz},2)=0)
ii=ii+1;
zz=zz/2;
end;
finish ztrail;
/* Subroutine to sweep in a pivot */
/* on entry: ii has the position(s) to pivot */
/* on exit: in, l, dfe, mse, rsq recalculated */
start swp;
if abs(c[ii,ii])<1e-9 then
do;
print , "FAILURE", c;
stop;
end;
c=sweep(c,ii);
in[ii,]=^in[ii,];
l=sum(in);
dfe=n-1-1;
sse=c[k1,k1];
mse=sse/dfe;
rsq=1-sse/ypy;
finish swp;

```
    /* Subroutine to collect bprint results */
    /* on entry: l,mse,rsq, and cet up to collect */
    /* on exit: bprint has another row
    */
start bpr;
    bprint=bprint//(l||mse||rsq||(c [ik,k1]\#in) ));
finish bpr;
    /* Stepwise Methods */
    /* After a run to the initial routine, which sets up */
    /* the data, four different routines can be called */
    /* to do four different model-selection methods. */
start seq;
    run initial; /* initialization */
    run all; /* all possible models */
    run forward; /* foreward selection method */
    run backward; /* backward elimination method */
    run stepwise; /* stepwise method */
finish seq;
```

/* These measurements were made on men involved in a physical*/
/* fitness course at N.C. State Univ. The variables are */
/* age (years), weight (kg), oxygen uptake rate (ml per kg */
/* body weight per minute), time to run 1.5 miles (minutes), */
/* heart rate while resting, heart rate while running (same */
/* time oxygen rate measured), and maximum heart rate record-*/
/* ed while running. Certain values of maxpulse were modified*/
/* for consistency. Data courtesy Dr. A. C. Linnerud */
data=
{ 44 89.47 44.609 11.37 62 178 182
40 75.07 45.313 10.07 62 185 185
44 85.84 54.297 8.65 45 156 168
42 68.15 59.571 8.17 40 166 172
38 89.02 49.874 9.22 55 178 180
47 77.45 44.811 11.63 58 176 176
40 75.98 45.681 11.95 70 176 180
43 81.19 49.091 10.85 64 162 170
44 81.42 39.442 13.08 63 174 176
38 81.87 60.055 8.63 48 170 186
44 73.03 50.541 10.13 45 168 168
45 87.66 37.388 14.03 56 186 192
45 66.45 44.754 11.12 51 176 176
47 79.15 47.273 10.60 47 162 164
54 83.12 51.855 10.33 50 166 170
49 81.42 49.156 8.95 44 180 185
51 69.63 40.836 10.95 57 168 172
51 77.91 46.672 10.00 48 162 168
48 91.63 46.774 10.25 48 162 164
49 73.37 50.388 10.08 67 168 168,
57 73.37 39.407 12.63 58 174 176
54 79.38 46.080 11.17 62 156 165
52 76.32 45.441 9.63 48 164 166
50 70.87 54.625 8.92 48 146 155
51 67.25 45.118 11.08 48 172 172
54 91.63 39.203 12.88 44 168 172
51 73.71 45.790 10.47 59 186 188
57 59.08 50.545 9.93 49 148 155
49 76.32 48.673 9.40 56 186 188
48 61.24 47.920 11.50 52 170 176 ,
52 82.78 47.467 10.50 53 170 172
};
x=data[,{1 2 4 5 6 7 }];
y=data[,3];
free data;
varnames={age weight runtime rstpulse runpulse maxpulse};
reset fw=8 linesize=90;
run seq;

```

The results are shown in Output 8.6.1.

Output 8.6.1. Model Selection: Results


Output 8.6.1. (continued)


\section*{Example 8.7. Response Surface Methodology}

A regression model with a complete quadratic set of regressions across several factors can be processed to yield the estimated critical values that can optimize a response. First, the regression is performed for two variables according to the model
\[
y=c+b_{1} x_{1}+b_{2} x_{2}+a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}+e
\]

The estimates are then divided into a vector of linear coefficients (estimates) \(\mathbf{b}\) and a matrix of quadratic coefficients \(\mathbf{A}\). The solution for critical values is
\[
\mathbf{x}=-\frac{1}{2} \mathbf{A}^{-1} \mathbf{b}
\]

The following program creates a module to perform quadratic response surface regression.
```

/* Quadratic Response Surface Regression */
/* This matrix routine reads in the factor variables and */
/* the response, forms the quadratic regression model and */
/* estimates the parameters, and then solves for the optimal */
/* response, prints the optimal factors and response, and */
/* displays the eigenvalues and eigenvectors of the */
/* matrix of quadratic parameter estimates to determine if */
/* the solution is a maximum or minimum, or saddlepoint, and */
/* which direction has the steepest and gentlest slopes. */
/*
/* Given that d contains the factor variables, */
/* and y contains the response. */
/* */
start rsm;
n=nrow (d);
k=ncol(d); /* dimensions */
x=j(n,1,1)||d; /* set up design matrix */
do i=1 to k;
do j=1 to i;
x=x||d[,i] \#d[,j];
end;
end;
beta=solve(x`*x,x`*y); /* solve parameter estimates */
print "Parameter Estimates" , beta;
c=beta[1]; /* intercept estimate */
b=beta[2:(k+1)]; /* linear estimates */
a=j(k,k,0);
L=k+1; /* form quadratics into matrix */
do i=1 to k;
do j=1 to i;
L=L+1;
a[i,j]=beta [L,];
end;
end;
a=(a+a`)*.5; /* symmetrize */

```
```

 xx=-.5*solve(a,b); /* solve for critical value */
 print , "Critical Factor Values" , xx;
 /* Compute response at critical value */
 yopt=c + b`*xx + xx`*a*xx;
 print , "Response at Critical Value" yopt;
 call eigen(eval,evec,a);
 print , "Eigenvalues and Eigenvectors", eval, evec;
 if min(eval)>0 then print , "Solution Was a Minimum";
 if max(eval)<0 then print , "Solution Was a Maximum";
 finish rsm;

```

Running the module with the following sample data produces the following results and Output 8.7.1:
```

/* Sample Problem with Two Factors */
d={-1 -1, -1 0, -1 1,
0 -1, 0 0, 0 1,
1-1, 1 0, 1 1};
y={ 71.7, 75.2, 76.3, 79.2, 81.5, 80.2, 80.1, 79.1, 75.8};
run rsm;

```

Output 8.7.1. Response Surface Regression: Results
\begin{tabular}{|c|}
\hline BETA \\
\hline 81.222222 \\
\hline 1.9666667 \\
\hline 0.2166667 \\
\hline -3.933333 \\
\hline -2.225 \\
\hline -1.383333 \\
\hline XX \\
\hline 0.2949376 \\
\hline -0.158881 \\
\hline YOPT \\
\hline Response at Critical Value 81.495032 \\
\hline EVAL \\
\hline -0.96621 \\
\hline -4.350457 \\
\hline EVEC \\
\hline -0.351076 0.9363469 \\
\hline 0.93634690 .3510761 \\
\hline
\end{tabular}

\section*{Example 8.8. Logistic and Probit Regression for Binary Response Models}

A binary response Y is fit to a linear model according to
\[
\begin{aligned}
& \operatorname{Pr}(Y=1)=F(\mathbf{X} \beta) \\
& \operatorname{Pr}(Y=0)=1-F(\mathbf{X} \beta)
\end{aligned}
\]
where \(F\) is some smooth probability distribution function. The normal and logistic distribution functions are supported. The method is maximum likelihood via iteratively reweighted least squares (described by Charnes, Frome, and Yu 1976; Jenrich and Moore 1975; and Nelder and Wedderburn 1972). The row scaling is done by the derivative of the distribution (density). The weighting is done by \(w / p(1-p)\), where \(w\) has the counts or other weights. The following program calculates logistic and probit regression for binary response models.
```

/* routine for estimating binary response models */
/* y is the binary response, x are regressors, */
/* wgt are count weights, */
/* model is choice of logit probit, */
/* parm has the names of the parameters */
proc iml ;
start binest;
b=repeat (0,ncol (x),1);
oldb=b+1; /* starting values */
do iter=1 to 20 while(max(abs (b-oldb))>1e-8);
oldb=b;
z=x*b;
run f;
loglik=sum(((y=1)\#log(p) + (y=0)\#log(1-p))\#wgt);
btransp=b`; print iter loglik btransp; w=wgt/(p#(1-p)); xx=f#x; xpxi=inv(xx`*(w\#xx));
b=b + xpxi*(xx`*(w\#(y-p)));
end;
p0=sum((y=1)\#wgt)/sum(wgt); /* average response */
loglik0=sum(((y=1)\#log(p0) + (y=0)\#log(1-p0))\#wgt);
chisq=(2\#(loglik-loglik0));
df=ncol(x)-1;
prob=1-probchi(chisq,df);
print ,
'Likelihood Ratio with Intercept-only Model' chisq df prob,;
stderr=sqrt(vecdiag(xpxi));
tratio=b/stderr;
print parm b stderr tratio,,;
finish;

```
```

 /*---routine to yield distribution function and density---*/
 start f;
if model='LOGIT' then
do;
p=1/(1+exp (-z));
f=p\#p\#exp(-z);
end;
if model='PROBIT' then
do;
p=probnorm(z);
f=exp(-z\#z/2)/sqrt (8*atan(1));
end;
finish;
/* Ingot data from COX (1970, pp. 67-68)*/
data={ 7 1.0 0 10, 14 1.0 0 31, 27 1.0 1 56, 51 1.0 3 13,
71.7 0 17, 14 1.7 0 43, 27 1.7 4 44, 51 1.7 0 1,
7 2.2 0 7, 14 2.2 2 33, 27 2.2 0 21, 51 2.2 0 1,
7 2.8 0 12, 14 2.8 0 31, 27 2.8 1 22,
74.0 0 9, 14 4.0 0 19, 27 4.0 1 16, 51 4.0 0 1};
nready=data[,3];
ntotal=data[,4];
n=nrow (data);
x=repeat (1,n,1)||(data[,{1 2}]); /* intercept, heat, soak */
x=x//x;
y=repeat (1,n,1)//repeat (0,n,1);
wgt=nready//(ntotal-nready);
parm={intercept, heat, soak};
model={logit };
run binest; /* run logit model */
model={probit};
run binest; /* run probit model */

```

The results are shown in Output 8.8.1.

Output 8.8.1. Logistic and Probit Regression: Results


Output 8.8.1. (continued)


\section*{Example 8.9. Linear Programming}

The two-phase method for linear programming can be used to solve the problem
\[
\begin{aligned}
& \max \mathbf{c}^{\prime} \mathbf{x} \\
& \text { st. } \mathbf{A x} \leq,=, \geq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
\]

A routine written in IML to solve this problem follows. The approach appends slack, surplus, and artificial variables to the model where needed. It then solves phase 1 to find a primal feasible solution. If a primal feasible solution exists and is found, the routine then goes on to phase 2 to find an optimal solution, if one exists. The routine is general enough to handle minimizations as well as maximizations.
```

/* Subroutine to solve Linear Programs */
/* names: names of the decision variables */
/* obj: coefficients of the objective function */
/* maxormin: the value 'MAX' or 'MIN', upper or lowercase */
/* coef: coefficients of the constraints */
/* rel: character array of values: '<=' or '>=' or '=' */
/* rhs: right-hand side of constraints */
/* activity: returns the optimal value of decision variables*/
/* */
start linprog(names, obj, maxormin, coef, rel, rhs, activity);
bound=1.0e10;
m=nrow (coef);
n=ncol (coef);
/* Convert to maximization */
if upcase (maxormin)='MIN' then o=-1;
else o=1;
/* Build logical variables */
rev=(rhs<0);
adj=(-1*rev) +^ rev;
ge =((rel = '>=') \& ^rev) | ((rel = '<=') \& rev);
eq=(rel='=');
if max(ge)=1 then
do;
sr=I (m);
logicals=-sr[,loc(ge)]||I(m);
artobj=repeat (0,1,ncol (logicals)-m)| (eq+ge) ';
end;
else do;
logicals=I(m);
artobj=eq`;
end;
nl=ncol(logicals);
nv=n+nl+2;

```
```

 /* Build coef matrix */
 a=((o*obj)||repeat (0,1,nl)||{ -1 0 })//
(repeat(0,1,n)||-artobj||{ 0 -1 })//
((adj\#coef)||logicals||repeat(0,m,2));
/* rhs, lower bounds, and basis */
b={0,0}// (adj\#rhs);
L=repeat (0,1,nv-2)||-bound||-bound;
basis=nv-(0:nv-1);
/* Phase 1 - primal feasibility */
call lp(rc,x,y,a,b,nv,,l,basis);
print ({ ' ',
'**********Primal infeasible problem*************',
' ',
'**********Numerically unstable problem***********',
'**********Singular basis encountered**************',
'*******SOlution is numerically unstable*********',
'***Subroutine could not obtain enough memory***',
'**********Number of iterations exceeded*********'
}[rc+1]);
if x[nv] ^=0 then
do;
print '**********Primal infeasible problem************';
stop;
end;
if rc>0 then stop;
/* phase 2 - dual feasibility */
u=repeat (.,1,nv-2)||{ . 0 };
L=repeat (0,1,nv-2)||-bound||0;
call lp(rc,x,y,a,b,nv-1,u,l,basis);
/* Report the solution */
print ({ '**************Solution is optimal*****************',
'*********Numerically unstable problem***********',
'**************Unbounded problem*****************',
'*******Solution is numerically unstable********',
'*********Singular basis encountered*************',
'********Solution is numerically unstable*********',
'***Subroutine could not obtain enough memory***',
'**********Number of iterations exceeded*********'
}[rc+1]);
value=0*x [nv-1];
print ,'Objective Value ' value;
activity= x [1:n] ;
print ,'Decision Variables ' activity[r=names];
lhs=coef*x[1:n];
dual=y[3:m+2];
print ,'Constraints ' lhs rel rhs dual,
'**';

```
finish;

Consider the following product mix example (Hadley 1963). A shop with three machines, A, B, and C, turns out products 1, 2, 3, and 4. Each product must be processed on each of the three machines (for example, lathes, drills, and milling machines). The following table shows the number of hours required by each product on each machine:
\begin{tabular}{ccccc}
\hline & \multicolumn{4}{c}{ Product } \\
\cline { 2 - 5 } Machine & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\hline A & 1.5 & 1 & 2.4 & 1 \\
B & 1 & 5 & 1 & 3.5 \\
C & 1.5 & 3 & 3.5 & 1 \\
\hline
\end{tabular}

The weekly time available on each of the machines is 2000,8000 , and 5000 hours, respectively. The products contribute \(5.24,7.30,8.34\), and 4.18 to profit, respectively. What mixture of products can be manufactured that maximizes profit? You can solve the problem as follows:
```

names={'product 1' 'product 2' 'product 3' 'product 4'};
profit={ 5.24 7.30 8.34 4.18};
tech={ 1.5 1 2.4 1 ,
1 5 1 3.5,
1.5 3 3.5 1 };
time={ 2000, 8000, 5000};
rel={ '<=', '<=', '<=' };
run linprog(names,profit,'max',tech,rel,time,products);

```

The results from this example are shown in Output 8.9.1.

\section*{Output 8.9.1. Product Mix: Optimal Solution}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{VALUE} \\
\hline \multicolumn{4}{|c|}{Objective Value 12737.059} \\
\hline \multicolumn{4}{|c|}{ACTIVITY} \\
\hline \multirow[t]{4}{*}{Decision} & \multirow[t]{4}{*}{Variables \(\begin{aligned} & \text { p } \\ & p \\ & p \\ & p\end{aligned}\)} & 294. & 11765 \\
\hline & & & 1500 \\
\hline & & & \\
\hline & & 58.8 & 23529 \\
\hline & LHS REL & RHS & DUAL \\
\hline \multirow[t]{3}{*}{Constraints} & 2000 <= & 2000 & 1.9535294 \\
\hline & \(8000<=\) & 8000 & 0.2423529 \\
\hline & 5000 <= & 5000 & 1.3782353 \\
\hline
\end{tabular}

The following example shows how to find the minimum cost flow through a network by using linear programming. The arcs are defined by an array of tuples; each tuple
names a new arc. The elements in the arc tuples give the names of the tail and head nodes defining the arc. The following data are needed: arcs, cost for a unit of flow across the arcs, nodes, and supply and demand at each node.

The following program generates the node-arc incidence matrix and calls the linear program routine for solution:
```

arcs={ 'ab' 'bd' 'ad' 'bc' 'ce' 'de' 'ae' };
cost={ 1 2 4 3 3 2 9 };
nodes={ 'a', 'b', 'c', 'd', 'e'};
supdem={ 2, 0, 0, -1, -1 };
rel=repeat (' =' , nrow (nodes),1);
inode=substr(arcs,1,1);
onode=substr(arcs,2,1);
free n_a_i n_a_o;
do i=1 to ncol(arcs);
n_a_i=n_a_i || (inode[i]=nodes);
n_a_o=n_a_o || (onode[i]=nodes);
end;
n_a=n_a_i - n_a_o;
run linprog(arcs,cost,'min',n_a,rel,supdem,x);

```

The solution is shown in Output 8.9.2.

Output 8.9.2. Minimum Cost Flow: Optimal Solution


\section*{Example 8.10. Quadratic Programming}

The quadratic program
\[
\begin{aligned}
& \min \mathbf{c}^{\prime} \mathbf{x}+\mathbf{x}^{\prime} \mathbf{H x} / 2 \\
& \text { st. } \mathbf{G x} \leq,=, \geq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
\]
can be solved by solving an equivalent linear complementarity problem when \(\mathbf{H}\) is positive semidefinite. The approach is outlined in the discussion of the LCP subroutine in Chapter 20.

The following routine solves the quadratic problem.
```

 /* Routine to solve quadratic programs */
 /* names: the names of the decision variables */
 /* c: vector of linear coefficients of the objective function */
/* H: matrix of quadratic terms in the objective function */
/* G: matrix of constraint coefficients */
/* rel: character array of values: '<=' or '>=' or '=' */
/* b: right-hand side of constraints */
/* activity: returns the optimal value of decision variables */
start qP(names, c, H, G, rel, b, activity);
if min(eigval(h))<0 then
do;
print
'ERROR: The minimum eigenvalue of the H matrix is negative. ';
print ' Thus it is not positive semidefinite. ';
print , QP is terminating with this error. ';
stop;
end;
nr=nrow (G);
nc=ncol(G);
/* Put in canonical form */
rev=(rel=' <=') ;
adj=(-1 * rev) + ^rev;
g=adj\# G; b = adj \# b;
eq=(rel = '=');
if max(eq)=1 then
do;
g=g // -(diag (eq) *G) [loc (eq),];
b=b // - (diag (eq) *b)[loc (eq)];
end;
m=(h || -g`) //(g || j(nrow(g),nrow (g),0));
q=c // -b;
/* Solve the problem */
call lcp(rc,w,z,M,q);
/* Report the solution */
reset noname;
print ({ '*************Solution is optimal*****************',
'*********No solution possible*******************',
' ',

```
```

 \prime ',
 ' ',
 '**********Solution is numerically unstable*****',
 '***********Not enough memory********************',
 '**********Number of iterations exceeded********'}[rc+1]);
 reset name;
activity=z[1:nc];
objval=c`*activity + activity`*H*activity/2;
print ,'Objective Value ' objval,
'Decision Variables ' activity[r=names],
'**';
finish qP;

```

As an example, consider the following problem in portfolio selection. Models used in selecting investment portfolios include assessment of the proposed portfolio's expected gain and its associated risk. One such model seeks to minimize the variance of the portfolio subject to a minimum expected gain. This can be modeled as a quadratic program in which the decision variables are the proportions to invest in each of the possible securities. The quadratic component of the objective function is the covariance of gain between the securities; the first constraint is a proportionality constraint; and the second constraint gives the minimum acceptable expected gain.

The following data are used to illustrate the model and its solution:
```

c={0, 0, 0, 0 };
h = { 1003.1 4.3 6.3 5.9,
4.3 2.2 2.1 3.9,
6.3 2.1 3.5 4.8,
5.9 3.9 4.8 10 };
g={ llllll
.17 . 11 . 10 . 18 };
b = { 1 , . 10 };
rel = { '=', '>=' };
names = {'ibm', 'dec', 'dg', 'prime' };
run qP(names,c,h,g,rel,b,activity);

```

The results in Output 8.10 .1 show that the minimum variance portfolio achieving the 0.10 expected gain is composed of DEC and DG stock in proportions of 0.933 and 0.067 .

Output 8.10.1. Portfolio Selection: Optimal Solution
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{OBJVAL} \\
\hline \multicolumn{3}{|l|}{Objective Value 1.0966667} \\
\hline \multicolumn{3}{|c|}{ACTIVITY} \\
\hline \multirow[t]{4}{*}{Decision Variables} & ibm & 0 \\
\hline & dec & 0.9333333 \\
\hline & dg & 0.0666667 \\
\hline & prime & 0 \\
\hline
\end{tabular}

\section*{Example 8.11. Regression Quantiles}

The technique of estimating parameters in linear models by using the notion of regression quantiles is a generalization of the LAE or LAV least absolute value estimation technique. For a given quantile \(q\), the estimate \(\mathbf{b}^{*}\) of \(\beta\) in the model
\[
\mathbf{Y}=\mathbf{X} \beta+\epsilon
\]
is the value of \(b\) that minimizes
\[
\sum_{t \in T} q\left|y_{t}-x_{t} b\right|-\sum_{t \in S}(1-q)\left|y_{t}-x_{t} b\right|
\]
where \(T=\left\{t \mid y_{t} \geq x_{t} b\right\}\) and \(S=\left\{t \mid y_{t} \leq x_{t}\right\}\). For \(q=0.5\), the solution \(\mathbf{b}^{*}\) is identical to the estimates produced by the LAE. The following routine finds this estimate by using linear programming.
```

/* Routine to find regression quantiles */
/* yname: name of dependent variable */
/* y: dependent variable */
/* xname: names of independent variables */
/* X: independent variables */
/* b: estimates */
/* predict: predicted values */
/* error: difference of y and predicted. */
/* q: quantile */
/* */
/* notes: This subroutine finds the estimates b */
/* that minimize */
/*
/* q * (y - xb) * e + (1-q) * (y - xb) * ^e */
/* */
/* where e = (Xb <= y). */
/* */
/* This subroutine follows the approach given in: */
/*
*/
/* Koenker, R. and G. Bassett (1978). Regression */

```
```

/* quantiles. Econometrica. Vol. 46. No. 1. 33-50. */
/*
/* Basssett, G and R. Koenker (1982) An empirical */
/* quantile function for linear models with iid errors. */
/* JASA. Vol. 77. No. 378. 407-415. */
/*
/* When q = . 5 this is equivalent to minimizing the sum */
/* of the absolute deviations, which is also known as */
/* L1 regression. Note that for L1 regression, a faster */
/* and more accurate algorithm is available in the SAS/IML */
/* routine LAV, which is based on the approach given in: */
/* */
/* Madsen, K. and Nielsen, H. B. (1993). A finite */
/* smoothing algorithm for linear L1 estimation. */
/* SIAM J. Optimization, Vol. 3. 223-235. */
/*--*/
start rq(yname, y, xname, X, b, predict, error, q);
bound=1.0e10;
coef = X';
m = nrow (coef);
n = ncol (coef);
/*-----------------build rhs and bounds-------------------------*/
e = repeat (1, 1, n)';
r = {0 0} || ((1-q)*coef*e)`;
sign = repeat (1,1,m);
do i=1 to m;
if r[2+i] < O then do;
sign[i] = -1;
r[2+i] = -r[2+i];
coef[i,] = -coef[i,];
end;
end;
l = repeat (0,1,n) || repeat (0,1,m) || -bound || -bound ;
u = repeat (1,1,n) || repeat (., 1,m) || { . . } ;
/*--_-_-_-_--build coefficient matrix and basis--_-----*/
/*----------------find a feasible solution--------------------*/
call lp(rc,p,d,a,r,,u,l,basis);
/*----------------find the optimal solution-------------------*/
l = repeat (0,1,n) || repeat (0,1,m) || -bound || {0} ;
u = repeat (1,1,n) || repeat (0,1,m) || { . 0 } ;
call lp(rc,p,d,a,r,n+m+1,u,l,basis);
/*---------------- report the solution-------------------------------*/
variable = xname'; b=d[3:m+2];

```
```

do i=1 to m;
b[i] = b[i] * sign[i];
end;
predict = X*b;
error = y - predict;
wsum = sum (choose(error<0 , (q-1)*error , q*error));
print ,,'Regression Quantile Estimation' ,
'Dependent Variable: ' yname ,
'Regression Quantile: ' q ,
'Number of Observations: ' n ,
'Sum of Weighted Absolute Errors: ' wsum ,
variable b,
X y predict error;
finish rq;

```

The following example uses data on the United States population from 1790 to 1970:
```

z={ 3.929 1790,
5.308 1800,
7.239 1810,
9.638 1820,
12.866 1830 ,
17.069 1840,
23.191 1850,
31.443 1860,
39.818 1870,
50.155 1880,
62.947 1890,
75.994 1900 ,
91.972 1910,
105.710 1920,
122.775 1930,
131.669 1940,
151.325 1950,
179.323 1960,
203.211 1970 };
y=z[,1];
x=repeat(1, 19,1)||z[,2]||z[,2]\#\#2;
run rq('pop',y,{'intercpt' 'year' 'yearsq'},x,b1,pred,resid,.5);

```

The results are shown in Output 8.11.1.

Output 8.11.1. Regression Quantiles: Results


The L1 norm (when \(q=0.5\) ) tends to cause the fit to be better at more points at the expense of causing some points to fit worse. Consider the following plot of the residuals against the least squares residuals:
```

 /* Compare L1 residuals with least squares residuals */
 /* Compute the least squares residuals */
 resid2=y-x*inv(x`*x)*x'*y;
/* x axis of plot */
xx=repeat (x[,2] ,3,1);

```
```

 /* y axis of plot */
 yy=resid//resid2//repeat(0,19,1);
/* plot character*/
id=repeat('1',19,1)//repeat('2', 19,1)//repeat('-', 19,1);
call pgraf(xx|lyy,id,'Year','Residual',
'1=L(1) residuals, 2=least squares residual');

```

The results are shown in Output 8.11.2.

Output 8.11.2. Graph: L1 Residuals vs. Least Squares Residuals


When \(q=0.5\), the results of this module can be compared with the results of the LAV routine, as follows:
```

b0 = {1 1 1}; /* initial value */
optn = j(4,1,.); /* options vector */
optn[1]= .; /* gamma default */
optn[2]= 5; /* print all */
optn[3]= 0; /* McKean-Schradar variance */
optn[4]= 1; /* convergence test */
call LAV(rc, xr, x, y, b0, optn);

```

\section*{Example 8.12. Simulations of a Univariate ARMA Process}

Simulations of time series with known ARMA structure are often needed as part of other simulations or as learning data sets for developing time series analysis skills. The following program generates a time series by using the IML functions NORMAL, ARMACOV, HANKEL, PRODUCT, RATIO, TOEPLITZ, and ROOT.
```

reset noname;
start armasim(y,n,phi,theta,seed);
/*--*/
/* IML Module: armasim */
/* Purpose: Simulate n data points from ARMA process */
/* exact covariance method */
/* Arguments: */
/*
/* Input: n : series length */
/* phi : AR coefficients */
/* theta: MA coefficients */
/* seed : integer seed for normal deviate generator */
/* Output: y: realization of ARMA process */
/* ---*/
p=ncol(phi)-1;
q=ncol (theta) -1;
y=normal (j(1,n+q, seed));
/* Pure MA or white noise */
if p=0 then y=product (theta,y) [, (q+1):(n+q)];
else do; /* Pure AR or ARMA */
/* Get the autocovariance function */
call armacov(gamma,cov,ma,phi,theta,p);
if gamma[1]<0 then
do;
print 'ARMA parameters not stable.';
print 'Execution terminating.';
stop;
end;
/* Form covariance matrix */
gamma=toeplitz(gamma);
/* Generate covariance between initial y and */
/* initial innovations */
if q>0 then
do;
psi=ratio(phi,theta,q);
psi=hankel (psi[,-((-q):(-1))]);
m=max(1, (q-p+1));
psi=psi[-((-q):(-m)),];
if p>q then psi=j(p-q,q,0)//psi;
gamma=(gamma||psi)//(psi`||i(q));
end;
/* Use Cholesky root to get startup values */
gamma=root (gamma);
startup=y[,1:(p+q)]*gamma;
e=y[,(p+q+1):(n+q)];
/* Generate MA part */
if q>0 then

```
```

 do;
 e=startup [,(p+1):(p+q)]||e;
 e=product (theta,e) [, (q+1) : (n+q-p)];
 end;
 y=startup[,1:p];
 phi1=phi[,-(-(p+1):(-2))]`;
 /* Use difference equation to generate */
 /* remaining values */
 do ii=1 to n-p;
 y=y||(e[,ii]-y[,ii:(ii+p-1)]*phi1);
 end;
 end;
 y=y`;
 finish armasim; /* ARMASIM */
run armasim(y,10,{1 -0.8},{1 0.5},1234321);
print ,'Simulated Series:', y;

```

The results are shown in Output 8.12.1.

Output 8.12.1. Simulated Series
3.0764594
1.8931735
0.9527984
0.0892395
-1.811471
-2.8063
-2.52739
-2.865251
-1.332334
0.1049046

\section*{Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors}

Nonlinear estimation algorithms are required for obtaining estimates of the parameters of a regression model with innovations having an ARMA structure. The three estimation methods employed by the ARIMA procedure in SAS/ETS software are written in IML in the following program. The algorithms employed are slightly different from those used by PROC ARIMA, but the results obtained should be similar. This example combines the IML functions ARMALIK, PRODUCT, and RATIO to perform the estimation. Note the interactive nature of this example, illustrating how you can adjust the estimates when they venture outside the stationary or invertible regions.
```

/*--
/*---- Grunfeld's Investment Models Fit with ARMA Errors ----*/
/*--*/

```
data grunfeld;
input year gei gef gec wi wf wc;
label gei='gross investment ge'
gec=' capital stock lagged ge'
gef='value of outstanding shares ge lagged'
wi ='gross investment w'
wc =' capital stock lagged w'
wf ='value of outstanding shares lagged w';
/*--- GE STANDS FOR GENERAL ELECTRIC AND W FOR WESTINGHOUSE ---*/ datalines;
\begin{tabular}{lllllll}
1935 & 33.1 & 1170.6 & 97.8 & 12.93 & 191.5 & 1.8 \\
1936 & 45.0 & 2015.8 & 104.4 & 25.90 & 516.0 & .8 \\
1937 & 77.2 & 2803.3 & 118.0 & 35.05 & 729.0 & 7.4 \\
1938 & 44.6 & 2039.7 & 156.2 & 22.89 & 560.4 & 18.1 \\
1939 & 48.1 & 2256.2 & 172.6 & 18.84 & 519.9 & 23.5 \\
1940 & 74.4 & 2132.2 & 186.6 & 28.57 & 628.5 & 26.5 \\
1941 & 113.0 & 1834.1 & 220.9 & 48.51 & 537.1 & 36.2 \\
1942 & 91.9 & 1588.0 & 287.8 & 43.34 & 561.2 & 60.8 \\
1943 & 61.3 & 1749.4 & 319.9 & 37.02 & 617.2 & 84.4 \\
1944 & 56.8 & 1687.2 & 321.3 & 37.81 & 626.7 & 91.2 \\
1945 & 93.6 & 2007.7 & 319.6 & 39.27 & 737.2 & 92.4 \\
1946 & 159.9 & 2208.3 & 346.0 & 53.46 & 760.5 & 86.0 \\
1947 & 147.2 & 1656.7 & 456.4 & 55.56 & 581.4 & 111.1 \\
1948 & 146.3 & 1604.4 & 543.4 & 49.56 & 662.3 & 130.6 \\
1949 & 98.3 & 1431.8 & 618.3 & 32.04 & 583.8 & 141.8 \\
1950 & 93.5 & 1610.5 & 647.4 & 32.24 & 635.2 & 136.7 \\
1951 & 135.2 & 1819.4 & 671.3 & 54.38 & 723.8 & 129.7 \\
1952 & 157.3 & 2079.7 & 726.1 & 71.78 & 864.1 & 145.5 \\
1953 & 179.5 & 2371.6 & 800.3 & 90.08 & 1193.5 & 174.8 \\
1954 & 189.6 & 2759.9 & 888.9 & 68.60 & 1188.9 & 213.5
\end{tabular}
```

proc iml;
reset noname;
/*---*/
/* name: ARMAREG Modules */
/* purpose: Perform Estimation for regression model with */
/* ARMA errors */
/* usage: Before invoking the command */
/* */
/* run armareg; */
/* */
/* define the global parameters */
/* */
/* x - matrix of predictors. */
/* y - response vector. */
/* iphi - defines indices of nonzero AR parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* itheta - defines indices of nonzero MA parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* ml - estimation option: -1 if Conditional Least */
/* Squares, 1 if Maximum Likelihood, otherwise */

```

/* Begin ARMA estimation modules */
/* Generate residuals */
start gres;
noise=y-x*beta;
previous=noise[:];
if ml=-1 then do; /* Conditional LS */
noise=j(nrow (y), 1, previous) ||noise;
resid=product (phi, noise') [, 1: nrow (noise)];
resid=ratio(theta, resid, ncol (resid));
resid=resid[, 1:ncol (resid)]';
end;
else do; /* Maximum likelihood */
free l;
call armalik(1,resid,std, noise, phi,theta);
/* Nonstationary condition produces PAUSE */
if nrow (l)=0 then
do;
print ,
'In GRES: Parameter estimates outside stationary region.';
```

 end;
 else do;
 temp=l[3,]/(2#nrow(resid));
 if ml=1 then resid=resid#exp(temp);
 end;
 end;
 finish gres; /* finish module GRES */
start getpar; /* get parameters */
if np=0 then phi=1;
else do;
temp=parm[,1:np];
phi=1||j(1,p,0);
phi[,iphi] =temp;
end;
if nq=0 then theta=1;
else do;
temp=parm[,np+1:np+nq];
theta=1||j(1,q,0);
theta[,itheta] =temp;
end;
beta=parm[,(np+nq+1) :ncol (parm)] `; finish getpar; /* finish module GETPAR */ /* Get SS Matrix - First Derivatives */ start getss; parm=par; run getpar; run gres; s=resid; oldsse=ssq(resid); do k=1 to ncol(par); parm=par; parm[,k]=parm[,k]+delta; run getpar; run gres; s=s||((resid-s[,1])/delta); /* append derivatives */ end; ss=s`*s;
if nopr^=0 then print ,'Gradient Matrix', ss;
sssave=ss;
do k=1 to 20; /* Iterate if no reduction in SSE */
do ii=2 to ncol(ss);
ss[ii,ii]=(1+lambda)*ss[ii,ii];
end;
ss=sweep(ss,2:ncol(ss)); /* Gaussian elimination */
delpar=ss[1,2:ncol(ss)]; /* update parm increments */
parm=par+delpar;
run getpar;
run gres;
sse=ssq(resid);
if sse<oldsse then
do; /* reduction, no iteration */

```
```

 lambda=lambda/10;
 k=21;
 end;
 else do; /* no reduction */
 /* increase lambda and iterate */
 if nopr^=0 then print ,
 'Lambda=' lambda 'SSE=' sse 'OLDSSE=' oldsse,
 'Gradient Matrix', ss ;
 lambda=10*lambda;
 ss=sssave;
 if k=20 then
 do;
 print 'In module GETSS:
 No improvement in SSE after twenty iterations.';
 print ' Possible Ridge Problem. ';
 return;
 end;
 end;
 end;
 if nopr^=0 then print ,'Gradient Matrix', ss;
 finish getss; /* Finish module GETSS */
 start armareg; /* ARMAREG main module */
/* Initialize options and parameters */
if nrow(delta)=0 then delta=0.005;
if nrow (maxiter) =0 then maxiter=5;
if nrow (nopr)=0 then nopr=0;
if nrow(ml)=0 then ml=1;
if nrow(init)=0 then init=0;
if init=0 then
do;
p=max(iphi);
q=max(itheta);
np=ncol(iphi);
nq=ncol(itheta);
/* Make indices one-based */
do k=1 to np;
iphi[,k]=iphi[,k]+1;
end;
do k=1 to nq;
itheta[,k]=itheta[,k]+1;
end;
/* Create row labels for Parameter estimates */
if p>0 then parmname = concat("AR", char(1:p,2));
if q>0 then parmname = parmname|lconcat("MA", char(1:p,2));
parmname = parmname||concat("B", char(1:ncol(x),2));
/* Create column labels for Parameter estimates */
pname = {"Estimate" "Std. Error" "T-Ratio"};
init=1;

```
end;
```

 /* Generate starting values */
    ```
    if nrow (par) \(=0\) then
    do;
    beta=inv (x'*x) *x`*y;
    if \(n p+n q>0\) then \(p a r=j(1, n p+n q, 0)| | b e t a ` ;\)
    else par=beta';
    end;
    print ,'Parameter Starting Values',;
    print par [colname=parmname]; /* stderr tratio */
    lambda=1e-6; /* Controls step size */
    do iter=1 to maxiter; /* Do maxiter iterations */
    run getss;
    par=par+delpar;
    if nopr^=0 then
    do;
            print ,'Parameter Update', ;
            print par [colname=parmname]; /* stderr tratio */
            print ,'Lambda=' lambda,;
    end;
    if abs (par[,1] ) >1 then \(\operatorname{par}[, 1]=-.8\);
    end;
    sighat=sqrt(sse/(nrow(y)-ncol(par)));
    print ,'Innovation Standard Deviation:' sighat;
    estm=par'l|(sqrt(diag(ss[2:ncol(ss), \(2: n c o l(s s)]))\)
            *j(ncol(par), 1, sighat));
    estm=estm||(estm[,1] /estm[,2]);
    if ml=1 then print ,'Maximum Likelihood Estimation Results',;
    else if \(\mathrm{ml}=-1\) then print,
    'Conditional Least Squares Estimation Results',;
    else print, 'Unconditional Least Squares Estimation Results',;
    print estm [rowname=parmname colname=pname] ;
finish armareg;
    /* End of ARMA Estimation modules */
    /* Begin estimation for Grunfeld's investment models */
use grunfeld;
read all var \{gei\} into y;
read all var \{gef gec into \(x\);
\(\mathrm{x}=\mathrm{j}\) (nrow (x) \(, 1,1\) ) ||x;
iphi=1;
itheta=1;
maxiter=10;
delta=0.0005;
ml=-1;
/*---- To prevent overflow, specify starting values ----*/
\(\operatorname{par}=\{-0.5 \quad 0.5 \quad-9.9563060 .0265512 \quad 0.1516939\);
run armareg; /*---- Perform CLS estimation ----*/

The results are shown in Output 8.13.1.

Output 8.13.1. Conditional Least Squares Results

```

ml=1;
maxiter=10;
/*---- With CLS estimates as starting values, ----*/
/*---- perform ML estimation. ----*/
run armareg;

```

The results are shown in Output 8.13.2.

Output 8.13.2. Maximum Likelihood Results
```

AR 1 MA 1 B B 1 B 2 B 2 B
-0.071148 0.7850862 -7.530983 0.0402554 0.0992474
Innovation Standard Deviation: 22.667286
Estimate Std. Error T-Ratio
AR 1 -0.191675 0.3360688 -0.570345
MA 1 0.7367182 0.2101849 3.5050966
B 1 -19.45436 31.327362 -0.621002
B 2 0.038099 0.0168731 2.2579666
B 3 0.121766 0.0433174 2.8110191

```

\section*{Example 8.14. Iterative Proportional Fitting}

The classical use of iterative proportional fitting is to adjust frequencies to conform to new marginal totals. Use the IPF subroutine to perform this kind of analysis. You supply a table that contains new margins and a table that contains old frequencies. The IPF subroutine returns a table of adjusted frequencies that preserves any higherorder interactions appearing in the initial table.

The following example is a census study that estimates a population distribution according to age and marital status (Bishop, Fienberg, and Holland 1975, pp. 97-98). Estimates of the distribution are known for the previous year, but only estimates of marginal totals are known for the current year. You want to adjust the distribution of the previous year to fit the estimated marginal totals of the current year. Here is the program:
```

proc iml;
/* Stopping criteria */
mod={0.01 15};
/* Marital status has 3 levels. age has 8 levels. */
dim={3 8};
/* New marginal totals for age by marital status */
table={1412 0 0 ,
1402 0 0,
1174 2760,
0 1541 0,
0 1681 0,
0 1532 0,
0 1662 0,
O 5010 2634};
/* Marginal totals are known for both */
/* marital status and age */
config={1 2};

```
    /* Use known distribution for start-up values */
initab=\{1306 830 ,
    6197653 ,
    26311949 ,
    173137228 ,
    171139351 ,
    159137281 ,
        2081350108 ,
        11164100 2329\};
call ipf(fit,status,dim,table, config,initab,mod);
C=\{' SINGLE' ' MARRIED' 'WIDOWED/DIVORCED' \(\}\);

    '45-49' '50 OR OVER' \};
print
    'POPULATION DISTRIBUTION ACCORDING TO AGE AND MARITAL STATUS',
    'KNOWN DISTRIBUTION (PREVIOUS YEAR)',
    initab [colname=c rowname=r format=8.0] ,,
    'ADJUSTED ESTIMATES OF DISTRIBUTION (CURRENT YEAR)',
    fit [colname=c rowname=r format=8.2] ;

The results are shown in Output 8.14.1.

Output 8.14.1. Iterative Proportional Fitting: Results


\section*{Example 8.15. Full-Screen Nonlinear Regression}

This example shows how to build a menu system that enables you to perform nonlinear regression from a menu. Six modules are stored on an IML storage disk. After you have stored them, use this example to try out the system. First, invoke IML and set up some sample data in memory, in this case the population of the U.S. from 1790 to 1970 . Then invoke the module NLIN, as follows:
```

reset storage='nlin';
load module=_all_;
uspop = {3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443,
39818, 50155, 62947, 75994, 91972, 105710, 122775, 131669,
151325, 179323, 203211}/1000;
year=do(1790,1970,10)';
time=year-1790;
print year time uspop;
run nlin;

```

A menu similar to the following menu appears. The entry fields are shown by underscores here, but the underscores become blanks in the real session.
```

Nonlinear Regression
Response function:
Predictor function:

```


Enter an exponential model and fill in the response and predictor expression fields. For each parameter, enter the name, initial value, and derivative of the predictor with respect to the parameter. Here are the populated fields:


Now press the SUBMIT key. The model compiles, the iterations start blinking on the screen, and when the model has converged, the estimates are displayed along with their standard errors, \(t\) test, and significance probability.

To modify and rerun the model, submit the following command:
```

run nlrun;

```

Here is the program that defines and stores the modules of the system.
```

/* Full-Screen Nonlinear Regression */
/* Six modules are defined, which constitute a system for */
/* nonlinear regression. The interesting feature of this */
/* system is that the problem is entered in a menu, and both */
/* iterations and final results are displayed on the same */
/* menu. */
/* */
/* Run this source to get the modules stored. Examples */
/* of use are separate. */
/* */
/* Caution: this is a demonstration system only. It does not */
/* have all the necessary safeguards in it yet to */
/* recover from user errors or rough models. */
/* Algorithm: */
/* Gauss-Newton nonlinear regression with step-halving. */
/* Notes: program variables all start with nd or _ to */
/* minimize the problems that would occur if user variables */
/* interfered with the program variables. */

```
```

/* Gauss-Newton nonlinear regression with Hartley step-halving */
/*---Routine to set up display values for new problem---*/
start nlinit;
window nlin rows=15 columns=80 color='green'
msgline=_msg cmndline=_cmnd
group=title +30 'Nonlinear Regression' color='white'
group=model / @5 'Response function:' color='white'
+1 nddep \$55. color='blue'
/ @5 'Predictor function:' color='white'
+1 ndfun \$55. color='blue'
group=parm0 // @5 'Parameter' color='white' @15 'Value'
@30 'Derivative'
group=parm1 // @5 'Parameter' color='white' @15 'Value'
group=parm2 // @5 'Parameter' color='white' @19 'Estimate'
@33 'Std Error'
@48 'T Ratio'
@62 'Prob>|T|'
group=parminit /@3 ':' color='white'
@5 ndparm \$8. color='blue'
@15 ndbeta best12. @30 ndder \$45.
group=parmiter / @5 _parm color='white'
@15 _beta best12. color='blue'
group=parmest / @5 _parm color='white'
@15 _beta best12. color='blue'
@30 _std best12.
@45 _t 10.4
@60 _prob 10.4
group=sse // @5 'Iteration =' color='white' _iter 5. color='blue'
' Stephalvings = ' color='white' _subit 3. color='blue'
/ @5 'Sum of Squares Error =' color='white' _sse best12.
color='blue' ;
nddep=cshape(' ', 1, 1,55,' ');
ndfun=nddep;
nd0=6;
ndparm=repeat(' ',nd0,1);
ndbeta=repeat (0, nd0,1) ;
ndder=cshape(' ',nd0,1,55,' ');
_msg='Enter New Nonlinear Problem';
finish nlinit; /* Finish module NLINIT */
/* Main routine */
start nlin;
run nlinit; /* initialization routine */
run nlrun; /* run routine */
finish nlin;
/* Routine to show each iteration */
start nliter;
display nlin.title noinput,
nlin.model noinput,
nlin.parm1 noinput,
nlin.parmiter repeat noinput,
nlin.sse noinput;
finish nliter;

```
```

 /* Routine for one run */
 start nlrun;
run nlgen; /* generate the model */
run nlest; /* estimate the model */
finish nlrun;
/* Routine to generate the model */
start nlgen;
/* Model definition menu */
display nlin.title, nlin.model, nlin.parm0, nlin.parminit repeat;
/* Get number of parameters */
t=loc(ndparm=' ');
if nrow(t)=0 then
do;
print 'no parameters';
stop;
end;
_k=t[1] -1;
/* Trim extra rows, and edit '*' to '\#' */
_dep=nddep; call change(_dep,'*','\#',0);
_fun=ndfun; call change(_fun,'*','\#',0);
_parm=ndparm[1:_k,];
_beta=ndbeta[1:_k,];
_der=ndder [1:_k,];
call change(_der,'*','\#',0);
/* Construct nlresid module to split up parameters and */
/* compute model
*/
call queue('start nlresid;');
do i=1 to _k;
call queue(_parm[i] ,"=_beta[",char(i,2),"] ;");
end;
call queue("_y = ",_dep,";",
"_p = ",_fun,";",
"_r = _y-_p;",
"_sse = ssq(_r);",
"finish;");
/* Construct nlderiv function */
call queue('start nlderiv; _x = ');
do i=1 to _k;
call queue("(",_der[i] ,")\#repeat(1,nobs,1)||");
end;
call queue(" nlnothin; finish;");
/* Pause to compile the functions */
call queue("resume;");
pause *;
finish nlgen; /* Finish module NLGEN */
/* Routine to do estimation */
start nlest;
/* Modified Gauss-Newton Nonlinear Regression */

```
```

/* _parm has parm names */
/* _beta has initial values for parameters */
/* _k is the number of parameters */
/* after nlresid: */
/* _Y has response, */
/* _p has predictor after call */
/* _r has residuals */
/* _sse has sse */
/* after nlderiv */
/* _x has jacobian */
/* */
eps=1;
_iter = 0;
_subit = 0;
_error = 0;
run nlresid; /* f, r, and sse for initial beta */
run nliter;
/* print iteration zero */
nobs = nrow(_Y);
_msg = 'Iterating';
/* Gauss-Newton iterations */
do _iter=1 to 30 while(eps>1e-8);
run nlderiv; /* subroutine for derivatives */
_lastsse=_sse;
_xpxi=sweep(_x`*_x); _delta=_xpxi*_x`*_r; /* correction vector */
_old = _beta; /* save previous parameters */
_beta=_betat_delta; /* apply the correction */
run nlresid; /* compute residual */
run nliter; /* print iteration in window */
eps=abs((_lastsse-_sse))/(_sse+1e-6);
/* convergence criterion */
/* Hartley subiterations */
do _subit=1 to 10 while(_sse>_lastsse);
_delta=_delta*.5; /* halve the correction vector */
_beta=_old+_delta; /* apply the halved correction */
run nlresid; /* find sse et al */
run nliter; /* print subiteration in window */
end;
if __subit>10 then
do;
_msg = "did not improve after 10 halvings";
eps=0; /* make it fall through iter loop */
end;
end;
/* print out results */
_msg = ' ';
if _iter>30 then
do;
_error=1;
_msg = 'convergence failed';
end;
_iter=_iter-1;
_dfe = nobs__k;
mse = _sse/_dfe;

```
```

 _std = sqrt(vecdiag(_xpxi) #_mse);
 _t = _beta/_std;
 _prob= 1-probf(_t#_t,1,_dfe);
 display nlin.title noinput,
 nlin.model noinput,
 nlin.parm2 noinput,
 nlin.parmest repeat noinput,
 nlin.sse noinput;
 finish nlest; /* Finish module NLEST */
/* Store the modules to run later */
reset storage='nlin';
store module=_all_;

```

\section*{References}

Bishop, Y. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate Analysis: Theory and Practice, Cambridge, MA: MIT Press.
Charnes, A., Frome, E. L., and Yu, P. L. (1976), "The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family," Journal of the American Statistical Association, 71, 169-172.

Cox, D. R. (1970), The Analysis of Binary Data, London: Methuen.
Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969), "Analysis of Categorical Data by Linear Models," Biometrics, 25, 489-504.

Hadley, G. (1963), Linear Programming, Reading, MA: Addison-Wesley.
Jennrich, R. I. and Moore, R. H. (1975), "Maximum Likelihood Estimation by Means of Nonlinear Least Squares," American Statistical Association 1975 Proceedings of the Statistical Computing Section, 57-65.

Kaiser, H. F. and Caffrey, J. (1965), "Alpha Factor Analysis," Psychometrika, 30, 1-14.

Kastenbaum, M. A. and Lamphiear, D. E. (1959), "Calculation of Chi-Square to Test the No Three-Factor Interaction Hypothesis," Biometrics, 15, 107-122.

Nelder, J. A. and Wedderburn, R. W. M. (1972), "Generalized Linear Models," Journal of the Royal Statistical Society, A.3, 370.

\title{
Chapter 9 \\ Robust Regression Examples
}

\section*{Chapter Contents}
OVERVIEW ..... 187
Flow Chart for LMS, LTS, MCD, and MVE ..... 190
USING LMS AND LTS ..... 191
Example 9.1. Substantial Leverage Points ..... 191
Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS ..... 195
Example 9.3. Univariate (Location) Problem ..... 205
USING MVE AND MCD ..... 208
Example 9.4. Brainlog Data ..... 208
Example 9.5. Stackloss Data ..... 216
COMBINING ROBUST RESIDUAL AND ROBUST DISTANCE ..... 226
Example 9.6. Hawkins-Bradu-Kass Data ..... 227
Example 9.7. Stackloss Data ..... 233
REFERENCES ..... 235

\section*{Chapter 9 Robust Regression Examples}

\section*{Overview}

SAS/IML has four subroutines that can be used for outlier detection and robust regression. The Least Median of Squares (LMS) and Least Trimmed Squares (LTS) subroutines perform robust regression (sometimes called resistant regression). These subroutines are able to detect outliers and perform a least-squares regression on the remaining observations. The Minimum Volume Ellipsoid Estimation (MVE) and Minimum Covariance Determinant Estimation (MCD) subroutines can be used to find a robust location and a robust covariance matrix that can be used for constructing confidence regions, detecting multivariate outliers and leverage points, and conducting robust canonical correlation and principal component analysis.

The LMS, LTS, MVE, and MCD methods were developed by Rousseeuw (1984) and Rousseeuw and Leroy (1987). All of these methods have the high breakdown value property. Roughly speaking, the breakdown value is a measure of the proportion of contamination that a procedure can withstand and still maintain its robustness.

The algorithm used in the LMS subroutine is based on the PROGRESS program of Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy (1987). In the special case of regression through the origin with a single regressor, Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in general, find the slope that yields the least median of squares. Starting with release 9.2, the LMS subroutine uses the algorithm of Barreto and Maharry (2006) to obtain the correct LMS slope in the case of regression through the origin with a single regressor. In this case, inputs to the LMS subroutine specific to the PROGRESS algorithm are ignored and output specific to the PROGRESS algorithm is suppressed.

The algorithm used in the LTS subroutine is based on the algorithm FAST-LTS of Rousseeuw and Van Driessen (2000). The MCD algorithm is based on the FASTMCD algorithm given by Rousseeuw and Van Driessen (1999), which is similar to the FAST-LTS algorithm. The MVE algorithm is based on the algorithm used in the MINVOL program by Rousseeuw (1984). LTS estimation has higher statistical efficiency than LMS estimation. With the FAST-LTS algorithm, LTS is also faster than LMS for large data sets. Similarly, MCD is faster than MVE for large data sets.

Besides LTS estimation and LMS estimation, there are other methods for robust regression and outlier detection. You can refer to a comprehensive procedure, PROC ROBUSTREG, in SAS/STAT. A summary of these robust tools in SAS can be found in Chen (2002).

The four SAS/IML subroutines are designed for the following:
- LMS: minimizing the \(h\) th ordered squared residual
- LTS: minimizing the sum of the \(h\) smallest squared residuals
- MCD: minimizing the determinant of the covariance of \(h\) points
- MVE: minimizing the volume of an ellipsoid containing \(h\) points
where \(h\) is defined in the range
\[
\frac{N}{2}+1 \leq h \leq \frac{3 N}{4}+\frac{n+1}{4}
\]

In the preceding equation, \(N\) is the number of observations and \(n\) is the number of regressors.* The value of \(h\) determines the breakdown value, which is "the smallest fraction of contamination that can cause the estimator \(T\) to take on values arbitrarily far from \(T(Z)\) " (Rousseeuw and Leroy 1987, p.10). Here, \(T\) denotes an estimator and \(T(Z)\) applies \(T\) to a sample \(Z\).

For each parameter vector \(\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)\), the residual of observation \(i\) is \(r_{i}=\) \(y_{i}-\mathbf{x}_{i} \mathbf{b}\). You then denote the ordered, squared residuals as
\[
\left(r^{2}\right)_{1: N} \leq \ldots \leq\left(r^{2}\right)_{N: N}
\]

The objective functions for the LMS, LTS, MCD, and MVE optimization problems are defined as follows:
- LMS, the objective function for the LMS optimization problem is the \(h\) th ordered squared residual,
\[
F_{\mathrm{LMS}}=\left(r^{2}\right)_{h: N} \longrightarrow \min
\]

Note that, for \(h=N / 2+1\), the \(h\) th quantile is the median of the squared residuals. The default \(h\) in PROGRESS is \(h=\left[\frac{N+n+1}{2}\right]\), which yields the breakdown value (where \([k]\) denotes the integer part of \(k\) ).
- LTS, the objective function for the LTS optimization problem is the sum of the \(h\) smallest ordered squared residuals,
\[
F_{\mathrm{LTS}}=\sqrt{\frac{1}{h} \sum_{i=1}^{h}\left(r^{2}\right)_{i: N}} \longrightarrow \min
\]
- MCD, the objective function for the MCD optimization problem is based on the determinant of the covariance of the selected \(h\) points,
\[
F_{\mathrm{MCD}}=\operatorname{det}\left(\mathbf{C}_{h}\right) \longrightarrow \min
\]
where \(\mathbf{C}_{h}\) is the covariance matrix of the selected \(h\) points.

\footnotetext{
*The value of \(h\) can be specified, but in most applications the default value works just fine and the results seem to be quite stable with different choices of \(h\).
}
- MVE, the objective function for the MVE optimization problem is based on the \(h\) th quantile \(d_{h: N}\) of the Mahalanobis-type distances \(\mathbf{d}=\left(d_{1}, \ldots, d_{N}\right)\),
\[
F_{\mathrm{MVE}}=\sqrt{d_{h: N} \operatorname{det}(\mathbf{C})} \longrightarrow \min
\]
subject to \(d_{h: N}=\sqrt{\chi_{n, 0.5}^{2}}\), where \(\mathbf{C}\) is the scatter matrix estimate, and the Mahalanobis-type distances are computed as
\[
\mathbf{d}=\operatorname{diag}\left(\sqrt{(\mathbf{X}-T)^{T} \mathbf{C}^{-1}(\mathbf{X}-T)}\right)
\]
where \(T\) is the location estimate.

Because of the nonsmooth form of these objective functions, the estimates cannot be obtained with traditional optimization algorithms. For LMS and LTS, the algorithm, as in the PROGRESS program, selects a number of subsets of \(n\) observations out of the \(N\) given observations, evaluates the objective function, and saves the subset with the lowest objective function. As long as the problem size enables you to evaluate all such subsets, the result is a global optimum. If computing time does not permit you to evaluate all the different subsets, a random collection of subsets is evaluated. In such a case, you might not obtain the global optimum.

Note that the LMS, LTS, MCD, and MVE subroutines are executed only when the number \(N\) of observations is more than twice the number \(n\) of explanatory variables \(x_{j}\) (including the intercept)-that is, if \(N>2 n\).

\section*{Flow Chart for LMS, LTS, MCD, and MVE}

Figure 9.1 illustrates the logic for the LMS, LTS, MCD, and MVE subroutines.


Flow Chart Indicating: LS \(\longrightarrow[\) LMS or LTS \(] \longrightarrow\) WLS
Separate LMS or LTS Part Inside Dashbox Corresponds to MCD, MVE

Figure 9.1. Flow Chart for LMS, LTS, MCD, and MVE

\section*{Using LMS and LTS}

Because of space considerations, the output of the tables containing residuals and resistant diagnostics are not included in this document. The subroutines PRILMTS, SCATLMTS, and LMSDIAP are used in these examples for printing and plotting the results. These routines are in the robustmc.sas file that is contained in the sample library.

\section*{Example 9.1. LMS and LTS with Substantial Leverage Points: Hertzsprung-Russell Star Data}

The following data are reported in Rousseeuw and Leroy (1987, p. 27) and are based on Humphreys (1978) and Vansina and De Greve (1982). The 47 observations correspond to the 47 stars of the CYG OB1 cluster in the direction of the constellation Cygnus. The regressor variable (column 2) \(x\) is the logarithm of the effective temperature at the surface of the star \(\left(T_{e}\right)\), and the response variable (column 3) \(y\) is the logarithm of its light intensity \(\left(L / L_{0}\right)\). The results for LS and LMS on page 28 of Rousseeuw and Leroy (1987) are based on a more precise (five decimal places) version of the data set. This data set is remarkable in that it contains four substantial leverage points (representing giant stars) corresponding to observations 11, 20, 30, and 34 that greatly affect the results of \(L_{2}\) and even \(L_{1}\) regression.


The following statements specify that most of the output be printed:
```

print "*** Hertzsprung-Russell Star Data: Do LMS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
call lms(sc,coef,wgt,optn,b,a);

```

Some simple statistics for the independent and response variables are shown in Output 9.1.1.
Output 9.1.1. Some Simple Statistics
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Median and Mean} \\
\hline & Median & Mean \\
\hline VAR1 & 4.420000000 & 4.310000000 \\
\hline Intercep & 1.000000000 & 1.000000000 \\
\hline Response & 5.100000000 & 5.012127660 \\
\hline \multicolumn{3}{|r|}{Dispersion and Standard Deviation} \\
\hline & Dispersion & StdDev \\
\hline VAR1 & 0.1630862440 & 0.2908234187 \\
\hline Intercep & 0.0000000000 & 0.0000000000 \\
\hline Response & 0.6671709983 & 0.5712493409 \\
\hline
\end{tabular}

Partial output for LS regression is shown in Output 9.1.2.
Output 9.1.2. Table of Unweighted LS Regression


Output 9.1.3 displays the iteration history. Looking at the column Best Crit in the iteration history table, you see that, with complete enumeration, the optimal solution is quickly found.

Output 9.1.3. History of the Iteration Process
```

*** Complete Enumeration for LMS

Subset Singular Best Crit Pct
271 5 0.39279108982007 25%
541 8 0.39279108982007 50%
811 27 0.39279108982007 75%
1081 45 0.39279108982007 100%
Minimum Criterion=0.3927910898

Least Median of Squares (LMS) Regression
**
Minimizing the 25th Ordered Squared Residual.
Highest Possible Breakdown Value = 48.94 %
Selection of All }1081\mathrm{ Subsets of 2 Cases Out of 47
Among 1081 subsets 45 are singular.

```

The results of the optimization for LMS estimation are displayed in Output 9.1.4.
Output 9.1.4. Results of Optimization
Observations of Best Subset
2
Estimated Coefficients
VAR1
Intercep
3.97058824
LMS Objective Function \(=0.2620588235\)
Preliminary LMS Scale \(=0.3987301586\)
Robust R Squared \(=0.5813148789\)

Output 9.1.5 displays the results for WLS regression. Due to the size of the scaled residuals, six observations (with numbers \(7,9,11,20,30,34\) ) were assigned zero weights in the following WLS analysis.

The LTS regression implements the FAST-LTS algorithm, which improves the algorithm (used in SAS/IML Version 7 and earlier versions, denoted as V7 LTS in this chapter) in Rousseeuw and Leroy (1987) by using techniques called "selective iteration" and "nested extensions." These techniques are used in the C-steps of the algorithm. See Rousseeuw and Van Driessen (2000) for details. The FAST-LTS algorithm significantly improves the speed of computation.

Output 9.1.5. Table of Weighted LS Regression Based on LMS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{********************************* Weighted Least-Squares Estimation ********************************* RLS Parameter Estimates Based on LMS} \\
\hline & Estimate S & Approx Std Error & T Value & Prob & \begin{tabular}{l}
Lower \\
Wald CI
\end{tabular} & \[
\begin{gathered}
\text { Upper } \\
\text { Wald CI }
\end{gathered}
\] \\
\hline VAR1 & 3.0462 & 0.43734 & 6.9652 & 24E-9 & 2.1890 & 3.9033 \\
\hline Intercep & -8.5001 & 1.92631 & -4.4126 & 0.0001 & -12.2755 & -4.7246 \\
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
Weighted Sum of Squares \(=4.52819451\) \\
Degrees of Freedom \(=39\) \\
RLS Scale Estimate \(=0.3407455818\)
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{COV Matrix of Parameter Estimates} \\
\hline \multicolumn{7}{|c|}{VAR1 Intercep} \\
\hline \multicolumn{2}{|r|}{VAR1} & 0.1 & 265604 & -0. & 42128459 & \\
\hline \multicolumn{2}{|r|}{Intercep} & -0.8 & 128459 & & 10661875 & \\
\hline \multicolumn{7}{|c|}{Weighted R-squared \(=0.5543573521\)} \\
\hline \multicolumn{7}{|c|}{F(1,39) Statistic \(=48.514065776\)} \\
\hline \multicolumn{7}{|c|}{Probability \(=2.3923178 \mathrm{E}-8\)} \\
\hline \multicolumn{7}{|c|}{There are 41 points with nonzero weight.} \\
\hline
\end{tabular}

The following statements implement the LTS regression on the Hertzsprung-Russell star data:
```

print "*** Hertzsprung-Russell Star Data: Do LTS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
call lts(sc,coef,wgt,optn,b,a);

```

Output 9.1.6 summarizes the information for the LTS optimization.
Output 9.1.6. Summary of Optimization


Output 9.1.7 displays the optimization results and Output 9.1.8 displays the weighted LS regression based on LTS estimates.

Output 9.1.7. Results of Optimization
Estimated Coefficients
VAR1
\(4.219182102 \quad\) Intercep
LTS Objective Function \(=0.18 .6239903\)
Preliminary LTS Scale \(=0.4524915298\)
Robust R Squared \(=0.4210129994\)
Final LTS Scale \(=0.3731970408\)

Output 9.1.8. Table of Weighted LS Regression Based on LTS


\section*{Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS}

The following example presents comparisons of LMS, V7 LTS, and FAST-LTS. The data analyzed are the stackloss data of Brownlee (1965), which are also used for documenting the L1 regression module. The three explanatory variables correspond to measurements for a plant oxidizing ammonia to nitric acid on 21 consecutive days:
- \(x_{1}\) air flow to the plant
- \(x_{2}\) cooling water inlet temperature
- \(x_{3}\) acid concentration

The response variable \(y_{i}\) gives the permillage of ammonia lost (stackloss). The following data are also given in Rousseeuw and Leroy (1987, p. 76) and Osborne (1985, p. 267):
\begin{tabular}{rlllll} 
print & \multicolumn{5}{l}{ "Stackloss } \\
aa \(=\left\{\begin{array}{l}\text { Data"; } \\
1\end{array}\right.\) & 80 & 27 & 89 & 42, \\
1 & 80 & 27 & 88 & 37, \\
1 & 75 & 25 & 90 & 37, \\
1 & 62 & 24 & 87 & 28, \\
1 & 62 & 22 & 87 & 18, \\
1 & 62 & 23 & 87 & 18, \\
1 & 62 & 24 & 93 & 19, \\
1 & 62 & 24 & 93 & 20, \\
1 & 58 & 23 & 87 & 15, \\
1 & 58 & 18 & 80 & 14, \\
1 & 58 & 18 & 89 & 14, \\
1 & 58 & 17 & 88 & 13, \\
1 & 58 & 18 & 82 & 11, \\
1 & 58 & 19 & 93 & 12, \\
1 & 50 & 18 & 89 & 8, \\
1 & 50 & 18 & 86 & 7, \\
1 & 50 & 19 & 72 & 8, \\
1 & 50 & 19 & 79 & 8, \\
1 & 50 & 20 & 80 & 9, \\
1 & 56 & 20 & 82 & 15, \\
1 & 70 & 20 & 91 & 15
\end{tabular}\(\} ;\)

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers in which the preceding data set was analyzed. They state that most researchers "concluded that observations \(1,3,4\), and 21 were outliers" and that some people also reported observation 2 as an outlier.

\section*{Consider 2,000 Random Subsets for LMS}

For \(N=21\) and \(n=4\) (three explanatory variables including intercept), you obtain a total of 5985 different subsets of 4 observations out of 21 . If you do not specify OPTN[5], the LMS algorithms draw \(N_{\text {rep }}=2000\) random sample subsets. Since there is a large number of subsets with singular linear systems that you do not want to print, you can choose OPTN[2]=2 for reduced printed output, as in the following:
```

title2 "***Use 2000 Random Subsets for LMS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
call lms(sc,coef,wgt,optn,b,a);

```

Summary statistics are shown in Output 9.2.1.
Output 9.2.1. Some Simple Statistics
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Median and Mean} \\
\hline & Median & Mean \\
\hline VAR1 & 58.00000000 & 60.42857143 \\
\hline VAR2 & 20.00000000 & 21.09523810 \\
\hline VAR3 & 87.00000000 & 86.28571429 \\
\hline Intercep & 1.00000000 & 1.00000000 \\
\hline Response & 15.00000000 & 17.52380952 \\
\hline \multicolumn{3}{|c|}{Dispersion and Standard Deviation} \\
\hline & Dispersion & StdDev \\
\hline VAR1 & 5.93040887 & 9.16826826 \\
\hline VAR2 & 2.96520444 & 3.16077145 \\
\hline VAR3 & 4.44780666 & 5.35857124 \\
\hline Intercep & 0.00000000 & 0.00000000 \\
\hline Response & 5.93040887 & 10.17162252 \\
\hline
\end{tabular}

Output 9.2.2 displays the results of LS regression.
Output 9.2.2. Table of Unweighted LS Regression


Output 9.2.3 displays the LMS results for the 2000 random subsets.

Output 9.2.3. Iteration History and Optimization Results


For LMS, observations 1, 3, 4, and 21 have scaled residuals larger than 2.5 (output not shown), and they are considered outliers. Output 9.2.4 displays the corresponding WLS results.

Output 9.2.4. Table of Weighted LS Regression
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{********************************* Weighted Least-Squares Estimation ********************************* RLS Parameter Estimates Based on LMS} \\
\hline & Estimate Std & \begin{tabular}{l}
Approx \\
d Error
\end{tabular} & T Value & Prob & \begin{tabular}{l}
Lower \\
Wald CI
\end{tabular} & Upper Wald CI \\
\hline VAR1 & \(0.7977 \quad 0\) & 0.06744 & 11.8282 & 25E-9 & 0.6655 & 0.9299 \\
\hline VAR2 & 0.57730 & 0.16597 & 3.4786 & 0.0041 & 0.2520 & 0.9026 \\
\hline VAR3 & -0.0671 0. & 0.06160 & -1.0886 & 0.296 & -0.1878 & 0.0537 \\
\hline Intercep & -37.6525 4 & 4.73205 & -7.9569 & 237E-8 & -46.9271 & -28.3778 \\
\hline \multicolumn{7}{|c|}{```
Weighted Sum of Squares = 20.400800254
        Degrees of Freedom = 13
    RLS Scale Estimate = 1.2527139846
```} \\
\hline \multicolumn{7}{|c|}{COV Matrix of Parameter Estimates} \\
\hline & VAR1 & & VAR2 & & VAR3 & Intercep \\
\hline VAR1 & 0.00454803 & -0. & 0792141 & -0.001 & 19869 & 0.00156817 \\
\hline VAR2 & -0.00792141 & & 754569 & -0.000 & 46339 & -0.06501751 \\
\hline VAR3 & -0.00119869 & -0. & 0046339 & 0.00 & 379495 & -0.24610225 \\
\hline Intercep & 0.00156817 & -0. & 6501751 & -0.2 & 10225 & 22.39230535 \\
\hline \multicolumn{7}{|c|}{Weighted R-squared \(=0.9750062263\)} \\
\hline \multicolumn{7}{|c|}{Probability \(=1.158521 \mathrm{E}-10\)} \\
\hline \multicolumn{7}{|c|}{There are 17 points with nonzero weight.} \\
\hline
\end{tabular}

The subroutine PRILMTS(), which is in the robustmc.sas file that is contained in the sample library, can be called to print the output summary. Here is the statement:
```

call prilmts(3,sc,coef,wgt);

```

Output 9.2.5, Output 9.2.6, and Output 9.2.7 are the three parts of the output.
Output 9.2.5. First Part of Output Generated by PRILMTS()
\begin{tabular}{|c|}
\hline Results of Least Median Squares Estimation \\
\hline Quantile. 13 \\
\hline Number of Subsets. 2103 \\
\hline Number of Singular Subsets . 103 \\
\hline Number of Nonzero Weights. . 17 \\
\hline Objective Function. 0.75 \\
\hline Preliminary Scale Estimate. . 1.0478511 \\
\hline Final Scale Estimate. 1.2076147 \\
\hline Robust R Squared. 0.9648438 \\
\hline Asymptotic Consistency Factor 1.1413664 \\
\hline RLS Scale Estimate. 1.252714 \\
\hline Weighted Sum of Squares . . 20.4008 \\
\hline Weighted R-squared. 0.9750062 \\
\hline F Statistic 169.04318 \\
\hline
\end{tabular}

Output 9.2.6. Second Part of Output Generated by PRILMTS()

Output 9.2.7. Third Part of Output Generated by PRILMTS()
LMS Residuals
```

6.4176097 2.2772163 6.21059 7.2456884 -0.20702 -0.621059
: -0.20702 0.621059 -0.621059 0.621059 0.621059 0.2070197
: -1.863177 -1.449138 0.621059 -0.20702 0.2070197 0.2070197
: 0.621059 1.863177 -6.831649
Diagnostics

10.448052	7.9317507	10	11.666667	2.7297297	3.4864865
4.7297297	4.2432432	3.6486486	3.7598351	4.6057675	4.9251688
3.8888889	4.5864209	5.2970297	4.009901	6.679576	4.3053404

4.0199755 3 11

```

WLS Residuals
\(4.9634454 \quad 0.9185794 \quad 5.1312163 \quad 6.5250478\)-0.535877-0.996749
\(:-0.3381620 .4601047-0.8444850 .2868830 .76867020 .3777432\)
\(:-2.000854-1.0746071 .07319660 .1143341\)-0.297718 0.0770058
: 0.46793281 .544002 -6.888934

Consider 2,000 Random Subsets for V7 LTS
The V7 LTS algorithm is similar to the LMS algorithm. Here is the code:
```

title2 "***Use 2000 Random Subsets for LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */
call lts(sc,coef,wgt,optn,b,a);

```

Output 9.2.8 displays the iteration history and optimization results of V7 LTS.
Output 9.2.8. Iteration History and Optimization Results

In addition to observations \(1,3,4\), and 21 , which were considered outliers in LMS, observations 2 and 13 for LTS have absolute scaled residuals that are larger (but not as significantly as observations \(1,3,4\), and 21) than 2.5 (output not shown). Therefore, the WLS results based on LTS are different from those based on LMS.

Output 9.2.9 displays the results for the weighted LS regression.

Output 9.2.9. Table of Weighted LS Regression
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{********************************* Weighted Least-Squares Estimation ********************************* RLS Parameter Estimates Based on LTS} \\
\hline & Estimate Std & \begin{tabular}{l}
Approx \\
d Error
\end{tabular} & T Value & Prob & \begin{tabular}{l}
Lower \\
Wald CI
\end{tabular} & \[
\begin{aligned}
& \text { Upper } \\
& \text { Wald CI }
\end{aligned}
\] \\
\hline VAR1 & 0.75690 & 0.07861 & 9.6293 & 108E-8 & 0.6029 & 0.9110 \\
\hline VAR2 & 0.45350 & 0.13605 & 3.3335 & 0.0067 & 0.1869 & 0.7202 \\
\hline VAR3 & -0.0521 & 0.05464 & -0.9537 & 0.361 & -0.1592 & 0.0550 \\
\hline Intercep & -34.0575 3 & 3.82882 & -8.8950 & 235E-8 & -41.5619 & -26.5532 \\
\hline \multicolumn{7}{|c|}{```
Weighted Sum of Squares = 10.273044977
 Degrees of Freedom = 11
 RLS Scale Estimate = 0.9663918355
```} \\
\hline \multicolumn{7}{|c|}{COV Matrix of Parameter Estimates} \\
\hline & VAR1 & & VAR2 & & VAR3 & Intercep \\
\hline VAR1 & 0.00617916 & -0. & 0577686 & -0.002 & 30059 & -0.03429007 \\
\hline VAR2 & -0.00577686 & 0. & 1850969 & 0.00 & 25825 & -0.06974088 \\
\hline VAR3 & -0.00230059 & 0. & 0025825 & 0.00 & 98523 & -0.13148741 \\
\hline Intercep & -0.03429007 & -0.0 & 6974088 & -0.131 & 48741 & 14.65985290 \\
\hline \multicolumn{7}{|c|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\text { Weighted R-squared } & =0.9622869127 \\
F(3,11) \text { Statistic } & =93.558645037
\end{aligned}
\]}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|c|}{\[
\text { Probability }=4.1136826 \mathrm{E}-8
\]} \\
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
There are 15 points with nonzero weight. \\
Average Weight \(=0.7142857143\)
\end{tabular}} \\
\hline
\end{tabular}

\section*{Consider 500 Random Subsets for FAST-LTS}

The FAST-LTS algorithm uses only 500 random subsets and gets better optimization results. Here is the code:
```

title2 "***Use 500 Random Subsets for FAST-LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 0; /* FAST-LTS */
call lts(sc,coef,wgt,optn,b,a);

```

For this example, the two LTS algorithms identify the same outliers; however, the FAST-LTS algorithm uses only 500 random subsets and gets a smaller objective function, as seen in Output 9.2.10. For large data sets, the advantages of the FAST-LTS algorithm are more obvious.

Output 9.2.10. Optimization Results for FAST-LTS
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Least Trimmed Squares (FAST-LTS) Regression \\
Minimizing Sum of 13 Smallest Squared Residuals. \\
Highest Possible Breakdown Value \(=42.86 \%\) \\
Random Selection of 523 Subsets \\
Among 523 subsets 23 is/are singular.
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

The best half of the entire data set obtained after full iteration consists of the cases:

```

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.9745520119
Final LTS Scale = 1.0360272594

```

\section*{Consider All 5,985 Subsets}

You now report the results of LMS for all different subsets. Here is the code:
```

title2 "*** Use All }5985\mathrm{ Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all 5985 subsets */
optn[8]= 3; /* icov */
call lms(sc,coef,wgt,optn,b,a);

```

Output 9.2.11 displays the results for LMS.

Output 9.2.11. Iteration History and Optimization Results for LMS
```

 *** Complete Enumeration for LMS ***
 **
 Subset Singular Best Crit Pct
 1497 36 0.18589932664216 25%
 2993 87 0.15826842822584 50%
 4489 149 0.14051869795752 75%
 5985 266 0.12646682816177 100%
 Minimum Criterion=0.1264668282
 **
 Least Median of Squares (LMS) Regression

 Minimizing the 13th Ordered Squared Residual.
 Highest Possible Breakdown Value = 42.86 %
 Selection of All 5985 Subsets of 4 Cases Out of 21
Among 5985 subsets 266 are singular.
Observations of Best Subset
8 10 15 19
Estimated Coefficients
VAR1 VAR2 VAR3 Intercep
0.75000000 0.50000000 0.00000000 -39.25000000
LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755
Robust R Squared = 0.96484375
Final LMS Scale Estimate = 1.2076147288

```

Next, report the results of LTS for all different subsets, as follows:
```

title2 "*** Use All }5985\mathrm{ Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all }5985\mathrm{ subsets */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */
call lts(sc,coef,wgt,optn,b,a);

```

Output 9.2.12 displays the results for LTS.

Output 9.2.12. Iteration History and Optimization Results for LTS


\section*{Example 9.3. LMS and LTS Univariate (Location) Problem: Barnett and Lewis Data}

If you do not specify matrix \(X\) of the last input argument, the regression problem is reduced to the estimation problem of the location parameter \(a\). The following example is described in Rousseeuw and Leroy (1987, p. 175):
```

print "*** Barnett and Lewis (1978) ***";
b = { 3, 4, 7, 8, 10, 949, 951 };
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
call lms(sc,coef,wgt,optn,b);

```

Output 9.3.1 shows the results of the unweighted LS regression.

Output 9.3.1. Table of Unweighted LS Regression


Output 9.3.2 shows the results for LMS regression.
Output 9.3.2. Table of LMS Results


You obtain the LMS location estimate 6.5 compared with the mean 276 (which is the LS estimate of the location parameter) and the median 8. The scale estimate in the univariate problem is a resistant (high breakdown) estimator for the dispersion of the data (see Rousseeuw and Leroy 1987, p. 178).

For weighted LS regression, the last two observations are ignored (that is, given zero weights), as shown in Output 9.3.3.
Output 9.3.3. Table of Weighted LS Regression


Use the following code to obtain results from LTS:
```

 optn = j(9,1,.);
 optn[2]= 3; /* ipri */
 optn[3]= 3; /* ilsq */
 optn[8]= 3; /* icov */
 call lts(sc,coef,wgt,optn,b);

```

The results for LTS are similar to those reported for LMS in Rousseeuw and Leroy (1987), as shown in Output 9.3.4.

Output 9.3.4. Table of LTS Results


Since nonzero weights are chosen for the same observations as with LMS, the WLS results based on LTS agree with those based on LMS (shown previously in Output 9.3.3).

In summary, you obtain the following estimates for the location parameter:
- LS estimate (unweighted mean) \(=276\)
- Median \(=8\)
- LMS estimate \(=5.5\)
- LTS estimate \(=5.5\)
- WLS estimate \((\) weighted mean based on LMS or LTS \()=6.4\)

\section*{Using MVE and MCD}

The routines PRIMVE, SCATMVE, and SCATMCD are used in these examples for printing and plotting the results. These routines are in the robustme. sas file that is contained in the sample library.

\section*{Example 9.4. Brainlog Data}

The following data, consisting of the body weights (in kilograms) and brain weights (in grams) of \(N=28\) animals, are reported by Jerison (1973) and can be found also in Rousseeuw and Leroy (1987, p. 57). Instead of the original data, the following example uses the logarithms of the measurements of the two variables.
```

title "*** Brainlog Data: Do MCD, MVE ***";
aa={ 1.303338E-001 9.084851E-001 ,
2.6674530 2.6263400 ,
1.5602650 2.0773680
1.4418520 2.0606980,
1.703332E-002 7.403627E-001
4.0681860 1.6989700,
3.4060290 3.6630410 ,
2.2720740 2.6222140,
2.7168380 2.8162410 ,
1.0000000 2.0606980 ,
5.185139E-001 1.4082400 ,
2.7234560 2.8325090 ,
2.3159700 2.6085260 ,
1.7923920 3.1205740 ,
3.8230830 3.7567880 ,
3.9731280 1.8450980 ,
8.325089E-001 2.2528530 ,
1.5440680 1.7481880,
-9.208187E-001 .0000000 ,
-1.6382720 -3.979400E-001
3.979400E-001 1.0827850
1.7442930 2.2430380 ,
2.0000000 2.1959000 ,
1.7173380 2.6434530
4.9395190 2.1889280
-5.528420E-001 2.787536E-001
-9.136401E-001 4.771213E-001
2.2833010 2.2552720 };

```

By default, the MVE subroutine uses only 1500 randomly selected subsets rather than all subsets. The following specification of the options vector requires that all 3276 subsets of 3 cases out of 28 cases are generated and evaluated:
```

title2 "***MVE for BrainLog Data***";
title3 "*** Use All Subsets***";
optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: all subsets */
call mve(sc,xmve,dist,optn,aa);

```

Specifying OPTN[1]=3, OPTN[2]=1, and OPTN[3]=1 requests that all output be printed. Output 9.4.1 shows the classical scatter and correlation matrix.

Output 9.4.1. Some Simple Statistics
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Minimum Volume Ellipsoid (MVE) Estimation *****************************************}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Consider Ellipsoids Containing 15 Cases.} \\
\hline \multicolumn{3}{|c|}{Classical Covariance Matrix} \\
\hline & VAR1 & VAR2 \\
\hline VAR1 & 2.681651236 & 1.330084693 \\
\hline VAR2 & 1.330084693 & 1.085753755 \\
\hline \multicolumn{3}{|r|}{Classical Correlation Matrix} \\
\hline & VAR1 & VAR2 \\
\hline VAR1 & 1.000000000 & 0.779493464 \\
\hline VAR2 & 0.779493464 & 1.000000000 \\
\hline
\end{tabular}

Output 9.4.2 shows the results of the combinatoric optimization (complete subset sampling).

Output 9.4.2. Iteration History for MVE


Output 9.4.3 shows the optimization results after local improvement.

Output 9.4.3. Table of MVE Results


Output 9.4.4 presents a table containing the classical Mahalanobis distances, the robust distances, and the weights identifying the outlier observations.

Output 9.4.4. Mahalanobis and Robust Distances
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{***MVE for BrainLog Data***} \\
\hline \multicolumn{4}{|l|}{Classical Distances and Robust (Rousseeuw) Distances Unsquared Mahalanobis Distance and} \\
\hline & \multicolumn{2}{|l|}{Unsquared Rousseeuw Distance of Each Observation} & \\
\hline N & Distances & Distances & Weight \\
\hline 1 & 1.006591 & 0.897076 & 1.000000 \\
\hline 2 & 0.695261 & 1.405302 & 1.000000 \\
\hline 3 & 0.300831 & 0.186726 & 1.000000 \\
\hline 4 & 0.380817 & 0.318701 & 1.000000 \\
\hline 5 & 1.146485 & 1.135697 & 1.000000 \\
\hline 6 & 2.644176 & 8.828036 & 0 \\
\hline 7 & 1.708334 & 1.699233 & 1.000000 \\
\hline 8 & 0.706522 & 0.686680 & 1.000000 \\
\hline 9 & 0.858404 & 1.084163 & 1.000000 \\
\hline 10 & 0.798698 & 1.580835 & 1.000000 \\
\hline 11 & 0.686485 & 0.693346 & 1.000000 \\
\hline 12 & 0.874349 & 1.071492 & 1.000000 \\
\hline 13 & 0.677791 & 0.717545 & 1.000000 \\
\hline 14 & 1.721526 & 3.398698 & 0 \\
\hline 15 & 1.761947 & 1.762703 & 1.000000 \\
\hline 16 & 2.369473 & 7.999472 & 0 \\
\hline 17 & 1.222253 & 2.805954 & 0 \\
\hline 18 & 0.203178 & 1.207332 & 1.000000 \\
\hline 19 & 1.855201 & 1.773317 & 1.000000 \\
\hline 20 & 2.266268 & 2.074971 & 1.000000 \\
\hline 21 & 0.831416 & 0.785954 & 1.000000 \\
\hline 22 & 0.416158 & 0.342200 & 1.000000 \\
\hline 23 & 0.264182 & 0.918383 & 1.000000 \\
\hline 24 & 1.046120 & 1.782334 & 1.000000 \\
\hline 25 & 2.911101 & 9.565443 & 0 \\
\hline 26 & 1.586458 & 1.543748 & 1.000000 \\
\hline 27 & 1.582124 & 1.808423 & 1.000000 \\
\hline 28 & 0.394664 & 1. 523235 & 1.000000 \\
\hline
\end{tabular}

Again, you can call the subroutine SCATMVE(), which is included in the sample library in the file robustmc.sas, to plot the classical and robust confidence ellipsoids, as follows:
```

 optn = j(9,1,.); optn[5]= -1;
 vnam = { "Log Body Wgt","Log Brain Wgt" };
 filn = "brlmve";
 titl = "BrainLog Data: MVE Use All Subsets";
 call scatmve(2,optn,.9,aa,vnam,titl,1,filn);

```

The plot is shown in Output 9.4.5.

Output 9.4.5. BrainLog Data: Classical and Robust Ellipsoid(MVE)


MCD is another subroutine that can be used to compute the robust location and the robust covariance of multivariate data sets. Here is the code:
```

title2 "***MCD for BrainLog Data***";
title3 "*** Use 500 Random Subsets***";
optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
call mcd(sc,xmve,dist,optn,aa);

```

Similarly, specifying OPTN[1]=3, OPTN[2]=1, and OPTN[3]=1 requests that all output be printed.

Output 9.4.6 shows the results of the optimization.

Output 9.4.6. Results of the Optimization


Output 9.4.7 shows the reweighted results after removing outliers.
Output 9.4.7. Final Reweighted MCD Results


Output 9.4.8 presents a table containing the classical Mahalanobis distances, the robust distances, and the weights identifying the outlier observations.

Output 9.4.8. Mahalanobis and Robust Distances (MCD)


You can call the subroutine \(\operatorname{SCATMCD}()\), which is included in the sample library in file robustmc.sas, to plot the classical and robust confidence ellipsoids. Here is the code:
```

 optn = j(9,1,.); optn[5]= -1;
 vnam = { "Log Body Wgt","Log Brain Wgt" };
 filn = "brlmcd";
 titl = "BrainLog Data: MCD";
 call scatmcd(2,optn,.9,aa,vnam,titl,1,filn);

```

The plot is shown in Output 9.4.9.

Output 9.4.9. BrainLog Data: Classical and Robust Ellipsoid (MCD)


\section*{Example 9.5. Stackloss Data}

The following example analyzes the three regressors of Brownlee (1965) stackloss data. By default, the MVE subroutine tries only 2000 randomly selected subsets in its search. There are, in total, 5985 subsets of 4 cases out of 21 cases. Here is the code:
```

title2 "***MVE for Stackloss Data***";
title3 "*** Use All Subsets***";
a = aa[,2:4];
optn = j(9,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */
call mve(sc,xmve,dist,optn,a);

```

Output 9.5.1 of the output shows the classical scatter and correlation matrix.

Output 9.5.1. Some Simple Statistics
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{***************************************** Minimum Volume Ellipsoid (MVE) Estimation *****************************************} \\
\hline & \multicolumn{3}{|l|}{Consider Ellipsoids Containing 12 Cases.} \\
\hline \multicolumn{4}{|c|}{Classical Covariance Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 84.05714286 & 22.65714286 & 24.57142857 \\
\hline VAR2 & 22.65714286 & 9.99047619 & 6.62142857 \\
\hline VAR3 & 24.57142857 & 6.62142857 & 28.71428571 \\
\hline \multicolumn{4}{|c|}{Classical Correlation Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 1.000000000 & 0.781852333 & 0.500142875 \\
\hline VAR2 & 0.781852333 & 1.000000000 & 0.390939538 \\
\hline VAR3 & 0.500142875 & 0.390939538 & 1.000000000 \\
\hline \multicolumn{4}{|c|}{Classical Mean} \\
\hline \multicolumn{2}{|r|}{VAR1} & 60.42857 & \\
\hline \multicolumn{2}{|r|}{VAR2} & 21.09524 & \\
\hline \multicolumn{2}{|r|}{VAR3} & 86.28571 & \\
\hline
\end{tabular}

Output 9.5.2 shows the results of the optimization (complete subset sampling).
Output 9.5.2. Iteration History
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{***MVE for Stackloss Data***} \\
\hline & Subset & Singular & Criterion & Percent & \\
\hline & 1497 & 22 & 253.312431 & 25 & \\
\hline & 2993 & 46 & 224.084073 & 50 & \\
\hline & 4489 & 77 & 165.830053 & 75 & \\
\hline & 5985 & 156 & 165.634363 & 100 & \\
\hline \multicolumn{6}{|c|}{Observations of Best Subset} \\
\hline & 7 & 1 & & & 20 \\
\hline \multicolumn{6}{|c|}{Initial MVE Location Estimates} \\
\hline & & VAR1 & 58.5 & & \\
\hline & & VAR2 & 20.25 & & \\
\hline & & VAR3 & 87 & & \\
\hline \multicolumn{6}{|c|}{Initial MVE Scatter Matrix} \\
\hline & & VAR1 & VAR2 & VAR3 & \\
\hline VAR1 & 34. & 14749 & 28.413143611 & 62.32560534 & \\
\hline VAR2 & 28. & 43611 & 38.036950318 & 58.659393261 & \\
\hline VAR3 & & 56534 & 58.659393261 & 267.63348175 & \\
\hline
\end{tabular}

Output 9.5.3 shows the optimization results after local improvement.
Output 9.5.3. Table of MVE Results
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
***MVE for Stackloss Data*** \\
Robust MVE Location Estimates
\end{tabular}} \\
\hline & VAR1 & 56.705882353 & \\
\hline & VAR2 & 20.235294118 & \\
\hline & VAR3 & 85.529411765 & \\
\hline & Robust & catter Matrix & \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 23.470588235 & 7.5735294118 & 16.102941176 \\
\hline VAR2 & 7.5735294118 & 6.3161764706 & 5.3676470588 \\
\hline VAR3 & 16.102941176 & 5.3676470588 & 32.389705882 \\
\hline \multicolumn{4}{|c|}{Eigenvalues of Robust Scatter Matrix} \\
\hline & VAR1 & 46.597431018 & \\
\hline & VAR2 & 12.155938483 & \\
\hline & VAR3 & 3.423101087 & \\
\hline \multicolumn{4}{|c|}{Robust Correlation Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 1 & 0.6220269501 & 0.5840361335 \\
\hline VAR2 & 0.6220269501 & 1 & 0.375278187 \\
\hline VAR3 & 0.5840361335 & 0.375278187 & 1 \\
\hline
\end{tabular}

Output 9.5.4 presents a table containing the classical Mahalanobis distances, the robust distances, and the weights identifying the outlying observations (that is, the leverage points when explaining \(y\) with these three regressor variables).

Output 9.5.4. Mahalanobis and Robust Distances
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{***MVE for Stackloss Data***} \\
\hline \multicolumn{4}{|l|}{Classical Distances and Robust (Rousseeuw) Distances Unsquared Mahalanobis Distance and Unsquared Rousseeuw Distance of Each Observation} \\
\hline & halanobis & Robust & \\
\hline N & Distances & Distances & Weight \\
\hline 1 & 2.253603 & 5.528395 & 0 \\
\hline 2 & 2.324745 & 5.637357 & 0 \\
\hline 3 & 1.593712 & 4.197235 & 0 \\
\hline 4 & 1.271898 & 1.588734 & 1.000000 \\
\hline 5 & 0.303357 & 1.189335 & 1.000000 \\
\hline 6 & 0.772895 & 1.308038 & 1.000000 \\
\hline 7 & 1.852661 & 1.715924 & 1.000000 \\
\hline 8 & 1.852661 & 1.715924 & 1.000000 \\
\hline 9 & 1. 360622 & 1.226680 & 1.000000 \\
\hline 10 & 1.745997 & 1.936256 & 1.000000 \\
\hline 11 & 1.465702 & 1.493509 & 1.000000 \\
\hline 12 & 1.841504 & 1.913079 & 1.000000 \\
\hline 13 & 1.482649 & 1.659943 & 1.000000 \\
\hline 14 & 1.778785 & 1.689210 & 1.000000 \\
\hline 15 & 1.690241 & 2.230109 & 1.000000 \\
\hline 16 & 1.291934 & 1.767582 & 1.000000 \\
\hline 17 & 2.700016 & 2.431021 & 1.000000 \\
\hline 18 & 1.503155 & 1.523316 & 1.000000 \\
\hline 19 & 1.593221 & 1.710165 & 1.000000 \\
\hline 20 & 0.807054 & 0.675124 & 1.000000 \\
\hline 21 & 2. 176761 & 3. 657281 & 0 \\
\hline
\end{tabular}

The following specification generates three bivariate plots of the classical and robust tolerance ellipsoids. They are shown in Output 9.5.5, Output 9.5.6, and Output 9.5.7, one plot for each pair of variables.
```

 optn = j(9,1,.); optn[5]= -1;
 vnam = { "Rate", "Temperature", "AcidConcent" };
 filn = "stlmve";
 titl = "Stackloss Data: Use All Subsets";
 call scatmve(2,optn,.9,a,vnam,titl,1,filn);

```

Output 9.5.5. Stackloss Data: Rate vs. Temperature (MVE)


Output 9.5.6. Stackloss Data: Rate vs. Acid Concentration (MVE)


Output 9.5.7. Stackloss Data: Temperature vs. Acid Concentration (MVE)


You can also use the MCD method for the stackloss data as follows:
```

title2 "***MCD for Stackloss Data***";
title3 "*** Use 500 Random Subsets***";
a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1 ; /* nrep: use all subsets */
CALL MCD (sc,xmcd,dist,optn,a);

```

The optimization results are displayed in Output 9.5.8. The reweighted results are displayed in Output 9.5.9.

Output 9.5.8. MCD Results of Optimization


Output 9.5.9. Final Reweighted MCD Results
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{```
***MCD for Stackloss Data***
*** Use 500 Random Subsets***
```} \\
\hline \multicolumn{4}{|c|}{Reweighted Location Estimate} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline & 59.5 & 20.833333333 & 87.333333333 \\
\hline \multicolumn{4}{|c|}{Reweighted Scatter Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 5.1818181818 & 4.8181818182 & 4.7272727273 \\
\hline VAR2 & 4.8181818182 & 7.6060606061 & 5.0606060606 \\
\hline VAR3 & 4.7272727273 & 5.0606060606 & 19.151515152 \\
\hline \multicolumn{4}{|c|}{Eigenvalues} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline \multicolumn{4}{|r|}{23.191069268 7.3520037086 1.3963209628} \\
\hline \multicolumn{4}{|c|}{Reweighted Correlation Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 1 & 0.7674714142 & 0.4745347313 \\
\hline VAR2 & 0.7674714142 & 1 & 0.4192963398 \\
\hline VAR3 & 0.4745347313 & 0.4192963398 & 1 \\
\hline
\end{tabular}

The MCD robust distances and outlying diagnostic are displayed in Output 9.5.10. MCD identifies more leverage points than MVE.

Output 9.5.10. MCD Robust Distances
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{***MCD for Stackloss Data*** *** Use 500 Random Subsets***} \\
\hline \multicolumn{4}{|l|}{Classical Distances and Robust (Rousseeuw) Distances Unsquared Mahalanobis Distance and} \\
\hline \multicolumn{4}{|r|}{Unsquared Rousseeuw Distance of Each Observation} \\
\hline N & Distances & Distances & Weight \\
\hline 1 & 2.253603 & 12.173282 & 0 \\
\hline 2 & 2.324745 & 12.255677 & 0 \\
\hline 3 & 1.593712 & 9.263990 & 0 \\
\hline 4 & 1.271898 & 1.401368 & 1.000000 \\
\hline 5 & 0.303357 & 1.420020 & 1.000000 \\
\hline 6 & 0.772895 & 1.291188 & 1.000000 \\
\hline 7 & 1.852661 & 1.460370 & 1.000000 \\
\hline 8 & 1.852661 & 1.460370 & 1.000000 \\
\hline 9 & 1.360622 & 2.120590 & 1.000000 \\
\hline 10 & 1.745997 & 1.809708 & 1.000000 \\
\hline 11 & 1.465702 & 1.362278 & 1.000000 \\
\hline 12 & 1.841504 & 1.667437 & 1.000000 \\
\hline 13 & 1.482649 & 1.416724 & 1.000000 \\
\hline 14 & 1.778785 & 1.988240 & 1.000000 \\
\hline 15 & 1.690241 & 5.874858 & 0 \\
\hline 16 & 1.291934 & 5.606157 & 0 \\
\hline 17 & 2.700016 & 6.133319 & 0 \\
\hline 18 & 1.503155 & 5.760432 & 0 \\
\hline 19 & 1.593221 & 6.156248 & 0 \\
\hline 20 & 0.807054 & 2.172300 & 1.000000 \\
\hline 21 & 2.176761 & 7.622769 & 0 \\
\hline
\end{tabular}

Similarly, you can use the SCATMCD routine to generate three bivariate plots of the classical and robust tolerance ellipsoids, one plot for each pair of variables. Here is the code:
```

    optn = j(9,1,.); optn[5]= -1;
    vnam = { "Rate", "Temperature", "AcidConcent" };
    filn = "stlmcd";
    titl = "Stackloss Data: Use All Subsets";
    call scatmcd(2,optn,.9,a,vnam,titl,1,filn);

```

Output 9.5.11, Output 9.5.12, and Output 9.5.13 display these plots.

Output 9.5.11. Stackloss Data: Rate vs. Temperature (MCD)

Output 9.5.12. Stackloss Data: Rate vs. Acid Concentration (MCD)

Output 9.5.13. Stackloss Data: Temperature vs. Acid Concentration (MCD)

\section*{Combining Robust Residual and Robust Distance}

This section is based entirely on Rousseeuw and Van Zomeren (1990). Observations \(\mathbf{x}_{i}\), which are far away from most of the other observations, are called leverage points. One classical method inspects the Mahalanobis distances \(M D_{i}\) to find outliers \(\mathbf{x}_{i}\) :
\[
M D_{i}=\sqrt{\left(\mathbf{x}_{i}-\mu\right) \mathbf{C}^{-1}\left(\mathbf{x}_{i}-\mu\right)^{T}}
\]
where \(\mathbf{C}\) is the classical sample covariance matrix.
Note that the MVE subroutine prints the classical Mahalanobis distances \(M D_{i}\) together with the robust distances \(R D_{i}\). In classical linear regression, the diagonal elements \(h_{i i}\) of the hat matrix
\[
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}
\]
are used to identify leverage points. Rousseeuw and Van Zomeren (1990) report the following monotone relationship between the \(h_{i i}\) and \(M D_{i}\) :
\[
h_{i i}=\frac{\left(M D_{i}\right)^{2}}{N-1}+\frac{1}{n}
\]

They point out that neither the \(M D_{i}\) nor the \(h_{i i}\) are entirely safe for detecting leverage points reliably. Multiple outliers do not necessarily have large \(M D_{i}\) values because of the masking effect.

The definition of a leverage point is, therefore, based entirely on the outlyingness of \(\mathbf{x}_{i}\) and is not related to the response value \(y_{i}\). By including the \(y_{i}\) value in the definition, Rousseeuw and Van Zomeren (1990) distinguish between the following:
- Good leverage points are points \(\left(\mathbf{x}_{i}, y_{i}\right)\) that are close to the regression plane; that is, good leverage points improve the precision of the regression coefficients.
- Bad leverage points are points \(\left(\mathbf{x}_{i}, y_{i}\right)\) that are far from the regression plane; that is, bad leverage points reduce the precision of the regression coefficients.

Rousseeuw and Van Zomeren (1990) propose to plot the standardized residuals of robust regression (LMS or LTS) versus the robust distances \(R D_{i}\) obtained from MVE. Two horizontal lines corresponding to residual values of +2.5 and -2.5 are useful to distinguish between small and large residuals, and one vertical line corresponding to the \(\sqrt{\chi_{n, 975}^{2}}\) is used to distinguish between small and large distances.

\section*{Example 9.6. Hawkins-Bradu-Kass Data}

The first 14 observations of the following data set (see Hawkins, Bradu, and Kass 1984) are leverage points; however, only observations 12,13 , and 14 have large \(h_{i i}\), and only observations 12 and 14 have large \(M D_{i}\) values.
```

title "Hawkins, Bradu, Kass (1984) Data";
aa = { 1 10.1 19.6 28.3 9.7,
2 9.5 20.5 28.9 10.1,
3 10.7 20.2 31.0 10.3,
4 9.9 21.5 31.7 9.5,
5 10.3 21.1 31.1 10.0,
6 10.8 20.4 29.2 10.0,
7 10.5 20.9 29.1 10.8,
8 9.9 19.6 28.8 10.3,
9 9.7 20.7 31.0 9.6,
10 9.3 19.7 30.3 9.9,
11 11.0 24.0 35.0 -0.2,
12 12.0 23.0 37.0 -0.4,
13 12.0 26.0 34.0 0.7,
14 11.0 34.0 34.0 0.1,
15 3.4 2.9 2.1 -0.4,
16 3.1 2.2 0.3 0.6,
17 0.0 1.6 0.2 -0.2,
18 2.3 1.6 2.0 0.0,
19 0.8 2.9 1.6 0.1,
20 3.1 3.4 2.2 0.4,
21 2.6 2.2 1.9 0.9,
22 0.4 3.2 1.9 0.3,
23 2.0 2.3 0.8 -0.8,
24 1.3 2.3 0.5 0.7,
25 1.0 0.0 0.4 -0.3,
26 0.9 3.3 2.5 -0.8,
27 3.3 2.5 2.9 -0.7,

```
\begin{tabular}{|c|c|c|c|c|}
\hline 28 & 1.8 & 0.8 & 2.0 & 0.3, \\
\hline 29 & 1.2 & 0.9 & 0.8 & 0.3, \\
\hline 30 & 1.2 & 0.7 & 3.4 & -0.3, \\
\hline 31 & 3.1 & 1.4 & 1.0 & 0.0, \\
\hline 32 & 0.5 & 2.4 & 0.3 & -0.4, \\
\hline 33 & 1.5 & 3.1 & 1.5 & -0.6, \\
\hline 34 & 0.4 & 0.0 & 0.7 & -0.7, \\
\hline 35 & 3.1 & 2.4 & 3.0 & 0.3, \\
\hline 36 & 1.1 & 2.2 & 2.7 & -1.0, \\
\hline 37 & 0.1 & 3.0 & 2.6 & -0.6, \\
\hline 38 & 1.5 & 1.2 & 0.2 & 0.9, \\
\hline 39 & 2.1 & 0.0 & 1.2 & -0.7, \\
\hline 40 & 0.5 & 2.0 & 1.2 & -0.5, \\
\hline 41 & 3.4 & 1.6 & 2.9 & -0.1, \\
\hline 42 & 0.3 & 1.0 & 2.7 & -0.7, \\
\hline 43 & 0.1 & 3.3 & 0.9 & 0.6, \\
\hline 44 & 1.8 & 0.5 & 3.2 & -0.7, \\
\hline 45 & 1.9 & 0.1 & 0.6 & -0.5, \\
\hline 46 & 1.8 & 0.5 & 3.0 & -0.4, \\
\hline 47 & 3.0 & 0.1 & 0.8 & -0.9, \\
\hline 48 & 3.1 & 1.6 & 3.0 & 0.1, \\
\hline 49 & 3.1 & 2.5 & 1.9 & 0.9, \\
\hline 50 & 2.1 & 2.8 & 2.9 & -0.4, \\
\hline 51 & 2.3 & 1.5 & 0.4 & 0.7, \\
\hline 52 & 3.3 & 0.6 & 1.2 & -0.5, \\
\hline 53 & 0.3 & 0.4 & 3.3 & 0.7, \\
\hline 54 & 1.1 & 3.0 & 0.3 & 0.7, \\
\hline 55 & 0.5 & 2.4 & 0.9 & 0.0, \\
\hline 56 & 1.8 & 3.2 & 0.9 & 0.1, \\
\hline 57 & 1.8 & 0.7 & 0.7 & 0.7, \\
\hline 58 & 2.4 & 3.4 & 1.5 & -0.1, \\
\hline 59 & 1.6 & 2.1 & 3.0 & -0.3, \\
\hline 60 & 0.3 & 1.5 & 3.3 & -0.9, \\
\hline 61 & 0.4 & 3.4 & 3.0 & -0.3, \\
\hline 62 & 0.9 & 0.1 & 0.3 & 0.6, \\
\hline 63 & 1.1 & 2.7 & 0.2 & -0.3, \\
\hline 64 & 2.8 & 3.0 & 2.9 & -0.5, \\
\hline 65 & 2.0 & 0.7 & 2.7 & 0.6, \\
\hline 66 & 0.2 & 1.8 & 0.8 & -0.9, \\
\hline 67 & 1.6 & 2.0 & 1.2 & -0.7, \\
\hline 68 & 0.1 & 0.0 & 1.1 & 0.6, \\
\hline 69 & 2.0 & 0.6 & 0.3 & 0.2, \\
\hline 70 & 1.0 & 2.2 & 2.9 & 0.7, \\
\hline 71 & 2.2 & 2.5 & 2.3 & 0.2, \\
\hline 72 & 0.6 & 2.0 & 1.5 & -0.2, \\
\hline 73 & 0.3 & 1.7 & 2.2 & 0.4, \\
\hline 74 & 0.0 & 2.2 & 1.6 & -0.9, \\
\hline 75 & 0.3 & 0.4 & 2.6 & 0.2 \}; \\
\hline
\end{tabular}

The data are also listed in Rousseeuw and Leroy (1987, p. 94).
The complete enumeration must inspect \(1,215,450\) subsets.

Output 9.6.1 displays the iteration history for MVE.
Output 9.6.1. Iteration History for MVE
```

************************************************
*** Complete Enumeration for MVE ***

```

\begin{tabular}{rrrr}
Subset & Singular & Best Crit & Pct \\
121545 & 0 & 51.1042755960104 & \(10 \%\) \\
243090 & 2 & 51.1042755960104 & \(20 \%\) \\
364635 & 4 & 51.1042755960104 & \(30 \%\) \\
486180 & 7 & 51.1042755960104 & \(40 \%\) \\
607725 & 9 & 51.1042755960104 & \(50 \%\) \\
729270 & 22 & 6.27172477029496 & \(60 \%\) \\
850815 & 67 & 6.27172477029496 & \(70 \%\) \\
972360 & 104 & 5.91230765636768 & \(80 \%\) \\
1093905 & 135 & 5.91230765636768 & \(90 \%\) \\
1215450 & 185 & 5.91230765636768 & \(100 \%\) \\
Minimum Criterion=5.9123076564 &
\end{tabular}
Among 1215450 subsets 185 are singular.

Output 9.6.2 reports the robust parameter estimates for MVE.

\section*{Output 9.6.2. Robust Location Estimates}

Robust MVE Location Estimates
\begin{tabular}{ll}
VAR1 & 1.513333333 \\
VAR2 & 1.808333333 \\
VAR3 & 1.701666667
\end{tabular}

Robust MVE Scatter Matrix

VAR1 VAR2
\(\begin{array}{llll}\text { VAR1 } & 1.114395480 & 0.093954802 & 0.141672316 \\ \text { VAR2 } & 0.093954802 & 1.123149718 & 0.117443503 \\ \text { VAR3 } & 0.141672316 & 0.117443503 & 1.074742938\end{array}\)
\(\begin{array}{llll}\text { VAR1 } & 1.114395480 & 0.093954802 & 0.141672316 \\ \text { VAR2 } & 0.093954802 & 1.123149718 & 0.117443503 \\ \text { VAR3 } & 0.141672316 & 0.117443503 & 1.074742938\end{array}\)
\(\begin{array}{llll}\text { VAR1 } & 1.114395480 & 0.093954802 & 0.141672316 \\ \text { VAR2 } & 0.093954802 & 1.123149718 & 0.117443503 \\ \text { VAR3 } & 0.141672316 & 0.117443503 & 1.074742938\end{array}\)
\begin{tabular}{llll}
VAR3 & 0.141672316 & 0.117443503 & 1.074742938
\end{tabular}

Output 9.6.3 reports the eigenvalues of the robust scatter matrix and the robust correlation matrix.
Output 9.6.3. MVE Scatter Matrix
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Eigenvalues of Robust Scatter Matrix} \\
\hline & VAR1 & 1. 339637154 & \\
\hline & VAR2 & 1.028124757 & \\
\hline & VAR3 & 0.944526224 & \\
\hline & \multicolumn{3}{|l|}{Robust Correlation Matrix} \\
\hline & VAR1 & VAR2 & VAR3 \\
\hline VAR1 & 1.000000000 & 0.083980892 & 0.129453270 \\
\hline VAR2 & 0.083980892 & 1.000000000 & 0.106895118 \\
\hline VAR3 & 0.129453270 & 0.106895118 & 1.000000000 \\
\hline
\end{tabular}

Output 9.6.4 shows the classical Mahalanobis and robust distances obtained by complete enumeration. The first 14 observations are recognized as outliers (leverage points).

Output 9.6.4. Mahalanobis and Robust Distances
\begin{tabular}{|c|c|c|c|}
\hline & Mahalanobis Distance & Robust Distance & Weight \\
\hline 1 & 1.916821 & 29.541649 & 0 \\
\hline 2 & 1.855757 & 30.344481 & 0 \\
\hline 3 & 2.313658 & 31.985694 & 0 \\
\hline 4 & 2.229655 & 33.011768 & 0 \\
\hline 5 & 2.100114 & 32.404938 & 0 \\
\hline 6 & 2.146169 & 30.683153 & 0 \\
\hline 7 & 2.010511 & 30.794838 & 0 \\
\hline 8 & 1.919277 & 29.905756 & 0 \\
\hline 9 & 2.221249 & 32.092048 & 0 \\
\hline 10 & 2.333543 & 31.072200 & 0 \\
\hline 11 & 2.446542 & 36.808021 & 0 \\
\hline 12 & 3.108335 & 38.071382 & 0 \\
\hline 13 & 2.662380 & 37.094539 & 0 \\
\hline 14 & 6.381624 & 41.472255 & 0 \\
\hline 15 & 1.815487 & 1.994672 & 1.000000 \\
\hline 16 & 2.151357 & 2.202278 & 1.000000 \\
\hline 17 & 1.384915 & 1.918208 & 1.000000 \\
\hline 18 & 0.848155 & 0.819163 & 1.000000 \\
\hline 19 & 1.148941 & 1.288387 & 1.000000 \\
\hline 20 & 1.591431 & 2.046703 & 1.000000 \\
\hline 21 & 1.089981 & 1.068327 & 1.000000 \\
\hline 22 & 1.548776 & 1.768905 & 1.000000 \\
\hline 23 & 1.085421 & 1.166951 & 1.000000 \\
\hline 24 & 0.971195 & 1. 304648 & 1.000000 \\
\hline 25 & 0.799268 & 2.030417 & 1.000000 \\
\hline 26 & 1.168373 & 1.727131 & 1.000000 \\
\hline 27 & 1.449625 & 1.983831 & 1.000000 \\
\hline 28 & 0.867789 & 1.073856 & 1.000000 \\
\hline 29 & 0.576399 & 1.168060 & 1.000000 \\
\hline
\end{tabular}

Output 9.6.4. (continued)
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Classical and Robust Distances} \\
\hline & Mahalanobis Distance & Robust Distance & Weight \\
\hline 30 & 1.568868 & 2.091386 & 1.000000 \\
\hline 31 & 1.838496 & 1.793386 & 1.000000 \\
\hline 32 & 1.307230 & 1.743558 & 1.000000 \\
\hline 33 & 0.981988 & 1.264121 & 1.000000 \\
\hline 34 & 1.175014 & 2.052641 & 1.000000 \\
\hline 35 & 1.243636 & 1.872695 & 1.000000 \\
\hline 36 & 0.850804 & 1.136658 & 1.000000 \\
\hline 37 & 1.832378 & 2.050041 & 1.000000 \\
\hline 38 & 0.752061 & 1.522734 & 1.000000 \\
\hline 39 & 1.265041 & 1.885970 & 1.000000 \\
\hline 40 & 1.112038 & 1.068841 & 1.000000 \\
\hline 41 & 1.699757 & 2.063398 & 1.000000 \\
\hline 42 & 1.765040 & 1.785637 & 1.000000 \\
\hline 43 & 1.870090 & 2.166100 & 1.000000 \\
\hline 44 & 1.420448 & 2.018610 & 1.000000 \\
\hline 45 & 1.075973 & 1.944449 & 1.000000 \\
\hline 46 & 1.344171 & 1.872483 & 1.000000 \\
\hline 47 & 1.966328 & 2.408721 & 1.000000 \\
\hline 48 & 1.424238 & 1.892539 & 1.000000 \\
\hline 49 & 1.569756 & 1.594109 & 1.000000 \\
\hline 50 & 0.423972 & 1.458595 & 1.000000 \\
\hline 51 & 1.302651 & 1.569843 & 1.000000 \\
\hline 51 & 1.302651 & 1.569843 & 1.000000 \\
\hline 52 & 2.076055 & 2.205601 & 1.000000 \\
\hline 53 & 2.210443 & 2.492631 & 1.000000 \\
\hline 54 & 1.414288 & 1.884937 & 1.000000 \\
\hline 55 & 1.230455 & 1.360622 & 1.000000 \\
\hline 56 & 1.331101 & 1.626276 & 1.000000 \\
\hline 57 & 0.832744 & 1.432408 & 1.000000 \\
\hline 58 & 1.404401 & 1.723091 & 1.000000 \\
\hline 59 & 0.591235 & 1.263700 & 1.000000 \\
\hline 60 & 1.889737 & 2.087849 & 1.000000 \\
\hline 61 & 1.674945 & 2.286045 & 1.000000 \\
\hline 62 & 0.759533 & 2.024702 & 1.000000 \\
\hline 63 & 1.292259 & 1.783035 & 1.000000 \\
\hline 64 & 0.973868 & 1.835207 & 1.000000 \\
\hline 65 & 1.148208 & 1.562278 & 1.000000 \\
\hline 66 & 1.296746 & 1.444491 & 1.000000 \\
\hline 67 & 0.629827 & 0.552899 & 1.000000 \\
\hline 68 & 1.549548 & 2.101580 & 1.000000 \\
\hline 69 & 1.070511 & 1.827919 & 1.000000 \\
\hline 70 & 0.997761 & 1.354151 & 1.000000 \\
\hline 71 & 0.642927 & 0.988770 & 1.000000 \\
\hline 72 & 1.053395 & 0.908316 & 1.000000 \\
\hline 73 & 1.472178 & 1.314779 & 1.000000 \\
\hline 74 & 1.646461 & 1.516083 & 1.000000 \\
\hline 75 & 1.899178 & 2.042560 & 1.000000 \\
\hline
\end{tabular}

Distribution of Robust Distances
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes
0.552898741 .444490661 .884937497 .569609392 .1661004641 .4722551

Cutoff Value \(=3.0575159206\)
The cutoff value is the square root of the 0.975 quantile of the chi square distribution with 3 degrees of freedom
There are 14 points with larger distances receiving zero weights. These may include boundary cases.
Only points whose robust distances are substantially larger than the cutoff value should be considered outliers.

The graphs in Output 9.6.5 and Output 9.6.6 show the following:
- the plot of standardized LMS residuals vs. robust distances \(R D_{i}\)
- the plot of standardized LS residuals vs. Mahalanobis distances \(M D_{i}\)

The graph identifies the four good leverage points \(11,12,13\), and 14 , which have small standardized LMS residuals but large robust distances, and the 10 bad leverage points \(1, \ldots, 10\), which have large standardized LMS residuals and large robust distances.
Output 9.6.5. Hawkins-Bradu-Kass Data: LMS Residuals vs. Robust Distances

Output 9.6.6. Hawkins-Bradu-Kass Data: LS Residuals vs. Mahalanobis Distances

\section*{Example 9.7. Stackloss Data}

The graphs in Output 9.7.1 and Output 9.7.2 show the following:
- the plot of standardized LMS residuals vs. robust distances \(R D_{i}\)
- the plot of standardized LS residuals vs. Mahalanobis distances \(M D_{i}\)

In the first plot, you see that case 4 is a regression outlier but not a leverage point, so it is a vertical outlier. Cases 1,3 , and 21 are bad leverage points, whereas case 2 is a good leverage point. Note that case 21 lies near the boundary line between vertical outliers and bad leverage points and that case 2 is very close to the boundary between good and bad leverage points.

Output 9.7.1. Stackloss Data: LMS Residuals vs. Robust Distances

Output 9.7.2. Stackloss Data: LS Residuals vs. Mahalanobis Distances

\section*{References}

Afifi, A. A. and Azen, S. P. (1979), Statistical Analysis: A Computer Oriented Approach, New York: Academic Press.

Barnett, V. and Lewis, T. (1978), Outliers in Statistical Data, New York: John Wiley \& Sons, Inc.

Barreto, H. and Maharry, D. (2006), "Least Median of Squares and Regression Through the Origin," Computatitional Statistics and Data Analysis, 50, 1391-1397.

Brownlee, K. A. (1965), Statistical Theory and Methodology in Science and Engineering, New York: John Wiley \& Sons, Inc.

Chen, C. (2002), "Robust Tools in SAS," in Developments in Robust Statistics: International Conference on Robust Statistics 2001, (ed. by R. Dutter, P. Filzmoser, U. Gather, and P. J. Rousseeuw), Heidelberg: Springer-Verlag.

Ezekiel, M. and Fox, K. A. (1959), Methods of Correlation and Regression Analysis, New York: John Wiley \& Sons, Inc.

Hawkins, D. M., Bradu, D., and Kass, G. V. (1984), "Location of Several Outliers in Multiple Regression Data Using Elemental Sets," Technometrics, 26, 197-208.

Humphreys, R. M. (1978), "Studies of Luminous Stars in Nearby Galaxies, I. Supergiants and O Stars in the Milky Way," Astrophys. J. Suppl. Ser., 38, 309350.

Jerison, H. J. (1973), Evolution of the Brain and Intelligence, New York: Academic Press.

Osborne, M. R. (1985), Finite Algorithms in Optimization and Data Analysis, New York: John Wiley \& Sons, Inc.
Prescott, P. (1975), "An Approximate Test for Outliers in Linear Models," Technometrics, 17, 129-132.

Rousseeuw, P. J. (1984), "Least Median of Squares Regression," Journal of the American Statistical Association, 79, 871-880.

Rousseeuw, P. J. (1985), "Multivariate Estimation with High Breakdown Point," in Mathematical Statistics and Applications, (ed. by W. Grossmann, G. Pflug, I. Vincze, and W. Wertz), Dordrecht, Netherlands: Reidel Publishing Company, 283-297.

Rousseeuw, P. J. and Hubert, M. (1996), "Recent Developments in PROGRESS," Technical Report, University of Antwerp.
Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection, New York: John Wiley \& Sons, Inc.

Rousseeuw, P. J. and Van Driessen, K. (1999), "A Fast Algorithm for the Minimum Covariance Determinant Estimator," Technometrics, 41, 212-223.

Rousseeuw, P. J. and Van Driessen, K. (2000), "An Algorithm for PositiveBreakdown Regression Based on Concentration Steps," Data Analysis: Scientific Modeling and Practical Application, (ed. by W. Gaul, O. Opitz, and M. Schader), New York: Springer Verlag, 335-346.

Rousseeuw, P. J. and Van Zomeren, B. C. (1990), "Unmasking Multivariate Outliers and Leverage Points," Journal of the American Statistical Association, 85, 633 -639.

Vansina, F., and De Greve, J. P. (1982), "Close Binary Systems Before and After Mass Transfer," Astrophys. Space Sci., 87, 377-401.

\section*{Chapter 10 Time Series Analysis and Examples}

\section*{Chapter Contents}
OVERVIEW 239
BASIC TIME SERIES SUBROUTINES 240
Getting Started 240
Syntax 242
TIME SERIES ANALYSIS AND CONTROL SUBROUTINES 242
Getting Started 244
Syntax 269
Details 269
Minimum AIC Procedure 269
Smoothness Priors Modeling 272
Bayesian Seasonal Adjustment 273
Nonstationary Time Series 276
Multivariate Time Series Analysis 279
Spectral Analysis 281
Computational Details 284
Missing Values 290
ISM TIMSAC Packages 290
Example 10.1. VAR Estimation and Variance Decomposition 293
KALMAN FILTER SUBROUTINES 298
Getting Started 298
Syntax 300
Example 10.2. Kalman Filtering: Likelihood Function Evaluation 300
Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm 303
Example 10.4. Diffuse Kalman Filtering 308
VECTOR TIME SERIES ANALYSIS SUBROUTINES 310
Getting Started 311
Stationary VAR Process 311
Nonstationary VAR Process 313
Syntax 314
FRACTIONALLY INTEGRATED TIME SERIES ANALYSIS 315
Getting Started 315
Syntax 318

238 - Chapter 10. Time Series Analysis and Examples

REFERENCES . 318

\section*{Chapter 10 \\ Time Series Analysis and Examples}

\section*{Overview}

This chapter describes SAS/IML subroutines related to univariate, multivariate, and fractional time series analysis, and subroutines for Kalman filtering and smoothing. These subroutines can be used in analyzing economic and financial time series. You can develop a model of univariate time series and a model of the relationships between vector time series. The Kalman filter subroutines provide analysis of various time series and are presented as a tool for dealing with state space models.

The subroutines offer the following functions:
- generating univariate, multivariate, and fractional time series
- computing likelihood function of ARMA, VARMA, and ARFIMA models
- computing an autocovariance function of ARMA, VARMA, and ARFIMA models
- checking the stationarity of ARMA and VARMA models
- filtering and smoothing of time series models by using Kalman method
- fitting AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA models
- handling Bayesian seasonal adjustment model

In addition, decomposition analysis, forecast of an ARMA model, and fractionally differencing of the series are provided.

This chapter consists of five sections. The first section includes the ARMACOV and ARMALIK subroutines and ARMASIM function. The second section includes the TSBAYSEA, TSDECOMP, TSMLOCAR, TSMLOMAR, TSMULMAR, TSPERARS, TSPRED, TSROOT, TSTVCAR, and TSUNIMAR subroutines. The third section includes the KALCVF, KALCVS, KALDFF, and KALDFS subroutines. The fourth section includes the VARMACOV, VARMALIK, VARMASIM, VNORMAL, and VTSROOT subroutines. The last section includes the FARMACOV, FARMAFIT, FARMALIK, FARMASIM, and FDIF subroutines.

\section*{Basic Time Series Subroutines}

In classical linear regression analysis, the underlying process often can be represented simply by an intercept and slope parameters. A time series can be modeled by a type of regression analysis.

The ARMASIM function generates various time series from the underlying AR, MA, and ARMA models. Simulations of time series with known ARMA structure are often needed as part of other simulations or as learning data sets for developing time series analysis skills.

The ARMACOV subroutine provides the pattern of the autocovariance function of AR, MA, and ARMA models and helps to identify and fit a proper model.

The ARMALIK subroutine provides the log likelihood of an ARMA model and helps to obtain estimates of the parameters of a regression model with innovations having an ARMA structure.

The following subroutines are supported:
ARMACOV computes an autocovariance sequence for an ARMA model.
ARMALIK computes the log likelihood and residuals for an ARMA model.
ARMASIM simulates an ARMA series.

See the examples of the use of ARMACOV and ARMALIK subroutines in Chapter 8.

\section*{Getting Started}

Consider a time series of length 100 from the ARMA(2,1) model
\[
y_{t}=0.5 y_{t-1}-0.04 y_{t-2}+e_{t}+0.25 e_{t-1}
\]
where the error series follows a normal with mean 10 and standard deviation 2 .
The following statements generate the ARMA \((2,1)\) model, compute 10 lags of its autocovariance functions, and calculate its log-likelihood function and residuals:
```

proc iml;
/* ARMA (2,1) model */
phi = {1 -0.5 0.04};
theta = {1 0.25};
mu = 10;
sigma = 2;
nobs = 100;
seed = 3456;
lag = 10;
yt = armasim(phi, theta, mu, sigma, nobs, seed);
print yt;
call armacov(autocov, cross, convol, phi, theta, lag);

```
```

autocov = autocov`; cross = cross`;
convol = convol`;
lag = (0:lag-1)';
print autocov cross convol;
call armalik(lnl, resid, std, yt, phi, theta);
print lnl resid std;

```


Figure 10.1. Plot of Generated ARMA(2,1) Process (ARMASIM)
The ARMASIM function generates the data shown in Figure 10.1.
\begin{tabular}{|rrrr|}
\hline LAG & AUTOCOV & CROSS & CONVOL \\
& & & \\
0 & 1.6972803 & 1.1875 & 1.0625 \\
1 & 1.0563848 & 0.25 & 0.25 \\
2 & 0.4603012 & & \\
3 & 0.1878952 & & \\
4 & 0.0755356 & & \\
5 & 0.030252 & & \\
6 & 0.0121046 & & \\
7 & 0.0048422 & & \\
8 & 0.0019369 & & \\
\hline 9 & 0.0007748 & & \\
\hline
\end{tabular}

Figure 10.2. Autocovariance functions of ARMA \((2,1)\) Model (ARMACOV)
In Figure 10.2, the ARMACOV subroutine prints the autocovariance functions of the ARMA \((2,1)\) model and the covariance functions of the moving-average term with lagged values of the process and the autocovariance functions of the moving-average term.
\begin{tabular}{|rrrr|}
\hline LNL & RESID & STD \\
& & \\
-154.9148 & 5.2779797 & 1.3027971 \\
22.034073 & 2.3491607 & 1.0197 \\
0.5705918 & 2.3893996 & 1.0011951 \\
& 8.4086892 & 1.0000746 \\
& 2.200401 & 1.0000047 \\
& 5.4127254 & 1.0000003 \\
& 6.2756004 & 1 \\
1.1944693 & 1 \\
& 4.9425372 & 1 \\
& & \(\cdot\) & \(\cdot\) \\
\hline
\end{tabular}

Figure 10.3. Log-Likelihood Function of ARMA(2,1) Model (ARMALIK)
The first column in Figure 10.3 shows the log-likelihood function, the estimate of the innovation variance, and the log of the determinant of the variance matrix. The next two columns are part of the results in the standardized residuals and the scale factors used to standardize the residuals.

\section*{Syntax}

CALL ARMACOV(auto, cross, convol, phi, theta, num);
CALL ARMALIK(Inl, resid, std, \(x\), phi, theta);
CALL ARMASIM(phi, theta, mu, sigma, \(n,<\) seed \(>\));

\section*{Time Series Analysis and Control Subroutines}

This section describes an adaptation of parts of the Time Series Analysis and Control (TIMSAC) package developed by the Institute of Statistical Mathematics (ISM) in Japan.

Selected routines from the TIMSAC package from ISM were converted by SAS Institute staff into SAS/IML routines under an agreement between SAS Institute and ISM. Credit for authorship of these TIMSAC SAS/IML routines goes to ISM, which has agreed to make them available to SAS users without charge.

There are four packages of TIMSAC programs. See the section "ISM TIMSAC Packages" on page 290 for more information about the TIMSAC package produced by ISM. Since these SAS/IML time series analysis subroutines are adapted from the corresponding FORTRAN subroutines in the TIMSAC package produced by ISM, they are collectively referred to as "the TIMSAC subroutines" in this chapter.

The subroutines analyze and forecast univariate and multivariate time series data. The nonstationary time series and seasonal adjustment models can also be analyzed by using the Interactive Matrix Language TIMSAC subroutines. These subroutines contain the Bayesian modeling of seasonal adjustment and changing spectrum estimation.

Discrete time series modeling has been widely used to analyze dynamic systems in economics, engineering, and statistics. The Box-Jenkins and Box-Tiao approaches
are classical examples of unified time series analysis through identification, estimation, and forecasting (or control). The ARIMA procedure in the SAS/ETS product uses these approaches. Bayesian methods are being increasingly applied despite the controversial issues involved in choosing a prior distribution.

The fundamental idea of the Bayesian method is that uncertainties can be explained by probabilities. If there is a class model \((\Omega)\) consisting of sets of member models \((\omega)\), you can describe the uncertainty of \(\Omega\) by using a prior distribution of \(\omega\). The member model \(\omega\) is directly related to model parameters. Let the prior probability density function be \(p(\omega)\). When you observe the data \(\mathbf{y}\) that is generated from the model \(\Omega\), the data distribution is described as \(p(Y \mid \omega)\) given the unknown \(\omega\) with a prior probability density \(p(\omega)\), where the function \(p(Y \mid \omega)\) is the usual likelihood function. Then the posterior distribution is the updated prior distribution given the sample information. The posterior probability density function is proportional to observed likelihood function \(\times\) prior density function.

The TIMSAC subroutines contain various time series analysis and Bayesian models. Most of the subroutines are based on the minimum Akaike information criterion (AIC) or on the minimum Akaike Bayesian information criterion (ABIC) method to determine the best model among alternative models. The TSBAYSEA subroutine is a typical example of Bayesian modeling. The following subroutines are supported:

TSBAYSEA Bayesian seasonal adjustment modeling
TSDECOMP time series decomposition analysis
TSMLOCAR locally stationary univariate AR model fitting
TSMLOMAR locally stationary multivariate AR model fitting
TSMULMAR multivariate AR model fitting
TSPERARS periodic AR model fitting
TSPRED ARMA model forecasting and forecast error variance
TSROOT polynomial roots or ARMA coefficients computation
TSTVCAR time-varying coefficient AR model estimation
TSUNIMAR univariate AR model fitting

For univariate and multivariate autoregressive model estimation, the least squares method is used. The least squares estimate is an approximate maximum likelihood estimate if error disturbances are assumed to be Gaussian. The least squares method is performed by using the Householder transformation method. See the section "Least Squares and Householder Transformation" on page 284 for details.

The TSUNIMAR and TSMULMAR subroutines estimate the autoregressive models and select the appropriate AR order automatically by using the minimum AIC method. The TSMLOCAR and TSMLOMAR subroutines analyze the nonstationary time series data. The Bayesian time-varying AR coefficient model (TSTVCAR) offers another nonstationary time series analysis method. The state space and Kalman filter method is systematically applied to the smoothness priors models (TSDECOMP
and TSTVCAR), which have stochastically perturbed difference equation constraints. The TSBAYSEA subroutine provides a way of handling Bayesian seasonal adjustment, and it can be an alternative to the SAS/ETS X-11 procedure. The TSBAYSEA subroutine employs the smoothness priors idea through constrained least squares estimation, while the TSDECOMP and TSTVCAR subroutines estimate the smoothness tradeoff parameters by using the state space model and Kalman filter recursive computation. The TSPRED subroutine computes the one-step or multistep predicted values of the ARMA time series model. In addition, the TSPRED subroutine computes forecast error variances and impulse response functions. The TSROOT subroutine computes the AR and MA coefficients given the characteristic roots of the polynomial equation and the characteristic roots for the AR or MA model.

\section*{Getting Started}

\section*{Minimum AIC Model Selection}

The time series model is automatically selected by using the AIC. The TSUNIMAR call estimates the univariate autoregressive model and computes the AIC. You need to specify the maximum lag or order of the AR process with the MAXLAG= option or put the maximum lag as the sixth argument of the TSUNIMAR call. Here is an example:
```

proc iml;
y={ 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411
2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2. 328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2. 352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588

```

```

            3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
            2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
            3.000 3.201 3.424 3.531 };
    call tsunimar(arcoef,ev,nar,aic) data=y opt={-1 1} print=1
            maxlag=20;
    ```

You can also invoke the TSUNIMAR subroutine as follows:
```

call tsunimar(arcoef,ev,nar,aic,y,20,{-1 1},,1);

```

The optional arguments can be omitted. In this example, the argument MISSING is omitted, and thus the default option (MISSING=0) is used. The summary table of the minimum AIC method is displayed in Figure 10.4 and Figure 10.5. The final estimates are given in Figure 10.6.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ORDER INNOVATION VARIANCE} \\
\hline M & V (M) & AIC (M) \\
\hline 0 & 0.31607294 & -108.26753229 \\
\hline 1 & 0.11481982 & -201.45277331 \\
\hline 2 & 0.04847420 & -280.51201122 \\
\hline 3 & 0.04828185 & -278.88576251 \\
\hline 4 & 0.04656506 & -280.28905616 \\
\hline 5 & 0.04615922 & -279.11190502 \\
\hline 6 & 0.04511943 & -279.25356641 \\
\hline 7 & 0.04312403 & -281.50543541 \\
\hline 8 & 0.04201118 & -281.96304075 \\
\hline 9 & 0.04128036 & -281.61262868 \\
\hline 10 & 0.03829179 & -286.67686828 \\
\hline 11 & 0.03318558 & -298.13013264 \\
\hline 12 & 0.03255171 & -297.94298716 \\
\hline 13 & 0.03247784 & -296.15655602 \\
\hline 14 & 0.03237083 & -294.46677874 \\
\hline 15 & 0.03234790 & -292.53337704 \\
\hline 16 & 0.03187416 & -291.92021487 \\
\hline 17 & 0.03183282 & -290.04220196 \\
\hline 18 & 0.03126946 & -289.72064823 \\
\hline 19 & 0.03087893 & -288.90203735 \\
\hline 20 & 0.02998019 & -289.67854830 \\
\hline
\end{tabular}

Figure 10.4. Minimum AIC Table - I

Figure 10.5. Minimum AIC Table - II
The minimum AIC order is selected as 11 . Then the coefficients are estimated as in Figure 10.6. Note that the first 20 observations are used as presample values.

Figure 10.6. Minimum AIC Estimation
You can estimate the \(\operatorname{AR}(11)\) model directly by specifying \(\mathrm{OPT}=\{-10\}\) and using the first 11 observations as presample values. The \(\operatorname{AR}(11)\) estimates shown in Figure 10.7 are different from the minimum AIC estimates in Figure 10.6 because the samples are slightly different. Here is the code:
```

call tsunimar(arcoef,ev,nar,aic,y,11,{-1 0}, 1);

```


Figure 10.7. \(\mathrm{AR}(11)\) Estimation
The minimum AIC procedure can also be applied to the vector autoregressive (VAR) model by using the TSMULMAR subroutine. See the section "Multivariate Time Series Analysis" on page 279 for details. Three variables are used as input. The maximum lag is specified as 10 . Here is the code:
```

data one;
input invest income consum @@;
datalines;
. . . data lines omitted . . .
;
proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 2;
misw = 0; /* instantaneous modeling ? */
opt = mdel || maice || misw;
maxlag = 10;
miss = 0;
print = 1;
call tsmulmar(arcoef,ev,nar,aic,y,maxlag,opt,miss,print);

```

The VAR(3) model minimizes the AIC and was selected as an appropriate model (see Figure 10.8). However, AICs of the VAR(4) and VAR(5) models show little difference from \(\operatorname{VAR}(3)\). You can also choose \(\operatorname{VAR}(4)\) or \(\operatorname{VAR}(5)\) as an appropriate model in the context of minimum AIC since this AIC difference is much less than 1.

Figure 10.8. VAR Model Selection
The TSMULMAR subroutine estimates the instantaneous response model with diagonal error variance. See the section "Multivariate Time Series Analysis" on page 279 for details on the instantaneous response model. Therefore, it is possible to select the minimum AIC model independently for each equation. The best model is selected by specifying MAXLAG=5, as in the following code:
```

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=5
opt={1 1 0} print=1;

```


Figure 10.9. Model Selection via Instantaneous Response Model
You can print the intermediate results of the minimum AIC procedure by using the PRINT=2 option.

Note that the AIC value depends on the MAXLAG=lag option and the number of parameters estimated. The minimum AIC VAR estimation procedure (MAICE=2) uses the following AIC formula:
\[
(T-\operatorname{lag}) \log (|\hat{\Sigma}|)+2\left(p \times n^{2}+n \times \text { intercept }\right)
\]

In this formula, \(p\) is the order of the \(n\)-variate VAR process, and intercept \(=1\) if the intercept is specified; otherwise, intercept \(=0\). When you use the MAICE \(=1\) or MAICE \(=0\) option, AIC is computed as the sum of AIC for each response equation. Therefore, there is an AIC difference of \(n(n-1)\) since the instantaneous response model contains the additional \(n(n-1) / 2\) response variables as regressors.

The following code estimates the instantaneous response model. The results are shown in Figure 10.10.
```

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 0 | ;
print aic nar;
print arcoef;

```
\begin{tabular}{|c|c|}
\hline AIC & NAR \\
\hline 1403.0762 & 3 \\
\hline ARCOEF & \\
\hline 4.82458145 .3559216 & 17.066894 \\
\hline 0.88559260 .3401741 & -0.014398 \\
\hline 0.16845231 .0502619 & 0.107064 \\
\hline 0.08910340 .4591573 & 0.4473672 \\
\hline -0.059195-0.298777 & 0.1629818 \\
\hline 0.1128625-0.044039 & -0.088186 \\
\hline \(0.1684932-0.025847\) & -0.025671 \\
\hline 0.0637227 -0.196504 & 0.0695746 \\
\hline -0.226559 0.0532467 & -0.099808 \\
\hline -0.303697-0.139022 & 0.2576405 \\
\hline
\end{tabular}

Figure 10.10. AIC from Instantaneous Response Model
The following code estimates the VAR model. The results are shown in Figure 10.11.
```

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 2 0};
print aic nar;
print arcoef;

```


Figure 10.11. AIC from VAR Model
The AIC computed from the instantaneous response model is greater than that obtained from the VAR model estimation by 6. There is a discrepancy between Figure 10.11 and Figure 10.8 because different observations are used for estimation.

\section*{Nonstationary Data Analysis}

The following example shows how to manage nonstationary data by using TIMSAC calls. In practice, time series are considered to be stationary when the expected values of first and second moments of the series do not change over time. This weak or covariance stationarity can be modeled by using the TSMLOCAR, TSMLOMAR, TSDECOMP, and TSTVCAR subroutines.

First, the locally stationary model is estimated. The whole series (1000 observations) is divided into three blocks of size 300 and one block of size 90 , and the minimum AIC procedure is applied to each block of the data set. See the section "Nonstationary Time Series" on page 276 for more details. Here is the code:
```

data one;
input y @@;
datalines;
. . . data lines omitted . . .
;
proc iml;
use one;
read all var{y};
mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
opt = mdel || lspan || maice;
call tsmlocar(arcoef,ev,nar,aic,first,last)
data=y maxlag=10 opt=opt print=2;

```

Estimation results are displayed with the graphs of power spectrum \(\left(\log 10\left(f_{Y Y}(g)\right)\right)\), where \(f_{Y Y}(g)\) is a rational spectral density function. See the section "Spectral Analysis" on page 281. The estimates for the first block and third block are shown in Figure 10.12 and Figure 10.15, respectively. As the first block and the second block do not have any sizable difference, the pooled model (\(\mathrm{AIC}=45.892\)) is selected instead of the moving model (AIC=46.957) in Figure 10.13. However, you can notice a slight change in the shape of the spectrum of the third block of the data (observations 611 through 910). See Figure 10.14 on page 254 and Figure 10.16 on page 256 for comparison. The moving model is selected since the AIC (106.830) of the moving model is smaller than that of the pooled model (108.867).
```

INITIAL LOCAL MODEL: N_CURR = 300
NAR_CURR = 8
AIC = 37.583203
. . . . . . . . . . . . . . . . . . . . . . . . .CURRENT MODEL . . . . . . . . . . . . . . . . . . . . . . . . .
M AR Coefficients: AR(M)
1.605717
-1.245350
1.014847
-0.931554
0.394230
-0.004344
0.111608
-0.124992
AIC = 37.5832030
Innovation Variance = 1.067455
INPUT DATA START = 11 FINISH = 310

```

Figure 10.12. Locally Stationary Model for First Block

Figure 10.13. Locally Stationary Model Comparison

Figure 10.14. Power Spectrum for First and Second Blocks

Figure 10.15. Locally Stationary Model for Third Block

Figure 10.16. Power Spectrum for Third Block
Finally, the moving model is selected since there is a structural change in the last block of data (observations 911 through 1000). The final estimates are stored in variables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum are given in Figure 10.17 and Figure 10.18, respectively. The power spectrum of the final model (Figure 10.18) is significantly different from that of the first and second blocks (see Figure 10.14).

Figure 10.17. Locally Stationary Model for Last Block

Figure 10.18. Power Spectrum for Last Block
The multivariate analysis for locally stationary data is a straightforward extension of the univariate analysis. The bivariate locally stationary VAR models are estimated. The selected model is the \(\operatorname{VAR}(7)\) process with some zero coefficients over the last block of data. There seems to be a structural difference between observations from 11 to 610 and those from 611 to 896 . Here is the code:
```

proc iml;
rudder = {. . . data lines omitted . . . };
yawing = {. . . data lines omitted . . . };
y = rudder` || yawing`;

```
```

c = {0.01795 0.02419};
/*-- calibration of data --*/
y = y \# (c @ j(n,1,1));
mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
call tsmlomar(arcoef,ev,nar,aic,first,last) data=y maxlag=10
opt = (mdel || lspan || maice) print=1;

```

The results of the analysis are shown in Figure 10.19.

Figure 10.19. Locally Stationary VAR Model Analysis

Consider the time series decomposition
\[
y_{t}=T_{t}+S_{t}+u_{t}+\epsilon_{t}
\]
where \(T_{t}\) and \(S_{t}\) are trend and seasonal components, respectively, and \(u_{t}\) is a stationary \(\operatorname{AR}(p)\) process. The annual real GNP series is analyzed under second difference stochastic constraints on the trend component and the stationary \(\operatorname{AR}(2)\) process.
\[
\begin{aligned}
& T_{t}=2 T_{t-1}-T_{t-2}+w_{1 t} \\
& u_{t}=\alpha_{1} u_{t-1}+\alpha_{2} u_{t-2}+w_{2 t}
\end{aligned}
\]

The seasonal component is ignored if you specify \(\operatorname{SORDER}=0\). Therefore, the following state space model is estimated:
\[
\begin{aligned}
& y_{t}=\mathbf{H z}_{t}+\epsilon_{t} \\
& \mathbf{z}_{t}=\mathbf{F z}_{t-1}+\mathbf{w}_{t}
\end{aligned}
\]
where
\[
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{F} & =\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \alpha_{1} & \alpha_{2} \\
0 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{z}_{t} & =\left(T_{t}, T_{t-1}, u_{t}, u_{t-1}\right)^{\prime} \\
\mathbf{w}_{t} & =\left(w_{1 t}, 0, w_{2 t}, 0\right)^{\prime} \sim\left(0,\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{2}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right)
\end{aligned}
\]

The parameters of this state space model are \(\sigma_{1}^{2}, \sigma_{2}^{2}, \alpha_{1}\), and \(\alpha_{2}\). Here is the code:
```

proc iml;
y = { 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3
135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7 };
y = y`; /*-- convert to column vector --*/
mdel = 0;
trade = 0;
tvreg = 0;
year = 0;

```
```

period= 0;
log = 0;
maxit = 100;
update = .; /* use default update method */
line = .; /* use default line search method */
sigmax = 0; /* no upper bound for variances */
back = 100;
opt = mdel || trade || year || period || log || maxit ||
update || line || sigmax || back;
call tsdecomp(cmp,coef,aic) data=y order=2 sorder=0 nar=2
npred=5 opt=opt icmp={1 3} print=1;
y = y[52:61];
cmp = cmp[52:66,];
print y cmp;

```

The estimated parameters are printed when you specify the PRINT= option. In Figure 10.20 , the estimated variances are printed under the title of TAU2(I), showing that \(\hat{\sigma}_{1}^{2}=2.915\) and \(\hat{\sigma}_{2}^{2}=113.9577\). The AR coefficient estimates are \(\hat{\alpha}_{1}=1.397\) and \(\hat{\alpha}_{2}=-0.595\). These estimates are also stored in the output matrix COEF.

Figure 10.20. Nonstationary Time Series and State Space Modeling
The trend and stationary AR components are estimated by using the smoothing method, and out-of-sample forecasts are computed by using a Kalman filter prediction algorithm. The trend and AR components are stored in the matrix CMP since the \(\mathrm{ICMP}=\{13\}\) option is specified. The last 10 observations of the original series Y and the last 15 observations of two components are shown in Figure 10.21. Note that the first column of CMP is the trend component and the second column is the AR component. The last 5 observations of the CMP matrix are out-of-sample forecasts.
\begin{tabular}{|rrrr|}
\hline \multicolumn{2}{c|}{Y} & CMP \\
487.7 & 514.01142 & -26.94343 \\
497.2 & 532.62744 & -32.48674 \\
529.8 & 552.02403 & -24.46593 \\
551 & 571.90122 & -20.15113 \\
581.1 & 592.31944 & -10.58647 \\
617.8 & 613.21855 & 5.2504378 \\
658.1 & 634.43665 & 20.799213 \\
675.2 & 655.70431 & 22.161602 \\
706.6 & 677.21249 & 27.927985 \\
724.7 & 698.72363 & 25.95797 \\
& 720.23477 & 19.659209 \\
& 741.74591 & 12.029407 \\
763.25705 & 5.1147239 \\
& 784.76819 & -0.008863 \\
\hline & 806.27933 & -3.055027 \\
\hline
\end{tabular}

Figure 10.21. Smoothed and Predicted Values of Two Components

\section*{Seasonal Adjustment}

Consider the simple time series decomposition
\[
y_{t}=T_{t}+S_{t}+\epsilon_{t}
\]

The TSBAYSEA subroutine computes seasonally adjusted series by estimating the seasonal component. The seasonally adjusted series is computed as \(y_{t}^{*}=y_{t}-\hat{S}_{t}\). The details of the adjustment procedure are given in the section "Bayesian Seasonal Adjustment" on page 273.

The monthly labor force series (1972-1978) are analyzed. You do not need to specify the options vector if you want to use the default options. However, you should change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED= option produces the multistep forecasts for the trend and seasonal components. The stochastic constraints are specified as ORDER \(=2\) and \(\operatorname{SORDER}=1\).
\[
\begin{aligned}
& T_{t}=2 T_{t-1}-T_{t-2}+w_{1 t} \\
& S_{t}=-S_{t-1}-\cdots-S_{t-11}+w_{2 t}
\end{aligned}
\]

In Figure 10.22, the first column shows the trend components; the second column shows the seasonal components; the third column shows the forecasts; the fourth column shows the seasonally adjusted series; the last column shows the value of ABIC. The last 12 rows are the forecasts. The figure is generated by using the following statements:
```

proc iml;
y = { 5447 5412 5215 4697 4344 5426
5173 4857 4658 4470}4268 411
4675}484545124174 3799484

```
```

    45504208 4165 3763 40564058
    5008 5140 4755 4301 4144 5380
    5260 4885 5202 5044 5685 6106
    8180 8309 8359 7820 7623 8569
    8209 7696 7522 7244 72317195
    8174 8033 7525 6890 6304 7655
    75777322 7026 6833 70957022
    7848 8109 7556 6568 6151 7453
    6941 6757 6437 6221 6346 5880 };
    y = y`;
call tsbaysea(trend,season,series,adj,abic)
data=y order=2 sorder=1 npred=12 print=2;
print trend season series adj abic;

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline OBS & TREND & SEASON & SERIES & ADJ & ABIC \\
\hline 1 & 4843.2502 & 576.86675 & 5420.1169 & 4870.1332 & 874.04585 \\
\hline 2 & 4848.6664 & 612.79607 & 5461.4624 & 4799.2039 & \\
\hline 3 & 4871.2876 & 324.02004 & 5195.3077 & 4890.98 & \\
\hline 4 & 4896.6633 & -198.7601 & 4697.9032 & 4895.7601 & \\
\hline 5 & 4922.9458 & -572.5562 & 4350.3896 & 4916.5562 & \\
\hline 71 & 6551.6017 & -266.2162 & 6285.3855 & 6612.2162 & \\
\hline 72 & 6388.9012 & -440.3472 & 5948.5539 & 6320.3472 & \\
\hline 73 & 6226.2006 & 650.7707 & 6876.9713 & & \\
\hline 74 & 6063.5001 & 800.93733 & 6864.4374 & & \\
\hline 75 & 5900.7995 & 396.19866 & 6296.9982 & & \\
\hline 76 & 5738.099 & -340.2852 & 5397.8137 & & \\
\hline 77 & 5575.3984 & -719.1146 & 4856.2838 & & \\
\hline 78 & 5412.6979 & 553.19764 & 5965.8955 & & \\
\hline 79 & 5249.9973 & 202.06582 & 5452.0631 & & \\
\hline 80 & 5087.2968 & -54.44768 & 5032.8491 & & \\
\hline 81 & 4924.5962 & -295.2747 & 4629.3215 & & \\
\hline 82 & 4761.8957 & -487.6621 & 4274.2336 & & \\
\hline 83 & 4599.1951 & -266.1917 & 4333.0034 & & \\
\hline 84 & 4436.4946 & -440.3354 & 3996.1591 & & \\
\hline
\end{tabular}

Figure 10.22. Trend and Seasonal Component Estimates and Forecasts
The estimated spectral density function of the irregular series \(\hat{\epsilon}_{t}\) is shown in Figure 10.23.

Figure 10.23. Spectrum of Irregular Component

\section*{Miscellaneous Time Series Analysis Tools}

The forecast values of multivariate time series are computed by using the TSPRED call. In the following example, the multistep-ahead forecasts are produced from the VARMA \((2,1)\) estimates. Since the VARMA model is estimated by using the mean deleted series, you should specify the CONSTANT \(=-1\) option. You need to provide the original series instead of the mean deleted series to get the correct predictions. The forecast variance MSE and the impulse response function IMPULSE are also produced.

The \(\operatorname{VARMA}(p, q)\) model is written
\[
\mathbf{y}_{t}+\sum_{i=1}^{p} \mathbf{A}_{i} \mathbf{y}_{t-i}=\epsilon_{t}+\sum_{i=1}^{q} \mathbf{M}_{i} \epsilon_{t-i}
\]

Then the COEF matrix is constructed by stacking matrices \(\mathbf{A}_{1}, \ldots, \mathbf{A}_{p}\), \(\mathbf{M}_{1}, \ldots, \mathbf{M}_{q}\). Here is the code:
```

proc iml;
c = { 264 235 239 239 275 277 274 334 334 306
308 309 295 271 277 221 223 227 215 223
241 250 270 303 311 307 322 335 335 334
309 262 228 191 188 215 215 249 291 296 };
f = { 690 690 688 690 694 702 702 702 700 702
702 694 708 702 702 708 700 700 702 694
698 694 700 702 700 702 708 708 710 704
704 700 700 694 702 694 710 710 710 708 };
t = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464
1560 1376 1336 1336 1296 1296 1280 1264 1280 1272
1344 1328 1352 1480 1472 1600 1512 1456 1368 1280
1224 1112 1112 1048 1176 1064 1168 1280 1336 1248 };

```

```

        248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33
        251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19
        249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80
        254.92 254.96 254.96 254.96 254.96 254.54 253.21 252.08 };
    y = c`|| f`|| t`|| p`;
    ar = { .82028 -.97167 .079386 -5.4382,
        -.39983 .94448 .027938 -1.7477,
        -.42278 -2.3314 1.4682 -70.996,
        .031038-.019231 -.0004904 1.3677,
        -.029811 . 89262 -.047579 4.7873,
        . 31476 . 0061959 -. 012221 1.4921,
        .3813 2.7182 -.52993 67.711,
        -.020818 . 01764 . 00037981 -. 38154 };
    ma = { .083035 -1.0509 .055898 -3.9778,
            -.40452 . 36876 . 026369 -.81146,
            .062379-2.6506 . 80784 -76.952,
            .03273 -.031555 -.00019776 -.025205 };
    coef = ar // ma;
    ev = { 188.55 6.8082 42.385 .042942,
    ```
```

        6.8082 32.169 37.995 -.062341,
        42.385 37.995 5138.8 -.10757,
        .042942 -.062341 -. 10757 . 34313 };
    nar = 2; nma = 1;
call tspred(forecast,impulse,mse,y,coef,nar,nma,ev,
5,nrow (y) , -1) ;

```


Figure 10.24. Multivariate ARMA Prediction
The first 40 forecasts in Figure 10.24 are one-step predictions. The last observation is the five-step forecast values of variables C and F . You can construct the confidence
interval for these forecasts by using the mean square error matrix, MSE. See the section "Multivariate Time Series Analysis" on page 279 for more details about impulse response functions and the mean square error matrix.

The TSROOT call computes the polynomial roots of the AR and MA equations. When the \(\operatorname{AR}(p)\) process is written
\[
y_{t}=\sum_{i=1}^{p} \alpha_{i} y_{t-i}+\epsilon_{t}
\]
you can specify the following polynomial equation:
\[
z^{p}-\sum_{i=1}^{p} \alpha_{i} z^{p-i}=0
\]

When all \(p\) roots of the preceding equation are inside the unit circle, the \(\operatorname{AR}(p)\) process is stationary. The MA \((q)\) process is invertible if the following polynomial equation has all roots inside the unit circle:
\[
z^{q}+\sum_{i=1}^{q} \theta_{i} z^{q-i}=0
\]
where \(\theta_{i}\) are the MA coefficients. For example, the best AR model is selected and estimated by the TSUNIMAR subroutine (see Figure 10.25). You can obtain the roots of the preceding equation by calling the TSROOT subroutine. Since the TSROOT subroutine can handle the complex AR or MA coefficients, note that you should add zero imaginary coefficients for the second column of the MATIN matrix for real coefficients. Here is the code:
```

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411
2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };
call tsunimar(ar,v,nar,aic) data=y maxlag=5
opt=({-1 1}) print=1;
/*-- set up complex coefficient matrix --*/
ar_cx = ar || j(nrow(ar),1,0);
call tsroot(root) matin=ar_cx nar=nar nma=0 print=1;

```

In Figure 10.26, the roots and their lengths from the origin are shown. The roots are also stored in the matrix ROOT. All roots are within the unit circle, while the MOD values of the fourth and fifth roots appear to be sizable (0.9194).
\begin{tabular}{rr}
LAG & AR_COEF \\
& \\
1 & 1.3003068 \\
2 & -0.72328 \\
3 & 0.2421928 \\
4 & -0.378757 \\
5 & 0.1377273
\end{tabular}

AIC INNOVATION_VARINACE
-318. 6138
0.0490554

Figure 10.25. Minimum AIC AR Estimation
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{I} & \multicolumn{5}{|c|}{Roots of AR Characteristic Polynomial} \\
\hline & Real & Imaginary & MOD (Z) & ATAN (I/R) & Degree \\
\hline 1 & -0.29755 & 0.55991 & 0.6341 & 2.0593 & 117.9869 \\
\hline 2 & -0.29755 & -0.55991 & 0.6341 & -2.0593 & -117.9869 \\
\hline 3 & 0.40529 & 0 & 0.4053 & 0 & 0 \\
\hline 4 & 0.74505 & 0.53866 & 0.9194 & 0.6260 & 35.8660 \\
\hline 5 & 0.74505 & -0.53866 & 0.9194 & -0.6260 & -35.8660 \\
\hline \multicolumn{6}{|c|}{\(\mathrm{Z} * * 5-\mathrm{AR}(1) * \mathrm{Z} * * 4-\mathrm{AR}(2) * \mathrm{Z} * * 3-\mathrm{AR}(3) * \mathrm{Z} * * 2-A R(4) * \mathrm{Z} * * 1-\mathrm{AR}(5)=0\)} \\
\hline
\end{tabular}

Figure 10.26. Roots of AR Characteristic Polynomial Equation
The TSROOT subroutine can also recover the polynomial coefficients if the roots are given as an input. You should specify the \(\mathrm{QCOEF}=1\) option when you want to compute the polynomial coefficients instead of polynomial roots. You can compare the result with the preceding output of the TSUNIMAR call. Here is the code:
```

call tsroot(ar_cx) matin=root nar=nar qcoef=1
nma=0 print=1;

```

The results are shown in Figure 10.27.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Polynomial Coefficents} \\
\hline I & AR (real) & AR (imag) \\
\hline 1 & 1.30031 & 0 \\
\hline 2 & -0.72328 & 5.55112E-17 \\
\hline 3 & 0.24219 & 1.61885E-16 \\
\hline 4 & -0.37876 & 0 \\
\hline 5 & 0.13773 & -4.1674E-18 \\
\hline
\end{tabular}

Figure 10.27. Polynomial Coefficients

\section*{Syntax}

TIMSAC routines are controlled by the following statements:
CALL TSBAYSEA(trend, season, series, adjust, abic, data
<,order, sorder, rigid, npred, opt, cntl, print>);
CALL TSDECOMP(comp, est, aic, data \(<, x d a t a\), order, sorder, nar, npred, init, opt, icmp, print>);

CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data <,maxlag, opt, missing, print>);
CALL TSMLOMAR(arcoef, ev, nar, aic, start, finish, data <,maxlag, opt, missing, print>);
CALL TSMULMAR(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print>);

CALL TSPEARS(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print>);
CALL TSPRED(forecast, impulse, mse, data, coef, nar, nma <,ev, npred, start, constant>);
CALL TSROOT(matout, matin, nar, nma <,qcoef, print>);
CALL TSTVCAR(arcoef, variance, est, aic, data
<,nar, init, opt, outlier, print>);
CALL TSUNIMAR(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print>);

\section*{Details}

This section presents an introductory description of the important topics that are directly related to TIMSAC IML subroutines. The computational details, including algorithms, are described in the section "Computational Details" on page 284. A detailed explanation of each subroutine is not given; instead, basic ideas and common methodologies for all subroutines are described first and are followed by more technical details. Finally, missing values are discussed in the section "Missing Values" on page 290.

\section*{Minimum AIC Procedure}

The AIC statistic is widely used to select the best model among alternative parametric models. The minimum AIC model selection procedure can be interpreted as a max-
imization of the expected entropy (Akaike 1981). The entropy of a true probability density function (PDF) \(\varphi\) with respect to the fitted \(\operatorname{PDF} f\) is written as
\[
B(\varphi, f)=-I(\varphi, f)
\]
where \(I(\varphi, f)\) is a Kullback-Leibler information measure, which is defined as
\[
I(\varphi, f)=\int\left[\log \left[\frac{\varphi(z)}{f(z)}\right]\right] \varphi(z) d z
\]
where the random variable \(Z\) is assumed to be continuous. Therefore,
\[
B(\varphi, f)=\mathrm{E}_{Z} \log f(Z)-\mathrm{E}_{Z} \log \varphi(Z)
\]
where \(B(\varphi, f) \leq 0\) and \(\mathrm{E}_{Z}\) denotes the expectation concerning the random variable \(Z\). \(B(\varphi, f)=0\) if and only if \(\varphi=f\) (a.s.). The larger the quantity \(\mathrm{E}_{Z} \log f(Z)\), the closer the function \(f\) is to the true \(\operatorname{PDF} \varphi\). Given the data \(\mathbf{y}=\left(y_{1}, \ldots, y_{T}\right)^{\prime}\) that has the same distribution as the random variable \(Z\), let the likelihood function of the parameter vector \(\theta\) be \(\prod_{t=1}^{T} f\left(y_{t} \mid \theta\right)\). Then the average of the log-likelihood function \(\frac{1}{T} \sum_{t=1}^{T} \log f\left(y_{t} \mid \theta\right)\) is an estimate of the expected value of \(\log f(Z)\). Akaike (1981) derived the alternative estimate of \(\mathrm{E}_{Z} \log f(Z)\) by using the Bayesian predictive likelihood. The AIC is the bias-corrected estimate of \(-2 T \mathrm{E}_{Z} \log f(Z \mid \hat{\theta})\), where \(\hat{\theta}\) is the maximum likelihood estimate.
\[
\mathrm{AIC}=-2(\text { maximum log-likelihood })+2(\text { number of free parameters })
\]

Let \(\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)^{\prime}\) be a \(K \times 1\) parameter vector that is contained in the parameter space \(\Theta_{K}\). Given the data \(\mathbf{y}\), the \(\log\)-likelihood function is
\[
\ell(\theta)=\sum_{t=1}^{T} \log f\left(y_{t} \mid \theta\right)
\]

Suppose the probability density function \(f(y \mid \theta)\) has the true \(\operatorname{PDF} \varphi(y)=f\left(y \mid \theta^{0}\right)\), where the true parameter vector \(\theta^{0}\) is contained in \(\Theta_{K}\). Let \(\hat{\theta}_{K}\) be a maximum likelihood estimate. The maximum of the log-likelihood function is denoted as \(\ell\left(\hat{\theta}_{K}\right)=\max _{\theta \in \Theta_{K}} \ell(\theta)\). The expected log-likelihood function is defined by
\[
\ell^{*}(\theta)=T \mathrm{E}_{Z} \log f(Z \mid \theta)
\]

The Taylor series expansion of the expected log-likelihood function around the true parameter \(\theta^{0}\) gives the following asymptotic relationship:
\[
\ell^{*}(\theta) \stackrel{A}{=} \ell^{*}\left(\theta^{0}\right)+T\left(\theta-\theta^{0}\right)^{\prime} \mathrm{E}_{Z} \frac{\partial \log f\left(Z \mid \theta^{0}\right)}{\partial \theta}-\frac{T}{2}\left(\theta-\theta^{0}\right)^{\prime} I\left(\theta^{0}\right)\left(\theta-\theta^{0}\right)
\]
where \(I\left(\theta^{0}\right)\) is the information matrix and \(\stackrel{A}{=}\) stands for asymptotic equality. Note that \(\frac{\partial \log f\left(z \mid \theta^{0}\right)}{\partial \theta}=0\) since \(\log f(z \mid \theta)\) is maximized at \(\theta^{0}\). By substituting \(\hat{\theta}_{K}\), the expected log-likelihood function can be written as
\[
\ell^{*}\left(\hat{\theta}_{K}\right) \stackrel{A}{=} \ell^{*}\left(\theta^{0}\right)-\frac{T}{2}\left(\hat{\theta}_{K}-\theta^{0}\right)^{\prime} I\left(\theta^{0}\right)\left(\hat{\theta}_{K}-\theta^{0}\right)
\]

The maximum likelihood estimator is asymptotically normally distributed under the regularity conditions
\[
\sqrt{T} I\left(\theta^{0}\right)^{1 / 2}\left(\hat{\theta}_{K}-\theta^{0}\right) \xrightarrow{d} N\left(0, I_{K}\right)
\]

Therefore,
\[
T\left(\hat{\theta}_{K}-\theta^{0}\right)^{\prime} I\left(\theta^{0}\right)\left(\hat{\theta}_{K}-\theta^{0}\right) \stackrel{a}{\sim} \chi_{K}^{2}
\]

The mean expected log-likelihood function, \(\ell^{*}(K)=\mathrm{E}_{Y} \ell^{*}\left(\hat{\theta}_{K}\right)\), becomes
\[
\ell^{*}(K) \stackrel{A}{=} \ell^{*}\left(\theta^{0}\right)-\frac{K}{2}
\]

When the Taylor series expansion of the log-likelihood function around \(\hat{\theta}_{K}\) is used, the log-likelihood function \(\ell(\theta)\) is written
\[
\ell(\theta) \stackrel{A}{=} \ell\left(\hat{\theta}_{K}\right)+\left.\left(\theta-\hat{\theta}_{K}\right)^{\prime} \frac{\partial \ell(\theta)}{\partial \theta}\right|_{\hat{\theta}_{K}}+\left.\frac{1}{2}\left(\theta-\hat{\theta}_{K}\right)^{\prime} \frac{\partial^{2} \ell(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\hat{\theta}_{K}}\left(\theta-\hat{\theta}_{K}\right)
\]

Since \(\ell\left(\hat{\theta}_{K}\right)\) is the maximum log-likelihood function, \(\left.\frac{\partial \ell(\theta)}{\partial \theta}\right|_{\hat{\theta}_{K}}=0\). Note that \(\operatorname{plim}\left[-\left.\frac{1}{T} \frac{\partial^{2} \ell(\theta)}{\partial \theta \partial \theta^{\prime}}\right|_{\hat{\theta}_{K}}\right]=I\left(\theta^{0}\right)\) if the maximum likelihood estimator \(\hat{\theta}_{K}\) is a consistent estimator of \(\theta\). Replacing \(\theta\) with the true parameter \(\theta^{0}\) and taking expectations with respect to the random variable \(Y\),
\[
\mathrm{E}_{Y} \ell\left(\theta^{0}\right) \stackrel{A}{=} \mathrm{E}_{Y} \ell\left(\hat{\theta}_{K}\right)-\frac{K}{2}
\]

Consider the following relationship:
\[
\begin{aligned}
\ell^{*}\left(\theta^{0}\right) & =T \mathrm{E}_{Z} \log f\left(Z \mid \theta^{0}\right) \\
& =\mathrm{E}_{Y} \sum_{t=1}^{T} \log f\left(Y_{t} \mid \theta^{0}\right) \\
& =\mathrm{E}_{Y} \ell\left(\theta^{0}\right)
\end{aligned}
\]

From the previous derivation,
\[
\ell^{*}(K) \stackrel{A}{=} \ell^{*}\left(\theta^{0}\right)-\frac{K}{2}
\]

Therefore,
\[
\ell^{*}(K) \stackrel{A}{=} \mathrm{E}_{Y} \ell\left(\hat{\theta}_{K}\right)-K
\]

The natural estimator for \(\mathrm{E}_{Y} \ell\left(\hat{\theta}_{K}\right)\) is \(\ell\left(\hat{\theta}_{K}\right)\). Using this estimator, you can write the mean expected log-likelihood function as
\[
\ell^{*}(K) \stackrel{A}{=} \ell\left(\hat{\theta}_{K}\right)-K
\]

Consequently, the AIC is defined as an asymptotically unbiased estimator of -2 (mean expected log-likelihood)
\[
\operatorname{AIC}(K)=-2 \ell\left(\hat{\theta}_{K}\right)+2 K
\]

In practice, the previous asymptotic result is expected to be valid in finite samples if the number of free parameters does not exceed \(2 \sqrt{T}\) and the upper bound of the number of free parameters is \(\frac{T}{2}\). It is worth noting that the amount of AIC is not meaningful in itself, since this value is not the Kullback-Leibler information measure. The difference of AIC values can be used to select the model. The difference of the two AIC values is considered insignificant if it is far less than 1. It is possible to find a better model when the minimum AIC model contains many free parameters.

\section*{Smoothness Priors Modeling}

Consider the time series \(y_{t}\) :
\[
y_{t}=f(t)+\epsilon_{t}
\]
where \(f(t)\) is an unknown smooth function and \(\epsilon_{t}\) is an \(i i d\) random variable with zero mean and positive variance \(\sigma^{2}\). Whittaker (1923) provides the solution, which balances a tradeoff between closeness to the data and the \(k\) th-order difference equation. For a fixed value of \(\lambda\) and \(k\), the solution \(\hat{f}\) satisfies
\[
\min _{f} \sum_{t=1}^{T}\left\{\left[y_{t}-f(t)\right]^{2}+\lambda^{2}\left[\nabla^{k} f(t)\right]^{2}\right\}
\]
where \(\nabla^{k}\) denotes the \(k\) th-order difference operator. The value of \(\lambda\) can be viewed as the smoothness tradeoff measure. Akaike (1980a) proposed the Bayesian posterior PDF to solve this problem.
\[
\ell(f)=\exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left[y_{t}-f(t)\right]^{2}\right\} \exp \left\{-\frac{\lambda^{2}}{2 \sigma^{2}} \sum_{t=1}^{T}\left[\nabla^{k} f(t)\right]^{2}\right\}
\]

Therefore, the solution can be obtained when the function \(\ell(f)\) is maximized.
Assume that time series is decomposed as follows:
\[
y_{t}=T_{t}+S_{t}+\epsilon_{t}
\]
where \(T_{t}\) denotes the trend component and \(S_{t}\) is the seasonal component. The trend component follows the \(k\) th-order stochastically perturbed difference equation.
\[
\nabla^{k} T_{t}=w_{1 t}, \quad w_{1 t} \sim N\left(0, \tau_{1}^{2}\right)
\]

For example, the polynomial trend component for \(k=2\) is written as
\[
T_{t}=2 T_{t-1}-T_{t-2}+w_{1 t}
\]

To accommodate regular seasonal effects, the stochastic seasonal relationship is used.
\[
\sum_{i=0}^{L-1} S_{t-i}=w_{2 t} \quad w_{2 t} \sim N\left(0, \tau_{2}^{2}\right)
\]
where \(L\) is the number of seasons within a period. In the context of Whittaker and Akaike, the smoothness priors problem can be solved by the maximization of
\[
\begin{aligned}
\ell(f)= & \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{t}-T_{t}-S_{t}\right)^{2}\right] \exp \left[-\frac{\tau_{1}^{2}}{2 \sigma^{2}} \sum_{t=1}^{T}\left(\nabla^{k} T_{t}\right)^{2}\right] \\
& \times \exp \left[-\frac{\tau_{2}^{2}}{2 \sigma^{2}} \sum_{t=1}^{T}\left(\sum_{i=0}^{L-1} S_{t-i}\right)^{2}\right]
\end{aligned}
\]

The values of hyperparameters \(\tau_{1}^{2}\) and \(\tau_{2}^{2}\) refer to a measure of uncertainty of prior information. For example, the large value of \(\tau_{1}^{2}\) implies a relatively smooth trend component. The ratio \(\frac{\tau_{i}^{2}}{\sigma^{2}}(i=1,2)\) can be considered as a signal-to-noise ratio.

Kitagawa and Gersch (1984) use the Kalman filter recursive computation for the likelihood of the tradeoff parameters. The hyperparameters are estimated by combining the grid search and optimization method. The state space model and Kalman filter recursive computation are discussed in the section "State Space and Kalman Filter Method" on page 287.

\section*{Bayesian Seasonal Adjustment}

Seasonal phenomena are frequently observed in many economic and business time series. For example, consumption expenditure might have strong seasonal variations because of Christmas spending. The seasonal phenomena are repeatedly observed after a regular period of time. The number of seasons within a period is defined as the smallest time span for this repetitive observation. Monthly consumption expenditure shows a strong increase during the Christmas season, with 12 seasons per period.

There are three major approaches to seasonal time series: the regression model, the moving average model, and the seasonal ARIMA model.

\section*{Regression Model}

Let the trend component be \(T_{t}=\sum_{i=1}^{m_{\alpha}} \alpha_{i} U_{i t}\) and the seasonal component be \(S_{t}=\sum_{j=1}^{m_{\beta}} \beta_{j} V_{j t}\). Then the additive time series can be written as the regression model
\[
y_{t}=\sum_{i=1}^{m_{\alpha}} \alpha_{i} U_{i t}+\sum_{j=1}^{m_{\beta}} \beta_{j} V_{j t}+\epsilon_{t}
\]

In practice, the trend component can be written as the \(m_{\alpha}\) th-order polynomial, such as
\[
T_{t}=\sum_{i=0}^{m_{\alpha}} \alpha_{i} t^{i}
\]

The seasonal component can be approximated by the seasonal dummies \(\left(D_{j t}\right)\)
\[
S_{t}=\sum_{j=1}^{L-1} \beta_{j} D_{j t}
\]
where \(L\) is the number of seasons within a period. The least squares method is applied to estimate parameters \(\alpha_{i}\) and \(\beta_{j}\).

The seasonally adjusted series is obtained by subtracting the estimated seasonal component from the original series. Usually, the error term \(\epsilon_{t}\) is assumed to be white noise, while sometimes the autocorrelation of the regression residuals needs to be allowed. However, the regression method is not robust to the regression function type, especially at the beginning and end of the series.

\section*{Moving Average Model}

If you assume that the annual sum of a seasonal time series has small seasonal fluctuations, the nonseasonal component \(N_{t}=T_{t}+\epsilon_{t}\) can be estimated by using the moving average method.
\[
\hat{N}_{t}=\sum_{i=-m}^{m} \lambda_{i} y_{t-i}
\]
where \(m\) is the positive integer and \(\lambda_{i}\) is the symmetric constant such that \(\lambda_{i}=\lambda_{-i}\) and \(\sum_{i=-m}^{m} \lambda_{i}=1\).

When the data are not available, either an asymmetric moving average is used, or the forecast data are augmented to use the symmetric weight. The \(\mathrm{X}-11\) procedure is a complex modification of this moving-average method.

\section*{Seasonal ARIMA Model}

The regression and moving-average approaches assume that the seasonal component is deterministic and independent of other nonseasonal components. The time series approach is used to handle the stochastic trend and seasonal components.

The general ARIMA model can be written
\[
\prod_{j=1}^{m} \phi_{j}(B) \prod_{i=1}^{k}\left(1-B^{s_{i}}\right)^{d_{i}} \tilde{y}_{t}=\theta_{0}+\prod_{i=1}^{q} \theta_{i}(B) \epsilon_{t}
\]
where \(B\) is the backshift operator and
\[
\begin{aligned}
\phi_{j}(B) & =1-\phi_{1} B-\cdots-\phi_{j} B^{p_{j}} \\
\theta_{i}(B) & =1-\theta_{1} B-\cdots-\theta_{i} B^{q_{i}}
\end{aligned}
\]
and \(\tilde{y}_{t}=y_{t}-\mathrm{E}\left(Y_{t}\right)\) if \(d_{i}=0\); otherwise, \(\tilde{y}_{t}=y_{t}\). The power of \(B, s_{i}\), can be considered as a seasonal factor. Specifically, the Box-Jenkins multiplicative seasonal \(\operatorname{ARIMA}(p, d, q)(P, D, Q)_{s}\) model is written as
\[
\phi_{p}(B) \Phi_{P}\left(B^{s}\right)(1-B)^{d}\left(1-B^{s}\right)^{D} \tilde{y}_{t}=\theta_{q}(B) \Theta_{Q}\left(B^{s}\right) \epsilon_{t}
\]

ARIMA modeling is appropriate for particular time series and requires burdensome computation.

The TSBAYSEA subroutine combines the simple characteristics of the regression approach and time series modeling. The TSBAYSEA and X-11 procedures use the model-based seasonal adjustment. The symmetric weights of the standard X-11 option can be approximated by using the integrated MA form
\[
(1-B)\left(1-B^{12}\right) y_{t}=\theta(B) \epsilon_{t}
\]

With a fixed value \(\phi\), the TSBAYSEA subroutine is approximated as
\[
(1-\phi B)(1-B)\left(1-B^{12}\right) y_{t}=\theta(B) \epsilon_{t}
\]

The subroutine is flexible enough to handle trading-day or leap-year effects, the shift of the base observation, and missing values. The TSBAYSEA-type modeling approach has some advantages: it clearly defines the statistical model of the time series; modification of the basic model can be an efficient method of choosing a particular procedure for the seasonal adjustment of a given time series; and the use of the concept of the likelihood provides a minimum AIC model selection approach.

\section*{Nonstationary Time Series}

The subroutines TSMLOCAR, TSMLOMAR, and TSTVCAR are used to analyze nonstationary time series models. The AIC statistic is extensively used to analyze the locally stationary model.

\section*{Locally Stationary AR Model}

When the time series is nonstationary, the TSMLOCAR (univariate) and TSMLOMAR (multivariate) subroutines can be employed. The whole span of the series is divided into locally stationary blocks of data, and then the TSMLOCAR and TSMLOMAR subroutines estimate a stationary AR model by using the least squares method on this stationary block. The homogeneity of two different blocks of data is tested by using the AIC.

Given a set of data \(\left\{y_{1}, \ldots, y_{T}\right\}\), the data can be divided into \(k\) blocks of sizes \(t_{1}, \ldots, t_{k}\), where \(t_{1}+\cdots+t_{k}=T\), and \(k\) and \(t_{i}\) are unknown. The locally stationary model is fitted to the data
\[
y_{t}=\alpha_{0}^{i}+\sum_{j=1}^{p_{i}} \alpha_{j}^{i} y_{t-j}+\epsilon_{t}^{i}
\]
where
\[
T_{i-1}=\sum_{j=1}^{i-1} t_{j}<t \leq T_{i}=\sum_{j=1}^{i} t_{j} \quad \text { for } i=1, \ldots, k
\]
where \(\epsilon_{t}^{i}\) is a Gaussian white noise with \(\mathrm{E} \epsilon_{t}^{i}=0\) and \(\mathrm{E}\left(\epsilon_{t}^{i}\right)^{2}=\sigma_{i}^{2}\). Therefore, the log-likelihood function of the locally stationary series is
\[
\ell=-\frac{1}{2} \sum_{i=1}^{k}\left[t_{i} \log \left(2 \pi \sigma_{i}^{2}\right)+\frac{1}{\sigma_{i}^{2}} \sum_{t=T_{i-1}+1}^{T_{i}}\left(y_{t}-\alpha_{0}^{i}-\sum_{j=1}^{p_{i}} \alpha_{j}^{i} y_{t-j}\right)^{2}\right]
\]

Given \(\alpha_{j}^{i}, j=0, \ldots, p_{i}\), the maximum of the log-likelihood function is attained at
\[
\hat{\sigma}_{i}^{2}=\frac{1}{t_{i}} \sum_{t=T_{i-1}+1}^{T_{i}}\left(y_{t}-\hat{\alpha}_{0}^{i}-\sum_{j=1}^{p_{i}} \hat{\alpha}_{j}^{i} y_{t-j}\right)^{2}
\]

The concentrated log-likelihood function is given by
\[
\ell^{*}=-\frac{T}{2}[1+\log (2 \pi)]-\frac{1}{2} \sum_{i=1}^{k} t_{i} \log \left(\hat{\sigma}_{i}^{2}\right)
\]

Therefore, the maximum likelihood estimates, \(\hat{\alpha}_{j}^{i}\) and \(\hat{\sigma}_{i}^{2}\), are obtained by minimizing the following local SSE:
\[
\mathrm{SSE}=\sum_{t=T_{i-1}+1}^{T_{i}}\left(y_{t}-\hat{\alpha}_{0}^{i}-\sum_{j=1}^{p_{i}} \hat{\alpha}_{j}^{i} y_{t-j}\right)^{2}
\]

The least squares estimation of the stationary model is explained in the section "Least Squares and Householder Transformation" on page 284.

The AIC for the locally stationary model over the pooled data is written as
\[
\sum_{i=1}^{k} t_{i} \log \left(\hat{\sigma}_{i}^{2}\right)+2 \sum_{i=1}^{k}\left(p_{i}+\text { intercept }+1\right)
\]
where intercept \(=1\) if the intercept term \(\left(\alpha_{0}^{i}\right)\) is estimated; otherwise, intercept \(=\) 0 . The number of stationary blocks (\(k\)), the size of each block \(\left(t_{i}\right)\), and the order of the locally stationary model is determined by the AIC. Consider the autoregressive model fitted over the block of data, \(\left\{y_{1}, \ldots, y_{T}\right\}\), and let this model \(M_{1}\) be an \(\operatorname{AR}\left(p_{1}\right)\) process. When additional data, \(\left\{y_{T+1}, \ldots, y_{T+T_{1}}\right\}\), are available, a new model \(M_{2}\), an \(\operatorname{AR}\left(p_{2}\right)\) process, is fitted over this new data set, assuming that these data are independent of the previous data. Then AICs for models \(M_{1}\) and \(M_{2}\) are defined as
\[
\begin{aligned}
\mathrm{AIC}_{1} & =T \log \left(\sigma_{1}^{2}\right)+2\left(p_{1}+\text { intercept }+1\right) \\
\mathrm{AIC}_{2} & =T_{1} \log \left(\sigma_{2}^{2}\right)+2\left(p_{2}+\text { intercept }+1\right)
\end{aligned}
\]

The joint model AIC for \(M_{1}\) and \(M_{2}\) is obtained by summation
\[
\mathrm{AIC}_{J}=\mathrm{AIC}_{1}+\mathrm{AIC}_{2}
\]

When the two data sets are pooled and estimated over the pooled data set, \(\left\{y_{1}, \ldots, y_{T+T_{1}}\right\}\), the AIC of the pooled model is
\[
\mathrm{AIC}_{A}=\left(T+T_{1}\right) \log \left(\hat{\sigma}_{A}^{2}\right)+2\left(p_{A}+\text { intercept }+1\right)
\]
where \(\sigma_{A}^{2}\) is the pooled error variance and \(p_{A}\) is the order chosen to fit the pooled data set.

\section*{Decision}
- If \(\mathrm{AIC}_{J}<\mathrm{AIC}_{A}\), switch to the new model, since there is a change in the structure of the time series.
- If \(\mathrm{AIC}_{J} \geq \mathrm{AIC}_{A}\), pool the two data sets, since two data sets are considered to be homogeneous.

If new observations are available, repeat the preceding steps to determine the homogeneity of the data. The basic idea of locally stationary AR modeling is that, if the structure of the time series is not changed, you should use the additional information to improve the model fitting, but you need to follow the new structure of the time series if there is any change.

\section*{Time-Varying AR Coefficient Model}

Another approach to nonstationary time series, especially those that are nonstationary in the covariance, is time-varying AR coefficient modeling. When the time series is nonstationary in the covariance, the problem in modeling this series is related to an efficient parameterization. It is possible for a Bayesian approach to estimate the model with a large number of implicit parameters of the complex structure by using a relatively small number of hyperparameters.

The TSTVCAR subroutine uses smoothness priors by imposing stochastically perturbed difference equation constraints on each AR coefficient and frequency response function. The variance of each AR coefficient distribution constitutes a hyperparameter included in the state space model. The likelihood of these hyperparameters is computed by the Kalman filter recursive algorithm.

The time-varying AR coefficient model is written
\[
y_{t}=\sum_{i=1}^{m} \alpha_{i t} y_{t-i}+\epsilon_{t}
\]
where time-varying coefficients \(\alpha_{i t}\) are assumed to change gradually with time. The following simple stochastic difference equation constraint is imposed on each coefficient:
\[
\nabla^{k} \alpha_{i t}=w_{i t}, \quad w_{i t} \sim N\left(0, \tau^{2}\right), \quad i=1, \ldots, m
\]

The frequency response function of the AR process is written
\[
A(f)=1-\sum_{j=1}^{m} \alpha_{j t} \exp (-2 \pi j i f)
\]

The smoothness of this function can be measured by the \(k\) th derivative smoothness constraint,
\[
R_{k}=\int_{-1 / 2}^{1 / 2}\left|\frac{d^{k} A(f)}{d f^{k}}\right|^{2} d f=(2 \pi)^{2 k} \sum_{j=1}^{m} j^{2 k} \alpha_{j t}^{2}
\]

Then the TSTVCAR call imposes zero and second derivative smoothness constraints. The time-varying AR coefficients are the solution of the following constrained least squares:
\[
\sum_{t=1}^{T}\left(y_{t}-\sum_{i=1}^{m} \alpha_{i t} y_{t-i}\right)^{2}+\tau^{2} \sum_{t=1}^{T} \sum_{i=1}^{m}\left(\nabla^{k} \alpha_{i t}\right)^{2}+\lambda^{2} \sum_{t=1}^{T} \sum_{i=1}^{m} i^{2} \alpha_{i t}^{2}+\nu^{2} \sum_{t=1}^{T} \sum_{i=1}^{m} \alpha_{i t}^{2}
\]
where \(\tau^{2}, \lambda^{2}\), and \(\nu^{2}\) are hyperparameters of the prior distribution.

Using a state space representation, the model is
\[
\begin{aligned}
\mathbf{x}_{t} & =\mathbf{F x}_{t-1}+\mathbf{G} \mathbf{w}_{t} \\
y_{t} & =\mathbf{H}_{t} \mathbf{x}_{t}+\epsilon_{t}
\end{aligned}
\]
where
\[
\begin{aligned}
\mathbf{x}_{t} & =\left(\alpha_{1 t}, \ldots, \alpha_{m t}, \ldots, \alpha_{1, t-k+1}, \ldots, \alpha_{m, t-k+1}\right)^{\prime} \\
\mathbf{H}_{t} & =\left(y_{t-1}, \ldots, y_{t-m}, \ldots, 0, \ldots, 0\right) \\
\mathbf{w}_{t} & =\left(w_{1 t}, \ldots, w_{m t}\right)^{\prime} \\
k & =1: \mathbf{F}=\mathbf{I}_{m} \quad \mathbf{G}=\mathbf{I}_{m} \\
k & =2: \mathbf{F}=\left[\begin{array}{cc}
2 \mathbf{I}_{m} & -\mathbf{I}_{m} \\
\mathbf{I}_{m} & 0
\end{array}\right] \quad \mathbf{G}=\left[\begin{array}{c}
\mathbf{I}_{m} \\
0
\end{array}\right] \\
k & =3: \mathbf{F}=\left[\begin{array}{ccc}
3 \mathbf{I}_{m} & -3 \mathbf{I}_{m} & \mathbf{I}_{m} \\
\mathbf{I}_{m} & 0 & 0 \\
0 & \mathbf{I}_{m} & 0
\end{array}\right] \quad \mathbf{G}=\left[\begin{array}{c}
\mathbf{I}_{m} \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
\mathbf{w}_{t} \\
\epsilon_{t}
\end{array}\right] } & \sim N\left(\mathbf{0},\left[\begin{array}{cc}
\tau^{2} \mathbf{I} & 0 \\
0 & \sigma^{2}
\end{array}\right]\right)
\end{aligned}
\]

The computation of the likelihood function is straightforward. See the section "State Space and Kalman Filter Method" on page 287 for the computation method.

\section*{Multivariate Time Series Analysis}

The subroutines TSMULMAR, TSMLOMAR, and TSPRED analyze multivariate time series. The periodic AR model, TSPEARS, can also be estimated by using a vector AR procedure, since the periodic AR series can be represented as the covariancestationary vector autoregressive model.

The stationary vector AR model is estimated and the order of the model (or each variable) is automatically determined by the minimum AIC procedure. The stationary vector AR model is written
\[
\begin{aligned}
\mathbf{y}_{t} & =\mathbf{A}_{0}+\mathbf{A}_{1} \mathbf{y}_{t-1}+\cdots+\mathbf{A}_{p} \mathbf{y}_{t-p}+\epsilon_{t} \\
\epsilon_{t} & \sim N(\mathbf{0}, \Sigma)
\end{aligned}
\]

Using the LDL' factorization method, the error covariance is decomposed as
\[
\Sigma=\mathbf{L D L}^{\prime}
\]
where \(\mathbf{L}\) is a unit lower triangular matrix and \(\mathbf{D}\) is a diagonal matrix. Then the instantaneous response model is defined as
\[
\mathbf{C} \mathbf{y}_{t}=\mathbf{A}_{0}^{*}+\mathbf{A}_{1}^{*} \mathbf{y}_{t-1}+\cdots+\mathbf{A}_{p}^{*} \mathbf{y}_{t-p}+\epsilon_{t}^{*}
\]
where \(\mathbf{C}=\mathbf{L}^{-1}, \mathbf{A}_{i}^{*}=\mathbf{L}^{-1} \mathbf{A}_{i}\) for \(i=0,1, \ldots, p\), and \(\epsilon_{t}^{*}=\mathbf{L}^{-1} \epsilon_{t}\). Each equation of the instantaneous response model can be estimated independently, since its
error covariance matrix has a diagonal covariance matrix D. Maximum likelihood estimates are obtained through the least squares method when the disturbances are normally distributed and the presample values are fixed.

The TSMULMAR subroutine estimates the instantaneous response model. The VAR coefficients are computed by using the relationship between the VAR and instantaneous models.

The general VARMA model can be transformed as an infinite-order MA process under certain conditions.
\[
\mathbf{y}_{t}=\mu+\epsilon_{t}+\sum_{m=1}^{\infty} \Psi_{m} \epsilon_{t-m}
\]

In the context of the \(\operatorname{VAR}(p)\) model, the coefficient \(\Psi_{m}\) can be interpreted as the \(m\)-lagged response of a unit increase in the disturbances at time \(t\).
\[
\Psi_{m}=\frac{\partial \mathbf{y}_{t+m}}{\partial \epsilon_{t}^{\prime}}
\]

The lagged response on the one-unit increase in the orthogonalized disturbances \(\epsilon_{t}^{*}\) is denoted
\[
\frac{\partial \mathbf{y}_{t+m}}{\partial \epsilon_{j t}^{*}}=\frac{\partial \mathrm{E}\left(\mathbf{y}_{t+m} \mid y_{j t}, y_{j-1, t}, \ldots, \mathbf{X}_{t}\right)}{\partial y_{j t}}=\Psi_{m} \mathbf{L}_{j}
\]
where \(\mathbf{L}_{j}\) is the \(j\) th column of the unit triangular matrix \(\mathbf{L}\) and \(\mathbf{X}_{t}=\left[\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-p}\right]\). When you estimate the VAR model by using the TSMULMAR call, it is easy to compute this impulse response function.

The MSE of the \(m\)-step prediction is computed as
\[
\mathrm{E}\left(\mathbf{y}_{t+m}-\mathbf{y}_{t+m \mid t}\right)\left(\mathbf{y}_{t+m}-\mathbf{y}_{t+m \mid t}\right)^{\prime}=\Sigma+\Psi_{1} \Sigma \Psi_{1}^{\prime}+\cdots+\Psi_{m-1} \Sigma \Psi_{m-1}^{\prime}
\]

Note that \(\epsilon_{t}=\mathbf{L} \epsilon_{t}^{*}\). Then the covariance matrix of \(\epsilon_{t}\) is decomposed
\[
\Sigma=\sum_{i=1}^{n} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} d_{i i}
\]
where \(d_{i i}\) is the \(i\) th diagonal element of the matrix \(\mathbf{D}\) and \(n\) is the number of variables. The MSE matrix can be written
\[
\sum_{i=1}^{n} d_{i i}\left[\mathbf{L}_{i} \mathbf{L}_{i}^{\prime}+\Psi_{1} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{1}^{\prime}+\cdots+\Psi_{m-1} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{m-1}^{\prime}\right]
\]

Therefore, the contribution of the \(i\) th orthogonalized innovation to the MSE is
\[
\mathbf{V}_{i}=d_{i i}\left[\mathbf{L}_{i} \mathbf{L}_{i}^{\prime}+\Psi_{1} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{1}^{\prime}+\cdots+\Psi_{m-1} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{m-1}^{\prime}\right]
\]

The \(i\) th forecast error variance decomposition is obtained from diagonal elements of the matrix \(\mathbf{V}_{i}\).

The nonstationary multivariate series can be analyzed by the TSMLOMAR subroutine. The estimation and model identification procedure is analogous to the univariate nonstationary procedure, which is explained in the section "Nonstationary Time Series" on page 276.

A time series \(y_{t}\) is periodically correlated with period \(d\) if \(\mathrm{E} y_{t}=\mathrm{E} y_{t+d}\) and \(\mathrm{E} y_{s} y_{t}=\) \(\mathrm{E} y_{s+d} y_{t+d}\). Let \(y_{t}\) be autoregressive of period \(d\) with AR orders \(\left(p_{1}, \ldots, p_{d}\right)\)-that is,
\[
y_{t}=\sum_{j=1}^{p_{t}} \alpha_{j t} y_{t-j}+\epsilon_{t}
\]
where \(\epsilon_{t}\) is uncorrelated with mean zero and \(\mathrm{E} \epsilon_{t}^{2}=\sigma_{t}^{2}, p_{t}=p_{t+d}, \sigma_{t}^{2}=\sigma_{t+d}^{2}\), and \(\alpha_{j t}=\alpha_{j, t+d}\left(j=1, \ldots, p_{t}\right)\). Define the new variable such that \(x_{j t}=y_{j+d(t-1)}\). The vector series, \(\mathbf{x}_{t}=\left(x_{1 t}, \ldots, x_{d t}\right)^{\prime}\), is autoregressive of order \(p\), where \(p=\) \(\max _{j} \operatorname{int}\left(\left(p_{j}-j\right) / d\right)+1\). The TSPEARS subroutine estimates the periodic autoregressive model by using minimum AIC vector AR modeling.

The TSPRED subroutine computes the one-step or multistep forecast of the multivariate ARMA model if the ARMA parameter estimates are provided. In addition, the subroutine TSPRED produces the (intermediate and permanent) impulse response function and performs forecast error variance decomposition for the vector AR model.

\section*{Spectral Analysis}

The autocovariance function of the random variable \(Y_{t}\) is defined as
\[
C_{Y Y}(k)=\mathrm{E}\left(Y_{t+k} Y_{t}\right)
\]
where \(\mathrm{E} Y_{t}=0\). When the real valued process \(Y_{t}\) is stationary and its autocovariance is absolutely summable, the population spectral density function is obtained by using the Fourier transform of the autocovariance function
\[
f(g)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} C_{Y Y}(k) \exp (-i g k) \quad-\pi \leq g \leq \pi
\]
where \(i=\sqrt{-1}\) and \(C_{Y Y}(k)\) is the autocovariance function such that \(\sum_{k=-\infty}^{\infty}\left|C_{Y Y}(k)\right|<\infty\).

Consider the autocovariance generating function
\[
\gamma(z)=\sum_{k=-\infty}^{\infty} C_{Y Y}(k) z^{k}
\]
where \(C_{Y Y}(k)=C_{Y Y}(-k)\) and \(z\) is a complex scalar. The spectral density function can be represented as
\[
f(g)=\frac{1}{2 \pi} \gamma(\exp (-i g))
\]

The stationary \(\operatorname{ARMA}(p, q)\) process is denoted
\[
\phi(B) y_{t}=\theta(B) \epsilon_{t} \quad \epsilon_{t} \sim\left(0, \sigma^{2}\right)
\]
where \(\phi(B)\) and \(\theta(B)\) do not have common roots. Note that the autocovariance generating function of the linear process \(y_{t}=\psi(B) \epsilon_{t}\) is given by
\[
\gamma(B)=\sigma^{2} \psi(B) \psi\left(B^{-1}\right)
\]

For the \(\operatorname{ARMA}(p, q)\) process, \(\psi(B)=\frac{\theta(B)}{\phi(B)}\). Therefore, the spectral density function of the stationary \(\operatorname{ARMA}(p, q)\) process becomes
\[
f(g)=\frac{\sigma^{2}}{2 \pi}\left|\frac{\theta(\exp (-i g)) \theta(\exp (i g))}{\phi(\exp (-i g)) \phi(\exp (i g))}\right|^{2}
\]

The spectral density function of a white noise is a constant.
\[
f(g)=\frac{\sigma^{2}}{2 \pi}
\]

The spectral density function of the \(\operatorname{AR}(1)\) process \(\left(\phi(B)=1-\phi_{1} B\right)\) is given by
\[
f(g)=\frac{\sigma^{2}}{2 \pi\left(1-\phi_{1} \cos (g)+\phi_{1}^{2}\right)}
\]

The spectrum of the \(\mathrm{AR}(1)\) process has its minimum at \(g=0\) and its maximum at \(g= \pm \pi\) if \(\phi_{1}<0\), while the spectral density function attains its maximum at \(g=0\) and its minimum at \(g= \pm \pi\), if \(\phi_{1}>0\). When the series is positively autocorrelated, its spectral density function is dominated by low frequencies. It is interesting to observe that the spectrum approaches \(\frac{\sigma^{2}}{4 \pi} \frac{1}{1-\cos (g)}\) as \(\phi_{1} \rightarrow 1\). This relationship shows that the series is difference-stationary if its spectral density function has a remarkable peak near 0 .
The spectrum of \(\operatorname{AR}(2)\) process \(\left(\phi(B)=1-\phi_{1} B-\phi_{2} B^{2}\right)\) equals
\[
f(g)=\frac{\sigma^{2}}{2 \pi} \frac{1}{\left\{-4 \phi_{2}\left[\cos (g)+\frac{\phi_{1}\left(1-\phi_{2}\right)}{4 \phi_{2}}\right]^{2}+\frac{\left(1+\phi_{2}\right)^{2}\left(4 \phi_{2}+\phi_{1}^{2}\right)}{4 \phi_{2}}\right\}}
\]

Refer to Anderson (1971) for details of the characteristics of this spectral density function of the \(\operatorname{AR}(2)\) process.

In practice, the population spectral density function cannot be computed. There are many ways of computing the sample spectral density function. The TSBAYSEA and TSMLOCAR subroutines compute the power spectrum by using AR coefficients and the white noise variance.

The power spectral density function of \(Y_{t}\) is derived by using the Fourier transformation of \(C_{Y Y}(k)\).
\[
f_{Y Y}(g)=\sum_{k=-\infty}^{\infty} \exp (-2 \pi i g k) C_{Y Y}(k), \quad-\frac{1}{2} \leq g \leq \frac{1}{2}
\]
where \(i=\sqrt{-1}\) and \(g\) denotes frequency. The autocovariance function can also be written as
\[
C_{Y Y}(k)=\int_{-1 / 2}^{1 / 2} \exp (2 \pi i g k) f_{Y Y}(g) d g
\]

Consider the following stationary \(\operatorname{AR}(p)\) process:
\[
y_{t}-\sum_{i=1}^{p} \phi_{i} y_{t-i}=\epsilon_{t}
\]
where \(\epsilon_{t}\) is a white noise with mean zero and constant variance \(\sigma^{2}\).
The autocovariance function of white noise \(\epsilon_{t}\) equals
\[
C_{\epsilon \epsilon}(k)=\delta_{k 0} \sigma^{2}
\]
where \(\delta_{k 0}=1\) if \(k=0\); otherwise, \(\delta_{k 0}=0\). Therefore, the power spectral density of the white noise is \(f_{\epsilon \epsilon}(g)=\sigma^{2},-\frac{1}{2} \leq g \leq \frac{1}{2}\). Note that, with \(\phi_{0}=-1\),
\[
C_{\epsilon \epsilon}(k)=\sum_{m=0}^{p} \sum_{n=0}^{p} \phi_{m} \phi_{n} C_{Y Y}(k-m+n)
\]

Using the following autocovariance function of \(Y_{t}\),
\[
C_{Y Y}(k)=\int_{-1 / 2}^{1 / 2} \exp (2 \pi i g k) f_{Y Y}(g) d g
\]
the autocovariance function of the white noise is denoted as
\[
\begin{aligned}
C_{\epsilon \epsilon}(k) & =\sum_{m=0}^{p} \sum_{n=0}^{p} \phi_{m} \phi_{n} \int_{-1 / 2}^{1 / 2} \exp (2 \pi i g(k-m+n)) f_{Y Y}(g) d g \\
& =\int_{-1 / 2}^{1 / 2} \exp (2 \pi i g k)\left|1-\sum_{m=1}^{p} \phi_{m} \exp (-2 \pi i g m)\right|^{2} f_{Y Y}(g) d g
\end{aligned}
\]

On the other hand, another formula of the \(C_{\epsilon \epsilon}(k)\) gives
\[
C_{\epsilon \epsilon}(k)=\int_{-1 / 2}^{1 / 2} \exp (2 \pi i g k) f_{\epsilon \epsilon}(g) d g
\]

Therefore,
\[
f_{\epsilon \epsilon}(g)=\left|1-\sum_{m=1}^{p} \phi_{m} \exp (-2 \pi i g m)\right|^{2} f_{Y Y}(g)
\]

Since \(f_{\epsilon \epsilon}(g)=\sigma^{2}\), the rational spectrum of \(Y_{t}\) is
\[
f_{Y Y}(g)=\frac{\sigma^{2}}{\left|1-\sum_{m=1}^{p} \phi_{m} \exp (-2 \pi i g m)\right|^{2}}
\]

To compute the power spectrum, estimated values of white noise variance \(\hat{\sigma}^{2}\) and AR coefficients \(\hat{\phi}_{m}\) are used. The order of the AR process can be determined by using the minimum AIC procedure.

\section*{Computational Details}

\section*{Least Squares and Householder Transformation}

Consider the univariate \(\operatorname{AR}(p)\) process
\[
y_{t}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} y_{t-i}+\epsilon_{t}
\]

Define the design matrix \(\mathbf{X}\).
\[
\mathbf{X}=\left[\begin{array}{cccc}
1 & y_{p} & \cdots & y_{1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & y_{T-1} & \cdots & y_{T-p}
\end{array}\right]
\]

Let \(\mathbf{y}=\left(y_{p+1}, \ldots, y_{n}\right)^{\prime}\). The least squares estimate, \(\hat{\mathbf{a}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\), is the approximation to the maximum likelihood estimate of \(\mathbf{a}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right)\) if \(\epsilon_{t}\) is assumed to be Gaussian error disturbances. Combining \(\mathbf{X}\) and \(\mathbf{y}\) as
\[
\mathbf{Z}=[\mathbf{X} \vdots \mathbf{y}]
\]
the \(\mathbf{Z}\) matrix can be decomposed as
\[
\mathbf{Z}=\mathbf{Q} \mathbf{U}=\mathbf{Q}\left[\begin{array}{cc}
\mathbf{R} & \mathbf{w}_{1} \\
\mathbf{0} & \mathbf{w}_{2}
\end{array}\right]
\]
where \(\mathbf{Q}\) is an orthogonal matrix and \(\mathbf{R}\) is an upper triangular matrix, \(\mathbf{w}_{1}=\) \(\left(w_{1}, \ldots, w_{p+1}\right)^{\prime}\), and \(\mathbf{w}_{2}=\left(w_{p+2}, 0, \ldots, 0\right)^{\prime}\).
\[
\mathbf{Q}^{\prime} \mathbf{y}=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{T-p}
\end{array}\right]
\]

The least squares estimate that uses Householder transformation is computed by solving the linear system
\[
\mathbf{R a}=\mathbf{w}_{1}
\]

The unbiased residual variance estimate is
\[
\hat{\sigma}^{2}=\frac{1}{T-p} \sum_{i=p+2}^{T-p} w_{i}^{2}=\frac{w_{p+2}^{2}}{T-p}
\]
and
\[
\mathrm{AIC}=(T-p) \log \left(\hat{\sigma}^{2}\right)+2(p+1)
\]

In practice, least squares estimation does not require the orthogonal matrix \(\mathbf{Q}\). The TIMSAC subroutines compute the upper triangular matrix without computing the matrix \(\mathbf{Q}\).

\section*{Bayesian Constrained Least Squares}

Consider the additive time series model
\[
y_{t}=T_{t}+S_{t}+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right)
\]

Practically, it is not possible to estimate parameters \(\mathbf{a}=\left(T_{1}, \ldots, T_{T}, S_{1}, \ldots, S_{T}\right)^{\prime}\), since the number of parameters exceeds the number of available observations. Let \(\nabla_{L}^{m}\) denote the seasonal difference operator with \(L\) seasons and degree of \(m\); that is, \(\nabla_{L}^{m}=\left(1-B^{L}\right)^{m}\). Suppose that \(T=L * n\). Some constraints on the trend and seasonal components need to be imposed such that the sum of squares of \(\nabla^{k} T_{t}, \nabla_{L}^{m} S_{t}\), and \(\left(\sum_{i=0}^{L-1} S_{t-i}\right)\) is small. The constrained least squares estimates are obtained by minimizing
\[
\sum_{t=1}^{T}\left\{\left(y_{t}-T_{t}-S_{t}\right)^{2}+d^{2}\left[s^{2}\left(\nabla^{k} T_{t}\right)^{2}+\left(\nabla_{L}^{m} S_{t}\right)^{2}+z^{2}\left(S_{t}+\cdots+S_{t-L+1}\right)^{2}\right]\right\}
\]

Using matrix notation,
\[
(\mathbf{y}-\mathbf{M a})^{\prime}(\mathbf{y}-\mathbf{M a})+\left(\mathbf{a}-\mathbf{a}_{0}\right)^{\prime} \mathbf{D}^{\prime} \mathbf{D}\left(\mathbf{a}-\mathbf{a}_{0}\right)
\]
where \(\mathbf{M}=\left[\mathbf{I}_{T} \vdots \mathbf{I}_{T}\right], \mathbf{y}=\left(y_{1}, \ldots, y_{T}\right)^{\prime}\), and \(\mathbf{a}_{0}\) is the initial guess of a. The matrix \(\mathbf{D}\) is a \(3 T \times 2 T\) control matrix in which structure varies according to the order of differencing in trend and season.
\[
\mathbf{D}=d\left[\begin{array}{cc}
\mathbf{E}_{m} & \mathbf{0} \\
z \mathbf{F} & \mathbf{0} \\
\mathbf{0} & s \mathbf{G}_{k}
\end{array}\right]
\]
where
\[
\begin{aligned}
& \mathbf{E}_{m}=\mathbf{C}_{m} \otimes \mathbf{I}_{L}, \quad m=1,2,3 \\
& \mathbf{F}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
1 & \cdots & 1 & 1
\end{array}\right]_{T \times T} \\
& \mathbf{G}_{1}=\left[\begin{array}{rcccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -1 & 1
\end{array}\right]_{T \times T} \\
& \mathbf{G}_{2}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & -2 & 1
\end{array}\right]_{T \times T} \\
& \mathbf{G}_{3}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
-3 & 1 & 0 & 0 & 0 & \cdots & 0 \\
3 & -3 & 1 & 0 & 0 & \cdots & 0 \\
-1 & 3 & -3 & 1 & 0 & \cdots & 0 \\
0 & -1 & 3 & -3 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & -1 & 3 & -3 & 1
\end{array}\right]_{T \times T}
\end{aligned}
\]

The \(n \times n\) matrix \(\mathbf{C}_{m}\) has the same structure as the matrix \(\mathbf{G}_{m}\), and \(\mathbf{I}_{L}\) is the \(L \times L\) identity matrix. The solution of the constrained least squares method is equivalent to that of maximizing the function
\[
L(\mathbf{a})=\exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{M a})^{\prime}(\mathbf{y}-\mathbf{M a})\right\} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\mathbf{a}-\mathbf{a}_{0}\right)^{\prime} \mathbf{D}^{\prime} \mathbf{D}\left(\mathbf{a}-\mathbf{a}_{0}\right)\right\}
\]

Therefore, the PDF of the data \(y\) is
\[
f\left(\mathbf{y} \mid \sigma^{2}, \mathbf{a}\right)=\left(\frac{1}{2 \pi}\right)^{T / 2}\left(\frac{1}{\sigma}\right)^{T} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{M a})^{\prime}(\mathbf{y}-\mathbf{M a})\right\}
\]

The prior PDF of the parameter vector \(\mathbf{a}\) is
\[
\pi\left(\mathbf{a} \mid \mathbf{D}, \sigma^{2}, \mathbf{a}_{0}\right)=\left(\frac{1}{2 \pi}\right)^{T}\left(\frac{1}{\sigma}\right)^{2 T}\left|\mathbf{D}^{\prime} \mathbf{D}\right| \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\mathbf{a}-\mathbf{a}_{0}\right)^{\prime} \mathbf{D}^{\prime} \mathbf{D}\left(\mathbf{a}-\mathbf{a}_{0}\right)\right\}
\]

When the constant \(d\) is known, the estimate \(\hat{\mathbf{a}}\) of a is the mean of the posterior distribution, where the posterior PDF of the parameter a is proportional to the function \(L(\mathbf{a})\). It is obvious that \(\hat{\mathbf{a}}\) is the minimizer of \(\|\mathbf{g}(\mathbf{a} \mid d)\|^{2}=(\tilde{\mathbf{y}}-\tilde{\mathbf{D}} \mathbf{a})^{\prime}(\tilde{\mathbf{y}}-\tilde{\mathbf{D}} \mathbf{a})\), where
\[
\begin{aligned}
& \tilde{\mathbf{y}}=\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{D a _ { 0 }}
\end{array}\right] \\
& \tilde{\mathbf{D}}=\left[\begin{array}{c}
\mathbf{M} \\
\mathbf{D}
\end{array}\right]
\end{aligned}
\]

The value of \(d\) is determined by the minimum ABIC procedure. The ABIC is defined as
\[
\mathrm{ABIC}=T \log \left[\frac{1}{T}\|\mathbf{g}(\mathbf{a} \mid d)\|^{2}\right]+2\left\{\log \left[\operatorname{det}\left(\mathbf{D}^{\prime} \mathbf{D}+\mathbf{M}^{\prime} \mathbf{M}\right)\right]-\log \left[\operatorname{det}\left(\mathbf{D}^{\prime} \mathbf{D}\right)\right]\right\}
\]

\section*{State Space and Kalman Filter Method}

In this section, the mathematical formulas for state space modeling are introduced. The Kalman filter algorithms are derived from the state space model. As an example, the state space model of the TSDECOMP subroutine is formulated.

Define the following state space model:
\[
\begin{aligned}
\mathbf{x}_{t} & =\mathbf{F x}_{t-1}+\mathbf{G w}_{t} \\
y_{t} & =\mathbf{H}_{t} \mathbf{x}_{t}+\epsilon_{t}
\end{aligned}
\]
where \(\epsilon_{t} \sim N\left(0, \sigma^{2}\right)\) and \(\mathbf{w}_{t} \sim N(\mathbf{0}, \mathbf{Q})\). If the observations, \(\left(y_{1}, \ldots, y_{T}\right)\), and the initial conditions, \(\mathbf{x}_{0 \mid 0}\) and \(\mathbf{P}_{0 \mid 0}\), are available, the one-step predictor \(\left(\mathbf{x}_{t \mid t-1}\right)\) of the state vector \(\mathbf{x}_{t}\) and its mean square error (MSE) matrix \(\mathbf{P}_{t \mid t-1}\) are written as
\[
\begin{aligned}
& \mathbf{x}_{t \mid t-1}=\mathbf{F x}_{t-1 \mid t-1} \\
& \mathbf{P}_{t \mid t-1}=\mathbf{F P}_{t-1 \mid t-1} \mathbf{F}^{\prime}+\mathbf{G Q G}^{\prime}
\end{aligned}
\]

Using the current observation, the filtered value of \(\mathbf{x}_{t}\) and its variance \(\mathbf{P}_{t \mid t}\) are updated.
\[
\begin{aligned}
& \mathbf{x}_{t \mid t}=\mathbf{x}_{t \mid t-1}+\mathbf{K}_{t} e_{t} \\
& \mathbf{P}_{t \mid t}=\left(\mathbf{I}-\mathbf{K}_{t} \mathbf{H}_{t}\right) \mathbf{P}_{t \mid t-1}
\end{aligned}
\]
where \(e_{t}=y_{t}-\mathbf{H}_{t} \mathbf{x}_{t \mid t-1}\) and \(\mathbf{K}_{t}=\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}\left[\mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\sigma^{2} \mathbf{I}\right]^{-1}\). The loglikelihood function is computed as
\[
\ell=-\frac{1}{2} \sum_{t=1}^{T} \log \left(2 \pi v_{t \mid t-1}\right)-\sum_{t=1}^{T} \frac{e_{t}^{2}}{2 v_{t \mid t-1}}
\]
where \(v_{t \mid t-1}\) is the conditional variance of the one-step prediction error \(e_{t}\).
Consider the additive time series decomposition
\[
y_{t}=T_{t}+S_{t}+T D_{t}+u_{t}+\mathbf{x}_{t}^{\prime} \beta_{t}+\epsilon_{t}
\]
where \(\mathbf{x}_{t}\) is a \((K \times 1)\) regressor vector and \(\beta_{t}\) is a \((K \times 1)\) time-varying coefficient vector. Each component has the following constraints:
\[
\begin{aligned}
\nabla^{k} T_{t} & =w_{1 t}, \quad w_{1 t} \sim N\left(0, \tau_{1}^{2}\right) \\
\nabla_{L}^{m} S_{t} & =w_{2 t}, \quad w_{2 t} \sim N\left(0, \tau_{2}^{2}\right) \\
u_{t} & =\sum_{i=1}^{p} \alpha_{i} u_{t-i}+w_{3 t}, \quad w_{3 t} \sim N\left(0, \tau_{3}^{2}\right) \\
\beta_{j t} & =\beta_{j, t-1}+w_{3+j, t}, \quad w_{3+j, t} \sim N\left(0, \tau_{3+j}^{2}\right), \quad j=1, \cdots, K \\
\sum_{i=1}^{7} \gamma_{i t} T D_{t}(i) & =\sum_{i=1}^{6} \gamma_{i t}\left(T D_{t}(i)-T D_{t}(7)\right) \\
\gamma_{i t} & =\gamma_{i, t-1}
\end{aligned}
\]
where \(\nabla^{k}=(1-B)^{k}\) and \(\nabla_{L}^{m}=\left(1-B^{L}\right)^{m}\). The AR component \(u_{t}\) is assumed to be stationary. The trading-day component \(T D_{t}(i)\) represents the number of the \(i\) th day of the week in time \(t\). If \(k=3, p=3, m=1\), and \(L=12\) (monthly data),
\[
\begin{aligned}
T_{t} & =3 T_{t-1}-3 T_{t-2}+T_{t-3}+w_{1 t} \\
\sum_{i=0}^{11} S_{t-i} & =w_{2 t} \\
u_{t} & =\sum_{i=1}^{3} \alpha_{i} u_{t-i}+w_{3 t}
\end{aligned}
\]

The state vector is defined as
\[
\mathbf{x}_{t}=\left(T_{t}, T_{t-1}, T_{t-2}, S_{t}, \ldots, S_{t-11}, u_{t}, u_{t-1}, u_{t-2}, \gamma_{1 t}, \ldots, \gamma_{6 t}\right)^{\prime}
\]

The matrix \(\mathbf{F}\) is
\[
\mathbf{F}=\left[\begin{array}{cccc}
\mathbf{F}_{1} & 0 & 0 & 0 \\
0 & \mathbf{F}_{2} & 0 & 0 \\
0 & 0 & \mathbf{F}_{3} & 0 \\
0 & 0 & 0 & \mathbf{F}_{4}
\end{array}\right]
\]
where
\[
\begin{aligned}
& \mathbf{F}_{1}=\left[\begin{array}{rrr}
3 & -3 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \mathbf{F}_{2}=\left[\begin{array}{rr}
-\mathbf{1}^{\prime} & -1 \\
\mathbf{I}_{10} & 0
\end{array}\right] \\
& \mathbf{F}_{3}=\left[\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \mathbf{F}_{4}=\mathbf{I}_{6} \\
& \mathbf{1}^{\prime}=(1,1, \ldots, 1)
\end{aligned}
\]

The matrix \(G\) can be denoted as
\[
G=\left[\begin{array}{ccc}
\mathbf{g}_{1} & 0 & 0 \\
0 & \mathbf{g}_{2} & 0 \\
0 & 0 & \mathbf{g}_{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\]
where
\[
\begin{aligned}
& \mathbf{g}_{1}=\mathbf{g}_{3}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\prime} \\
& \mathbf{g}_{2}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{\prime}
\end{aligned}
\]

Finally, the matrix \(\mathbf{H}_{t}\) is time-varying,
\[
\mathbf{H}_{t}=\left[\begin{array}{llllllllllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \mathbf{h}_{t}^{\prime}
\end{array}\right]
\]
where
\[
\left.\begin{array}{rl}
\mathbf{h}_{t} & =\left[\begin{array}{lllll}
D_{t}(1) & D_{t}(2) & D_{t}(3) & D_{t}(4) & D_{t}(5)
\end{array} D_{t}(6)\right.
\end{array}\right]^{\prime},
\]

\section*{Missing Values}

The TIMSAC subroutines skip any missing values at the beginning of the data set. When the univariate and multivariate AR models are estimated via least squares (TSMLOCAR, TSMLOMAR, TSUNIMAR, TSMULMAR, and TSPEARS), there are three options available; that is, MISSING=0, MISSING=1, or MISSING=2. When the MISSING=0 (default) option is specified, the first contiguous observations with no missing values are used. The MISSING=1 option specifies that only nonmissing observations should be used by ignoring the observations with missing values. If the MISSING \(=2\) option is specified, the missing values are filled with the sample mean. The least squares estimator with the MISSING=2 option is biased in general.

The BAYSEA subroutine assumes the same prior distribution of the trend and seasonal components that correspond to the missing observations. A modification is made to skip the components of the vector \(\mathbf{g}(\mathbf{a} \mid d)\) that correspond to the missing observations. The vector \(\mathbf{g}(\mathbf{a} \mid d)\) is defined in the section "Bayesian Constrained Least Squares" on page 285. In addition, the TSBAYSEA subroutine considers outliers as missing values. The TSDECOMP and TSTVCAR subroutines skip the Kalman filter updating equation when the current observation is missing.

\section*{ISM TIMSAC Packages}

A description of each TIMSAC package follows. Each description includes a list of the programs provided in the TIMSAC version.

\section*{TIMSAC-72}

The TIMSAC-72 package analyzes and controls feedback systems (for example, a cement kiln process). Univariate- and multivariate-AR models are employed in this original TIMSAC package. The final prediction error (FPE) criterion is used for model selection.
- AUSPEC estimates the power spectrum by the Blackman-Tukey procedure.
- AUTCOR computes autocovariance and autocorrelation.
- DECONV computes the impulse response function.
- FFTCOR computes autocorrelation and crosscorrelation via the fast Fourier transform.
- FPEAUT computes AR coefficients and FPE for the univariate AR model.
- FPEC computes AR coefficients and FPE for the control system or multivariate AR model.
- MULCOR computes multiple covariance and correlation.
- MULNOS computes relative power contribution.
- MULRSP estimates the rational spectrum for multivariate data.
- MULSPE estimates the cross spectrum by Blackman-Tukey procedure.
- OPTDES performs optimal controller design.
- OPTSIM performs optimal controller simulation.
- RASPEC estimates the rational spectrum for univariate data.
- SGLFRE computes the frequency response function.
- WNOISE performs white noise simulation.

\section*{TIMSAC-74}

The TIMSAC-74 package estimates and forecasts univariate and multivariate ARMA models by fitting the canonical Markovian model. A locally stationary autoregressive model is also analyzed. Akaike's information criterion (AIC) is used for model selection.
- AUTARM performs automatic univariate ARMA model fitting.
- BISPEC computes bispectrum.
- CANARM performs univariate canonical correlation analysis.
- CANOCA performs multivariate canonical correlation analysis.
- COVGEN computes the covariance from gain function.
- FRDPLY plots the frequency response function.
- MARKOV performs automatic multivariate ARMA model fitting.
- NONST estimates the locally stationary AR model.
- PRDCTR performs ARMA model prediction.
- PWDPLY plots the power spectrum.
- SIMCON performs optimal controller design and simulation.
- THIRMO computes the third-order moment.

\section*{TIMSAC-78}

The TIMSAC-78 package uses the Householder transformation to estimate time series models. This package also contains Bayesian modeling and the exact maximum likelihood estimation of the ARMA model. Minimum AIC or Akaike Bayesian information criterion (ABIC) modeling is extensively used.
- BLOCAR estimates the locally stationary univariate AR model by using the Bayesian method.
- BLOMAR estimates the locally stationary multivariate AR model by using the Bayesian method.
- BSUBST estimates the univariate subset regression model by using the Bayesian method.
- EXSAR estimates the univariate AR model by using the exact maximum likelihood method.
- MLOCAR estimates the locally stationary univariate AR model by using the minimum AIC method.
- MLOMAR estimates the locally stationary multivariate AR model by using the minimum AIC method.
- MULBAR estimates the multivariate AR model by using the Bayesian method.
- MULMAR estimates the multivariate AR model by using the minimum AIC method.
- NADCON performs noise adaptive control.
- PERARS estimates the periodic AR model by using the minimum AIC method.
- UNIBAR estimates the univariate AR model by using the Bayesian method.
- UNIMAR estimates the univariate AR model by using the minimum AIC method.
- XSARMA estimates the univariate ARMA model by using the exact maximum likelihood method.

In addition, the following test subroutines are available: TSSBST, TSWIND, TSROOT, TSTIMS, and TSCANC.

\section*{TIMSAC-84}

The TIMSAC-84 package contains the Bayesian time series modeling procedure, the point process data analysis, and the seasonal adjustment procedure.
- ADAR estimates the amplitude dependent AR model.
- BAYSEA performs Bayesian seasonal adjustments.
- BAYTAP performs Bayesian tidal analysis.
- DECOMP performs time series decomposition analysis by using state space modeling.
- EPTREN estimates intensity rates of either the exponential polynomial or exponential Fourier series of the nonstationary Poisson process model.
- LINLIN estimates linear intensity models of the self-exciting point process with another process input and with cyclic and trend components.
- LINSIM performs simulation of the point process estimated by the subroutine LINLIN.
- LOCCAR estimates the locally constant AR model.
- MULCON performs simulation, control, and prediction of the multivariate AR model.
- NONSPA performs nonstationary spectrum analysis by using the minimum Bayesian AIC procedure.
- PGRAPH performs graphical analysis for point process data.
- PTSPEC computes periodograms of point process data with significant bands.
- SIMBVH performs simulation of bivariate Hawkes' mutually exciting point process.
- SNDE estimates the stochastic nonlinear differential equation model.
- TVCAR estimates the time-varying AR coefficient model by using state space modeling.

Refer to Kitagawa and Akaike (1981) and Ishiguro (1987) for more information about TIMSAC programs.

\section*{Example 10.1. VAR Estimation and Variance Decomposition}

In this example, a VAR model is estimated and forecast. The VAR(3) model is estimated by using investment, durable consumption, and consumption expenditures. The data are found in the appendix to Lütkepohl (1993). The stationary VAR(3) process is specified as
\[
\mathbf{y}_{t}=\mathbf{A}_{0}+\mathbf{A}_{1} \mathbf{y}_{t-1}+\mathbf{A}_{2} \mathbf{y}_{t-2}+\mathbf{A}_{3} \mathbf{y}_{t-3}+\epsilon_{t}
\]

The matrix ARCOEF contains the AR coefficients (\(\mathbf{A}_{1}, \mathbf{A}_{2}\), and \(\mathbf{A}_{3}\)), and the matrix EV contains error covariance estimates. An intercept vector \(\mathbf{A}_{0}\) is included in the first row of the matrix ARCOEF if OPT[1]=1 is specified. Here is the code:
```

data one;
input invest income consum @@;
datalines;
180}4514015 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487
231 548 497 229 558 510 234 574 516 237 583 525
206 591 529 250 599 538 259 610
264 642 574 280 653 574 282 660
286}7096617 302 734 639 304 751 653 307 763 668
317}766679 314 779 686 306 808 697 304 785 688
292}79
280}83
315 922 798 339 949 816
375 1025 881 432 1063 905 453 1104 934 460 1131 968
475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064
526 1290 1101 519 1314 1102 516 1346 1145 531 1385 1173
573 1416 1216 551 1436 1229 538 1462 1242 532 1493 1267
558 1516 1295 524 1557 1317 525 1613 1355 519 1642 1371
526 1690 1402 510 1759 1452 519 1756 1485 538 1780 1516
549 1807 1549 570 1831 1567 559 1873 1588 584 1897 1631
611 1910 1650 597 1943 1685 603 1976 1722 619 2018 1752
635 2040 1774 658 2070 1807 675 2121 1831 700 2132 1842
692 2199 1890 759 2253 1958 782 2276 1948 816 2318 1994
844 2369 2061 830 2423 2056 853 2457 2102 852 2470 2121
833 2521 2145 860 2545 2164 870 2580 2206 830 2620 2225
801 2639 2235 824 2618 2237 831 2628 2250 830 2651 2271
;
proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 0;
misw = 0; /*-- instantaneous modeling ? --*/
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt=(mdel || maice || misw) print=1;

```

To obtain the unit triangular matrix \(\mathbf{L}^{-1}\) and diagonal matrix \(\mathbf{D}_{t}\), you need to estimate the instantaneous response model. When you specify the OPT[3]=1 option, the first row of the output matrix EV contains error variances of the instantaneous response model, while the unit triangular matrix is in the second through the fifth rows. See Output 10.1.1 on page 294. Here is the code:
```

misw = 1;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt=(mdel || maice || misw) print=1;
print ev;

```

Output 10.1.1. Error Variance and Unit Triangular Matrix
```

VAR Estimation and Variance Decomposition

```
 EV
\begin{tabular}{rrr}
295.21042 & 190.94664 & 59.361516 \\
1 & 0 & 0 \\
-0.02239 & 1 & 0 \\
-0.256341 & -0.500803 & 1
\end{tabular}

In Output 10.1.2 on page 294 and Output 10.1.3 on page 294, you can see the relationship between the instantaneous response model and the VAR model. The VAR coefficients are computed as \(\mathbf{A}_{i}=\mathbf{L} \mathbf{A}_{i}^{*}(i=0,1,2,3)\), where \(\mathbf{A}_{i}^{*}\) is a coefficient matrix of the instantaneous model. For example, you can verify this result by using the first lag coefficient matrix \(\left(\mathbf{A}_{1}\right)\).
\[
\left[\begin{array}{rrr}
0.886 & 0.340 & -0.014 \\
0.168 & 1.050 & 0.107 \\
0.089 & 0.459 & 0.447
\end{array}\right]=\left[\begin{array}{rcc}
1.000 & 0 & 0 \\
-0.022 & 1.000 & 0 \\
-0.256 & -0.501 & 1.000
\end{array}\right]^{-1}\left[\begin{array}{rrr}
0.886 & 0.340 & -0.014 \\
0.149 & 1.043 & 0.107 \\
-0.222 & -0.154 & 0.397
\end{array}\right]
\]

Output 10.1.2. VAR Estimates
\[
\begin{array}{lrr}
\hline & \text { ARCOEF } \\
0.8855926 & 0.3401741 & -0.014398 \\
0.1684523 & 1.0502619 & 0.107064 \\
0.0891034 & 0.4591573 & 0.4473672 \\
-0.059195 & -0.298777 & 0.1629818 \\
0.1128625 & -0.044039 & -0.088186 \\
0.1684932 & -0.025847 & -0.025671 \\
0.0637227 & -0.196504 & 0.0695746 \\
-0.226559 & 0.0532467 & -0.099808 \\
-0.303697 & -0.139022 & 0.2576405
\end{array}
\]

Output 10.1.3. Instantaneous Response Model Estimates
\begin{tabular}{|crr|}
\hline \multicolumn{3}{c|}{ ARCOEF } \\
0.885593 & 0.340174 & -0.014398 \\
0.148624 & 1.042645 & 0.107386 \\
-0.22272 & -0.154018 & 0.39744 \\
-0.059195 & -0.298777 & 0.162982 \\
0.114188 & -0.037349 & -0.091835 \\
0.127145 & 0.072796 & -0.023287 \\
0.063723 & -0.196504 & 0.069575 \\
-0.227986 & 0.057646 & -0.101366 \\
-0.20657 & -0.115316 & 0.28979 \\
\hline
\end{tabular}

When the VAR estimates are available, you can forecast the future values by using the TSPRED call. As a default, the one-step predictions are produced until the START= point is reached. The NPRED= \(h\) option specifies how far you want to predict. The prediction error covariance matrix MSE contains \(h\) mean square error matrices. The output matrix IMPULSE contains the estimate of the coefficients \(\left(\Psi_{i}\right)\) of the infinite MA process. The following IML code estimates the VAR(3) model and performs 10 -step-ahead prediction.
```

mdel = 1;
maice = 0;
misw = 0;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt=(mdel || maice || misw);
call tspred(forecast,impulse,mse,y,arcoef,nar,0,ev)
npred=10 start=nrow(y) constant=mdel;
print impulse;

```

The lagged effects of a unit increase in the error disturbances are included in the matrix IMPULSE. For example:
\[
\frac{\partial \mathbf{y}_{t+2}}{\partial \epsilon_{t}^{\prime}}=\left[\begin{array}{lll}
0.781100 & 0.353140 & 0.180211 \\
0.448501 & 1.165474 & 0.069731 \\
0.364611 & 0.692111 & 0.222342
\end{array}\right]
\]

Output 10.1.4 on page 295 displays the first 15 rows of the matrix IMPULSE.

Output 10.1.4. Moving-Average Coefficients: \(\mathrm{MA}(0)-\mathrm{MA}(4)\)

In addition, you can compute the lagged response on the one-unit increase in the orthogonalized disturbances \(\epsilon_{t}^{*}\).
\[
\frac{\partial \mathbf{y}_{t+m}}{\partial \epsilon_{j t}^{*}}=\frac{\partial \mathrm{E}\left(\mathbf{y}_{t+m} \mid y_{j t}, y_{j-1, t}, \ldots, \mathbf{X}_{t}\right)}{\partial y_{j t}}=\Psi_{m} \mathbf{L}_{j}
\]

When the error matrix EV is obtained from the instantaneous response model, you need to convert the matrix IMPULSE. The first 15 rows of the matrix ORTH_IMP are shown in Output 10.1.5 on page 296. Note that the matrix constructed from the last three rows of EV become the matrix \(\mathbf{L}^{-1}\). Here is the code:
```

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 1};
lmtx = inv(ev[2:nrow(ev),]);
orth_imp = impulse * lmtx;
print orth_imp;

```

Output 10.1.5. Transformed Moving-Average Coefficients

> ORTH_IMP
\begin{tabular}{rrr}
1 & 0 & 0 \\
0.0223902 & 1 & 0 \\
0.267554 & 0.5008031 & 1 \\
0.889357 & 0.3329638 & -0.014398 \\
0.2206132 & 1.1038799 & 0.107064 \\
0.219079 & 0.6832001 & 0.4473672 \\
0.8372229 & 0.4433899 & 0.1802109 \\
0.4932533 & 1.2003953 & 0.0697311 \\
0.4395957 & 0.8034606 & 0.2223425 \\
0.8979858 & 0.3896033 & 0.2914643 \\
0.5254106 & 1.3534206 & -0.018202 \\
0.398388 & 0.9501566 & 0.3885065 \\
0.8715223 & 0.3896353 & 0.260239 \\
0.5681309 & 1.4302804 & 0.0335483 \\
0.3721958 & 1.025709 & 0.3190203
\end{tabular}

You can verify the result for the case of
\[
\frac{\partial \mathbf{y}_{t+2}}{\partial \epsilon_{2 t}^{*}}=\frac{\partial \mathrm{E}\left(\mathbf{y}_{t+2} \mid y_{2 t}, y_{1 t}, \ldots, \mathbf{X}_{t}\right)}{\partial y_{2 t}}=\Psi_{2} \mathbf{L}_{2}
\]
using the simple computation
\[
\left[\begin{array}{l}
0.443390 \\
1.200395 \\
0.803461
\end{array}\right]=\left[\begin{array}{lll}
0.781100 & 0.353140 & 0.180211 \\
0.448501 & 1.165474 & 0.069731 \\
0.364611 & 0.692111 & 0.222342
\end{array}\right]\left[\begin{array}{l}
0.000000 \\
1.000000 \\
0.500803
\end{array}\right]
\]

The contribution of the \(i\) th orthogonalized innovation to the mean square error matrix of the 10 -step forecast is computed by using the formula
\[
d_{i i}\left[\mathbf{L}_{i} \mathbf{L}_{i}^{\prime}+\Psi_{1} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{1}^{\prime}+\cdots+\Psi_{9} \mathbf{L}_{i} \mathbf{L}_{i}^{\prime} \Psi_{9}^{\prime}\right]
\]

In Output 10.1.6 on page 297, diagonal elements of each decomposed MSE matrix are displayed as the matrix CONTRIB as well as those of the MSE matrix (VAR). Here is the code:
```

mse1 = j(3,3,0);
mse2 = j(3,3,0);
mse3 = j(3,3,0);
do i = 1 to 10;
psi = impulse[(i-1)*3+1:3*i,];
mse1 = mse1 + psi*lmtx[,1]*lmtx[,1]`*psi`;
mse2 = mse2 + psi*lmtx[,2]*lmtx[,2]`*psi`;
mse3 = mse3 + psi*lmtx[,3]*lmtx[,3]`*psi`;
end;
mse1 = ev[1,1]\#mse1;
mse2 = ev[1,2]\#mse2;
mse3 = ev[1,3]\#mse3;
contrib = vecdiag(mse1) || vecdiag(mse2) || vecdiag(mse3);
var = vecdiag(mse[28:30,]);
print contrib var;

```

Output 10.1.6. Orthogonal Innovation Contribution
\[
\begin{array}{crrr}
\hline \text { CONTRIB } & & \text { VAR } \\
& & & \\
1197.9131 & 116.68096 & 11.003194 & 2163.7104 \\
263.12088 & 1439.1551 & 1.0555626 & 4573.9809 \\
180.09836 & 633.55931 & 89.177905 & 2466.506
\end{array}
\]

The investment innovation contribution to its own variable is 1879.3774 , and the income innovation contribution to the consumption expenditure is 1916.1676. It is easy to understand the contribution of innovations in the \(i\) th variable to MSE when you compute the innovation account. In Output 10.1.7 on page 298, innovations in the first variable (investment) explain \(20.45 \%\) of the error variance of the second
variable (income), while the innovations in the second variable explain \(79.5 \%\) of its own error variance. It is straightforward to construct the general multistep forecast error variance decomposition. Here is the code:
```

account = contrib * 100 / (var@j(1,3,1));
print account;

```

Output 10.1.7. Innovation Account
```

                                    ACCOUNT
    ```
55.3638355 .39263310 .5085336
\(5.752557431 .463951 \quad 0.0230775\)
\(7.3017604 \quad 25.68651 \quad 3.615556\)

\section*{Kalman Filter Subroutines}

This section describes a collection of Kalman filtering and smoothing subroutines for time series analysis; immediately following are three examples using Kalman filtering subroutines. The state space model is a method for analyzing a wide range of time series models. When the time series is represented by the state space model (SSM), the Kalman filter is used for filtering, prediction, and smoothing of the state vector. The state space model is composed of the measurement and transition equations.
The following Kalman filtering and smoothing subroutines are supported:
KALCVF performs covariance filtering and prediction.
KALCVS performs fixed-interval smoothing.
KALDFF performs diffuse covariance filtering and prediction.
KALDFS performs diffuse fixed-interval smoothing.

\section*{Getting Started}

The measurement (or observation) equation can be written
\[
\mathbf{y}_{t}=\mathbf{b}_{t}+\mathbf{H}_{t} \mathbf{z}_{t}+\epsilon_{t}
\]
where \(\mathbf{b}_{t}\) is an \(N_{y} \times 1\) vector, \(\mathbf{H}_{t}\) is an \(N_{y} \times N_{z}\) matrix, the sequence of observation noise \(\epsilon_{t}\) is independent, \(\mathbf{z}_{t}\) is an \(N_{z} \times 1\) state vector, and \(\mathbf{y}_{t}\) is an \(N_{y} \times 1\) observed vector.

The transition (or state) equation is denoted as a first-order Markov process of the state vector.
\[
\mathbf{z}_{t+1}=\mathbf{a}_{t}+\mathbf{F}_{t} \mathbf{z}_{t}+\eta_{t}
\]
where \(\mathbf{a}_{t}\) is an \(N_{z} \times 1\) vector, \(\mathbf{F}_{t}\) is an \(N_{z} \times N_{z}\) transition matrix, and the sequence of transition noise \(\eta_{t}\) is independent. This equation is often called a shifted transition equation because the state vector is shifted forward one time period. The transition equation can also be denoted by using an alternative specification
\[
\mathbf{z}_{t}=\mathbf{a}_{t}+\mathbf{F}_{t} \mathbf{z}_{t-1}+\eta_{t}
\]

There is no real difference between the shifted transition equation and this alternative equation if the observation noise and transition equation noise are uncorrelated-that is, \(E\left(\eta_{t} \epsilon_{t}^{\prime}\right)=0\). It is assumed that
\[
\begin{aligned}
E\left(\eta_{t} \eta_{s}^{\prime}\right) & =\mathbf{V}_{t} \delta_{t s} \\
E\left(\epsilon_{t} \epsilon_{s}^{\prime}\right) & =\mathbf{R}_{t} \delta_{t s} \\
E\left(\eta_{t} \epsilon_{s}^{\prime}\right) & =\mathbf{G}_{t} \delta_{t s}
\end{aligned}
\]
where
\[
\delta_{t s}= \begin{cases}1 & \text { if } t=s \\ 0 & \text { if } t \neq s\end{cases}
\]

De Jong (1991a) proposed a diffuse Kalman filter that can handle an arbitrarily large initial state covariance matrix. The diffuse initial state assumption is reasonable if you encounter the case of parameter uncertainty or SSM nonstationarity. The SSM of the diffuse Kalman filter is written
\[
\begin{aligned}
\mathbf{y}_{t} & =\mathbf{X}_{t} \beta+\mathbf{H}_{t} \mathbf{z}_{t}+\epsilon_{t} \\
\mathbf{z}_{t+1} & =\mathbf{W}_{t} \beta+\mathbf{F}_{t} \mathbf{z}_{t}+\eta_{t} \\
\mathbf{z}_{0} & =\mathbf{a}+\mathbf{A} \delta \\
\beta & =\mathbf{b}+\mathbf{B} \delta
\end{aligned}
\]
where \(\delta\) is a random variable with a mean of \(\mu\) and a variance of \(\sigma^{2} \Sigma\). When \(\Sigma \rightarrow \infty\), the SSM is said to be diffuse.

The KALCVF call computes the one-step prediction \(\mathbf{z}_{t+1 \mid t}\) and the filtered estimate \(\mathbf{z}_{t \mid t}\), together with their covariance matrices \(\mathbf{P}_{t+1 \mid t}\) and \(\mathbf{P}_{t \mid t}\), using forward recursions. You can obtain the \(k\)-step prediction \(\mathbf{z}_{t+k \mid t}\) and its covariance matrix \(\mathbf{P}_{t+k \mid t}\) with the KALCVF call. The KALCVS call uses backward recursions to compute the smoothed estimate \(\mathbf{z}_{t \mid T}\) and its covariance matrix \(\mathbf{P}_{t \mid T}\) when there are \(T\) observations in the complete data.

The KALDFF call produces one-step prediction of the state and the unobserved random vector \(\delta\) as well as their covariance matrices. The KALDFS call computes the smoothed estimate \(\mathbf{z}_{t \mid T}\) and its covariance matrix \(\mathbf{P}_{t \mid T}\).

\section*{Syntax}

CALL KALCVF (pred, vpred, filt, vfilt, data, lead, \(a, f, b, h\),
var \(<, z 0, v z 0>)\);
CALL KALCVS(sm, vsm, data, \(a, f, b, h\), var, pred, vpred \(<, u n\), vun>);
CALL KALDFF (pred, vpred, initial, s2, data, lead, int, coef, var,
intd, coefd <, n0, at, mt, qt>);
CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at, \(m t, s 2<, u n\), vun>);

\section*{Example 10.2. Kalman Filtering: Likelihood Function Evaluation}

In the following example, the log-likelihood function of the SSM is computed by using prediction error decomposition. The annual real GNP series, \(y_{t}\), can be decomposed as
\[
y_{t}=\mu_{t}+\epsilon_{t}
\]
where \(\mu_{t}\) is a trend component and \(\epsilon_{t}\) is a white noise error with \(\epsilon_{t} \sim\left(0, \sigma_{\epsilon}^{2}\right)\). Refer to Nelson and Plosser (1982) for more details about these data. The trend component is assumed to be generated from the following stochastic equations:
\[
\begin{aligned}
\mu_{t} & =\mu_{t-1}+\beta_{t-1}+\eta_{1 t} \\
\beta_{t} & =\beta_{t-1}+\eta_{2 t}
\end{aligned}
\]
where \(\eta_{1 t}\) and \(\eta_{2 t}\) are independent white noise disturbances with \(\eta_{1 t} \sim\left(0, \sigma_{\eta_{1}}^{2}\right)\) and \(\eta_{2 t} \sim\left(0, \sigma_{\eta_{2}}^{2}\right)\).

It is straightforward to construct the SSM of the real GNP series.
\[
\begin{aligned}
& y_{t}=\mathbf{H} \mathbf{z}_{t}+\epsilon_{t} \\
& \mathbf{z}_{t}=\mathbf{F z}_{t-1}+\eta_{t}
\end{aligned}
\]
where
\[
\begin{aligned}
\mathbf{H} & =(1,0) \\
\mathbf{F} & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
\mathbf{z}_{t} & =\left(\mu_{t}, \beta_{t}\right)^{\prime} \\
\eta_{t} & =\left(\eta_{1 t}, \eta_{2 t}\right)^{\prime} \\
\operatorname{Var}\left(\left[\begin{array}{l}
\eta_{t} \\
\epsilon_{t}
\end{array}\right]\right) & =\left[\begin{array}{ccc}
\sigma_{\eta 1}^{2} & 0 & 0 \\
0 & \sigma_{\eta 2}^{2} & 0 \\
0 & 0 & \sigma_{\epsilon}^{2}
\end{array}\right]
\end{aligned}
\]

When the observation noise \(\epsilon_{t}\) is normally distributed, the average log-likelihood function of the SSM is
\[
\begin{aligned}
\ell & =\frac{1}{T} \sum_{t=1}^{T} \ell_{t} \\
\ell_{t} & =-\frac{N_{y}}{2} \log (2 \pi)-\frac{1}{2} \log \left(\left|\mathbf{C}_{t}\right|\right)-\frac{1}{2} \hat{\epsilon}_{t}^{\prime} \mathbf{C}_{t}^{-1} \hat{\epsilon}_{t}
\end{aligned}
\]
where \(\mathbf{C}_{t}\) is the mean square error matrix of the prediction error \(\hat{\epsilon}_{t}\), such that \(\mathbf{C}_{t}=\) \(\mathbf{H} \mathbf{P}_{t \mid t-1} \mathbf{H}^{\prime}+\mathbf{R}_{t}\).

The LIK module computes the average log-likelihood function. First, the average log-likelihood function is computed by using the default initial values: \(\mathrm{Z} 0=0\) and \(\mathrm{VZO}=10^{6} \mathrm{I}\). The second call of module LIK produces the average log-likelihood function with the given initial conditions: \(\mathrm{Z} 0=0\) and \(\mathrm{VZO}=10^{-3} \mathrm{I}\). You can notice a sizable difference between the uncertain initial condition (\(\mathrm{VZ} 0=10^{6} \mathrm{I}\)) and the almost deterministic initial condition (\(\mathrm{VZO}=10^{-3} \mathrm{I}\)) in Output 10.2.1.

Finally, the first 15 observations of one-step predictions, filtered values, and real GNP series are produced under the moderate initial condition \((\mathrm{VZ} 0=10 \mathrm{I})\). The data are the annual real GNP for the years 1909 to 1969. Here is the code:
```

title 'Likelihood Evaluation of SSM';
title2 'DATA: Annual Real GNP 1909-1969';
data gnp;
input y @@;
datalines;
116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3
135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7
;
proc iml;
start lik(y,a,b,f,h,var,z0,vz0);
nz = nrow(f);
n = nrow (y);
k = ncol(y);
const = k*log(8*atan(1));
if ( sum(z0 = .) | sum(vz0 = .) ) then
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
else
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);
et = y - pred*h`;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

```
```

                    vpred_i = vpred[(i-1)*nz+1:i*nz,];
                et_i = et[i,];
                    ft = h*vpred_i*h` + var[nz+1:nz+k,nz+1:nz+k];
                sum1 = sum1 + log(det(ft));
                sum2 = sum2 + et_i*inv(ft) *et_i`;
                end;
                return(-.5*const-.5*(sum1+sum2)/n);
    finish;
    start main;
use gnp;
read all var {y};
f = {1 1, 0 1};
h = {1 0};
a = j(nrow(f),1,0);
b = j(nrow (h),1,0);
var = diag(j(1, nrow(f)+ncol(y),1e-3));
/*-- initial values are computed --*/
z0 = j(1,nrow(f),.);
vzO = j(nrow(f),nrow(f),.);
logl = lik(y,a,b,f,h,var,z0,vzO);
print 'No initial values are given', logl;
/*-- initial values are given --*/
z0 = j(1,nrow(f),0);
vz0 = 1e-3\#i(nrow(f));
logl = lik(y,a,b,f,h,var,z0,vz0);
print 'Initial values are given', logl;
z0 = j(1,nrow(f),0);
vz0 = 10\#i(nrow(f));
call kalcvf(pred, vpred,filt,vfilt,y,1,a,f,b,h,var,z0,vz0);
print y pred filt;
finish;
run;

```

Output 10.2.1. Average Log Likelihood of SSM
```

                                    Likelihood Evaluation of SSM
    DATA: Annual Real GNP 1909-1969
No initial values are given
LOGL
-26314.66
Initial values are given
LOGL
-91884.41

```

Output 10.2.2 shows the observed data, the predicted state vectors, and the filtered state vectors for the first 16 observations.

Output 10.2.2. Filtering and One-Step Prediction

\section*{Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm}

The following example estimates the normal SSM of the mink-muskrat data by using the EM algorithm. The mink-muskrat series are detrended. Refer to Harvey (1989) for details of this data set. Since this EM algorithm uses filtering and smoothing, you can learn how to use the KALCVF and KALCVS calls to analyze the data. Consider the bivariate SSM:
\[
\begin{aligned}
\mathbf{y}_{t} & =\mathbf{H z}_{t}+\epsilon_{t} \\
\mathbf{z}_{t} & =\mathbf{F z}_{t-1}+\eta_{t}
\end{aligned}
\]
where \(\mathbf{H}\) is a \(2 \times 2\) identity matrix, the observation noise has a time-invariant covariance matrix \(\mathbf{R}\), and the covariance matrix of the transition equation is also assumed to be time invariant. The initial state \(\mathbf{z}_{0}\) has mean \(\mu\) and covariance \(\Sigma\). For estimation, the \(\Sigma\) matrix is fixed as
\[
\left[\begin{array}{ll}
0.1 & 0.0 \\
0.0 & 0.1
\end{array}\right]
\]
while the mean vector \(\mu\) is updated by the smoothing procedure such that \(\hat{\mu}=\mathbf{z}_{0 \mid T}\). Note that this estimation requires an extra smoothing step since the usual smoothing procedure does not produce \(\mathbf{z}_{T \mid 0}\).

The EM algorithm maximizes the expected log-likelihood function given the current parameter estimates. In practice, the log-likelihood function of the normal SSM is evaluated while the parameters are updated by using the M-step of the EM maximization
\[
\begin{aligned}
\mathbf{F}^{i+1} & =\mathbf{S}_{t}(1)\left[\mathbf{S}_{t-1}(0)\right]^{-1} \\
\mathbf{V}^{i+1} & =\frac{1}{T}\left(\mathbf{S}_{t}(0)-\mathbf{S}_{t}(0)\left[\mathbf{S}_{t-1}(0)\right]^{-1} \mathbf{S}_{t}^{\prime}(1)\right)
\end{aligned}
\]
\[
\begin{aligned}
\mathbf{R}^{i+1} & =\frac{1}{T} \sum_{t=1}^{T}\left[\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{z}_{t \mid T}\right)\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{z}_{t \mid T}\right)^{\prime}+\mathbf{H} \mathbf{P}_{t \mid T} \mathbf{H}^{\prime}\right] \\
\mu^{i+1} & =\mathbf{z}_{0 \mid T}
\end{aligned}
\]
where the index \(i\) represents the current iteration number, and
\[
\begin{aligned}
& \mathbf{S}_{t}(0)=\sum_{t=1}^{T}\left(\mathbf{P}_{t \mid T}+\mathbf{z}_{t \mid T} \mathbf{z}_{t \mid T}^{\prime}\right), \\
& \mathbf{S}_{t}(1)=\sum_{t=1}^{T}\left(\mathbf{P}_{t, t-1 \mid T}+\mathbf{z}_{t \mid T} \mathbf{z}_{t-1 \mid T}^{\prime}\right)
\end{aligned}
\]

It is necessary to compute the value of \(\mathbf{P}_{t, t-1 \mid T}\) recursively such that
\[
\mathbf{P}_{t-1, t-2 \mid T}=\mathbf{P}_{t-1 \mid t-1} \mathbf{P}_{t-2}^{* \prime}+\mathbf{P}_{t-1}^{*}\left(\mathbf{P}_{t, t-1 \mid T}-\mathbf{F} \mathbf{P}_{t-1 \mid t-1}\right) \mathbf{P}_{t-2}^{* \prime}
\]
where \(\mathbf{P}_{t}^{*}=\mathbf{P}_{t \mid t} \mathbf{F}^{\prime} \mathbf{P}_{t+1 \mid t}^{-}\)and the initial value \(\mathbf{P}_{t, T-1 \mid T}\) is derived by using the formula
\[
\mathbf{P}_{T, T-1 \mid T}=\left[\mathbf{I}-\mathbf{P}_{t \mid t-1} \mathbf{H}^{\prime}\left(\mathbf{H} \mathbf{P}_{t \mid t-1} \mathbf{H}^{\prime}+\mathbf{R}\right) \mathbf{H}\right] \mathbf{F} \mathbf{P}_{T-1 \mid T-1}
\]

Note that the initial value of the state vector is updated for each iteration
\[
\begin{aligned}
\mathbf{z}_{1 \mid 0} & =\mathbf{F} \mu^{i} \\
\mathbf{P}_{1 \mid 0} & =\mathbf{F}^{i} \Sigma \mathbf{F}^{i \prime}+\mathbf{V}^{i}
\end{aligned}
\]

The objective function value is computed as \(-2 \ell\) in the IML module LIK. The loglikelihood function is written
\[
\ell=-\frac{1}{2} \sum_{t=1}^{T} \log \left(\left|\mathbf{C}_{t}\right|\right)-\frac{1}{2} \sum_{t=1}^{T}\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{z}_{t \mid t-1}\right) \mathbf{C}_{t}^{-1}\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{z}_{t \mid t-1}\right)^{\prime}
\]
where \(\mathbf{C}_{t}=\mathbf{H} \mathbf{P}_{t \mid t-1} \mathbf{H}^{\prime}+\mathbf{R}\).
The iteration history is shown in Output 10.3.1. As shown in Output 10.3.2, the eigenvalues of \(\mathbf{F}\) are within the unit circle, which indicates that the SSM is stationary. However, the muskrat series (Y1) is reported to be difference stationary. The estimated parameters are almost identical to those of the \(\operatorname{VAR}(1)\) estimates. Refer to Harvey (1989, p. 469). Finally, multistep forecasts of \(y_{t}\) are computed by using the KALCVF call. Here is the code:
```

call kalcvf(pred, vpred, filt,vfilt, Y, 15,a,f,b,h,var, z0,vz0);

```

The predicted values of the state vector \(\mathbf{z}_{t}\) and their standard errors are shown in Output 10.3.3. Here is the code:
```

title 'SSM Estimation using EM Algorithm';
data one;
input y1 y2 @@;
datalines;
. . . data lines omitted . . .
;
proc iml;
start lik(y,pred,vpred,h,rt);
n = nrow(y);
nz = ncol(h);
et = y - pred*h`;             sum1 = 0;             sum2 = 0;             do i = 1 to n;                 vpred_i = vpred[(i-1)*nz+1:i*nz,];                 et_i = et[i,];                 ft = h*vpred_i*h` + rt;
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i`;             end;             return(sum1+sum2);         finish;         start main;             use one;             read all into y var {y1 y2};             /*-- mean adjust series --*/             t = nrow (y);             ny = ncol(y);             nz = ny;             f = i(nz);             h = i(ny);             /*-- observation noise variance is diagonal --*/             rt = 1e-5#i(ny);             /*-- transition noise variance --*/             vt = .1#i(nz);             a = j(nz,1,0);             b = j(ny,1,0);             myu = j(nz,1,0);             sigma = .1#i(nz);             converge = 0;             logl0 = 0.0;             do iter = 1 to 100 while( converge = 0 );             /*--- construct big cov matrix --*/             var = ( vt || j(nz,ny,0) ) //                 ( j(ny,nz,0) l| rt );             /*-- initial values are changed --*/             zO = myu` * f';
vzO = f * sigma * f` + vt;
/*-- filtering to get one-step prediction and filtered value --*/
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);

```
```

/*-- smoothing using one-step prediction values --*/
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);
/*-- compute likelihood values --*/
logl = lik(y,pred,vpred,h,rt);
/*-- store old parameters and function values --*/
myu0 = myu;
f0 = f;
vt0 = vt;
rt0 = rt;
diflog = logl - logl0;
logl0 = logl;
itermat = itermat // ( iter || logl0 || shape(f0,1) || myu0` ); /*-- obtain P*(t) to get P_T_0 and Z_T_0 --*/ /*-- these values are not usually needed --*/ /*-- See Harvey (1989 p154) or Shumway (1988, p177) --*/ jt1 = sigma * f` * inv(vpred[1:nz,]);
p_t_0 = sigma + jt1*(vsm[1:nz,] - vpred[1:nz,])*jt1`; z_t_0 = myu + jt1*(sm[1,]` - pred[1,]`); p_t1_t = vpred[(t-1)*nz+1:t*nz,]; p_t1_t1 = vfilt[(t-2)*nz+1:(t-1)*nz,]; kt = p_t1_t*h`*inv(h*p_t1_t*h`+rt); /*-- obtain P_T_TT1. See Shumway (1988, p180) --*/ p_t_ii1 = (i (nz)-kt*h)*f*p_t1_t1; st0 = vsm[(t-1)*nz+1:t*nz,] + sm[t,]`*sm[t,];
st1 = p_t_ii1 + sm[t,] `*sm[t-1,]; st00 = p_t_0 + z_t_0 * z_t_0`;
cov = (y[t,]` - h*sm[t,]`) * (y[t,]` - h*sm[t,]`)` +     h*vsm[(t-1)*nz+1:t*nz,]*h`;
do i = t to 2 by -1;
p_i1_i1 = vfilt[(i-2) *nz+1:(i-1) *nz,];
p_i1_i = vpred[(i-1)*nz+1:i*nz,];
jt1 = p_i1_i1 * f` * inv(p_i1_i);     p_i1_i = vpred[(i-2)*nz+1:(i-1)*nz,];     if ( i > 2 ) then         p_i2_i2 = vfilt[(i-3)*nz+1:(i-2) *nz,];     else         p_i2_i2 = sigma;     jt2 = p_i2_i2 * f` * inv(p_i1_i);
p_t_i1i2 = p_i1_i1*jt2` + jt1*(p_t_ii1 - f*p_i1_i1)*jt2`;
p_t_ii1 = p_t_i1i2;
temp = vsm[(i-2)*nz+1:(i-1)*nz,];
sm1 = sm[i-1,]`;     st0 = st0 + ( temp + sm1 * sm1` );
if ( i > 2 ) then
st1 = st1 + ( p_t_ii1 + sm1 * sm[i-2,]);
else st1 = st1 + ( p_t_ii1 + sm1 * z_t_0`);     st00 = st00 + ( temp + sm1 * sm1` );
cov = cov + ( h * temp * h` +             (y[i-1,]` - h * sm1)*(y[i-1,]` - h * sm1)` );
end;
/*-- M-step: update the parameters --*/
myu = z_t_0;
f = st1 * inv(st00);

```
```

        vt = (st0 - st1 * inv(st00) * st1')/t;
        rt = cov / t;
    /*-- check convergence --*/
        if ( max(abs((myu - myu0)/(myu0+1e-6))) < 1e-2 &
            max(abs((f - f0)/(f0+1e-6))) < 1e-2 &
            max(abs((vt - vt0)/(vt0+1e-6))) < 1e-2 &
            max(abs((rt - rt0)/(rt0+1e-6))) < 1e-2 &
            abs((diflog)/(logl0+1e-6)) < 1e-3 ) then
            converge = 1;
    end;
    reset noname;
    colnm = {'Iter' '-2*log L' 'F11' 'F12' 'F21' 'F22'
            'MYU11' 'MYU22'};
    print itermat[colname=colnm format=8.4];
    eval = teigval(f0);
    colnm = {'Real' 'Imag' 'MOD' };
    eval = eval || sqrt((eval#eval)[,+]);
    print eval[colname=colnm];
    var = ( vt || j(nz,ny,0) ) //
            ( j(ny,nz,0) || rt );
    /*-- initial values are changed --*/
    z0 = myu' * f';
    vzO = f * sigma * f' + vt;
    free itermat;
    /*-- multistep prediction --*/
    call kalcvf(pred, vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);
    do i = 1 to 15;
    itermat = itermat // ( i || pred[t+i,] ||
                sqrt (vecdiag(vpred [(t+i-1) *nz+1:(t+i)*nz,]))' );
    end;
    colnm = {'n-Step' 'Z1_T_n' 'Z2_T_n' 'SE_Z1' 'SE_Z2'};
    print itermat[colname=colnm];
    finish;
run;

```

Output 10.3.1. Iteration History
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Iter \(-2 * \log\) L} & \multicolumn{6}{|l|}{SSM Estimation using EM Algorithm} \\
\hline & F11 & F12 & F21 & F22 & MYU11 & MYU22 \\
\hline 1.0000-154.010 & 1.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 \\
\hline \(2.0000-237.962\) & 0.7952 & -0.6473 & 0.3263 & 0.5143 & 0.0530 & 0.0840 \\
\hline \(3.0000-238.083\) & 0.7967 & -0.6514 & 0.3259 & 0.5142 & 0.1372 & 0.0977 \\
\hline \(4.0000-238.126\) & 0.7966 & -0.6517 & 0.3259 & 0.5139 & 0.1853 & 0.1159 \\
\hline \(5.0000-238.143\) & 0.7964 & -0.6519 & 0.3257 & 0.5138 & 0.2143 & 0.1304 \\
\hline \(6.0000-238.151\) & 0.7963 & -0.6520 & 0.3255 & 0.5136 & 0.2324 & 0.1405 \\
\hline \(7.0000-238.153\) & 0.7962 & -0.6520 & 0.3254 & 0.5135 & 0.2438 & 0.1473 \\
\hline \(8.0000-238.155\) & 0.7962 & -0.6521 & 0.3253 & 0.5135 & 0.2511 & 0.1518 \\
\hline \(9.0000-238.155\) & 0.7962 & -0.6521 & 0.3253 & 0.5134 & 0.2558 & 0.1546 \\
\hline 10.0000-238.155 & 0.7961 & -0.6521 & 0.3253 & 0.5134 & 0.2588 & 0.1565 \\
\hline
\end{tabular}

Output 10.3.2. Eigenvalues of F Matrix
\begin{tabular}{rrr}
Real & Imag & MOD \\
& & \\
0.6547534 & 0.438317 & 0.7879237 \\
0.6547534 & -0.438317 & 0.7879237
\end{tabular}

Output 10.3.3. Multistep Prediction
\begin{tabular}{|rrrrrr|}
\hline n-Step & Z1_T_n & Z2_T_n & SE_Z1 & SE_Z2 \\
& & & \\
1 & -0.055792 & -0.587049 & 0.2437666 & 0.237074 \\
2 & 0.3384325 & -0.319505 & 0.3140478 & 0.290662 \\
3 & 0.4778022 & -0.053949 & 0.3669731 & 0.3104052 \\
4 & 0.4155731 & 0.1276996 & 0.4021048 & 0.3218256 \\
5 & 0.2475671 & 0.2007098 & 0.419699 & 0.3319293 \\
6 & 0.0661993 & 0.1835492 & 0.4268943 & 0.3396153 \\
7 & -0.067001 & 0.1157541 & 0.430752 & 0.3438409 \\
8 & -0.128831 & 0.0376316 & 0.4341532 & 0.3456312 \\
9 & -0.127107 & -0.022581 & 0.4369411 & 0.3465325 \\
10 & -0.086466 & -0.052931 & 0.4385978 & 0.3473038 \\
11 & -0.034319 & -0.055293 & 0.4393282 & 0.3479612 \\
12 & 0.0087379 & -0.039546 & 0.4396666 & 0.3483717 \\
13 & 0.0327466 & -0.017459 & 0.439936 & 0.3485586 \\
14 & 0.0374564 & 0.0016876 & 0.4401753 & 0.3486415 \\
15 & 0.0287193 & 0.0130482 & 0.440335 & 0.3487034 \\
\hline
\end{tabular}

\section*{Example 10.4. Diffuse Kalman Filtering}

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call KALDFF. The transition equation is generated by using the following formula:
\[
\left[\begin{array}{l}
z_{1 t} \\
z_{2 t}
\end{array}\right]=\left[\begin{array}{cc}
1.5 & -0.5 \\
1.0 & 0.0
\end{array}\right]\left[\begin{array}{l}
z_{1 t-1} \\
z_{2 t-1}
\end{array}\right]+\left[\begin{array}{c}
\eta_{1 t} \\
0
\end{array}\right]
\]
where \(\eta_{1 t} \sim N(0,1)\). The transition equation is nonstationary since the transition matrix \(\mathbf{F}\) has one unit root. Here is the code:
```

proc iml;
z_1 = 0; z_2 = 0;
do i = 1 to 30;
z = 1.5*z_1 - .5*z_2 + rannor(1234567);
z_2 = z_1;
z_1 = z;
x = z + .8*rannor(1234578);
if ( i > 10 ) then y = y // x;
end;

```

The KALDFF and KALCVF calls produce one-step prediction, and the result shows that two predictions coincide after the fifth observation (Output 10.4.1). Here is the code:
```

t = nrow(y);
h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0}
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = ( vt || j(nz,ny,0) ) //
( j(ny,nz,0) || rt );
intd = j(nz+nb, 1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,
coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;

```

Output 10.4.1. Diffuse Kalman Filtering
\begin{tabular}{|rrrrr}
\hline \multicolumn{4}{c}{ Diffuse Kalman Filtering } \\
KALCVF_P & \multicolumn{3}{c}{ KALDFF_P } \\
& 0 & 0 & 0 & 0 \\
1.441911 & 0.961274 & 1.1214871 & 0.9612746 \\
-0.882128 & -0.267663 & -0.882138 & -0.267667 \\
-0.723156 & -0.527704 & -0.723158 & -0.527706 \\
1.2964969 & 0.871659 & 1.2964968 & 0.8716585 \\
-0.035692 & 0.1379633 & -0.035692 & 0.1379633 \\
-2.698135 & -1.967344 & -2.69135 & -1.967344 \\
-5.01039 & -4.158022 & -5.010039 & -4.158022 \\
-9.048134 & -7.719107 & -9.048134 & -7.719107 \\
-8.993153 & -8.508513 & -8.993153 & -8.508513 \\
-11.16619 & -10.44119 & -11.16619 & -10.44119 \\
-10.42932 & -10.34166 & -10.42932 & -10.34166 \\
-8.331091 & -8.822777 & -8.331091 & -8.822777 \\
-9.578258 & -9.450848 & -9.578258 & -9.450848 \\
-6.526555 & -7.241927 & -6.52655 & -7.241927 \\
-5.21851 & -5.813854 & -5.218651 & -5.813854 \\
-5.01855 & -5.291777 & -5.01855 & -5.291777 \\
-6.5699 & -6.284522 & -6.5699 & -6.284522 \\
-4.613301 & -4.995434 & -4.613301 & -4.995434 \\
-5.057926 & -5.09007 & -5.057926 & -5.09007
\end{tabular}

The likelihood function for the diffuse Kalman filter under the finite initial covariance matrix \(\Sigma_{\delta}\) is written
\[
\lambda(\mathbf{y})=-\frac{1}{2}\left[\mathbf{y}^{\#} \log \left(\hat{\sigma}^{2}\right)+\sum_{t=1}^{T} \log \left(\left|\mathbf{D}_{t}\right|\right)\right]
\]
where \(\mathbf{y}^{(\#)}\) is the dimension of the matrix \(\left(\mathbf{y}_{1}^{\prime}, \cdots, \mathbf{y}_{T}^{\prime}\right)^{\prime}\). The likelihood function for the diffuse Kalman filter under the diffuse initial covariance matrix \(\left(\Sigma_{\delta} \rightarrow \infty\right)\) is computed as \(\lambda(\mathbf{y})-\frac{1}{2} \log (|\mathbf{S}|)\), where the \(\mathbf{S}\) matrix is the upper \(N_{\delta} \times N_{\delta}\) matrix of \(\mathbf{Q}_{t}\). Output 10.4.2 on page 310 displays the \(\log\) likelihood and the diffuse \(\log\) likelihood. Here is the code:
```

d = 0;
do i = 1 to t;
dt = h*mt[(i-1)*nz+1:i*nz,]*h` + rt;
d = d + log(det (dt));
end;
s = qt [ (t-1) * (nd+1) +1:t* (nd+1) -1, 1:nd];
log_1 = - (t*log(s2) + d)/2;
dff_logl = log_l - log(det(s))/2;
print log_l dff_logl;

```

Output 10.4.2. Diffuse Likelihood Function

\section*{Vector Time Series Analysis Subroutines}

Vector time series analysis involves more than one dependent time series variable, with possible interrelations or feedback between the dependent variables.

The VARMASIM function generates various time series from the underlying VARMA models. Simulations of time series with known VARMA structure offer learning and developing vector time series analysis skills.

The VARMACOV subroutine provides the pattern of the autocovariance function of VARMA models and helps to identify and fit a proper model.

The VARMALIK subroutine provides the log-likelihood of a VARMA model and helps to obtain estimates of the parameters of a regression model.

The following subroutines are supported:

VARMACOV computes the theoretical cross covariances for a multivariate ARMA model

VARMALIK evaluates the log-likelihood function for a multivariate ARMA model

VARMASIM generates a multivariate ARMA time series
VNORMAL generates a multivariate normal random series
VTSROOT computes the characteristic roots of a multivariate ARMA model

\section*{Getting Started}

\section*{Stationary VAR Process}

Generate the process following the first-order stationary vector autoregressive model with zero mean
\[
\mathbf{y}_{t}=\left(\begin{array}{rr}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right) \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t} \text { with } \Sigma=\left(\begin{array}{rr}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right)
\]

The following statements compute the roots of characteristic function, compute the five lags of cross-covariance matrices, generate 100 observations simulated data, and evaluate the log-likelihood function of the VAR(1) model:
```

proc iml;
/* Stationary VAR(1) model */
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
call varmasim(yt,phi) sigma = sig n = 100 seed=3243; print yt;
call vtsroot(root,phi); print root;
call varmacov(crosscov,phi) sigma = sig lag = 5;
lag = {'0','','1','','2','','3','','4','','5',''};
print lag crosscov;
call varmalik(lnl,yt,phi) sigma = sig; print lnl;

```


Figure 10.28. Plot of Generated VAR(1) Process (VARMASIM)
The stationary VAR(1) processes show in Figure 10.28.
```

ROOT
0.75 0.3122499 0.8124038 0.3945069 22.603583
0.75 -0.31225 0.8124038-0.394507 -22.60358

```

Figure 10.29. Roots of VAR(1) Model (VTSROOT)
In Figure 10.29 , the first column is the real part \((R)\) of the root of the characteristic function and the second one is the imaginary part (\(I\)). The third column is the modulus, the squared root of \(R^{2}+I^{2}\). The fourth column is \(\operatorname{Tan}^{-1}(I / R)\) and the last one is the degree. Since moduli are less than one from the third column, the series is obviously stationary.
```

LAG CROSSCOV
0 5.3934173 3.8597124
3.8597124 5.0342051
14.5422445 4.3939641
2.1145523 3.826089
2 3.2537114 4.0435359
0.6244183 2.4165581
3 1.8826857 3.1652876
-0.458977 1.0996184
4 0.676579 2.0791977
-1.100582 0.0544993
5 -0.227704 1.0297067
-1.347948 -0.643999

```

Figure 10.30. Cross-covariance Matrices of \(\operatorname{VAR}(1)\) Model (VARMACOV)

In each matrix in Figure 10.30, the diagonal elements are corresponding to the autocovariance functions of each time series. The off-diagonal elements are corresponding to the cross-covariance functions of between two series.
```

LNL
-113.4708
2.5058678
224.43567

```

Figure 10.31. Log-Likelihood function of \(\operatorname{VAR}(1)\) Model (VARMALIK)
In Figure 10.31, the first row is the value of log-likelihood function; the second row is the sum of log determinant of the innovation variance; the last row is the weighted sum of squares of residuals.

\section*{Nonstationary VAR Process}

Generate the process following the error correction model with a cointegrated rank of 1 :
\[
(1-B) \mathbf{y}_{t}=\binom{-0.4}{0.1}(1-2) \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}
\]
with
\[
\Sigma=\left(\begin{array}{rr}
100 & 0 \\
0 & 100
\end{array}\right) \text { and } \mathbf{y}_{0}=0
\]

The following statements compute the roots of characteristic function and generate simulated data.
```

proc iml;
/* Nonstationary model */
sig = 100*i(2);
phi = {0.6 0.8, 0.1 0.8};
call varmasim(yt,phi) sigma = sig n = 100 seed=1324;
call vtsroot(root,phi); print root;
print yt;

```


Figure 10.32. Plot of Generated Nonstationary Vector Process (VARMASIM)
The nonstationary processes are shown in Figure 10.32 and have a comovement.
\begin{tabular}{|rrrrl|}
\hline \multicolumn{5}{c|}{ ROOT } \\
1 & 0 & 1 & 0 & 0 \\
0.4 & 0 & 0.4 & 0 & 0 \\
\hline
\end{tabular}

Figure 10.33. Roots of Nonstationary \(\operatorname{VAR}(1)\) Model (VTSROOT)
In Figure 10.33 , the first column is the real part \((R)\) of the root of the characteristic function and the second one is the imaginary part \((I)\). The third column is the modulus, the squared root of \(R^{2}+I^{2}\). The fourth column is \(\operatorname{Tan}^{-1}(I / R)\) and the last one is the degree. Since the moduli are greater than equal to one from the third column, the series is obviously nonstationary.

\section*{Syntax}

CALL VARMACOV(cov, phi, theta, sigma <, p, q, lag>);
CALL VARMALIK(Inl, series, phi, theta, sigma <, p, q, opt>);
CALL VARMASIM(series, phi, theta, mu, sigma, \(n<, p, q\), initial, seed>);
CALL VNORMAL(series, mu, sigma, \(n<\), seed>);
CALL VTSROOT(root, phi, theta<, p, q>);

\section*{Fractionally Integrated Time Series Analysis}

This section describes subroutines related to fractionally integrated time series analysis. The phenomenon of long memory can be observed in hydrology, finance, economics, and so on. Unlike with a stationary process, the correlations between observations of a long memory series are slowly decaying to zero.

The following subroutines are supported:

FARMACOV computes the autocovariance function for a fractionally integrated ARMA model.

FARMAFIT estimates the parameters for a fractionally integrated ARMA model.

FARMALIK computes the log-likelihood function for a fractionally integrated ARMA model.

FARMASIM generates a fractionally integrated ARMA process.
FDIF computes a fractionally differenced process.

\section*{Getting Started}

The fractional differencing enables the degree of differencing \(d\) to take any real value rather than being restricted to integer values. The fractionally differenced processes are capable of modeling long-term persistence. The process
\[
(1-B)^{d} y_{t}=\epsilon_{t}
\]
is known as a fractional Gaussian noise process or an \(\operatorname{ARFIMA}(0, d, 0)\) process, where \(d \in(-1,1) \backslash\{0\}, \epsilon_{t}\) is a white noise process with mean zero and variance \(\sigma_{\epsilon}^{2}\), and \(B\) is the backshift operator such that \(B^{j} \mathbf{y}_{t}=\mathbf{y}_{t-j}\). The extension of an ARFIMA \((0, d, 0)\) model combines fractional differencing with an \(\operatorname{ARMA}(p, q)\) model, known as an \(\operatorname{ARFIMA}(p, d, q)\) model.
Consider an \(\operatorname{ARFIMA}(0,0.4,0)\) represented as \((1-B)^{0.4} y_{t}=\epsilon_{t}\) where \(\epsilon_{t} \sim\) iid \(N(0,2)\). With the following statements you can
- generate the simulated 300 observations data
- obtain the fractionally differenced data
- compute the autocovariance function
- compute the log-likelihood function
- fit a fractionally integrated time series model to the data
```

proc iml;
/* ARFIMA (0,0.4,0) */
lag = (0:12)';

```
```

call farmacov(autocov_D_IS_04, 0.4);
call farmacov(D_IS_005, 0.05);
print lag autocov_D_IS_04 D_IS_005;
d = 0.4;
call farmasim(yt, d) n = 300 sigma = 2 seed=5345; print yt;
call fdif(zt, yt, d); print zt;
call farmalik(lnl, yt, d); print lnl;
call farmafit(d, ar, ma, sigma, yt); print d sigma;

```


Figure 10.34. Plot of Generated ARFIMA(\(0,0.4,0)\) Process (FARMASIM)

The FARMASIM function generates the data shown in Figure 10.34.

Figure 10.35. Plot of Fractionally Differenced Process (FDIF)

The FDIF function creates the fractionally differenced process. Figure 10.35 shows a white noise series.

LAG AUTOCOV_D_IS_04 D_IS_005
2.07009831 .0044485
1.38006560 .0528657
1.20755740 .0284662
1.11466830 .0197816
1.05274230 .0152744
1.00697090 .0124972
0.97100770 .0106069
0.94158320 .0092333
0.91680470 .008188
0.89548360 .0073647
0.87682770 .0066985
\(0.8602838 \quad 0.006148\)
0.84545130 .0056849

Figure 10.36. Autocovariance Functions of \(\operatorname{ARFIMA}(0,0.4,0)\) and ARFIMA \((0,0.05,0)\) Models (FARMACOV)

The first column is the autocovariance function of the ARFIMA(\(0,0.4,0\)) model, and the second column is the autocovariance function of the \(\operatorname{ARFIMA}(0,0.05,0)\) model. The first column decays to zero more slowly than the second column.
```

    LNL
    -101.2222
    ```

Figure 10.37. Log-Likelihood Function of \(\operatorname{ARFIMA}(0,0.4,0)\) Model (FARMALIK)
The first row value is the log-likelihood function of the ARFIMA \((0,0.4,0)\) model. Since the default option of the estimates method is the conditional sum of squares, the last two rows of Figure 10.37 do not have the values since the default estimation method is used.

\section*{D SIGMA}
0.3865071 .9631754

Figure 10.38. Parameter Estimation of ARFIMA(\(0,0.4,0\)) Model (FARMAFIT)
The final estimates of the parameters are \(d=0.387\) and \(\sigma^{2}=1.96\), while the true values of the data generating process are \(d=0.4\) and \(\sigma^{2}=2\).

\section*{Syntax}

CALL FARMACOV (cov, \(d<\), phi, theta, sigma, \(p, q\), lag>);
CALL FARMAFIT(d, phi, theta, sigma, series <, p, q, opt>);
CALL FARMALIK(Inl, series, \(d<\), phi, theta, sigma, \(p, q, o p t>)\);
CALL FARMASIM(series, \(d<\), phi, theta, mu, sigma, \(n, p, q\), initial, seed>);

CALL FDIF(out, series, d);

\section*{References}

Afifi, A. A. and Elashoff, R. M. (1967), "Missing Observations in Multivariate Statistics II. Point Estimation in Simple Linear Regression," Journal of the American Statistical Association, 62, 10-29.

Akaike, H. (1974), "A New Look at Statistical Model Identification," IEEE Transactions on Automatic Control, 19, 716-723.

Akaike, H. (1977), "On Entropy Maximization Principle," in Applications of Statistics, ed. P. R. Krishnaiah, Amsterdam: North-Holland Publishing Co., 27-41.

Akaike, H. (1978a), "A Bayesian Analysis of the Minimum AIC Procedure," Ann. Inst. Statist. Math., 30, 9-14.

Akaike, H. (1978b), "Time Series Analysis and Control through Parametric Models," in Applied Time Series Analysis, ed. D.F. Findley, New York: Academic Press, \(1-23\).

Akaike, H. (1979), "A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting," Biometrika, 66, 237-242.

Akaike, H. (1980a), "Likelihood and the Bayes Procedure," Bay Statistics, eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and M. Smith, Valencia, Spain: University Press.

Akaike, H. (1980b), "Seasonal Adjustment by a Bayesian Modeling," Journal of Time Series Analysis, 1, 1-13.

Akaike, H. (1981), "Likelihood of a Model and Information Criteria," Journal of Econometrics, 16, 3-14.

Akaike, H. (1986), "The Selection of Smoothness Priors for Distributed Lag Estimation," in Bayesian Inference and Decision Techniques, ed. P. Goel and A. Zellner, Elsevier Science Publishers, 109-118.

Akaike, H. and Ishiguro, M. (1980), "Trend Estimation with Missing Observations," Ann. Inst. Statist. Math., 32, 481-488.

Akaike, H. and Nakagawa, T. (1988), Statistical Analysis and Control of Dynamic Systems, Tokyo: KTK Scientific Publishers.

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John Wiley \& Sons, Inc.

Ansley, C. F. (1980), "Computation of the Theoretical Autocovariance Function for a Vector ARMA Process," Journal Statistical Computation and Simulation, 12, 15-24.

Ansley, C. F. and Kohn, R. (1986), "A Note on Reparameterizing a Vector Autoregressive Moving Average Model to Enforce Stationary," Journal of Statistical Computation and Simulation, 24, 99-106.

Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second Edition, New York: Springer-Verlag.

Chung, C. F. (1996), "A Generalized Fractionally Integrated ARMA Process," Journal of Time Series Analysis, 2, 111-140.

De Jong, P. (1991a), "The Diffuse Kalman Filter," Annals of Statistics, 19, 1073-1083.

Doan, T., Litterman, R., and Sims, C. (1984), "Forecasting and Conditional Projection using Realistic Prior Distributions," Econometric Review, 3, 1-100.

Gersch, W. and Kitagawa, G. (1983), "The Prediction of Time Series with Trends and Seasonalities," Journal of Business and Economic Statistics, 1, 253-264.

Geweke, J. and Porter-Hudak, S. (1983), "The Estimation and Application of Long Memory Time Series Models," Journal of Time Series Analysis, 4, 221-238.

Granger, C. W. J. and Joyeux, R. (1980), "An Introduction to Long Memory Time Series Models and Fractional Differencing," Journal of Time Series Analysis, 1, 15-39.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.

Hosking, J. R. M. (1981), "Fractional Differencing," Biometrika, 68, 165-176.
Ishiguro, M. (1984), "Computationally Efficient Implementation of a Bayesian Seasonal Adjustment Procedure," Journal of Time Series Analysis, 5, 245-253.

Ishiguro, M. (1987), "TIMSAC-84: A New Time Series Analysis and Control Package," Proceedings of American Statistical Association: Business and Economic Section, 33-42.

Jones, R. H. and Brelsford, W. M. (1967), "Time Series with Periodic Structure," Biometrika, 54, 403-408.

Kitagawa, G. (1981), "A Nonstationary Time Series Model and Its Fitting by a Recursive Filter," Journal of Time Series Analysis, 2, 103-116.

Kitagawa, G. (1983), "Changing Spectrum Estimation," Journal of Sound and Vibration, 89, 433-445.

Kitagawa, G. and Akaike, H. (1978), "A Procedure for the Modeling of Nonstationary Time Series," Ann. Inst. Statist. Math., 30, 351-363.

Kitagawa, G. and Akaike, H. (1981), "On TIMSAC-78," in Applied Time Series Analysis II, ed. D. F. Findley, New York: Academic Press, 499-547.

Kitagawa, G. and Akaike, H. (1982), "A Quasi Bayesian Approach to Outlier Detection," Ann. Inst. Statist. Math., 34, 389-398.

Kitagawa, G. and Gersch, W. (1984), "A Smoothness Priors-State Space Modeling of Time Series with Trend and Seasonality," Journal of the American Statistical Association, 79, 378-389.

Kitagawa, G. and Gersch, W. (1985a), "A Smoothness Priors Time-Varying AR Coefficient Modeling of Nonstationary Covariance Time Series," IEEE Transactions on Automatic Control, 30, 48-56.

Kitagawa, G. and Gersch, W. (1985b), "A Smoothness Priors Long AR Model Method for Spectral Estimation," IEEE Transactions on Automatic Control, 30, 57-65.

Kohn, R. and Ansley, C. F. (1982), "A Note on Obtaining the Theoretical Autocovariances of an ARMA Process," Journal Statistical Computation and Simulation, 15, 273-283.

Li, W. K. and McLeod, A. I. (1986), "Fractional Time Series Modeling," Biometrika, 73, 217-221.

Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis, Berlin: Springer-Verlag.

Mittnik, S. (1990), "Computation of Theoretical Autocovariance Matrices of Multivariate Autoregressive Moving Average Time Series," Journal of Royal Statistical Society, B, 52, 151-155.

Nelson, C. P. and Plosser, C. I. (1982), "Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications," Journal of Monetary Economics, 10, 139-162.

Pagano, M. (1978), "On Periodic and Multiple Autoregressions," The Annals of Statistics, 6, 1310-1317.

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, Second Edition, New York: Springer-Verlag.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986), Akaike Information Criterion Statistics, Tokyo: KTK Scientific Publishers.

Shiller, R. J. (1973), "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, 41, 775-788.

Sowell, F. (1992), "Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models," Journal of Econometrics, 53, 165-88.

Shumway, R. H. (1988), Applied Statistical Time Series Analysis, Englewood Cliffs, NJ: Prentice-Hall.

Tamura, Y. H. (1986), "An Approach to the Nonstationary Process Analysis," Ann. Inst. Statist. Math., 39, 227-241.

Wei, W. W. S. (1990), Time Series Analysis: Univariate and Multivariate Methods, Redwood: Addison-Wesley.

Whittaker, E. T. (1923), "On a New Method of Graduation," Proceedings of the Edinborough Mathematical Society, 41, 63-75.

Whittaker, E. T. and Robinson, G. (1944), Calculus of Observation, Fourth Edition, London: Blackie \& Son Limited.

Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics, New York: John Wiley \& Sons, Inc.

\section*{Chapter 11 \\ Nonlinear Optimization Examples}

\section*{Chapter Contents}
OVERVIEW 325
GETTING STARTED 327
DETAILS 334
Global versus Local Optima 334
Kuhn-Tucker Conditions 336
Definition of Return Codes 337
Objective Function and Derivatives 337
Finite-Difference Approximations of Derivatives 342
Parameter Constraints 345
Options Vector 347
Termination Criteria 352
Control Parameters Vector 359
Printing the Optimization History 362
NONLINEAR OPTIMIZATION EXAMPLES 363
Example 11.1. Chemical Equilibrium 363
Example 11.2. Network Flow and Delay 367
Example 11.3. Compartmental Analysis 371
Example 11.4. MLEs for Two-Parameter Weibull Distribution 380
Example 11.5. Profile-Likelihood-Based Confidence Intervals 382
Example 11.6. Survival Curve for Interval Censored Data 384
Example 11.7. A Two-Equation Maximum Likelihood Problem 391
Example 11.8. Time-Optimal Heat Conduction 394
REFERENCES 399

\section*{Chapter 11 \\ Nonlinear Optimization Examples}

\section*{Overview}

The IML procedure offers a set of optimization subroutines for minimizing or maximizing a continuous nonlinear function \(f=f(x)\) of \(n\) parameters, where \(x=\) \(\left(x_{1}, \ldots, x_{n}\right)^{T}\). The parameters can be subject to boundary constraints and linear or nonlinear equality and inequality constraints. The following set of optimization subroutines is available:
\begin{tabular}{ll}
NLPCG & Conjugate Gradient Method \\
NLPDD & Double Dogleg Method \\
NLPNMS & Nelder-Mead Simplex Method \\
NLPNRA & Newton-Raphson Method \\
NLPNRR & Newton-Raphson Ridge Method \\
NLPQN & (Dual) Quasi-Newton Method \\
NLPQUA & Quadratic Optimization Method \\
NLPTR & Trust-Region Method
\end{tabular}

The following subroutines are provided for solving nonlinear least squares problems:
\begin{tabular}{ll}
NLPLM & Levenberg-Marquardt Least Squares Method \\
NLPHQN & Hybrid Quasi-Newton Least Squares Methods
\end{tabular}

A least squares problem is a special form of minimization problem where the objective function is defined as a sum of squares of other (nonlinear) functions.
\[
f(x)=\frac{1}{2}\left\{f_{1}^{2}(x)+\cdots+f_{m}^{2}(x)\right\}
\]

Least squares problems can usually be solved more efficiently by the least squares subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite difference approximations for first- and second-order derivatives and of determining a feasible point subject to boundary and linear constraints:
\(\begin{array}{ll}\text { NLPFDD } & \text { Approximate Derivatives by Finite Differences } \\ \text { NLPFEA } & \text { Feasible Point Subject to Constraints }\end{array}\)

Each optimization subroutine works iteratively. If the parameters are subject only to linear constraints, all optimization and least squares techniques are feasible-point
methods; that is, they move from feasible point \(x^{(k)}\) to a better feasible point \(x^{(k+1)}\) by a step in the search direction \(s^{(k)}, k=1,2,3, \ldots\). If you do not provide a feasible starting point \(x^{(0)}\), the optimization methods call the algorithm used in the NLPFEA subroutine, which tries to compute a starting point that is feasible with respect to the boundary and linear constraints.

The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters. For problems with nonlinear constraints, these subroutines do not use a feasiblepoint method; instead, the algorithms begin with whatever starting point you specify, whether feasible or infeasible.

Each optimization technique requires a continuous objective function \(f=f(x)\), and all optimization subroutines except the NLPNMS subroutine require continuous firstorder derivatives of the objective function \(f\). If you do not provide the derivatives of \(f\), they are approximated by finite-difference formulas. You can use the NLPFDD subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least squares subroutines can also be obtained by using the OPTMODEL procedure or the NLP procedure in SAS/OR software.

The advantages of the IML procedure are as follows:
- You can use matrix algebra to specify the objective function, nonlinear constraints, and their derivatives in IML modules.
- The IML procedure offers several subroutines that can be used to specify the objective function or nonlinear constraints, many of which would be very difficult to write for the NLP procedure.
- You can formulate your own termination criteria by using the "ptit" module argument.

The advantages of the NLP procedure are as follows:
- Although identical optimization algorithms are used, the NLP procedure can be much faster because of the interactive and more general nature of the IML product.
- Analytic first- and second-order derivatives can be computed with a special compiler.
- Additional optimization methods are available in the NLP procedure that do not fit into the framework of this package.
- Data set processing is much easier than in the IML procedure. You can save results in output data sets and use them in subsequent runs.
- The printed output contains more information.

\section*{Getting Started}

\section*{Unconstrained Rosenbrock Function}

The Rosenbrock function is defined as
\[
\begin{aligned}
f(x) & =\frac{1}{2}\left\{100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\right\} \\
& =\frac{1}{2}\left\{f_{1}^{2}(x)+f_{2}^{2}(x)\right\}, \quad x=\left(x_{1}, x_{2}\right)
\end{aligned}
\]

The minimum function value \(f^{*}=f\left(x^{*}\right)=0\) is at the point \(x^{*}=(1,1)\).
The following code calls the NLPTR subroutine to solve the optimization problem:
```

proc iml;
title 'Test of NLPTR subroutine: Gradient Specified';
start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);
finish F_ROSEN;
start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);
finish G_ROSEN;
x = {-1.2 1.};
optn = {0 2};
call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
quit;

```

The NLPTR is a trust-region optimization method. The F_ROSEN module represents the Rosenbrock function, and the G_ROSEN module represents its gradient. Specifying the gradient can reduce the number of function calls by the optimization subroutine. The optimization begins at the initial point \(x=(-1.2,1)\). For more information about the NLPTR subroutine and its arguments, see the section "NLPTR Call" on page 824. For details about the options vector, which is given by the OPTN vector in the preceding code, see the section "Options Vector" on page 347.

A portion of the output produced by the NLPTR subroutine is shown in Figure 11.1 on page 328 .

Figure 11.1. NLPTR Solution to the Rosenbrock Problem
Since \(f(x)=\frac{1}{2}\left\{f_{1}^{2}(x)+f_{2}^{2}(x)\right\}\), you can also use least squares techniques in this situation. The following code calls the NLPLM subroutine to solve the problem. The output is shown in Figure 11.2 on page 329.
```

proc iml;
title 'Test of NLPLM subroutine: No Derivatives';
start F_ROSEN(x);
y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

```
```

    return(y);
    finish F_ROSEN;
x = {-1.2 1.};
optn = {2 2};
call nlplm(rc,xres,"F_ROSEN",x,optn);
quit;

```

Figure 11.2. NLPLM Solution Using the Least Squares Technique
The Levenberg-Marquardt least squares method, which is the method used by the NLPLM subroutine, is a modification of the trust-region method for nonlinear least squares problems. The F_ROSEN module represents the Rosenbrock function. Note that for least squares problems, the \(m\) functions \(f_{1}(x), \ldots, f_{m}(x)\) are specified as elements of a vector; this is different from the manner in which \(f(x)\) is specified for the other optimization techniques. No derivatives are specified in the preceding code, so the NLPLM subroutine computes finite-difference approximations. For more information about the NLPLM subroutine, see the section "NLPLM Call" on page 804.

\section*{Constrained Betts Function}

The linearly constrained Betts function (Hock \& Schittkowski 1981) is defined as
\[
f(x)=0.01 x_{1}^{2}+x_{2}^{2}-100
\]

The boundary constraints are
\[
\begin{aligned}
2 & \leq x_{1} \leq 50 \\
-50 & \leq x_{2} \leq 50
\end{aligned}
\]

The linear constraint is
\[
10 x_{1}-x_{2} \geq 10
\]

The following code calls the NLPCG subroutine to solve the optimization problem. The infeasible initial point \(x^{0}=(-1,-1)\) is specified, and a portion of the output is shown in Figure 11.3.
```

proc iml;
title 'Test of NLPCG subroutine: No Derivatives';
start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);
finish F_BETTS;
con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};
x = {-1. -1.};
optn = {0 2};
call nlpcg(rc,xres,"F_BETTS",x,optn,con);
quit;

```

The NLPCG subroutine performs conjugate gradient optimization. It requires only function and gradient calls. The F_BETTS module represents the Betts function, and since no module is defined to specify the gradient, first-order derivatives are computed by finite-difference approximations. For more information about the NLPCG subroutine, see the section "NLPCG Call" on page 793. For details about the constraint matrix, which is represented by the CON matrix in the preceding code, see the section "Parameter Constraints" on page 345.
```

NOTE: Initial point was changed to be feasible for boundary and
linear constraints.
Optimization Start
Parameter Estimates
Gradient Lower
Objective Bound
N Parameter
Estimate
Function
Constraint
0.136000 2.000000
1 X1
x2
-1.000000 -2.000000
-50.000000
Optimization Start
Parameter Estimates
Upper
Bound
Constraint
50.000000
50.000000
Value of Objective Function = -98.5376
Linear Constraints
1 59.00000 : 10.0000 <= + 10.0000* x1 - 1.0000* x2
Conjugate-Gradient Optimization
Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences
Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

```

Figure 11.3. NLPCG Solution to Betts Problem

Figure 11.3. (continued)
Since the initial point \((-1,-1)\) is infeasible, the subroutine first computes a feasible starting point. Convergence is achieved after three iterations, and the optimal point is given to be \(x^{*}=(2,0)\) with an optimal function value of \(f^{*}=f\left(x^{*}\right)=-99.96\). For more information about the printed output, see the section "Printing the Optimization History" on page 362.

\section*{Rosen-Suzuki Problem}

The Rosen-Suzuki problem is a function of four variables with three nonlinear constraints on the variables. It is taken from problem 43 of Hock and Schittkowski (1981). The objective function is
\[
f(x)=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+x_{4}^{2}-5 x_{1}-5 x_{2}-21 x_{3}+7 x_{4}
\]

The nonlinear constraints are
\[
\begin{aligned}
0 & \leq 8-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{1}+x_{2}-x_{3}+x_{4} \\
0 & \leq 10-x_{1}^{2}-2 x_{2}^{2}-x_{3}^{2}-2 x_{4}^{2}+x_{1}+x_{4} \\
0 & \leq 5-2 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-2 x_{1}+x_{2}+x_{4}
\end{aligned}
\]

Since this problem has nonlinear constraints, only the NLPQN and NLPNMS subroutines are available to perform the optimization. The following code solves the problem with the NLPQN subroutine:
```

proc iml;
start F_HS43(x);
f = x*x' + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);
finish F_HS43;
start C_HS43(x);
c=j(3,1,0.);
c[1] = 8 - x*x' - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x` - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]
- 2.*x[1] + x[2] + x[4];
return(c);
finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";

```

The F_HS43 module specifies the objective function, and the C_HS43 module specifies the nonlinear constraints. The OPTN vector is passed to the subroutine as the OPT input argument. See the section "Options Vector" on page 347 for more information. The value of OPTN[10] represents the total number of nonlinear constraints, and the value of OPTN[11] represents the number of equality constraints. In the preceding code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three constraints, all of which are inequality constraints. In the subroutine calls, instead of separating missing input arguments with commas, you can specify optional arguments with keywords, as in the CALL NLPQN statement in the preceding code. For details about the CALL NLPQN statement, see the section "NLPQN Call" on page 815.

The initial point for the optimization procedure is \(x=(1,1,1,1)\), and the optimal point is \(x^{*}=(0,1,2,-1)\), with an optimal function value of \(f\left(x^{*}\right)=-44\). Part of the output produced is shown in Figure 11.4 on page 333.

Figure 11.4. Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Optimization Results} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Iterations \\
Gradient Calls \\
Objective Function
\end{tabular}} & 7 & Function Calls & 9 \\
\hline & 9 & Active Constraints & 2 \\
\hline & -44.00000026 & Maximum Constraint Violation & \(9.1176306 \mathrm{E}-8\) \\
\hline \multirow[t]{2}{*}{Maximum Projected Gradient} & 0.0002265341 & Value Lagrange & -44 \\
\hline & & Function & \\
\hline Maximum Gradient of the Lagran Func & \[
0.00022158
\] & \begin{tabular}{l}
Slope of Search \\
Direction
\end{tabular} & -5.097332E-7 \\
\hline \multicolumn{4}{|l|}{FCONV2 convergence criterion satisfied.} \\
\hline \multicolumn{4}{|l|}{WARNING: The point \(x\) is feasible only at the LCEPSILON= 1E-7 range.} \\
\hline & Optimizat Paramete & n Results Estimates & \\
\hline & & Gradient & Gradient \\
\hline & & Objective & Lagrange \\
\hline N Parameter & Estimate & Function & Function \\
\hline 1 X 1 & -0.000001248 & -5.000002 & -0.000012804 \\
\hline 2 x2 & 1.000027 & -2.999945 & 0.000222 \\
\hline \(3 \times 3\) & 1.999993 & -13.000027 & -0.000054166 \\
\hline 4 X 4 & -1.000003 & 4.999995 & -0.000020681 \\
\hline \multicolumn{4}{|c|}{Value of Objective Function \(=-44.00000026\)} \\
\hline \multicolumn{4}{|c|}{Value of Lagrange Function \(=-44\)} \\
\hline
\end{tabular}

Figure 11.4. (continued)
In addition to the standard iteration history, the NLPQN subroutine includes the following information for problems with nonlinear constraints:
- CONMAX is the maximum value of all constraint violations.
- PRED is the value of the predicted function reduction used with the GTOL and FTOL2 termination criteria.
- ALFA is the step size \(\alpha\) of the quasi-Newton step.
- LFGMAX is the maximum element of the gradient of the Lagrange function.

\section*{Details}

\section*{Global versus Local Optima}

All the IML optimization algorithms converge toward local rather than global optima. The smallest local minimum of an objective function is called the global minimum, and the largest local maximum of an objective function is called the global maximum. Hence, the subroutines can occasionally fail to find the global optimum. Suppose you have the function \(f(x)=\frac{1}{27}\left(3 x_{1}^{4}-28 x_{1}^{3}+84 x_{1}^{2}-96 x_{1}+64\right)+x_{2}^{2}\), which has a local minimum at \(f(1,0)=1\) and a global minimum at the point \(f(4,0)=0\).

The following statements use two calls of the NLPTR subroutine to minimize the preceding function. The first call specifies the initial point \(x a=(0.5,1.5)\), and the second call specifies the initial point \(x b=(3,1)\). The first call finds the local optimum \(x^{*}=(1,0)\), and the second call finds the global optimum \(x^{*}=(4,0)\).
```

proc iml;
start F_GLOBAL(x);
f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
return(f);
finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra xrb;

```

One way to find out whether the objective function has more than one local optimum is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to the Kuhn-Tucker theorem in standard optimization literature. Using rather nonmathematical language, a local minimizer \(x^{*}\) satisfies the following conditions:
- There exists a small, feasible neighborhood of \(x^{*}\) that does not contain any point \(x\) with a smaller function value \(f(x)<f\left(x^{*}\right)\).
- The vector of first derivatives (gradient) \(g\left(x^{*}\right)=\nabla f\left(x^{*}\right)\) of the objective function \(f\) (projected toward the feasible region) at the point \(x^{*}\) is zero.
- The matrix of second derivatives \(G\left(x^{*}\right)=\nabla^{2} f\left(x^{*}\right)\) (Hessian matrix) of the objective function \(f\) (projected toward the feasible region) at the point \(x^{*}\) is positive definite.

A local maximizer has the largest value in a feasible neighborhood and a negative definite Hessian.

The iterative optimization algorithm terminates at the point \(x^{t}\), which should be in a small neighborhood (in terms of a user-specified termination criterion) of a local optimizer \(x^{*}\). If the point \(x^{t}\) is located on one or more active boundary or general linear constraints, the local optimization conditions are valid only for the feasible region. That is,
- the projected gradient, \(Z^{T} g\left(x^{t}\right)\), must be sufficiently small
- the projected Hessian, \(Z^{T} G\left(x^{t}\right) Z\), must be positive definite for minimization problems or negative definite for maximization problems

If there are \(n\) active constraints at the point \(x^{t}\), the nullspace \(Z\) has zero columns and the projected Hessian has zero rows and columns. A matrix with zero rows and columns is considered positive as well as negative definite.

\section*{Kuhn-Tucker Conditions}

The nonlinear programming (NLP) problem with one objective function \(f\) and \(m\) constraint functions \(c_{i}\), which are continuously differentiable, is defined as follows:
\[
\begin{aligned}
\operatorname{minimize} f(x), & x \in \mathcal{R}^{n}, \text { subject to } \\
c_{i}(x)=0, & i=1, \ldots, m_{e} \\
c_{i}(x) \geq 0, & i=m_{e}+1, \ldots, m
\end{aligned}
\]

In the preceding notation, \(n\) is the dimension of the function \(f(x)\), and \(m_{e}\) is the number of equality constraints. The linear combination of objective and constraint functions
\[
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} c_{i}(x)
\]
is the Lagrange function, and the coefficients \(\lambda_{i}\) are the Lagrange multipliers.
If the functions \(f\) and \(c_{i}\) are twice differentiable, the point \(x^{*}\) is an isolated local minimizer of the NLP problem, if there exists a vector \(\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)\) that meets the following conditions:
- Kuhn-Tucker conditions
\[
\begin{array}{ll}
c_{i}\left(x^{*}\right)=0, & i=1, \ldots, m_{e} \\
c_{i}\left(x^{*}\right) \geq 0, \quad \lambda_{i}^{*} \geq 0, \quad \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, & i=m_{e}+1, \ldots, m \\
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 &
\end{array}
\]
- second-order condition

Each nonzero vector \(y \in \mathcal{R}^{n}\) with
\[
y^{T} \nabla_{x} c_{i}\left(x^{*}\right)=0 i=1, \ldots, m_{e}, \quad \text { and } \forall i \in m_{e}+1, \ldots, m ; \lambda_{i}^{*}>0
\]
satisfies
\[
y^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) y>0
\]

In practice, you cannot expect the constraint functions \(c_{i}\left(x^{*}\right)\) to vanish within machine precision, and determining the set of active constraints at the solution \(x^{*}\) might not be simple.

\section*{Definition of Return Codes}

The return code, which is represented by the output parameter \(r c\) in the optimization subroutines, indicates the reason for optimization termination. A positive value indicates successful termination, while a negative value indicates unsuccessful termination. Table 11.1 gives the reason for termination associated with each return code.

Table 11.1. Summary of Return Codes
\begin{tabular}{cl}
\hline Code & Reason for Optimization Termination \\
\hline 1 & ABSTOL criterion satisfied (absolute F convergence) \\
2 & ABSFTOL criterion satisfied (absolute F convergence) \\
3 & ABSGTOL criterion satisfied (absolute G convergence) \\
4 & ABSXTOL criterion satisfied (absolute X convergence) \\
5 & FTOL criterion satisfied (relative F convergence) \\
6 & GTOL criterion satisfied (relative G convergence) \\
7 & XTOL criterion satisfied (relative X convergence) \\
8 & FTOL2 criterion satisfied (relative F convergence) \\
9 & GTOL2 criterion satisfied (relative G convergence) \\
10 & \begin{tabular}{l}
\(n\) linear independent constraints are active at \(x r\) and none of them could be \\
released to improve the function value
\end{tabular} \\
\hline-1 & \begin{tabular}{l}
objective function cannot be evaluated at starting point \\
derivatives cannot be evaluated at starting point
\end{tabular} \\
-2 & \begin{tabular}{l}
objective function cannot be evaluated during iteration \\
derivatives cannot be evaluated during iteration
\end{tabular} \\
-4 & \begin{tabular}{l}
optimization subroutine cannot improve the function value (this is a very \\
general formulation and is used for various circumstances) \\
there are problems in dealing with linearly dependent active constraints \\
(changing the LCSING value in the par vector can be helpful)
\end{tabular} \\
-7 & \begin{tabular}{l}
optimization process stepped outside the feasible region and the algorithm \\
to return inside the feasible region was not successful (changing the LCEPS
\end{tabular} \\
\hline-8 & \begin{tabular}{l}
value in the par vector can be helpful) \\
either the number of iterations or the number of function calls is larger than \\
the prespecified values in the \(t c\) vector (MAXIT and MAXFU)
\end{tabular} \\
-9 & \begin{tabular}{l}
this return code is temporarily not used (it is used in PROC NLP indicating \\
that more CPU than a prespecified value was used) \\
a feasible starting point cannot be computed
\end{tabular} \\
\hline-10
\end{tabular}

\section*{Objective Function and Derivatives}

The input argument fun refers to an IML module that specifies a function that returns \(f\), a vector of length \(m\) for least squares subroutines or a scalar for other optimization subroutines. The returned \(f\) contains the values of the objective function (or the least squares functions) at the point \(x\). Note that for least squares problems, you must specify the number of function values, \(m\), with the first element of the opt argument to allocate memory for the return vector. All the modules that you can specify as input arguments ("fun," "grd," "hes," "jac," "nlc," "jacnlc," and "ptit") accept only a single input argument, \(x\), which is the parameter vector. Using the GLOBAL
clause, you can provide more input arguments for these modules. Refer to the section "Numerical Considerations" on page 371 for an example.

All the optimization algorithms assume that \(f\) is continuous inside the feasible region. For nonlinearly constrained optimization, this is also required for points outside the feasible region. Sometimes the objective function cannot be computed for all points of the specified feasible region; for example, the function specification might contain the SQRT or LOG function, which cannot be evaluated for negative arguments. You must make sure that the function and derivatives of the starting point can be evaluated. There are two ways to prevent large steps into infeasible regions of the parameter space during the optimization process:
- The preferred way is to restrict the parameter space by introducing more boundary and linear constraints. For example, the boundary constraint \(x_{j}>=1 \mathrm{E}-10\) prevents infeasible evaluations of \(\log \left(x_{j}\right)\). If the function module takes the square root or the \(\log\) of an intermediate result, you can use nonlinear constraints to try to avoid infeasible function evaluations. However, this might not ensure feasibility.
- Sometimes the preferred way is difficult to practice, in which case the function module can return a missing value. This can force the optimization algorithm to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continuous first-order derivatives of the objective function \(f\). The NLPTR, NLPNRA, and NLPNRR techniques also require continuous second-order derivatives. If you do not provide the derivatives with the IML modules " \(g r d\)," "hes," or "jac," they are automatically approximated by finite-difference formulas. Approximating first-order derivatives by finite differences usually requires \(n\) additional calls of the function module. Approximating second-order derivatives by finite differences using only function calls can be extremely computationally expensive. Hence, if you decide to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least analytical first-order derivatives. Then, approximating second-order derivatives by finite differences requires only \(n\) or \(2 n\) additional calls of the function and gradient modules.

For all input and output arguments, the subroutines assume that
- the number of parameters \(n\) corresponds to the number of columns. For example, \(x\), the input argument to the modules, and \(g\), the output argument returned by the " \(g r d\) " module, are row vectors with \(n\) entries, and \(G\), the Hessian matrix returned by the "hes" module, must be a symmetric \(n \times n\) matrix.
- the number of functions, \(m\), corresponds to the number of rows. For example, the vector \(f\) returned by the "fun" module must be a column vector with \(m\) entries, and in least squares problems, the Jacobian matrix \(\mathbf{J}\) returned by the "jac" module must be an \(m \times n\) matrix.

You can verify your analytical derivative specifications by computing finitedifference approximations of the derivatives of \(f\) with the NLPFDD subroutine. For
most applications, the finite-difference approximations of the derivatives are very precise. Occasionally, difficult objective functions and zero \(x\) coordinates cause problems. You can use the par argument to specify the number of accurate digits in the evaluation of the objective function; this defines the step size \(h\) of the firstand second-order finite-difference formulas. See the section "Finite-Difference Approximations of Derivatives" on page 342.

Note: For some difficult applications, the finite-difference approximations of derivatives that are generated by default might not be precise enough to solve the optimization or least squares problem. In such cases, you might be able to specify better derivative approximations by using a better approximation formula. You can submit your own finite-difference approximations by using the IML module "grd," "hes," "jac," or "jacnlc." See Example 11.3 on page 371 for an illustration.

In many applications, calculations used in the computation of \(f\) can help compute derivatives at the same point efficiently. You can save and reuse such calculations with the GLOBAL clause. As with many other optimization packages, the subroutines call the "grd," "hes," or "jac" modules only after a call of the "fun" module.

The following statements specify modules for the function, gradient, and Hessian matrix of the Rosenbrock problem:
```

proc iml;
start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);
finish F_ROSEN;
start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);
finish G_ROSEN;
start H_ROSEN(x);
h = j(2,2,0.);
h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
h[2,2] = 100.;
h[1,2] = -200. * x[1];
h[2,1] = h[1,2];
return(h);
finish H_ROSEN;

```

The following statements specify a module for the Rosenbrock function when considered as a least squares problem. They also specify the Jacobian matrix of the least squares functions.
```

proc iml;
start F_ROSEN(x);

```
```

    y = j(1,2,0.);
    y[1] = 10. * (x[2] - x[1] * x[1]);
    y[2] = 1. - x[1];
    return(y);
    finish F_ROSEN;
start J_ROSEN(x);
jac = j(2,2,0.);
jac[1,1] = -20. * x[1]; jac[1,2] = 10.;
jac[2,1] = -1.; jac[2,2] = 0.;
return(jac);
finish J_ROSEN;

```

\section*{Diagonal or Sparse Hessian Matrices}

In the unconstrained or only boundary constrained case, the NLPNRA algorithm can take advantage of diagonal or sparse Hessian matrices submitted by the "hes" module. If the Hessian matrix \(G\) of the objective function \(f\) has a large proportion of zeros, you can save computer time and memory by specifying a sparse Hessian of dimension \(n n \times 3\) rather than a dense \(n \times n\) Hessian. Each of the \(n n\) rows \((i, j, g)\) of the matrix returned by the sparse Hessian module defines a nonzero element \(g_{i j}\) of the Hessian matrix. The row and column location is given by \(i\) and \(j\), and \(g\) gives the nonzero value. During the optimization process, only the values \(g\) can be changed in each call of the Hessian module "hes;" the sparsity structure \((i, j)\) must be kept the same. That means that some of the values \(g\) can be zero for particular values of \(x\). To allocate sufficient memory before the first call of the Hessian module, you must specify the number of rows, \(n n\), by setting the ninth element of the opt argument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian module input. The objective function, which is the Extended Powell's Singular Function, for \(n=40\) is a least squares problem:
\[
f(x)=\frac{1}{2}\left\{f_{1}^{2}(x)+\cdots+f_{m}^{2}(x)\right\}
\]
with
\[
\begin{aligned}
f_{4 i-3}(x) & =x_{4 i-3}+10 x_{4 i-2} \\
f_{4 i-2}(x) & =\sqrt{5}\left(x_{4 i-1}-x_{4 i}\right) \\
f_{4 i-1}(x) & =\left(x_{4 i-2}-2 x_{4 i-1}\right)^{2} \\
f_{4 i}(x) & =\sqrt{10}\left(x_{4 i-3}-x_{4 i}\right)^{2}
\end{aligned}
\]

The function and gradient modules are as follows:
```

start f_nlp22(x);
n=ncol (x);
f = 0.;
do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];

```
```

        r2 = x[i+2] - x[i+3];
        f2 = 5. * r2;
        r3 = x[i+1] - 2. * x[i+2];
        f3 = r3 * r3;
        r4 = x[i] - x[i+3];
        f4 = 10. * r4 * r4;
        f=f+f1 * f1 + r2 * f2 + f3 * f3 + r4 * r4 * f4;
    end;
    f = .5 * f;
    return(f);
    finish f_nlp22;
start g_nlp22(x);
n=ncol (x);
g = j(1,n,0.);
do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
g[i] = f1 + 2. * r4 * f4;
g[i+1] = 10. * f1 + 2. * r3 * f3;
g[i+2] = f2 - 4. * r3 * f3;
g[i+3] = -f2 - 2. * r4 * f4;
end;
return(g);
finish g_nlp22;

```

You can specify the sparse Hessian with the following module:
```

start hs_nlp22(x);
n=ncol (x);
nnz = 8 * (n / 4);
h = j(nnz,3,0.);
j = 0;
do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
j= j + 1; h[j,1] = i; h[j,2] = i;
h[j,3] = 1. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;
j= j+1;h[j,1] = i; h[j,2] = i+1;
h[j,3] = 10.;
j= j+1;h[j,1] = i; h[j,2] = i+3;
h[j,3] = -4. * f4;
h[j,3] = h[j,3] - 2. * f4;
j= j+1;h[j,1] = i+1;h[j,2] = i+1;

```
```

        h[j,3] = 100. + 4. * f3;
        h[j,3] = h[j,3] + 2. * f3;
        j= j+1; h[j,1] = i+1; h[j,2] = i+2;
        h[j,3] = -8. * f3;
        h[j,3] = h[j,3] - 4. * f3;
        j= j+1;h[j,1] = i+2; h[j,2] = i+2;
        h[j,3] = 5. + 16. * f3;
        h[j,3] = h[j,3] + 8. * f3;
        j= j+1; h[j,1] = i+2; h[j,2] = i+3;
        h[j,3] = -5.;
        j= j+1; h[j,1] = i+3; h[j,2] = i+3;
        h[j,3] = 5. + 4. * f4;
        h[j,3] = h[j,3] + 2. * f4;
    end;
    return(h);
    finish hs_nlp22;
n = 40;
x = j(1,n,0.);
do i=1 to n-3 by 4;
x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;
opt = j(1,11,.); opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

```

Note: If the sparse form of Hessian defines a diagonal matrix (that is, \(i=j\) in all \(n n\) rows), the NLPNRA algorithm stores and processes a diagonal matrix \(G\). If you do not specify any general linear constraints, the NLPNRA subroutine uses only order \(n\) memory.

\section*{Finite-Difference Approximations of Derivatives}

If the optimization technique needs first- or second-order derivatives and you do not specify the corresponding IML module " \(g r d\)," "hes," "jac," or "jacnlc," the derivatives are approximated by finite-difference formulas using only calls of the module "fun." If the optimization technique needs second-order derivatives and you specify the "grd" module but not the "hes" module, the subroutine approximates the secondorder derivatives by finite differences using \(n\) or \(2 n\) calls of the " \(g r d\) " module.

The eighth element of the opt argument specifies the type of finite-difference approximation used to compute first- or second-order derivatives and whether the finitedifference intervals, \(h\), should be computed by an algorithm of Gill et al. (1983). The value of opt[8] is a two-digit integer, \(i j\).
- If \(\operatorname{opt}[8]\) is missing or \(j=0\), the fast but not very precise forward-difference formulas are used; if \(j \neq 0\), the numerically more expensive central-difference formulas are used.
- If \(\operatorname{opt}[8]\) is missing or \(i \neq 1,2\), or 3 , the finite-difference intervals \(h\) are based only on the information of \(\operatorname{par}[8]\) or \(\operatorname{par}[9]\), which specifies the number of accurate digits to use in evaluating the objective function and nonlinear constraints, respectively. If \(i=1,2\), or 3 , the intervals are computed with an
algorithm by Gill et al. (1983). For \(i=1\), the interval is based on the behavior of the objective function; for \(i=2\), the interval is based on the behavior of the nonlinear constraint functions; and for \(i=3\), the interval is based on the behavior of both the objective function and the nonlinear constraint functions.

\section*{Forward-Difference Approximations}
- First-order derivatives: \(n\) additional function calls are needed.
\[
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+h_{i} e_{i}\right)-f(x)}{h_{i}}
\]
- Second-order derivatives based on function calls only, when the " \(g r d\) " module is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix, \(n+\) \(n^{2} / 2\) additional function calls are needed.
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}\right)-f\left(x+h_{j} e_{j}\right)+f(x)}{h_{i} h_{j}}
\]
- Second-order derivatives based on gradient calls, when the "grd" module is specified (Dennis and Schnabel 1983): \(n\) additional gradient calls are needed.
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{g_{i}\left(x+h_{j} e_{j}\right)-g_{i}(x)}{2 h_{j}}+\frac{g_{j}\left(x+h_{i} e_{i}\right)-g_{j}(x)}{2 h_{i}}
\]

\section*{Central-Difference Approximations}
- First-order derivatives: \(2 n\) additional function calls are needed.
\[
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+h_{i} e_{i}\right)-f\left(x-h_{i} e_{i}\right)}{2 h_{i}}
\]
- Second-order derivatives based on function calls only, when the "grd" module is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix, \(2 n+2 n^{2}\) additional function calls are needed.
\[
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{i}^{2}} & =\frac{-f\left(x+2 h_{i} e_{i}\right)+16 f\left(x+h_{i} e_{i}\right)-30 f(x)+16 f\left(x-h_{i} e_{i}\right)-f\left(x-2 h_{i} e_{i}\right)}{12 h_{i}^{2}} \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} & =\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}-h_{j} e_{j}\right)-f\left(x-h_{i} e_{i}+h_{j} e_{j}\right)+f\left(x-h_{i} e_{i}-h_{j} e_{j}\right)}{4 h_{i} h_{j}}
\end{aligned}
\]
- Second-order derivatives based on gradient calls, when the "grd" module is specified: \(2 n\) additional gradient calls are needed.
\[
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{g_{i}\left(x+h_{j} e_{j}\right)-g_{i}\left(x-h_{j} e_{j}\right)}{4 h_{j}}+\frac{g_{j}\left(x+h_{i} e_{i}\right)-g_{j}\left(x-h_{i} e_{i}\right)}{4 h_{i}}
\]

The step sizes \(h_{j}, j=1, \ldots, n\), are defined as follows:
- For the forward-difference approximation of first-order derivatives using only function calls and for second-order derivatives using only gradient calls, \(h_{j}=\sqrt[2]{\eta_{j}}\left(1+\left|x_{j}\right|\right)\).
- For the forward-difference approximation of second-order derivatives using only function calls and for central-difference formulas, \(h_{j}=\sqrt[3]{\eta_{j}}\left(1+\left|x_{j}\right|\right)\).

If the algorithm of Gill et al. (1983) is not used to compute \(\eta_{j}\), a constant value \(\eta=\eta_{j}\) is used depending on the value of \(\operatorname{par}[8]\).
- If the number of accurate digits is specified by \(\operatorname{par}[8]=k_{1}\), then \(\eta\) is set to \(10^{-k_{1}}\).
- If \(\operatorname{par}[8]\) is not specified, \(\eta\) is set to the machine precision, \(\epsilon\).

If central-difference formulas are not specified, the optimization algorithm switches automatically from the forward-difference formula to a corresponding centraldifference formula during the iteration process if one of the following two criteria is satisfied:
- The absolute maximum gradient element is less than or equal to 100 times the ABSGTOL threshold.
- The term on the left of the GTOL criterion is less than or equal to \(\max (1 \mathrm{E}-6,100 \times\) GTOL threshold \()\). The \(1 \mathrm{E}-6\) ensures that the switch is performed even if you set the GTOL threshold to zero.

The algorithm of Gill et al. (1983) that computes the finite-difference intervals \(h_{j}\) can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates.

Many applications need considerably more time for computing second-order derivatives than for computing first-order derivatives. In such cases, you should use a quasiNewton or conjugate gradient technique.

If you specify a vector, \(c\), of \(n c\) nonlinear constraints with the " \(n l c\) " module but you do not specify the "jacnlc" module, the first-order formulas can be used to compute finite-difference approximations of the \(n c \times n\) Jacobian matrix of the nonlinear constraints.
\[
\left(\nabla c_{i}\right)=\left(\frac{\partial c_{i}}{\partial x_{j}}\right), \quad i=1, \ldots, n c, \quad j=1, \ldots, n
\]

You can specify the number of accurate digits in the constraint evaluations with \(\operatorname{par}[9]\). This specification also defines the step sizes \(h_{j}, j=1, \ldots, n\).
Note: If you are not able to specify analytic derivatives and if the finite-difference approximations provided by the subroutines are not good enough to solve your optimization problem, you might be able to implement better finite-difference approximations with the "grd," "hes," "jac," and "jacnlc" module arguments.

\section*{Parameter Constraints}

You can specify constraints in the following ways:
- The matrix input argument "blc" enables you to specify boundary and general linear constraints.
- The IML module input argument " \(n l c\) " enables you to specify general constraints, particularly nonlinear constraints.

\section*{Specifying the BLC Matrix}

The input argument "blc" specifies an \(n_{1} \times n_{2}\) constraint matrix, where \(n_{1}\) is two more than the number of linear constraints, and \(n_{2}\) is given by
\[
n 2= \begin{cases}n & \text { if } 1 \leq n 1 \leq 2 \\ n+2 & \text { if } n 1>2\end{cases}
\]

The first two rows define lower and upper bounds for the \(n\) parameters, and the remaining \(c=n_{1}-2\) rows define general linear equality and inequality constraints. Missing values in the first row (lower bounds) substitute for the largest negative floating point value, and missing values in the second row (upper bounds) substitute for the largest positive floating point value. Columns \(n+1\) and \(n+2\) of the first two rows are not used.

The following \(c\) rows of the " \(b l c\) " argument specify \(c\) linear equality or inequality constraints:
\[
\sum_{j=1}^{n} a_{i j} x_{j} \quad(\leq|=| \geq) \quad b_{i}, \quad i=1, \ldots, c
\]

Each of these \(c\) rows contains the coefficients \(a_{i j}\) in the first \(n\) columns. Column \(n+1\) specifies the kind of constraint, as follows:
- \(b l c[n+1]=0\) indicates an equality constraint.
- \(b l c[n+1]=1\) indicates a \(\geq\) inequality constraint.
- \(b l c[n+1]=-1\) indicates \(\mathrm{a} \leq\) inequality constraint.

Column \(n+2\) specifies the right-hand side, \(b_{i}\). A missing value in any of these rows corresponds to a value of zero.
For example, suppose you have a problem with the following constraints on \(x_{1}, x_{2}\), \(x_{3}, x_{4}\) :
\[
\begin{aligned}
& 2 \leq x_{1} \leq 100 \\
& x_{2} \leq 40 \\
& 0 \leq x_{4}
\end{aligned}
\]

The following statements specify the matrix CON, which can be used as the "blc" argument to specify the preceding constraints:
```

proc iml;
con = {rrrarcrerl

```

\section*{Specifying the NLC and JACNLC Modules}

The input argument " \(n l c\) " specifies an IML module that returns a vector, \(c\), of length \(n c\), with the values, \(c_{i}\), of the \(n c\) linear or nonlinear constraints
\[
\begin{aligned}
& c_{i}(x)=0, \quad i=1, \ldots, n e c \\
& c_{i}(x) \geq 0, \quad i=n e c+1, \ldots, n c
\end{aligned}
\]
for a given input parameter point \(x\).
Note: You must specify the number of equality constraints, nec, and the total number of constraints, \(n c\), returned by the " \(n l c\) " module to allocate memory for the return vector. You can do this with the \(\operatorname{opt}[11]\) and \(\operatorname{opt}[10]\) arguments, respectively.

For example, consider the problem of minimizing the objective function \(f\left(x_{1}, x_{2}\right)=x_{1} x_{2}\) in the interior of the unit circle, \(x_{1}^{2}+x_{2}^{2} \leq 1\). The constraint can also be written as \(c_{1}(x)=1-x_{1}^{2}-x_{2}^{2} \geq 0\). The following statements specify modules for the objective and constraint functions and call the NLPNMS subroutine to solve the minimization problem:
```

proc iml;
start F_UC2D(x);
f = x[1] * x[2];
return(f);
finish F_UC2D;
start C_UC2D(x);
c = 1. - x * x';
return(c);
finish C_UC2D;
x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS (rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";

```

To avoid typing multiple commas, you can specify the " \(n l c\) " input argument with a keyword, as in the preceding code. The number of elements of the return vector is specified by OPTN \([10]=1\). There is a missing value in OPTN[11], so the subroutine assumes there are zero equality constraints.

The NLPQN algorithm uses the \(n c \times n\) Jacobian matrix of first-order derivatives
\[
\left(\nabla_{x} c_{i}(x)\right)=\left(\frac{\partial c_{i}}{\partial x_{j}}\right), \quad i=1, \ldots, n c, \quad j=1, \ldots, n
\]
of the \(n c\) equality and inequality constraints, \(c_{i}\), for each point passed during the iteration. You can use the "jacnlc" argument to specify an IML module that returns the Jacobian matrix JC. If you specify the "nlc" module without using the "jacnlc" argument, the subroutine uses finite-difference approximations of the first-order derivatives of the constraints.

Note: The COBYLA algorithm in the NLPNMS subroutine and the NLPQN subroutine are the only optimization techniques that enable you to specify nonlinear constraints with the " \(n l c\) " input argument.

\section*{Options Vector}

The options vector, represented by the "opt" argument, enables you to specify a variety of options, such as the amount of printed output or particular update or linesearch techniques. Table 11.2 gives a summary of the available options.

Table 11.2. Summary of the Elements of the Options Vector
\begin{tabular}{cl}
\hline Index & Description \\
\hline 1 & \begin{tabular}{l}
specifies minimization, maximization, or the number of least squares \\
functions
\end{tabular} \\
2 & \begin{tabular}{l}
specifies the amount of printed output \\
NLPDD, NLPLM, NLPNRA, NLPNRR, NLPTR: specifies the scaling \\
of the Hessian matrix (HESCAL)
\end{tabular} \\
4 & \begin{tabular}{l}
NLPCG, NLPDD, NLPHQN, NLPQN: specifies the update technique \\
(UPDATE)
\end{tabular} \\
5 & \begin{tabular}{l}
NLPCG, NLPHQN, NLPNRA, NLPQN (with no nonlinear constraints): \\
specifies the line-search technique (LIS)
\end{tabular} \\
6 & \begin{tabular}{l}
NLPHQN: specifies version of hybrid algorithm (VERSION)
\end{tabular} \\
7 & \begin{tabular}{l}
NLPQN with nonlinear constraints: specifies version of \(\mu\) update \\
NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix \\
(INHESSIAN)
\end{tabular} \\
8 & \begin{tabular}{l}
Finite-Difference Derivatives: specifies type of differences and how to \\
compute the difference interval
\end{tabular} \\
9 & \begin{tabular}{l}
NLPNRA: specifies the number of rows returned by the sparse Hessian \\
module
\end{tabular} \\
10 & \begin{tabular}{l}
NLPNMS, NLPQN: specifies the total number of constraints returned by \\
the " \(n l c\) " module
\end{tabular} \\
11 & \begin{tabular}{l}
NLPNMS, NLPQN: specifies the number of equality constraints returned \\
by the "nlc" module
\end{tabular} \\
\hline
\end{tabular}

The following list contains detailed explanations of the elements of the options vector:
- opt[1]
indicates whether the problem is minimization or maximization. The default, \(\operatorname{opt}[1]=0\), specifies a minimization problem, and opt \([1]=1\) specifies a maximization problem. For least squares problems, opt \([1]=m\) specifies the number of functions or observations, which is the number of values returned by the "fun" module. This information is necessary to allocate memory for the return vector of the "fun" module.

\section*{- opt[2]}
specifies the amount of output printed by the subroutine. The higher the value of opt[2], the more printed output is produced. The following table indicates the specific items printed for each value.
\begin{tabular}{cl}
\hline Value of opt \([\mathbf{2}]\) & Printed Output \\
\hline 0 & \begin{tabular}{l}
No printed output is produced. This is the default. \\
The summaries for optimization start and termination are \\
produced, as well as the iteration history.
\end{tabular} \\
2 & \begin{tabular}{l}
The initial and final parameter estimates are also printed. \\
3
\end{tabular} \\
\begin{tabular}{l}
The values of the termination criteria and other control pa- \\
rameters are also printed.
\end{tabular} \\
4 & The parameter vector, \(x\), is also printed after each iteration. \\
5 & The gradient vector, \(g\), is also printed after each iteration. \\
\hline
\end{tabular}

\section*{- opt[3]}
selects a scaling for the Hessian matrix, G. This option is relevant only for the NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. If opt \([3] \neq\) 0 , the first iteration and each restart iteration set the diagonal scaling matrix \(\mathbf{D}^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)\), where
\[
d_{i}^{(0)}=\sqrt{\max \left(\left|G_{i, i}^{(0)}\right|, \epsilon\right)}
\]
and \(G_{i, i}^{(0)}\) are the diagonal elements of the Hessian matrix, and \(\epsilon\) is the machine precision. The diagonal scaling matrix \(\mathbf{D}^{(0)}=\operatorname{diag}\left(d_{i}^{(0)}\right)\) is updated as indicated in the following table.
\begin{tabular}{cl}
\hline Value of \(\operatorname{opt}[\mathbf{3}]\) & Scaling Update \\
\hline 0 & No scaling is done. \\
1 & Moré (1978) scaling update: \\
& \multicolumn{1}{c}{\(d_{i}^{(k+1)}=\max \left(d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right)\)} \\
2 & Dennis, Gay, and Welsch \((1981)\) scaling update:
\end{tabular}

2 Dennis, Gay, and Welsch (1981) scaling update:
\[
\begin{gathered}
d_{i}^{(k+1)}=\max \left(0.6 * d_{i}^{(k)}, \sqrt{\max \left(\left|G_{i, i}^{(k)}\right|, \epsilon\right)}\right) \\
3
\end{gathered}
\]

For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is \(\operatorname{opt}[3]=0\); for the NLPLM subroutine, the default is \(\operatorname{opt}[3]=1\).
- opt[4]
defines the update technique for (dual) quasi-Newton and conjugate gradient techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and NLPQN subroutines. For the NLPCG subroutine, the following update techniques are available.
\begin{tabular}{cl}
\hline Value of opt[4] & Update Method for NLPCG \\
\hline 1 & automatic restart method of Powell (1977) and Beale \\
2 & (1972). This is the default. \\
3 & Fletcher-Reeves update (Fletcher 1987) \\
4 & Polak-Ribiere update (Fletcher 1987) \\
conjugate-descent update of Fletcher (1987) \\
\hline
\end{tabular}

For the unconstrained or linearly constrained NLPQN subroutine, the following update techniques are available.
\begin{tabular}{cl}
\hline Value of opt[4] & Update Method for NLPQN \\
\hline 1 & \begin{tabular}{l}
dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) \\
update of the Cholesky factor of the Hessian matrix. This is \\
the default. \\
dual Davidon, Fletcher, and Powell (DDFP) update of the \\
2
\end{tabular} \begin{tabular}{l}
Cholesky factor of the Hessian matrix \\
original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) \\
update of the inverse Hessian matrix \\
original Davidon, Fletcher, and Powell (DFP) update of the \\
inverse Hessian matrix
\end{tabular} \\
4 &
\end{tabular}

For the NLPQN subroutine used with the " \(n l c\) " module and for the NLPDD and NLPHQN subroutines, only the first two update techniques in the second table are available.
- opt[5]
defines the line-search technique for the unconstrained or linearly constrained NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subroutines. Refer to Fletcher (1987) for an introduction to line-search techniques. The following table describes the available techniques.
\begin{tabular}{cl}
\hline Value of opt \([5]\) & Line-Search Method \\
\hline 1 & \begin{tabular}{l}
This method needs the same number of function and gradient calls \\
for cubic interpolation and cubic extrapolation; it is similar to a \\
method used by the Harwell subroutine library.
\end{tabular} \\
2 & \begin{tabular}{l}
This method needs more function than gradient calls for quadratic \\
and cubic interpolation and cubic extrapolation; it is imple- \\
mented as shown in Fletcher (1987) and can be modified to ex- \\
act line search with the par[6] argument (see the section "Control \\
Parameters Vector" on page 359). This is the default for the \\
NLPCG, NLPNRA, and NLPQN subroutines. \\
This method needs the same number of function and gradient calls \\
for cubic interpolation and cubic extrapolation; it is implemented \\
as shown in Fletcher (1987) and can be modified to exact line \\
search with the par[6] argument.
\end{tabular} \\
4 & \begin{tabular}{l}
This method needs the same number of function and gradient calls \\
for stepwise extrapolation and cubic interpolation. \\
This method is a modified version of the opt[5]=4 method. \\
6 \\
7
\end{tabular} \begin{tabular}{l}
This method is the golden section line search of Polak (1971), \\
which uses only function values for linear approximation. \\
This method is the bisection line search of Polak (1971), which \\
uses only function values for linear approximation.
\end{tabular} \\
8 & \begin{tabular}{l}
This method is the Armijo line-search technique of Polak (1971), \\
which uses only function values for linear approximation.
\end{tabular} \\
\hline
\end{tabular}

For the NLPHQN least squares subroutine, the default is a special line-search method that is based on an algorithm developed by Lindström and Wedin (1984). Although it needs more memory, this method sometimes works better with large least squares problems.

\section*{- opt[6]}
is used only for the NLPHQN subroutine and the NLPQN subroutine with nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hybrid algorithm to step in a Gauss-Newton or a quasi-Newton search direction. You can specify one of the three criteria that correspond to the methods of Fletcher and Xu (1987). The methods are HY1 (opt \([6]=1)\), HY2 (opt \([6]=2\)), and HY3 (opt[6]=2), and the default is HY2.
In the NLPQN subroutine with nonlinear constraints, it defines the version of the algorithm used to update the vector \(\mu\) of the Lagrange multipliers. The
default is \(\operatorname{opt}[6]=2\), which specifies the approach of Powell (1982a,b). You can specify the approach of Powell (1978b) with opt[6]=1.

\section*{- opt[7]}
defines the type of start matrix, \(G^{(0)}\), used for the Hessian approximation. This option applies only to the NLPDD, NLPHQN, and NLPQN subroutines. If \(\operatorname{opt}[7]=0\), which is the default, the quasi-Newton algorithm starts with a multiple of the identity matrix where the scalar factor depends on \(\operatorname{par}[10]\); otherwise, it starts with the Hessian matrix computed at the starting point \(x^{(0)}\).

\section*{- opt[8]}
defines the type of finite-difference approximation used to compute first- or second-order derivatives and whether the finite-difference intervals, \(h\), should be computed by using an algorithm of Gill et al. (1983). The value of opt[8] is a two-digit integer, \(i j\).

If \(\operatorname{opt}[8]\) is missing or \(j=0\), the fast but not very precise forward difference formulas are used; if \(j \neq 0\), the numerically more expensive central-difference formulas are used.
If opt \([8]\) is missing or \(i \neq 1,2\), or 3 , the finite-difference intervals \(h\) are based only on the information of \(\operatorname{par}[8]\) or \(\operatorname{par}[9]\), which specifies the number of accurate digits to use in evaluating the objective function and nonlinear constraints, respectively. If \(i=1,2\), or 3 , the intervals are computed with an algorithm by Gill et al. (1983). For \(i=1\), the interval is based on the behavior of the objective function; for \(i=2\), the interval is based on the behavior of the nonlinear constraint functions; and for \(i=3\), the interval is based on the behavior of both the objective function and the nonlinear constraint functions.

The algorithm of Gill et al. (1983) that computes the finite-difference intervals \(h_{j}\) can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates. See the section "FiniteDifference Approximations of Derivatives" on page 342 for details.

\section*{- opt[9]}
indicates that the Hessian module "hes" returns a sparse definition of the Hessian, in the form of an \(n n \times 3\) matrix instead of the default dense \(n \times n\) matrix. If \(\operatorname{opt}[9]\) is zero or missing, the Hessian module must return a dense \(n \times n\) matrix. If you specify opt \([9]=n n\), the module must return a sparse \(n n \times 3\) table. See the section "Objective Function and Derivatives" on page 337 for more details. This option applies only to the NLPNRA algorithm. If the dense specification contains a large proportion of analytical zero derivatives, the sparse specification can save memory and computer time.

\section*{- opt[10]}
specifies the total number of nonlinear constraints returned by the "nlc" module. If you specify \(n c\) nonlinear constraints with the " \(n l c\) " argument module, you must specify \(\operatorname{opt}[10]=n c\) to allocate memory for the return vector.
- opt[11]
specifies the number of nonlinear equality constraints returned by the "nlc" module. If the first nec constraints are equality constraints, you must specify \(\operatorname{opt}[11]=n e c\). The default value is opt \([11]=0\).

\section*{Termination Criteria}

The input argument \(t c\) specifies a vector of bounds corresponding to a set of termination criteria that are tested in each iteration. If you do not specify an IML module with the "ptit" argument, these bounds determine when the optimization process stops.

If you specify the "ptit" argument, the " \(t c\) " argument is ignored. The module specified by the "ptit" argument replaces the subroutine that is used by default to test the termination criteria. The module is called in each iteration with the current location, \(x\), and the value, \(f\), of the objective function at \(x\). The module must give a return code, \(r c\), that decides whether the optimization process is to be continued or terminated. As long as the module returns \(r c=0\), the optimization process continues. When the module returns \(r c \neq 0\), the optimization process stops.

If you use the \(t c\) vector, the optimization techniques stop the iteration process when at least one of the corresponding set of termination criteria are satisfied. Table 11.3 and Table 11.4 indicate the criterion associated with each element of the \(t c\) vector. There is a default for each criterion, and if you specify a missing value for the corresponding element of the \(t c\) vector, the default value is used. You can avoid termination with respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2, and XTOL criteria by specifying a value of zero for the corresponding element of the \(t c\) vector.
\begin{tabular}{cl}
\multicolumn{3}{l}{ Table 11.3. } & Termination Criteria for the NLPNMS Subroutine \\
\hline Index & Description \\
\hline 1 & maximum number of iterations (MAXIT) \\
2 & maximum number of function calls (MAXFU) \\
3 & absolute function criterion (ABSTOL) \\
4 & relative function criterion (FTOL) \\
5 & relative function criterion (FTOL2) \\
6 & absolute function criterion (ABSFTOL) \\
7 & FSIZE value used in FTOL criterion \\
8 & relative parameter criterion (XTOL) \\
9 & absolute parameter criterion (ABSXTOL) \\
9 & size of final trust-region radius \(\rho\) (COBYLA algorithm) \\
10 & XSIZE value used in XTOL criterion \\
\hline
\end{tabular}

Table 11.4. Termination Criteria for Other Subroutines
\begin{tabular}{cl}
Index & Description \\
\hline 1 & maximum number of iterations (MAXIT) \\
2 & maximum number of function calls (MAXFU) \\
3 & absolute function criterion (ABSTOL) \\
4 & relative gradient criterion (GTOL) \\
5 & relative gradient criterion (GTOL2) \\
6 & absolute gradient criterion (ABSGTOL) \\
7 & relative function criterion (FTOL) \\
8 & predicted function reduction criterion (FTOL2) \\
9 & absolute function criterion (ABSFTOL) \\
10 & FSIZE value used in GTOL and FTOL criterion \\
11 & relative parameter criterion (XTOL) \\
12 & absolute parameter criterion (ABSXTOL) \\
13 & XSIZE value used in XTOL criterion
\end{tabular}

\section*{Criteria Used by All Techniques}

The following list indicates the termination criteria that are used with all the optimization techniques:
- tc[1]
specifies the maximum number of iterations in the optimization process (MAXIT). The default values are
\begin{tabular}{ll}
NLPNMS: & MAXIT \(=1000\) \\
NLPCG: & MAXIT \(=400\) \\
Others: & MAXIT \(=200\)
\end{tabular}
- tc[2]
specifies the maximum number of function calls in the optimization process (MAXFU). The default values are
\[
\begin{array}{ll}
\text { NLPNMS: } & \text { MAXFU=3000 } \\
\text { NLPCG: } & \text { MAXFU }=1000 \\
\text { Others: } & \text { MAXFU }=500
\end{array}
\]
- tc[3]
specifies the absolute function convergence criterion (ABSTOL). For minimization, termination requires \(f^{(k)}=f\left(x^{(k)}\right) \leq A B S T O L\), while for maximization, termination requires \(f^{(k)}=f\left(x^{(k)}\right) \geq A B S T O L\). The default values are the negative and positive square roots of the largest double precision value, for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization problem into a series of smaller problems.

\section*{Termination Criteria for NLPNMS}

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell's COBYLA algorithm, it uses only one criterion other than the three used by all the optimization techniques. The COBYLA algorithm is a trust-region method that sequentially reduces the radius, \(\rho\), of a spheric trust region from the start radius, \(\rho_{b e g}\), which is controlled with the \(\operatorname{par}[2]\) argument, to the final radius, \(\rho_{\text {end }}\), which is controlled with the \(t c[9]\) argument. The default value for \(t c[9]\) is \(\rho_{\text {end }}=1 \mathrm{E}-4\). Convergence to small values of \(\rho_{\text {end }}\) can take many calls of the function and constraint modules and might result in numerical problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex algorithm uses several other termination criteria, which are described in the following list:

\section*{- tc[4]}
specifies the relative function convergence criterion (FTOL). Termination requires a small relative difference between the function values of the vertices in the simplex with the largest and smallest function values.
\[
\frac{\left|f_{h i}^{(k)}-f_{l o}^{(k)}\right|}{\left.\max \left(\mid f_{h i}^{(k)}\right) \mid, F S I Z E\right)} \leq F T O L
\]
where \(F S I Z E\) is defined by \(t c[7]\). The default value is \(t c[4]=10^{- \text {FDIGITS }}\), where FDIGITS is controlled by the \(\operatorname{par}[8]\) argument. The \(\operatorname{par}[8]\) argument has a default value of \(\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision. Hence, the default value for \(F T O L\) is \(\epsilon\).

\section*{- tc[5]}
specifies another relative function convergence criterion (FTOL2). Termination requires a small standard deviation of the function values of the \(n+1\) simplex vertices \(x_{0}^{(k)}, \ldots, x_{n}^{(k)}\).
\[
\sqrt{\frac{1}{n+1} \sum_{l}\left(f\left(x_{l}^{(k)}\right)-\bar{f}\left(x^{(k)}\right)\right)^{2}} \leq \text { FTOL2 }
\]
where \(\bar{f}\left(x^{(k)}\right)=\frac{1}{n+1} \sum_{l} f\left(x_{l}^{(k)}\right)\). If there are \(a\) active boundary constraints at \(x^{(k)}\), the mean and standard deviation are computed only for the \(n+1-a\) unconstrained vertices. The default is \(t c[5]=1 \mathrm{E}-6\).

\section*{- tc[6]}
specifies the absolute function convergence criterion (ABSFTOL). Termination
requires a small absolute difference between the function values of the vertices in the simplex with the largest and smallest function values.
\[
\left|f_{h i}^{(k)}-f_{l o}^{(k)}\right| \leq A B S F T O L
\]

The default is \(t c[6]=0\).

\section*{- tc[7]}
specifies the FSIZE value used in the FTOL termination criterion. The default is \(t c[7]=0\).

\section*{- tc[8]}
specifies the relative parameter convergence criterion (XTOL). Termination requires a small relative parameter difference between the vertices with the largest and smallest function values.
\[
\frac{\max _{j}\left|x_{j}^{l o}-x_{j}^{h i}\right|}{\max \left(\left|x_{j}^{l o}\right|,\left|x_{j}^{h i}\right|, X S I Z E\right)} \leq X T O L
\]

The default is \(t c[8]=1 \mathrm{E}-8\).

\section*{- tc[9]}
specifies the absolute parameter convergence criterion (ABSXTOL). Termination requires either a small length, \(\alpha^{(k)}\), of the vertices of a restart simplex or a small simplex size, \(\delta^{(k)}\).
\[
\begin{aligned}
\alpha^{(k)} & \leq A B S X T O L \\
\delta^{(k)} & \leq A B S X T O L
\end{aligned}
\]
where \(\delta^{(k)}\) is defined as the L1 distance of the simplex vertex with the smallest function value, \(y^{(k)}\), to the other \(n\) simplex points, \(x_{l}^{(k)} \neq y\).
\[
\delta^{(k)}=\sum_{x_{l} \neq y}\left\|x_{l}^{(k)}-y^{(k)}\right\|_{1}
\]

The default is \(t c[9]=1 \mathrm{E}-8\).

\section*{- tc[10]}
specifies the XSIZE value used in the XTOL termination criterion. The default is \(t c[10]=0\).

\section*{Termination Criteria for Unconstrained and Linearly Constrained Techniques}

\section*{- tc[4]}
specifies the relative gradient convergence criterion (GTOL). For all techniques except the NLPCG subroutine, termination requires that the normalized predicted function reduction is small.
\[
\frac{g\left(x^{(k)}\right)^{T}\left[G^{(k)}\right]^{-1} g\left(x^{(k)}\right)}{\max \left(\left|f\left(x^{(k)}\right)\right|, F S I Z E\right)} \leq G T O L
\]
where FSIZE is defined by \(t c[10]\). For the NLPCG technique (where a reliable Hessian estimate is not available),
\[
\frac{\left\|g\left(x^{(k)}\right)\right\|_{2}^{2}\left\|s\left(x^{(k)}\right)\right\|_{2}}{\left\|g\left(x^{(k)}\right)-g\left(x^{(k-1)}\right)\right\|_{2} \max \left(\left|f\left(x^{(k)}\right)\right|, \text { FSIZE }\right)} \leq G T O L
\]
is used. The default is \(t c[4]=1 \mathrm{E}-8\).

\section*{- tc[5]}
specifies another relative gradient convergence criterion (GTOL2). This criterion is used only by the NLPLM subroutine.
\[
\max _{j} \frac{\left|g_{j}\left(x^{(k)}\right)\right|}{\sqrt{f\left(x^{(k)}\right) G_{j, j}^{(k)}}} \leq \text { GTOL2 }
\]

The default is \(t c[5]=0\).

\section*{- tc[6]}
specifies the absolute gradient convergence criterion (ABSGTOL). Termination requires that the maximum absolute gradient element be small.
\[
\max _{j}\left|g_{j}\left(x^{(k)}\right)\right| \leq A B S G T O L
\]

The default is \(t c[6]=1 \mathrm{E}-5\).

\section*{- tc[7]}
specifies the relative function convergence criterion (FTOL). Termination requires a small relative change of the function value in consecutive iterations.
\[
\frac{\left|f\left(x^{(k)}\right)-f\left(x^{(k-1)}\right)\right|}{\max \left(\left|f\left(x^{(k-1)}\right)\right|, F S I Z E\right)} \leq F T O L
\]
where \(F S I Z E\) is defined by \(t c[10]\). The default is \(t c[7]=10^{- \text {FDIGITS }}\), where FDIGITS is controlled by the \(\operatorname{par}[8]\) argument. The \(\operatorname{par}[8]\) argument has a default value of \(\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision. Hence, the default for \(F T O L\) is \(\epsilon\).

\section*{- tc[8]}
specifies another function convergence criterion (FTOL2). For least squares problems, termination requires a small predicted reduction of the objective function, \(d f^{(k)} \approx f\left(x^{(k)}\right)-f\left(x^{(k)}+s^{(k)}\right)\). The predicted reduction is computed by approximating the objective function by the first two terms of the Taylor series and substituting the Newton step, \(s^{(k)}=-G^{(k)-1} g^{(k)}\), as follows:
\[
\begin{aligned}
d f^{(k)} & =-g^{(k) T} s^{(k)}-\frac{1}{2} s^{(k) T} G^{(k)} s^{(k)} \\
& =-\frac{1}{2} s^{(k) T} g^{(k)} \\
& \leq \text { FTOL2 }
\end{aligned}
\]

The FTOL2 criterion is the unscaled version of the GTOL criterion. The default is \(t c[8]=0\).

\section*{- tc[9]}
specifies the absolute function convergence criterion (ABSFTOL). Termination requires a small change of the function value in consecutive iterations.
\[
\left|f\left(x^{(k-1)}\right)-f\left(x^{(k)}\right)\right| \leq \text { ABSFTOL }
\]

The default is \(t c[9]=0\).
- tc[10]
specifies the FSIZE value used in the GTOL and FTOL termination criteria. The default is \(t c[10]=0\).

\section*{- tc[11]}
specifies the relative parameter convergence criterion (XTOL). Termination requires a small relative parameter change in consecutive iterations.
\[
\frac{\max _{j}\left|x_{j}^{(k)}-x_{j}^{(k-1)}\right|}{\max \left(\left|x_{j}^{(k)}\right|,\left|x_{j}^{(k-1)}\right|, \text { XSIZE }\right)} \leq X T O L
\]

The default is \(t c[11]=0\).
- tc[12]
specifies the absolute parameter convergence criterion (ABSXTOL). Termination requires a small Euclidean distance between parameter vectors in consecutive iterations.
\[
\left\|x^{(k)}-x^{(k-1)}\right\|_{2} \leq A B S X T O L
\]

The default is \(t c[12]=0\).

\section*{- tc[13]}
specifies the XSIZE value used in the XTOL termination criterion. The default is \(t c[13]=0\).

\section*{Termination Criteria for Nonlinearly Constrained Techniques}

The only algorithm available for nonlinearly constrained optimization other than the NLPNMS subroutine is the NLPQN subroutine, when you specify the "nlc" module argument. This method, unlike the other optimization methods, does not monotonically reduce the value of the objective function or some kind of merit function that combines objective and constraint functions. Instead, the algorithm uses the watchdog technique with backtracking of Chamberlain et al. (1982). Therefore, no termination criteria are implemented that are based on the values \(x\) or \(f\) in consecutive iterations. In addition to the criteria used by all optimization techniques, there are three other termination criteria available; these are based on the Lagrange function
\[
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} c_{i}(x)
\]
and its gradient
\[
\nabla_{x} L(x, \lambda)=g(x)-\sum_{i=1}^{m} \lambda_{i} \nabla_{x} c_{i}(x)
\]
where \(m\) denotes the total number of constraints, \(g=g(x)\) is the gradient of the objective function, and \(\lambda\) is the vector of Lagrange multipliers. The Kuhn-Tucker conditions require that the gradient of the Lagrange function is zero at the optimal point \(\left(x^{*}, \lambda^{*}\right)\), as follows:
\[
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0
\]

\section*{- tc[4]}
specifies the GTOL criterion, which requires that the normalized predicted function reduction be small.
\[
\frac{\left|g\left(x^{(k)}\right) s\left(x^{(k)}\right)\right|+\sum_{i=1}^{m}\left|\lambda_{i} c_{i}\left(x^{(k)}\right)\right|}{\max \left(\left|f\left(x^{(k)}\right)\right|, F S I Z E\right)} \leq G T O L
\]
where \(F S I Z E\) is defined by the \(t c[10]\) argument. The default is \(t c[4]=1 \mathrm{E}-8\).

\section*{- tc[6]}
specifies the ABSGTOL criterion, which requires that the maximum absolute gradient element of the Lagrange function be small.
\[
\max _{j}\left|\left\{\nabla_{x} L\left(x^{(k)}, \lambda^{(k)}\right)\right\}_{j}\right| \leq A B S G T O L
\]

The default is \(t c[6]=1 \mathrm{E}-5\).

\section*{- tc[8]}
specifies the FTOL2 criterion, which requires that the predicted function reduction be small.
\[
\left|g\left(x^{(k)}\right) s\left(x^{(k)}\right)\right|+\sum_{i=1}^{m}\left|\lambda_{i} c_{i}\right| \leq \text { FTOL } 2
\]

The default is \(t c[8]=1 \mathrm{E}-6\). This is the criterion used by the programs VMCWD and VF02AD of Powell (1982b).

\section*{Control Parameters Vector}

For all optimization and least squares subroutines, the input argument par specifies a vector of parameters that control the optimization process. For the NLPFDD and NLPFEA subroutines, the par argument is defined differently. For each element of the par vector there exists a default value, and if you specify a missing value, the default is used. Table 11.5 summarizes the uses of the par argument for the optimization and least squares subroutines.

Table 11.5. Summary of the Control Parameters Vector
\begin{tabular}{cl}
\hline Index & Description \\
\hline 1 & specifies the singularity criterion (SINGULAR) \\
2 & specifies the initial step length or trust-region radius \\
3 & specifies the range for active (violated) constraints (LCEPS) \\
4 & specifies the Lagrange multiplier threshold for constraints (LCDEACT) \\
5 & \begin{tabular}{l}
specifies a criterion to determine linear dependence of constraints \\
(LCSING)
\end{tabular} \\
6 & \begin{tabular}{l}
specifies the required accuracy of the line-search algorithms \\
(LSPRECISION)
\end{tabular} \\
7 & \begin{tabular}{l}
reduces the line-search step size in successive iterations (DAMPSTEP) \\
8 \\
specifies the number of accurate digits used in evaluating the objective \\
function (FDIGITS)
\end{tabular} \\
9 & \begin{tabular}{l}
specifies the number of accurate digits used in evaluating the nonlinear \\
constraints (CDIGITS)
\end{tabular} \\
10 & \begin{tabular}{l}
specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)
\end{tabular} \\
\hline
\end{tabular}

\section*{- par[1]}
specifies the singularity criterion for the decomposition of the Hessian matrix (SINGULAR). The value must be between zero and one, and the default is \(\operatorname{par}[1]=1 \mathrm{E}-8\).

\section*{- par[2]}
specifies different features depending on the subroutine in which it is used. In the NLPNMS subroutine, it defines the size of the start simplex. For the original Nelder-Mead simplex algorithm, the default value is \(\operatorname{par}[2]=1\); for
the COBYLA algorithm, the default is \(\operatorname{par}[2]=0.5\). In the NLPCG, NLPQN, and NLPHQN subroutines, the \(\operatorname{par}[2]\) argument specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is \(\operatorname{par}[2]=1\). In the NLPTR, NLPDD, and NLPLM subroutines, the \(\operatorname{par}[2]\) argument specifies a factor for the initial trust-region radius, \(\Delta\). For highly nonlinear functions, the default step length or trustregion radius can result in arithmetic overflows. In that case, you can specify stepwise decreasing values of \(\operatorname{par}[2]\), such as \(\operatorname{par}[2]=1 \mathrm{E}-1, \operatorname{par}[2]=1 \mathrm{E}-2\), \(\operatorname{par}[2]=1 \mathrm{E}-4\), until the subroutine starts to iterate successfully.

\section*{- par[3]}
specifies the range (LCEPS) for active and violated linear constraints. The \(i\) th constraint is considered an active constraint if the point \(x^{(k)}\) satisfies the condition
\[
\left|\sum_{j=1}^{n} a_{i j} x_{j}^{(k)}-b_{i}\right| \leq \operatorname{LCEPS}\left(\left|b_{i}\right|+1\right)
\]
where LCEPS is the value of par[3] and \(a_{i j}\) and \(b_{i}\) are defined as in the section "Parameter Constraints" on page 345. Otherwise, the constraint \(i\) is either an inactive inequality or a violated inequality or equality constraint. The default is \(\operatorname{par}[3]=1 \mathrm{E}-8\). During the optimization process, the introduction of rounding errors can force the subroutine to increase the value of \(\operatorname{par}[3]\) by a power of 10 , but the value never becomes larger than \(1 \mathrm{E}-3\).

\section*{- par[4]}
specifies a threshold (LCDEACT) for the Lagrange multiplier that decides whether an active inequality constraint must remain active or can be deactivated. For maximization, par[4] must be positive, and for minimization, \(\operatorname{par}[4]\) must be negative. The default is
\[
\operatorname{par}[4]= \pm \min \left(0.01, \max \left(0.1 \times A B S G T O L, 0.001 \times \operatorname{gmax}^{(k)}\right)\right)
\]
where the positive value is for maximization and the negative value is for minimization. ABSGTOL is the value of the absolute gradient criterion, and \(\operatorname{gmax}^{(k)}\) is the maximum absolute element of the gradient, \(g^{(k)}\), or the projected gradient, \(Z^{T} g^{(k)}\).

\section*{- par[5]}
specifies a criterion (LCSING) used in the update of the QR decomposition that decides whether an active constraint is linearly dependent on a set of other active constraints. The default is \(\operatorname{par}[5]=1 \mathrm{E}-8\). As the value of \(\operatorname{par}[5]\) increases, more active constraints are recognized as being linearly dependent. If the value of \(\operatorname{par}[5]\) is larger than 0.1 , it is reset to 0.1 , and if it is negative, it is reset to zero.

\section*{- par[6]}
specifies the degree of accuracy (LSPRECISION) that should be obtained by the second or third line-search algorithm. This argument can be used with the NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm if the " \(n l c\) " argument is specified. Usually, an imprecise line search is computationally inexpensive and successful, but for more difficult optimization problems, a more precise and time consuming line search can be necessary. Refer to Fletcher (1987) for details. If you have numerical problems, you should decrease the value of the \(\operatorname{par}[6]\) argument to obtain a more precise line search. The default values are given in the following table.
\begin{tabular}{lll}
\hline Subroutine & Update Method & Default value \\
\hline NLPCG & All & \(\operatorname{par}[6]=0.1\) \\
NLPHQN & DBFGS & \(\operatorname{par}[6]=0.1\) \\
NLPHQN & DDFP & \(\operatorname{par}[6]=0.06\) \\
NLPNRA & No update & \(\operatorname{par}[6]=0.9\) \\
NLPQN & BFGS, DBFGS & \(\operatorname{par}[6]=0.4\) \\
NLPQN & DFP, DDFP & \(\operatorname{par}[6]=0.06\) \\
\hline
\end{tabular}

\section*{- par[7]}
specifies a scalar factor (DAMPSTEP) that can be used to reduce the step size in each of the first five iterations. In each of these iterations, the starting step size, \(\alpha^{(0)}\), can be no larger than the value of \(\operatorname{par}[7]\) times the step size obtained by the line-search algorithm in the previous iteration. If par[7] is missing or if \(\operatorname{par}[7]=0\), which is the default, the starting step size in iteration \(t\) is computed as a function of the function change from the former iteration, \(f^{(t-1)}-f^{(t)}\). If the computed value is outside the interval \([0.1,10.0]\), it is moved to the next endpoint. You can further restrict the starting step size in the first five iterations with the \(\operatorname{par}[2]\) argument.

\section*{- par[8]}
specifies the number of accurate digits (FDIGITS) used to evaluate the objective function. The default is \(-\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision, and fractional values are permitted. This value is used to compute the step size \(h\) for finite-difference derivatives and the default value for the FTOL termination criterion.

\section*{- par[9]}
specifies the number of accurate digits (CDIGITS) used to evaluate the nonlinear constraint functions of the " \(n l c\) " module. The default is \(-\log _{10}(\epsilon)\), where \(\epsilon\) is the machine precision, and fractional values are permitted. The value is used to compute the step size \(h\) for finite-difference derivatives. If first-order derivatives are specified by the "jacnlc" module, the \(\operatorname{par}[9]\) argument is ignored.

\section*{- par[10]}
specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian approximation. This argument is available in the NLPDD, NLPHQN, and NLPQN subroutines. If the opt[7] argument is not specified, the initial Hessian approximation is a multiple of the identity matrix determined by the magnitude of the initial gradient \(g\left(x^{(0)}\right)\). The value of the \(\operatorname{par}[10]\) argument is used to specify \(\operatorname{par}[10] \times \mathbf{I}\) for the initial Hessian in the quasi-Newton algorithm.

\section*{Printing the Optimization History}

Each optimization and least squares subroutine prints the optimization history, as long as opt \([2] \geq 1\) and you do not specify the "ptit" module argument. You can use this output to check for possible convergence problems. If you specify the "ptit" argument, you can enter a print command inside the module, which is called at each iteration.

The amount of information printed depends on the opt[2] argument. See the section "Options Vector" on page 347.

The output consists of three main parts:

\section*{- Optimization Start Output}

The following information about the initial state of the optimization can be printed:
- the number of constraints that are active at the starting point, or, more precisely, the number of constraints that are currently members of the working set. If this number is followed by a plus sign \((+)\), there are more active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.
- the value of the objective function at the starting point
- the value of the largest absolute (projected) gradient element
- the initial trust-region radius for the NLPTR and NLPLM subroutines

\section*{- General Iteration History}

In general, the iteration history consists of one line of printed output for each iteration, with the exception of the Nelder-Mead simplex method. The NLPNMS subroutine prints a line only after several internal iterations because some of the termination tests are time-consuming compared to the simplex operations and because the subroutine typically uses many iterations.

The iteration history always includes the following columns:
- iter is the iteration number.
- nrest is the number of iteration restarts.
- nfun is the number of function calls.
- act is the number of active constraints.
- optcrit is the value of the optimization criterion.
- difcrit is the difference between adjacent function values.
- maxgrad is the maximum of the absolute (projected) gradient components.

An apostrophe trailing the number of active constraints indicates that at least one of the active constraints was released from the active set due to a significant Lagrange multiplier.
Some subroutines print additional information at each iteration; for details see the entry corresponding to each subroutine in the section "Nonlinear Optimization and Related Subroutines" on page 791.
- Optimization Result Output

The output ends with the following information about the optimization result:
- the number of constraints that are active at the final point, or more precisely, the number of constraints that are currently members of the working set. When this number is followed by a plus sign \((+)\), there are more active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.
- the value of the objective function at the final point
- the value of the largest absolute (projected) gradient element

\section*{Nonlinear Optimization Examples}

\section*{Example 11.1. Chemical Equilibrium}

The following example is used in many test libraries for nonlinear programming. It appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that satisfy the mixture's chemical equilibrium state. The second law of thermodynamics implies that at a constant temperature and pressure, a mixture of chemicals satisfies its chemical equilibrium state when the free energy of the mixture is reduced to a minimum. Therefore, the composition of the chemicals satisfying its chemical equilibrium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:
\(m \quad\) number of chemical elements in the mixture
\(n\) number of compounds in the mixture
\(x_{j} \quad\) number of moles for compound \(j, j=1, \ldots, n\)
\(s\) total number of moles in the mixture, \(s=\sum_{i=1}^{n} x_{j}\)
\(a_{i j} \quad\) number of atoms of element \(i\) in a molecule of compound \(j\)
\(b_{i}\) atomic weight of element \(i\) in the mixture \(i=1, \ldots, n\)

The constraints for the mixture are as follows. Each of the compounds must have a nonnegative number of moles.
\[
x_{j} \geq 0, \quad j=1, \ldots, n
\]

There is a mass balance relationship for each element. Each relation is given by a linear equality constraint.
\[
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \ldots, m
\]

The objective function is the total free energy of the mixture.
\[
f(x)=\sum_{j=1}^{n} x_{j}\left[c_{j}+\ln \left(\frac{x_{j}}{s}\right)\right]
\]
where
\[
c_{j}=\left(\frac{F^{0}}{R T}\right)_{j}+\ln (P)
\]
and \(\left(F^{0} / R T\right)_{j}\) is the model standard free energy function for the \(j\) th compound. The value of \(\left(F^{0} / R T\right)_{j}\) is found in existing tables. \(P\) is the total pressure in atmospheres.
The problem is to determine the parameters \(x_{j}\) that minimize the objective function \(f(x)\) subject to the nonnegativity and linear balance constraints. To illustrate this, consider the following situation. Determine the equilibrium composition of compound \(\frac{1}{2} N_{2} H_{4}+\frac{1}{2} O_{2}\) at temperature \(T=3500^{\circ} \mathrm{K}\) and pressure \(P=750\) psi. The following table gives a summary of the information necessary to solve the problem.
\begin{tabular}{rlrrccc}
\hline & & & & \multicolumn{3}{c}{\(a_{i j}\)} \\
\cline { 5 - 7 } & & & & \(i=1\) & \(i=2\) & \(i=3\) \\
\hline\(j\) & Compound & \(\left(F^{0} / R T\right)_{j}\) & \(c_{j}\) & H & N & O \\
\hline 1 & H & -10.021 & -6.089 & 1 & & \\
2 & \(\mathrm{H}_{2}\) & -21.096 & -17.164 & 2 & & \\
3 & \(\mathrm{H}_{2} \mathrm{O}\) & -37.986 & -34.054 & 2 & & 1 \\
4 & N & -9.846 & -5.914 & & 1 & \\
5 & \(\mathrm{~N}_{2}\) & -28.653 & -24.721 & & 2 & \\
6 & NH & -18.918 & -14.986 & 1 & 1 & \\
7 & NO & -28.032 & -24.100 & & 1 & 1 \\
8 & O & -14.640 & -10.708 & & & 1 \\
9 & \(\mathrm{O}_{2}\) & -30.594 & -26.662 & & & 2 \\
10 & OH & -26.111 & -22.179 & 1 & & 1 \\
\hline
\end{tabular}

The following statements solve the minimization problem:
```

proc iml;
c = { -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179 };
start F_BRACK(x) global(c);
s = x [+];

```
```

    f = sum(x # (c + log(x / s)));
    return(f);
    finish F_BRACK;
con = {
. . . . . . . . . . . . ,
1.2.2. . . 1. . . . 1. 0. 2.,
. . . 1. 2. 1. 1. . . . 0. 1. ,
. . 1. . . . 1. 1. 2. 1. 0. 1. };
con[1,1:10] = 1.e-6;
x0 = j(1,10, .1);
optn = {0 3};
title 'NLPTR subroutine: No Derivatives';
call nlptr(xres,rc,"F_BRACK",x0,optn,con);

```

The \(\mathrm{F}_{-}\)BRACK module specifies the objective function, \(f(x)\). The matrix CON specifies the constraints. The first row gives the lower bound for each parameter, and to prevent the evaluation of the \(\log (x)\) function for values of \(x\) that are too small, the lower bounds are set here to \(1 \mathrm{E}-6\). The following three rows contain the three linear equality constraints.

The starting point, which must be given to specify the number of parameters, is represented by X 0 . The first element of the OPTN vector specifies a minimization problem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no analytic derivatives are specified, the \(F_{-}\)BRACK module is used to generate finitedifference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any problems.

The output lists the optimal parameters with the gradient.

The three equality constraints are satisfied at the solution.
```

Linear Constraints Evaluated at Solution
[1] ACT -3.053E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2
+2.0000* x3 + 1.0000 * X6 + 1.0000 * X10
[2] АСT -1.735E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5
+ 1.0000 * X6 + 1.0000 * X7
[3] ACT -1.527E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7
+ 1.0000 * x8 + 2.0000 * x9 + 1.0000 * x10

```

The Lagrange multipliers and the projected gradient are also printed. The elements of the projected gradient must be small to satisfy a first-order optimality condition.
\begin{tabular}{|c|c|}
\hline & \\
\hline
\end{tabular}

\section*{Example 11.2. Network Flow and Delay}

The following example is taken from the user's guide of the GINO program (Liebman et al. 1986). A simple network of five roads (arcs) can be illustrated by a path diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute, \(F\) vehicles enter and leave the network. The parameter \(x_{i j}\) refers to the flow from node \(i\) to node \(j\). The requirement that traffic that flows into each intersection \(j\) must also flow out is described by the linear equality constraint
\[
\sum_{i} x_{i j}=\sum_{i} x_{j i} \quad, \quad j=1, \ldots, n
\]

In general, roads also have an upper limit on the number of vehicles that can be handled per minute. These limits, denoted \(c_{i j}\), can be enforced by boundary constraints:
\[
0 \leq x_{i j} \leq c_{i j}
\]

The goal in this problem is to maximize the flow, which is equivalent to maximizing the objective function \(f(x)\), where \(f(x)\) is
\[
f(x)=x_{24}+x_{34}
\]

The boundary constraints are
\[
\begin{array}{lc}
0 \leq & x_{12}, x_{32}, x_{34}
\end{array} \leq 10
\]
and the flow constraints are
\[
\begin{aligned}
x_{13} & =x_{32}+x_{34} \\
x_{24} & =x_{12}+x_{32} \\
x_{12}+x_{13} & =x_{24}+x_{34}
\end{aligned}
\]

The three linear equality constraints are linearly dependent. One of them is deleted automatically by the optimization subroutine. The following notation is used in this example:
\[
X 1=x_{12}, \quad X 2=x_{13}, \quad X 3=x_{32}, \quad X 4=x_{24}, \quad X 5=x_{34}
\]

Even though the NLPCG subroutine is used, any other optimization subroutine would also solve this small problem. The following code finds the maximum flow:
```

proc iml;
title 'Maximum Flow Through a Network';
start MAXFLOW(x);
f = x[4] + x[5];
return(f);
finish MAXFLOW;
con = { 0. 0. 0. 0. 0. . . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
1. 1. 0. -1. -1. 0. 0. };
x = j(1, 5, 1.);
optn = {1 3};
call nlpcg(xres,rc,"MAXFLOW",x,optn,con);

```

The optimal solution is shown in the following output.

Finding the maximum flow through a network is equivalent to solving a simple linear optimization problem, and for large problems, the LP procedure or the NETFLOW procedure of the SAS/OR product can be used. On the other hand, finding a traffic pattern that minimizes the total delay to move \(F\) vehicles per minute from node 1 to node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic volume increases, speed decreases. Let \(t_{i j}\) be the travel time on \(\operatorname{arc}(i, j)\) and assume that the following formulas describe the travel time as decreasing functions of the amount of traffic:
\[
\begin{aligned}
t_{12} & =5+0.1 x_{12} /\left(1-x_{12} / 10\right) \\
t_{13} & =x_{13} /\left(1-x_{13} / 30\right) \\
t_{32} & =1+x_{32} /\left(1-x_{32} / 10\right) \\
t_{24} & =x_{24} /\left(1-x_{24} / 30\right) \\
t_{34} & =5+x_{34} /\left(1-x_{34} / 10\right)
\end{aligned}
\]

These formulas use the road capacities (upper bounds), and you can assume that \(F=5\) vehicles per minute have to be moved through the network. The objective is now to minimize
\[
f=f(x)=t_{12} x_{12}+t_{13} x_{13}+t_{32} x_{32}+t_{24} x_{24}+t_{34} x_{34}
\]

The constraints are
\[
\begin{aligned}
& 0 \leq x_{12}, x_{32}, x_{34} \leq 10 \\
& 0 \leq x_{13}, x_{24} \leq 30
\end{aligned}
\]
\[
\begin{aligned}
x_{13} & =x_{32}+x_{34} \\
x_{24} & =x_{12}+x_{32} \\
x_{24}+x_{34} & =F=5
\end{aligned}
\]

In the following code, the NLPNRR subroutine is used to solve the minimization problem:
```

proc iml;
title 'Minimize Total Delay in Network';
start MINDEL(x);
t12 = 5. + . 1 * x[1] / (1. - x[1] / 10.);
t13 = x[2] / (1. - x[2] / 30.);
t32 = 1. + x[3] / (1. - x[3] / 10.);
t24 = x[4] / (1. - x[4] / 30.);
t34 = 5. + .1 * x[5] / (1. - x[5] / 10.);
f = t12*x[1] + t13*x[2] + t32*x[3] + t24*x[4] + t34*x[5];
return(f);
finish MINDEL;
con = { 0. 0. 0. 0. 0. . . . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0.,
1. 0. 1. -1. 0. 0. 0.,
0. 0. 0. 1. 1. 0. 5. };
x = j(1, 5, 1.);
optn = {0 3};
call nlpnrr(xres,rc,"MINDEL",x,optn,con);

```

The optimal solution is shown in the following output.

The active constraints and corresponding Lagrange multiplier estimates (costs) are shown in the following output.

\section*{Example 11.3. Compartmental Analysis}

\section*{Numerical Considerations}

An important class of nonlinear models involves a dynamic description of the response rather than an explicit description. These models arise often in chemical kinetics, pharmacokinetics, and ecological compartmental modeling. Two examples are presented in this section. Refer to Bates and Watts (1988) for a more general introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are not done in full precision. Evaluating a function involves the numerical solution of a differential equation with some prescribed precision. Therefore, two choices exist for evaluating first- and second-order derivatives:
- differential equation approach
- finite-difference approach

In the differential equation approach, the components of the Hessian and the gradient are written as a solution of a system of differential equations that can be solved simultaneously with the original system. However, the size of a system of differential equations, \(n\), would suddenly increase to \(n^{2}+2 n\). This huge increase makes the finite difference approach an easier one.

With the finite-difference approach, a very delicate balance of all the precision requirements of every routine must exist. In the examples that follow, notice the relative levels of precision that are imposed on different modules. Since finite differences are used to compute the first- and second-order derivatives, it is incorrect to set the precision of the ODE solver at a coarse level because that would render the numerical estimation of the finite differences worthless.

A coarse computation of the solution of the differential equation cannot be accompanied by very fine computation of the finite-difference estimates of the gradient and
the Hessian. That is, you cannot set the precision of the differential equation solver to be \(1 \mathrm{E}-4\) and perform the finite difference estimation with a precision of \(1 \mathrm{E}-10\). In addition, this precision must be well-balanced with the termination criteria imposed on the optimization process.
In general, if the precision of the function evaluation is \(O(\epsilon)\), the gradient should be computed by finite differences \(O(\sqrt{\epsilon})\), and the Hessian should be computed with finite differences \(O\left(\epsilon^{\frac{1}{3}}\right)\). *

\section*{Diffusion of Tetracycline}

Consider the concentration of tetracycline hydrochloride in blood serum. The tetracycline is administered to a subject orally, and the concentration of the tetracycline in the serum is measured. The biological system to be modeled consists of two compartments: a gut compartment in which tetracycline is injected and a blood compartment that absorbs the tetracycline from the gut compartment for delivery to the body. Let \(\gamma_{1}(t)\) and \(\gamma_{2}(t)\) be the concentrations at time \(t\) in the gut and the serum, respectively. Let \(\theta_{1}\) and \(\theta_{2}\) be the transfer parameters. The model is depicted as follows.

The rates of flow of the drug are described by the following pair of ordinary differential equations:
\[
\begin{aligned}
\frac{d \gamma_{1}(t)}{d t} & =-\theta_{1} \gamma_{1}(t) \\
\frac{d \gamma_{2}(t)}{d t} & =\theta_{1} \gamma_{1}(t)-\theta_{2} \gamma_{2}(t)
\end{aligned}
\]

The initial concentration of the tetracycline in the gut is unknown, and while the concentration in the blood can be measured at all times, initially it is assumed to be zero. Therefore, for the differential equation, the initial conditions are given by
\[
\begin{aligned}
\gamma_{1}(0) & =\theta_{3} \\
\gamma_{2}(0) & =0
\end{aligned}
\]

Also, a nonnegativity constraint is imposed on the parameters \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\), although for numerical purposes, you might need to use a small value instead of zero for these bounds (such as \(1 \mathrm{E}-7\)).

\footnotetext{
\({ }^{*}\) In Release 6.09 and in later releases, you can specify the step size \(h\) in the finite-difference formulas.
}

Suppose \(y_{i}\) is the observed serum concentration at time \(t_{i}\). The parameters are estimated by minimizing the sum of squares of the differences between the observed and predicted serum concentrations:
\[
\sum_{i}\left(y_{i}-\gamma_{2}\left(t_{i}\right)\right)^{2}
\]

The following IML program illustrates how to combine the NLPDD subroutine and the ODE subroutine to estimate the parameters \(\left(\theta_{1}, \theta_{2}, \theta_{3}\right)\) of this model. The input data are the measurement time and the concentration of the tetracycline in the blood. For more information about the ODE call, see the section "ODE Call" on page 827.
```

data tetra;
input t c @@;
datalines;
1 0.7 2 1.2 3 1.4 4 1.4 6 1.1
8 0.8 10 0.6 12 0.5 16 0.3
;
proc iml;
use tetra;
read all into tetra;
start f(theta) global(thmtrx,t,h,tetra,eps);
thmtrx = ( -theta[1] || 0 ) //
( theta[1] || -theta[2] );
c = theta[3]//0 ;
t = 0 // tetra[,1];
call ode( r1, "der",c , t, h) j="jac" eps=eps;
f = ssq((r1[2,])'-tetra[,2]);
return(f);
finish;
start der(t,x) global(thmtrx);
y = thmtrx*x;
return(y);
finish;
start jac(t,x) global(thmtrx);
y = thmtrx;
return(y);
finish;
h = {1.e-14 1. 1.e-5};
opt ={ { 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = { 1.e-13 . 1.e-10 . . . . };
con = j(1,3,0.);
itheta = { .1 . 3 10};
eps = 1.e-11;
call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

```

The output from the optimization process is shown in Output 11.3.1.
Output 11.3.1. Printed Output for Tetracycline Diffusion Problem

Output 11.3.1. (continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Optimization Results} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Iterations \\
Gradient Calls \\
Objective Function
\end{tabular}} & \multicolumn{2}{|r|}{31 Function Calls} & \multirow[t]{2}{*}{39
0} \\
\hline & 33 & Active Constraints & \\
\hline & 0.035648021 & Max Abs Gradient Element & \(3.195746 \mathrm{E}-6\) \\
\hline \multicolumn{4}{|c|}{Optimization Results} \\
\hline Slope of Search Direction & -1.76538E-11 & Radius & \\
\hline \multicolumn{4}{|l|}{GCONV convergence criterion satisfied.} \\
\hline \multicolumn{4}{|c|}{Optimization Results Parameter Estimates} \\
\hline \multicolumn{4}{|c|}{Gradient} \\
\hline \multicolumn{4}{|c|}{Objective} \\
\hline \multicolumn{2}{|l|}{N Parameter} & \multicolumn{2}{|l|}{Estimate Function} \\
\hline 1 X 1 & & 0.182440 -0.00 & \\
\hline \(2 \times 2\) & & \(0.436010 \quad 0.00\) & \\
\hline 3 x 3 & & \(6.020476-0.00\) & 875 \\
\hline \multicolumn{4}{|c|}{Value of Objective Function \(=0.0356480211\)} \\
\hline
\end{tabular}

The differential equation model is linear, and in fact, it can be solved by using an eigenvalue decomposition (this is not always feasible without complex arithmetic). Alternately, the availability and the simplicity of the closed form representation of the solution enable you to replace the solution produced by the ODE routine with the simpler and faster analytical solution. Closed forms are not expected to be easily available for nonlinear systems of differential equations, which is why the preceding solution was introduced.

The closed form of the solution requires a change to the function \(f(\cdot)\). The functions needed as arguments of the ODE routine, namely the der and jac modules, can be removed. Here is the revised code:
```

start f(th) global(theta,tetra);
theta = th;
vv = v(tetra[,1]);
error = ssq(vv-tetra[,2]);
return(error);
finish;
start v(t) global(theta);
v = theta[3]*theta[1]/(theta[2]-theta[1])*
(exp(-theta[1]*t)-exp(-theta[2]*t));
return(v);
finish;
call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

```

The parameter estimates, which are shown in Output 11.3.2, are close to those obtained by the first solution.
Output 11.3.2. Second Set of Parameter Estimates for Tetracycline Diffusion

Because of the nature of the closed form of the solution, you might want to add an additional constraint to guarantee that \(\theta_{2} \neq \theta_{1}\) at any time during the optimization. This prevents a possible division by 0 or a value near 0 in the execution of the \(v(\cdot)\) function. For example, you might add the constraint
\[
\theta_{2}-\theta_{1} \geq 10^{-7}
\]

\section*{Chemical Kinetics of Pyrolysis of Oil Shale}

Pyrolysis is a chemical change effected by the action of heat, and this example considers the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale contains organic material that is bonded to the rock. To extract oil from the rock, heat is applied, and the organic material is decomposed into oil, bitumen, and other byproducts. The model is given by
\[
\begin{aligned}
\frac{d \gamma_{1}(t)}{d t} & =-\left(\theta_{1}+\theta_{4}\right) \gamma_{1}(t) \iota\left(t, \theta_{5}\right) \\
\frac{d \gamma_{2}(t)}{d t} & =\left[\theta_{1} \gamma_{1}(t)-\left(\theta_{2}+\theta_{3}\right) \gamma_{2}(t)\right] \iota\left(t, \theta_{5}\right) \\
\frac{d \gamma_{3}(t)}{d t} & =\left[\theta_{4} \gamma_{1}(t)+\theta_{2} \gamma_{2}(t)\right] \iota\left(t, \theta_{5}\right)
\end{aligned}
\]
with the initial conditions
\[
\gamma_{1}(t)=100, \quad \gamma_{2}(t)=0, \quad \gamma_{3}(t)=0
\]

A dead time is assumed to exist in the process. That is, no change occurs up to time \(\theta_{5}\). This is controlled by the indicator function \(\iota\left(t, \theta_{5}\right)\), which is given by
\[
\iota\left(t, \theta_{5}\right)= \begin{cases}0 & \text { if } t<\theta_{5} \\ 1 & \text { if } t \geq \theta_{5}\end{cases}
\]
where \(\theta_{5} \geq 0\). Only one of the cases in Ziegel and Gorman (1980) is analyzed in this report, but the others can be handled in a similar manner. The following IML program illustrates how to combine the NLPQN subroutine and the ODE subroutine to estimate the parameters \(\theta_{i}\) in this model:
```

data oil ( drop=temp);
input temp time bitumen oil;
datalines;

673	5	0.	0.
673	7	2.2	0.
673	10	11.5	0.7
673	15	13.7	7.2
673	20	15.1	11.5
673	25	17.3	15.8
673	30	17.3	20.9
673	40	20.1	26.6
673	50	20.1	32.4
673	60	22.3	38.1
673	80	20.9	43.2
673	100	11.5	49.6
673	120	6.5	51.8
673	150	3.6	54.7

;
proc iml;
use oil;
read all into a;
/*************************************************************************
/* The INS function inserts a value given by FROM into a vector */
/* given by INTO, sorts the result, and posts the global matrix */
/* that can be used to delete the effects of the point FROM. */
/************************************************************************/
start ins(from,into) global(permm);
in = into // from;
x = i(nrow(in));
permm = inv(x[rank(in),]);
return(permm*in);
finish;
start der(t,x) global(thmtrx,thet);
y = thmtrx*x;
if ( t <= thet[5] ) then y = 0*y;
return(y);
finish;
start jac(t,x) global(thmtrx,thet);
y = thmtrx;
if ( t <= thet[5] ) then y = 0*y;
return(y);
finish;
start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
thet = theta;
thmtrx = (-(theta[1]+theta[4]) || 0 || 0 )/|
(theta[1] || -(theta[2]+theta[3]) || 0 )//
(theta[4] || theta[2] || 0 );
t = ins( theta[5],time);
c = { 100, 0, 0};

```
```

    call ode( r1, "der",c , t , h) j="jac" eps=eps;
    /* send the intermediate value to the last column */
r = (c ||r1) * permm;
m = r[2:3,(2:nrow(time))];
mm = m'- a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));
finish;
opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-7;
par = { 1.e-13 . 1.e-10 . . . .};
con = j(1,5,0.);
h = {1.e-14 1. 1.e-5};
time = (0 // a[,1]);
eps = 1.e-5;
itheta = { 1.e-3 1.e-3 1.e-3 1.e-3 1.};
call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

```

The parameter estimates are shown in Output 11.3.3.
Output 11.3.3. Parameter Estimates for Oil Shale Pyrolysis

Again, compare the solution using the approximation produced by the ODE subroutine to the solution obtained through the closed form of the given differential equation. Impose the following additional constraint to avoid a possible division by 0 when evaluating the function:
\[
\theta_{2}+\theta_{3}-\theta_{1}-\theta_{4} \geq 10^{-7}
\]

The closed form of the solution requires a change in the function \(f(\cdot)\). The functions needed as arguments of the ODE routine, namely the der and jac modules, can be removed. Here is the revised code:
```

start f(thet) global(time,a);
do i = 1 to nrow(time);

```
```

        t = time[i];
        v1 = 100;
        if ( t >= thet[5] ) then
            v1 = 100*ev(t,thet[1],thet[4],thet[5]);
        v2 = 0;
        if ( t >= thet[5] ) then
            v2 = 100*thet[1]/(thet[2]+thet[3]-thet[1]-thet[4])*
                (ev(t,thet[1],thet [4],thet [5])-
                ev(t,thet[2],thet[3],thet[5]));
        v3 = 0;
        if ( t >= thet[5] ) then
            v3 = 100*thet[4]/(thet[1]+thet[4])*
            (1. - ev(t,thet[1],thet[4],thet[5])) +
            100*thet[1] *thet[2]/(thet[2]+thet[3]-thet[1]-thet[4])*(
            (1.-ev(t,thet[1],thet[4],thet[5]))/(thet[1]+thet[4]) -
            (1.-ev(t, thet[2],thet[3],thet[5]))/(thet[2]+thet[3]) );
        y = y // (v1 || v2 || v3);
    end;
    mm = y[,2:3]-a[,2:3];
    call qr (q, r,piv,lindep,mm);
    v = det(r);
    return(abs(v));
    finish;
start ev(t,a,b,c);
return(exp (- (a+b) * (t-c)));
finish;
con = { 0. 0. 0. 0.
-i
time = a[,1];
par = { 1.e-13 . 1.e-10 . . . .};
itheta = { 1.e-3 1.e-3 1.e-2 1.e-3 1.};
call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

```

The parameter estimates are shown in Output 11.3.4.
Output 11.3.4. Second Set of Parameter Estimates for Oil Shale Pyrolysis
\begin{tabular}{llr}
& \begin{tabular}{c}
Optimization Results \\
Parameter Estimates
\end{tabular} & \begin{tabular}{r}
Gradient \\
Objective
\end{tabular} \\
N Parameter & Estimate & \begin{tabular}{r}
Function
\end{tabular} \\
1 X1 & 0.017178 & -0.005291 \\
2 X2 & 0.008912 & 0.002413 \\
3 X3 & 0.020007 & -0.000520 \\
4 X4 & 0.010494 & -0.002890 \\
5 X5 & 7.771534 & 0.000003217 \\
Value of Objective Function \(=20.689350642\)
\end{tabular}

\section*{Example 11.4. MLEs for Two-Parameter Weibull Distribution}

This example considers a data set given in Lawless (1982). The data are the number of days it took rats painted with a carcinogen to develop carcinoma. The last two observations are censored. Maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the Weibull distribution are computed. In the following code, the data set is given in the vector CARCIN, and the variables P and M give the total number of observations and the number of uncensored observations. The set \(D\) represents the indices of the observations.
```

proc iml;

```

```

        209 213 216 220 227 230 234
        246 265 304 216 244 };
    p = ncol(carcin); m = p - 2;
    ```

The three-parameter Weibull distribution uses three parameters: a scale parameter, a shape parameter, and a location parameter. This example computes MLEs and corresponding \(95 \%\) confidence intervals for the scale parameter, \(\sigma\), and the shape parameter, \(c\), for a constant value of the location parameter, \(\theta=0\). The program can be generalized to estimate all three parameters. Note that Lawless (1982) denotes \(\sigma\), \(c\), and \(\theta\) by \(\alpha, \beta\), and \(\mu\), respectively.

The observed likelihood function of the three-parameter Weibull distribution is
\[
L(\theta, \sigma, c)=\frac{c^{m}}{\sigma^{m}} \prod_{i \in D}\left(\frac{t_{i}-\theta}{\sigma}\right)^{c-1} \prod_{i=1}^{p} \exp \left\{-\left(\frac{t_{i}-\theta}{\sigma}\right)^{c}\right\}
\]

The \(\log\) likelihood, \(\ell(\theta, \sigma, c)=\log L(\theta, \sigma, c)\), is
\[
\ell(\theta, \sigma, c)=m \log c-m c \log \sigma+(c-1) \sum_{i \in D} \log \left(t_{i}-\theta\right)-\sum_{i=1}^{p}\left(\frac{t_{i}-\theta}{\sigma}\right)^{c}
\]

The log-likelihood function, \(\ell(\theta, \sigma, c)\), for \(\theta=0\) is the objective function to be maximized to obtain the MLEs \((\hat{\sigma}, \hat{c})\). The following statements define the function:
```

start f_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
sum1 = 0.; sum2 = 0.;
do i = 1 to p;
temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])\#\#x[2];
end;
f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
return(f);
finish f_weib2;

```

The derivatives of \(\ell\) with respect to the parameters \(\theta, \sigma\), and \(c\) are given in Lawless (1982). The following code specifies a gradient module, which computes \(\partial \ell / \partial \sigma\) and \(\partial \ell / \partial c\) :
```

start g_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
g = j(1,2,0.);
sum1 = 0.; sum2 = 0.; sum3 = 0.;
do i = 1 to p;
temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])\#\#x[2];
sum3 = sum3 + ((temp / x[1])\#\#x[2]) * (log(temp / x[1]));
end;
g[1] = -m * x[2] / x[1] + sum2 * x[2] / x[1];
g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
return(g);
finish g_weib2;

```

The MLEs are computed by maximizing the objective function with the trust-region algorithm in the NLPTR subroutine. The following code specifies starting values for the two parameters, \(c=\sigma=0.5\), and to avoid infeasible values during the optimization process, it imposes lower bounds of \(c, \sigma>=10^{-6}\). The optimal parameter values are saved in the variable XOPT, and the optimal objective function value is saved in the variable FOPT.
```

n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 ,
};
call nlptr(rc,xres,"f_weib2",x0,optn,con, ,, "g_weib2");
/*--- Save result in xopt, fopt ---*/
xopt = xres'; fopt = f_weib2(xopt);

```

The results shown in Output 11.4.1 are the same as those given in Lawless (1982).
Output 11.4.1. Parameter Estimates for Carcinogen Data
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Optimization Results Parameter Estimates} \\
\hline & & \\
\hline & & Objective \\
\hline N Parameter & Estimate & Function \\
\hline \(1 \mathrm{X1}\) & 234.318611 & 1.3363283E-9 \\
\hline \(2 \times 2\) & 6.083147 & -7.850915E-9 \\
\hline Value of Ob & Function \(=\) & 88.23273515 \\
\hline
\end{tabular}

The following code computes confidence intervals based on the asymptotic normal distribution. These are compared with the profile-likelihood-based confidence inter-
vals computed in the next example. The diagonal of the inverse Hessian (as calculated by the NLPFDD subroutine) is used to calculate the standard error.
```

call nlpfdd(f,g,hes2,"f_weib2",xopt,,"g_weib2");
hin2 = inv(hes2);
/* quantile of normal distribution */
prob = .05;
noqua = probit(1. - prob/2);
stderr = sqrt(abs(vecdiag(hin2)));
xlb = xopt - noqua * stderr;
xub = xopt + noqua * stderr;
print "Normal Distribution Confidence Interval";
print xlb xopt xub;

```

Output 11.4.2. Confidence Interval Based on Normal Distribution
Normal Distribution Confidence Interval

\section*{Example 11.5. Profile-Likelihood-Based Confidence Intervals}

This example calculates confidence intervals based on the profile likelihood for the parameters estimated in the previous example. The following introduction on profilelikelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let \(\hat{\theta}\) be the maximum likelihood estimate (MLE) of a parameter vector \(\theta_{0} \in \mathcal{R}^{n}\) and let \(\ell(\theta)\) be the log-likelihood function defined for parameter values \(\theta \in \Theta \subset \mathcal{R}^{n}\).

The profile-likelihood method reduces \(\ell(\theta)\) to a function of a single parameter of interest, \(\beta=\theta_{j}\), where \(\theta=\left(\theta_{1}, \ldots, \theta_{j}, \ldots, \theta_{n}\right)^{\prime}\), by treating the others as nuisance parameters and maximizing over them. The profile likelihood for \(\beta\) is defined as
\[
\tilde{\ell}_{j}(\beta)=\max _{\theta \in \Theta_{j}(\beta)} \ell(\theta)
\]
where \(\Theta_{j}(\beta)=\left\{\theta \in \Theta: \theta_{j}=\beta\right\}\). Define the complementary parameter set \(\omega=\left(\theta_{1}, \ldots, \theta_{j-1}, \theta_{j+1}, \ldots, \theta_{n}\right)^{\prime}\) and \(\hat{\omega}(\beta)\) as the optimizer of \(\tilde{\ell}_{j}(\beta)\) for each value of \(\beta\). Of course, the maximum of function \(\tilde{\ell}_{j}(\beta)\) is located at \(\beta=\hat{\theta}_{j}\). The profile-likelihood-based confidence interval for parameter \(\theta_{j}\) is defined as
\[
\left\{\beta: \ell(\hat{\theta})-\tilde{\ell}_{j}(\beta) \leq \frac{1}{2} q_{1}(1-\alpha)\right\}
\]
where \(q_{1}(1-\alpha)\) is the \((1-\alpha)\) th quantile of the \(\chi^{2}\) distribution with one degree of freedom. The points \(\left(\beta_{l}, \beta_{u}\right)\) are the endpoints of the profile-likelihood-based confidence interval for parameter \(\beta=\theta_{j}\). The points \(\beta_{l}\) and \(\beta_{u}\) can be computed
as the solutions of a system of \(n\) nonlinear equations \(f_{i}(x)\) in \(n\) parameters, where \(x=(\beta, \omega)\) :
\[
\left[\begin{array}{c}
\ell(\theta)-\ell^{*} \\
\frac{\partial \ell}{\partial \omega}(\theta)
\end{array}\right]=0
\]
where \(\ell^{*}\) is the constant threshold \(\ell^{*}=\ell(\hat{\theta})-\frac{1}{2} q_{1}(1-\alpha)\). The first of these \(n\) equations defines the locations \(\beta_{l}\) and \(\beta_{u}\) where the function \(\ell(\theta)\) cuts \(\ell^{*}\), and the remaining \(n-1\) equations define the optimality of the \(n-1\) parameters in \(\omega\). Jointly, the \(n\) equations define the locations \(\beta_{l}\) and \(\beta_{u}\) where the function \(\tilde{\ell}_{j}(\beta)\) cuts the constant threshold \(\ell^{*}\), which is given by the roots of \(\tilde{\ell}_{j}(\beta)-\ell^{*}\). Assuming that the two solutions \(\left\{\beta_{l}, \beta_{u}\right\}\) exist (they do not if the quantile \(q_{1}(1-\alpha)\) is too large), this system of \(n\) nonlinear equations can be solved by minimizing the sum of squares of the \(n\) functions \(f_{i}(\beta, \omega)\) :
\[
F=\frac{1}{2} \sum_{i=1}^{n} f_{i}^{2}(\beta, \omega)
\]

For a solution of the system of \(n\) nonlinear equations to exist, the minimum value of the convex function \(F\) must be zero.

The following code defines the module for the system of \(n=2\) nonlinear equations to be solved:
```

start f_plwei2(x) global(carcin,ipar,lstar);
/* x[1]=sigma, x[2]=c */
like = f_weib2(x);
grad = g_weib2(x);
grad[ipar] = like - lstar;
return(grad`);
finish f_plwei2;

```

The following code implements the Levenberg-Marquardt algorithm with the NLPLM subroutine to solve the system of two equations for the left and right endpoints of the interval. The starting point is the optimizer \((\hat{\sigma}, \hat{c})\), as computed in the previous example, moved toward the left or right endpoint of the interval by an initial step (refer to Venzon and Moolgavkar 1988). This forces the algorithm to approach the specified endpoint.
```

/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
optn = {2 0};
do ipar = 1 to 2;
/* Compute initial step: */
/* Choose (alfa,delt) to go in right direction */
/* Venzon \& Moolgavkar (1988), p. }89\mathrm{ */
if ipar=1 then ind = 2; else ind = 1;
delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];

```
```

    alfa = - (hes2[ipar,ipar] - delt` * hes2[ind,ipar]);
    if alfa > O then alfa = .5 * sqrt(chqua / alfa);
    else do;
        print "Bad alpha";
        alfa = .1 * xopt[ipar];
    end;
    if ipar=1 then delt = 1 || delt;
        else delt = delt || 1;
    /* Get upper end of interval */
x0 = xopt + (alfa * delt)';
/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];
else xub[ipar] = .;
/* Get lower end of interval */
x0 = xopt - (alfa * delt)';
/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];
else xlb[ipar] = .;
end;
print "Profile-Likelihood Confidence Interval";
print xlb xopt xub;

```

The results, shown in Output 11.5.1, are close to the results shown in Output 11.4.2.
Output 11.5.1. Confidence Interval Based on Profile Likelihood
```

Profile-Likelihood Confidence Interval
XLB XOP2 XUB
215.1963 234.31861 255.2157
4.1344126 6.0831471 8.3063797

```

\section*{Example 11.6. Survival Curve for Interval Censored Data}

In some studies, subjects are assessed only periodically for outcomes or responses of interest. In such situations, the occurrence times of these events are not observed directly; instead they are known to have occurred within some time interval. The times of occurrence of these events are said to be interval censored. A first step in the analysis of these interval censored data is the estimation of the distribution of the event occurrence times.

In a study with \(n\) subjects, denote the raw interval censored observations by \(\left\{\left(L_{i}, R_{i}\right]: 1 \leq i \leq n\right\}\). For the \(i\) th subject, the event occurrence time \(T_{i}\) lies in
(\(L_{i}, R_{i}\)], where \(L_{i}\) is the last assessment time at which there was no evidence of the event, and \(R_{i}\) is the earliest time when a positive assessment was noted (if it was observed at all). If the event does not occur before the end of the study, \(R_{i}\) is given a value larger than any assessment time recorded in the data.

A set of nonoverlapping time intervals \(I_{j}=\left(q_{j}, p_{j}\right], 1 \leq j \leq m\), is generated over which the survival curve \(S(t)=\operatorname{Pr}[T>t]\) is estimated. Refer to Peto (1973) and Turnbull (1976) for details. Assuming the independence of \(T_{i}\) and (\(L_{i}, R_{i}\)], and also independence across subjects, the likelihood of the data \(\left\{T_{i} \in\left(L_{i}, R_{i}\right], 1 \leq i \leq n\right\}\) can be constructed in terms of the pseudo-parameters \(\theta_{j}=\operatorname{Pr}\left[T_{i} \in I_{j}\right], 1 \leq i \leq m\). The conditional likelihood of \(\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)\) is
\[
L(\theta)=\prod_{i=1}^{n}\left(\sum_{j=1}^{m} x_{i j} \theta_{j}\right)
\]
where \(x_{i j}\) is 1 or 0 according to whether \(I_{j}\) is a subset of \(\left(L_{i}, R_{i}\right]\). The maximum likelihood estimates, \(\hat{\theta}_{j}, 1 \leq j \leq m\), yield an estimator \(\hat{S}(t)\) of the survival function \(S(t)\), which is given by
\[
\hat{S}(t)= \begin{cases}1 & t \leq q_{1} \\ \sum_{i=j+1}^{m} \hat{\theta}_{i} & p_{j} \leq t \leq q_{j+1}, \quad 1 \leq j \leq m-1 \\ 0 & t \geq p_{m}\end{cases}
\]
\(\hat{S}(t)\) remains undefined in the intervals \(\left(q_{j}, p_{j}\right)\) where the function can decrease in an arbitrary way. The asymptotic covariance matrix of \(\widehat{\theta}\) is obtained by inverting the estimated matrix of second partial derivatives of the negative log likelihood (Peto 1973, Turnbull 1976). You can then compute the standard errors of the survival function estimators by the delta method and approximate the confidence intervals for survival function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an illustration, consider an experiment to study the onset of a special kind of palpable tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every two weeks. The times to the onset of the tumor are interval censored data. These data are contained in the data set CARCIN. The variable \(L\) represents the last time the tumor was not yet detected, and the variable R represents the first time the tumor was palpated. Three mice died tumor free, and one mouse was tumor free by the end of the 48 -week experiment. The times to tumor for these four mice were considered right censored, and they were given an \(R\) value of 50 weeks.
```

data carcin;
input id l r @@;
datalines;

| 1 | 20 | 22 | 11 | 30 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 22 | 24 | 12 | 32 | 34 |
| 3 | 26 | 28 | 13 | 32 | 34 |
| 4 | 26 | 28 | 14 | 32 | 34 |


| 21 | 22 | 24 | 31 | 34 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | 22 | 24 | 32 | 34 | 36 |
| 23 | 28 | 30 | 33 | 36 | 38 |
| 24 | 28 | 30 | 34 | 38 | 40 |

```
```

| 5 | 26 | 28 | 15 | 34 | 36 | 25 | 32 | 34 | 35 | 38 | 40 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 26 | 28 | 16 | 36 | 38 | 26 | 32 | 34 | 36 | 42 | 44 |
| 7 | 28 | 30 | 17 | 42 | 44 | 27 | 32 | 34 | 37 | 42 | 44 |
| 8 | 28 | 30 | 18 | 30 | 50 | 28 | 32 | 34 | 38 | 46 | 48 |
| 9 | 30 | 32 | 19 | 34 | 50 | 29 | 32 | 34 | 39 | 28 | 50 |
| 10 | 30 | 32 | 20 | 20 | 22 | 30 | 32 | 34 | 40 | 48 | 50 |
| $;$ |  |  |  |  |  |  |  |  |  |  |  |

proc iml;
use carcin;
read all var{l r};
nobs= nrow(l);
/*************************************************************
construct the nonoverlapping intervals (Q,P) and
determine the number of pseudo-parameters (NPARM)
*******************************************************************
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
q= j(1,npp, .);
do;
do i= 1 to npp;
do j= 1 to nqq;
if ( qq[j] < pp[i] ) then q[i]= qq[j];
end;
if q[i] = qq[nqq] then goto lab1;
end;
lab1:
end;
if i > npp then nq= npp;
else nq= i;
q= unique(q[1:nq]);
nparm= ncol(q);
p= j(1,nparm, .);
do i= 1 to nparm;
do j= npp to 1 by -1;
if ( pp[j] > q[i] ) then p[i]= pp[j];
end;
end;
/**************************************************************
generate the X-matrix for the likelihood
*************************************************************/
_x= j(nobs, nparm, 0);
do j= 1 to nparm;
_x[,j]= choose(l <= q[j] \& p[j] <= r, 1, 0);
end;
/**************************************************************
log-likelihood function (LL)
****************************************************************
start LL(theta) global(_x,nparm);
xlt= log(_x * theta');
f= xlt[+];

```
return (f);
finish LL;
```

/**************************************************************
gradient vector (GRAD)
***********************************************************/
start GRAD(theta) global(_x,nparm);
g= j(1,nparm,0);
tmp= _x \# (1 / (_x * theta') );
g= tmp[+,];
return(g);
finish GRAD;

```
```

/*******************************************************************

```
 estimate the pseudo-parameters using quasi-newton technique

/* options */
optn= \{1 2\};
/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm] = 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;
/* initial estimates */
\(x 0=j(1\), nparm, \(1 / n p a r m) ;\)
/* call the optimization routine */
call nlpqn (rc, rx, "LL", x0,optn, con, , , "GRAD") ;

 survival function estimate (SDF)

tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

 covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)
 **)
 mm= nparm - 1;
 _x=_x - _x[,nparm] * (j(1, mm, 1) || \{0\});
 \(\mathrm{h}=\mathrm{j}(\mathrm{mm}, \mathrm{mm}, \mathrm{O})\);
 ixtheta= 1 / (_x * ((rx[,1:mm]) || \{1\}));
 if _zfreq then
 do \(i=1\) to nobs;
 rowtmp= ixtheta[i] \# _x[i,1:mm];
 h= h + (_freq[i] \# (rowtmp' * rowtmp));
 end;
else do \(i=1\) to nobs;
 rowtmp= ixtheta[i] \# _x[i,1:mm];
 \(h=h+\) (rowtmp' * rowtmp);
```

    end;
    sigma2= inv(h);
    /*********************************************************************
standard errors of the estimated survival curve (SIGMA3)
*******************************************************************/
sigma3= j(mm, 1, 0);
tmp1= sigma3;
do i= 1 to mm;
tmp1[i]= 1;
sigma3[i]= sqrt(tmp1` * sigma2 * tmp1);     end; /********************************************************************     95% confidence limits for the survival curve (LCL,UCL)     ********************************************************************* /* confidence limits */     tmp1= probit(.975);     *print tmp1;     tmp1= tmp1 * sigma3;     lcl= choose(sdf > tmp1, sdf - tmp1, 0);     ucl= sdf + tmp1;     ucl= choose( ucl > 1., 1., ucl); /******************************************************************     print estimates of pseudo-parameters     ****************************************************************/     reset center noname;     q= q';     p= p`;
theta= rx`;
print ,"Parameter Estimates", ,q[colname={q}] p[colname={p}]
theta[colname={theta} format=12.7],;
/****************************************************************
print survival curve estimates and confidence limits
******************************************************************
left= {0} // p;
right= q // p[nparm];
sdf= {1} // sdf // {0};
lcl= {.} // lcl //{.};
ucl= {.} // ucl //{.};
print , "Survival Curve Estimates and 95% Confidence Intervals", ,
left[colname={left}] right[colname={right}]
sdf[colname={estimate} format=12.4]
lcl[colname={lower} format=12.4]
ucl[colname={upper} format=12.4];

```

The iteration history produced by the NLPQN subroutine is shown in Output 11.6.1.

Output 11.6.1. Iteration History for the NLPQN Subroutine

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in Output 11.6.2.

Output 11.6.2. Estimates for the Probability of Event Occurrence

The survival curve estimates and confidence intervals are displayed in Output 11.6.3.

Output 11.6.3. Survival Estimates and Confidence Intervals

In this program, the quasi-Newton technique is used to maximize the likelihood function. You can replace the quasi-Newton routine by other optimization routines, such as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or the NLPCG subroutine, which performs conjugate gradient optimization. Depending on the number of parameters and the number of observations, these optimization routines do not perform equally well. For survival curve estimation, the quasi-Newton technique seems to work fairly well since the number of parameters to be estimated is usually not too large.

\section*{Example 11.7. A Two-Equation Maximum Likelihood Problem}

The following example and notation are taken from Bard (1974). A two-equation model is used to fit U.S. production data for the years 1909-1949, where \(z_{1}\) is capital input, \(z_{2}\) is labor input, \(z_{3}\) is real output, \(z_{4}\) is time in years (with 1929 as the origin), and \(z_{5}\) is the ratio of price of capital services to wage scale. The data can be entered by using the following statements:
```

proc iml;
z={ 1.33135 0.64629 0.4026 -20 0.24447,
1.39235 0.66302 0.4084 -19 0.23454,
1.41640 0.65272 0.4223-18 0.23206,
1.48773 0.67318 0.4389 -17 0.22291,
1.51015 0.67720 0.4605 -16 0.22487,
1.43385 0.65175 0.4445 -15 0.21879,
1.48188 0.65570 0.4387 -14 0.23203,
1.67115 0.71417 0.4999 -13 0.23828,
1.71327 0.77524 0.5264 -12 0.26571,
1.76412 0.79465 0.5793 -11 0.23410,
1.76869 0.71607 0.5492 -10 0.22181,
1.80776 0.70068 0.5052 -9 0.18157,
1.54947 0.60764 0.4679 -8 0.22931,
1.66933 0.67041 0.5283 -7 0.20595,
1.93377 0.74091 0.5994 -6 0.19472,
1.95460 0.71336 0.5964 -5 0.17981,
2.11198 0.75159 0.6554 -4 0.18010,
2.26266 0.78838 0.6851 -3 0.16933,
2.33228 0.79600 0.6933 -2 0.16279,
2.43980 0.80788 0.7061 -1 0.16906,
2.58714 0.84547 0.7567 0 0.16239,
2.54865 0.77232 0.6796 1 0.16103,
2.26042 0.67880 0.6136 2 0.14456,
1.91974 0.58529 0.5145 3 0.20079,
1.80000 0.58065 0.5046 4 0.18307,
1.86020 0.62007 0.5711 5 0.18352,
1.88201 0.65575 0.6184 6 0.18847,
1.97018 0.72433 0.7113 7 0.20415,
2.08232 0.76838 0.7461 8 0.18847,
1.94062 0.69806 0.6981 9 0.17800,
1.98646 0.74679 0.7722 10 0.19979,
2.07987 0.79083 0.8557 11 0.21115,
2.28232 0.88462 0.9925 12 0.23453,
2.52779 0.95750 1.0877 13 0.20937,
2.62747 1.00285 1.1834 14 0.19843,
2.61235 0.99329 1.2565 15 0.18898,
2.52320 0.94857 1.2293 16 0.17203,
2.44632 0.97853 1.1889 17 0.18140,
2.56478 1.02591 1.2249 18 0.19431,
2.64588 1.03760 1.2669 19 0.19492,
2.69105 0.99669 1.2708 20 0.17912 };

```

The two-equation model in five parameters \(c_{1}, \ldots, c_{5}\) is
\[
\begin{aligned}
g_{1} & =c_{1} 10^{c_{2} z_{4}}\left[c_{5} z_{1}^{-c_{4}}+\left(1-c_{5}\right) z_{2}^{-c_{4}}\right]^{-c_{3} / c_{4}}-z_{3}=0 \\
g_{2} & =\left[\frac{c_{5}}{1-c_{5}}\right]\left(\frac{z_{1}}{z_{2}}\right)^{-1-c_{4}}-z_{5}=0
\end{aligned}
\]
where the variables \(z_{1}\) and \(z_{2}\) are considered dependent (endogenous) and the variables \(z_{3}, z_{4}\), and \(z_{5}\) are considered independent (exogenous).

Differentiation of the two equations \(g_{1}\) and \(g_{2}\) with respect to the endogenous variables \(z_{1}\) and \(z_{2}\) yields the Jacobian matrix \(\partial g_{i} / \partial z_{j}\) for \(i=1,2\) and \(j=1,2\), where \(i\) corresponds to rows (equations) and \(j\) corresponds to endogenous variables (refer to Bard 1974). You must consider parameter sets for which the elements of the Jacobian and the logarithm of the determinant cannot be computed. In such cases, the function module must return a missing value. Here is the code:
```

start fiml(pr) global(z);
c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];
/* 1. Compute Jacobian */
lndet = 0 ;
do t= 1 to 41;
j11 = (-c3/c4) * c1 * 10 \#\#(c2 * z[t,4]) * (-c4) * c5 *
z[t,1]\#\#(-c4-1) * (c5 * z[t,1]\#\#(-c4) + (1-c5) *
z[t,2]\#\#(-c4))\#\#(-c3/c4 -1);
j12 = (-c3/c4) * (-c4) * c1 * 10 \#\#(c2 * z[t,4]) * (1-c5) *
z[t,2]\#\#(-c4-1) * (c5 * z[t,1]\#\#(-c4) + (1-c5) *
z[t,2]\#\#(-c4))\#\#(-c3/c4 -1);
j21 = (-1-c4)*(c5/(1-c5))*z[t,1]\#\#( -2-c4)/ (z[t,2]\#\#(-1-c4));
j22 = (1+c4)*(c5/(1-c5))*z[t,1]\#\#( -1-c4)/ (z[t,2]\#\#(-c4));
j = (j11 || j12 ) // (j21 || j22) ;
if any(j = .) then detj = 0.;
else detj = det(j);
if abs(detj) < 1.e-30 then do;
print t detj j;
return(.);
end;
lndet = lndet + log(abs(detj));
end;

```

Assuming that the residuals of the two equations are normally distributed, the likelihood is then computed as in Bard (1974). The following code computes the logarithm of the likelihood function:
```

/* 2. Compute Sigma */
sb = j(2,2,0.);
do t= 1 to 41;
eq_g1 = c1 * 10\#\#(c2 * z[t,4]) * (c5*z[t,1]\#\#(-c4)
+ (1-c5)*z[t,2]\#\#(-c4))\#\#(-c3/c4) - z[t,3];

```
```

        eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])##(-1-c4) - z[t,5];
        resid = eq_g1 // eq_g2;
        sb = sb + resid * resid`;
    end;
    sb = sb / 41;
    /* 3. Compute log L */
    const = 41. * (log(2 * 3.1415) + 1.);
    lnds = 0.5 * 41 * log(det(sb));
    logl = const - lndet + lnds;
    return(logl);
    finish fiml;

```

There are potential problems in computing the power and log functions for an unrestricted parameter set. As a result, optimization algorithms that use line search fail more often than algorithms that restrict the search area. For that reason, the NLPDD subroutine is used in the following code to maximize the log-likelihood function:
```

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,,tc);
print "Start" pr, "RC=" rc, "Opt Par" xr;

```

Part of the iteration history is shown in Output 11.7.1.

Output 11.7.1. Iteration History for Two-Equation ML Problem

The results are very close to those reported by Bard (1974). Bard also reports different approaches to the same problem that can lead to very different MLEs.
Output 11.7.2. Parameter Estimates

\section*{Example 11.8. Time-Optimal Heat Conduction}

The following example illustrates a nontrivial application of the NLPQN algorithm that requires nonlinear constraints, which are specified by the nlc module. The example is listed as problem 91 in Hock and Schittkowski (1981). The problem describes
a time-optimal heating process minimizing the simple objective function
\[
f(x)=\sum_{j=1}^{n} x_{j}^{2}
\]
subjected to a rather difficult inequality constraint:
\[
c(x)=10^{-4}-h(x) \geq 0
\]
where \(h(x)\) is defined as
\[
\begin{aligned}
h(x)= & \int_{0}^{1}\left(\sum_{i=1}^{30} \alpha_{i}(s) \rho_{i}(x)-k_{0}(s)\right)^{2} d s \\
\alpha_{i}(s)= & \mu_{i}^{2} A_{i} \cos \left(\mu_{i} s\right) \\
\rho_{i}(x)= & -\mu_{i}^{2}\left[\exp \left(-\mu_{i}^{2} \sum_{j=1}^{n} x_{j}^{2}\right)-2 \exp \left(-\mu_{i}^{2} \sum_{j=2}^{n} x_{j}^{2}\right)+\cdots\right. \\
& \left.+(-1)^{n-1} 2 \exp \left(-\mu_{i}^{2} x_{n}^{2}\right)+(-1)^{n}\right] \\
k_{0}(s)= & 0.5\left(1-s^{2}\right) \\
A_{i}= & \frac{2 \sin \mu_{i}}{\mu_{i}+\sin \mu_{i} \cos \mu_{i}}, \\
\mu= & \left(\mu_{1}, \ldots, \mu_{30}\right)^{\prime}, \text { where } \mu_{i} \tan \left(\mu_{i}\right)=1
\end{aligned}
\]

The gradient of the objective function \(f, g(x)=2 x\), is easily supplied to the NLPQN subroutine. However, the analytical derivatives of the constraint are not used; instead, finite-difference derivatives are computed.

In the following code, the vector MU represents the first 30 positive values \(\mu_{i}\) that satisfy \(\mu_{i} \tan \left(\mu_{i}\right)=1\) :
```

proc iml;
mu = { 8.6033358901938E-01 , 3.4256184594817E+00 ,
6.4372981791719E+00 , 9.5293344053619E+00 ,
1.2645287223856E+01 , 1.5771284874815E+01 ,
1.8902409956860E+01 , 2.2036496727938E+01 ,
2.5172446326646E+01 , 2.8309642854452E+01
3.1447714637546E+01 , 3.4586424215288E+01
3.7725612827776E+01 , 4.0865170330488E+01
4.4005017920830E+01 , 4.7145097736761E+01
5.0285366337773E+01 , 5.3425790477394E+01
5.6566344279821E+01 , 5.9707007305335E+01 ,
6.2847763194454E+01 , 6.5988598698490E+01 ,
6.9129502973895E+01 , 7.2270467060309E+01 ,
7.5411483488848E+01 , 7.8552545984243E+01 ,
8.1693649235601E+01 , 8.4834788718042E+01 ,
8.7975960552493E+01 , 9.1117161394464E+01 };

```

The vector \(A=\left(A_{1}, \ldots, A_{30}\right)^{\prime}\) depends only on \(\mu\) and is computed only once, before the optimization starts, as follows:
```

nmu = nrow(mu);
a = j(1,nmu,0.);
do i = 1 to nmu;
a[i] = 2*sin(mu[i]) / (mu[i] + sin(mu[i]) *cos(mu[i]));
end;

```

The constraint is implemented with the QUAD subroutine, which performs numerical integration of scalar functions in one dimension. The subroutine calls the module fquad that supplies the integrand for \(h(x)\). For details about the QUAD call, see the section "QUAD Call" on page 861. Here is the code:
```

/* This is the integrand used in h(x) */
start fquad(s) global(mu,rho);
z = (rho * cos(s*mu) - 0.5*(1. - s\#\#2))\#\#2;
return(z);
finish;
/* Obtain nonlinear constraint h(x) */
start h(x) global(n,nmu,mu,a,rho);
xx = x\#\#2;
do i= n-1 to 1 by -1;
xx[i] = xx[i+1] + xx[i];
end;
rho = j(1,nmu,0.);
do i=1 to nmu;
mu2 = mu[i]\#\#2;
sum = 0; t1n = -1.;
do j=2 to n;
t1n = -t1n;
sum = sum + t1n * exp(-mu2*xx[j]);
end;
sum = -2*sum + exp (-mu2*xx[1]) + t1n;
rho[i] = -a[i] * sum;
end;
aint = do (0,1,.5);
call quad(z,"fquad",aint) eps=1.e-10;
v = sum(z);
return(v);
finish;

```

The modules for the objective function, its gradient, and the constraint \(c(x) \geq 0\) are given in the following code:
```

/* Define modules for NLPQN call: f, g, and c */
start F_HS88(x);
f = x * x';
return(f);
finish F_HS88;

```
```

start G_HS88(x);
g = 2 * x;
return(g);
finish G_HS88;
start C_HS88(x);
c = 1.e-4 - h(x);
return(c);
finish C_HS88;

```

The number of constraints returned by the "nlc" module is defined by opt \([10]=1\). The ABSGTOL termination criterion (maximum absolute value of the gradient of the Lagrange function) is set by \(t c[6]=1 \mathrm{E}-4\). Here is the code:
```

print 'Hock \& Schittkowski Problem \#91 (1981) n=5, INSTEP=1';
opt = j(1,10,.);
opt[2]=3;
opt[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);
call nlpqn(rc,rx,"F_HS88",x0,opt,,tc) grd="G_HS88" nlc="C_HS88";

```

Part of the iteration history and the parameter estimates are shown in Output 11.8.1.

Output 11.8.1. Iteration History and Parameter Estimates
Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)
Jacobian Nonlinear Constraints Computed by Finite Differences
\begin{tabular}{ll}
Parameter Estimates & 5 \\
Nonlinear Constraints & 1
\end{tabular}

Optimization Start
Objective Function
1.25 Max Constr. Violation 0.0952775105

Max Grad of the Lagran Func 1.1433393372

Optimization Results
Parameter Estimates
\begin{tabular}{llrr}
& & \begin{tabular}{c}
Gradient \\
Objective \\
Function
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Gradient \\
Lagrange \\
Function
\end{tabular}} \\
N Parameter & Estimate & 0.860296 & 1.720593
\end{tabular}

Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization problem for \(n=2\) to \(n=6\). You can solve any of these problems with the preceding code by submitting a vector of length \(n\) as the initial estimate, \(x_{0}\).

\section*{References}

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), "Variational Methods for Nonlinear Least Squares," J. Oper. Res. Soc., 36, 405-421.
Al-Baali, M. and Fletcher, R. (1986), "An Efficient Line Search for Nonlinear Least Squares," Journal of Optimization Theory and Applications, 48, 359-377.
Anderson, B. D. O. and Moore, J. B. (1979), Optimal Filtering, Englewood Cliffs, NJ: Prentice-Hall.
Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.
Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, New York: John Wiley \& Sons, Inc.

Beale, E. M. L. (1972), "A Derivation of Conjugate Gradients," Numerical Methods for Nonlinear Optimization, ed. F. A. Lootsma, London: Academic Press.
Betts, J. T. (1977), "An Accelerated Multiplier Method for Nonlinear Programming," Journal of Optimization Theory and Applications, 21, 137-174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear Programming, New York: John Wiley \& Sons, Inc.

Chamberlain, R. M.; Powell, M. J. D.; Lemarechal, C.; and Pedersen, H. C. (1982), "The Watchdog Technique for Forcing Convergence in Algorithms for Constrained Optimization," Mathematical Programming, 16, 1-17.
De Jong, P. (1988), "The Likelihood for a State Space Model," Biometrika, 75, 165-169.

Dennis, J. E.; Gay, D. M.; and Welsch, R. E. (1981), "An Adaptive Nonlinear Least Squares Algorithm," ACM Trans. Math. Software, 7, 348-368.

Dennis, J. E. and Mei, H. H. W. (1979), "Two New Unconstrained Optimization Algorithms which Use Function and Gradient Values," J. Optim. Theory Appl., 28, 453-482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), "Algorithm 695: Software for a New Modified Cholesky Factorization," ACM Trans. Math. Software, 17, 306-312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Ed., Chichester: John Wiley \& Sons, Inc.
Fletcher, R. and Powell, M. J. D. (1963), "A Rapidly Convergent Descent Method for Minimization," Computer Journal, 6, 163-168.
Fletcher, R. and Xu, C. (1987), "Hybrid Methods for Nonlinear Least Squares," Journal of Numerical Analysis, 7, 371-389.
Gay, D. M. (1983), "Subroutines for Unconstrained Minimization," ACM Trans. Math. Software, 9, 503-524.

George, J. A. and Liu, J. W. (1981), Computer Solution of Large Sparse Positive Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.
Gill, E. P.; Murray, W.; and Wright, M. H. (1981), Practical Optimization, London: Academic Press.

Gill, E. P.; Murray, W.; Saunders, M. A.; and Wright, M. H. (1983), "Computing Forward-Difference Intervals for Numerical Optimization," SIAM J. Sci. Stat. Comput., 4, 310-321.

Gill, E. P.; Murray, W.; Saunders, M. A.; and Wright, M. H. (1984), "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints," ACM Trans. Math. Software, 10, 282-298.
Goldfeld, S. M.; Quandt, R. E.; and Trotter, H. F. (1966), "Maximisation by Quadratic Hill-Climbing," Econometrica, 34, 541-551.
Hartmann, W. (1991), The NLP Procedure: Extended User's Guide, Releases 6.08 and 6.10, Cary, NC: SAS Institute Inc.
Hock, W. and Schittkowski, K. (1981), "Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems 187, New York: Springer-Verlag.
Jennrich, R. I. and Sampson, P. F. (1968), "Application of Stepwise Regression to Nonlinear Estimation," Technometrics, 10, 63-72.
Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, New York: John Wiley \& Sons, Inc.
Liebman, J.; Lasdon, L.; Schrage, L.; and Waren, A. (1986), Modeling and Optimization with GINO, San Francisco: The Scientific Press.

Lindström, P. and Wedin, P. A. (1984), "A New Linesearch Algorithm for Nonlinear Least Squares Problems," Mathematical Programming, 29, 268-296.

Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Berlin: Springer-Verlag.

Moré, J. J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and Theory," Lecture Notes in Mathematics 630, ed. G.A. Watson, New York: Springer-Verlag, 105-116.
Moré, J. J.; Garbow, B. S.; and Hillstrom, K. E. (1981), "Testing Unconstrained Optimization Software," ACM Trans. Math. Software, 7, 17-41.
Moré, J. J. and Sorensen, D. C. (1983), "Computing a Trust-Region Step," SIAM J. Sci. Stat. Comput., 4, 553-572.
Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia: SIAM.
Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User's Guide; Technical Report SOL 83-20, Stanford University.
Nelder, J. A. and Mead, R. (1965), "A Simplex Method for Function Minimization," Computer Journal, 7, 308-313.
Peto, R. (1973), "Experimental Survival Curves for Interval-Censored Data," Appl. Statist, 22, 86-91.

Polak, E. (1971), Computational Methods in Optimization, New York: Academic Press, Inc.

Powell, M. J. D. (1977), "Restart Procedures for the Conjugate Gradient Method," Mathematical Programming, 12, 241-254.

Powell, M. J. D. (1978a), "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, ed. G. A. Watson, Berlin: Springer-Verlag, 144-175.

Powell, M. J. D. (1978b), "Algorithms for Nonlinear Constraints That Use Lagrangian Functions," Mathematical Programming, 14, 224-248.

Powell, M. J. D. (1982a), "Extensions to Subroutine VF02AD," Systems Modeling and Optimization, Lecture Notes in Control and Information Sciences 38, eds. R. F. Drenick and F. Kozin, Berlin: Springer-Verlag, 529-538.

Powell, M. J. D. (1982b), "VMCWD: A Fortran Subroutine for Constrained Optimization," DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), "A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation," DAMTP/NA5, Cambridge, England.

Rosenbrock, H. H. (1960), "An Automatic Method for Finding the Greatest or Least Value of a Function," Computer Journal, 3, 175-184.

Schittkowski, K. (1978), "An Adaptive Precision Method for the Numerical Solution of Constrained Optimization Problems Applied to a Time-Optimal Heating Process," Proceedings of the Eighth IFIP Conference on Optimization Techniques, Heidelberg: Springer-Verlag.

Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems 282, Berlin: SpringerVerlag.

Schittkowski, K. and Stoer, J. (1979), "A Factorization Method for the Solution of Constrained Linear Least Squares Problems Allowing Subsequent Data Changes," Numer. Math., 31, 431-463.
Turnbull, B. W. (1976), "The Empirical Distribution Function from Arbitrarily Grouped, Censored and Truncated Data," J. Royal Statist. Soc. Ser. B, 38, 290-295.

Venzon, D. J. and Moolgavkar, S. H. (1988), "A Method for Computing Profile-Likelihood-Based Confidence Intervals," Applied Statistics, 37, 87-94.

Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least Squares Problems, University of Umea, Report No. UMINF 133.87.

Ziegel, E. R. and J. W. Gorman (1980), "Kinetic Modelling with Multipurpose Data," Technometrics, 27, 352-357.

\section*{Chapter 12 \\ Graphics Examples}

\section*{Chapter Contents}
OVERVIEW 405
AN INTRODUCTORY GRAPH 405
DETAILS 407
Graphics Segments 407
Segment Attributes 408
Coordinate Systems 408
Windows and Viewports 410
Clipping Your Graphs 419
Common Arguments 420
GRAPHICS EXAMPLES 422
Example 12.1. Scatter Plot Matrix 422
Example 12.2. Train Schedule 429
Example 12.3. Fisher's Iris Data 430

\section*{Chapter 12 \\ Graphics Examples}

\section*{Overview}

SAS/IML software provides you with a powerful set of graphics commands, called graphics primitives, from which to create customized displays. Several basic commands are GDRAW (for drawing a line), GPOINT (for plotting points), and GPOLY (for drawing a polygon). With each primitive, you can associate a set of attributes such as color or line style.

In this chapter you learn about
- plotting simple two-dimensional plots
- naming and saving a graph
- changing attributes such as color and line style
- specifying the location and scale of your graph
- adding axes and text

SAS/IML graphics commands depend on the libraries and device drivers distributed with SAS/GRAPH software, and they do not work unless you have SAS/GRAPH software.

\section*{An Introductory Graph}

Suppose that you have data for ACME Corporation's stock price and you want a simple PRICE \(\times\) DAY graph to see the overall trend of the stock's price. The data are as follows.
\begin{tabular}{rl}
\hline Day & Price \\
\hline 0 & 43.75 \\
5 & 48.00 \\
10 & 59.75 \\
15 & 75.5 \\
20 & 59.75 \\
25 & 71.50 \\
30 & 70.575 \\
35 & 61.125 \\
40 & 79.50 \\
45 & 72.375 \\
50 & 67.00 \\
55 & 54.125 \\
60 & 58.750 \\
65 & 43.625 \\
70 & 47.125 \\
75 & 45.50 \\
\hline
\end{tabular}

To graph a scatter plot of these points, enter the following statements. These statements generate Figure 12.1.
```

proc iml;
call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
day=do (0,75,5);
price={43.75,48,59.75,75.5,
59.75,71.5,70.575,
61.125,79.5,72.375,67,
54.125,58.75,43.625,
47.125,45.50};
call gshow;
call gopen;

```
 call gopen; /* start new graph */
 call gpoly (xbox, ybox); /* draw a box around plot */
 call gpoint (day,price); /* plot the points */
 /* invoke IML */
/* start graphics */
/* initialize day */
 /* display the graph */

Figure 12.1. Scatter plot
Note that the GSTART statement initializes the graphics session. It usually needs to be called only once. Next, you enter the data matrices. Then you open a graphics segment (that is, begin a new graph) with the GOPEN command. The GPOINT command draws the scatter plot of points of DAY versus PRICE. The GSHOW command displays the graph.

Notice also that, for this example, the \(x\) coordinate of the data is DAY and that \(0 \leq\) DAY \(\leq 100\). The \(y\) coordinate is PRICE, which ranges from \(0 \leq\) PRICE \(\leq 100\). For this example, the ranges are this way because the IML default ranges are from 0 to 100 on both the \(x\) and \(y\) axes. Later on you learn how to change the default ranges for the axes with the GWINDOW statement so that you can handle data with any range of values.

Of course, this graph is quite simple. By the end of this chapter, you will know how to add axes and titles, scale axes, and connect the points with lines.

\section*{Details}

\section*{Graphics Segments}

A graph is saved in what is called a graphics segment. A graphics segment is simply a collection of primitives and their associated attributes that creates a graph.

Each time you create a new segment, it is named and stored in a SAS graphics catalog called WORK.GSEG. If you want to store your graphics segments in a permanent SAS catalog, do this with options to the GSTART call. You can name the segments yourself in the GOPEN statement, or you can let the IML procedure automatically
generate a segment name. In this way, graphics segments that are used several times can be included in subsequent graphs by using the GINCLUDE command with the segment name. You can also manage and replay a segment by using the GREPLAY procedure as well as replay it in another IML session by using the GSHOW command.

To name a segment, include the name as an argument to the GOPEN statement. For example, to begin a new segment and name it STOCK1, use the following statement:
```

call gopen("stock1");

```

For more information about SAS catalogs and graphics, refer to the chapter on graphics in SAS/GRAPH Software: Reference.

\section*{Segment Attributes}

A set of attributes is initialized for each graphics segment. These attributes are color, line style, line thickness, fill pattern, font, character height, and aspect ratio. You can change any of these attributes for a graphics segment by using the GSET command. Some IML graphics commands take optional attribute arguments. The values of these arguments affect only the graphics output associated with the call.

The IML graphics subsystem uses the same conventions that SAS/GRAPH software uses in setting the default attributes. It also uses the options set in the GOPTIONS statement when applicable. The SAS/IML default values for the GSET command are given by their corresponding GOPTIONS default values. To change the default, you need to issue a GOPTIONS statement. The GOPTIONS statement can also be used to set graphics options not available through the GSET command (for example, the ROTATE option).

For more information about GOPTIONS, refer to the chapter on the GOPTIONS statement in SAS/GRAPH Software: Reference.

\section*{Coordinate Systems}

Each IML graph is associated with two independent cartesian coordinate systems, a world coordinate system and a normalized coordinate system.

\section*{Understanding World Coordinates}

The world coordinate system is the coordinate system defined by your data. Because these coordinates help define objects in the data's two-dimensional world, these are referred to as world coordinates. For example, suppose that you have a data set containing heights and weights and that you are interested in plotting height versus weight. Your data induces a world coordinate system in which each point \((x, y)\) represents a pair of data values (height,weight). The world could be defined by the observed ranges of heights and weights, or it could be enlarged to include a range of all reasonable values for heights and weights.

Now consider a more realistic example of the stock price data for ACME Corporation. Suppose that the stock price data were actually the year-end prices of ACME stock for the years 1971 through 1986, as follows:
\begin{tabular}{rl}
YEAR & PRICE \\
71 & 123.75 \\
72 & 128.00 \\
73 & 139.75 \\
74 & 155.50 \\
75 & 139.75 \\
76 & 151.50 \\
77 & 150.375 \\
78 & 149.125 \\
79 & 159.50 \\
80 & 152.375 \\
81 & 147.00 \\
82 & 134.125 \\
83 & 138.75 \\
84 & 123.625 \\
85 & 127.125 \\
86 & 125.500
\end{tabular}

The actual range of YEAR is from 71 to 86 , and the range of PRICE is from \(\$ 123.625\) to \(\$ 159.50\). These are the ranges in world coordinate space for the stock data. Of course, you could say that the range for PRICE could start at \(\$ 0\) and range upwards to, for example, \(\$ 200\). Or, if you were interested only in prices during the 80 s, you could say the range for PRICE is from \(\$ 123.625\) to \(\$ 152.375\). As you see, it all depends on how you want to define your world.

Figure 12.2 shows a graph of the stock data with the world defined as the actual data given. The corners of the rectangle give the actual boundaries for this data.

Figure 12.2. World Coordinates

\section*{Understanding Normalized Coordinates}

The normalized coordinate system is defined relative to your display device, usually a monitor or plotter. It is always defined with points varying between \((0,0)\) and \((100,100)\), where \((0,0)\) refers to the lower-left corner and \((100,100)\) refers to the upper-right corner.

In summary,
- the world coordinate system is defined relative to your data
- the normalized coordinate system is defined relative to the display device

Figure 12.3 shows the ACME stock data in terms of normalized coordinates. There is a natural mathematical relationship between each point in world and normalized coordinates. The normalized device coordinate system is mapped to the device display area so that \((0,0)\), the lower-left corner, corresponds to \((71,123.625)\) in world coordinates, and \((100,100)\), the upper-right corner, corresponds to \((86,159.5)\) in world coordinates.

Actual Device

Figure 12.3. Normalized Coordinates

\section*{Windows and Viewports}

A window defines a rectangular area in world coordinates. You define a window with a GWINDOW statement. You can define the window to be larger than, the same size as, or smaller than the actual range of data values, depending on whether you want to show all of the data or only part of the data.

A viewport defines in normalized coordinates a rectangular area on the display device where the image of the data appears. You define a viewport with the GPORT command. You can have your graph take up the entire display device or show it in only a portion, say the upper-right part.

\section*{Mapping Windows to Viewports}

A window and a viewport are related by the linear transformation that maps the window onto the viewport. A line segment in the window is mapped to a line segment in the viewport such that the relative positions are preserved.

You do not have to display all of your data in a graph. In Figure 12.4, the graph on the left displays all of the ACME stock data, and the graph on the right displays only a part of the data. Suppose that you wanted to graph only the last 10 years of the stock data-say, from 1977 to 1986. You would want to define a window where the YEAR axis ranges from 77 to 86, while the PRICE axis could range from 120 to 160 . Figure 12.4 shows stock prices in a window defined for data from 1977 to 1986 along the horizontal direction and from 120 to 160 along the vertical direction. The window is mapped to a viewport defined by the points \((20,20)\) and \((70,60)\). The appropriate GPORT and GWINDOW specifications are as follows:
```

call gwindow({77 120, 86 160});
call gport({20 20, 70 60});

```

The window, in effect, defines the portion of the graph that is to be displayed in world coordinates, and the viewport specifies the area on the device on which the image is to appear.

Figure 12.4. Window to Viewport Mapping

\section*{Understanding Windows}

Because the default world coordinate system ranges from \((0,0)\) to \((100,100)\), you usually need to define a window in order to set the world coordinates corresponding to your data. A window specifies which part of the data in world coordinate space is to be shown. Sometimes you want all of the data shown; other times, you want to show only part of the data.

A window is defined by an array of four numbers, which define a rectangular area. You define this area by specifying the world coordinates of the lower-left and upperright corners in the GWINDOW statement, which has the following general form:

\section*{CALL GWINDOW(minimum-x minimum-y maximum-x maximum-y);}

The argument can be either a matrix or a literal. The order of the elements is important. The array of coordinates can be a \(2 \times 2,1 \times 4\), or \(4 \times 1\) matrix. These coordinates can be specified as matrix literals or as the name of a numeric matrix containing the coordinates. If you do not define a window, the default is to assume both \(x\) and \(y\) range between 0 and 100 .

In summary, a window
- defines the portion of the graph that appears in the viewport
- is a rectangular area
- is defined by an array of four numbers
- is defined in world coordinates
- scales the data relative to world coordinates

In the previous example, the variable YEAR ranges from 1971 to 1986, while PRICE ranges from 123.625 to 159.50 . Because the data do not fit nicely into the default, you want to define a window that reflects the ranges of the variables YEAR and PRICE. To draw the graph of these data to scale, you can let the YEAR axis range from 70 to 87 and the PRICE axis range from 100 to 200. Use the following statements to draw the graph, shown in Figure 12.5.
```

call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
call gopen("stocks1"); /* begin new graph STOCKS1 */
call gset("height", 2.0);
year=do(71,86,1);
/* initialize YEAR */
price={123.75 128.00 139.75 /* initialize PRICE */
155.50 139.750 151.500
150.375 149.125 159.500
152.375 147.000 134.125
138.750 123.625 127.125
125.50};
call gwindow({70 100 87 200}); /* define window */
call gpoint(year,price,"diamond","green"); /* graph the points */
call gdraw(year,price,1,"green"); /* connect points */
call gshow;
/* show the graph */

```


Figure 12.5. Stock Data
In the following example, you perform several steps that you did not do with the previous graph:
- You associate the name STOCKS1 with this graphics segment in the GOPEN command.
- You define a window that reflects the actual ranges of the data with a GWINDOW command.
- You associate a plotting symbol, the diamond, and the color green with the GPOINT command.
- You connect the points with line segments with the GDRAW command. The GDRAW command requests that the line segments be drawn in style 1 and be green.

\section*{Understanding Viewports}

A viewport specifies a rectangular area on the display device where the graph appears. You define this area by specifying the normalized coordinates, the lower-left corner and the upper-right corner, in the GPORT statement, which has the following general form:

\section*{CALL GPORT(minimum-x minimum-y maximum-x maximum-y);}

The argument can be either a matrix or a literal. Note that both \(x\) and \(y\) must range between 0 and 100. As with the GWINDOW specification, you can give the coordinates either as a matrix literal enclosed in braces or as the name of a numeric matrix
containing the coordinates. The array can be a \(2 \times 2,1 \times 4\), or \(4 \times 1\) matrix. If you do not define a viewport, the default is to span the entire display device.

In summary, a viewport
- specifies where the image appears on the display
- is a rectangular area
- is specified by an array of four numbers
- is defined in normalized coordinates
- scales the data relative to the shape of the viewport

To display the stock price data in a smaller area on the display device, you must define a viewport. While you are at it, add some text to the graph. You can use the graph that you created and named STOCKS1 in this new graph. The following statements create the graph shown in Figure 12.6.
```

    /* module centers text strings */
    start gscenter(x,y,str);
call gstrlen(len,str);
call gscript(x-len/2,y,str); /* print text */
/* find string length */
finish gscenter;
call gopen("stocks2"); /* open a new segment */
call gset("font","swiss"); /* set character font */
call gpoly(xbox,ybox); /* draw a border */
call gwindow({70 100,87 200}); /* define a window */
call gport({15 15,85 85}); /* define a viewport */
call ginclude("stocks1"); /* include segment STOCKS1 */
call gxaxis({70 100},17,18, , /* draw x-axis */
,"2.",1.5);
call gyaxis({70 100},100,11, , /* draw y-axis */
,"dollar5.",1.5);
call gset("height",2.0); /* set character height */
call gtext(77,89,"Year"); /* print horizontal text */
call gvtext(68,200,"Price"); /* print vertical text */
call gscenter(79,210,"ACME Stock Data"); /* print title */
call gshow;

```


Figure 12.6. Stock Data with Axes and Labels
The following list describes the statements that generated this graph:
- GOPEN begins a new graph and names it STOCKS2.
- GPOLY draws a box around the display area.
- GWINDOW defines the world coordinate space to be larger than the actual range of stock data values.
- GPORT defines a viewport. It causes the graph to appear in the center of the display, with a border around it for text. The lower-left corner has coordinates \((15,15)\) and the upper-right corner has coordinates \((85,85)\).
- GINCLUDE includes the graphics segment STOCKS1. This saves you from having to plot points you have already created.
- GXAXIS draws the \(x\) axis. It begins at the point \((70,100)\) and is 17 units (years) long, divided with 18 tick marks. The axis tick marks are printed with the numeric 2.0 format, and they have a height of 1.5 units.
- GYAXIS draws the \(y\) axis. It also begins at \((70,100)\) but is 100 units (dollars) long, divided with 11 tick marks. The axis tick marks are printed with the DOLLAR5.0 format and have a height of 1.5 units.
- GSET sets the text font to be Swiss and the height of the letters to be 2.0 units. The height of the characters has been increased because the viewport definition scales character sizes relative to the viewport.
- GTEXT prints horizontal text. It prints the text string Year beginning at the world coordinate point \((77,89)\).
- GVTEXT prints vertical text. It prints the text string Price beginning at the world coordinate point \((68,200)\).
- GSCENTER runs the module to print centered text strings.
- GSHOW displays the graph.

\section*{Changing Windows and Viewports}

Windows and viewports can be changed for the graphics segment any time that the segment is active. Using the stock price example, you can first define a window for the data during the years 1971 to 1974 and map this to the viewport defined on the upper half of the normalized device; then you can redefine the window to enclose the data for 1983 to 1986 and map this to an area in the lower half of the normalized device. Notice how the shape of the viewport affects the shape of the curve. Changing the viewport can affect the height of any printed characters as well. In this case, you can modify the HEIGHT parameter.

The following statements generate the graph in Figure 12.7:
```

    /* figure 12.7 */
    reset clip; /* clip outside viewport */
call gopen; /* open a new segment */
call gset("color","blue");
call gset("height",2.0);
call gwindow({71 120,74 175}); /* define a window */
call gport({20 55,80 90}); /* define a viewport */
call gpoly({71 74 74 71},{120 120 170 170}); /* draw a border */
call gscript(71.5,162,"Viewport \#1 1971-74",, /* print text */
,3.0,"complex","red");
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gblkvpd;
call gwindow({83 120,86 170}); /* define new window */
call gport({20 10,80 45}); /* define new viewport */
call gpoly({83 86 86 83},{120 120 170 170}); /* draw border */
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gscript(83.5,162,"Viewport \#2 1983-86",, /* print text */
,3.0,"complex","red");
call gshow;

```


Figure 12.7. Multiple Viewports
The RESET CLIP command is necessary because you are graphing only a part of the data in the window. You want to clip the data that falls outside of the window. See the section "Clipping Your Graphs" on page 419 for more about clipping. In this graph, you
- open a new segment (GOPEN)
- define the first window for the first four years' data (GWINDOW)
- define a viewport in the upper part of the display device (GPORT)
- draw a box around the viewport (GPOLY)
- add text (GSCRIPT)
- graph the points and connect them (GPOINT and GDRAW)
- define the second window for the last four years (GWINDOW)
- define a viewport in the lower part of the display device (GPORT)
- draw a box around the viewport (GPOLY)
- graph the points and connect them (GPOINT and GDRAW)
- add text (GSCRIPT)
- display the graph (GSHOW)

\section*{Stacking Viewports}

Viewports can be stacked; that is, a viewport can be defined relative to another viewport so that you have a viewport within a viewport.

A window or a viewport is changed globally through the IML graphics commands: the GWINDOW command for windows, and the GPORT, GPORTSTK, and GPORTPOP commands for viewports. When a window or viewport is defined, it persists across IML graphics commands until another window- or viewport-altering command is encountered. Stacking helps you define a viewport without losing the effect of a previously defined viewport. When a stacked viewport is popped, you are placed into the environment of the previous viewport.

Windows and viewports are associated with a particular segment; thus, they automatically become undefined when the segment is closed. A segment is closed whenever IML encounters a GCLOSE command or a GOPEN command. A window or a viewport can also be changed for a single graphics command. Either one can be passed as an argument to a graphics primitive, in which case any graphics output associated with the call is defined in the specified window or viewport. When a viewport is passed as an argument, it is stacked, or defined relative to the current viewport, and popped when the graphics command is complete.

For example, suppose you want to create a legend that shows the low and peak points of the data for the ACME stock graph. Use the following statements to create a graphics segment showing this information:
```

call gopen("legend");
call gset('height',5); /* enlarged to accommodate viewport later */
call gset('font','swiss');
call gscript(5,75,"Stock Peak: 159.5 in 1979");
call gscript(5,65,"Stock Low: 123.6 in 1984");
call gclose;

```

Use the following statements to create a segment that highlights and labels the low and peak points of the data:
```

    /* Highlight and label the low and peak points of the stock */
    call gopen("labels");
call gwindow({70 100 87 200}); /* define window */
call gpoint(84,123.625,"circle","red",4) ;
call gtext(84,120,"LOW","red");
call gpoint(79,159.5,"circle","red",4);
call gtext(79,162,"PEAK","red");
call gclose;

```

Next, open a new graphics segment and include the STOCK1 segment created earlier in the chapter, placing the segment in the viewport \(\{10109090\}\). Here is the code:
```

call gopen;
call gportstk ({10 10 90 90}); /* viewport for the plot itself */
call ginclude('stocks2');

```

To place the legend in the upper-right corner of this viewport, use the GPORTSTK command instead of the GPORT command to define the legend's viewport relative to the one used for the plot of the stock data, as follows:
```

call gportstk ({70 70 100 100}); /* viewport for the legend */
call ginclude("legend");

```

Now pop the legend's viewport to get back to the viewport of the plot itself and include the segment that labels and highlights the low and peak stock points. Here is the code:
```

call gportpop; /* viewport for the legend */
call ginclude ("labels");

```

Finally, display the graph, as follows:
```

call gshow;

```


Figure 12.8. Stacking Viewports

\section*{Clipping Your Graphs}

The IML graphics subsystem does not automatically clip the output to the viewport. Thus, it is possible that data are graphed outside the defined viewport. This happens when there are data points lying outside the defined window. For instance, if you specify a window to be a subset of the world, then there will be data lying outside the window and these points will be graphed outside the viewport. This is usually not what you want. To clean up such graphs, you either delete the points you do not want to graph or clip the graph.

There are two ways to clip a graph. You can use the RESET CLIP command, which clips outside a viewport. The CLIP option remains in effect until you submit a RESET

NOCLIP command. You can also use the GBLKVP command, which clips either inside or outside a viewport. Use the GBLKVP command to define a blanking area in which nothing can be drawn until the blanking area is released. Use the GBLKVPD command to release the blanking area.

\section*{Common Arguments}

IML graphics commands are available in the form of call subroutines. They generally take a set of required arguments followed by a set of optional arguments. All graphics primitives take window and viewport as optional arguments. Some IML graphics commands, like GPOINT or GPIE, accept implicit repetition factors in the argument lists. The GPOINT command places as many markers as there are well-defined \((x, y)\) pairs. The GPIE command draws as many slices as there are well-defined pies. In those cases, some of the attribute matrices can have more than one element, which are used in order. If an attribute list is exhausted before the repetition factor is completed, the last element of the list is used as the attribute for the remaining primitives.

The arguments to the IML graphics commands are positional. Thus, to skip over an optional argument from the middle of a list, you must specify a comma to hold its place. For example, the following command omits the third argument from the argument list:
```

call gpoint(x,y, ,"red");

```

The following list details the arguments commonly used in IML graphics commands:
color is a character matrix or literal that names a valid color as specified in the GOPTIONS statement. The default color is the first color specified in the COLORS= list in the GOPTIONS statement. If no such list is given, IML uses the first default color for the graphics device. Note that color can be specified either as a quoted literal, such as "RED," a color number, such as 1 , or the name of a matrix containing a reference to a valid color. A color number \(n\) refers to the \(n\)th color in the color list.

You can change the default color with the GSET command.
font is a character matrix or quoted literal that specifies a valid font name. The default font is the hardware font, which can be changed by the GSET command unless a viewport is in effect.
height is a numeric matrix or literal that specifies the character height. The unit of height is the gunit of the GOPTIONS statement, when specified; otherwise, the unit is a character cell. The default height is 1 gunit, which you can change by using the GSET command.
pattern is a character matrix or quoted literal that specifies the pattern to fill the interior of a closed curve. You specify a pattern by a coded character string as documented in the \(\mathrm{V}=\) option in the

PATTERN statement (refer to the chapter on the PATTERN statement in SAS/GRAPH Software: Reference.

The default pattern set by the IML graphics subsystem is "E," that is, empty. The default pattern can be changed by using the GSET command.
is a character matrix or quoted literal that specifies a valid SAS name used to identify a graphics segment. The segment-name is associated with the graphics segment opened with a GOPEN command. If you do not specify segment-name, IML generates default names. For example, to create a graphics segment called PLOTA, use the following statement:
```

call gopen("plota");

```

Graphics segments are not allowed to have the same name as an existing segment. If you try to create a second segment named PLOTA (that is, when the replace flag is turned off), then the second segment is named PLOTA1. The replace flag is set by the GOPEN command for the segment that is being created. To open a new segment named PLOTA and replace an existing segment with the same name, use the following statement:
```

call gopen("plota",1);

```

If you do not specify a replace argument to the GOPEN command, the default is set by the GSTART command for all subsequent segments that are created. By default, the GSTART command sets the replace flag to 0 , so that new segments do not replace like-named segments.
style is a numeric matrix or literal that specifies an index corresponding to the line style documented for the SYMBOL statement in the chapter on the SYMBOL statement in SAS/GRAPH Software: Reference. The IML graphics subsystem sets the default line style to be 1 , a solid line. The default line style can be changed by using the GSET command.
symbol is a character matrix or quoted literal that specifies either a character string corresponding to a symbol as defined for the \(\mathrm{V}=\) option of the SYMBOL statement or specifies the corresponding identifying symbol number. STAR is the default symbol used by the IML graphics subsystem.

SAS/IML graphics commands are described in detail in Chapter 20.
Refer also to SAS/GRAPH Software: Reference for additional information.

\section*{Graphics Examples}

This section provides the details and code for three examples involving SAS/IML graphics. The first example shows a \(2 \times 2\) matrix of scatter plots and a \(3 \times 3\) matrix of scatter plots. A matrix of scatter plots is useful when you have several variables that you want to investigate simultaneously rather than in pairs. The second example draws a grid for representing a train schedule, with arrival and departure dates on the horizontal axis and destinations along the vertical axis. The final example plots Fisher's iris data. The following example shows how to plot several graphs on one page.

\section*{Example 12.1. Scatter Plot Matrix}

With the viewport capability of the IML graphics subroutine, you can arrange several graphs on a page. In this example, multiple graphs are generated from three variables and are displayed in a scatterplot matrix. For each variable, one contour plot is generated with each of the other variables as the dependent variable. For the graphs on the main diagonal, a box-and-whiskers plot is generated for each variable.

This example takes advantage of user-defined IML modules:
BOXWHSKR computes median and quartiles.
GBXWHSKR draws box-and-whiskers plots.
CONTOUR generates confidence ellipses assuming bivariate normal data.
GCONTOUR
draws the confidence ellipses for each pair of variables.
GSCATMAT produces the \(n \times n\) scatter plot matrix, where \(n\) is the number of variables.

The code for the five modules and a sample data set follow. The modules produce Figure 12.9 on page 428 and Figure 12.10 on page 428.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{/* This program generates a data set and uses iml graphics
/* subsystem to draw a scatterplot matrix.} \\
\hline \multicolumn{6}{|l|}{data factory;} \\
\hline \multicolumn{6}{|l|}{input recno prod temp a defect mon; datalines;} \\
\hline 1 & 1.82675 & 71.124 & 1.12404 & 1.79845 & 2 \\
\hline 2 & 1.67179 & 70.9245 & 0.924523 & 1.05246 & 3 \\
\hline 3 & 2.22397 & 71.507 & 1.50696 & 2.36035 & 4 \\
\hline 4 & 2.39049 & 74.8912 & 4.89122 & 1.93917 & 5 \\
\hline 5 & 2.45503 & 73.5338 & 3.53382 & 2.0664 & 6 \\
\hline 6 & 1.68758 & 71.6764 & 1.67642 & 1.90495 & 7 \\
\hline 7 & 1.98233 & 72.4222 & 2.42221 & 1.65469 & 8 \\
\hline 8 & 1.17144 & 74.0884 & 4.08839 & 1.91366 & 9 \\
\hline 9 & 1.32697 & 71.7609 & 1.76087 & 1.21824 & 10 \\
\hline 10 & 1.86376 & 70.3978 & 0.397753 & 1.21775 & 11 \\
\hline 11 & 1.25541 & 74.888 & 4.88795 & 1.87875 & 12 \\
\hline 12 & 1.17617 & 73.3528 & 3.35277 & 1.15393 & 1 \\
\hline 13 & 2.38103 & 77.1762 & 7.17619 & 2.26703 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 14 & 1.13669 & 73.0157 & 3.01566 & 1 & 3 \\
\hline 15 & 1.01569 & 70.4645 & 0.464485 & 1 & 4 \\
\hline 16 & 2.36641 & 74.1699 & 4.16991 & 1.73009 & 5 \\
\hline 17 & 2.27131 & 73.1005 & 3.10048 & 1.79657 & 6 \\
\hline 18 & 1.80597 & 72.6299 & 2.62986 & 1.8497 & 7 \\
\hline 19 & 2.41142 & 81.1973 & 11.1973 & 2.137 & 8 \\
\hline 20 & 1.69218 & 71.4521 & 1.45212 & 1.47894 & 9 \\
\hline 21 & 1.95271 & 74.8427 & 4.8427 & 1.93493 & 10 \\
\hline 22 & 1.28452 & 76.7901 & 6.79008 & 2.09208 & 11 \\
\hline 23 & 1.51663 & 83.4782 & 13.4782 & 1.81162 & 12 \\
\hline 24 & 1.34177 & 73.4237 & 3.42369 & 1.57054 & 1 \\
\hline 25 & 1.4309 & 70.7504 & 0.750369 & 1.22444 & 2 \\
\hline 26 & 1.84851 & 72.9226 & 2.92256 & 2.04468 & 3 \\
\hline 27 & 2.08114 & 78.4248 & 8.42476 & 1.78175 & 4 \\
\hline 28 & 1.99175 & 71.0635 & 1.06346 & 1.25951 & 5 \\
\hline 29 & 2.01235 & 72.2634 & 2.2634 & 1.36943 & 6 \\
\hline 30 & 2.38742 & 74.2037 & 4.20372 & 1.82846 & 7 \\
\hline 31 & 1.28055 & 71.2495 & 1.24953 & 1.8286 & 8 \\
\hline 32 & 2.05698 & 76.0557 & 6.05571 & 2.03548 & 9 \\
\hline 33 & 1.05429 & 77.721 & 7.72096 & 1.57831 & 10 \\
\hline 34 & 2.15398 & 70.8861 & 0.886068 & 2.1353 & 1 \\
\hline 35 & 2.46624 & 70.9682 & 0.968163 & 2.26856 & 12 \\
\hline 36 & 1.4406 & 73.5243 & 3.52429 & 1.72608 & 1 \\
\hline 37 & 1.71475 & 71.527 & 1.52703 & 1.72932 & 2 \\
\hline 38 & 1.51423 & 78.5824 & 8.5824 & 1.97685 & 3 \\
\hline 39 & 2.41538 & 73.7909 & 3.79093 & 2.07129 & 4 \\
\hline 40 & 2.28402 & 71.131 & 1.13101 & 2.25293 & 5 \\
\hline 41 & 1.70251 & 72.3616 & 2.36156 & 2.04926 & 6 \\
\hline 42 & 1.19747 & 72.3894 & 2.3894 & 1 & 7 \\
\hline 43 & 1.08089 & 71.1729 & 1.17288 & 1 & 8 \\
\hline 44 & 2.21695 & 72.5905 & 2.59049 & 1.50915 & 9 \\
\hline 45 & 1.52717 & 71.1402 & 1.14023 & 1.88717 & 10 \\
\hline 46 & 1.5463 & 74.6696 & 4.66958 & 1.25725 & 11 \\
\hline 47 & 2.34151 & 90 & 20 & 3.57864 & 12 \\
\hline 48 & 1.10737 & 71.1989 & 1.19893 & 1.62447 & 1 \\
\hline 49 & 2.2491 & 76.6415 & 6.64147 & 2.50868 & 2 \\
\hline 50 & 1.76659 & 71.7038 & 1.70377 & 1.231 & 3 \\
\hline 51 & 1.25174 & 76.9657 & 6.96572 & 1.99521 & 4 \\
\hline 52 & 1.81153 & 73.0722 & 3.07225 & 2.15915 & 5 \\
\hline 53 & 1.72942 & 71.9639 & 1.96392 & 1.86142 & 6 \\
\hline 54 & 2.17748 & 78.1207 & 8.12068 & 2.54388 & 7 \\
\hline 55 & 1.29186 & 77.0589 & 7.05886 & 1.82777 & 8 \\
\hline 56 & 1.92399 & 72.6126 & 2.61256 & 1.32816 & 9 \\
\hline 57 & 1.38008 & 70.8872 & 0.887228 & 1.37826 & 10 \\
\hline 58 & 1.96143 & 73.8529 & 3.85289 & 1.87809 & 11 \\
\hline 59 & 1.61795 & 74.6957 & 4.69565 & 1.65806 & 12 \\
\hline 60 & 2.02756 & 75.7877 & 5.78773 & 1.72684 & 1 \\
\hline 61 & 2.41378 & 75.9826 & 5.98255 & 2.76309 & 2 \\
\hline 62 & 1.41413 & 71.3419 & 1.34194 & 1.75285 & 3 \\
\hline 63 & 2.31185 & 72.5469 & 2.54685 & 2.27947 & 4 \\
\hline 64 & 1.94336 & 71.5592 & 1.55922 & 1.96157 & 5 \\
\hline 65 & 2.094 & 74.7338 & 4.73385 & 2.07885 & 6 \\
\hline 66 & 1.19458 & 72.233 & 2.23301 & 1 & 7 \\
\hline 67 & 2.13118 & 79.1225 & 9.1225 & 1.84193 & 8 \\
\hline 68 & 1.48076 & 87.0511 & 17.0511 & 2.94927 & 9 \\
\hline 69 & 1.98502 & 79.0913 & 9.09131 & 2.47104 & 10 \\
\hline 70 & 2.25937 & 73.8232 & 3.82322 & 2.49798 & 12 \\
\hline 71 & 1.18744 & 70.6821 & 0.682067 & 1.2848 & 1 \\
\hline 72 & 1.20189 & 70.7053 & 0.705311 & 1.33293 & 2 \\
\hline
\end{tabular}
```

| 73 | 1.69115 | 73.9781 | 3.9781 | 1.87517 | 3 |
| ---: | :--- | ---: | ---: | ---: | ---: |
| 74 | 1.0556 | 73.2146 | 3.21459 | 1 | 4 |
| 75 | 1.59936 | 71.4165 | 1.41653 | 1.29695 | 5 |
| 76 | 1.66044 | 70.7151 | 0.715145 | 1.22362 | 6 |
| 77 | 1.79167 | 74.8072 | 4.80722 | 1.86081 | 7 |
| 78 | 2.30484 | 71.5028 | 1.50285 | 1.60626 | 8 |
| 79 | 2.49073 | 71.5908 | 1.59084 | 1.80815 | 9 |
| 80 | 1.32729 | 70.9077 | 0.907698 | 1.12889 | 10 |
| 81 | 2.48874 | 83.0079 | 13.0079 | 2.59237 | 11 |
| 82 | 2.46786 | 84.1806 | 14.1806 | 3.35518 | 12 |
| 83 | 2.12407 | 73.5826 | 3.58261 | 1.98482 | 1 |
| 84 | 2.46982 | 76.6556 | 6.65559 | 2.48936 | 1 |
| 85 | 1.00777 | 70.2504 | 0.250364 | 1 | 3 |
| 86 | 1.93118 | 73.9276 | 3.92763 | 1.84407 | 4 |
| 87 | 1.00017 | 72.6359 | 2.63594 | 1.3882 | 4 |
| 88 | 1.90622 | 71.047 | 1.047 | 1.7595 | 5 |
| 89 | 2.43744 | 72.321 | 2.32097 | 1.67244 | 6 |
| 90 | 1.25712 | 990 | 20 | 2.63949 | 7 |
| 91 | 1.10811 | 71.8299 | 1.82987 | 1 | 8 |
| 92 | 2.25545 | 71.8849 | 1.8849 | 1.94247 | 9 |
| 93 | 2.47971 | 73.4697 | 3.4697 | 1.87842 | 10 |
| 94 | 1.93378 | 74.2952 | 4.2952 | 1.52478 | 11 |
| 95 | 2.17525 | 73.0547 | 3.05466 | 2.23563 | 12 |
| 96 | 2.18723 | 70.8299 | 0.829929 | 1.75177 | 1 |
| 97 | 1.69984 | 72.0026 | 2.00263 | 1.45564 | 2 |
| 98 | 1.12504 | 70.4229 | 0.422904 | 1.06042 | 3 |
| 99 | 2.41723 | 73.7324 | 3.73238 | 2.18307 | 4 |
|  |  |  |  |  | 5 |

;
proc iml;
/*-- Load graphics --*/
call gstart;

```
```

/*--------------------*/

```
/*--------------------*/
/*-- Define modules --*/
/*-- Define modules --*/
/*--------------------*/
/*--------------------*/
/* Module : compute contours */
start contour(c, x,y,npoints,pvalues);
/* This routine computes contours for a scatter plot */
/* c returns the contours as consecutive pairs of columns */
/* x and y are the x and y coordinates of the points */
/* npoints is the number of points in a contour */
/* pvalues is a column vector of contour probabilities */
/* the number of contours is controlled by the ncol(pvalue) */
```

$\mathbf{x x}=\mathbf{x} \mid \boldsymbol{y}$;
n=nrow (x);
/* Correct for the mean */
mean=xx[+,]/n;
xx=xx-mean@j(n,1,1);
/* Find principal axes of ellipses */
xx=xx' *xx/n;
call eigen (v,e, xx);

```
/* Set contour levels */
 c=-2*log(1-pvalues);
 a=sqrt(c*v[1]); b=sqrt(c*v[2]);
/* Parameterize the ellipse by angle */
 t=((1:npoints)-{1})#atan(1) #8/(npoints-1);
 s=sin(t);
 t=cos(t);
 s=s` *a;
 t=t`*b;
/* Form contour points */
 s=((e*(shape (s,1)//shape (t,1))) +mean `@j(1, npoints*ncol (c), 1)) `;
 c=shape(s,npoints);
/* Returned as ncol pairs of columns for contours */
finish contour;
/*-- Module : draw contour curves --*/
start gcontour(t1, t2);
 run contour(t12, t1, t2, 30, {.5 .8 .9});
 window=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))//
 (max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2));
 call gwindow(window);
 call gdraw(t12[,1],t12[,2],,'blue');
 call gdraw(t12[,3],t12[,4],,'blue');
 call gdraw(t12[,5],t12[,6],,'blue');
 call gpoint(t1,t2,,'red');
finish gcontour;
/*-- Module : find median, quartiles for box and whisker plot --*/
start boxwhskr(x, u, q2, m, q1, l);
 rx=rank (x);
 s=x;
 s[rx,]=x;
 n=nrow (x);
/*-- Median --*/
 m=floor(((n+1)/2)||((n+2)/2));
 m=(s[m,])[+,]/2;
/*-- Compute quartiles --*/
 q1=floor(((n+3)/4)||((n+6)/4));
 q1=(s[q1,])[+,]/2;
 q2=ceil(((3*n+1)/4)||((3*n-2)/4));
 q2=(s[q2,])[+,]/2;
 h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/
 u=q2+h;
 l=q1-h;
 u=(u>s)[+,]; /*-- adjacent values ----------------------*/
 u=s[u,];
 l=(l>s) [+,];
 l=s[l+1,];
finish boxwhskr;
/*-- Box and Whisker plot --*/
```

```
start gbxwhskr(t, ht);
 run boxwhskr(t, up, q2,med, q1, lo);
/*---Adjust screen viewport and data window */
 y=min(t)//max(t);
 call gwindow({0, 100} || y);
 mid = 50;
 wlen = 20;
/*-- Add whiskers */
 wstart=mid-(wlen/2);
 from=(wstart||up) // (wstart||lo);
 to=((wstart//wstart) +wlen) ||from[,2];
/*-- Add box */
 len=50;
 wstart=mid-(len/2);
 wstop=wstart+len;
 from=from//(wstart||q)//(wstart||q1)//
 (wstart||q2)//(wstop||q2);
 to=to//(wstop||q2)//(wstop||q1)//
 (wstart||q1)//(wstop||q1);
/*---Add median line */
 from=from//(wstart||med);
 to=to//(wstop||med);
/*---Attach whiskers to box */
 from=from//(mid||up)//(mid||lo);
 to=to//(mid||q2)//(mid||q1);
/*-- Draw box and whiskers */
 call gdrawl(from, to,,'red');
/*---Add minimum and maximum data points */
 call gpoint(mid, y ,3,'red');
/*---Label min, max, and mean */
 y=med//y;
 s={'med' 'min' 'max'};
 call gset("font","swiss");
 call gset('height',13);
 call gscript(wstop+ht, y, char(y,5,2),,,,,'blue');
 call gstrlen(len, s);
 call gscript(wstart-len-ht,y,s,,,,,'blue');
 call gset('height');
finish gbxwhskr;
/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);
 call gopen('scatter');
 nv=ncol (vname);
 if (nv=1) then nv=nrow (vname);
 cellwid=int(90/nv);
 dist=0.1*cellwid;
 width=cellwid-2*dist;
 xstart=int((90 -cellwid * nv)/2) + 5;
 xgrid=((0:nv)#cellwid + xstart) ';
```

```
 /*-- Delineate cells --*/
 cell1=xgrid;
 cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]);
 cell2=j(nv+1, 1, xstart);
 cell2=cell1[,1]||cell2;
 call gdrawl(cell1, cell2);
 call gdrawl(cell1[,{2 1}], cell2[,{2 1}]);
 xstart = xstart + dist; ystart = xgrid[nv] + dist;
/*-- Label variables ---*/
 call gset("height", 5);
 call gset("font","swiss");
 call gstrlen(len, vname);
 where=xgrid[1:nv] + (cellwid-len)/2;
 call gscript(where, 0, vname) ;
 len=len[nv-(0:nv-1)];
 where=xgrid[1:nv] + (cellwid-len)/2;
 call gscript(4,where, vname[nv - (0:nv-1)],90);
/*-- First viewport --*/
 vp=(xstart || ystart)//((xstart || ystart) + width) ;
/* Since the characters are scaled to the viewport */
/* (which is inversely porportional to the */
/* number of variables), */
/* enlarge it proportional to the number of variables */
 ht=2*nv;
 call gset("height", ht);
 do i=1 to nv;
 do j=1 to i;
 call gportstk(vp);
 if (i=j) then run gbxwhskr(data[,i], ht);
 else run gcontour(data[,j], data[,i]);
 /*-- onto the next viewport --*/
 vp[,1] = vp[,1] + cellwid;
 call gportpop;
 end;
 vp=(xstart // xstart + width) || (vp[,2] - cellwid);
 end;
 call gshow;
finish gscatmat;
 /*-- Placement of text is based on the character height. */
 /* The IML modules defined here assume percent as the unit of */
 /* character height for device independent control. */
goptions gunit=pct;
use factory;
vname={prod, temp, defect};
read all var vname into xyz;
run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix --*/
run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix --*/
quit;
goptions gunit=cell; /*-- reset back to default --*/
```



Figure 12.9. $2 \times 2$ Scatter Plot Matrix


Figure 12.10. $3 \times 3$ Scatter Plot Matrix

## Example 12.2. Train Schedule

This example draws a grid on which the horizontal dimension gives the arrival/departure data and the vertical dimension gives the destination. The first section of the code defines the matrices used. The following section generates the graph. The following example code shows some applications of the GGRID, GDRAWL, GSTRLEN, and GSCRIPT subroutines. This code produces Figure 12.11 on page 430.

```
proc iml;
/* Placement of text is based on the character height. */
/* The graphics segment defined here assumes percent as the */
/* unit of character height for device independent control. */
 goptions gunit=pct;
 call gstart;
 /* Define several necessary matrices */
 cityloc={0 27 66 110 153 180}';
 cityname={"Paris" "Montereau" "Tonnerre" "Dijon" "Macon" "Lyons"};
 timeloc=0:30;
 timename=char(timeloc,2,0);
 /* Define a data matrix */
 schedule=
 /* origin dest start end comment */
 { 1 2 11.0 12.5, /* train 1 */
 2 3 12.6 14.9,
 3 4 15.5 18.1,
 4 5 18.2 20.6,
 5 6 20.7 22.3,
 22.6 24.0,
 0.1 2.3,
 2.5 4.5,
 4.6 6.8,
 6.9 8.5,
 19.2 20.5, /* train 2 */
 20.6 22.7,
 22.8 25.0,
 1.0 3.3,
 3.4 4.5,
 6.9 8.5,
 8.6 11.2,
 11.6 13.9,
 14.1 16.2,
 16.3 18.0
 };
 xy1=schedule[,3]||cityloc[schedule[,1]];
 xy2=schedule[,4]||cityloc[schedule[,2]];
 call gopen;
 call gwindow({-8 -35, 36 240});
 call ggrid(timeloc,cityloc,1,"red");
 call gdrawl(xy1,xy2,,"blue");
 /*-- center title -- */
 s = "Train Schedule: Paris to Lyons";
 call gstrlen(m, s,5,"titalic");
```

```
call gscript(15-m/2,185,s,, ,5,"titalic");
/*-- find max graphics text length of cityname --*/
call gset("height",3);
call gset("font","italic");
call gstrlen(len, cityname);
m = max(len) +1.0
call gscript(-m, cityloc, cityname);
call gscript(timeloc - .5,-12,timename, -90,90);
call gshow;
quit;
goptions gunit=cell; /*-- reset back to default --*/
```

Train Schedule: Paris to Lyons


Figure 12.11. Train Schedule

## Example 12.3. Fisher's Iris Data

This example generates four scatter plots and prints them on a single page. Scatter plots of sepal length versus petal length, sepal width versus petal width, sepal length versus sepal width, and petal length versus petal width are generated. The following code produces Figure 12.12 on page 433.

```
data iris;
 title 'Fisher (1936) Iris Data';
 input sepallen sepalwid petallen petalwid spec_no @@;
 if spec_no=1 then species='setosa ';
 if spec_no=2 then species='versicolor';
 if spec_no=3 then species='virginica ';
 label sepallen='sepal length in mm.'
 sepalwid='sepal width in mm.'
 petallen='petal length in mm.'
```

petalwid='petal width in mm.';
datalines;

```
50 33 14 02 1 64 28 56 22 3 65 28 46 15 2
67 31 56 24 3 63 28 51 15 3 46 34 14 03 1
69 31 51 23 3 62 22 45 15 2 59 32 48 18 2
46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3
58 27 51 19 3 68 32 59 23 3 51 33 17 05 1
57 28 45 13 2 62 34 54 23 3 77 38 67 22 3
63 33 47 16 2 67 33 57 25 3 3 76 30 66 21 3
49}2554517[\begin{array}{lllllllllllll}{55}&{17}&{13}&{02}&{1}&{67}&{30}&{52}&{23}&{3}
70}3244714[\mp@code{64 32 45 15 2 61 28 40 13 2
48 31 16 02 1 59 30 51 18 3 55 24 38 11 2
63 25 50 19 3
```



```
44 32 13 02 1 67 33 57 21 3 3 50 35 16 06 1
58 26 40 12 2 44 30 13 02 1 77 28 67 20 3
63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50}22
51}33816[02 1 61 30 49 18 3 48 34 19 02 1,
50 30 16 02 1 50 32 12 02 1 61 26 56 14 3
64 28 56 21 3 43 30 11101 1 58 40 12 02 1
51}33819[\begin{array}{lllllllllllllll}{19}&{04}&{1}&{67}&{44}&{14}&{2}&{62}&{28}&{48}&{18}&{3}
49 30 14 02 1 51 35 14 02 1 56 30 45 15 2
58 27 41 10 2 50 34 16 04 1 46 32 14 02 1
60 29 45 15 2 57 26 35 10 2 5 57 44 15 04 1
```



```
58 27 51 19 3 57 29 42 13 2 72 30 58 16 3
54 34 15 04 1 52 41 15}00114171 30 59 21 3-18
64}31415518[\begin{array}{llllllllllllll}{50}&{18}&{38}&{18}&{3}&{63}&{29}&{56}&{18}&{3}
49 24 33 10 2 56 27 42 13 2 2 57 30 42 12 2
55 42 14 02 1 49 31 15 02 1 77 26 69 23 3
60 22 50 15 3 54 39 17 04 1 66 29 46 13 2
52}22
44 29 14 02 1 50 20 35 10 2 255 24 37 10 2
58}227[\begin{array}{llllllllllllll}{12}&{2}&{47}&{32}&{13}&{02}&{1}&{46}&{31}&{15}&{02}&{1}
69 32 57 23 3 62 29 43 13 2 74 28 61 19 3
```



```
56 28 49 20 3 60 22 40 10 2 7 73 29 63 18 3
67}25
63 23 44 13 2 54 37 15 02 1 56 30 41 13 2
63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51}25
69}31154 21 3 54 54 39 13 04 1 51 35 14 03 1,
72}36661 25 3 65 32 51 20 3 61 29 47 14 2,
56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1
```



```
57}38817[03 1 51 38 15 03 1 55 23 40 13 2,
66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
```



```
67 30 50 17 2 63 33 60 25 3 53 37 15 02 1
;
```

proc iml;
use iris; read all;


```
/* Create 5 graphs, PETAL, SEPAL, SPWID, SPLEN, and ALL4 */
/* After the graphs are created, to see any one, type */
/* CALL GSHOW("name"); */
/* where name is the name of any one of the 5 graphs */
/* --- */
```

call gstart; /*-- always start with GSTART --*/
/*-- Spec_no is used as marker index, change 3 to 4 */
/*-- 1 is +, 2 is $x, 3$ is *, 4 is a square ----------------- /
do $i=1$ to 150 ;
if (spec_no[i] = 3) then spec_no[i] = 4;
end;
/*-- Creates 4 x-y plots stored in 4 different segments */
/*-- Creates a segment called petal, petallen by petalwid --*/
call gopen("petal");
$w p=\{-10-5,9030\} ;$
call gwindow(wp);
call gxaxis (\{0 0\}, 75, 6,, '5.1');
call gyaxis(\{0 0\}, 25, 5,,''5.1');
call gpoint(petallen, petalwid, spec_no, 'blue');
labs = "Petallen vs Petalwid";
call gstrlen(len, labs,2, 'swiss');
call gscript(40-len/2,-4,labs,, 2, 'swiss');
/*-- Creates a segment called sepal, sepallen by sepalwid --*/
call gopen("sepal");
ws $=\{35158555\} ;$
call gwindow(ws);
call gxaxis(\{40 20\}, 40, 9, , , 5.1');
call gyaxis(\{40 20\}, 28, 7, , ,'5.1');
call gpoint(sepallen, sepalwid, spec_no, 'blue');
labs = "Sepallen vs Sepalwid";
call gstrlen(len, labs,2, 'swiss');
call gscript(60-len/2,16,labs,, 2, 'swiss');
/*-- Creates a segment called spwid, petalwid by sepalwid --*/
call gopen("spwid");
wspwid $=\{15-55530\} ;$
call gwindow(wspwid);
call gxaxis(\{20 0\}, 28, 7,,',5.1');
call gyaxis(\{20 0\}, 25, 5,, $\left.{ }^{\prime} 5.1^{\prime}\right)$;
call gpoint(sepalwid, petalwid, spec_no, 'green');
labs = "Sepalwid vs Petalwid";
call gstrlen(len, labs,2,'swiss');
call gscript(35-len/2,-4,labs,, 2, 'swiss');
/*-- Creates a segment called splen, petallen by sepallen --*/
call gopen("splen");
wsplen $=\{35$-15 8590$\}$;
call gwindow (wsplen);
call gxaxis(\{40 0\}, 40, 9,, $\left.{ }^{\prime} 5.1^{\prime}\right)$;

```
call gyaxis({40 0}, 75, 6,,,'5.1');
call gpoint(sepallen, petallen, spec_no, 'red');
labs = "Sepallen vs Petallen";
call gstrlen(len, labs,2,'swiss');
call gscript(60-len/2,-14,labs, , ,2,'swiss');
```

/*-- Create a new segment */
call gopen("all4");
call gport (\{50 0, 10050$\})$; /* change viewport, lower right ----*/
call ginclude("sepal"); /* include sepal in this graph -----*/
call gport (\{0 50, 50 100\}); /* change the viewport, upper left */
call ginclude ("petal"); /* include petal -----------------------*/
call gport (\{0 0, 50 50\}); /* change the viewport, lower left */
call ginclude ("spwid"); /* include spwid -----------------------*/
call gport (\{50 50, 100100$\}) ; / *$ change the viewport, upper right $* /$
call ginclude ("splen"); /* include splen ----------------------*/
call gshow("all4");





Figure 12.12. Petal Length versus Petal Width

## Chapter 13 <br> Window and Display Features

## Chapter Contents

OVERVIEW ..... 437
CREATING A DISPLAY WINDOW FOR DATA ENTRY ..... 437
USING THE WINDOW STATEMENT ..... 439
Window Options ..... 440
Field Specifications ..... 440
USING THE DISPLAY STATEMENT ..... 441
Group Specifications ..... 442
Group Options ..... 442
DETAILS ABOUT WINDOWS ..... 442
Number and Position of Windows ..... 442
Windows and the Display Surface ..... 443
Deciding Where to Define Fields ..... 443
Groups of Fields ..... 443
Field Attributes ..... 444
Display Execution ..... 444
Field Formatting and Inputting ..... 445
Display-Only Windows ..... 445
Opening Windows ..... 445
Closing Windows ..... 445
Repeating Fields ..... 445
Example ..... 446

## Chapter 13

## Window and Display Features

## Overview

The dynamic nature of IML gives you the ability to create windows on your display for full-screen data entry or menuing. By using the WINDOW statement, you can define a window, its fields, and its attributes. By using the DISPLAY statement, you can display a window and await data entry.

These statements are similar in form and function to the corresponding statements in the SAS DATA step. The specification of fields in the WINDOW or DISPLAY statement is similar to the specifications used in the INPUT and PUT statements. By using these statements you can write applications that behave similarly to other full-screen facilities in the SAS System, such as the BUILD procedure in SAS/AF software and the FSEDIT procedure in SAS/FSP software.

## Creating a Display Window for Data Entry

Suppose that your application is a data entry system for a mailing list. You want to create a data set called MAILLIST by prompting the user with a window that displays all the entry fields. You want the data entry window to look as follows:

```
+--MAILLIST---
| Command==> |
| I
|
| NAME: | |
| ADDRESS: |
| CITY: STATE: ZIP: |
| PHONE: |
| |
+--
```

The process for creating a display window for this application consists of

- initializing the variables
- creating a SAS data set
- defining a module for collecting data that

1. defines a window
2. defines the data fields
3. defines a loop for collecting data
4. provides an exit from the loop

- executing the data-collecting routine

The whole system can be implemented with the following code to define modules INITIAL and MAILGET:

```
/* module to initialize the variables */
/*
*/
start initial;
 name=' ';
 addr=' ';
 city=' ';
 state=' ';
 zip=' ';
 phone=' ';
finish initial;
```

This defines a module named INITIAL that initializes the variables you want to collect. The initialization sets the string length for the character fields. You need to do this prior to creating your data set.

Now define a module for collecting the data, as follows:

```
/* module to collect data */
/*
start mailget;
/* define the window */
 window maillist cmndline=cmnd msgline=msg
 group=addr
 #2 " NAME: " name
 #3 " ADDRESS:" addr
 #4 " CITY: " city +2 "STATE: " state +2 "ZIP: " zip
 #5 " PHONE: " phone;
/* */
/* collect addresses until the user enters exit */
/*
 do until(cmnd="EXIT");
 run initial;
 msg="ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END";
/* */
/* loop until user types submit or exit */
/* */
 do until(cmnd="SUBMIT"|cmnd="EXIT");
 display maillist.addr;
 end;
 if cmnd="SUBMIT" then append;
 end;
 window close=maillist;
finish mailget;
/* initialize variables */
run initial;
/* create the new data set */
create maillist var{name addr city state zip phone};
/* collect data
```

run mailget;
/* close the new data set
close maillist;

```

In the module MAILGET, the WINDOW statement creates a window named MAILLIST with a group of fields (the group is named ADDR) presenting data fields for data entry. The program sends messages to the window through the MSGLINE= variable MSG. The program receives commands you enter through the CMNDLINE= variable CMND.

You can enter data into the fields after each prompt field. After you are finished with the entry, press a key defined as SUBMIT, or type SUBMIT in the command field. The data are appended to the data set MAILLIST. When data entry is complete, type EXIT in the command field. If you enter a command other than SUBMIT, EXIT, or a valid SAS windowing environment command in the command field, you get the following message on the message line:
```

ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END.

```

\section*{Using the WINDOW Statement}

You use the WINDOW statement to define a window, its fields, and its attributes. The general form of the WINDOW statement is as follows:
```

WINDOW <CLOSE=> window-name < window-options >
$<$ GROUP=group-name-1 field-specs
$<\ldots$ GROUP=group-name-n field-specs >>;

```

The following options can be used with the WINDOW statement:

\section*{CLOSE=}
is used only when you want to close the window.

\section*{window-name}
is a valid SAS name for the window. This name is displayed in the upper-left border of the window.

\section*{window-options}
control the size, position, and other attributes of the window. You can change the attributes interactively with window commands such as WGROW, WDEF, WSHRINK, and COLOR. These options are described in the next section.

\section*{GROUP=group-name}
starts a repeating sequence of groups of fields defined for the window. The groupname is a valid SAS variable name used to identify a group of fields in a DISPLAY statement that occurs later in the program.

\section*{field-specs}
is a sequence of field specifications made up of positionals, field operands, formats, and options. These are described in the section "Field Specifications" on page 440.

\section*{Window Options}

Window options control the attributes of the window. The following options are valid in the WINDOW statement:

\section*{CMNDLINE=name}
names a character variable in which the command line entered by the user is stored.

\section*{COLOR=operand}
specifies the background color for the window. The operand can be either a quoted character literal or the name of a character variable containing the color. The valid values are BLACK, GREEN, MAGENTA, RED, CYAN, GRAY, and BLUE. The default is BLACK.

\section*{COLUMNS=operand}
specifies the starting number of columns of the window. The operand can be either a literal number, a variable name, or an expression in parentheses. The default is 78.

\section*{ICOLUMN=operand}
specifies the initial column position of the window on the display screen. The operand can be either a literal number or a variable name. The default is column 1.

\section*{IROW=operand}
specifies the initial row position of the window on the display screen. The operand can be either a literal number or a variable name. The default is row 1.

\section*{MSGLINE=operand}
specifies the message to be displayed on the standard message line when the window is made active. The operand is a quoted character literal or the name of a character variable containing the message.

\section*{ROWS=operand}
determines the starting number of rows of the window. The operand is either a literal number, the name of a variable containing the number, or an expression in parentheses yielding the number. The default is 23 rows.

\section*{Field Specifications}

Both the WINDOW and DISPLAY statements accept field specifications. Field specifications have the following general form:
```

<positionals> field-operand <format> <field-options>

```

\section*{Positionals}

The positionals are directives specifying the position on the screen in which to begin the field. There are four kinds of positionals, any number of which are accepted for each field operand. Positionals are the following:
\# operand specifies the row position; that is, it moves the current position to column 1 of the specified line. The operand is either a number,
a variable name, or an expression in parentheses. The expression must evaluate to a positive number.
/ instructs IML to go to column 1 of the next row.
@ operand
+ operand
specifies the column position. The operand is either a number, a variable name, or an expression in parentheses. The @ directive should come after the pound sign (\#) positional, if it is specified.
instructs IML to skip columns. The operand is either a number, a variable name, or an expression in parentheses.

\section*{Field Operands}

The field-operand specifies what goes in the field. It is either a character literal in quotes or the name of a character variable.

\section*{Formats}

The format is the format used for display, for the value, and also as the informat applied to entered values. If no format is specified, the standard numeric or character format is used.

\section*{Field Options}

The field-options specify the attributes of the field as follows:
PROTECT=YES
\(\mathrm{P}=\mathrm{YES}\)
specifies that the field is protected; that is, you cannot enter values in the field. If the field operand is a literal, it is already protected.

\section*{COLOR=operand}
specifies the color of the field. The operand can be either a literal character value in quotes, a variable name, or an expression in parentheses. The colors available are WHITE, BLACK, GREEN, MAGENTA, RED, YELLOW, CYAN, GRAY, and BLUE. The default is BLUE. Note that the color specification is different from that of the corresponding DATA step value because it is an operand rather than a name without quotes.

\section*{Using the DISPLAY Statement}

After you have opened a window with the WINDOW statement, you can use the DISPLAY statement to display the fields in the window.

The DISPLAY statement specifies a list of groups to be displayed. Each group is separated from the next by a comma.

The general form of the DISPLAY statement is as follows:
DISPLAY \(<\) group-spec-1 group-options, \(<\ldots\), group-spec-n group-options \(\gg\);

\section*{Group Specifications}

The group specification names a group, either a compound name of the form windowname.groupname or a windowname followed by a group defined by fields and enclosed in parentheses. For example, you can specify windowname.groupname or windowname(field-specs), where field-specs are as defined earlier for the WINDOW statement.

In the example, you used the following statement to display the window MAILLIST and the group ADDR:
```

display maillist.addr;

```

\section*{Group Options}

The group-options can be any of the following:

\section*{BELL}
rings the bell, sounds the alarm, or causes the speaker at your workstation to beep when the window is displayed.

\section*{NOINPUT}
requests that the group be displayed with all the fields protected so that no data entry can be done.

\section*{REPEAT}
specifies that the group be repeated for each element of the matrices specified as field-operands. See the section "Repeating Fields" on page 445.

\section*{Details about Windows}

The following sections discuss some of the ideas behind windows.

\section*{Number and Position of Windows}

You can have any number of windows. They can overlap each other or be disjoint. Each window behaves independently from the others. You can specify the starting size, position, and color of the window when you create it. Each window responds to SAS windowing environment commands so that it can be moved, sized, or changed in color dynamically by the user.

You can list all active windows in a session by using the SHOW WINDOWS command. This makes it easy to keep track of multiple windows.

\section*{Windows and the Display Surface}

A window is really a viewport into a display. The display can be larger or smaller than the window. If the display is larger than the window, you can use scrolling commands to move the surface under the window (or equivalently, move the window over the display surface). The scrolling commands are as follows:

RIGHT \(<n>\quad\) scrolls right.
LEFT \(<n>\quad\) scrolls left.
FORWARD \(<n>\quad\) scrolls forward (down).
BACKWARD \(<n>\quad\) scrolls backward (up).
TOP
scrolls to the top of the display surface.
BOTTOM
scrolls to the bottom of the display surface.

The argument \(n\) is an optional numeric argument that indicates the number of positions to scroll. The default is 5 .

Only one window is active at a time. You can move, zoom, enlarge, shrink, or recolor inactive windows, but you cannot scroll or enter data.

Each display starts with the same standard lines: first a command line for entering commands, then a message line for displaying messages (such as error messages).

The remainder of the display is up to you to design. You can put fields in any positive row and column position of the display surface, even if it is off the displayed viewport.

\section*{Deciding Where to Define Fields}

You have a choice of whether to define your fields in the WINDOW statement, the DISPLAY statement, or both. Defining field groups in the WINDOW statement saves work if you access the window from many different DISPLAY statements. Specifying field groups in the DISPLAY statement provides more flexibility.

\section*{Groups of Fields}

All fields must be part of field groups. The group is just a mechanism to treat multiple fields together as a unit in the DISPLAY statement. There is only one rule about the field positions of different groups: active fields must not overlap. Overlapping is acceptable among fields as long as they are not simultaneously active. Active fields are the ones that are specified together in the current DISPLAY statement.

You name groups specified in the WINDOW statement. You specify groups in the DISPLAY statement just by putting them in parentheses; they are not named.

\section*{Field Attributes}

There are two types of fields you can define:
- Protected fields are for constants on the screen.
- Unprotected fields accept data entry.

If the field consists of a character string in quotes, it is protected. If the field is a variable name, it is not protected unless you specify PROTECT=YES as a field option. If you want all fields protected, specify the NOINPUT group option in the DISPLAY statement.

\section*{Display Execution}

When you execute a DISPLAY statement, the SAS System displays the window with all current values of the variables. You can then enter data into the unprotected fields. All the basic editing keys (cursor controls, delete, end, insert, and so forth) work, as well as SAS windowing environment commands to scroll or otherwise manage the window. Control does not return to the IML code until you enter a command on the command line that is not recognized as a SAS windowing environment command. Typically, a SUBMIT command is used since most users define a function key for this command. Before control is returned to you, IML moves all modified field values from the screen back into IML variables by using standard or specified informat routines. If you have specified the CMNDLINE= option in the WINDOW statement, the current command line is passed back to the specified variable.

The window remains visible with the last values entered until the next DISPLAY statement or until the window is closed by a WINDOW statement with the CLOSE= option.

Only one window is active at a time. Every window can be subject to SAS windowing environment commands, but only the window specified in the current DISPLAY statement transfers data to IML.

Each window is composed dynamically every time it is displayed. If you position fields by variables, you can make them move to different parts of the screen simply by programming the values of the variables.

The DISPLAY statement even accepts general expressions in parentheses as positional or field operands. The WINDOW statement only accepts literal constants or variable names as operands. If a field operand is an expression in parentheses, then it is always a protected field. You cannot use the following statement and expect it to return the \(\log\) function of the data entered:
```

display w(log(X));

```

Instead you would need the following code:
```

lx=log(x);
display w(lx);

```

\section*{Field Formatting and Inputting}

The length of a field on the screen is specified in the format after the field operand, if you give one. If a format is not given, IML uses standard character or numeric formats and informats. Numeric informats allow scientific notation and missing values (represented with periods). The default length for character variables is the size of the variable element. The default size for numeric fields is given with the FW= option (see the discussion of the RESET statement in Chapter 20).

If you specify a named format (such as DATE7.), IML attempts to use it for both the output format and the input informat. If IML cannot find an input informat of that name, it uses the standard informats.

\section*{Display-Only Windows}

If a window consists only of protected fields, it is merely displayed; that is, it does not wait for user input. These display-only windows can be displayed rapidly.

\section*{Opening Windows}

The WINDOW statement is executable. When a WINDOW statement is executed, IML checks to see if the specific window has already been opened. If it has not been opened, then the WINDOW statement opens it; otherwise, the WINDOW statement does nothing.

\section*{Closing Windows}

To close a window, use the CLOSE= option in the WINDOW statement. In the example given earlier, you closed MAILLIST with the following statement:
```

window close=maillist;

```

\section*{Repeating Fields}

If you specify an operand for a field that is a multi-element matrix, the routines deal with the first value of the matrix. However, there is a special group option, REPEAT, that enables you to display and retrieve values from all the elements of a matrix. If the REPEAT option is specified, IML determines the maximum number of elements of any field-operand matrix, and then it repeats the group that number of times. If any field operand has fewer elements, the last element is repeated the required number of times (the last one becomes the data entered). Be sure to write your specifications so that the fields do not overlap. If the fields overlap, an error message results. Although the fields must be matrices, the positional operands are never treated as matrices.

The repeat feature can come in very handy in situations where you want to create a menu for a list of items. For example, suppose you want to build a restaurant billing system and you have stored the menu items and prices in the matrices ITEM and PRICE. You want to obtain the quantity ordered in a matrix called AMOUNT. Enter the following code:
```

item={ "Hamburger", "Hot Dog", "Salad Bar", "Milk" };
price={1.10 .90 1.95 .45};
amount= repeat (0,nrow (item),1);
window menu
group=top
\#1 @2 "Item" @44 "Price" @54 "Amount"
group=list
/ @2 item \$10. @44 price 6.2 @54 amount 4.
;
display menu.top, menu.list repeat;

```

This creates the following window:
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Command --->} & + \\
\hline + & & & & + \\
\hline + & \multirow[t]{2}{*}{Item} & Price & Amount & + \\
\hline \multicolumn{3}{|l|}{\(+\)} & & + \\
\hline + & Hamburger & 1.10 & 0 & + \\
\hline & Hot Dog & 0.90 & 0 & + \\
\hline \(+\) & Salad Bar & 1.95 & 0 & + \\
\hline \(+\) & Milk & 0.45 & 0 & + \\
\hline \(+\) & & & & + \\
\hline
\end{tabular}

\section*{Example}

This example illustrates the following features:
- multiple windows
- the repeat feature
- command- and message-line usage
- a large display surface needing scrolling
- windows linked to data set transactions

This example uses two windows, FIND and ED. The FIND window instructs you to enter a name. Then a data set is searched for all the names starting with the entered value. If no observations are found, you receive the following message:
```

Not found, enter request

```

If any observations are found, they are displayed in the ED window. You can then edit all the fields. If several observations are found, you need to use the scrolling commands to view the entire display surface. If you enter the SUBMIT command, the data are updated in place in the data set. Otherwise, you receive the following message:

If you enter a blank field for the request, you are advised that EXIT is the keyword needed to exit the system. Here is the code:
```

start findedit;
window ed rows=10 columns=40 icolumn=40 cmndline=c;
window find rows=5 columns=35 icolumn=1 msgline=msg;
edit user.class;
display ed ( "Enter a name in the FIND window, and this"
/ "window will display the observations "
/ "starting with that name. Then you can"
/ "edit them and enter the submit command"
/ "to replace them in the data set. Enter cancel"
/ "to not replace the values in the data set."
/
/ "Enter exit as a name to exit the program." );
do while(1);
msg=' ';
again:
name=" ";
display find ("Search for name: " name);
if name=" " then
do;
msg='Enter exit to end';
goto again;
end;
if name="exit" then goto x;
if name="PAUSE" then
do;
pause;
msg='Enter again';
goto again;
end;
find all where(name=:name) into p;
if nrow(p)=0 then
do;
msg='Not found, enter request';
goto again;
end;
read point p;
display ed (//" name: " name
" sex: " sex
" age: " age
/" height: " height
" weight: " weight ) repeat;
if c='submit' then
do;
msg="replaced, enter request";
replace point p;
end;
else
do;
msg='Not replaced, enter request';
end;
end;

```
```

x:
display find ("Closing Data Set and Exiting");
close user.class;
window close=ed;
window close=find;
finish findedit;
run findedit;

```

\section*{Chapter 14 \\ Storage Features}

\section*{Chapter Contents}
OVERVIEW 451
STORAGE CATALOGS 451
CATALOG MANAGEMENT 452
Restoring Matrices and Modules 452
Removing Matrices and Modules 453
Specifying the Storage Catalog 453
Listing Storage Entries 454
Storing Matrices and Modules 454

\section*{Chapter 14 \\ Storage Features}

\section*{Overview}

SAS/IML software can store user-defined modules and the values of matrices in special library storage on disk for later retrieval. The library storage feature enables you to perform the following tasks:
- store and reload IML modules and matrices
- save work for a later session
- keep records of work
- conserve space by saving large, intermediate results for later use
- communicate data to other applications through the library
- store and retrieve data in general

\section*{Storage Catalogs}

SAS/IML storage catalogs are specially structured SAS files that are located in a SAS data library. A SAS/IML catalog contains entries that are either matrices or modules. Like other SAS files, SAS/IML catalogs have two-level names in the form libref.catalog. The first-level name, libref, is a name assigned to the SAS data library to which the catalog belongs. The second-level name, catalog, is the name of the catalog file.

The default libref is initially SASUSER, and the default catalog is IMLSTOR. Thus, the default storage catalog is called SASUSER.IMLSTOR. You can change the storage catalog with the RESET STORAGE command (see the discussion of the RESET statement in Chapter 20).

By using this command, you can change either the catalog or the libref.
When you store a matrix, IML automatically stores the matrix name, its type, its dimension, and its current values. Modules are stored in the form of their compiled code. Once modules are loaded, they do not need to be parsed again, making their use very efficient.

\section*{Catalog Management}

IML provides you with all the commands necessary to reference a particular storage catalog, to list the modules and matrices in that catalog, to store and remove modules and matrices, and to load modules and matrices back to IML. The following commands enable you to perform all necessary catalog management functions:

LOAD recalls entries from storage.
REMOVE removes entries from storage.
RESET STORAGE specifies the library name.
SHOW STORAGE lists all entries currently in storage.
STORE saves modules or matrices to storage.

\section*{Restoring Matrices and Modules}

You can restore matrices and modules from storage back into the IML active workspace by using the LOAD command. The LOAD command has the general form

LOAD ;
LOAD matrices;
LOAD MODULE= module;
LOAD MODULE=(modules);
LOAD MODULE=(modules) matrices;
Some examples of valid LOAD commands are as follows:
```

load a b c; /* load matrices A, B, and C */
load module=mymod1; /* load module MYMOD1 */
load module=(mymod1 mymod2) a b; /* load modules and matrices */

```

The special operand _ALL_ can be used to load all matrices or modules, or both. For example, if you want to load all modules, use the following statement:
```

load module=_all_;

```

If you want to load all matrices and modules in storage, use the LOAD command by itself, as follows:
```

load; /* loads all matrices and modules */

```

The LOAD command can be used with the STORE statement to save and restore an IML environment between sessions.

\section*{Removing Matrices and Modules}

You can remove modules or matrices from the catalog by using the REMOVE command. The REMOVE command has the same form as the LOAD command. Some examples of valid REMOVE statements are as follows:
```

remove a b c; /* remove matrices A, B, and C */
remove module=mymod1; /* remove module MYMOD1 */
remove module=(mymod1 mymod2) a; /* remove modules and matrices */

```

The special operand _ALL_ can be used to remove all matrices or modules, or both. For example, if you want to remove all matrices, use the following statement:
```

remove _all_;

```

If you want to remove everything from storage, use the REMOVE command by itself, as follows:
remove;

\section*{Specifying the Storage Catalog}

To specify the name of the storage catalog, use one of the following general forms of the STORAGE= option in the RESET statement:

\section*{RESET STORAGE= catalog;}

RESET STORAGE= libref.catalog;
Each time you specify the STORAGE= option, the previously opened catalog is closed before the new one is opened.

You can have any number of catalogs, but you can have only one open at a time. A SAS data library can contain many IML storage catalogs, and an IML storage catalog can contain many entries (that is, many matrices and modules).

For example, you can change the name of the storage catalog without changing the libref by using the following statement:
```

reset storage=mystor;

```

To change the libref as well, use the following statement:
```

reset storage=mylib.mystor;

```

\section*{Listing Storage Entries}

You can list all modules and matrices in the current storage catalog by using the SHOW STORAGE command, which has the general form

\section*{SHOW STORAGE ;}

\section*{Storing Matrices and Modules}

You can save modules or matrices in the storage catalog by using the STORE command. The STORE command has the same general form as the LOAD command. Several examples of valid STORE statements are as follows:
```

store a b c; /* store matrices A, B, and C */
store module=mymod1; /* store module MYMOD1 */
store module=(mymod1 mymod2) a; /* storing modules and matrices */

```

The special operand _ALL_ can be used to store all matrices or modules. For example, if you want to store everything, use the following statement:
```

store _all_ module=_all_;

```

Alternatively, to store everything, you can also enter the STORE command by itself, as follows:
store;

This can help you to save your complete IML environment before exiting an IML session. Then you can use the LOAD statement in a subsequent session to restore the environment and resume your work.

\section*{Chapter 15 \\ Using SAS/IML Software to Generate IML Statements}

\section*{Chapter Contents}
OVERVIEW 457
GENERATING AND EXECUTING STATEMENTS 457
Executing a String Immediately 457
Feeding an Interactive Program 458
Calling the Operating System 459
Calling the SAS Windowing Environment 459
Executing Any Command in an EXECUTE Call 460
Making Operands More Flexible 461
Interrupt Control 461
Specific Error Control 462
General Error Control 463
Macro Interface 465
IML Line Pushing Contrasted with Using the Macro Facility 466
Example 15.1. Full-Screen Editing 466
SUMMARY 470

\section*{Chapter 15}

\section*{Using SAS/IML Software to Generate IML Statements}

\section*{Overview}

This chapter describes ways of using SAS/IML software to generate and execute statements from within the Interactive Matrix Language. You can execute statements generated at run time, execute global SAS commands under program control, or create statements dynamically to get more flexibility.

\section*{Generating and Executing Statements}

You can push generated statements into the input command stream (queue) with the PUSH, QUEUE, and EXECUTE subroutines. This can be very useful in situations that require added flexibility, such as menu-driven applications or interrupt handling.

The PUSH command inserts program statements at the front of the input command stream, whereas the QUEUE command inserts program statements at the back. In either case, if they are not input to an interactive application, the statements remain in the queue until IML enters a pause state, at which point they are executed. The pause state is usually induced by a program error or an interrupt control sequence. Any subsequent RESUME statement resumes execution of the module from the point where the PAUSE command was issued. For this reason, the last statement put into the command stream for PUSH or QUEUE is usually a RESUME command.

The EXECUTE statement also pushes program statements like PUSH and QUEUE, but it executes them immediately and returns. It is not necessary to push a RESUME statement when you use the CALL EXECUTE command.

\section*{Executing a String Immediately}

The PUSH, QUEUE, and EXECUTE commands are especially useful when used in conjunction with the pause and resume features because they enable you to generate a pause-interrupt command to execute the code you push and return from it via a pushed RESUME statement. In fact, this is precisely how the EXECUTE subroutine is implemented generally.

CAUTION: Note that the push and resume features work this way only in the context of being inside modules. You cannot resume an interrupted sequence of statements in immediate mode-that is, not inside a module.

For example, suppose that you collect program statements in a matrix called CODE. You push the code to the command input stream along with a RESUME statement and then execute a PAUSE statement. The PAUSE statement interrupts the execution,
parses and executes the pushed code, and returns to the original execution via the RESUME statement. Here is the code:
```

proc iml;
start testpush;
print '*** ENTERING MODULE TESTPUSH ***';
print '*** I should be 1,2,3: ';
/* constructed code * /
code = ' do i = 1 to 3; print i; end; ';
/* push code+resume */
call push (code, 'resume;');
/* pause interrupt */
pause;
print '*** EXITING MODULE TESTPUSH ***';
finish;

```

When the PAUSE statement interrupts the program, the IML procedure then parses and executes the following line:
```

do i=1 to 3; print i; end; resume;

```

The RESUME command then causes the IML procedure to resume the module that issued the PAUSE.

Note: The EXECUTE routine is equivalent to a PUSH command, but it also adds the push of a RESUME command, then issues a pause automatically.

A CALL EXECUTE command should be used only from inside a module because pause and resume features do not support returning to a sequence of statements in immediate mode.

\section*{Feeding an Interactive Program}

Suppose that an interactive program gets responses from the statement INFILE CARDS. If you want to feed it under program control, you can push lines to the command stream that is read.

For example, suppose that a subroutine prompts a user to respond YES before performing some action. If you want to run the subroutine and feed the YES response without the user being bothered, you push the response as follows:
```

    /* the function that prompts the user */
    start delall;
file log;
put 'Do you really want to delete all records? (yes/no)';
infile cards;
input answer \$;
if upcase(answer)='YES' then
do;
delete all;
purge;
print "*** FROM DELALL:

```
```

        should see End of File (no records to list)";
        list all;
    end;
    finish;

```

The latter DO group is necessary so that the pushed YES is not read before the RUN statement. The following example illustrates the use of the preceding module DELALL:
/* Create a dummy data set for delall to delete records */ xnum \(=\{123,456,780\}\);
create dsnum1 from xnum;
append from xnum;
do;
 call push ('yes');
 run delall;
 end;

\section*{Calling the Operating System}

Suppose that you want to construct and execute an operating system command. Just push it to the token stream in the form of an \(X\) statement and have it executed under a pause interrupt.

The following module executes any system command given as an argument:
```

start system(command);
call push(" x '",command,"'; resume;");
pause;
finish;
run system('listc');

```

The call generates and executes a LISTC command under MVS as follows:
```

x 'listc'; resume;

```

\section*{Calling the SAS Windowing Environment}

The same strategy used for calling the operating system works for SAS global statements as well, including calling the SAS windowing environment by generating DM statements.

The following subroutine executes a SAS windowing environment command:
```

start dm(command);
call push(" dm '",command,"'; resume;");
pause;
finish;
run dm('log; color source red');

```

The call generates and executes the following statements:
```

dm 'log; color source red'; resume;

```

These statements take you to the Log window, where all source code is written in red.

\section*{Executing Any Command in an EXECUTE Call}

The EXECUTE command executes the statements contained in the arguments by using the same facilities as a sequence of CALL PUSH, PAUSE, and RESUME statements. The statements use the same symbol environment as that of the subroutine that calls them. For example, consider the following subroutine:
```

proc iml;
start exectest;
/* IML STATEMENTS */
call execute ("xnum = {1 2 3, 4 5 6, 7 8 0};");
call execute ("create dsnum1 from xnum;");
call execute ("append from xnum;");
call execute ("print 'DSNUM should have 3 obs and 3 var:';");
call execute ("list all;");
/* global (options) statement */
call execute ("options linesize=68;");
call execute ("print 'Linesize should be 68';");
finish;
run exectest;

```

The following output generated from EXECTEST is exactly the same as if you had entered the statements one at a time:

CALL EXECUTE could almost be programmed in IML as shown here; the difference between this and the built-in command is that the following subroutine would not necessarily have access to the same symbols as the calling environment:
```

start execute(command1,...);
call push(command1,...," resume;");
pause;
finish;

```

\section*{Making Operands More Flexible}

Suppose that you want to write a program that prompts a user for the name of a data set. Unfortunately the USE, EDIT, and CREATE commands expect the data set name as a hardcoded operand rather than an indirect one. However, you can construct and execute a function that prompts the user for the data set name for a USE statement. Here is the code:
```

/* prompt the user to give dsname for use statement */
start flexible;
file log;
put 'What data set shall I use?';
infile cards;
input dsname \$;
call execute('use', dsname, ';');
finish;
run flexible;

```

If you enter USER.A, the program generates and executes the following line:
```

use user.a;

```

\section*{Interrupt Control}

Whenever a program error or interrupt occurs, IML automatically issues a pause, which places the module in a paused state. At this time, any statements pushed to the input command queue get executed. Any subsequent RESUME statement (including pushed RESUME statements) resume executing the module from the point where the error or interrupt occurred.

If you have a long application such as reading a large data set and you want to be able to find out where the data processing is just by entering a break-interrupt (sometimes called an attention signal), you push the interrupt text. The pushed text can, in turn, push its own text on each interrupt, followed by a RESUME statement to continue execution.

For example, suppose you have a data set called TESTDATA that has 4096 observations. You want to print the current observation number if an attention signal is given. The following code does this:
```

start obsnum;
use testdata;
brkcode={"print 'now on observation number',i;"
"if (i<4096) then do;"
"call push(brkcode);"
"resume;"
"end;"
};
call push(brkcode);
do i=1 to 4096;

```
```

        read point i;
    end;
    finish;
run obsnum;

```

After the module has been run, enter the interrupt control sequence for your operating system. Type \(S\) to suspend execution. The IML procedure prints a message telling which observation is being processed. Because the pushed code is executed at the completion of the module, the message is also printed when OBSNUM ends.

Each time the attention signal is given, OBSNUM executes the code contained in the variable BRKCODE. This code prints the current iteration number and pushes commands for the next interrupt. Note that the PUSH and RESUME commands are inside a DO group, making them conditional and ensuring that they are parsed before the effect of the PUSH command is realized.

\section*{Specific Error Control}

A PAUSE command is automatically issued whenever an execution error occurs, putting the module in a holding state. If you have some way of checking for specific errors, you can write an interrupt routine to correct them during the pause state.

In the following example, if a singular matrix is passed to the INV function, the IML procedure pauses and executes the pushed code to set the result for the inverse to missing values. The code uses the variable SINGULAR to detect if the interrupt occurred during the INV operation. This is particularly necessary because the pushed code is executed on completion of the routine, as well as on interrupts.
```

proc iml;
a = {3 3, 3 3}; /* singular matrix */
/* If a singular matrix is sent to the INV function, */
/* IML normally sets the resulting matrix to be empty */
/* and prints an error message. */
b = inv(a);
print "*** A should be non-singular", a;
start singtest;
msg=" Matrix is singular - result set to missing ";
onerror=
"if singular then do; b=a\#.; print msg; print b;
resume; end;";
call push(onerror);
singular = 1;
b = inv(a);
singular = 0;
finish ;
call singtest;

```

The resulting output is as follows:
```

ERROR: (execution) Matrix should be non-singular.

```


MSG
```

Matrix is singular - result set to missing

```

Resuming execution in module SINGTEST.

\section*{General Error Control}

Sometimes, you might want to process or step over errors. To do this, put all the code into modules and push a code to abort if the error count exceeds some maximum. Often, you might submit a batch job and get a trivial mistake that causes an error, but you do not want to cause the whole run to fail because of it. On the other hand, if you have many errors, you do not want to let the routine run.

In the following example, up to three errors are tolerated. A singular matrix \(\mathbf{A}\) is passed to the INV function, which would, by itself, generate an error message and issue a pause in the module. This module pushes three RESUME statements, so that the first three errors are tolerated. Messages are printed and execution is resumed. The DO loop in the module OOPS is executed four times, and on the fourth iteration, an ABORT statement is issued and you exit IML.
```

proc iml;
a={3 3, 3 3}; /* singular matrix */
/* */
/* GENERAL ERROR CONTROL -- exit iml for 3 or more errors */
/*
*/
start; /* module will be named MAIN */
errcode = {" if errors >= 0 then do;",
errors = errors + 1;",
" if errors > 2 then abort;",
" else do; call push(errcode); resume; end;",
" end;" } ;
call push (errcode);
errors = 0;
start oops; /* start module OOPS */

```
```

            do i = 1 to 4;
                    b = inv(a);
            end;
        finish; /* finish OOPS */
        run oops;
    finish; /* finish MAIN */
errors=-1; /* disable */
run;

```

The output generated from this example is as follows:
```

ERROR: (execution) Matrix should be non-singular.
Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A
A
2 rows 2 cols
(numeric)
3 3
3 3
stmt: ASSIGN
at line
41 column
Paused in module OOPS.
Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.
Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24 operands : A

```
A
2 rows
2 cols
(numeric)
\begin{tabular}{ll}
3 & 3 \\
3 & 3
\end{tabular}
stmt: ASSIGN at line 41 column 17
Paused in module OOPS.
Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.
Error occurred in module OOPS at line 41 column 17 called from module MAIN at line 44 column 10 operation : INV at line 41 column 24 operands : A

A
2 rows
2 cols
(numeric)
```

        3 3
        3 3
    Paused in module OOPS.
Exiting IML.

```
 stmt: ASSIGN at line 41 column 17

Actually, in this particular case it would probably be simpler to put three RESUME statements after the RUN statement to resume execution after each of the first three errors.

\section*{Macro Interface}

The pushed text is scanned by the macro processor; therefore, the text can contain macro instructions. For example, here is an all-purpose routine that shows what the expansion of any macro is, assuming that it does not have embedded double quotes:
```

    /* function: y = macxpand(x); */
    /* macro-processes the text in x */
    /* and returns the expanded text in the result. */
    /* Do not use double quotes in the argument. */
    /* */
    start macxpand(x);
call execute('Y="',x,'";');
return(y);
finish;

```

Consider the following statements:
```

%macro verify(index);
data _null_;
infile junk\&index;
file print;
input;
put _infile_;
run;
%mend;
y = macxpand('%verify(1)');
print y;

```

The output produced is as follows:
\(\mathbf{Y}\)
DATA _NULL_; INFILE JUNK1; FILE PRINT; INPUT;
PUT _INFILE_; RUN;

\section*{IML Line Pushing Contrasted with Using the Macro Facility}

The SAS macro language is a language embedded in and running on top of another language; it generates text to feed the other language. Sometimes it is more convenient to generate the text by using the primary language directly rather than embedding the text generation in macros. The preceding examples show that this can even be done at execution time, whereas pure macro processing is done only at parse time. The advantage of the macro language is its embedded, yet independent, nature: it needs little quoting, and it works for all parts of the SAS language, not just IML. The disadvantage is that it is a separate language that has its own learning burden, and it uses extra reserved characters to mark its programming constructs and variables. Consider the quoting of IML versus the embedding characters of the macro facility: IML makes you quote every text constant, whereas the macro facility makes you use the special characters percent sign (\%) and ampersand (\&) on every macro item. There are some languages, such as REXX, that give you the benefits of both (no macro characters and no required quotes), but the cost is that the language forces you to discipline your naming so that names are not expanded inadvertently.

\section*{Example 15.1. Full-Screen Editing}

The ability to form and submit statements dynamically provides a very powerful mechanism for making systems flexible. For example, consider the building of a data entry system for a file. It is straightforward to write a system by using WINDOW and DISPLAY statements for the data entry and data processing statements for the I/O, but once you get the system built, it is good only for that one file. With the ability to push statements dynamically, however, it is possible to make a system that dynamically generates the components that are customized for each file. For example, you can change your systems from static systems to dynamic systems.

To illustrate this point, consider an IML system to edit an arbitrary file, a system like the FSEDIT procedure in SAS/FSP software but programmed in IML. You cannot just write it with open code because the I/O statements hardcode the filenames and the WINDOW and DISPLAY statements must hardcode the fields. However, if you generate just these components dynamically, the problem is solved for any file, not just one. Here is the code:
```

proc iml;
/* FSEDIT */
/* This program defines and stores the modules FSEINIT, */
/* FSEDT, FSEDIT, and FSETERM in a storage catalog called */
/* FSED. To use it, load the modules and issue the command */
/* RUN FSEDIT; The system prompts or menus the files and */
/* variables to edit, then runs a full screen editing */
/* routine that behaves similar to PROC FSEDIT */
/* */
/* These commands are currently supported: */
/* */
/* END gets out of the system. The user is prompted */
/* as to whether or not to close the files and */
/* window. */
/* SUBMIT forces current values to be written out, */

```
```

/* either to append a new record or replace */
/* existing ones */
/* ADD displays a screen variable with blank values */
/* for appending to the end of a file */
/* DUP takes the current values and appends them to */
/*
/* number
/* DELETE
/*
/* FORWARD1
/* BACKWARD1
/* EXEC
/* FIND
/*
/* Use: proc iml;
reset storage=' fsed';
/* load module=_all_; */
/* run fsedit; */
/* */
/*---routine to set up display values for new problem--- */
start fseinit;
window fsed0 rows=15 columns=60 icolumn=18 color=' GRAY'
cmndline=cmnd group=title +30 'Editing a data set' color='BLUE';
/*---get file name--- */
_file=" ";
msg =
'Please Enter Data Set Name or Nothing For Selection List';
display fsed0.title,
fsed0 ( / @5 'Enter Data Set:'
+1 _file
+4 '(or nothing to get selection list)' );
if _file=' ' then
do;
loop:
_f=datasets(); _nf=nrow(_f); _sel=repeat("_",_nf,1);
display fsed0.title,
fsed0 (/ "Select? File Name"/) ,
fsed0 (/ @5 _sel +1 _f protect=yes ) repeat ;
_l = loc(_sel^='_');
if nrow(_l)^=1 then
do;
msg='Enter one S somewhere';
goto loop;
end;
_file = _f[_l];
end;
/*---open file, get number of records--- */
call queue(" edit ",_file,";
setin ",_file," NOBS _nobs; resume;"); pause *;
/*---get variables--- */
_var = contents();
_nv = nrow(_var);
_sel = repeat("_",_nv,1);
display fsed0.title,
fsedO (/ "File:" _file) noinput,
fsed0 (/ @10 'Enter S to select each var, or select none
to get all.'
// @3 'select? Variable ' ),
fsed0 ( / @5 _sel +5 _var protect=yes ) repeat;

```
```

    /*---reopen if subset of variables--- */
    if any(_sel^='_') then
        do;
            _var = _var[loc(_sel^='_')];
            _nv = nrow(_var);
            call push('close ',_file,'; edit ',_file,' var
            _var;resume;');pause *;
    end;
    /*---close old window--- */
    window close=fsed0;
    /*---make the window---*/
    call queue('window fsed columns=55 icolumn=25 cmndline=cmnd
                    msgline=msg ', 'group=var/@20 "Record " _obs
                    protect=yes');
    call queue( concat('/"',_var,': " color="YELLOW" ',
                _var,' color="WHITE"'));
    call queue(';');
    /*---make a missing routine---*/
    call queue('start vmiss; ');
    do i=1 to _nv;
        val = value(_var[i]);
        if type(val)='N' then call queue(_var[i],'=.;');
        else call queue(_var[i],'="',
                        cshape(' ',1,1,nleng(val)),'";');
    end;
    call queue('finish; resume;');
    pause *;
    /*---initialize current observation---*/
    _obs = 1;
    msg = Concat('Now Editing File ',_file);
    finish;
/*
*/
/*---The Editor Runtime Controller--- */
start fsedt;
_old = 0; go=1;
do while(go);
/*--get any needed data--*/
if any(_obs^=_old) then do; read point _obs; _old = _obs;
end;
/*---display the record---*/
display fsed.var repeat;
cmnd = upcase(left(cmnd));
msg=' ';
if cmnd='END' then go=0;
else if cmnd='SUBMIT' then
do;
if _obs<=_nobs then
do;
replace point _obs; msg='replaced';
end;
else do;
append;
_nobs=_nobs+nrow(_obs);
msg=' appended';
end;
end;
else if cmnd="ADD" then
do;
run vmiss;

```
```

            _obs = __nobs+1;
            msg='New Record';
        end;
    else if cmnd='DUP' then
        do;
            append;
            _nobs=_nobs+1;
            _obs=_nobs;
            msg='As Duplicated';
        end;
    else if cmnd>'0' & cmnd<'999999' then
        do;
            _obs = num(cmnd);
            msg=concat('record number ', cmnd);
        end;
    else if cmnd='FORWARD1' then _obs=min(_obs+1,_nobs);
    else if cmnd='BACKWARD1' then _obs=max(_obs-1,1);
    else if cmnd='DELETE' then
        do;
            records=cshape (char (_obs, 5), 1, 1);
            msg=concat('Enter command Y to Confirm delete of'
                        ,records);
            display fsed.var repeat;
            if (upcase(cmnd)='Y') then
                do;
                    delete point _obs;
                    _obs=1;
                    msg=concat('Deleted Records',records);
            end;
            else msg='Not Confirmed, Not Deleted';
        end;
    else if substr(cmnd,1,4)='FIND' then
        do;
            call execute("find all where(",
                    substr(cmnd,5),
                        ") into _obs;" );
            _nfound=nrow(_obs);
            if _nfound=0 then
                do;
                    _obs=1;
                    msg=' Not Found';
                end;
                else
                    do;
                    msg=concat("Found ",char(_nfound,5)," records");
                end;
        end;
    else if substr(cmnd,1,4)='EXEC' then
        do;
            msg=substr(cmnd,5);
            call execute (msg);
        end;
    else msg='Unrecognized Command; Use END to exit.';
    end;
    finish;
/*---routine to close files and windows, clean up---*/
start fseterm;
window close=fsed;
call execute('close ',_file,';');

```
```

        free _q;
    finish;
/*---main routine for FSEDIT---*/
start fsedit;
if (nrow(_q)=0) then
do;
run fseinit;
end;
else msg = concat('Returning to Edit File ',_file);
run fsedt;
_q='_';
display fsed ( "Enter 'q' if you want to close files and windows"
_q " (anything else if you want to return later"
pause 'paused before termination';
run fseterm;
finish;
reset storage='fsed';
store module=_all_;

```

\section*{Summary}

In this chapter you learned how to use SAS/IML software to generate IML statements. You learned how to use the PUSH, QUEUE, EXECUTE, and RESUME commands to interact with the operating system or with the SAS windowing environment. You also saw how to add flexibility to programs by adding interrupt control features and by modifying error control. Finally, you learned how IML compares to the SAS macro language.

\section*{Chapter 16 \\ Wavelet Analysis}

\section*{Chapter Contents}
OVERVIEW 473
Some Brief Mathematical Preliminaries 473
GETTING STARTED 475
Creating the Wavelet Decomposition 477
Wavelet Coefficient Plots 480
Multiresolution Approximation Plots 483
Multiresolution Decomposition Plots 486
Wavelet Scalograms 487
Reconstructing the Signal from the Wavelet Decomposition 490
DETAILS 492
Using Symbolic Names 492
Obtaining Help for the Wavelet Macros and Modules 494
REFERENCES 495

\section*{Chapter 16 \\ Wavelet Analysis}

\section*{Overview}

Wavelets are a versatile tool for understanding and analyzing data, with important applications in nonparametric modeling, pattern recognition, feature identification, data compression, and image analysis. Wavelets provide a description of your data that localizes information at a range of scales and positions. Moreover, they can be computed very efficiently, and there is an intuitive and elegant mathematical theory to guide you in applying them.

\section*{Some Brief Mathematical Preliminaries}

The discrete wavelet transform decomposes a function as a sum of basis functions called wavelets. These basis functions have the property that they can be obtained by dilating and translating two basic types of wavelets known as the scaling function, or father wavelet \(\phi\), and the mother wavelet \(\psi\). These translations and dilations are defined as follows:
\[
\begin{aligned}
\phi_{j, k}(x) & =2^{j / 2} \phi\left(2^{j} x-k\right) \\
\psi_{j, k}(x) & =2^{j / 2} \psi\left(2^{j} x-k\right)
\end{aligned}
\]

The index \(j\) defines the dilation or level while the index \(k\) defines the translate. Loosely speaking, sums of the \(\phi_{j, k}(x)\) capture low frequencies and sums of the \(\psi_{j, k}(x)\) represent high frequencies in the data. More precisely, for any suitable function \(f(x)\) and for any \(j_{0}\),
\[
f(x)=\sum_{k} c_{k}^{j_{0}} \phi_{j_{0}, k}(x)+\sum_{j \geq j_{0}} \sum_{k} d_{k}^{j} \psi_{j, k}(x)
\]
where the \(c_{k}^{j}\) and \(d_{k}^{j}\) are known as the scaling coefficients and the detail coefficients, respectively. For orthonormal wavelet families these coefficients can be computed by
\[
\begin{aligned}
c_{k}^{j} & =\int f(x) \phi_{j, k}(x) d x \\
d_{k}^{j} & =\int f(x) \psi_{j, k}(x) d x
\end{aligned}
\]

The key to obtaining fast numerical algorithms for computing the detail and scaling coefficients for a given function \(f(x)\) is that there are simple recurrence relationships
that enable you to compute the coefficients at level \(j-1\) from the values of the scaling coefficients at level \(j\). These formulas are
\[
\begin{aligned}
c_{k}^{j-1} & =\sum_{i} h_{i-2 k} c_{i}^{j} \\
d_{k}^{j-1} & =\sum_{i} g_{i-2 k} c_{i}^{j}
\end{aligned}
\]

The coefficients \(h_{k}\) and \(g_{k}\) that appear in these formulas are called filter coefficients. The \(h_{k}\) are determined by the father wavelet and they form a low-pass filter; \(g_{k}=\) \((-1)^{k} h_{1-k}\) and form a high-pass filter. The preceding sums are formally over the entire (infinite) range of integers. However, for wavelets that are zero except on a finite interval, only finitely many of the filter coefficients are nonzero, and so in this case the sums in the recurrence relationships for the detail and scaling coefficients are finite.

Conversely, if you know the detail and scaling coefficients at level \(j-1\), then you can obtain the scaling coefficients at level \(j\) by using the relationship
\[
c_{k}^{j}=\sum_{i} h_{k-2 i} c_{i}^{j-1}+\sum_{i} g_{k-2 i} d_{i}^{j-1}
\]

Suppose that you have data values
\[
y_{k}=f\left(x_{k}\right), \quad k=0,1,2, \cdots, N-1
\]
at \(N=2^{J}\) equally spaced points \(x_{k}\). It turns out that the values \(2^{-J / 2} y_{k}\) are good approximations of the scaling coefficients \(c_{k}^{J}\). Then, by using the recurrence formula, you can find \(c_{k}^{J-1}\) and \(d_{k}^{J-1}, k=0,1,2, \cdots, N / 2-1\). The discrete wavelet transform of the \(y_{k}\) at level \(J-1\) consists of the \(N / 2\) scaling and \(N / 2\) detail coefficients at level \(J-1\). A technical point that arises is that in applying the recurrence relationships to finite data, a few values of the \(c_{k}^{J}\) for \(k<0\) or \(k \geq N\) might be needed. One way to cope with this difficulty is to extend the sequence \(c_{k}^{J}\) to the left and right by using some specified boundary treatment.

Continuing by replacing the scaling coefficients at any level \(j\) by the scaling and detail coefficients at level \(j-1\) yields a sequence of \(N\) coefficients
\[
\left\{c_{0}^{0}, d_{0}^{0}, d_{0}^{1}, d_{1}^{1}, d_{0}^{2}, d_{1}^{2}, d_{2}^{2}, d_{3}^{2}, d_{1}^{3}, \ldots, d_{7}^{3}, \ldots, d_{0}^{J-1}, \ldots, d_{N / 2-1}^{J-1}\right\}
\]

This sequence is the finite discrete wavelet transform of the input data \(\left\{y_{k}\right\}\). At any level \(j_{0}\) the finite dimensional approximation of the function \(f(x)\) is
\[
f(x) \approx \sum_{k} c_{k}^{j_{0}} \phi_{j_{0}, k}(x)+\sum_{j=j_{0}}^{J-1} \sum_{k} d_{k}^{j} \psi_{j, k}(x)
\]

\section*{Getting Started}

Fourier Transform Infrared (FT-IR) spectroscopy is an important tool in analytic chemistry. The following example demonstrates wavelet analysis applied to an FTIR spectrum of quartz (Sullivan 2000). The following DATA step creates a data set containing the spectrum, expressed as an absorbance value for each of 850 wave numbers.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Wav } \\
\text { inf } \\
\text { datali }
\end{array}
\] & \[
\mathrm{Ab}
\] & ban & @ ; & - & \[
v_{-} * 4 .
\] & & & & \\
\hline 4783 & 4426 & 4419 & 4652 & 4764 & 4764 & 4621 & 4475 & 4430 & 4618 \\
\hline 4735 & 4735 & 4655 & 4538 & 4431 & 4714 & 4738 & 4707 & 4627 & 4523 \\
\hline 4512 & 4708 & 4802 & 4811 & 4769 & 4506 & 4642 & 4799 & 4811 & 4732 \\
\hline 4583 & 4676 & 4856 & 4868 & 4796 & 4849 & 4829 & 4677 & 4962 & 4994 \\
\hline 4924 & 4673 & 4737 & 5078 & 5094 & 4987 & 4632 & 4636 & 5010 & 5166 \\
\hline 5166 & 4864 & 4547 & 4682 & 5161 & 5291 & 5143 & 4684 & 4662 & 5221 \\
\hline 5640 & 5640 & 5244 & 4791 & 4832 & 5629 & 5766 & 5723 & 5121 & 4690 \\
\hline 5513 & 6023 & 6023 & 5503 & 4675 & 5031 & 6071 & 6426 & 6426 & 5723 \\
\hline 5198 & 5943 & 6961 & 7135 & 6729 & 5828 & 6511 & 7500 & 7960 & 7960 \\
\hline 7299 & 6484 & 7257 & 8180 & 8542 & 8537 & 7154 & 7255 & 8262 & 8898 \\
\hline 8898 & 8263 & 7319 & 7638 & 8645 & 8991 & 8991 & 8292 & 7309 & 8005 \\
\hline 9024 & 9024 & 8565 & 7520 & 7858 & 8652 & 8966 & 8966 & 8323 & 7513 \\
\hline 8130 & 8744 & 8879 & 8516 & 7722 & 8099 & 8602 & 8729 & 8726 & 8238 \\
\hline 7885 & 8350 & 8600 & 8603 & 8487 & 7995 & 8194 & 8613 & 8613 & 8408 \\
\hline 795 & 8236 & 8696 & 8696 & 8552 & 810 & 7852 & 857 & 881 & 8818 \\
\hline 8339 & 7682 & 8535 & 9038 & 9038 & 8503 & 7669 & 7794 & 8864 & 9163 \\
\hline 9115 & 8221 & 7275 & 8012 & 9317 & 9317 & 8512 & 7295 & 7623 & 9021 \\
\hline 9409 & 9338 & 8116 & 6860 & 7873 & 9282 & 9490 & 9191 & 7012 & 7392 \\
\hline 9001 & 94 & 457 & 8107 & 6642 & 7695 & 9269 & 9532 & 9246 & 7641 \\
\hline 6547 & 8886 & 9457 & 9457 & 8089 & 6535 & 7537 & 9092 & 9406 & 9178 \\
\hline 7591 & 6470 & 7838 & 9156 & 9222 & 7974 & 6506 & 7360 & 8746 & 9057 \\
\hline 8877 & 7455 & 6504 & 7605 & 8698 & 8794 & 8439 & 7057 & 7202 & 8240 \\
\hline 8505 & 8392 & 7287 & 6634 & 7418 & 8186 & 8229 & 7944 & 6920 & 6829 \\
\hline 7499 & 7949 & 7831 & 7057 & 6866 & 7262 & 7626 & 7626 & 7403 & 6791 \\
\hline 7062 & 7289 & 7397 & 7397 & 7063 & 6985 & 7221 & 7221 & 7199 & 6977 \\
\hline 7088 & 7380 & 7380 & 7195 & 6957 & 6847 & 7426 & 7570 & 7508 & 6952 \\
\hline 6833 & 7489 & 7721 & 7718 & 7254 & 6855 & 7132 & 7914 & 8040 & 7880 \\
\hline 7198 & 6864 & 7575 & 8270 & 8229 & 754 & 7036 & 7637 & 8470 & 8570 \\
\hline 8364 & 7591 & 7413 & 8195 & 8878 & 8878 & 8115 & 7681 & 8313 & 9102 \\
\hline 9185 & 8981 & 8283 & 8197 & 8932 & 9511 & 9511 & 9101 & 8510 & 8670 \\
\hline 9686 & 9709 & 9504 & 8944 & 8926 & 9504 & 9964 & 9964 & 9627 & 9212 \\
\hline 9366 & 9889 & 10100 & 9939 & 9540 & 9512 & 9860 & 10121 & 10121 & 9828 \\
\hline 9567 & 9513 & 9782 & 9890 & 9851 & 9510 & 9385 & 9339 & 9451 & 9451 \\
\hline 9181 & 9076 & 9015 & 8960 & 9014 & 8957 & 8760 & 8760 & 8602 & 8584 \\
\hline 8584 & 8459 & 8469 & 8373 & 8279 & 8327 & 8282 & 8341 & 8341 & 8155 \\
\hline 8260 & 8260 & 8250 & 8350 & 8245 & 8358 & 8403 & 8355 & 8490 & 8490 \\
\hline 8439 & 8689 & 8689 & 8621 & 8680 & 8661 & 8897 & 9028 & 8900 & 8873 \\
\hline 8873 & 9187 & 9377 & 9377 & 9078 & 9002 & 9147 & 9635 & 9687 & 9535 \\
\hline 9127 & 9242 & 9824 & 9928 & 9775 & 9200 & 9047 & 9572 & 10102 & 10102 \\
\hline 9631 & 9024 & 9209 & 10020 & 10271 & 9830 & 9062 & 9234 & 10154 & 10483 \\
\hline 10453 & 9582 & 9011 & 9713 & 10643 & 10701 & 10372 & 9368 & 9857 & 108 \\
\hline
\end{tabular}
```

10936 10572 9574 9691 10820 11452 11452 10623 9903 10787
11931 12094 11302 10604 11458 12608 12808 12589 11629 11795
12863 13575 13575 12968 12498 13268 14469 14469 13971 13727
14441 15334 15515 15410 14986 15458 16208 16722 16722 16618
17061 17661 18089 18089 18184 18617 19015 19467 19633 19830
20334 20655 20947 21347 21756 22350 22584 22736 22986 23412
24126 24498 24501 24598 24986 25729 26356 26356 26271 26754
27624 28162 28162 28028 28305 29223 30073 30219 30185 30308
31831 32699 32819 32793 33320 34466 35600 36038 36086 36518
37517 38765 39462 39681 40209 41243 42274 42772 42876 43172
43929 44842 4535145395 45551 46035 46774 47353 47353 47362
47908 48539 48936 48978 49057 49497 50101 50670 50914 51134
51603 52276 53007 53399 53769 54281 54815 54914 55365 55874
56180 56272 56669 57076 57422 57458 57525 57681 57679 57318
57318 57181 57417 57409 57144 57047 56377 56551 56483 56098
56034 55598 55364 55364 55146 54904 54990 55501 55533 55362
54387 55340 55240 54748 53710 55346 55795 55795 55060 55945
55945 55753 56759 56859 57509 56741 56273 56961 58566 58566
58104 59275 59275 59051 59090 59461 60362 60560 61103 61272
61380 61878 62067 62237 62214 61182 6153266173 6225360473
61346 63143 63378 61519 61753 63078 63841 63841 62115 61227
63237 63237 61338 63951 63951 63604 63633 64625 65135 64976
6363063494 63834 63338 63218 62324 64131 64234 65122 64551
64127 64415 64621 64621 63142 65344 65585 65476 65074 64714
63803 65085 65085 65646 65646 64851 65390 65390 64997 65541
65587 65682659526595265390 65702 65846 65734 65734 65628
6550965571 65636 65636 65620 65487 65544 655476573865758
65711 65360 65362 65362 65231 65333 65453 65473 6543565302
65412 65412 65351 65242 65242 65170 65221 65297 65297 65202
65177 65183 65184 65179 65209 65209 65144 65134 65113665009
64919 64945 64988 64988 64856 64686 64529 64370 64282 64233
64169 63869 63685 63480 63373 6334963307 63131 63017 62885
62736 62736 62706 62666 62622 62671 62781 62853 62950 63106
63135 63141 63220 63263 63489 63807 63966 64132 64294 64612
64841 64985 65159 65204 65259 65540 65707 657496573265719
65820 65895 65925 65925 65888 65937 66059661096610966078
66007 65897 65897 65747 65490 64947 64598 64363 64140 63801
63571 63395 63333 63442 63442 6333963196 62911 62118 61795
61454 61456 61607 62025 62190 62190 62023 61780 6150261482
61458 61320 61015 60852 60708 60684 60522 60488 60506 60640
60797 60995 61141 61141 61036 60664 60522 60017 59681 59129
58605 58035 57192 56137 54995 53586 52037 50283 48565 45419
43341 41111 36131 35377 34431 31679 29237 26898 24655 22417
19876 17244 15176 12575 10532 8180 6040 4059 2210 575
;

```

The following statements produce the line plot of these data displayed in Figure 16.1.
symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;
plot Absorbance*WaveNumber/ hminor \(=0 \quad\) vminor \(=0\) vaxis = axis1

Figure 16.1. FT-IR Spectrum of Quartz
These data contain information at two distinct scales, namely a low-frequency underlying curve superimposed with a high-frequency oscillation. Notice that the oscillation is not uniform but occurs in several distinct bands. Wavelet analysis is an appropriate tool for providing insight into this type of data, as it enables you to identify the frequencies present in the absorbance data as the wave number changes. This property of wavelets is known as "time frequency localization"; in this case the role of time is played by WaveNumber. Also note that the dependent variable Absorbance is measured at equally spaced values of the independent variable WaveNumber. This condition is necessary for the direct use of the discrete wavelet transform that is implemented in the SAS/IML wavelet functions.

\section*{Creating the Wavelet Decomposition}

The following SAS code starts the wavelet analysis:
```

%wavginit;
proc iml;
%wavinit;

```

Notice that the previous code segment includes two SAS macro calls. You can use the IML wavelet functions without using the WAVGINIT and WAVINIT macros. The
macros are called to initialize and load IML modules that you can use to produce several standard wavelet diagnostic plots. These macros have been provided as autocall macros that you can invoke directly in your SAS code.

The WAVGINIT macro must be called prior to invoking PROC IML. This macro defines several macro variables that are used to adjust the size, aspect ratio, and font size for the plots produced by the wavelet plot modules. This macro can also take several optional arguments that control the positioning and size of the wavelet diagnostic plots. See the section "Obtaining Help for the Wavelet Macros and Modules" on page 494 for details about getting help about this macro call.

The WAVINIT macro must be called from within PROC IML. It loads the IML modules that you can use to produce wavelet diagnostic plots. This macro also defines symbolic macro variables that you can use to improve the readability of your code.

The following statements read the absorbance variable into an IML vector:
```

use quartzInfraredSpectrum;
read all var{Absorbance} into absorbance;

```

You are now in a position to begin the wavelet analysis. The first step is to set up the options vector that specifies which wavelet and what boundary handling you want to use. You do this as follows:
```

optn = \&waveSpec; /* optn=j(1,4,.); */
optn[\&family] = \&daubechies; /* optn[3] = 1; */
optn[\&member] = 3; /* optn[4] = 3; */
optn[\&boundary] = \&polynomial; /* optn[1] = 2; */
optn[\&degree] = \&linear; /* optn[2] = 1; */

```

These statements use macro variables that are defined in the WAVINIT macro. The equivalent code without using these macro variables is given in the adjacent comments. As indicated by the suggestive macro variable names, this options vector specifies that the wavelet to be used is the third member of the Daubechies wavelet family and that boundaries are to be handled by extending the signal as a linear polynomial at each endpoint.

The next step is to create the wavelet decomposition with the following call:
call wavft (decomp, absorbance, optn);

This call computes the wavelet transform specified by the vector optn of the input vector absorbance. The specified transform is encapsulated in the vector decomp. This vector is not intended to be used directly. Rather you use this vector as an argument to other IML wavelet subroutines and plot modules. For example, you use the WAVPRINT subroutine to print the information encapsulated in a wavelet decomposition. The following code produces the output in Figure 16.2.
call wavprint (decomp,\&summary);
call wavprint (decomp, \&detailCoeffs,1,4);
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Decomposition Summary} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{6}{*}{Decomposition Name Wavelet Family Family Member Boundary Treatment Number of Data Points Start Level}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
DECOMP \\
Daubechies Extremal Phase
\end{tabular}}} \\
\hline & & & & \\
\hline & & 3 & & \\
\hline & & \multicolumn{3}{|l|}{Recursive Linear Extension} \\
\hline & & nts & \multicolumn{2}{|r|}{850} \\
\hline & & & & 0 \\
\hline \multicolumn{5}{|c|}{Wavelet Detail Coefficients for DECOMP} \\
\hline Translate & Level 1 & Level 2 & Level 3 & Level 4 \\
\hline 0 & -1.71343E-9 & 1.36819E-10 & -6.6097E-12 & 5.23868E-11 \\
\hline 1 & 1340085. 30 & -128245.70 & 191.084707 & 4501.36 \\
\hline 2 & & 62636.70 & 6160.27 & -1358.23 \\
\hline 3 & & -238445.36 & -54836.56 & -797.724143 \\
\hline 4 & & & 39866.95 & 676.034389 \\
\hline 5 & & & -28836.85 & -5166.59 \\
\hline 6 & & & 223421.00 & -6088.99 \\
\hline 7 & & & & -5794.67 \\
\hline 8 & & & & 30144.74 \\
\hline 9 & & & & -3903.53 \\
\hline 10 & & & & 638.063264 \\
\hline 11 & & & & -10803.45 \\
\hline 12 & & & & 33616.35 \\
\hline 13 & & & & -50790.30 \\
\hline
\end{tabular}

Figure 16.2. Output of WAVPRINT CALLS
Usually such displayed output is of limited use. More frequently you want to represent the transformed data graphically or use the results in further computational routines. As an example, you can estimate the noise level of the data by using a robust measure of the standard deviation of the highest-level detail coefficients, as demonstrated in the following statements:
```

call wavget (tLevel, decomp,\&topLevel);
call wavget(noiseCoeffs,decomp,\&detailCoeffs,tLevel-1);
noiseScale=mad(noiseCoeffs,"nmad");
print "Noise scale = " noiseScale;

```

The result is shown in Figure 16.3.
\begin{tabular}{l}
NOISESCALE \\
Noise scale \(=\quad 169.18717\) \\
\hline
\end{tabular}

Figure 16.3. Scale of Noise in the Absorbance Data
The first WAVGET call is used to obtain the top level number in the wavelet decomposition decomp. The highest level of detail coefficients is defined at one level
below the top level in the decomposition. The second WAVGET call returns these coefficients in the vector noiseCoeffs. Finally, the MAD function computes a robust estimate of the standard deviation of these coefficients.

\section*{Wavelet Coefficient Plots}

Diagnostic plots greatly facilitate the interpretation of a wavelet decomposition. One standard plot is the detail coefficients arranged by level. By using a module included by the WAVINIT macro call, you can produce the plot shown in Figure 16.5 as follows:
```

call coefficientPlot(decomp, , , , ,"Quartz Spectrum");

```

The first argument specifies the wavelet decomposition and is required. All other arguments are optional and need not be specified. You can use the WAVHELP macro to obtain a description of the arguments of this and other wavelet plot modules. The WAVHELP macro is defined in the autocall WAVINIT macro. For example, invoking the WAVHELP macro as follows writes the calling information shown in Figure 16.4 to the SAS log.
```

%wavhelp(coefficientPlot);

```


Figure 16.4. Log Output Produced by \%wavhelp(coefficientPlot) Call

Figure 16.5. Detail Coefficients Scaled by Level
In this plot the detail coefficients at each level are scaled independently. The oscillations present in the absorbance data are captured in the detail coefficients at levels 7, 8 , and 9 . The following statement produces a coefficient plot of just these higher-level detail coefficients and shows them scaled uniformly.
```

call coefficientPlot(decomp, ,7, ,
'uniform',"Quartz Spectrum");

```

The plot is shown in Figure 16.6.

Figure 16.6. Uniformly Scaled Detail Coefficients
As noted earlier, noise in the data is captured in the detail coefficients, particularly in the small coefficients at higher levels in the decomposition. By zeroing or shrinking these coefficients, you can get smoother reconstructions of the input data. This is done by specifying a threshold value for each level of detail coefficients and then zeroing or shrinking all the detail coefficients below this threshold value. The IML wavelet functions and modules support several policies for how this thresholding is performed as well as for selecting the thresholding value at each level. See the section "WAVIFT Call" on page 993 for details.

An options vector is used to specify the desired thresholding; several standard choices are predefined as macro variables in the WAVINIT module. The following statements produce the detail coefficient plot with the "SureShrink" thresholding algorithm of Donoho and Johnstone (1995).
```

call coefficientPlot (decomp,\&SureShrink,6,, ,
"Quartz Spectrum");

```

The plot is shown in Figure 16.7.

Figure 16.7. Thresholded Detail Coefficients
You can see that "SureShrink" thresholding has zeroed some of the detail coefficients at the higher levels but the larger coefficients that capture the oscillation in the data are still present. Consequently, reconstructions of the input signal using the thresholded detail coefficients still capture the essential features of the data, but are smoother because much of the very fine scale detail has been eliminated.

\section*{Multiresolution Approximation Plots}

One way of presenting reconstructions is in a multiresolution approximation plot. In this plot reconstructions of the input data are shown by level. At any level the reconstruction at that level uses only the detail and scaling coefficients defined below that level.

The following statement produces such a plot, starting at level 3:
```

call mraApprox(decomp, ,3, ,"Quartz Spectrum");

```

The results are shown in Figure 16.8.

Figure 16.8. Multiresolution Approximation
You can see that even at level 3, the basic form of the input signal has been captured. As noted earlier, the oscillation present in the absorbance data is captured in the detail coefficients higher than level 7. Thus, the reconstructions at level 7 and lower are largely free of oscillation since they do not use any of the higher detail coefficients. You can confirm this observation by plotting just this level in the multiresolution analysis as follows:
call mraApprox (decomp, ,7,7,"Quartz Spectrum");

The results are shown in Figure 16.9.
\begin{tabular}{|c|c|}
\hline Multiresolution Approximation & Quartz Spectrum \\
\hline & \begin{tabular}{l}
Data Size \\
Wavelet Specification \\
Family: Daubechies 3 Boundary: Linear Extension \\
No Thresholding
\end{tabular} \\
\hline
\end{tabular}

Figure 16.9. Level 7 of the Multiresolution Approximation
You can also plot the multiresolution approximations obtained with thresholded detail coefficients. For example, the following statement plots the top-level reconstruction obtained by using the "SureShrink" threshold:
```

call mraApprox(decomp,\&SureShrink,10,10,
"Quartz Spectrum");

```

The results are shown in Figure 16.10.
\begin{tabular}{|c|c|}
\hline Multiresolution Approximation & Quartz Spectrum \\
\hline \begin{tabular}{l}
Level \\
10
\end{tabular} & \begin{tabular}{l}
Data Size \\
Wavelet Specification \\
Family: Daubechies 3 Boundary: Linear Extension \\
Thresholding Details \\
Policy: Soft \\
Method: SURE Hybrid \\
Levels: 0 - 9
\end{tabular} \\
\hline
\end{tabular}

Figure 16.10. Top Level of Multiresolution Approximation with SureShrink Thresholding Applied

Note that the high-frequency oscillation is still present in the reconstruction even with "SureShrink" thresholding applied.

\section*{Multiresolution Decomposition Plots}

A related plot is the multiresolution decomposition plot, which shows the detail coefficients at each level. For convenience, the starting-level reconstruction at the lowest level of the plot and the reconstruction at the highest level of the plot are also included. Adding suitably scaled versions of all the detail levels to the starting-level reconstruction recovers the final reconstruction. The following statement produces such a plot, yielding the results shown in Figure 16.11.
call mraDecomp(decomp, ,5, , ,"Quartz Spectrum");

Figure 16.11. Multiresolution Decomposition

\section*{Wavelet Scalograms}

Wavelet scalograms communicate the time frequency localization property of the discrete wavelet transform. In this plot each detail coefficient is plotted as a filled rectangle whose color corresponds to the magnitude of the coefficient. The location and size of the rectangle are related to the time interval and the frequency range for this coefficient. Coefficients at low levels are plotted as wide and short rectangles to indicate that they localize a wide time interval but a narrow range of frequencies in the data. In contrast, rectangles for coefficients at high levels are plotted thin and tall to indicate that they localize small time ranges but large frequency ranges in the data. The heights of the rectangles grow as a power of 2 as the level increases. If you include all levels of coefficients in such a plot, the heights of the rectangles at the lowest levels are so small that they are not visible. You can use an option to plot the heights of the rectangles on a logarithmic scale. This results in rectangles of uniform height but requires that you interpret the frequency localization of the coefficients with care.

The following statement produces a scalogram plot of all levels with "SureShrink" thresholding applied:
```

call scalogram(decomp,\&SureShrink, , ,0.25,
'log',"Quartz Spectrum");

```

The sixth argument specifies that the rectangle heights are to be plotted on a logarithmic scale. The role of the fifth argument (0.25) is to amplify the magnitude of the small detail coefficients. This is necessary since the detail coefficients at the lower
levels are orders of magnitude larger than those at the higher levels. The amplification is done by first scaling the magnitudes of all detail coefficients to lie in the interval \([0,1]\) and then raising these scaled magnitudes to the power 0.25 . Note that smaller powers yield larger amplification of the small detail coefficient magnitudes. The default amplification is \(1 / 3\).

The results are shown in Figure 16.12.

Figure 16.12. Scalogram Showing All Levels
The bar on the left-hand side of the scalogram plot indicates the overall energy of each level. This energy is defined as the sum of the squares of the detail coefficients for each level. These energies are amplified by using the same algorithm for amplifying the detail coefficient magnitudes. The energy bar in Figure 16.12 shows that higher energies occur at the lower levels whose coefficients capture the gross features of the data. In order to interpret the finer-scale details of the data it is helpful to focus on just the higher levels. The following statement produces a scalogram for levels 6 and higher without using a logarithmic scale for the rectangle heights, and using the default coefficient amplification.
```

call scalogram(decomp,\&SureShrink,6, , , ,
"Quartz Spectrum");

```

The result is shown in Figure 16.13.

Figure 16.13. Scalogram of Levels 6 and Higher Using "SureShrink" Thresholding
The scalogram in Figure 16.13 reveals that most of the energy of the oscillation in the data is captured in the detail coefficients at level 8 . Also note that many of the coefficients at the higher levels are set to zero by "SureShrink" thresholding. You can verify this by comparing Figure 16.13 with Figure 16.14, which shows the corresponding scalogram except that no thresholding is done. The following statement produces Figure 16.14:
```

call scalogram(decomp, ,6, , , ,"Quartz Spectrum");

```


Figure 16.14. Scalogram of Levels 6 and Higher Using No Thresholding

\section*{Reconstructing the Signal from the Wavelet Decomposition}

You can use the WAVIFT subroutine to invert a wavelet transformation computed with the WAVFT subroutine. If no thresholding is specified, then up to numerical rounding error this inversion is exact. The following statements provide an illustration of this:
```

call wavift(reconstructedAbsorbance,decomp);
errorSS=ssq (absorbance-reconstructedAbsorbance);
print "The reconstruction error sum of squares = " errorSS;

```

The output is shown in Figure 16.15.

Figure 16.15. Exact Reconstruction Property of WAVIFT
Usually you use the WAVIFT subroutine with thresholding specified. This yields a smoothed reconstruction of the input data. You can use the following statements to create a smoothed reconstruction of absorbance and add this variable to the QuartzInfraredSpectrum data set.
```

call wavift(smoothedAbsorbance, decomp,\&SureShrink);
create temp from smoothedAbsorbance[colname='smoothedAbsorbance'];

```
```

            append from smoothedAbsorbance;
        close temp;
    quit;
data quartzInfraredSpectrum;
set quartzInfraredSpectrum;
set temp;
run;

```

The following statements produce the line plot of the smoothed absorbance data shown in Figure 16.16:
```

symboll c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;
plot smoothedAbsorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;
axis1 label = ( r=0 a=90 );
run;

```


Figure 16.16. Smoothed FT-IR Spectrum of Quartz
You can see by comparing Figure 16.1 with Figure 16.16 that the wavelet smooth of the absorbance data has preserved all the essential features of these data.

\section*{Details}

\section*{Using Symbolic Names}

Several of the wavelet subroutines take arguments that are options vectors that specify user input. For example, the third argument in a WAVFT subroutine call is an options vector that specifies which wavelet and which boundary treatment are used in computing the wavelet transform. Typical code that defines this options vector is as follows:
```

optn = j(1, 4, .);
optn[1] = 0;
optn[3] = 1;
optn[4] = 3;

```

A problem with such code is that it is not easily readable. By using symbolic names readability is greatly enhanced. SAS macro variables provide a convenient mechanism for creating such symbolic names. For example, the previous code could be replaced by the following code:
```

optn = \&waveSpec;
optn[\&family] = \&daubechies;
optn[\&member] = 3;
optn[\&boundary] = \&zeroExtension;

```
where the symbolic macro variables (names with a preceding ampersand) resolve to the relevant quantities. Symbolic names also improve code readability when substituted for integer arguments that control what actions a multipurpose subroutine performs. Consider the following code:
```

call wavget(n,decomposition,1);
call wavget(fWavelet, decompostion,8);

```

This code can be replaced by the following statements:
```

call wavget(n,decomposition,\&numPoints);
call wavget(fWavelet, decompostion,\&fatherWavelet);

```

A set of symbolic names is defined in the autocall WAVINIT macro. The following tables list the symbolic names that are defined in this macro.

Table 16.1. Macro Variables for Wavelet Specification
\begin{tabular}{lrlr}
\hline \multicolumn{2}{c}{ Position } & \multicolumn{2}{c}{ Admissible Values } \\
Name & Value & Name & Value \\
\hline \&boundary & 1 & \&zeroExtension & 0 \\
& & \&periodic & 1 \\
& & \&polynomial & 2 \\
& & \&reflection & 3 \\
& & \&antisymmetricReflection & 4 \\
\hline \°ree & 2 & \&constant & 0 \\
& & \&linear & 1 \\
& & \&quadratic & 2 \\
\hline \&family & 3 & \&daubechies & 1 \\
& & \&symmlet & 2 \\
\hline \&member & 4 & & \(1-10\) \\
\hline
\end{tabular}

Table 16.2. Macro Variables for Threshold Specification
\begin{tabular}{lrlr}
\hline \multicolumn{2}{c}{ Position } & \multicolumn{2}{c}{ Admissible Values } \\
Name & Value & Name & Value \\
\hline \&policy & 1 & \&none & 0 \\
& & \&hard & 1 \\
& & \&soft & 2 \\
& & \&garrote & 3 \\
\hline \&method & 2 & \&absolute & 0 \\
& & \&minimax & 1 \\
& & \&universal & 2 \\
& & \&sure & 3 \\
& & \&sureHybrid & 4 \\
& & \&nhoodCoeffs & 5 \\
\hline \&value & 3 & \multicolumn{2}{c}{ positive real } \\
\hline \&levels & 4 & \&all & -1 \\
& & \multicolumn{2}{c}{ positive integer } \\
\hline
\end{tabular}

Table 16.3. Symbolic Names for the Third Argument of WAVGET
\begin{tabular}{lr}
\hline Name & Value \\
\hline \&numPoints & 1 \\
\&detailCoeffs & 2 \\
\&scalingCoeffs & 3 \\
\&thresholdingStatus & 4 \\
\&specification & 5 \\
\&topLevel & 6 \\
\&startLevel & 7 \\
\&fatherWavelet & 8 \\
\hline
\end{tabular}

Table 16.4. Macro Variables for the Second Argument of WAVPRINT
\begin{tabular}{lr}
\hline Name & Value \\
\hline \&summary & 1 \\
\&detailCoeffs & 2 \\
\&scalingCoeffs & 3 \\
\&thresholdedDetailCoeffs & 4 \\
\hline
\end{tabular}

Table 16.5. Macro Variables for Predefined Wavelet Specifications
\begin{tabular}{llcclcc}
\hline Name & \&boundary & \°ree & \&family & \&member & \\
\hline \&waveSpec & \(\{\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\}\) \\
\&haar & \(\{\) & \&periodic & \(\cdot\) & \&daubechies & 1 & \(\}\) \\
\&daubechies3 & \(\{\) & \&periodic & \(\cdot\) & \&daubechies & 3 & \(\}\) \\
\&daubechies5 & \(\{\) & \&periodic & \(\cdot\) & \&daubechies & 5 & \(\}\) \\
\&symmlet5 & \(\{\) & \&periodic & \(\cdot\) & \&symmlet & 5 & \(\}\) \\
\&symmlet8 & \(\{\) & \&periodic & \(\cdot\) & \&symmlet & 8 & \(\}\) \\
\hline
\end{tabular}

Table 16.6. Macro Variables for Predefined Threshold Specifications
\begin{tabular}{lcccccc}
\hline Name & \&policy & \&method & \&value & \&levels & \\
\hline \&threshSpec & \(\{\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\dot{ }\) & \(\}\) \\
\&RiskShrink & \(\{\) & \&hard & \&minimax & \(\cdot\) & \&all & \(\}\) \\
\&VisuShrink & \(\{\) & \&soft & \&universal & \(\cdot\) & \&all & \(\}\) \\
\&SureShrink & \(\{\) & \&soft & \&sureHybrid & \(\cdot\) & \&all & \(\}\) \\
\hline
\end{tabular}

\section*{Obtaining Help for the Wavelet Macros and Modules}

The WAVINIT macro that you call to define symbolic macro variables and wavelet plot modules also defines a macro WAVHELP that you can call to obtain help for the wavelet macros and plot modules. The syntax for calling the WAVHELP macro is as follows:
```

\%WAVHELP < (name ) > ;

```

In the macro call, name is either wavginit, wavinit, coefficientPlot, mraApprox, mraDecomp, or scalogram. This macro displays usage and argument information for the specified macro or module. If you call the WAVHELP macro with no arguments, it lists the names of the macros and modules for which help is available. Note that you can obtain help for the built-in IML wavelet subroutines by using the SAS Online Help.

\section*{References}

Daubechies, I. (1992), Ten Lectures on Wavelets, Volume 61, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA: Society for Industrial and Applied Mathematics.

Donoho, D. L. and Johnstone, I. M. (1994), "Ideal Spatial Adaptation via Wavelet Shrinkage," Biometrika, 81, 425-455.

Donoho, D. L. and Johnstone, I. M. (1995), "Adapting to Unknown Smoothness via Wavelet Shrinkage," Journal of the American Statistical Association, 90, 1200-1224.

Mallat, S. (1989), "Multiresolution Approximation and Wavelets," Transactions of the American Mathematical Society, 315, 69-88.

Ogden, R. T. (1997), Essential Wavelets for Statistical Applications and Data Analysis, Boston: Birkhäuser.

Sullivan, D. (2000), "FT-IR Library," [http://www.che.utexas.edu/~dls/ir/ir_dir.html], accessed 16 October 2000.

\section*{Chapter 17 Genetic Algorithms}

\section*{Chapter Contents}
OVERVIEW 499
FORMULATING A GENETIC ALGORITHM OPTIMIZATION 501
Choosing the Problem Encoding 501
Setting the Objective Function 502
Controlling the Selection Process 503
Using Crossover and Mutation Operators 504
EXECUTING A GENETIC ALGORITHM 509
Setting Up the IML Program 509
Incorporating Local Optimization 514
Handling Constraints 515
Example 17.1. Genetic Algorithm with Local Optimization 515
Example 17.2. Real-Valued Objective Optimization with Constant Bounds 518
Example 17.3. Integer Programming Knapsack Problem 522
Example 17.4. Optimization with Linear Constraints Using Repair Strategy 524
REFERENCES 527

\section*{Chapter 17 Genetic Algorithms}

\section*{Overview}

Genetic algorithms (referred to hereafter as GAs) are a family of search algorithms that seek optimal solutions to problems using the principles of natural selection and evolution. GAs can be applied to almost any optimization problem and are especially useful for problems where other calculus-based techniques do not work, such as when the objective function has many local optimums, it is not differentiable or continuous, or solution elements are constrained to be integers or sequences. In most cases GAs require more computation than specialized techniques that take advantage of specific problem structure or characteristics. However, for optimization problems with no such techniques available, GAs provide a robust general method of solution. The current GA implementation in IML is experimental, and will be further developed and tested in later SAS releases.

In general, GAs use the following procedure to search for an optimum solution:
initialization: An initial population of solutions is randomly generated, and an objective function value is evaluated for each member of the solution population.
regeneration: A new solution population is generated from the current solution population. First, individual members are chosen stochastically to parent the next generation such that those who are the "fittest" (have the best objective function values) are more likely to be picked. This process is called selection. Those chosen solutions are either copied directly to the next generation or passed to a crossover operator, with a user-specified crossover probabilty. The crossover operator combines two or more parents to produce new offspring solutions for the next generation. A fraction of the next generation solutions, selected according to a user-specified mutation probability, is passed to a mutation operator that introduces random variations in the solutions.
The crossover and mutation operators are commonly called genetic operators. The crossover operator passes characteristics from each parent to the offspring, especially those characteristics shared in common. It is selection and crossover that distinguish GAs from a purely random search, and direct the algorithm toward finding an optimum. Mutation is designed to ensure diversity in the search to prevent premature convergence to a local optimum.

As the final step in regeneration, the current population is replaced by the new solutions generated by selection, crossover, and mutation. The objective function values are evaluated for the new generation.

A common variation on this approach that is supported in IML is to pass one or more of the best solutions from the current population on to the next population unchanged. This often leads to faster convergence, and assures that the best solution generated at any time during the optimization is never lost.
repeat: After regeneration, the process checks some stopping criteria, such as the number of iterations or some other convergence criteria. If the stopping criteria is not met, then the algorithm loops back to the regeneration step.

Although GAs have been demonstrated to work well for a variety of problems, there is no guarantee of convergence to a global optimum. Also, the convergence of GAs can be sensitive to the choice of genetic operators, mutation probability, and selection criteria, so that some initial experimentation and fine-tuning of these parameters is often required.

In the traditional formulation of GAs, the parameter set to be searched is mapped into finite-length bit strings, and the genetic operators applied to these strings, or chromosomes, are based on biological processes. While there is a theoretical basis for the effectiveness of GAs formulated in this way (Goldberg 1989), in practice most problems don't fit naturally into this paradigm. Modern research has shown that optimizations can be set up using the natural solution domain (for example, a real vector or integer sequence) and applying crossover and mutation operators analogous to the traditional genetic operators, but more appropriate to the natural formulation of the problem (Michalewicz 1996). This latter approach is sometimes called evolutionary computing. IML implements the evolutionary computing approach because it makes it much easier to formulate practical problems with realistic constraints. Throughout this documentation, the term "genetic algorithm" is to be interpreted as evolutionary computing.

IML provides a flexible framework for implementing GAs, enabling you to write your own modules for the genetic operators and objective function, as well as providing some standard genetic operators that you can specify. This framework also enables you to introduce some variations to the usual GA, such as adapting the optimization parameters during the optimization, or incorporating some problem-specific local optimizations into the process to enhance convergence.

An IML program to do GA optimization is structured differently from a program doing nonlinear optimization with the nlp routines. With the nlp routines, generally a single call is made in which the user specifies the objective and optimization parameters, and that call runs the optimization process to completion. In contrast, to perform a GA optimization you use separate calls to the GA routines to specify the problem encoding (GASETUP), genetic operators (GASETMUT and GASETCRO), objective function (GASETOBJ), and selection criteria (GASETSEL). You then call the GAINIT routine to initialize the problem population. After that, you advance the optimization process by calling GAREGEN (for the regeneration step) within an IML loop. Within the loop you can use GAGETMEM and GAGETVAL calls to retrieve population members and objective function values for examination. This strategy allows you to monitor the convergence of the GA, adjust optimization parameters with

GA routine calls within the loop, and exit the loop when the GA is not producing furthur improvement in the objective function. The next section explains the optimization parameters in more detail and gives guidance on how they should be set.

\section*{Formulating a Genetic Algorithm Optimization}

To formulate a GA in IML you must decide on five basic optimization parameters:
1. Encoding: The general structure and form of the solution.
2. Objective: The function to be optimized. IML also enables you to specify whether the function is to be minimized or maximized.
3. Selection: How members of the current solution population will be chosen to be parents to propagate the next generation.
4. Crossover: How the attributes of parent solutions will be combined to produce new offspring solutions.
5. Mutation: How random variation will be introduced into the new offspring solutions to maintain genetic diversity.

The following section discusses each of these items in more detail.

\section*{Choosing the Problem Encoding}

Problem encoding refers to the structure or type of solution space that is to be optimized, such as real-valued fixed-length vectors or integer sequences. IML offers encoding options appropriate to several types of optimization problems.

General Numeric Matrix: With this encoding, solutions can take the form of a numeric matrix of any shape. Also, different solutions can have different dimensions. This is the most flexible option. If you use this encoding, IML makes no assumptions about the form of the solution, so you are required to specify user modules for crossover and mutation operators, and a user module for creating the initial solution population.

Fixed-Length Real-Valued Row Vector: If you use this encoding, you must also specify the number of components in the solution vector. Using this option, you can use some IML-supplied crossover and mutation operators later, or you can supply custom modules. You can also specify upper and lower bounds for each component in the vector, and IML will generate an initial population for the GA randomly distributed between the bounds. If you don't explicitly set crossover and mutation operators, IML will provide default operators to be used in the optimization. This type of encoding is often used for general nonlinear optimization problems.

Fixed-Length Integer-Valued Row Vector: This option is similar to the fixed-length real-valued encoding already described, except that the IML-supplied genetic operators and initialization process will preserve and generate integer solutions. This type of encoding might be applicable, for example, in an assignment problem where the
positions within the vector represent different tasks, and the integer values represent different machines or other resources that might be applied to each task.

Fixed-Length Integer Sequence: In this encoding, each solution is composed of a sequence of integers ranging from 1 to the length of the sequence, with different solutions distinguished by different ordering of the elements. For example, \(s 1\) and \(s 2\) are two integer sequences of length 6 :
```

s1 = {1 2 3 4 5 6};
s2 ={2 6 5 3 4 1};

```

This type of encoding is often used for routing problems like the traveling salesman problem, where each element represents a city in a circular route, or scheduling problems.

\section*{Setting the Objective Function}

Before executing a GA, you must specify the objective function to be optimized. There are currently two options available: a user function module and an IMLsupplied traveling salesman problem (TSP) objective function.

User Function Module: The module must take exactly one parameter, which will be one solution, and return a numeric scalar objective function value. The module can also have a global clause, which may be used to pass in any other information required to determine the objective function value. If global parameters are used, you must be careful about changing them after the optimization has been initialized. If a change in a global parameter affects the objective function values, you must reevaluate the entire solution population (see GAREEVAL call) to ensure that the values are consistent with the changed global parameter.

The solution parameter passed into the routine is also written back out to the solution population when the module exits, so you should take care not to modify the parameter and therefore the solution population unintentionally. However, it is permissible and may prove very effective to add logic to the module to improve the solution through some heuristic technique or local optimization, and deliberately pass that improved solution back to the solution population by updating the parameter before returning. Using this hybrid approach may significantly improve the convergence of the GA, especially in later stages when solutions may be near an optimum.

TSP Objective Function: An objective function for the traveling salesman problem can be specified with integer sequence encoding. For the TSP, a solution sequence represents a circular route. For example, a solution \(s\) with the value
\(s=\left\{\begin{array}{lllll}2 & 4 & 3 & 1 & 5\end{array}\right\} ;\)
represents a route going from location 2 to location 4 to 3 to 1 to 5 and back to 2 . You must also specify a cost matrix \(c\), where \(c[i, j]\) is the cost of going from location \(i\) to location \(j\). The objective function is just the cost of traversing the route determined by \(s\), and is equivalent to the IML code:
```

start TSPObjectiveFunction(s) global(c);
nc = ncol(s);
cost = c[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + c[s[i],s[i+1]];
end;
return (cost);
finish;

```

The IML-supplied order crossover operator and invert mutation operator are especially appropriate for the TSP and other routing problems.

\section*{Controlling the Selection Process}

There are two competing factors that need to be balanced in the selection process, the selective pressure and genetic diversity. Selective pressure, the tendency to select only the best members of the current generation to propagate to the next, is required to direct the GA to an optimum. Genetic diversity, the maintenance of a diverse solution population, is also required to ensure that the solution space is adequately searched, especially in the earlier stages of the optimization process. Too much selective pressure can lower the genetic diversity so that the global optimum is overlooked and the GA converges to a local optimum. Yet, with too little selective pressure the GA may not converge to an optimum in a reasonable time. A proper balance between the selective pressure and genetic diversity must be maintained for the GA to converge in a reasonable time to a global optimum.

IML offers two variants of a standard technique for the selection process commonly known as tournament selection (Miller and Goldberg 1995). In general, the tournament selection process randomly chooses a group of members from the current population, compares their objective values, and picks the one with the best objective value to be a parent for the next generation. Tournament selection was chosen for IML because it is one of the fastest selection methods, and offers you good control over the selection pressure. Other selection methods such as roulette and rank selection may be offered as options in the future.

In the first variant of tournament selection, you can control the selective pressure by specifying the tournament size, the number of members chosen to compete for parenthood in each tournament. This number should be two or greater, with two implying the weakest selection pressure. Tournament sizes from two to ten have been successfully applied to various GA optimizations, with sizes over four to five considered to represent strong selective pressure.

The second variant of tournament selection provides weaker selective pressure than the first variant just described. The tournament size is set at two, and the member with the best objective value is chosen with a probability that you specify. This best-player-wins probability can range from 0.5 to 1.0 , with 1.0 implying that the best member is always chosen (equivalent to a conventional tournament of size two) and 0.5 implying an equal chance of either member being chosen (equivalent to pure random selection). Using this option, you could set the best-player-wins probability close to 0.5 in the initial stages of the optimization, and gradually increase it to
strengthen the selective pressure as the optimization progresses, in a similar manner to the simulated annealing optimization technique.

Another important selection option supported in IML is the elite parameter. If an elite value of \(n\) is specified, then the best \(n\) solutions will be carried over to the next generation unchanged, with the rest of the new population filled in by tournament selection, crossover, and mutation. Setting the elite parameter to one or greater will therefore guarantee that the best solution is never lost through selection and propagation, which often improves the convergence of the algorithm.

\section*{Using Crossover and Mutation Operators}

IML enables you to employ user modules for crossover and mutation operators, or you may choose from the operators provided by IML. The IML operators are tied to the problem encoding options, and IML will check to make sure a specified operator is appropriate to the problem encoding. You can also turn off crossover, in which case the current population will pass on to the next generation subject only to mutation. Mutation can be turned off by setting the mutation probability to 0 .

The IML-supplied genetic operators are described below, beginning with the crossover operators:
simple: \(\quad\) This operator is defined for fixed-length integer and real vector encoding. To apply this operator, a position \(k\) within a vector of length \(n\) is chosen at random, such that \(1 \leq k<n\). Then for parents \(p 1\) and \(p 2\) the offspring are
```

c1= p1[1,1:k] || p2[1,k+1:n];
c2= p2[1,1:k] || p1[1,k+1:n];

```

For real fixed-length vector encoding, you can specify an additional parameter, \(a\), where \(a\) is a scalar and \(0<a \leq 1\). It modifies the offspring as follows:
```

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];
x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

```

Note that for \(a=1\), which is the default value, \(x 2\) and \(x 1\) are the same as \(p 2\) and \(p 1\). Small values of \(a\) reduce the difference between the offspring and parents. For integer encoding \(a\) is always 1 .
two-point: This operator is defined for fixed-length integer and real vector encoding with length \(n \geq 3\). To apply this operator, two positions \(k l\) and \(k 2\) within the vector are chosen at random, such that \(1 \leq k 1<k 2<n\). Element values between those positions are swapped between parents. For parents \(p 1\) and \(p 2\) the offspring are
```

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];
c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

```

For real vector encoding you can specify an additional parameter, \(a\), where \(0<a \leq 1\). It modifies the offspring as follows:
```

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];
x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

```

Note that for \(a=1\), which is the default value, \(x 2\) and \(x 1\) are the same as \(p 2\) and \(p 1\). Small values of \(a\) reduce the difference between the offspring and parents. For integer encoding \(a\) is always 1 .
arithmetic: This operator is defined for real and integer fixed-length vector encoding. This operator computes offspring of parents \(p 1\) and \(p 2\) as
\(\mathrm{c} 1=\mathrm{a} * \mathrm{p} 1+(1-\mathrm{a})\) * p 2 ;
\(\mathrm{c} 2=\mathrm{a} * \mathrm{p} 2+(1-\mathrm{a}) * \mathrm{p} 1\);
where \(a\) is a random number between 0 and 1 . For integer encoding, each component is rounded off to the nearest integer. It has the advantage that it will always produce feasible offspring for a convex solution space. A disadvantage of this operator is that it will tend to produce offspring toward the interior of the search region, so that it may be less effective if the optimum lies on or near the search region boundary.
heuristic: This operator is defined for real fixed-length vector encoding. It computes the first offspring from the two parents \(p 1\) and \(p 2\) as
\[
\mathrm{c} 1=\mathrm{a} *(\mathrm{p} 2-\mathrm{p} 1)+\mathrm{p} 2 ;
\]
where \(p 2\) is the parent with the better objective value, and \(a\) is a random number between 0 and 1 . The second offspring is computed as in the arithmetic operator:
```

c2 = (1 - a) * p1 + a * p2;

```

This operator is unusual in that it uses the objective value. It has the advantage of directing the search in a promising direction, and automatically fine-tuning the search in an area where solutions are clustered. If the solution space has upper and lower bound constraints the offspring will be checked against the bounds, and any component outside its bound will be set equal to that bound. The heuristic operator will perform best when the objective function is smooth, and may not work well if the objective function or its first derivative is discontinuous.
pmatch: The partial match operator is defined for sequence encoding. It produces offspring by transferring a subsequence from one parent, and filling the remaining positions in a way consistent with the position
and ordering in the other parent. Start with two parents and randomly chosen cutpoints as indicated:
\[
\begin{aligned}
& \mathrm{p} 1=\{1 \\
& \text { p2 }
\end{aligned}=\left\{\begin{array}{llllllll}
1 & 7 \mid & 4 & 3 & 4 & 1 \mid 2 & 8 & 9
\end{array}\right\} ;
\]

The first step is to cross the selected segments (. indicates positions yet to be determined):
\[
\left.\begin{array}{l}
\mathrm{c} 1=\{. \\
\mathrm{c} 2=\{.
\end{array}=\begin{array}{llllllll}
& \text { \{ } & . & 3 & 4 & 1 & . & .
\end{array}\right\} ;
\]

Next, define a mapping according to the two selected segments:
\[
9-3,3-4,4-5,1-6
\]

Next, fill in the positions where there is no conflict from the corresponding parent:
\[
\begin{aligned}
& \mathrm{c} 1=\left\{. \begin{array}{llllllll}
& 2 & 9 & 3 & 4 & 1 & 7 & 8
\end{array}\right\} ; \\
& c 2=\left\{\begin{array}{llllllll}
8 & 7 & 3 & 4 & 5 & 6 & \text {. . }
\end{array}\right\} ;
\end{aligned}
\]

Last, fill in the remaining positions from the subsequence mapping. In this case, for the first child \(1 \rightarrow 6\) and \(9 \rightarrow 3\), and for the second child \(5 \rightarrow 4,4 \rightarrow 3,3 \rightarrow 9\) and \(6 \rightarrow 1\).
\[
\begin{array}{rl}
c 1 & =\left\{\begin{array}{lllllllll}
6 & 2 & 9 & 3 & 4 & 1 & 7 & 8 & 5
\end{array}\right\} ; \\
c 2 & =\{8 \\
7 & 3
\end{array} 4
\]

This operator will tend to maintain similarity of both the absolute position and relative ordering of the sequence elements, and is useful for a wide range of sequencing problems.
order: \(\quad\) This operator is defined for sequence encoding. It produces offspring by transferring a subsequence of random length and position from one parent, and filling the remaining positions according to the order from the other parent. For parents \(p 1\) and \(p 2\), first choose a subsequence:
```

p1 = {1 2|3 4 5 6|7 8 9};;
p2 = {8 7|9 3 4 1|2 5 6};
c1 = {. . 3 4 5 6 . . .};
c2 = {. . 9 3 4 1 . . .};

```

Starting at the second cutpoint, the elements of \(p 2\) in order are (cycling back to the beginning)
\(\begin{array}{lllllllll}2 & 5 & 6 & 8 & 7 & 9 & 3 & 4 & 1\end{array}\)
After removing 3, 4, 5 and 6 , which have already been placed in \(c l\), we have

28791
Placing these back in order starting at the second cutpoint yields
```

c1 = {9 1 3 4 5 6 2 8 7};

```

Applying this logic to \(c 2\) yields
```

c2 = {5 6 9 3 4 1 7 8 2 };

```

This operator maintains the similarity of the relative order, or adjacency, of the sequence elements of the parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman problem.
cycle: \(\quad\) This operator is defined for sequence encoding. It produces offspring such that the position of each element value in the offspring comes from one of the parents. For example, for parents \(p 1\) and \(p 2\),
```

p1 = {{1 2 3 3 4 4 5 6 7 7 8 9} ;
p2 = {8 7 9 3 4 1 2 5 6};

```

For the first child, pick the first element from the first parent:
\[
\mathrm{c} 1=\{1 \text {. \}; }
\]

To maintain the condition that the position of each element value must come from one of the parents, the position of the ' 8 ' value must come from \(p 1\), because the ' 8 ' position in \(p 2\) is already taken by the ' 1 ' in \(c l\) :
\[
\mathrm{c} 1=\{1 \text {. } 8 \text {.\}; }
\]

Now the position of ' 5 ' must come from \(p 1\), and so on until the process returns to the first position:
```

c1 = {1 . 3 4 5 6 . 8 9};

```

At this point, choose the remaining element positions from \(p 2\) :
\[
c 1=\left\{\begin{array}{lllllllll}
1 & 7 & 3 & 4 & 5 & 6 & 2 & 8 & 9
\end{array}\right\}
\]

For the second child, starting with the first element from the second parent, similar logic produces
\[
c 2=\left\{\begin{array}{lllllllll}
8 & 2 & 9 & 3 & 4 & 1 & 7 & 5
\end{array}\right\}
\]

This operator is most useful when the absolute position of the elements is of most importance to the objective value.

The mutation operators supported by IML are as follows:
uniform: This operator is defined for fixed-length real or integer encoding with specified upper and lower bounds. To apply this operator, a position \(k\) is randomly chosen within the solution vector \(v\), and \(v[k]\) is modified to a random value between the upper and lower bounds for element \(k\). This operator may prove especially useful in early stages of the optimization, since it will tend to distribute solutions widely across the search space, and avoid premature convergence to a local optimum. However, in later stages of an optimization with real vector encoding, when the search needs to be fine-tuned to home in on an optimum, the uniform operator may hinder the optimization.
delta: This operator is defined for integer and real fixed-length vector encoding. It first chooses an element of the solution at random, and then perturbs that element by a fixed amount, set by a delta input parameter. delta has the same dimension as the solution vectors. To apply the mutation, a randomly chosen element \(k\) of the solution vector \(v\) is modified such that
```

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or
v[k] = v[k] - delta[k];

```

If upper and lower bounds are specified for the problem, then \(v[k]\) is adjusted as necessary to fit within the bounds. This operator gives you the ability to control the scope of the search with the delta vector. One possible strategy is to start with a larger delta value, and then reduce it as the search progresses and begins to converge to an optimum. This operator is also useful if the optimum is known to be on or near a boundary, in which case delta can be set large enough to always perturb the solution element to a boundary.
swap: \(\quad\) This operator is defined for sequence problem encoding. It picks two random locations in the solution vector, and swaps their value. You can also specify that multiple swaps be made for each mutation.
invert: This operator is defined for sequence encoding. It picks two locations at random, and then reverses the order of elements between them. This operator is most often applied to the traveling salesman problem.

The IML-supplied crossover and mutation operators that are allowed for each problem encoding are summarized in the following table.

Table 17.1. Valid Genetic Operators for Each Encoding
\begin{tabular}{lll}
\hline Encoding & Crossover & Mutation \\
\hline general & user module & user module \\
\hline fixed-length real vector & \begin{tabular}{l}
user module \\
simple \\
two-point \\
arithmetic \\
heuristic
\end{tabular} & \begin{tabular}{l}
user module \\
uniform \\
delta
\end{tabular} \\
& \begin{tabular}{l}
user module \\
simple \\
two-point \\
arithmetic
\end{tabular} & \begin{tabular}{l}
user module \\
uniform \\
delta
\end{tabular} \\
\hline fixed-length integer vector & \begin{tabular}{l}
user module \\
pmatch \\
order \\
cycle
\end{tabular} & \begin{tabular}{l}
user module \\
swap
\end{tabular} \\
\hline fixed-length integer sequence & invert \\
\hline
\end{tabular}

A user module specified as a crossover operator must be a subroutine with four pa-
rameters. The module should compute and return two new offspring solutions in the first two parameters, based on the two parent solutions, which will be passed into the module in the last two parameters. The module should not modify the parent solutions passed into it. A global clause can be used to pass in any additional information that the module might use.

A user module specified as a mutation operator must be a subroutine with exactly one parameter. When the module is called, the parameter will contain the solution that is to be mutated. The module will be expected to update the parameter with the new mutated value for the solution. As with crossover, a global clause can be used to pass in any additional information that the module might use.

\section*{Executing a Genetic Algorithm}

\section*{Setting Up the IML Program}

After you formulate the GA optimization problem as described in the previous section, executing the genetic algorithm in IML is simple and straightforward. Remember that the current GA implementation in IML is experimental, and will be furthur developed and tested in later SAS releases. The following table summarizes the IML GA modules used to set each of the optimization parameters. IML will use reasonable default values for some of the parameters if they are not specified by the GA calls, and these default values are also listed. Parameters shown in italics are not required in all cases.

Table 17.2. Establishing Optimization Parameters
\begin{tabular}{|c|c|c|c|}
\hline Type & Set By & Parameter & Value \\
\hline \multirow[t]{6}{*}{encoding} & \multirow[t]{6}{*}{GASETUP} & \multirow[t]{4}{*}{encoding} & \(0 \rightarrow\) general \\
\hline & & & \(1 \rightarrow\) fixed-length real \\
\hline & & & \(2 \rightarrow\) fixed-length integer \\
\hline & & & \(3 \rightarrow\) fixed-length sequence \\
\hline & & size & fixed-length size \\
\hline & & seed & initial random seed \\
\hline \multirow[t]{4}{*}{objective} & \multirow[t]{4}{*}{GASETOBJ} & id & returned from GASETUP \\
\hline & & objtype & \(0 \rightarrow\) minimize user module \\
\hline & & & \(1 \rightarrow\) maximize user module \\
\hline & & parm & \(2 \rightarrow\) traveling salesman problem if objtype \(=0\) or 1 , user module if objtype \(=2\), cost coefficients \\
\hline \multirow[t]{7}{*}{selection} & \multirow[t]{4}{*}{GASETSEL} & id & returned from GASETUP \\
\hline & & elite & integer in [0 , population size] \\
\hline & & type & \(0 \rightarrow\) conventional tournament \\
\hline & & parm & \(1 \rightarrow\) dual tournament with BPW prob if type \(=0\), tournament size if type \(=1\), real number in \([0.5,1]\) \\
\hline & \multirow[t]{3}{*}{default if not set} & elite & 1 \\
\hline & & type & conventional tournament \\
\hline & & parm & 2 \\
\hline
\end{tabular}

Table 17.2. (continued)

After setting the optimization parameters, you are ready to execute the GA. First, an initial solution population must be generated with a GAINIT call. GAINIT implements the initialization phase of the GA, generating an initial population of solutions and evaluating the objective value of each member solution. In the GAINIT call you specify the population size and any constant bounds on the solution domain. Next comes an IML loop containing a GAREGEN call. GAREGEN implements the regeneration phase of the GA, which generates a new solution population based on selection, crossover, and mutation of the current solution population, then replaces the current population with the new population and computes the new objective function values.

After the GAREGEN call, you can monitor the convergence of the GA by retrieving the objective function values for the current population with the GAGETVAL call.

You might check the average value of the objective population, or check only the best value. If the elite parameter is 1 or more, then it is easy to check the best member of the population, since it will always be the first member retrieved.

After your stopping criteria have been reached, you can retrieve the members of the solution population with the GAGETMEM call. To end the optimization, you should always use the GAEND call to free up memory resources allocated to the GA.

Below are some example programs to illustrate setting up and executing a genetic algorithm. The first example illustrates a simple program, a 10 -city TSP using all IML defaults. The cost coefficients correspond to the cities being laid out on a two-by-five grid. The optimal route has a total distance of 10 .
```

proc iml;
/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,

```

```

                2 1 0 1 2 3 4 5 4 3,
                3 2 1 0 1 2 3 4 5 4,
                4 3 2 1 0 1 2 3 4 5,
                5 4 3 2 1 0 1 2 3 4,
                4 5 4 3 2 1 0 1 2 3,
                3 4 5 4 3 2 1 0 1 2,
                2 3 4 5 4 3 2 1 0 1,
                1 2 3 4 5 4 3 2 1 0 };
    /* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
10, /* number of locations */
1234 /* initial seed */
);
/* set objective function */
call gasetobj(id,
2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);
/* initialization phase */
call gainit(id,
100 /* initial population size */
);
/* execute regeneration loop */
niter = 20; /* number of iterations */
bestValue = j(niter,1); /* to store results */
call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;
do i = 2 to niter;
call garegen(id);

```
```

    call gagetval(value, id, 1);
    bestValue[i] = value;
    end;
/* print solution history */
print (t(1:niter)) [l = "iteration"] bestValue;
/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,
"final best value " value [l = ""];
call gaend(id);

```

For this test case, there is no call to GASETSEL. Therefore IML will use default selection parameters: an elite value of 1 and a conventional tournament of size 2. Also, since there is no GASETCRO or GASETMUT call, IML will use default genetic operators: the order operator for crossover and the invert operator for mutation, and a default mutation probability of 0.05 . The output results are

The optimal value was reached after 19 iterations. Because the elite value was 1 , the best solution was retained and passed on to each successive generation, and therefore never lost. Note that out of \(3,628,800\) possible solutions (representing 362,800 unique
paths), the GA found the optimum after only 1,900 function evaluations, without using any problem-specific information to assist the optimization. You could also do some experimentation, and specify different genetic operators with a GASETCRO and GASETMUT call, and different selection parameters with a GASETSEL call:
```

/* alternate problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
10, /* number of locations */
1234 /* initial seed */
);
/* set objective function */
call gasetobj(id,
2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);
call gasetcro(id,
1.0, /* crossover probabilty 1 */
5 /* 5 -> pmatch operator */
);
call gasetmut(id,
0.05, /* mutation probability */
3 /* 3 -> swap operator */
);
call gasetsel(id,
3, /* set elite to 3 */
1, /* dual tournament */
0.95 /* best-player-wins probability 0.95 */
);
/* initialization phase */
call gainit(id,
100 /* initial population size */
);
/* execute regeneration loop */
niter = 15; /* number of iterations */
bestValue = j(niter,1); /* to store results */
call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;
do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;
end;
/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;
/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

```
```

    "final best value " value [l = ""];
    call gaend(id);

```

The output of this test case is

Note that convergence was faster than for the previous case, reaching an optimum after 13 iterations. This illustrates that the convergence of a GA may be very sensitive to the choice of genetic operators and selection parameters, and for practical problems some experimental fine-tuning of optimization parameters may be required to obtain acceptable convergence.

\section*{Incorporating Local Optimization}

One commonly used technique is to combine the GA with a local optimization technique specific to the problem being solved. This can be done within the IML GA framework by incorporating a local optimization into the objective function evaluation: return a locally optimized objective value, and optionally replace the original solution passed into the module with the optimized solution.

Always replacing the original solution with the locally optimized one will cause faster convergence, but it is also more likely to converge prematurely to a local optimum. One way to reduce this possibility is to not replace the original solution in every case, but replace it with some probability \(p\). For some problems, values of \(p\) from 5 to 15 percent have been shown to significantly improve convergence, while avoiding premature convergence to a local optimum (Michalewicz 1996) .

\section*{Handling Constraints}

Practical optimization problems often come with constraints, which may make the problem difficult to solve. Constraints are handled in GAs in a variety of ways.

If it is possible, the most straightforward approach is to set the problem encoding, genetic operators, and initialization such that the constraints are automatically met. For example, a nonlinear optimization problem over \(n\) real variables with constant upper and lower bounds is easily formulated in IML using real fixed-length encoding, arithmetic crossover, and uniform mutation. The arithmetic crossover operator can be used without modification in any optimization over a convex solution space, when the optimum is expected to be an interior point of the domain.

Another approach to satisfying constraints is to repair solutions after genetic operators have been applied. This is what IML does when using the heuristic crossover operator or delta mutation operator with fixed bounds: it adjusts any individual component that violates an upper or lower bound. You can repair a solution inside a user crossover or mutation module, or repairs can be made by modifying the solution in a user objective function module, as was described in the previous section.

Another technique is to allow solutions to violate constraints, but to impose a penalty in the objective function for unsatisfied constraints. If the penalty is severe enough, the algorithm should converge to an optimum point within the constraints. This approach should be used carefully. If most of the points in the solution space violate the constraints, then this technique may converge prematurely to the first feasible solution found. Also, convergence may be poor to a solution that lies on or near a constraint boundary.

\section*{Example 17.1. Genetic Algorithm with Local Optimization}

For the symmetric traveling salesman problem, there is a simple local optimization that can be incorporated into a user objective function module, which is to check each pair of adjacent locations in the solution and swap their positions if that would improve the objective function value. Here is the previous TSP example, modified to use an objective function module that implements this strategy. In this initial example, the optimized solution is not written back out to the solution population (except to get the final solution at the end).
```

proc iml;
/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,
1 0 1 2 3 4 5 4 3 2,
2 1 0 1 2 3 4 5 4 3,
3 2 1 0 1 2 3 4 5 4,
4 3 2 1 0 1 2 3 4 5,
5 4 3 2 1 0 1 2 3 4,
4 5 4 3 2 1 0 1 2 3,
3 4 5 4 3 2 1 0 1 2,
2 3 4 5 4 3 2 1 0 1,
1 2 3 4 5 4 3 2 1 0 };

```
```

start TSPObjectiveFunction(r) global(coeffs, p);
s = r;
nc = ncol(s);
/* local optimization, assumes symmetric cost *
* coefficients */
do i = 1 to nc;
city1 = s[i];
inext = 1 + mod(i,nc);
city2 = s[inext];
if i=1 then
before = s[nc];
else
before = s[i-1];
after = s[1 + mod(inext,nc)];
if (coeffs[before,city1] + coeffs[city2, after]) >
(coeffs[before,city2] + coeffs[city1, after])
then do;
s[i] = city2;
s[inext] = city1;
end;
end;
/* compute objective function */
cost = coeffs[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + coeffs[s[i],s[i+1]];
end;
if uniform(1234)<=p then
r = s;
return (cost);
finish;
/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
10, /* number of locations */
123 /* initial random seed */
);
/* set objective function */
call gasetobj(id,
O, /* O -> minimize a user-defined module */
"TSPObjectiveFunction"
);
call gasetcro(id, 1.0, 6);
call gasetmut(id, 0.05, 4);
call gasetsel(id, 1, 1, 0.95);
p = 0; /* probability of writing locally optimized
* solution back out to population */
/* initialization phase */
call gainit(id,
100 /* initial population size */
);
/* execute regeneration loop */
niter = 10; /* number of iterations */

```
```

bestValue = j(niter,1); /* to store results */
call gagetval(value, id, 1); /* gets first (and best) value */
bestValue[1] = value;
do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;
end;
/* print solution history */
print (t(1:niter)) [l = "iteration"] bestValue;
/* make sure local optimization is
* written back to all solutions */
p = 1.; /* set global probability to 1 */
call gareeval(id);
/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,
"final best value " value [l = ""];
call gaend(id);

```

The results of running this program are

Convergence is much improved by the local optimization, reaching the optimum in just 5 iterations compared to 13 with no local optimization. Writing some of the optimized solutions back to the solution population, by setting the global probability \(p\) to 0.05 or 0.15 , will improve convergence even more.

\section*{Example 17.2. Real-Valued Objective Optimization with Constant Bounds}

The next example illustrates some of the strengths and weaknesses of the arithmetic and heuristic crossover operators. The objective function to be minimized is
```

start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);
finish;

```

This function obviously has a minimum at \(x=x o p t\), and is not differentiable at all points. The following program sets xopt= 0 and specifies constant boundary constraints such that the optimum is in the interior of the search space, and specifies the heuristic crossover operator:
```

proc iml;
/* objective function, has minimum of 0 at x = xopt */
start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);
finish;
xopt = { 0 0 0 };
optimum = xopt;
optval = sin_obj(optimum);
id = gasetup(1, /* 1-> fixed-length floating point vector encoding */
3, /* 3-> length of solution vectors */
1234 /* 0-> initial random seed */
);
call gasetobj(id,0,"sin_obj"); /* 0->minimize a user module,
* "sin_obj" is name of module */
call gasetcro(id, 0.9, 4); /* crossover probabilty 0.9,
* 4-> heuristic crossover operator */
call gasetmut(id,0.05,2,0.01); /* mutation probability 0.05,
* 2-> delta mutation operator
* 0.01 is delta value */
call gasetsel(id, 5, 1, 0.95); /* carry best 5 solutions over
* to the next generation, dual
* tournment with 0.95 best-player
* wins probability */
bounds = {-1 -1 -1, 1 1 1};
call gainit(id,200,bounds); /* initialize population with
* 200 members, "bounds" gives
* upper and lower bounds for
* components of randomly
* randomly generated vectors */
summary = j(20,2);

```
```

mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];
do i = 2 to 20;
call garegen(id);
call gagetval(value, id); /* get all objective values of
* the population */
summary[i,1] = value[1];
summary[i,2] = value[:];
end;
iteration = t(1:20);
print iteration summary;
call gaend(id);

```

The output results are
SUMMARY
ITERATION bestValue avgValue
\begin{tabular}{rrr}
1 & 0.894517 & 0.8926763 \\
2 & 0.894517 & 0.752227 \\
3 & 0.1840732 & 0.6087493 \\
4 & 0.14112 & 0.4848342 \\
5 & 0.14112 & 0.3991614 \\
6 & 0.14112 & 0.3539561 \\
7 & 0.0481937 & 0.3680798 \\
8 & 0.0481937 & 0.3243406 \\
9 & 0.0481937 & 0.3027395 \\
10 & 0.0481937 & 0.2679123 \\
11 & 0.0481937 & 0.2550643 \\
12 & 0.0481937 & 0.2582514 \\
13 & 0.0481937 & 0.2652337 \\
14 & 0.0481937 & 0.2799655 \\
15 & 0.0383933 & 0.237546 \\
16 & 0.0383933 & 0.3008743 \\
17 & 0.0383933 & 0.2341022 \\
18 & 0.0383933 & 0.1966969 \\
19 & 0.0383933 & 0.2778152 \\
20 & 0.0383933 & 0.2690036
\end{tabular}

To show the convergence of the overall population, the average value of the objective function for the whole population is printed out as well as the best value. The optimum value for this formulation is 0 , and the optimum solution is \((000)\). The output shows the convergence of the GA to be slow, especially as the solutions get near the optimum. This is the result of applying the heuristic crossover operator to an
ill-behaved objective function. If you change the crossover to the arithmetic operator by changing the GASETCRO call to
```

call gasetcro(id, 0.9, 3); /* 3-> arithmetic crossover operator */

```
you get the following output:

\section*{SUMMARY}

ITERATION bestValue avgValue
\begin{tabular}{rrr}
1 & 0.894517 & 0.8926763 \\
2 & 0.894517 & 0.8014329 \\
3 & 0.1840732 & 0.6496871 \\
4 & 0.1705931 & 0.4703868 \\
5 & 0.0984926 & 0.2892114 \\
6 & 0.076859 & 0.1832358 \\
7 & 0.0287965 & 0.1123732 \\
8 & 0.0273074 & 0.0720792 \\
9 & 0.018713 & 0.0456323 \\
10 & 0.0129708 & 0.0309648 \\
11 & 0.0087931 & 0.0240822 \\
12 & 0.0087931 & 0.0172102 \\
13 & 0.0050753 & 0.0128258 \\
14 & 0.0019603 & 0.0092872 \\
15 & 0.0016225 & 0.0070575 \\
16 & 0.0016225 & 0.0051149 \\
17 & 0.0012465 & 0.0036445 \\
18 & 0.0011895 & 0.002712 \\
19 & 0.0007646 & 0.0023329 \\
20 & 0.0007646 & 0.0020842
\end{tabular}

For this case, the arithmetic operator shows improved convergence. Suppose you change the problem characteristics again by changing the constraints so that the optimum lies on a boundary. The following statement moves the optimum to a boundary:
```

bounds = {0 0 0, 1 1 1};

```

The output using the arithmetic operator is

SUMMARY
ITERATION bestValue avgValue
\[
\begin{array}{rrr}
1 & 0.8813497 & 0.8749132 \\
2 & 0.8813497 & 0.860011 \\
3 & 0.3721446 & 0.8339357 \\
4 & 0.3721446 & 0.79106 \\
5 & 0.3721446 & 0.743336 \\
6 & 0.3721446 & 0.7061592 \\
7 & 0.3721446 & 0.6797346 \\
8 & 0.3721446 & 0.6302206 \\
9 & 0.3721446 & 0.5818008
\end{array}
\]
```

10 0.3721446 0.5327339
11 0.3721446 0.5149562
12 0.3721446 0.48525
13 0.3721446 0.4708617
14 0.3721446 0.4582203
15 0.3721446 0.433538
16 0.3721446 0.4256162
17 0.3721446 0.4236062
18 0.3721446 0.4149336
19 0.3721446 0.4135214
20 0.3721446 0.4078068

```

In this case, the algorithm fails to converge to the true optimum, given the characteristic of the arithmetic operator to converge on interior points. However, if you switch back to the heuristic crossover operator the results are

SUMMARY
ITERATION bestValue avgValue
\begin{tabular}{rr}
0.8813497 & 0.8749132 \\
0.8813497 & 0.7360591 \\
0.3721446 & 0.5465098 \\
0 & 0.3427185 \\
0 & 0.2006271 \\
0 & 0.0826017 \\
0 & 0.0158228 \\
0 & 0.0002602 \\
0 & 0.00005 \\
0 & 0.00065 \\
0 & 0.0003 \\
0 & 0.0002 \\
0 & 0.0002 \\
0 & 0.000285 \\
0 & 0.0005 \\
0 & 0.0002952 \\
0 & 0.0002 \\
0 & 0.0001761 \\
0 & 0.00035 \\
0 & 0.00035
\end{tabular}

These results show a rapid convergence to the optimum. This example illustrates how the results of a GA are very operator-dependent. For complicated problems with unknown solution, you might need to try a number of different combinations of parameters in order to have confidence that you have converged to a true global optimum.

\section*{Example 17.3. Integer Programming Knapsack Problem}

The next example uses the integer encoding, along with user modules for crossover and mutation. It formulates the knapsack problem using fixed-length integer encoding. The integer vector solution \(s\) is a vector of ones and zeros, where \(s[i]=1\) implies that item \(i\) is packed in the knapsack. The weight constraints of the problem are not handled explicitly, but are accounted for by including a penalty for overweight in the objective function. The crossover operator randomly chooses a value for each element of the solution vector from each parent. The mutation operator randomly changes the values of a user-set number of elements in the solution vector. For this problem the value of the global optimum is 18 .
```

proc iml;
weight = {2 3 4 4 1 1 1 1 1 1 1 1 1 1 1};
limit = 9; /* weight limit */
reward = {6 6 6 5 1.3 1.2 1.1 1.0 1.1 1.3 1.0 1.0 0.9 0.8 0.6};
start knapsack( x ) global( weight, reward, limit);
wsum = sum(weight \# x);
rew = sum(reward \# x);
/* subtract penalty for exceeding weight */
if wsum>limit then
rew = rew - 5 * (wsum - limit);
return(rew);
finish;
start switch_mut(s) global(nswitches);
n = ncol(s);
do i = 1 to nswitches;
k = int(uniform(1234) * n) + 1;
if s[k]=0 then
s[k] = 1;
else
s[k] = 0;
end;
finish;
start uniform_cross(child1, child2, parent1, parent2);
child1 = parent1;
child2 = parent2;
do i = 1 to ncol(parent1);
r = uniform(1234);
if r<=0.5 then do;
child1[i] = parent2[i];
child2[i] = parent1[i];
end;
end;
finish;
id = gasetup (2,15, 123);
call gasetobj(id, 1, "knapsack"); /* maximize objective module */
call gasetcro(id, 1.0, 0,"uniform_cross"); /* user crossover module */

```
```

call gasetmut(id,
0.20, /* mutation probabilty */
0, "switch_mut" /* user mutation module */
);
nswitches = 3;
call gasetsel(id, 3, /* carry 3 over to next generation */
1, /* dual tournament */
0.95 /* best-player-wins probabilty */
);
call gainit(id,100,{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1});
niter = 20;
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];
do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];
end;
call gagetmem(mem, value, id, 1);
print "best member " mem[f = 1.0 l = ""],
"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

```

The output of the program is
```

best member 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
best value 18

```
 SUMMARY
 ITERATION bestValue avgValue
\begin{tabular}{rrr}
1 & 16 & 2.44 \\
2 & 16 & 6.257 \\
3 & 16 & 6.501 \\
4 & 16.7 & 7.964 \\
5 & 16.7 & 8.812 \\
6 & 16.7 & 9.254 \\
7 & 16.7 & 10.021 \\
8 & 16.8 & 11.216 \\
9 & 16.9 & 12.279 \\
10 & 16.9 & 12.094 \\
11 & 16.9 & 11.633 \\
12 & 16.9 & 11.431 \\
13 & 18 & 11.502
\end{tabular}
\begin{tabular}{llr}
14 & 18 & 13.2 \\
15 & 18 & 13.128 \\
16 & 18 & 13.282 \\
17 & 18 & 12.876 \\
18 & 18 & 13.715 \\
19 & 18 & 12.889 \\
20 & 18 & 13.15
\end{tabular}

Note that for this problem, the mutation parameters are set higher than is often seen for GAs. For this example, this is necessary to prevent premature convergence.

\section*{Example 17.4. Optimization with Linear Constraints Using Repair Strategy}

This problem seeks a minimum within a convex domain specified by a convex hull, a set of points such that all points in the search space are normalized linear combinations of those points. Each solution is represented by a set of weights \(w\) such that there is one \(w_{i}\) for each point in the convex hull, \(0 \leq w_{i} \leq 1\), and \(\Sigma w_{i}=1\). In this example the feasible region is the convex hull defined by the set of points (\(-3-2\)), (3 -2), (-3 2), and (32). The objective function is a six-hump camel-back function (see Michalewicz 1996, Appendix B), with a known global minimum value of -1.0316 at two different points, \((-0.0898,0.7126)\) and (\(0.0898,-0.7126\)). A user mutation module is specified, and the simple crossover operator is used. Both the mutation operator and the crossover operator will produce solutions that violate the constraints, so in the objective function each solution will be checked and renormalized to bring it back within the convex hull.
```

proc iml;
/* Test case using user modules for the mutation operator and
* for initialization
*/
start sixhump(w) global(cvxhull);
/* Function has global minimum value of -1.0316
* at }x={-0.0898 0.7126} and
* x = { 0.0898 -0.7126}
*/
sum = w[1,+];
/* guard against the remote possibility of all-0 weights */
if sum=0 then do;
nc = ncol(w);
w = j(1, nc, 1/nc );
sum = 1;
end;
/* re-normalize weights */
w = w/sum;
/* convert to x-coordinate form */

```
```

    x = (w * cvxhull) [+,];
    x1 = x[1];
    x2 = x[2];
    /* compute objective value */
    r = (4 - 2.1*x1##2 + x1##4/3)*x1##2 + x1*x2 +
    (-4 + 4*x2*x2)*x2##2;
    return(r);
    finish;
/* each row is one point on the boundary of
* the convex hull */
cvxhull = {-3 -2,
3-2,
-3 2,
3 2};
/* initialization module */
start cvxinit( w ) global(cvxhull);
sum = 0;
a = j(1, nrow(cvxhull), 1234);
do while(sum = 0);
r = uniform(a);
sum = r[1,+];
end;
w = r / sum;
finish;
/* mutation module */
start cvxmut(w)global(cvxhull);
row = int(uniform(1234) * nrow(cvxhull)) + 1;
r = uniform(1234);
w[1,row] = r;
finish;
id = gasetup(1, /* real fixed-length vector encoding */
nrow(cvxhull), /* vector size = number of points
* specifying convex hull
*/
1234);
call gasetobj(id,
0, /* minimize a user-specified objective function */
"sixhump"
);
call gasetsel( id,
5, /* carry over the best 5 from each generation */
1, /* dual tournament */
0.95 /* best-player-wins probability */
);
call gasetcro(id,
0.8, /* crossover probability */
1 /* simple crossover operator */
);
call gasetmut(id,0.05,0,"cvxmut");

```
```

call gainit( id,
100, /* population size */
/* not using constant bounds */
"cvxinit" /* initialization module */
);
niter = 35; /* number of iterations */
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];
do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];
end;
call gagetmem(mem, value, id, 1);
bestX = (mem * cvxhull) [+,];
print "best X " bestX[l = ""],
"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

```

The output results are
```

best X 0.089842 -0.712658
best value -1.031628

```

SUMMARY
ITERATION bestValue avgValue
\[
\begin{array}{rrr}
1 & -0.082301 & 0.9235856 \\
2 & -0.948434 & 0.1262678 \\
3 & -0.956136 & 0.2745601 \\
4 & -1.017636 & 0.1367912 \\
5 & -1.028457 & -0.241069 \\
6 & -1.028457 & -0.353218 \\
7 & -1.028457 & -0.56789 \\
8 & -1.028457 & -0.73044 \\
9 & -1.028457 & -0.854496 \\
10 & -1.028509 & -0.941693 \\
11 & -1.031334 & -0.936541 \\
12 & -1.031334 & -0.90363 \\
13 & -1.031373 & -0.774917 \\
14 & -1.031614 & -0.873418 \\
15 & -1.031614 & -0.886818 \\
16 & -1.031618 & -0.95678 \\
17 & -1.031619 & -0.933061
\end{array}
\]
```

18 -1.031626 -0.885132
19 -1.031628 -0.936944
20 -1.031628 -0.906637
21 -1.031628 -0.925809
22 -1.031628 -0.860156
23-1.031628 -0.946146
24 -1.031628-0.817196
25-1.031628-0.883284
26 -1.031628 -0.904361
27 -1.031628 -0.974893
28 -1.031628 -0.975647
29-1.031628 -0.872004
30-1.031628 -1.031628
31 -1.031628 -0.897558
32 -1.031628 -0.922121
33-1.031628 -0.855045
34 -1.031628 -0.922061
35-1.031628 -0.958257

```

Any problem with linear constraints could be formulated in this way, by determining the convex hull corresponding to the constraints. The genetic operators and the repair strategy are straightforward to apply, and as this case shows, can give reasonable convergence to a global optimum.

\section*{References}

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA: Addison-Wesley Longman.

Miller, B. L. and Goldberg, D. E. (1995), Genetic Algorithms, Tournament Selecton, and the Effects of Noise, Technical Report 95006, Illinois Genetic Algorithm Laboratory, University of Urbana-Champaign.

Michalewicz, Zbigniew (1996), Genetic Algorithms + Data Structures \(=\) Evolution Programs, New York: Springer-Verlag.

\title{
Chapter 18 Sparse Matrix Algorithms
}

\section*{Chapter Contents}
OVERVIEW 531
ITERATIVE METHODS 532
Input Data Description 532
Example: Conjugate Gradient Algorithm 533
Example: Minimum Residual Algorithm 535
Example: Biconjugate Gradient Algorithm 536
SYMBOLIC LDL AND CHOLESKY FACTORIZATIONS 537
REFERENCES 538

\section*{Chapter 18 \\ Sparse Matrix Algorithms}

\section*{Overview}

This chapter documents direct and iterative algorithms for large sparse systems of linear equations:
\[
A x=b, \quad A \in R^{n \times n}, x, b \in R^{n}
\]
where \(A\) is a nonsingular square matrix.
The ITSOLVER call supports the following classes of iterative solvers:
- conjugate gradient for symmetric positive-definite systems
- conjugate gradient squared for general nonsingular systems
- minimum residual for symmetric indefinite systems
- biconjugate gradient for general nonsingular systems

Iterative algorithms incur zero or controlled amounts of fill-in, have relatively small working memory requirements, and can converge as fast as \(O(n)\) or \(O\left(n^{2}\right)\) versus direct dense methods that are typically \(O\left(n^{3}\right)\). Each iteration of an iterative algorithm is very inexpensive and typically involves a single matrix-vector multiplication and a pair of forward/backward substitutions.

Convergence of an iterative method depends upon the distribution of eigenvalues for the matrix \(A\), and can be rather slow for badly conditioned matrices. For such cases SAS/IML offers hybrid algorithms, which combine an incomplete factorization (a modified direct method) used in the preconditioning phase with an iterative refinement procedure. The following preconditioners are supported:
- incomplete Cholesky factorization ("IC")
- diagonal Jacobi preconditioner ("DIAG")
- modified incomplete LU factorization ("MILU")

For more information, see the description of the precond parameter in the section "Input Data Description" on page 532.

The SOLVELIN call supports the following direct sparse solvers for symmetric positive-definite systems:
- symbolic LDL
- Cholesky

Classical factorization-based algorithms share one common complication: the matrix \(A\) usually suffers fill-in, which means additional operations and computer memory are required to complete the algorithm. A symmetric permutation of matrix rows and columns can lead to a dramatic reduction of fill-in. To compute such a permutation, SAS/IML implements a minimum degree ordering algorithm, which is an automatic step in the SOLVELIN function.

\section*{Iterative Methods}

The conjugate gradient algorithm can be interpreted as the following optimization problem: minimize \(\phi(x)\) defined by
\[
\phi(x)=1 / 2 x^{T} A x-x^{T} b
\]
where \(b \in R^{n}\) and \(A \in R^{n \times n}\) are symmetric and positive definite.
At each iteration \(\phi(x)\) is minimized along an \(A\)-conjugate direction, constructing orthogonal residuals:
\[
r_{i} \perp \mathcal{K}_{i}\left(A ; r_{0}\right), \quad r_{i}=A x_{i}-b
\]
where \(\mathcal{K}_{i}\) is a Krylov subspace:
\[
\mathcal{K}_{i}(A ; r)=\operatorname{span}\left\{r, A r, A^{2} r, \ldots, A^{i-1} r\right\}
\]

Minimum residual algorithms work by minimizing the Euclidean norm \(\|A x-b\|_{2}\) over \(\mathcal{K}_{i}\). At each iteration, \(x_{i}\) is the vector in \(\mathcal{K}_{i}\) that gives the smallest residual.

The biconjugate gradient algorithm belongs to a more general class of PetrovGalerkin methods, where orthogonality is enforced in a different \(i\)-dimensional subspace (\(x_{i}\) remains in \(\mathcal{K}_{i}\)):
\[
r_{i} \perp\left\{w, A^{T} w,\left(A^{T}\right)^{2} w, \ldots,\left(A^{T}\right)^{i-1} w\right\}
\]

\section*{Input Data Description}

The ITSOLVER call has the following syntax and arguments:
```

call ITSOLVER (x, error, iter, method, A, b,
precond, tol, maxiter, start, history);

```

The conjugate gradient and minimum residual algorithms (method \(=\) 'CG' or method = 'MINRES') require \(A\) to be symmetric; hence you must specify only the lower triangular part of \(A\), while the remaining algorithms require all nonzero coefficients to be listed. The following table lists valid values for the precond parameter for each class of algorithm.

Table 18.1. Subroutine Definitions and Valid Preconditioners
\begin{tabular}{lll}
\hline Method Value & Algorithm & Preconditioners \\
\hline "CG" & conjugate gradient & "NONE" "IC" "DIAG" \\
"MINRES" & minimum residual & "NONE" "IC" "DIAG" \\
"BICG" & biconjugate gradient & "NONE" "MILU" \\
"CGS" & conjugate gradient squared & "NONE" \\
\hline
\end{tabular}
\(x \quad\) solution vector
error final solution error (optional)
iter resultant number of iterations (optional)
A three-column matrix of triplets, where the first column contains the value, the next column contains the row indices, and the third column contains the column indices of the nonzero matrix coefficients. The order in which triplets are listed is insignificant. For symmetric matrices specify only the lower triangular part, including the main diagonal (row indices must be greater than or equal to the corresponding column indices). Zero coefficients should not be included. No missing values or duplicate entries are allowed.
\(b \quad\) the right-hand-side vector
precond preconditioner, default value "NONE"
tol desired tolerance, default value \(10^{-7}\)
maxiter maximum number of iterations, default value \(10^{5}\)
start initial guess
history the history of errors for each iteration

\section*{Example: Conjugate Gradient Algorithm}

Consider the following small example: \(A x=b\), where
\[
A=\left(\begin{array}{cccc}
3 & 1 & 0 & 0 \\
1 & 4 & 1 & 3 \\
0 & 1 & 10 & 0 \\
0 & 3 & 0 & 3
\end{array}\right)
\]
and the vector of right-hand sides \(b=(1111)^{T}\). Since the matrix is positive definite and symmetric, you can apply the conjugate gradient algorithm to solve the system. Remember that you must specify only the lower-triangular part of the matrix (so row indices must be greater than or equal to the corresponding column indices.) The code
for this example is as follows:
```

/* value row col */
A = { 3 1 1,
1 2 1,
4 2 2,
1 3 2,
3 4 2,
10 3 3,
34 4 };
/* right-hand sides */
b = {1, 1, 1, 1};
/* desired solution tolerance (optional) */
tol = 1e-7;
/* maximum number of iterations (optional) */
maxit = 200;
/* allocate iteration progress (optional) */
hist = j(50, 1);
/* provide an initial guess (optional) */
start = {2, 3, 4, 5};
/* invoke conjugate gradient method */
call itsolver (
x, st, it, /* output parameters */
'cg', A, b, 'ic', /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist
);
print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

```

Notice that the example used an incomplete Cholesky preconditioner (which is recommended). Here is the program output:

X
0.5882353
-0.764706
0.1764706
1.0980392

ST
1. \(961 \mathrm{E}-16\)

The conjugate gradient method converged successfully within three iterations. You can also print out the hist (iteration progress) array. Different starting points result in different iterative histories.

\section*{Example: Minimum Residual Algorithm}

For symmetric indefinite matrices it is best to use the minimum residual algorithm. The following example is slightly modified from the previous example by negating the first matrix element:
```

/* minimum residual algorithm */
/* value row col */
A = { -3 1 1,
1 2 1,
4 2 2,
1 3 2,
3 4 2,
10 3 3,
3 4 4 };
/* right-hand sides b = (1 1 1 1) */
b = {1, 1, 1, 1};
/* desired solution tolerance (optional) */
tol = 1e-7;
/* maximum number of iterations (optional) */
maxit = 200;
/* allocate iteration progress (optional) */
hist = j(50, 1);
/* initial guess (optional) */
start = {2, 3, 4, 5};
/* invoke minimum residual method */
call itsolver (
x, st, it, /* output parameters */
'minres', a, b, 'ic', /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist
);
print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

```
0.1891892
0.0810811
0.1441441

ST
1.283E-15

IT
4

\section*{Example: Biconjugate Gradient Algorithm}

The biconjugate gradient algorithm is meant for general sparse linear systems. Matrix symmetry is no longer assumed, and a complete list of nonzero coefficients must be provided. Consider the following matrix:
\[
A=\left(\begin{array}{ccc}
10 & 0 & 0.2 \\
0.1 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
\]
with \(b=(111)^{T}\).
The code for this example is as follows:
```

/* biconjugate gradient algorithm */
/* value row column */
A = { 10 1 1,
3 2 2,
4 3 3,
0.1 2 1,
0.2 1 3 };
/* vector of right-hand sides */
b = {1, 1, 1};
/* desired solution tolerance */
tol = 1e-9;
/* maximum number of iterations */
maxit = 10000;
/* allocate history/progress */
hist = j(50, 1);
/* initial guess (optional) */
start = {2, 3, 4};
/* call biconjugate gradient subroutine */
call itsolver (
x, st, it, /* output parameters */
'bicg', a, b, 'milu', /* input parameters */

```
```

    tol,
    maxit,
    start,
    hist);
    /* Print results */
print x;
print st;
print it;

```

Here is the output:
```

            x
            0 . 0 9 5
            0.3301667
            0.25
            ST
                1.993E-16
            IT
                    3
    ```

It is important to observe the resultant tolerance in order to know how effective the solution is.

\section*{Symbolic LDL and Cholesky Factorizations}

Symbolic LDL and Cholesky factorization algorithms are meant for symmetric positive definite systems; hence, again, only the lower-triangular part of the matrix must be provided. The PROC IML function SOLVELIN provides an interface to both algorithms; the minimum degree ordering heuristic is invoked automatically as follows:
```

    SOLVELIN (x, status, A, b, method)
    x solution vector
status status indicator 0 success, 1 matrix is not positive-definite, 2 out of
memory
A sparse matrix (lower-triangular part)
b vector of right-hand sides
method a character string, which specifies factorization type, possible values:
"LDL" for LDL factorization, and "CHOL" for Cholesky.

```

The code for this example is as follows:
```

/* value row col */
A = { 3 1 1,
1 2 1,
4 2 2,
1 3 2,
3 4 2,
10 3 3,
34 4 };
/* right-hand side */
b = {1, 1, 1, 1};
/* invoke LDL factorization */
call solvelin (x, status, a, b, "LDL");
print x; /* print solution */

```

Here is the program output:
\[
\begin{gathered}
\mathrm{X} \\
0.5882353 \\
-0.764706 \\
0.1764706 \\
1.0980392
\end{gathered}
\]

\section*{References}

Golub, G. H. and Van Loan, C. F. (1996), "Matrix Computations," Third Edition, Baltimore: Johns Hopkins University Press.

Greenbaum, A. (1997), "Iterative Methods for Solving Linear Systems," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Hestenes, M. R. and Stiefel, E. (1952), "Methods of Conjugate Gradients for Solving Linear Systems," J. Res. Natl. Bur. Standards, B49, 409-436.

Paige, C. C. and Saunders, M. A. (1975), "Solution of Sparse Indefinite Systems of Linear Equations," SIAM Journal on Numerical Analysis, 12:4, 617-629.

\title{
Chapter 19 Further Notes
}

\section*{Chapter Contents}
MEMORY AND WORKSPACE 541
ACCURACY 543
ERROR DIAGNOSTICS 543
EFFICIENCY 544
MISSING VALUES 544
PRINCIPLES OF OPERATION 545
OPERATION-LEVEL EXECUTION 546

\section*{Chapter 19 Further Notes}

\section*{Memory and Workspace}

You do not need to be concerned about the details of memory usage in IML, because memory allocation is done automatically. However, if you are interested, the following sections explain how it works.

There are two logical areas of memory, symbol space and workspace. Symbol space contains symbol table information and compiled statements. Workspace contains matrix data values. Workspace itself is divided into one or more extents.

At the start of a session, the symbol space and the first extent of workspace are allocated automatically. More workspace is allocated as the need to store data values grows. The SYMSIZE= and WORKSIZE= options in the PROC IML statement give you control over the size of symbol space and the size of each extent of workspace. If you do not specify these options, PROC IML uses host-dependent defaults. For example, you can begin an IML session and set the SYMSIZE= and WORKSIZE= options with the statement
```

proc iml symsize=n1 worksize=n2;

```
where n 1 and n 2 are specified in kilobytes.
If the symbol space memory becomes exhausted, more memory is automatically acquired. The symbol space is stable memory and is not compressible like workspace. Symbol space is recycled whenever possible for reuse as the same type of object. For example, temporary symbols can be deleted after they are used in evaluating an expression. The symbol space formerly used by these temporaries is added to a list of free symbol-table nodes. When allocating temporary variables to evaluate another expression, IML looks for symbol-table nodes in this list first before consuming unused symbol space.

Workspace is compressible memory. Workspace fills up as more matrices are defined by operations. Holes in extents appear as you free matrices or as IML frees temporary intermediate results. When an extent fills up, compression reclaims the holes that have appeared in the extent. If compression does not reclaim enough memory for the current allocation, IML allocates a new extent. This procedure results in the existence of a list of extents, each of which contains a mixture of active memory and holes of unused memory. There is always a current extent, the one in which the last allocation was made.

For a new allocation, the search for free space begins in the current extent and proceeds around the extent list until finding enough memory or returning to the current extent. If the search returns to the current extent, IML begins a second transversal
of the extent list, compressing each extent until either finding sufficient memory or returning to the current extent. If the second search returns to the current extent, IML opens a new extent and makes it the current one.

If the SAS System cannot provide enough memory to open a new extent with the full extent size, IML repeatedly reduces its request by 2 K . In this case, the successfully opened extent is smaller than the standard size.

If a single allocation is larger than the standard extent size, IML requests an allocation large enough to hold the matrix.

The WORKSIZE= and SYMSIZE= options offer tools for tuning memory usage. For data-intensive applications involving a few large matrices, use a high WORKSIZE= value and a low SYMSIZE= value. For symbol-intensive applications involving many matrices, perhaps through the use of many IML modules, use a high SYMSIZE= value.

You can use the SHOW SPACE command to display the current status of IML memory usage. This command also lists the total number of compressions done on all extents.

Setting the DETAILS option in the RESET command prints messages in the output file when IML compresses an extent, opens a new extent, allocates a large object, or acquires more symbol space. These messages can be useful because these actions normally occur without the user's knowledge. The information can be used to tune WORKSIZE= and SYMSIZE= values for an application. However, the default WORKSIZE= and SYMSIZE= values should be appropriate in most applications.

Do not specify a very large value in the WORKSIZE= and SYMSIZE= options unless absolutely necessary. Many of the native functions and all of the DATA step functions used are dynamically loaded at execution time. If you use a large amount of the memory for symbol space and workspace, there might not be enough remaining to load these functions, resulting in the error message

Unable to load module module-name.

Should you run into this problem, issue a SHOW SPACE command to examine current usage. You might be able to adjust the SYMSIZE= or WORKSIZE= values.

The amount of memory your system can provide depends on the capacity of your computer and on the products installed. The following techniques for efficient memory use are recommended when memory is at a premium:
- Free matrices as they are no longer needed by using the FREE command.
- Store matrices you will need later in external library storage by using the STORE command, and then FREE their values. You can restore the matrices later by using the LOAD command. See Chapter 14.
- Plan your work to use smaller matrices.

\section*{Accuracy}

All numbers are stored and all arithmetic is done in double precision. The algorithms used are generally very accurate numerically. However, when many operations are performed or when the matrices are ill-conditioned, matrix operations should be used in a numerically responsible way because numerical errors add up.

\section*{Error Diagnostics}

When an error occurs, several lines of messages are printed. The error description, the operation being performed, and the line and column of the source for that operation are printed. The names of the operation's arguments are also printed. Matrix names beginning with a pound sign (\#) or an asterisk (*) can appear; these are temporary names assigned by the IML procedure.

If an error occurs while you are in immediate mode, the operation is not completed and nothing is assigned to the result. If an error occurs while executing statements inside a module, a PAUSE command is automatically issued. You can correct the error and resume execution of module statements with a RESUME statement.

The most common errors are described in the following list:
- referencing a matrix that has not been set to a value-that is, referencing a matrix that has no value associated with the matrix name
- making a subscripting error-that is, trying to refer to a row or column not present in the matrix
- performing an operation with nonconformable matrix arguments-for example, multiplying two matrices together that do not conform, or using a function that requires a special scalar or vector argument
- referencing a matrix that is not square for operations that require a square matrix (for example, INV, DET, or SOLVE)
- referencing a matrix that is not symmetric for operations that require a symmetric matrix (for example, GENEIG)
- referencing a matrix that is singular for operations that require a nonsingular matrix (for example, INV and SOLVE)
- referencing a matrix that is not positive definite or positive semidefinite for operations that require such matrices (for example, ROOT and SWEEP)
- not enough memory (see the section "Memory and Workspace" on page 541) to perform the computations and produce the resulting matrices.

These errors result from the actual dimensions or values of matrices and are caught only after a statement has begun to execute. Other errors, such as incorrect number of arguments or unbalanced parentheses, are syntax errors and resolution errors and are detected before the statement is executed.

\section*{Efficiency}

The Interactive Matrix Language is an interpretive language executor that can be characterized as follows:
- efficient and inexpensive to compile
- inefficient and expensive for the number of operations executed
- efficient and inexpensive within each operation

Therefore, you should try to substitute matrix operations for iterative loops. There is a high overhead involved in executing each instruction; however, within the instruction IML runs very efficiently.
Consider the following four methods of summing the elements of a matrix:
```

s=0; /* method 1 */
do i=1 to m;
do j=1 to n;
s=s+x[i,j];
end;
end;
s=j[1,m]*x*j[n,1]; /* method 2 */
s=x[+,+]; /* method 3 */
s=sum(x); /* method 4 */

```

Method 1 is the least efficient, method 2 is more efficient, method 3 is more efficient yet, and method 4 is the most efficient. The greatest advantage of using IML is reducing human programming labor.

\section*{Missing Values}

An IML numeric element can have a special value called a missing value that indicates that the value is unknown or unspecified. (A matrix with missing values should not be confused with an empty or unvalued matrix-that is, a matrix with 0 rows and 0 columns.) A numeric matrix can have any mixture of missing and nonmissing values.

SAS/IML software supports missing values in a limited way. The operators in the following list recognize missing values and propagate them. Most matrix operators and functions do not support missing values. For example, matrix multiplication or exponentiation involving a matrix with missing values is not meaningful. Also, the inverse of a matrix with missing values has no meaning.

Missing values are coded in the bit pattern of very large negative numbers, as an I.E.E.E. "NAN" code, or as a special string, depending on the host system.

In literals, a numeric missing value is specified as a single period. In data processing operations, you can add or delete missing values. All operations that move values around move missing values properly. The following arithmetic operators propagate missing values.
\begin{tabular}{ll}
addition \((+)\) & subtraction \((-)\) \\
multiplication (\#) & division \((/)\) \\
maximum \((<>)\) & minimum \((><)\) \\
modulo (MOD) & exponentiation (\#\#)
\end{tabular}

The comparison operators treat missing values as large negative numbers. The logical operators treat missing values as zeros. The operators SUM, SSQ, MAX, and MIN check for and exclude missing values.

The subscript reduction operators exclude missing values from calculations. If all of a row or column that is being reduced is missing, then the operator returns the result indicated in the following table.
\begin{tabular}{ll}
Operator & Result If All Missing \\
\hline addition \((+)\) & 0 \\
multiplication \((\#)\) & 1 \\
maximum \((<>)\) & large negative value \\
minimum \((><)\) & large positive value \\
sum squares \((\# \#)\) & 0 \\
index maximum \((<:>)\) & 1 \\
index minimum \((>:<)\) & 1 \\
mean \((:)\) & missing value
\end{tabular}

Also note that, unlike the SAS DATA step, IML does not distinguish between special and generic missing values; it treats all missing values alike.

\section*{Principles of Operation}

This section presents various technical details about the operation of SAS/IML software. Statements in IML go through three phases:
- The parsing phase includes text acquisition, word scanning, recognition, syntactical analysis, and enqueuing on the statement queue. This is performed immediately as IML reads the statements.
- The resolution phase includes symbol resolution, label and transfer resolution, and function and call resolution. Symbol resolution connects the symbolic names in the statement with their descriptors in the symbol table. New symbols can be added or old ones recognized. Label and transfer resolution connects statements and references affecting the flow of control. This connects LINK and GOTO statements with labels; it connects IF with THEN and ELSE clauses; it connects DO with END. Function-call resolution identifies functions and call routines and loads them if necessary. Each reference is checked with respect to the number of arguments allowed. The resolution phase begins after
a module definition is finished or a DO group is ended. For all other statements outside any module or DO group, resolution begins immediately after parsing.
- The execution phase occurs when the statements are interpreted and executed. There are two levels of execution: statement and operation. Operation-level execution involves the evaluation of expressions within a statement.

\section*{Operation-Level Execution}

Operations are executed from a chain of operation elements created at parse time and resolved later. For each operation, the interpreter performs the following steps:
1. Prints a record of the operation if the FLOW option is on.
2. Looks at the operands to make sure they have values. Only certain special operators are allowed to tolerate operands that have not been set to a value. The interpreter checks whether any argument has character values.
3. Inspects the operator and gives control to the appropriate execution routine. A separate set of routines is invoked for character values.
4. Checks the operands to make sure they are valid for the operation. Then the routine allocates the result matrix and any extra workspace needed for intermediate calculations. Then the work is performed. Extra workspace is freed. A return code notifies IML if the operation was successful. If unsuccessful, it identifies the problem. Control is passed back to the interpreter.
5. Checks the return code. If the return code is nonzero, diagnostic routines are called to explain the problem to the user.
6. Associates the results with the result arguments in the symbol table. By keeping results out of the symbol table until this time, the operation does not destroy the previous value of the symbol if an error has occurred.
7. Prints the result if RESET PRINT or RESET PRINTALL is specified. The PRINTALL option prints intermediate results as well as end results.
8. Moves to the next operation.

\section*{Chapter 20 Language Reference}

\section*{Chapter Contents}
OVERVIEW 555
OPERATORS 564
Addition Operator: + 564
Comparison Operators: < > = <= >= ^ = 565
Concatenation Operator, Horizontal: || 566
Concatenation Operator, Vertical: // 567
Direct Product Operator: @ 568
Division Operator: / 569
Element Maximum Operator: <> 570
Element Minimum Operator: >< 570
Index Creation Operator: 571
Logical Operators: \& | 572
Multiplication Operator, Elementwise: \# 573
Multiplication Operator, Matrix: 574
Power Operator, Elementwise: \#\# 575
Power Operator, Matrix: ** 575
Sign Reverse Operator: 576
Subscripts: [] 576
Subtraction Operator: 578
Transpose Operator: 578
STATEMENTS, FUNCTIONS, AND SUBROUTINES 579
ABORT Statement 579
ABS Function 579
ALL Function 579
ANY Function 580
APPCORT Call 580
APPEND Statement 582
APPLY Function 584
ARMACOV Call 585
ARMALIK Call 587
ARMASIM Function 588
BLOCK Function 590
BRANKS Function 591
BSPLINE Function 591
BTRAN Function 594
BYTE Function 594
CALL Statement 595
CHANGE Call 596
CHAR Function 596
CHOOSE Function 597
CLOSE Statement 598
CLOSEFILE Statement 599
COMPORT Call 599
CONCAT Function 602
CONTENTS Function 603
CONVEXIT Function 604
COVLAG Function 604
CREATE Statement 605
CSHAPE Function 607
CUSUM Function 609
CVEXHULL Function 610
DATASETS Function 610
DELETE Call 611
DELETE Statement 612
DESIGN Function 614
DESIGNF Function 614
DET Function 615
DIAG Function 616
DISPLAY Statement 616
DO Function 617
DO and END Statements 618
DO Statement, Iterative 619
DO DATA Statement 620
DO Statement with an UNTIL Clause 621
DO Statement with a WHILE Clause 621
DURATION Function 622
ECHELON Function 623
EDIT Statement 624
EIGEN Call 626
EIGVAL Function 630
EIGVEC Function 631
END Statement 632
EXECUTE Call 632
EXP Function 632
FARMACOV Call 633
FARMAFIT Call 635
FARMALIK Call 636
FARMASIM Call 638
FDIF Call 639
FFT Function 640
FILE Statement 642
FIND Statement 643
FINISH Statement 645
FORCE Statement 645
FORWARD Function 645
FREE Statement 646
GAEND Call (Experimental) 646
GAGETMEM Call (Experimental) 647
GAGETVAL Call (Experimental) 648
GAINIT Call (Experimental) 648
GAREEVAL Call (Experimental) 649
GAREGEN Call (Experimental) 650
GASETCRO Call (Experimental) 650
GASETMUT Call (Experimental) 655
GASETOBJ Call (Experimental) 657
GASETSEL Call (Experimental) 658
GASETUP Function (Experimental) 659
GBLKVP Call 661
GBLKVPD Call 662
GCLOSE Call 662
GDELETE Call 662
GDRAW Call 663
GDRAWL Call 664
GENEIG Call 664
GEOMEAN Function 666
GGRID Call 666
GINCLUDE Call 667
GINV Function 668
GOPEN Call 670
GOTO Statement 670
GPIE Call 671
GPIEXY Call 672
GPOINT Call 673
GPOLY Call 674
GPORT Call 676
GPORTPOP Call 676
GPORTSTK Call 676
GSCALE Call 677
GSCRIPT Call 678
GSET Call 679
GSHOW Call 680
GSORTH Call 680
GSTART Call 681
GSTOP Call 682
GSTRLEN Call 682
GTEXT and GVTEXT Calls 683
GWINDOW Call 684
GXAXIS and GYAXIS Calls 685
HADAMARD Function 686
HALF Function 687
HANKEL Function 688
HARMEAN Function 689
HDIR Function 690
HERMITE Function 691
HOMOGEN Function 691
I Function 692
IF-THEN/ELSE Statement 693
IFFT Function 694
INDEX Statement 696
INFILE Statement 696
INPUT Statement 697
INSERT Function 699
INT Function 700
INV Function 701
INVUPDT Function 702
IPF Call 704
ITSOLVER Call 717
J Function 721
JROOT Function 722
KALCVF Call 723
KALCVS Call 726
KALDFF Call 729
KALDFS Call 732
LAV Call 735
LCP Call 739
LENGTH Function 742
LINK and RETURN Statements 742
LIST Statement 743
LMS Call 746
LOAD Statement 754
LOC Function 754
LOG Function 756
LP Call 756
LTS Call 758
LUPDT Call 765
MAD Function 766
MARG Call 767
MATTRIB Statement 770
MAX Function 772
MAXQFORM Call 772
MCD Call 774
MIN Function 780
MOD Function 780
MODULEI Call 781
MODULEIC Function 782
MODULEIN Function 782
MVE Call 783
NAME Function 789
NCOL Function 790
NLENG Function 790
Nonlinear Optimization and Related Subroutines 791
NLPCG Call 793
NLPDD Call 794
NLPFDD Call 796
NLPFEA Call 800
NLPHQN Call 801
NLPLM Call 804
NLPNMS Call 805
NLPNRA Call 809
NLPNRR Call 812
NLPQN Call 815
NLPQUA Call 821
NLPTR Call 824
NORMAL Function 826
NROW Function 826
NUM Function 827
ODE Call 827
ODSGRAPH Call 833
OPSCAL Function 834
ORPOL Function 836
ORTVEC Call 843
PAUSE Statement 846
PGRAF Call 847
POLYROOT Function 848
PRINT Statement 849
PRODUCT Function 851
PURGE Statement 851
PUSH Call 852
PUT Statement 853
PV Function 854
QR Call 856
QUAD Call 861
QUEUE Call 867
QUIT Statement 868
RANDGEN Call 868
RANDSEED Call 875
RANK Function 876
RANKTIE Function 877
RATES Function 878
RATIO Function 879
RDODT and RUPDT Calls 881
READ Statement 884
REMOVE Function 888
REMOVE Statement 888
RENAME Call 889
REPEAT Function 890
REPLACE Statement 890
RESET Statement 893
RESUME Statement 895
RETURN Statement 895
ROOT Function 895
ROWCAT Function 897
ROWCATC Function 898
RUN Statement 898
RUPDT Call 899
RZLIND Call 899
SAVE Statement 907
SEQ, SEQSCALE, and SEQSHIFT Calls 908
SEQSCALE Call 920
SEQSHIFT Call 921
SETDIF Function 921
SETIN Statement 921
SETOUT Statement 922
SHAPE Function 923
SHOW Statement 924
SOLVE Function 925
SOLVELIN Call 926
SORT Call 927
SORT Statement 928
SORTNDX Call 929
SOUND Call 930
SPLINE and SPLINEC Calls 931
SPLINEV Function 938
SPOT Function 939
SQRSYM Function 939
SQRT Function 940
SSQ Function 940
START and FINISH Statements 940
STOP Statement 941
STORAGE Function 942
STORE Statement 942
SUBSTR Function 943
SUM Function 943
SUMMARY Statement 944
SVD Call 947
SWEEP Function 949
SYMSQR Function 951
T Function 952
TEIGEN Call 952
TEIGVAL Function 952
TEIGVEC Function 952
TOEPLITZ Function 952
TPSPLINE Call 954
TPSPLNEV Call 957
TRACE Function 960
TRISOLV Function 960
TSBAYSEA Call 961
TSDECOMP Call 964
TSMLOCAR Call 967
TSMLOMAR Call 968
TSMULMAR Call 969
TSPEARS Call 970
TSPRED Call 972
TSROOT Call 972
TSTVCAR Call 973
TSUNIMAR Call 974
TYPE Function 975
UNIFORM Function 976
UNION Function 976
UNIQUE Function 977
UNIQUEBY Function 977
USE Statement 978
VALSET Call 980
VALUE Function 981
VARMACOV Call 981
VARMALIK Call 983
VARMASIM Call 984
VECDIAG Function 985
VNORMAL Call 986
VTSROOT Call 987
WAVFT Call 988
WAVGET Call 991
WAVIFT Call 993
WAVPRINT Call 995
WAVTHRSH Call 996
WINDOW Statement 997
XMULT Function 999
XSECT Function 999
YIELD Function 1000
BASE SAS FUNCTIONS ACCESSIBLE FROM SAS/IML 1001
Bitwise Logical Operation Functions 1002
Character and Formatting Functions 1002
Character String Matching Functions and Subroutines 1005
Date and Time Functions 1006
Descriptive Statistics Functions and Subroutines 1006
Double-Byte Character String Functions 1007
External Files Functions 1007
File I/O Functions 1008
Financial Functions 1009
Macro Functions and Subroutines 1010
Mathematical Functions and Subroutines 1010
Probability Functions 1011
Quantile Functions 1011
Random Number Functions and Subroutines 1012
State and Zip Code Functions 1012
Trigonometric and Hyperbolic Functions 1012
Truncation Functions 1013
Web Tools 1013
REFERENCES 1013

\section*{Chapter 20}

\section*{Language Reference}

\section*{Overview}

This chapter describes all operators, statements, functions, and subroutines that can be used in SAS/IML software. All necessary details, such as arguments and operands, are included.

This chapter is divided into two sections. The first section contains operator descriptions. They are in alphabetic order according to the name of the operator. The second section contains descriptions of statements, functions, and subroutines also arranged alphabetically by name.

The following tables list all statements, functions, and subroutines available in SAS/IML software grouped by functionality.

\section*{Scalar Functions}

ABS Function
EXP Function
INT Function
LOG Function
MOD Function
NORMAL Function
SQRT Function
UNIFORM Function
takes the absolute value
calculates the exponential
truncates a value
takes the natural logarithm
computes the modulo (remainder)
generates a pseudo-random normal deviate
calculates the square root
generates pseudo-random uniform deviates

\section*{Reduction Functions}

MAX Function
MIN Function
SSQ Function
SUM Function

\section*{Matrix Inquiry Functions}

ALL Function
ANY Function
CHOOSE Function
LOC Function
NCOL Function
NLENG Function
NROW Function
TYPE Function
checks for all nonzero elements
checks for any nonzero elements conditionally chooses and changes elements finds nonzero elements of a matrix finds the number of columns of a matrix finds the size of an element finds the number of rows of a matrix determines the type of a matrix

\section*{Matrix Sorting and BY-Group Processing Calls}

SORT Call
SORTNDX Call
UNIQUEBY Function
sorts a matrix by specified columns
creates a sorted index for a matrix
finds locations of unique BY groups in a sorted or indexed matrix

\section*{Matrix Reshaping Functions}

\author{
BLOCK Function
}

BTRAN Function
DIAG Function
DO Function
I Function
INSERT Function
J Function
REMOVE Function
REPEAT Function
SHAPE Function
SQRSYM Function
SYMSQR Function
T Function
VECDIAG Function

\section*{Character Functionality}

BYTE Function
CHANGE Call
CHAR Function
CONCAT Function
CSHAPE Function
LENGTH Call
NAME Function
NUM Function
ROWCAT Function
ROWCATC Function
SUBSTR Function
forms block-diagonal matrices computes block transpose creates a diagonal matrix produces an arithmetic series creates an identity matrix inserts one matrix inside another creates a matrix of identical values discards elements from a matrix creates a new matrix of repeated values reshapes and repeats values converts a symmetric matrix to a square matrix converts a square matrix to a symmetric matrix transposes a matrix creates a vector from a diagonal
translates numbers to ordinal characters replaces text produces a character representation of a matrix Concatenates elementwise strings reshapes and repeats character values finds the lengths of character matrix elements lists the names of arguments produces a numeric representation of a character matrix concatenates rows without using blank compression concatenates rows by using blank compression takes substrings of matrix elements

\section*{Random Number Generation Functionality}

RANDGEN Call RANDSEED Call
generates random numbers from specified distributions initializes seed for subsequent RANGEN calls

\section*{Statistical Functionality}

BRANKS Function
CUSUM Function
computes bivariate ranks
calculates cumulative sums
\begin{tabular}{ll}
DESIGN Function & creates a design matrix \\
DESIGNF Function & creates a full-rank design matrix \\
GEOMEAN Function & calculates geometric means \\
HADAMARD Function & creates a Hadamard matrix \\
HARMEAN Function & \begin{tabular}{l}
calculates harmonic means \\
performs an iterative proportional fit of a contingency ta- \\
ble \\
IPF Call
\end{tabular} \\
& performs linear least absolute value regression by solving \\
the \(L_{1}\) norm minimization problem
\end{tabular}

\section*{Time Series Functionality}
\begin{tabular}{|c|c|}
\hline ARMACOV Call & computes an autocovariance sequence for an ARMA model \\
\hline ARMALIK Call & computes the log likelihood and residuals for an ARMA model \\
\hline ARMASIM Function & simulates an ARMA series \\
\hline CONVEXIT Function & calculates convexity of a noncontingent cash flow \\
\hline COVLAG Function & computes autocovariance estimates for a vector time series \\
\hline DURATION Function & calculates modified duration of a noncontingent cash flow \\
\hline FARMACOV Call & computes the autocovariance function for an \(\operatorname{ARFIMA}(p, d, q)\) process \\
\hline FARMAFIT Call & estimate the parameters of an \(\operatorname{ARFIMA}(p, d, q)\) model \\
\hline FARMALIK Call & computes the log-likelihood function of an \(\operatorname{ARFIMA}(p, d, q)\) model \\
\hline FARMASIM Call & generates an \(\operatorname{ARFIMA}(p, d, q)\) process \\
\hline FDIF Call & obtain a fractionally differenced process \\
\hline FORWARD Function & calculates forward rates \\
\hline KALCVF Call & computes the one-step prediction \(\mathbf{z}_{t+1 \mid t}\) and the filtered estimate \(\mathbf{z}_{t \mid t}\), as well as their covariance matrices. The call uses forward recursions, and you can also use it to obtain \(k\)-step estimates. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline KALCVS Call & uses backward recursions to compute the smoothed estimate \(\mathbf{z}_{t \mid T}\) and its covariance matrix, \(\mathbf{P}_{t \mid T}\), where \(T\) is the \\
\hline KALDFF Call & computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The call estimates the conditional expectation of \(\mathbf{z}_{t}\), and it also estimates the initial random vector, \(\delta\), and its covariance matrix. \\
\hline KALDFS Call & computes the smoothed state vector and its mean square error matrix from the one-step forecast and mean square error matrix computed by KALDFF. \\
\hline PV Function & calculates present value \\
\hline RATES Function & converts interest rates from one base to another \\
\hline SPOT Function & calculates spot rates \\
\hline TSBAYSEA Call & performs Bayesian seasonal adjustment modeling \\
\hline TSDECOMP Call & analyzes nonstationary time series by using smoothness priors modeling \\
\hline TSMLOCAR Call & analyzes nonstationary or locally stationary time series by using the minimum AIC procedure \\
\hline TSMLOMAR Call & analyzes nonstationary or locally stationary multivariate time series by using the minimum AIC procedure \\
\hline TSMULMAR Call & estimates VAR processes by using the minimum AIC procedure \\
\hline TSPEARS Call & analyzes periodic AR models with the minimum AIC procedure \\
\hline TSPRED Call & provides predicted values of univariate and multivariate \\
\hline TSROOT Call & calculates AR and MA coefficients from the characteristic roots of the model or calculates the characteristic roots of the model from the AR and MA coefficients \\
\hline TSTVCAR Call & analyzes time series that are nonstationary in the covariance function \\
\hline TSUNIMAR Call & determines the order of an AR process with the minimum AIC procedure and estimates the AR coefficients \\
\hline VARMACOV Call & computes the theoretical cross-covariance matrices for a stationary VARMA \((p, q)\) model \\
\hline VARMALIK Call & computes the log-likelihood function for a \(\operatorname{VARMA}(p, q)\) model \\
\hline VARMASIM Call & generates VARMA \((p, q)\) time series \\
\hline VNORMAL Call & generates multivariate normal random series \\
\hline VTSROOT Call & computes the characteristic roots for a \(\operatorname{VARMA}(p, q)\) model \\
\hline YIELD Function & calculates yield-to-maturity of a cash-flow stream \\
\hline
\end{tabular}

\section*{Numerical Analysis Functionality}

BSPLINE Function
FFT Function
IFFT Function
computes B-spline basis performs the finite Fourier transform computes the inverse finite Fourier transform
\(\left.\begin{array}{ll}\text { JROOT Function } & \begin{array}{l}\text { computes the first nonzero roots of a Bessel function of } \\
\text { the first kind and the derivative of the Bessel function at } \\
\text { each root }\end{array} \\
\text { performs numerical integration of vector differential equa- } \\
\text { tions of the form } \\
\text { generates orthogonal polynomials on a discrete set of } \\
\text { points }\end{array}\right\}\)\begin{tabular}{l}
provides columnwise orthogonalization by the Gram- \\
ORPOL Function \\
ORTVEC Call \\
Schmidt process and stepwise QR decomposition by the \\
Gram-Schmidt process
\end{tabular}

\section*{Linear Algebra Functionality}

APPCORT CALL
COMPORT Call

CVEXHULL Function
DET Function
ECHELON Function
EIGEN Call
EIGVAL Function
EIGVEC Function
GENEIG Call

GINV Function
GSORTH Call
HALF Function
HANKEL Function
HDIR Function
HERMITE Function
HOMOGEN Function
INV Function
INVUPDT Function
ITSOLVER Call
completes orthogonal decomposition
completes orthogonal decomposition by Householder transformations
finds a convex hull of a set of planar points
computes the determinant of a square matrix
reduces a matrix to row-echelon normal form
computes eigenvalues and eigenvectors
computes eigenvalues
computes eigenvectors
computes eigenvalues and eigenvectors of a generalized eigenproblem
computes the generalized inverse computes the Gram-Schmidt orthonormalization computes Cholesky decomposition generates a Hankel matrix
performs a horizontal direct product reduces a matrix to Hermite normal form solves homogeneous linear systems
produces the inverse updates a matrix inverse solves a sparse general linear system by iteration

LUPDT Call

QR Call

RDODT Call
ROOT Function
RUPDT Call
RZLIND Call
SOLVE Function
SOLVELIN Call

SVD Call
TEIGEN Call
TEIGVAL Function
TEIGVEC Function
TOEPLITZ Function
TRACE Function
TRISOLV Function
XMULT Function

\section*{Optimization Subroutines}

\author{
LCP Call \\ LP Call \\ NLPCG Call
}

NLPDD Call

NLPFDD Call
NLPFEA Call
NLPHQN Call
NLPLM Call
NLPNMS Call
NLPNRA Call

NLPNRR Call

NLPQN Call
NLPQUA Call
NLPTR Call
Nonlinear Optimization and Related Subroutines
provides updating and downdating for rank deficient linear least squares solutions, complete orthogonal factorization, and Moore-Penrose inverses
produces the QR decomposition of a matrix by Householder transformations downdates and updates QR and Cholesky decompositions performs the Cholesky decomposition of a matrix updates QR and Cholesky decompositions
updates QR and Cholesky decompositions solves a system of linear equations
solves a sparse symmetric system of linear equations by direct decomposition
computes the singular value decomposition
computes the eigenvalues and eigenvectors of square matrices
computes eigenvalues of square matrices computes eigenvectors of square matrices generates a Toeplitz or block-Toeplitz matrix sums diagonal elements solves linear systems with triangular matrices performs accurate matrix multiplication
solves the linear complementarity problem solves the linear programming problem performs nonlinear optimization by conjugate gradient method
performs nonlinear optimization by double-dogleg method
approximates derivatives by finite-differences method computes feasible points subject to constraints calculates hybrid quasi-Newton least squares calculates Levenberg-Marquardt least squares performs nonlinear optimization by Nelder-Mead simplex method
performs nonlinear optimization by Newton-Raphson method
performs nonlinear optimization by Newton-Raphson ridge method
performs nonlinear optimization by quasi-Newton method performs nonlinear optimization by quadratic method performs nonlinear optimization by trust-region method lists of all nonlinear optimization and related subroutines in IML

\section*{Set Functions}

SETDIF Function
UNION Function
UNIQUE Function
XSECT Function

\section*{Control Statements}
\begin{tabular}{|c|c|}
\hline ABORT Statement & ends IML \\
\hline APPLY Function & applies an IML module \\
\hline CALL Statement & calls a subroutine or function \\
\hline DO and END & groups statements as a unit \\
\hline \multicolumn{2}{|l|}{Statements} \\
\hline DO, Iterative Statement & iteratively executes a DO group \\
\hline DO and UNTIL & conditionally executes statements iteratively \\
\hline \multicolumn{2}{|l|}{Statement and Clause} \\
\hline DO and WHILE & conditionally executes statements iteratively \\
\hline \multicolumn{2}{|l|}{Statement and Clause} \\
\hline END Statement & ends a DO loop or DO statement \\
\hline EXECUTE Call & executes SAS statements immediately \\
\hline FINISH Statement & denotes the end of a module \\
\hline FORCE Statement & (see the description of the SAVE statement) \\
\hline FREE Statement & frees matrix storage space \\
\hline GOTO Statement & jumps to a new statement \\
\hline IF-THEN/ELSE & conditionally executes statement \\
\hline \multicolumn{2}{|l|}{Statement} \\
\hline LINK Statement & jumps to another statement \\
\hline MATTRIB Statement & associates printing attributes with matrices \\
\hline PAUSE Statement & interrupts module execution \\
\hline PRINT Statement & prints matrix values \\
\hline PURGE Statement & removes observations marked for deletion and renumbers records \\
\hline PUSH Call & pushes SAS statements into the command input stream \\
\hline QUEUE Call & queues SAS statements into the command input stream \\
\hline QUIT Statement & exits from IML \\
\hline REMOVE Statement & removes matrices from storage \\
\hline RESET Statement & sets processing options \\
\hline RESUME Statement & resumes execution \\
\hline RETURN Statement & returns to caller \\
\hline RUN Statement & executes statements in a module \\
\hline SHOW Statement & prints system information \\
\hline SOUND Call & produces a tone \\
\hline START/FINISH & define a module \\
\hline \multicolumn{2}{|l|}{Statements} \\
\hline STOP Statement & stops execution of statements \\
\hline STORAGE Function & lists names of matrices and modules in storage \\
\hline STORE Statement & stores matrices and modules in library storage \\
\hline
\end{tabular}

VALSET Call
VALUE Function
performs indirect assignment
assigns values by indirect reference

\section*{Datas Set and File Functionality}

APPEND Statement CLOSE Statement CLOSEFILE Statement
CONTENTS Function
CREATE Statement
DATASETS Function
DELETE Call
DELETE Statement
DO DATA Statement
EDIT Statement
FILE Statement
FIND Statement
INDEX Statement
INFILE Statement
INPUT Statement
LIST Statement
LOAD Statement
PUT Statement
READ Statement
RENAME Call
REPLACE Statement
SAVE Statement
SETIN Statement
SETOUT Statement
SORT Statement
SUMMARY Statement
USE Statement
adds observations to SAS data set closes a SAS data set
closes a file
returns the variables in a SAS data set
creates a new SAS data set
obtains the names of SAS data sets deletes a SAS data set
marks observations for deletion repeats a loop until an end of file occurs
opens a SAS data set for editing
opens or points to an external file finds observations
indexes a variable in a SAS data set opens a file for input
inputs data
displays observations of a data set
loads modules and matrices from library storage
writes data to an external file
reads observations from a data set renames a SAS data set
replaces values in observations and updates observations
saves data
makes a data set current for input
makes a data set current for output
sorts a SAS data set
computes summary statistics for SAS data sets
opens a SAS data set for reading

\section*{Graphics and Window Functions}

DISPLAY Statement
GBLKVP Call
GBLKVPD Call
GCLOSE Call
GDELETE Call
GDRAW Call
GDRAWL Call
GGRID Call
GINCLUDE Call
GOPEN Call
GPIE Call
GPIEXY Call
displays fields in a display window defines a blanking viewport deletes the blanking viewport closes the graphics segment deletes a graphics segment draws a polyline draws individual lines draws a grid includes a graphics segment opens a graphics segment draws pie slices converts from polar to world coordinates
\begin{tabular}{|c|c|}
\hline GPOINT Call & plots points \\
\hline GPOLY Call & draws and fills a polygon \\
\hline GPORT Call & defines a viewport \\
\hline GPORTPOP Call & pops the viewport \\
\hline GPORTSTK Call & stacks the viewport \\
\hline GSCALE Call & calculates round numbers for labeling axes \\
\hline GSCRIPT Call & writes multiple text strings with special fonts \\
\hline GSET Call & sets attributes for a graphics segment \\
\hline GSHOW Call & shows a graph \\
\hline GSTART Call & initializes the graphics system \\
\hline GSTOP Call & deactivates the graphics system \\
\hline GSTRLEN Call & finds the string length \\
\hline GTEXT and GVTEXT & places text horizontally or vertically on a graph \\
\hline Calls & \\
\hline GWINDOW Call & defines the data window \\
\hline GXAXIS and GYAXIS & draws a horizontal or vertical axis \\
\hline Calls & \\
\hline PGRAF Call & produces scatter plots \\
\hline ODSGRAPH Call & renders a graph by using ODS Statistical Graphics \\
\hline WINDOW Statement & opens a display window \\
\hline t Analysis Calls & \\
\hline WAVFT Call & computes a specified wavelet transform of one dimensional data \\
\hline WAVGET Call & returns requested information encapsulated in a wavelet transform \\
\hline WAVIFT Call & inverts a wavelet transform after applying specified thresholding to the detail coefficients \\
\hline WAVPRINT Call & displays requested information encapsulated in a wavelet transform \\
\hline WAVTHRSH Call & applies specified thresholding to the detail coefficients of a wavelet transform \\
\hline
\end{tabular}

\section*{Genetic Algorithm Functionality}

GAEND Call
GAGETMEM Call

GAGETVAL Call

GAINIT Call
GAREEVAL Call

GASETCRO Call
GASETMUT Call
GASETOBJ Call
terminates genetic algorithm and frees memory resources gets requested members and objective values from current solution population
gets objective function values for requested member of current solution population initializes the initial solution population reevaluates the objective function for all solutions in current population
specifies a current crossover operator specifies a current mutation operator specifies a current objective function

GASETSEL Call
GASETUP Function

\section*{Calling External Modules}

MODULEI Call
MODULEIC Call
MODULEIN Call
specifies a current selection parameters
sets up a specific genetic algorithm optimization problem
calls an external routine without any return code calls an external routine that returns a character calls an external routine that returns a numeric value

\section*{Operators}

All operators available in SAS/IML software are described in this section.

\section*{Addition Operator:}
adds corresponding matrix elements
```

matrix1 + matrix2
matrix + scalar
matrix + vector

```

The addition infix operator \((+)\) produces a new matrix containing elements that are the sums of the corresponding elements of matrixl and matrix2. The element in the first row, first column of the first matrix is added to the element in the first row, first column of the second matrix, with the sum becoming the element in the first row, first column of the new matrix, and so on.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={$$
\begin{array}{ll}{1 2,}\end{array}
$$,\mp@code{l}
3 4};
b={$$
\begin{array}{ll}{1}&{1}\end{array}
$$,
1 1};
c=a+b;

```
C
2 rows
2 cols
(numeric)
2
3
\(4 \quad 5\)

In addition to adding conformable matrices, you can also use the addition operator to add a matrix and a scalar or row or column vector. When you use the matrix + scalar (or scalar + matrix) form, the scalar value is added to each element of the matrix to produce a new matrix. When you use the matrix + vector (or vector + matrix) form, the vector is added to each row or column of the matrix to produce a new matrix.

For example, you can obtain the same result as you did in the previous example with either of the following statements:
```

c=a+1;
c=a+{1 1};

```

When a missing value occurs in an operand, IML assigns a missing value for the corresponding element in the result.

You can also use the addition operator on character operands. In this case, the operator does elementwise concatenation exactly as the CONCAT function does.

\section*{Comparison Operators: < > = <= >= ^=}
compare matrix elements
```

matrix1<matrix2
matrix1<=matrix2
matrix1>matrix2
matrix1>=matrix2
matrix1=matrix2
matrix1^ =matrix2

```

The comparison operators compare two matrices element by element and produce a new matrix that contains only zeros and ones. If an element comparison is true, the corresponding element of the new matrix is 1 . If the comparison is not true, the corresponding element is 0 . You cannot use the English equivalents GT and LT for the greater than and less than signs as you can in Base SAS software. Scalar or row or column vector values can be used instead of matrices in any of the preceding forms. If either operand is a scalar, the operation is performed for that scalar with each element of the matrix. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

For example, let
```

a={$$
\begin{array}{lll}{1}&{7}&{3,}\end{array}
$$,
6 2 4};
b={$$
\begin{array}{lll}{0}&{8}&{2,}\end{array}
$$,
4 1 3};

```

Evaluation of the following expression yields the matrix \(\mathbf{C}\), as shown:
```

c=a>b;

```

1
1

0
1

1
1

In addition to comparing conformable matrices, you can apply the comparison operators to a matrix and a scalar. If either argument is a scalar, the comparison is between each element of the matrix and the scalar.

For example, the following expression produces the matrix \(\mathbf{D}\), as shown:
```

d=(a>=2);
D 2 rows 3 cols (numeric)
0 1 1
1 1 1

```

If the element lengths of two character operands are different, the shorter elements are padded on the right with blanks for the comparison.

If a numeric missing value occurs in an operand, IML treats it as lower than any valid number for the comparison.

When you are making conditional comparisons, all values of the result must be nonzero for the condition to be evaluated as true.

Consider the following statement:
```

if x>=y then goto loop1;

```

The GOTO statement is executed only if every element of x is greater than or equal to the corresponding element in \(\mathbf{y}\). See also the descriptions of the ALL and ANY functions.

\section*{Concatenation Operator, Horizontal:}

\section*{concatenates matrices horizontally}

\section*{matrix1||matrix2}

The horizontal concatenation operator (II) produces a new matrix by horizontally joining matrixl and matrix 2 . Matrixl and matrix2 must have the same number of rows, which is also the number of rows in the new matrix. The number of columns in the new matrix is the number of columns in matrixl plus the number of columns in matrix2.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={$$
\begin{array}{lll}{1}&{1}&{1,}\end{array}
$$,
7 7 7};
b}={\begin{array}{lll}{0}\&{0}\&{0,}
8 8};
c=a||b;

```

\begin{tabular}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
7 & 7 & 7 & 8 & 8 & 8
\end{tabular}

Now, suppose
```

b={A B C,
D E F};
C={"GH" "IJ",
"KL" "MN"};

```

In this case, the following statement produces the matrix \(\mathbf{A}\), as shown:
```

a=b||c;

```
A 2 rows 5 cols (character, size 2)

A B C GH IJ
D \(\quad \mathrm{E} \quad \mathrm{F} \quad \mathrm{KL} \mathrm{MN}\)

For character operands, the element size in the result matrix is the larger of the two operands. In the preceding example, \(\mathbf{A}\) has element size 2.

You can use the horizontal concatenation operator when one of the arguments has no value. For example, if \(\mathbf{A}\) has not been defined and \(\mathbf{B}\) is a matrix, \(\mathbf{A} \| \mathbf{B}\) results in a new matrix equal to \(\mathbf{B}\).

Quotation marks (") are needed around matrix elements only if you want to embed blanks or maintain uppercase and lowercase distinctions.

\section*{Concatenation Operator, Vertical: //}

\section*{concatenates matrices vertically}
matrix1//matrix2
The vertical concatenation operator (//) produces a new matrix by vertically joining matrixl and matrix2. Matrixl and matrix 2 must have the same number of columns, which is also the number of columns in the new matrix. For example, if \(\mathbf{A}\) has three rows and two columns and \(\mathbf{B}\) has four rows and two columns, then \(\mathbf{A} / / \mathbf{B}\) produces a matrix with seven rows and two columns. Rows 1 through 3 of the new matrix correspond to \(\mathbf{A}\); rows 4 through 7 correspond to \(\mathbf{B}\).

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={$$
\begin{array}{lll}{1}&{1}&{1,}\\{l}&{7}\end{array}
$$]
7 7 7};
b}={\begin{array}{lll}{0}\&{0}\&{0,}
8 8 8};
c=a//b;

```
C
4 rows
3 cols
(numeric)
\begin{tabular}{lll}
1 & 1 & 1 \\
7 & 7 & 7 \\
0 & 0 & 0 \\
8 & 8 & 8
\end{tabular}

Now, let
```

b={"AB" "CD",
"EF" "GH"};
C={"I" "J",
"K" "L",
"M" "N"};

```

In this case, the following statement produces the matrix \(\mathbf{A}\), as shown:
```

a=b//c;

```

A

2 cols
(character, size 2)
\(A B C D\)
EF GH
I J
K L
M N

For character matrices, the element size of the result matrix is the larger of the element sizes of the two operands.

You can use the vertical concatenation operator when one of the arguments has not been assigned a value. For example, if \(\mathbf{A}\) has not been defined and \(\mathbf{B}\) is a matrix, \(\mathbf{A} / / \mathbf{B}\) results in a new matrix equal to \(\mathbf{B}\).

Quotation marks (") are needed around matrix elements only if you want to embed blanks or maintain uppercase and lowercase distinctions.

\section*{Direct Product Operator: @}

\section*{takes the direct product of two matrices}

\section*{matrix1@matrix2}

The direct product operator (@) produces a new matrix that is the direct product (also called the Kronecker product) of matrixl and matrix2, usually denoted by \(\mathbf{A} \otimes \mathbf{B}\). The number of rows in the new matrix equals the product of the number of rows in matrixl and the number of rows in matrix2; the number of columns in the new matrix equals the product of the number of columns in matrixl and the number of columns in matrix 2 .

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={$$
\begin{array}{ll}{1 2,}\end{array}
$$,\mp@code{l}
3 4};
b={0 2};
c=a@b;

```
\begin{tabular}{ccccc}
& 2 rows & & 4 cols & (numeric) \\
0 & 2 & 0 & 4 \\
0 & 6 & 0 & 8
\end{tabular}

The following statement produces the matrix \(\mathbf{D}\), as shown:
\(d=b @ a ;\)
D
\begin{tabular}{ll}
2 rows & \\
0 & 0 \\
0 & \\
&
\end{tabular}
4 cols
(numeric)
0
\begin{tabular}{ll}
0 & 2 \\
0 & 6
\end{tabular}
4

\section*{Division Operator: /}

\section*{performs elementwise division}

\section*{matrix 1/matrix2}
matrix/scalar
matrix/vector
The division operator (/) divides each element of matrixl by the corresponding element of matrix2, producing a matrix of quotients.

In addition to dividing elements in conformable matrices, you can also use the division operator to divide a matrix by a scalar, or rows or columns of a matrix by a vector. If either operand is a scalar, the operation does the division for each element and the scalar value. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

When a missing value occurs in an operand, the IML procedure assigns a missing value for the corresponding element in the result.

If a divisor is zero, the procedure prints a warning and assigns a missing value for the corresponding element in the result. An example of a valid statement using this operator follows:
\[
c=a / b ;
\]

\section*{Element Maximum Operator: <>}
selects the larger of two elements
matrix1<>matrix2
matrix<>scalar
matrix<> vector
The element maximum operator (<>) compares each element of matrixl to the corresponding element of matrix2. The larger of the two values becomes the corresponding element of the new matrix that is produced.

When either argument is a scalar, the comparison is between each matrix element and the scalar. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

The element maximum operator can take as operands two character matrices or a character matrix and a character string. If the element lengths of the operands are different, the shorter elements are padded on the right with blanks. The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid number.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a<>b;

```
C
\[
2 \text { rows }
\]
3 cols
(numeric)
\(2 \quad 9 \quad 6\)
\(20 \quad 11 \quad 40\)

\section*{Element Minimum Operator:}
selects the smaller of two elements
matrix \(1><\) matrix2
matrix \(1><\) scalar
matrix \(1><\) vector
The element minimum operator (><) compares each element of matrixl with the corresponding element of matrix2. The smaller of the values becomes the corresponding element of the new matrix that is produced.

When either argument is a scalar, the comparison is between the scalar and each element of the matrix. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

The element minimum operator can take as operands two character matrices or a character matrix and a character string. If the element lengths of the operands are different, the shorter elements are padded on the right with blanks. The element length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid numeric value.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a><b;

```
\begin{tabular}{cccc}
2 rows & 3 cols & (numeric) \\
& & \\
1 & 4 & 2 \\
10 & 10 & 12
\end{tabular}

\section*{Index Creation Operator: :}

\section*{creates an index vector}

\section*{value1:value2}

The index creation operator (:) creates a row vector with a first element that is valuel. The second element is value \(1+1\), and so on, as long as the elements are less than or equal to value2. For example, the following statement produces the vector \(\mathbf{I}\), as shown:

I=7:10;

If value1 is greater than value2, a reverse-order index is created. For example, the following statement produces the vector \(\mathbf{R}\), as shown:
\(r=10: 6\);
\begin{tabular}{ccccc}
\(R\) & 1 row & & 5 cols & (numeric) \\
10 & 9 & 8 & 7 & 6
\end{tabular}

The index creation operator also works on character arguments with a numeric suffix. For example, consider the following statement:
```

varlist=' var1':'var5';

```

This statement produces the following result:
```

VARLIST 1 row 5 cols (character, size 4)
var1 var2 var3 var4 var5

```

Use the DO function if you want an increment other than 1 or -1 .

\section*{Logical Operators: \&}
perform elementwise logical comparisons
matrix1\&matrix2
matrix\&scalar
matrix\& vector
matrix1|matrix2
matrix|scalar
matrix|vector
^ matrix
The AND logical operator (\&) compares two matrices, element by element, to produce a new matrix. An element of the new matrix is 1 if the corresponding elements of matrixl and matrix2 are both nonzero; otherwise, it is a zero.

An element of the new matrix produced by the OR operator \((I)\) is 1 if either of the corresponding elements of matrixl and matrix 2 is nonzero. If both are zero, the element is zero.

If either operand is a scalar, the operator does the logical operation for each element and the scalar value. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

The NOT prefix operator (\({ }^{\wedge}\)) examines each element of a matrix and produces a new matrix containing elements that are ones and zeros. If an element of matrix equals 0 , the corresponding element in the new matrix is 1 . If an element of matrix is nonzero, the corresponding element in the new matrix is 0 .

The following statements illustrate the use of these logical operators:
```

z=x\&r;
if a|b then print c;
if ^m then link x1;

```

\section*{Multiplication Operator, Elementwise: \#}

\section*{performs elementwise multiplication}
matrix1\#matrix2
matrix\#scalar
matrix\# vector
The elementwise multiplication operator (\#) produces a new matrix with elements that are the products of the corresponding elements of matrixl and matrix2.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={1 2,
3 4};
b={$$
\begin{array}{ll}{4}&{8}\end{array}
$$,
0 5};
c=a\#b;

```
\begin{tabular}{rrcc}
2 rows & 2 cols & (numeric) \\
4 & 16 & \\
0 & 20 &
\end{tabular}

In addition to multiplying conformable matrices, you can use the elementwise multiplication operator to multiply a matrix and a scalar. When either argument is a scalar, the scalar value is multiplied by each element in matrix to form the new matrix.

You can also multiply vectors by matrices. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

You can multiply matrices as long as they either conform in each dimension or one operand has dimension value 1 . For example, a \(2 \times 3\) matrix can be multiplied on either side by a \(2 \times 3,1 \times 3,2 \times 1\), or \(1 \times 1\) matrix. The following statements multiply the \(2 \times 2\) matrix \(\mathbf{A}\) by the column vector \(\mathbf{D}\) :
```

d={10,100};
ad=a\#d;

```

These statements produce the following matrix:
AD
2 rows
2 cols
(numeric)
10
20
300400

Now, consider the following statements:
\(\mathrm{d}=\{10\) 100 \(\}\);
ad=a\#d;

These statements produce the following matrix:
AD
2 rows
2 cols
(numeric)
10
200
30
400

The result of elementwise multiplication is also known as the Schur or Hadamard product. Element multiplication (using the \# operator) should not be confused with matrix multiplication (using the * operator).

When a missing value occurs in an operand, IML assigns a missing value in the result.

\section*{Multiplication Operator, Matrix:}

\section*{performs matrix multiplication}
```

matrix1*matrix2

```

The matrix multiplication infix operator \(\left({ }^{*}\right)\) produces a new matrix by performing matrix multiplication. The first matrix must have the same number of columns as the second matrix has rows. The new matrix has the same number of rows as the first matrix and the same number of columns as the second matrix. The matrix multiplication operator does not consistently propagate missing values.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={1 2,
3 4};
b={1 2};
c=b*a;

```
\begin{tabular}{rrcc}
1 row & 2 cols & (numeric) \\
7 & 10 &
\end{tabular}

The following statement produces the matrix \(\mathbf{D}\), as shown:
```

d=a*b `;

```
D 2 rows 1 col (numeric)

\section*{Power Operator, Elementwise: \#\#}
raises each element to a power
matrix 1\#\#matrix2
matrix\#\#scalar
matrix\#\#vector
The elementwise power operator (\#\#) creates a new matrix with elements that are the elements of matrixl raised to the power of the corresponding element of matrix2. If any value in matrixl is negative, the corresponding element in matrix2 must be an integer.

In addition to handling conformable matrices, the elementwise power operator enables either operand to be a scalar or a row or column vector. If either operand is scalar, the operation takes the power for each element and the scalar value. If either operand is a row or column vector, the operation is applied elementwise using the vector on each row or column of the matrix.

Missing values are propagated if they occur.
For example, the following statements produce the matrix \(\mathbf{B}\), as shown:
```

a={1 2 3};
b=a\#\#3;

```
\begin{tabular}{rrrr}
1 row & 2 cols & (numeric) \\
1 & 8 & 27
\end{tabular}

The following statement produces the new matrix \(\mathbf{B}\), as shown:
b=a\#\#.5;
B
1 row
3 cols
(numeric)
11.41421361 .7320508

\section*{Power Operator, Matrix:}
raises a matrix to a power
matrix**scalar
The matrix power operator \(\left({ }^{* *}\right)\) creates a new matrix that is matrix multiplied by itself scalar times. Matrix must be square; scalar must be an integer greater than or equal to -1 . Large scalar values cause numerical precision problems. If the scalar is not an integer, it is truncated to an integer.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={1 2,
1 1};
c=a**2;

```
C \begin{tabular}{llll}
2 rows & 2 cols \\
& & \\
3 & 4 &
\end{tabular}

If the matrix is symmetric, it is preferable to power its eigenvalues rather than use the matrix power operator directly on the matrix (see the description of the EIGEN call). Note that the expression
```

A** (-1)

```
is permitted and is equivalent to \(\operatorname{INV}(A)\).
The matrix power operator does not support missing values.

\section*{Sign Reverse Operator:}

\section*{reverses the signs of elements}
-matrix

The sign reverse prefix operator (-) produces a new matrix containing elements that are formed by reversing the sign of each element in matrix. A missing value is assigned if the element is missing.

For example, following statements produce the matrix \(\mathbf{B}\), as shown:
```

a={$$
\begin{array}{lll}{-1 7 6,}\end{array}
$$,
2 0-8};
b=-a;

```
\begin{tabular}{cccc}
2 rows & 3 cols & (numeric) \\
& & \\
1 & -7 & -6 \\
-2 & 0 & 8
\end{tabular}

\section*{Subscripts: []}
select submatrices
matrix[rows,columns]
matrix[elements]
Subscripts are used with matrices to select submatrices, where rows and columns are expressions that evaluate to scalars or vectors. If these expressions are numeric, they contain valid subscript values of rows and columns in the argument matrix. If a row
or column expression is a character matrix, then it refers to columns or rows in the argument matrix assigned corresponding labels by a MATTRIB statement or READ statement. A subscripted matrix can appear on the left side of the equal sign. The dimensions of the target submatrix must conform to the dimensions of the source matrix. See the section "Using Matrix Expressions" on page 52 for further information.

For example, the following statements select the element in the second row and third column of \(\mathbf{X}\), producing the matrix \(\mathbf{M}\) :
```

x={$$
\begin{array}{lll}{1 2 3,}\end{array}
$$,
4 6,
7 8 9};
a=3;
m=x[2,a];

```

Here is the matrix:

M
1 row
1 col
(numeric)

6

The following statements select row 2 and columns 1 through 3 of \(\mathbf{X}\), producing the matrix M:
```

a=1:3;
m=x[2,a];

```

Here is the matrix:
M
1 row
3 cols
(numeric)
4
5
6

The following statements select the element in the second row and third column of \(\mathbf{X}\), producing the matrix \(\mathbf{M}\) :
```

x={$$
\begin{array}{lll}{1 2 3,}\end{array}
$$,
4 5 6,
7 8 9};
MATTRIB x colname = {'col1' 'col2' 'col3'}
rowname = {'row1' 'row2' 'row3' };
a=' col3';
m=x['row2',a];

```

Here is the matrix:

\section*{Subtraction Operator:}
subtracts corresponding matrix elements
```

matrix1-matrix2
matrix-scalar
matrix-vector

```

The subtraction infix operator \((-)\) produces a new matrix containing elements that are formed by subtracting the corresponding elements of matrix2 from those of matrixl.

In addition to subtracting conformable matrices, you can also use the subtraction operator to subtract a matrix and a scalar or a matrix and a row or column vector. When either argument is a scalar, the operation is performed by using the scalar against each element of the matrix argument. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

When a missing value occurs in an operand, IML assigns a missing value for the corresponding element in the result.

An example of a valid statement follows:
\(\mathrm{c}=\mathrm{a}-\mathrm{b}\);

\section*{Transpose Operator:}

\section*{transposes a matrix}
matrix
The transpose operator (denoted by the backquote ' character) exchanges the rows and columns of matrix, producing the transpose of matrix. For example, if an element in matrix is in the first row and second column, it is in the second row and first column of the transpose; an element in the first row and third column of matrix is in the third row and first column of the transpose, and so on. If matrix contains three rows and two columns, its transpose has two rows and three columns.

For example, the following statements produce the matrix \(\mathbf{B}\), as shown:
```

a={1 2,
3 4,
5 6};
b=a ';

```

B

2 rows

1
2

3 cols

3
4
(numeric)

5
6

If your keyboard does not have a backquote character, you can transpose a matrix with the T (transpose) function, documented later in this chapter.

\section*{Statements, Functions, and Subroutines}

This section presents descriptions of all statements, functions, and subroutines available in IML.

\section*{ABORT Statement}
stops execution and exits IML

\section*{ABORT ;}

The ABORT statement instructs IML to stop executing statements. It also stops IML from parsing any further statements, causing IML to close its files and exit. See also the description of the STOP statement.

\section*{ABS Function}
takes the absolute value

\section*{ABS(matrix)}
where matrix is a numeric matrix or literal.
The ABS function is a scalar function that returns the absolute value of every element of the argument matrix. An example of how to use the ABS function follows:
```

a={ -1 2 -3, 0 -1 2 };
c=abs (a);

```

\section*{ALL Function}
checks for all nonzero elements

\section*{ALL(matrix)}
where matrix is a numeric matrix or literal.
The ALL function returns a value of 1 if all elements in matrix are nonzero. If any element of matrix is zero, the ALL function returns a value of 0 . Missing values in matrix are treated as zeros.

You can use the ALL function to express the results of a comparison operator as a single 1 or 0 . For example, the comparison operation \(\mathbf{A}>\mathbf{B}\) yields a matrix containing elements that can be either ones or zeros. All the elements of the new matrix are ones only if each element of \(\mathbf{A}\) is greater than the corresponding element of \(\mathbf{B}\).

For example, consider the following statement:
```

if all(a>b) then goto loop;

```

IML executes the GOTO statement only if every element of \(\mathbf{A}\) is greater than the corresponding element of \(\mathbf{B}\). The ALL function is implicitly applied to the evaluation of all conditional expressions.

The following statements have the same effect:
```

if (a>b) then goto loop;
if all(a>b) then goto loop;

```

\section*{ANY Function}

\section*{checks for any nonzero element}

\section*{ANY(matrix)}
where matrix is a numeric matrix or literal.
The ANY function returns a value of 1 if any of the elements in matrix are nonzero. If all the elements of matrix are zeros, the ANY function returns a value of 0 . Missing values in matrix are treated as zeros.

For example, consider the statement
```

if any(a=b) then print a b;

```

The matrices \(\mathbf{A}\) and \(\mathbf{B}\) are printed if at least one value in \(\mathbf{A}\) is the same as the corresponding value in \(\mathbf{B}\). The following statements do not print the message:
```

a={-99 99};
b={-99 98};
if a^=b then print 'a^=b';

```

However, the following statement prints the message:
```

if any(a^=b) then print 'a^=b';

```

\section*{APPCORT Call}
applies complete orthogonal decomposition by Householder transformations on the right-hand-side matrix \(B\) for the solution of rank-deficient linear least squares systems

CALL APPCORT(prqb, lindep, \(a, b<\), sing \(>\));
The inputs to the APPCORT subroutine are as follows:
\(a \quad\) is an \(m \times n\) matrix \(\mathbf{A}\), with \(m \geq n\), which is to be decomposed into the product of the \(m \times m\) orthogonal matrix \(\mathbf{Q}\), the \(n \times n\) upper triangular matrix \(\mathbf{R}\), and the \(n \times n\) orthogonal matrix \(\mathbf{P}\),
\[
\mathbf{A}=\mathbf{Q}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \Pi^{\prime} \mathbf{P}^{\prime} \boldsymbol{\Pi}
\]
is the \(m \times p\) matrix \(\mathbf{B}\) that is to be left multiplied by the transposed \(m \times m\) matrix \(\mathbf{Q}^{\prime}\).
sing is an optional scalar specifying a singularity criterion.

The APPCORT subroutine returns the following values:
\(p r q b \quad\) is an \(n \times p\) matrix product
\[
\mathbf{P \Pi}\left[\begin{array}{cc}
\left(\mathbf{L}^{\prime}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{Q}^{\prime} \mathbf{B}
\]
which is the minimum 2-norm solution of the (rank deficient) least squares problem \(\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}\). Refer to Golub and Van Loan (1989, pp. 241-242) for more details.
lindep \(\quad\) is the number of linearly dependent columns in the matrix \(\mathbf{A}\) detected by applying the \(r\) Householder transformations. That is, lindep \(=n-r\), where \(r=\operatorname{rank}(\mathbf{A})\).

See the section "COMPORT Call" on page 599 for information about complete orthogonal decomposition.

An example that uses the APPCORT subroutine follows:
```

/* Only four linearly independent columns */
A = {1 0 1 0 0,
1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };
/* compute Moore-Penrose generalized inverse */
b = i (nrow (A));
call appcort (Ainv,lindep,A,b);
print Ainv;
/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |
any(Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv) ` -A*Ainv > eps) |
any((Ainv*A) '-Ainv*A > eps) then
print "Pseudoinverse conditions not satisfied";
else
print "Pseudoinverse conditions satisfied";
/* compute solution for rank deficient LS:
min |Ax-b|^2
The range of A is a line.
b is a point not on the line. */

```
```

A = { 1 2,
2 4,
-1 -2 };
b = {1, 3, -2 };
call appcort(x,lindep,A,b);
print x;

```
\begin{tabular}{rrrrrr}
\multicolumn{6}{c}{ AINV } \\
0.2666667 & 0.2666667 & 0.2666667 & -0.066667 & -0.066667 & -0.066667 \\
-0.066667 & -0.066667 & -0.066667 & 0.2666667 & 0.2666667 & 0.2666667 \\
0.4 & -0.1 & -0.1 & 0.4 & -0.1 & -0.1 \\
-0.1 & 0.4 & -0.1 & -0.1 & 0.4 & -0.1 \\
-0.1 & -0.1 & 0.4 & -0.1 & -0.1 & 0.4 \\
\multicolumn{6}{c}{ Pseudoinverse conditions satisfied }
\end{tabular}

X
0.3
0.6

\section*{APPEND Statement}
adds observations to the end of a SAS data set
```

APPEND < VAR operand > ;
APPEND $<$ FROM from-name $<$ [ROWNAME=row-name] $\gg$;

```

In the preceding statements,
operand can be specified as one of the following:
- a literal containing variable names
- a character matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described in the following list:
\begin{tabular}{ll}
ALL & for all variables \\
CHAR & for all character variables \\
NUM & for all numeric variables
\end{tabular}
from-name is the name of a matrix containing data to append.
row-name is a character matrix or quoted literal containing descriptive row names.

Use the APPEND statement to add data to the end of the current output data set. The appended observations are from either the variables specified in the VAR clause or variables created from the columns of the FROM matrix. The FROM clause and the VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause.
The following statements show each possible way you can use the VAR clause.
```

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */

```

If the VAR clause includes a matrix with more than one row and column, the APPEND statement adds one observation for each element in the matrix with the greatest number of elements. Elements are appended in row-major order. Variables in the VAR clause with fewer than the maximum number of elements contribute missing values to observations after all of their elements have been used.

The default variables for the APPEND statement are all matrices that match variables in the current data set with respect to name and type.

The ROWNAME= operand to the FROM clause specifies the name of a character matrix to contain row titles. The first nrow values of this matrix become values of a variable with the same name in the output data set; nrow is the number of rows in the FROM matrix. The procedure uses the first nrow elements in row-major order.

The following examples demonstrate the use of the APPEND statement. The first example shows the use of the FROM clause when creating a new data set. For more information, see the section "CREATE Statement" on page 605. Here is the code:
```

x={1 2 3, 4 5 6};
create mydata from x[colname={x1 x2 x3}];
append from x;
show contents;
/* shows 3 variables (x1 x2 x3) and 2 observations */

```

The next example shows the use of the VAR clause for selecting variables from which to append data. Here is the code:
```

names={'Jimmy' 'Sue' 'Ted' };
sex={m f m};
create folks var{names sex};
append;
show contents;
/* shows 2 variables (names,sex) and 3 observations in FOLKS */

```

You could achieve the same result with the following statements:
```

dsvar={names sex};
create folks var dsvar;
append;

```

\section*{APPLY Function}

\section*{applies an IML module to its arguments}

APPLY(modname, argument1<, argument2,..., argument15>)
In the preceding statement,
modname is the name of an existing module, supplied in quotes, as a matrix containing the module name, or an expression rendering the module name.
argument is an argument passed to the module. You must have at least one argument. You can specify up to 15 arguments.

The APPLY function applies a user-defined IML module to each element of the argument matrix or matrices and returns a matrix of results. The first argument to APPLY is the name of the module. The module must already be defined before the APPLY function is executed. The module must be a function module, capable of returning a result.

The subsequent arguments to the APPLY function are the arguments passed to the module. They all must have the same dimension. If the module takes \(n\) arguments, argument 1 through argumentn should be passed to APPLY where \(1 \leq n \leq 15\). The APPLY function effectively calls the module. The result has the same dimension as the input arguments, and each element of the result corresponds to the module applied to the corresponding elements of the argument matrices. The APPLY function can work on numeric as well as character arguments. For example, the following statements define module ABC and then call the APPLY function, with matrix A as an argument:
```

start abc(x);
r=x+100;
return (r);
finish abc;
a={\ 7 7 8,
9 10 11};
r=apply("ABC",a);

```

The result is as follows:
\begin{tabular}{llll}
2 rows & 3 cols & (numeric) \\
& & & \\
106 & 107 & 108 \\
109 & 110 & 111
\end{tabular}

In the following example, the statements define the module SWAP and call the APPLY function:
```

start swap (a,b,c);
r=a*b*c;
a=b;
if r<0 then return(0);
return(r);
finish swap;
a={2 3, 4 5};
b}={4 3, 5 6};
c={9 -1, 3 7};
mod={swap} ;
r=apply (mod,a,b,c) ;
print a r;

```

The results are as follows:
\begin{tabular}{rrrr}
A & & \(R\) & \\
4 & 3 & 72 & 0 \\
5 & 6 & 60 & 210
\end{tabular}

\section*{ARMACOV Call}

\section*{computes an autocovariance sequence for an ARMA model}

CALL ARMACOV(auto, cross, convol, phi, theta, num);
The inputs to the ARMACOV subroutine are as follows:
phi refers to a \(1 \times(p+1)\) matrix containing the autoregressive parameters. The first element is assumed to have the value 1 .
theta refers to a \(1 \times(q+1)\) matrix containing the moving-average parameters. The first element is assumed to have the value 1.
nит refers to a scalar containing \(n\), the number of autocovariances to be computed, which must be a positive number.

The ARMACOV subroutine returns the following values:
auto \(\quad\) specifies a variable to contain the returned \(1 \times n\) matrix containing the autocovariances of the specified ARMA model, assuming unit variance for the innovation sequence.
cross
convol specifies a variable to contain the returned \(1 \times(q+1)\) matrix containing the covariances of the moving-average term with lagged values of the process.
specifies a variable to contain the returned \(1 \times(q+1)\) matrix containing the autocovariance sequence of the moving-average term.

The ARMACOV subroutine computes the autocovariance sequence that corresponds to a given autoregressive moving-average (ARMA) time series model. An arbitrary
number of terms in the sequence can be requested. Two related covariance sequences are also returned.

The model notation for the ARMACOV and ARMALIK subroutines is the same. The \(\operatorname{ARMA}(p, q)\) model is denoted
\[
\sum_{j=0}^{p} \phi_{j} y_{t-j}=\sum_{i=0}^{q} \theta_{i} \epsilon_{t-i}
\]
with \(\theta_{0}=\phi_{0}=1\). The notation is the same as that of Box and Jenkins (1976) except that the model parameters are opposite in sign. The innovations \(\left\{\epsilon_{t}\right\}\) satisfy \(E\left(\epsilon_{t}\right)=0\) and \(E\left(\epsilon_{t} \epsilon_{t-k}\right)=1\) if \(k=0\), and are zero otherwise. The formula for the \(k\) th element of the convol argument is
\[
\sum_{i=k-1}^{q} \theta_{i} \theta_{i-k+1}
\]
for \(k=1,2, \ldots, q+1\). The formula for the \(k\) th element of the cross argument is
\[
\sum_{i=k-1}^{q} \theta_{i} \psi_{i-k+1}
\]
for \(k=1,2, \ldots, q+1\), where \(\psi_{i}\) is the \(i\) th impulse response value. The \(\psi_{i}\) sequence, if desired, can be computed with the RATIO function. It can be shown that \(\psi_{k}\) is the same as \(E\left(Y_{t-k} \epsilon_{t}^{2}\right) / \sigma\), which is used by Box and Jenkins (1976, p. 75) in their formulation of the autocovariances. The \(k\) th autocovariance, denoted \(\gamma_{k}\) and returned as the \(k+1\) element of the auto argument (\(k=0,1, \ldots, n-1\)), is defined implicitly for \(k>0\) by
\[
\sum_{i=0}^{p} \gamma_{k-i} \phi_{i}=\eta_{k}
\]
where \(\eta_{k}\) is the \(k\) th element of the cross argument. See Box and Jenkins (1976) or McLeod (1975) for more information.

Consider the model
\[
y_{t}=0.5 y_{t-1}+e_{t}+0.8 e_{t-1}
\]

To compute the autocovariance function at lags zero through four for this model, use the following statements:
```

/* an arma(1,1) model */
phi ={1 -0.5};
theta={1 0.8};
call armacov(auto, cross,convol,phi,theta,5);
print auto,,cross convol;

```

The result is as follows:

AUTO
3.25333332 .42666671 .21333330 .60666670 .3033333
\begin{tabular}{rrrr}
CROSS & \multicolumn{3}{c}{ CONVOL } \\
2.04 & 0.8 & 1.64 & 0.8
\end{tabular}

\section*{ARMALIK Call}
computes the log likelihood and residuals for an ARMA model
CALL ARMALIK(Inl, resid, std, \(x\), phi, theta);
The inputs to the ARMALIK subroutine are as follows:
\(x \quad\) is an \(n \times 1\) or \(1 \times n\) matrix containing values of the time series (assuming mean zero).
phi is a \(1 \times(p+1)\) matrix containing the autoregressive parameter values. The first element is assumed to have the value 1 .
theta is a \(1 \times(q+1)\) matrix containing the moving-average parameter values. The first element is assumed to have the value 1 .

The ARMALIK subroutine returns the following values:
\(\ln l \quad\) specifies a \(3 \times 1\) matrix containing the log likelihood concentrated with respect to the innovation variance; the estimate of the innovation variance (the unconditional sum of squares divided by \(n\)); and the \(\log\) of the determinant of the variance matrix, which is standardized to unit variance for the innovations.
resid \(\quad\) specifies an \(n \times 1\) matrix containing the standardized residuals. These values are uncorrelated with a constant variance if the specified ARMA model is the correct one.
std
specifies an \(n \times 1\) matrix containing the scale factors used to standardize the residuals. The actual residuals from the one-step-ahead predictions using the past values can be computed as std\#resid.

The ARMALIK subroutine computes the concentrated log-likelihood function for an ARMA model. The unconditional sum of squares is readily available, as are the one-step-ahead prediction residuals. Factors that can be used to generate confidence limits associated with prediction from a finite past sample are also returned.

The notational conventions for the ARMALIK subroutine are the same as those used by the ARMACOV subroutine. See the description of the ARMACOV call for the model employed. In addition, the condition \(\sum_{i=0}^{q} \theta_{i z}^{i} \neq 0\) for \(|z|<1\) should be satisfied to guard against floating-point overflow.

If the column vector x contains \(n\) values of a time series and the variance matrix is denoted \(\Sigma=\sigma^{2} \mathbf{V}\), where \(\sigma^{2}\) is the variance of the innovations, then, up to additive constants, the \(\log\) likelihood, concentrated with respect to \(\sigma^{2}\), is
\[
-\frac{n}{2} \log \left(\mathbf{x}^{\prime} \mathbf{V}^{-1} \mathbf{x}\right)-\frac{1}{2} \log |\mathbf{V}|
\]

The matrix \(\mathbf{V}\) is a function of the specified ARMA model parameters. If \(\mathbf{L}\) is the lower Cholesky root of \(\mathbf{V}\) (that is, \(\mathbf{V}=\mathbf{L} \mathbf{L}^{\prime}\)), then the standardized residuals are computed as resid \(=\mathbf{L}^{-1} \mathbf{x}\). The elements of \(s t d\) are the diagonal elements of \(\mathbf{L}\). The variance estimate is \(\mathbf{x}^{\prime} \mathbf{V}^{-1} \mathbf{x} / n\), and the \(\log\) determinant is \(\log |\mathbf{V}|\). See Ansley (1979) for further details. Consider the following model:
\[
y_{t}-y_{t}-1+0.25 y_{t-2}=e_{t}+0.5 e_{t-1}
\]

To compute the log likelihood for this model, use the following IML code:
```

phi={ 1 -1 0.25} ;
theta={ 1 0.5} ;
x={ 1 2 3 4 5} ;
call armalik(lnl,resid,std,x,phi,theta);
print lnl resid std;

```

The printed output is as follows:
\begin{tabular}{rrr}
LNL & RESID & STD \\
-0.822608 & 0.4057513 & 2.4645637 \\
0.8721154 & 0.9198158 & 1.2330147 \\
2.3293833 & 0.8417343 & 1.0419028 \\
& 1.0854175 & 1.0098042 \\
& 1.2096421 & 1.0024125
\end{tabular}

\section*{ARMASIM Function}

\section*{simulates a univariate ARMA series}

ARMASIM(phi, theta, mu, sigma, \(n,<\) seed \(>\))
The inputs to the ARMASIM function are as follows:
phi is a \(1 \times(p+1)\) matrix containing the autoregressive parameters. The first element is assumed to have the value 1 .
theta is a \(1 \times(q+1)\) matrix containing the moving-average parameters. The first element is assumed to have the value 1 .
\(m и \quad\) is a scalar containing the overall mean of the series.
sigma is a scalar containing the standard deviation of the innovation series.
\(n\)
is a scalar containing \(n\), the length of the series. The value of \(n\) must be greater than 0 .
seed
is a scalar containing the random number seed. At the first execution of the function, the seed variable is used as follows:

If seed \(>0\), the input seed is used for generating the series.
If seed \(=0\), the system clock is used to generate the seed.
If seed \(<0\), the value \((-1) \times(\) seed \()\) is used for generating the series.
If the seed is not supplied, the system clock is used to generate the seed.
On subsequent calls of the function in the DO loop-like environment, the seed variable is used as follows: If seed \(>0\), the seed remains unchanged. In other cases, after each execution of the function, the current seed is updated internally.

The ARMASIM function generates a series of length \(n\) from a given autoregressive moving-average (ARMA) time series model and returns the series in an \(n \times 1\) matrix. The notational conventions for the ARMASIM function are the same as those used by the ARMACOV subroutine. See the description of the ARMACOV call for the model employed. The ARMASIM function uses an exact simulation algorithm as described in Woodfield (1988). A sequence \(Y_{0}, Y_{1}, \ldots, Y_{p+q-1}\) of starting values is produced by using an expanded covariance matrix, and then the remaining values are generated by using the following recursion form of the model:
\[
Y_{t}=-\sum_{i=1}^{p} \phi_{i} Y_{t-i}+\epsilon_{t}+\sum_{i=1}^{q} \theta_{i} \epsilon_{t-i} \quad t=p+q, p+q+1, \ldots, n-1
\]

The random number generator RANNOR is used to generate the noise component of the model. Note that the following statement returns \(n\) standard normal pseudorandom deviates:
```

armasim(1, 1,0,1,n,seed);

```

For example, consider the following model:
\[
y_{t}=0.5 y_{t-1}+e_{t}+0.8 e_{t-1}
\]

To generate a time series of length 10 from this model, use the following code to produce the result shown:
```

phi={1 -0.5};
theta={1 0.8};
y=armasim(phi, theta, 0, 1, 10, -1234321);
print y;

```
\(Y\)
2.3253578
0.975835
-0.376358
-0.878433
-2.515351
-3.083021
-1.996886
-1.839975
-0.214027
1.4786717

\section*{BLOCK Function}

\section*{forms block-diagonal matrices}
\[
\text { BLOCK(matrix } 1<, \text { matrix2,. .., matrix15>) }
\]
where matrix is a numeric matrix or literal.
The BLOCK function creates a new block-diagonal matrix from all the matrices specified in the argument matrices. Up to 15 matrices can be specified. The matrices are combined diagonally to form a new matrix. For example, consider the following statement:
```

block(a,b,c);

```

This statement produces a matrix of the form
\[
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right]
\]

The following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={2 2,
4 4} ;
b={6 6,
8 8};
c=block (a,b);

```
\begin{tabular}{ccccc}
& \multicolumn{2}{c}{4 rows } & 4 cols & (numeric) \\
& & 2 & 0 & 0 \\
2 & 4 & 0 & 0 \\
4 & 0 & 6 & 6 \\
0 & 0 & 8 & 8
\end{tabular}

\section*{BRANKS Function}
computes bivariate ranks

\section*{BRANKS(matrix)}
where matrix is an \(n \times 2\) numeric matrix.
The BRANKS function calculates the tied ranks and the bivariate ranks for an \(n \times 2\) matrix and returns an \(n \times 3\) matrix of these ranks. The tied ranks of the first column of matrix are contained in the first column of the result matrix; the tied ranks of the second column of matrix are contained in the second column of the result matrix; and the bivariate ranks of matrix are contained in the third column of the result matrix.

The tied rank of an element \(x_{j}\) of a vector is defined as
\[
\mathbf{R}_{i}=\frac{1}{2}+\sum_{j} u\left(x_{i}-x_{j}\right)
\]
where
\[
u(t)= \begin{cases}1 & \text { if } t>0 \\ \frac{1}{2} & \text { if } t=0 \\ 0 & \text { if } t<0\end{cases}
\]

The bivariate rank of a pair \(\left(x_{j}, y_{j}\right)\) is defined as
\[
\mathbf{Q}_{i}=\frac{3}{4}+\sum_{j} u\left(x_{i}-x_{j}\right) u\left(y_{i}-y_{j}\right)
\]

For example, consider the following statements and the output they produce:
```

x={1 0,
4 2,
3 4,
5 3,
6 3};
f=branks (x) ;

```
F \begin{tabular}{cccc}
5 rows & 3 cols & (numeric) \\
& & \\
& 1 & 1 & 1 \\
3 & 2 & 2 \\
2 & 5 & 2 \\
4 & 3.5 & 3 \\
5 & 3.5 & 3.5
\end{tabular}
\[
\text { BSPLINE }(x, d, k<, i>)
\]

The inputs to the BSPLINE function are as follows:
\(x \quad\) is an \(m \times 1\) or \(1 \times m\) numeric vector.
\(d \quad\) is a nonnegative numeric scalar value that specifies the degree of the B-spline. Note that the order of a B-spline is one greater than the degree.
\(k \quad\) is a numeric vector of size \(n\) that contains the B-spline knots or a scalar that denotes the number of interior knots. When \(n>1\), the elements of the knot vector must be nondecreasing, \(k_{j-1} \leq k_{j}\) for \(j=2, \cdots, n\).
\(i \quad\) is an optional argument that specifies the number of interior knots when \(n=1\) and \(k\) contains a missing value. In this case the BSPLINE function constructs a vector of knots as follows. If \(x_{(1)}\) and \(x_{(m)}\) are the smallest and largest value in the \(x\) vector, then interior knots are placed at
\[
x_{(1)}+j\left(x_{(m)}-x_{(1)}\right) /(k+1), \quad j=1, \cdots, k
\]

In addition, \(d\) exterior knots are placed under \(x_{(1)}\) and \(\max (d, 1)\) exterior knots are placed over \(x_{(m)}\). The exterior knots are evenly spaced and start at \(x_{(1)}-\) \(1 \mathrm{E}-12\) and \(x_{(m)}+1 \mathrm{E}-12\). In this case the BSPLINE function returns a matrix with \(m\) rows and \(i+d+1\) columns.

The BSPLINE function computes B-splines of degree \(d\). Suppose that \(B_{j}^{d}(x)\) denotes the \(j\) th B-spline of degree \(d\) in the knot sequence \(k_{1}, \cdots, k_{n}\). de Boor (2001) defines the splines based on the following relationships:
\[
B_{j}^{0}(x)= \begin{cases}1 & k_{j} \leq x<k_{j+1} \\ 0 & \text { otherwise }\end{cases}
\]
and for \(d>0\)
\[
\begin{aligned}
B_{j}^{d}(x) & =w_{j}^{d}(x) B_{j}^{d-1}(x)+\left(1-w_{j+1}^{d}(x)\right) B_{j+1}^{d-1}(x) \\
w_{j}^{d}(x) & =\frac{x-k_{j}}{k_{j+d}-k_{j}}
\end{aligned}
\]

Note that de Boor (2001) expresses B-splines in terms of order rather than degree; in his notation \(B_{j, d}=B_{j}^{d-1}\). B-splines have many interesting properties. For example:
- \(\sum_{j} B_{j}^{d}=1\)
- The sequence \(B_{j}^{d}\) is positive on \(d+1\) knots and zero elsewhere.
- The B-spline \(B_{j}^{d}\) is a piecewise polynomial of at most \(d+1\) pieces.
- If \(k_{j}=k_{j+d}\), then \(B_{j}^{d-1}=0\).

See de Boor (2001) for more details. The BSPLINE function defines B-splines of degree 0 as nonzero if \(k_{j}<x \leq k_{j+1}\).

A typical knot vector for calculating B-splines consists of \(d\) exterior knots smaller than the smallest data value, and \(\max \{d, 1\}\) exterior knots larger than the largest data value. The remaining knots are the interior knots.

For example, consider the following statements and the output they produce:
```

x = {2.5 3 4.5 5.1};
knots = {0 1 2 3 4 5 6 7 8};
bsp = bspline(x,3,knots);
print bsp[format=best7.];
0.02083 0.47917 0.47917 0.02083 0

```

```

    0 0 0.02083 0.47917 0.47917 0.02083 0
    0 0 0 0.1215 0.65717 0.22117 0.00017
    ```

In this example there are \(n^{*}=3\) interior knots and the BSPLINE function returns a matrix with \(n^{*}+d+1=3+3+1=7\) columns. If you pass an \(x\) vector of data values, you can also rely on the BSPLINE function to compute a knot vector for you. For example, the following statements produce \(B\)-splines of degree 2 based on 4 equally spaced interior knots:
```

n = 20;
x = ranuni (J(n, 1, 45));
bsp = bspline(x,2,.,4);
print bsp[format=8.3];

```

The resulting matrix is as follows:
\begin{tabular}{lllllll}
0.000 & 0.104 & 0.748 & 0.147 & 0.000 & 0.000 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.286 & 0.684 & 0.030 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.517 & 0.483 \\
0.000 & 0.000 & 0.000 & 0.217 & 0.725 & 0.058 & 0.000 \\
0.000 & 0.000 & 0.239 & 0.713 & 0.048 & 0.000 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.446 & 0.553 & 0.002 & 0.000 \\
0.000 & 0.000 & 0.394 & 0.600 & 0.006 & 0.000 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.064 & 0.729 & 0.207 \\
0.000 & 0.389 & 0.604 & 0.007 & 0.000 & 0.000 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.500 & 0.500 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.210 & 0.728 & 0.062 \\
0.000 & 0.000 & 0.014 & 0.639 & 0.347 & 0.000 & 0.000 \\
0.000 & 0.001 & 0.546 & 0.453 & 0.000 & 0.000 & 0.000 \\
0.500 & 0.500 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
0.304 & 0.672 & 0.024 & 0.000 & 0.000 & 0.000 & 0.000 \\
0.000 & 0.020 & 0.659 & 0.322 & 0.000 & 0.000 & 0.000 \\
0.000 & 0.277 & 0.690 & 0.033 & 0.000 & 0.000 & 0.000 \\
0.386 & 0.606 & 0.007 & 0.000 & 0.000 & 0.000 & 0.000 \\
0.000 & 0.000 & 0.000 & 0.000 & 0.022 & 0.667 & 0.311 \\
0.008 & 0.612 & 0.380 & 0.000 & 0.000 & 0.000 & 0.000
\end{tabular}

\section*{BTRAN Function}

\section*{computes the block transpose}

BTRAN \((x, n, m)\)
The inputs to the BTRAN function are as follows:
\(x \quad\) is an \((i n) \times(j m)\) numeric matrix.
\(n \quad\) is a scalar with a value that specifies the row dimension of the submatrix blocks.
\(m \quad\) is a scalar with a value that specifies the column dimension of the submatrix blocks.

The BTRAN function computes the block transpose of a partitioned matrix. The argument \(x\) is a partitioned matrix formed from submatrices of dimension \(n \times n\). If the \(i\) th, \(j\) th submatrix of the argument \(x\) is denoted \(\mathbf{A}_{i j}\), then the \(i\) th, \(j\) th submatrix of the result is \(\mathbf{A}_{j i}\).

The value returned by the BTRAN function is a \((j n) \times(i m)\) matrix, the block transpose of \(x\), where the blocks are \(n \times m\).

For example, the following statements produce the matrix \(\mathbf{Z}\), as shown:
```

z=btran({$$
\begin{array}{llll}{1 2 3 4,}\end{array}
$$,\mp@code{l}
5 6 7 8},2,2);
print z;

```
Z 4 rows 2 cols (numeric)
\begin{tabular}{ll}
1 & 2 \\
5 & 6 \\
3 & 4 \\
7 & 8
\end{tabular}

\section*{BYTE Function}
translates numbers to ordinal characters

\section*{BYTE(matrix)}
where matrix is a numeric matrix or literal.
The BYTE function returns a character matrix with the same shape as the numeric argument. Each element of the result is a single character with an ordinal position in the computer's character set that is specified by the corresponding numeric element in the argument. These numeric elements should generally be in the range 0 to 255 .

For example, in the ASCII character set, the following two statements are equivalent:
```

a=byte(47);

```
```

a="/"; /* the slash character */

```

The lowercase alphabet can be generated with the following statement:
```

y=byte(97:122);

```

This statement produces the following matrix:
```

Y 1 row (character, size 1)

```


This function simplifies the use of special characters and control sequences that cannot be entered directly into IML source code by using the keyboard. Consult the character set tables for the computer you are using to determine the printable and control characters that are available and their ordinal positions.

\section*{CALL Statement}

\section*{calls a subroutine or function}

\section*{CALL name \(<\) (arguments) \(>\);}

The inputs to the CALL statement are as follows:
\begin{tabular}{ll}
name & \begin{tabular}{l}
is the name of a user-defined module or an IML subroutine or func- \\
tion.
\end{tabular} \\
arguments & are arguments to the module or subroutine.
\end{tabular}

The CALL statement executes a subroutine. The order of resolution for the CALL statement is as follows:
1. IML built-in subroutine
2. user-defined module

This resolution order needs to be considered only if you have defined a module with the same name as an IML built-in subroutine.

See also the section on the RUN statement.

\section*{CHANGE Call}
searches and replaces text in an array
CALL CHANGE(matrix, old, new<, numchange \(>\));
The inputs to the CHANGE call are as follows:
matrix is a character matrix or quoted literal.
old is the string to be changed.
new \(\quad\) is the string to replace the old string.
numchange is the number of times to make the change.
The CHANGE subroutine changes the first numchange occurrences of the substring old in each element of the character array matrix to the form new. If numchange is not specified, the routine defaults to 1 . If numchange is 0 , the routine changes all occurrences of old. If no occurrences are found, the matrix is not changed. For example, consider the following statements:
```

a="It was a dark and stormy night.";
call change(a, "night","day");

```

The result of these statements is as follows:
```

A="It was a dark and stormy day."

```

In the old operand, the following characters are reserved:
\[
\% \$[]\}<>- \text { ? * \# @ ' '(backquote) ^ }
\]

\section*{CHAR Function}

\section*{produces a character representation of a numeric matrix}

CHAR(matrix \(<, w<, d \gg\))
The inputs to the CHAR function are as follows:
\begin{tabular}{ll}
matrix & is a numeric matrix or literal. \\
\(w\) & is the field width. \\
\(d\) & is the number of decimal positions.
\end{tabular}

The CHAR function takes a numeric matrix as an argument and, optionally, a field width \(w\) and a number of decimal positions \(d\). The CHAR function produces a character matrix with dimensions that are the same as the dimensions of the argument
matrix and with elements that are character representations of the corresponding numeric elements.

The CHAR function can take one, two, or three arguments. The first argument is the name of a numeric matrix and must always be supplied. The second argument is the field width of the result. If the second argument is not supplied, the system default field width is used. The third argument is the number of decimal positions in the result. If no third argument is supplied, the best representation is used. See also the description of the NUM function, which does the reverse conversion.

For example, the following statements produce the matrix \(\mathbf{F}\), as shown:
```

a={$$
\begin{array}{llll}{1}&{2}&{3}&{4}\end{array}
$$};
f=char(a,4,1);

```
```

    F 1 row 4 cols (character, size 4)
    ```
 \(1.0 \quad 2.0 \quad 3.0 \quad 4.0\)

\section*{CHOOSE Function}
```

conditionally chooses and changes elements
CHOOSE( condition, result-for-true, result-for-false)

```

The inputs to the CHOOSE function are as follows:
condition is checked for being true or false for each element.
result-for-true is returned when condition is true.
result-for-false is returned when condition is false.

The CHOOSE function examines each element of the first argument for being true (nonzero and not missing) or false (zero or missing). For each true element, it returns the corresponding element in the second argument. For each false element, it returns the corresponding element in the third argument. Each argument must be conformable with the others or be a single element to be propagated.

For example, suppose that you want to choose between \(x\) and \(y\) according to whether \(x \# y\) is odd or even, respectively. You can use the following statements to execute this task:
```

x={1, 2, 3, 4, 5};
y={101, 205, 133, 806, 500};
r=choose (mod (x\#y,2)=1,x,y);
print x y r;

```

Here is the result:
\begin{tabular}{rrr}
\(\mathbf{X}\) & \(\mathbf{Y}\) & \(\mathbf{R}\) \\
1 & 101 & 1 \\
2 & 205 & 205 \\
3 & 133 & 3 \\
4 & 806 & 806 \\
5 & 500 & 500
\end{tabular}

Suppose you want all missing values in \(x\) to be changed to zeros. Submit the following statements to create a matrix with missing values:
```

x={1 2 ., 100 . -90, . 5 8};
print x;

```
\begin{tabular}{cccc}
3 & rows & 3 cols & (numeric) \\
1 & 2 & \\
100 &. & -90 \\
& \(\cdot\) & 5 & 8
\end{tabular}

The following statement replaces the missing values in \(\mathbf{X}\) with zeros:
```

x=choose (x=., 0, x);
print x;

```
\begin{tabular}{cccc}
3 rows & 3 cols & (numeric) \\
& 1 & 2 & 0 \\
100 & 0 & -90 \\
0 & 5 & 8
\end{tabular}

\section*{CLOSE Statement}

\section*{closes a SAS data set}
```

CLOSE <SAS-data-set>;

```
where \(S A S\)-data-set can be specified with a one-level name (for example, A) or a two-level name (for example, SASUSER.A). For more information about specifying SAS data sets, see Chapter 6. Also, refer to the chapter on SAS data sets in \(S A S\) Language Reference: Concepts. More than one SAS data set can be listed in a CLOSE statement.

The CLOSE statement is used to close one or more SAS data sets opened with the USE, EDIT, or CREATE statement. To find out which data sets are open, use the SHOW DATASETS statement; see also the section on the SAVE statement later in this chapter. IML automatically closes all open data sets when a QUIT statement is executed. See Chapter 6 for more information.

Examples of the CLOSE statement are as follows:
```

close mydata;
close mylib.mydata;
close; /* closes the current data set */

```

\section*{CLOSEFILE Statement}

\section*{closes an input or output file CLOSEFILE files;}
where files can be names (for defined filenames), literals, or expressions in parentheses (for pathnames).

The CLOSEFILE statement is used to close files opened by the INFILE or FILE statement. The file specification should be the same as when the file was opened. File specifications are either a name (for a defined filename), a literal, or an expression in parentheses (for a pathname). To find out what files are open, use the SHOW FILES statement. For further information, consult Chapter 7. See also the description of the SAVE statement. IML automatically closes all files when a QUIT statement is executed.

Examples of the CLOSEFILE statement follow:
```

filename in1 'mylib.mydata';
closefile in1;
closefile 'mylib.mydata';
in='mylib/mydata';
closefile(in);

```

\section*{COMPORT Call}

\section*{provides complete orthogonal decomposition by Householder transformations}

CALL COMPORT(\(q, r, p\), piv, lindep, \(a<, b><\), sing \(>\));
The COMPORT subroutine returns the following values:
\(q\)
If \(b\) is not specified, \(q\) is the \(m \times m\) orthogonal matrix \(\mathbf{Q}\) that is the product of the \(\min (m, n)\) separate Householder transformations. If \(b\) is specified, \(q\) is the \(m \times p\) matrix \(\mathbf{Q}^{\prime} \mathbf{B}\) that has the transposed Householder transformations \(\mathbf{Q}^{\prime}\) applied on the \(p\) columns of the argument matrix \(\mathbf{B}\).
\(r\)
is the \(n \times n\) upper triangular matrix \(\mathbf{R}\) that contains the \(r \times r\) nonsingular upper triangular matrix \(\mathbf{L}^{\prime}\) of the complete orthogonal decomposition, where \(r \leq n\) is the rank of \(\mathbf{A}\). The full \(m \times n\) upper triangular matrix \(\mathbf{R}\) of the orthogonal decomposition of matrix \(\mathbf{A}\) can be obtained by vertical concatenation (IML operator //) of the \((m-n) \times n\) zero matrix to the result \(r\).
is an \(n \times n\) matrix that is the product \(\mathbf{P} \boldsymbol{\Pi}\) of a permutation matrix \(\boldsymbol{\Pi}\) with an orthogonal matrix \(\mathbf{P}\). The permutation matrix is determined by the vector piv.
piv \(\quad\) is an \(n \times 1\) vector of permutations of the columns of \(\mathbf{A}\). That is, the QR decomposition is computed, not of \(\mathbf{A}\), but of the matrix with columns \(\left[\mathbf{A}_{p i v[1]} \cdots \mathbf{A}_{p i v[n]}\right]\). The vector piv corresponds to an \(n \times n\) permutation matrix, \(\boldsymbol{\Pi}\), of the pivoted QR decomposition in the first step of orthogonal decomposition.
lindep specifies the number of linearly dependent columns in the matrix \(\mathbf{A}\) detected by applying the \(r\) Householder transformation in the order specified by the argument piv. That is, lindep \(=n-r\).

The inputs to the COMPORT subroutine are as follows:
\(a\)
specifies the \(m \times n\) matrix \(\mathbf{A}\), with \(m \geq n\), which is to be decomposed into the product of the \(m \times m\) orthogonal matrix \(\mathbf{Q}\), the \(n \times n\) upper triangular matrix \(\mathbf{R}\), and the \(n \times n\) orthogonal matrix \(\mathbf{P}\),
\[
\mathbf{A}=\mathbf{Q}\left[\begin{array}{c}
\mathbf{R} \\
0
\end{array}\right] \Pi^{\prime} \mathbf{P}^{\prime} \boldsymbol{\Pi}
\]
\(b\)
specifies an optional \(m \times p\) matrix \(\mathbf{B}\) that is to be left multiplied by the transposed \(m \times m\) matrix \(\mathbf{Q}^{\prime}\).
sing is an optional scalar specifying a singularity criterion.

The complete orthogonal decomposition of the singular matrix \(\mathbf{A}\) can be used to compute the Moore-Penrose inverse \(\mathbf{A}^{-}, r=\operatorname{rank}(\mathbf{A})<n\), or to compute the minimum 2-norm solution of the (rank deficient) least squares problem \(\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}\).
1. Use the QR decomposition of \(\mathbf{A}\) with column pivoting,
\[
\mathbf{A}=\mathbf{Q}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \boldsymbol{\Pi}^{\prime}=\left[\begin{array}{ll}
\mathbf{Y} & \mathbf{Z}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{1} & \mathbf{R}_{2} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \boldsymbol{\Pi}^{\prime}
\]
where \(\mathbf{R}=\left[\begin{array}{ll}\mathbf{R}_{1} & \mathbf{R}_{2}\end{array}\right] \in \mathcal{R}^{r \times t}\) is upper trapezoidal, \(\mathbf{R}_{1} \in \mathcal{R}^{r \times r}\) is upper triangular and invertible, \(\mathbf{R}_{2} \in \mathcal{R}^{r \times s}, \mathbf{Q}=\left[\begin{array}{ll}\mathbf{Y} & \mathbf{Z}\end{array}\right]\) is orthogonal, \(\mathbf{Y} \in\) \(\mathcal{R}^{t \times r}, \mathbf{Z} \in \mathcal{R}^{t \times s}\), and \(\boldsymbol{\Pi}\) permutes the columns of \(\mathbf{A}\).
2. Use the transpose \(\mathbf{L}_{12}\) of the upper trapezoidal matrix \(\mathbf{R}=\left[\begin{array}{ll}\mathbf{R}_{1} & \mathbf{R}_{2}\end{array}\right]\),
\[
\mathbf{L}_{12}=\left[\begin{array}{l}
\mathbf{L}_{1} \\
\mathbf{L}_{2}
\end{array}\right]=\mathbf{R}^{\prime} \in \mathcal{R}^{t \times r}
\]
with \(\operatorname{rank}\left(\mathbf{L}_{12}\right)=\operatorname{rank}\left(\mathbf{L}_{1}\right)=r, \mathbf{L}_{1} \in \mathcal{R}^{r \times r}\) lower triangular, \(\mathbf{L}_{2} \in \mathcal{R}^{s \times r}\). The lower trapezoidal matrix \(\mathbf{L}_{12} \in \mathcal{R}^{t \times r}\) is premultiplied with \(r\) Householder transformations \(\mathbf{P}_{1}, \ldots, \mathbf{P}_{r}\) :
\[
\mathbf{P}_{r} \cdots \mathbf{P}_{1}\left[\begin{array}{l}
\mathbf{L}_{1} \\
\mathbf{L}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{L} \\
\mathbf{0}
\end{array}\right]
\]
each zeroing out one of the \(r\) columns of \(\mathbf{L}_{2}\) and producing the nonsingular lower triangular matrix \(\mathbf{L} \in \mathcal{R}^{r \times r}\). Therefore, you obtain
\[
\mathbf{A}=\mathbf{Q}\left[\begin{array}{cc}
\mathbf{L}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \boldsymbol{\Pi}^{\prime} \mathbf{P}^{\prime}=\mathbf{Y}\left[\begin{array}{ll}
\mathbf{L}^{\prime} & \mathbf{0}
\end{array}\right] \boldsymbol{\Pi}^{\prime} \mathbf{P}^{\prime}
\]
with \(\mathbf{P}=\boldsymbol{\Pi} \mathbf{P}_{r} \cdots \mathbf{P}_{1} \in \mathcal{R}^{t \times t}\) and upper triangular \(\mathbf{L}^{\prime}\). This second step is described in Golub and Van Loan (1989, p. 220 and p. 236).
3. Compute the Moore-Penrose inverse \(\mathbf{A}^{-}\)explicitly:
\[
\mathbf{A}^{-}=\mathbf{P} \boldsymbol{\Pi}\left[\begin{array}{cc}
\left(\mathbf{L}^{\prime}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{Q}^{\prime}=\mathbf{P} \boldsymbol{\Pi}\left[\begin{array}{c}
\left(\mathbf{L}^{\prime}\right)^{-1} \\
\mathbf{0}
\end{array}\right] \mathbf{Y}^{\prime}
\]
(a) Obtain \(\mathbf{Y}\) in \(\mathbf{Q}=\left[\begin{array}{ll}\mathbf{Y} & \mathbf{Z}\end{array}\right]\) explicitly by applying the \(r\) Householder transformations obtained in the first step to \(\left[\begin{array}{c}\mathbf{I}_{r} \\ \mathbf{0}\end{array}\right]\).
(b) Solve the \(r \times r\) lower triangular system \(\left(\mathbf{L}^{\prime}\right)^{-1} \mathbf{Y}^{\prime}\) with \(t\) right-hand sides by using backward substitution, which yields an \(r \times t\) intermediate matrix.
(c) Left-apply the \(r\) Householder transformations in \(\mathbf{P}\) on the \(r \times t\) intermediate matrix \(\left[\begin{array}{c}\left(\mathbf{L}^{\prime}\right)^{-1} \mathbf{Y}^{\prime} \\ \mathbf{0}\end{array}\right]\), which results in the symmetric matrix \(\mathbf{A}^{-} \in \mathcal{R}^{t \times t}\).

The GINV function computes the Moore-Penrose inverse \(\mathbf{A}^{-}\)by using the singular value decomposition of \(\mathbf{A}\). Using complete orthogonal decomposition to compute \(\mathbf{A}^{-}\)usually requires far fewer floating-point operations. However, it can be slightly more sensitive to rounding errors, which can disturb the detection of the true rank of A, than singular value decomposition.

The following example demonstrates the use of the APPCORT subroutine, as well as the resulting output:
```

/* Only four linearly independent columns */
A = {1 0 1 0 0,
1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };
m = nrow(A);
n = ncol(A);
call comport(q,r,p,piv,lindep,A);
fullR = r // j(m-n, n, 0);
perm = i(n);
perm[piv,] = i(n);
/* recover A from factorization */
A2 = q*fullR*p`*perm`;

```
```

reset fuzz;
print A2;
/* compute Moore-Penrose generalized inverse */
rankA = n - lindep;
subR = R[1:rankA, 1:rankA];
fullRinv = j(n, n, 0);
fullRinv[1:rankA, 1:rankA] = inv(subR);
Ainv = perm*p*fullRinv*q[,1:n]`;
print Ainv;
/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |
any (Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv) '-A*Ainv > eps) |
any((Ainv*A) '-Ainv*A > eps) then
print "Pseudoinverse conditions not satisfied";
else
print "Pseudoinverse conditions satisfied";
A2

1	0	1	0	0
1	0	0	1	0
1	0	0	0	1
0	1	1	0	0
0	1	0	1	0
0	1	0	0	1


0.2666667	0.2666667	0.2666667	-0.066667	-0.066667	-0.066667
-0.066667	-0.066667	-0.066667	0.2666667	0.2666667	0.2666667
0.4	-0.1	-0.1	0.4	-0.1	-0.1
-0.1	0.4	-0.1	-0.1	0.4	-0.1
-0.1	-0.1	0.4	-0.1	-0.1	0.4

Pseudoinverse conditions satisfied

```

\section*{CONCAT Function}
performs elementwise string concatenation
CONCAT(argument1, argument2<, . ., argument15>)
where arguments are character matrices or quoted literals.
The CONCAT function produces a character matrix containing elements that are the concatenations of corresponding element strings from each argument. The CONCAT function accepts up to 15 arguments, where each argument is a character matrix or a scalar. All nonscalar arguments must conform. Any scalar arguments are used repeatedly to concatenate to all elements of the other arguments. The element length of the result equals the sum of the element lengths of the arguments. Trailing blanks
of one matrix argument appear before elements of the next matrix argument in the result matrix. For example, suppose you specify the following matrices:
```

b={"AB" "C ",
"DE" "FG"};
C={"H " "IJ",
" K" "LM"};

```

The following statement produces the new \(2 \times 2\) matrix \(\mathbf{A}\), as shown:
```

a=concat (b,c);
A 2 rows 2 cols (character, size 4)
ABH C IJ
DE K FGLM

```

Quotation marks (") are needed only if you want to embed blanks or maintain uppercase and lowercase distinctions. You can also use the ADD infix operator to concatenate character operands. See the description of the addition operator.

\section*{CONTENTS Function}
obtains the variables in a SAS data set
CONTENTS(< libref><, SAS-data-set>)
where \(S A S\)-data-set can be specified with a one-level name or with a libref and a SAS data set name. For more information about specifying SAS data sets, see Chapter 6. Also, refer to the chapter on SAS data sets in SAS Language Reference: Concepts.

The CONTENTS function returns a character matrix containing the variable names for SAS-data-set. The result is a character matrix with \(n\) rows, one column, and 8 characters per element, where \(n\) is the number of variables in the data set. The variable list is returned in the order in which the variables occur in the data set. If a one-level name is provided, IML uses the default SAS data library (as specified in the DEFLIB= option). If no arguments are specified, the current open input data set is used. Some examples follow:
```

x=contents(); /* current open input data set */
x=contents('work','a'); /* contents of data set A in */
/* WORK library */

```

See also the description of the SHOW contents statement.

\section*{CONVEXIT Function}
calculates and returns a scalar containing the convexity of a noncontingent cash flow

\section*{CONVEXIT(times,flows, ytm)}

The CONVEXIT function calculates and returns a scalar containing the convexity of a noncontingent cash flow.
times is an \(n\)-dimensional column vector of times. Elements should be nonnegative.
flows is an \(n\)-dimensional column vector of cash flows.
\(\mathrm{ytm} \quad\) is the per-period yield-to-maturity of the cash-flow stream. This is a scalar and should be positive.

Convexity is essentially a measure of how duration, the sensitivity of price to yield, changes as interest rates change:
\[
C=\frac{1}{P} \frac{d^{2} P}{d y^{2}}
\]

With cash flows that are not yield sensitive, and the assumption of parallel shifts to a flat term structure, convexity is given by
\[
C=\frac{\sum_{k=1}^{K} t_{k}\left(t_{k}+1\right) \frac{c(k)}{(1+y)^{t_{k}}}}{P(1+y)^{2}}
\]
where \(P\) is the present value, \(y\) is the effective per-period yield-to-maturity, \(K\) is the number of cash flows, and the \(k\) th cash flow is \(c(k) t_{k}\) periods from the present.

Consider the following statements:
```

timesn=T(do(1, 100,1));
flows=repeat (10,100);
ytm=0.1;
convexit=convexit(timesn, flows,ytm) ;
print convexit;

```

These statements result in the following output:

CONVEXIT
199.26229

\section*{COVLAG Function}

\section*{COVLAG(\(x, k\))}

The inputs to the COVLAG function are as follows:
\(x \quad\) is an \(n \times n v\) matrix of time series values; \(n\) is the number of observations, and \(n v\) is the dimension of the random vector.
\(k \quad\) is a scalar, the absolute value of which specifies the number of lags desired. If \(k\) is positive, a mean correction is made. If \(k\) is negative, no mean correction is made.

The COVLAG function computes a sequence of lagged crossproduct matrices. This function is useful for computing sample autocovariance sequences for scalar or vector time series.

The value returned by the COVLAG function is an \(n v \times(k * n v)\) matrix. The \(i\) th \(n v \times n v\) block of the matrix is the sum
\[
\frac{1}{n} \sum_{j=i}^{n} x_{j}^{\prime} x_{j-i+1} \quad \text { if } k<0
\]
where \(x_{j}\) is the \(j\) th row of \(x\). If \(k>0\), then the \(i\) th \(n v \times n v\) block of the matrix is
\[
\frac{1}{n} \sum_{j=i}^{n}\left(x_{j}-\bar{x}\right)^{\prime}\left(x_{j-i+1}-\bar{x}\right)
\]
where \(\bar{x}\) is a row vector of the column means of \(x\). For example, the following statements produce the matrix COV, as shown:
```

x={-9,-7,-5,-3,-1,1,3,5,7,9};
cov=covlag(x,4);
COV
1 row
4 cols
(numeric)
3 3
23.1
13.6
4.9

```

\section*{CREATE Statement}
creates a new SAS data set
CREATE SAS-data-set < VAR operand>;
CREATE SAS-data-set FROM matrix-name
\(<\) [COLNAME=column-name ROWNAME=row-name]>;
The inputs to the CREATE statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a twolevel name (for example, SASUSER.A). For more information about specifying SAS data sets, see Chapter 6. Also refer to the chapter on SAS data sets in SAS Language Reference: Concepts.
operand
matrix-name
column-name is a character matrix or quoted literal containing descriptive names to associate with data set variables.
row-name is a character matrix or quoted literal containing descriptive names to associate with observations on the data set.

The CREATE statement creates a new SAS data set and makes it both the current input and output data sets. The variables in the new SAS data set are either the variables listed in the VAR clause or variables created from the columns of the FROM matrix. The FROM clause and the VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause, where operand can be specified as one of the following:
- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described in the following list:
\begin{tabular}{ll}
ALL & for all variables \\
CHAR & for all character variables \\
NUM & for all numeric variables
\end{tabular}

The following examples demonstrate each possible way you can use the VAR clause:
```

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var_all_; /* a keyword */

```

You can specify a COLNAME= and a ROWNAME= matrix in the FROM clause. The COLNAME= matrix gives names to variables in the SAS data set being created. The COLNAME = operand specifies the name of a character matrix. The first ncol values from this matrix provide the variable names in the data set being created, where ncol is the number of columns in the FROM matrix. The CREATE statement uses the first ncol elements of the COLNAME= matrix in row-major order.

The ROWNAME= operand adds a variable to the data set to contain row titles. The operand must be a character matrix that exists and has values. The length of the data set variable added is the length of a matrix element of the operand. The same

ROWNAME= matrix should be used in any subsequent APPEND statements for this data set.

The variable types and lengths are the current attributes of the matrices specified in the VAR clause or the matrix in the FROM clause. The default type is numeric when the name is undefined and unvalued. The default, when no variables are specified, is all active variables. To add observations to your data set, you must use the APPEND statement.

For example, the following statements create a new SAS data set CLASS having variables NAME, SEX, AGE, HEIGHT, and WEIGHT. The data come from IML matrices with the same names. You must initialize the character variables (NAME and SEX) and set the length prior to invoking the CREATE statement. NAME and SEX are character variables of lengths 12 and 1 , respectively. AGE, HEIGHT, and WEIGHT are, by default, numeric.
```

name="123456789012";
sex="M";
create class var {name sex age height weight};
append;

```

In the next example, you use the FROM clause with the COLNAME= operand to create a SAS data set named MYDATA. The new data set has variables named with the COLNAME \(=\) operand. The data are in the FROM matrix \(\mathbf{X}\), and there are two observations because \(\mathbf{X}\) has two rows of data. The COLNAME= operand gives descriptive names to the data set variables. Here is the code:
```

x={1 2 3, 4 5 6};
varnames='x1':'x3';
/* creates data set MYDATA with variables X1, X2, X3 */
create mydata from x [colname=varnames];
append from x;

```

\section*{CSHAPE Function}

\section*{reshapes and repeats character values}

> CSHAPE(matrix, nrow, ncol, size<, padchar>)

The inputs to the CSHAPE function are as follows:
matrix is a character matrix or quoted literal.
nrow is the number of rows.
ncol is the number of columns.
size is the element length.
padchar
is a padding character.

The CSHAPE function shapes character matrices. See also the description of the SHAPE function, which is used with numeric data.

The dimension of the matrix created by the CSHAPE function is specified by nrow (the number of rows), ncol (the number of columns), and size (the element length). A padding character is specified by padchar.

The CSHAPE function works by looking at the source matrix as if the characters of the source elements had been concatenated in row-major order. The source characters are then regrouped into elements of length size. These elements are assigned to the result matrix, once again in row-major order. If there are not enough characters for the result matrix, the source of the remaining characters depends on whether padding was specified with padchar. If no padding was specified, the source matrix's characters are cycled through again. If a padding character was specified, the remaining characters are all the padding character.

If one of the dimension arguments (nrow, ncol), or size) is zero, the function computes the dimension of the output matrix by dividing the number of elements of the input matrix by the product of the nonzero arguments.
For example, the following statement produces the matrix \(\mathbf{R}\), as shown:
```

r=cshape('abcd', 2,2,1);

```
2 rows 2 cols (character, size 1)

The following statement produces a different matrix \(\mathbf{R}\), as shown:
```

r=cshape('a', 1, 2, 3);
R 1 row 2 cols (character, size 3)
aaa aaa

```

The following statement produces the matrix \(\mathbf{R}\), as shown:
```

r=cshape({'ab' 'cd',
'ef' 'gh',
'ij' 'kl'}, 2, 2, 3);
R
2 rows
2 cols
(character, size 3)
abc def
ghi jkl

```

The following statement produces the matrix \(\mathbf{R}\), as shown:
```

r=cshape('XO', 3, 3,1);

```
```

R 3 rows 3 cols (character, size 1)
x O x
O x O
x O x

```

Finally, the following statement produces the matrix \(\mathbf{R}\), as shown:
```

r=cshape(' abcd' , 2,2,3,'*');

```
R 2 rows 2 cols (character, size 3)

\section*{CUSUM Function}

\section*{calculates cumulative sums}

\section*{CUSUM(matrix)}
where matrix is a numeric matrix or literal.
The CUSUM function returns a matrix of the same dimension as the argument matrix. The result contains the cumulative sums obtained by scanning the argument and summing in row-major order.

For example, the following statements produce the matrices \(\mathbf{A}\) and \(\mathbf{B}\), as shown:
```

a=cusum({1 2 4 5});
b=cusum({5 6, 3 4});

A			row			cols	(numeric)
	1			3		7	12
B		2 rows				cols	(numeric)
				5		11	
				14		18	

```

\section*{CVEXHULL Function}

\section*{finds a convex hull of a set of planar points}

\section*{CVEXHULL(matrix)}
where matrix is an \(n \times 2\) matrix of \((x, y)\) points.
The argument for the CVEXHULL function is an \(n \times 2\) matrix of \((x, y)\) points. The result matrix is an \(n \times 1\) matrix of indices. The indices of points in the convex hull in counterclockwise order are returned as the first part of the result matrix, and the negative of the indices of the internal points are returned as the remaining elements of the result matrix. Any points that lie on the convex hull but lie on a line segment joining two other points on the convex hull are not included as part of the convex hull.

The result matrix can be split into positive and negative parts by using the LOC function. For example, the following statements find the index vector for the convex hull and print the associated points:
```

points = {
0 2, 0.5 2, 1 2, 0.5 1, 0 0, 0.5 0, 1 0,
2-1, 2 0, 2 1, 3 0, 4 1, 4 0, 4 -1,
5 2, 5 1, 5 0, 6 0 };
indices = cvexhull( points );
hullIndices = indices[loc(indices>0)];
convexHull = points[hullIndices, ];
print convexHull;

```
CONVEXHULL
\begin{tabular}{rr}
0 & 2 \\
0 & 0 \\
2 & -1 \\
4 & -1 \\
6 & 0 \\
5 & 2
\end{tabular}

\section*{DATASETS Function}
obtains the names of SAS data sets in a SAS data library
DATASETS(< libref \(>\))
where libref is the name of a SAS data library. For more information about specifying a SAS data library, see Chapter 6.

The DATASETS function returns a character matrix containing the names of the SAS data sets in the specified SAS data library. The result is a character matrix with \(n\) rows and one column, where \(n\) is the number of data sets in the library. If no argument is specified, IML uses the default libname. (See the DEFLIB= option in the description of the RESET statement.)

For example, suppose you have several data sets in the SAS data library SASUSER. You can list the names of the data sets in SASUSER by using the DATASETS function as follows:
```

lib={sasuser};
a=datasets(lib);

```

Here is the output:
A
6 rows
1 col
(character, size 8)
CLASS
FITNESS
GROWTH
HOUSES
SASPARM
TOBACCO

\section*{DELETE Call}

\section*{deletes a SAS data set}

CALL DELETE(< libname,> member-name);
The inputs to the DELETE subroutine are as follows:
libname is a character matrix or quoted literal containing the name of a SAS data library.
member-name is a character matrix or quoted literal containing the name of a data set.

The DELETE subroutine deletes a SAS data set in the specified library. If a one-level name is specified, the default SAS data library is used. (See the DEFLIB= option in the description of the RESET statement.)

Some examples follow:
```

call delete(work,a); /* deletes WORK.A */
reset deflib=work; /* sets default libname to WORK */
call delete(a); /* also deletes WORK.A */
d=datasets('work'); /* returns all data sets in WORK */
call delete(work,d[1]);
/* deletes data set whose name is */
/* first element of matrix D */

```

\section*{DELETE Statement}

\section*{marks observations for deletion}

DELETE <range \(><\) WHERE(expression) \(>\);
The inputs to the DELETE statement are as follows:
range specifies a range of observations.
expression is an expression that is evaluated for being true or false.

Use the DELETE statement to mark records for deletion in the current output data set. To delete records and renumber the remaining observations, use the PURGE statement.

You can specify range by using a keyword or by record number using the POINT operand. The following keywords are valid values for range:

ALL specifies all observations.
CURRENT
NEXT <number> specifies the current observation.
specifies the next observation or the next number of observations.

AFTER
POINT operand specifies all observations after the current one. specifies observations by number, where operand is one of the following:
\begin{tabular}{ll}
Operand & Example \\
\hline a single record number & point 5 \\
\begin{tabular}{l}
a literal giving several \\
record numbers
\end{tabular} & point \(\left\{\begin{array}{l}2 \\
5\end{array} 10\right\}\) \\
\begin{tabular}{l}
the name of a matrix \\
containing record numbers
\end{tabular} & point \(p\) \\
an expression in parentheses & point \((p+1)\)
\end{tabular}

CURRENT is the default value for range. If the current data set has an index in use, the POINT option is invalid.

The WHERE clause conditionally selects observations that are contained within the range specification. The general form of the WHERE clause is

WHERE(variable comparison-op operand)
In the preceding statement,
variable \(\quad\) is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
\(<\) less than
\(<=\) less than or equal to
\(=\) equal to
\(>\) greater than
\(>=\) greater than or equal to
\({ }^{\wedge}=\) not equal to
? contains a given string
^? does not contain a given string
\(=\) : begins with a given string
= * sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:
\[
\wedge=\wedge ? \ll=\gg=
\]

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:
\[
=?=:=*
\]

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is as follows:
\[
\begin{array}{ll}
\text { clause\&clause } & \text { (for an AND clause) } \\
\text { clauselclause } & \text { (for an AND clause) }
\end{array}
\]
where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.
Note: The expression on the left-hand side refers to values of the data set variables and the expression on the right-hand side refers to matrix values.

Here are several examples of DELETE statements:
```

delete; /* deletes the current obs */
delete point 34; /* deletes obs 34 */
delete all where(age<21); /* deletes obs where age<21 */

```

You can use the SETOUT statement with the DELETE statement as follows:
```

setout class point 34; /* makes CLASS current output */
delete; /* deletes ob 34 */

```

Observations deleted by using the DELETE statement are not physically removed from the data set until a PURGE statement is issued.

\section*{DESIGN Function}

\section*{creates a design matrix}

\section*{DESIGN(column-vector)}
where column-vector is a numeric column vector or literal.
The DESIGN function creates a design matrix of 0 s and 1 s from column-vector. Each unique value of the vector generates a column of the design matrix. This column contains ones in elements with corresponding elements in the vector that are the current value; it contains zeros elsewhere. The columns are arranged in the sort order of the original values.

For example, the following statements produce the design matrix \(\mathbf{A}\), as shown:
```

a={1,1,2,2,3,1};
a=design(a);

```
A \begin{tabular}{llll}
6 rows & 3 cols & (numeric) \\
& & \\
& 1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & & 0
\end{tabular}

\section*{DESIGNF Function}

\section*{creates a full-rank design matrix}

DESIGNF (column-vector)
where column-vector is a numeric column vector or literal.
The DESIGNF function works like the DESIGN function; however, the result matrix is one column smaller and can be used to produce full-rank design matrices. The result of the DESIGNF function is the same as if you took the last column off the DESIGN function result and subtracted it from the other columns of the result.

For example, consider the following statements:
```

a={1,1,2,2,3,3};
b=designf(a);

```

These statements produce the following design matrix:
B 6 rows \(\quad 2\) cols \(\quad\) (numeric)

\section*{DET Function}

\section*{computes the determinant of a square matrix}

\section*{DET(square-matrix)}
where square-matrix is a numeric matrix or literal.
The DET function computes the determinant of square-matrix, which must be square. The determinant, the product of the eigenvalues, is a single numeric value. If the determinant of a matrix is zero, then that matrix is singular; that is, it does not have an inverse.

The method performs an LU decomposition and collects the product of the diagonals (Forsythe, Malcolm, and Moler 1967). For example, consider the following statements:
```

a={1 1 1,1 2 4,1 3 9};
c=det (a);

```

These statements produce the following matrix \(\mathbf{C}\) containing the determinant:
\[
\begin{array}{llll}
\mathrm{C} & 1 \text { row } & 1 \text { col } & \text { (numeric) }
\end{array}
\]

2
The DET function (as well as the INV and SOLVE functions) uses the following criterion to decide whether the input matrix, \(\mathbf{A}=\left[a_{i j}\right]_{i, j=1, \ldots, n}\), is singular:
\[
\operatorname{sing}=100 \times M A C H E P S \times \max _{1 \leq i, j \leq n}\left|a_{i j}\right|
\]
where MACHEPS is the relative machine precision.
All matrix elements less than or equal to sing are now considered rounding errors of the largest matrix elements, so they are taken to be zero. For example, if a diagonal or triangular coefficient matrix has a diagonal value less than or equal to sing, the matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic operations to be performed on values that were essentially floating-point error. This occasionally yielded numerically unstable results. The new criterion is much more conservative, and it generates far fewer erroneous results. In some cases, you might need to scale the data to avoid singular matrices. If you think the new criterion is too strong, do the following:
- Try the GINV function to compute the generalized inverse.
- Examine the size of the singular values returned by the SVD call. The SVD call can be used to compute a generalized inverse with a user-specified singularity criterion.

If \(A\) is an \(n \times n\) matrix, then the DET function temporarily allocates an \(n^{2}\) array in order to compute the determinant.

\section*{DIAG Function}
creates a diagonal matrix
DIAG(argument)
where argument can be either a numeric square matrix or a vector.
If argument is a square matrix, the DIAG function creates a matrix with diagonal elements equal to the corresponding diagonal elements. All off-diagonal elements in the new matrix are zeros.

If argument is a vector, the DIAG function creates a matrix with diagonal elements that are the values in the vector. All off-diagonal elements are zeros.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={$$
\begin{array}{ll}{4}&{3,}\\{}\end{array}
$$,
2 1};
c=diag(a);

```
C \begin{tabular}{rlrl}
2 rows & 2 cols & (numeric) \\
& 4 & 0 & \\
& 0 & 1 &
\end{tabular}

The following statements produce the matrix \(\mathbf{C}=\mathbf{D}\), as shown:
```

b={{1 2 3 3
d=diag (b);

```
D
3 rows
3 cols
(numeric)
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{tabular}

\section*{DISPLAY Statement}

\section*{displays fields in display windows}

DISPLAY <group-spec group-options \(<, \ldots\), group-spec group-options \(\gg\);
The inputs to the DISPLAY statement are as follows:
group-spec specifies a group. It can be specified as either a compound name of the form windowname.groupname or a window name followed by a group of the form window-name (field-specs), where field-specs is as defined for the WINDOW statement.
group-options can be any of the following:
NOINPUT displays the group with all fields protected so that no data can be entered in the fields.

REPEAT repeats the group for each element of the matrices specified as field operands.
BELL rings the bell, sounds the alarm, or causes the speaker in your workstation to beep when the window is displayed.

The DISPLAY statement directs IML to gather data into fields defined in the window for purposes of display, data entry, or menu selection. The DISPLAY statement always refers to a window that has been previously opened by a WINDOW statement. The statement is described completely in Chapter 13.

Following are several examples demonstrating the use of the DISPLAY statement:
```

display;
display w(i);
display w ("BELL") bell;
display w.g1 noinput;
display w (i protect=yes
color="blue"
j color="yellow");

```

\section*{DO Function}

\section*{produces an arithmetic series}

DO(start, stop, increment)
The inputs to the DO function are as follows:
\[
\begin{array}{ll}
\text { start } & \text { is the starting value for the series. } \\
\text { stop } & \text { is the stopping value for the series. } \\
\text { increment } & \text { is an increment value. }
\end{array}
\]

The DO function creates a row vector containing a sequence of numbers starting with start and incrementing by increment as long as the elements are less than or equal to stop (greater than or equal to stop for a negative increment). This function is a generalization of the index creation operator (:).

For example, consider the following statement:
\(i=d o(3,18,3)\);

This statements yields the following result:
\begin{tabular}{crrccc}
I & \multicolumn{2}{c}{ row } & 6 cols & (numeric) & \\
3 & 6 & 9 & 12 & 15 & 18
\end{tabular}

Now consider the following statement:
\[
j=\operatorname{do}(3,-1,-1) ;
\]

This statement yields the following result:
\(J\)
1 row
5 cols
(numeric)
3
2
1
\(0 \quad-1\)

\section*{DO and END Statements}

\section*{group statements as a unit}
```

DO ;

```
statements
END ;
The DO statement specifies that the statements following the DO statement be executed as a group until a matching END statement appears. DO statements often appear in IF-THEN/ELSE statements, where they designate groups of statements to be performed when the IF condition is true or false.

For example, consider the following statements:
```

if x=y then
do;
i=i+l;
print x;
end;
print y;

```

The statements between the DO and END statements (called the DO group) are executed only if \(\mathbf{X}=\mathbf{Y}\); that is, they are executed only if all elements of \(\mathbf{X}\) are equal to the corresponding elements of \(\mathbf{Y}\). If any element of \(\mathbf{X}\) is not equal to the corresponding element of \(\mathbf{Y}\), the statements in the DO group are skipped and the next statement is executed. In this case, the next statement executed is as follows:
```

print y;

```

DO groups can be nested; there is no limit imposed on the number of nested DO groups.

Here is an example of nested DO groups:
```

if y>z then
do;
if z=0 then
do;
z=b*c;
x=2\#y;
end;
end;

```

It is good practice to indent the statements in a DO group as shown in the preceding example so that their positions indicate their levels of nesting.

\section*{DO Statement, Iterative}

\section*{iteratively executes a DO group}

DO variable=start TO stop \(<\mathbf{B Y}\) increment \(>\);
The inputs to the DO statement are as follows:
variable is the name of a variable indexing the loop.
start \(\quad\) is the starting value for the looping variable.
stop \(\quad\) is the stopping value for the looping variable.
increment is an increment value.

When the DO group has this form, the statements between the DO and END statements are executed repetitively. The number of times the statements are executed depends on the evaluation of the expressions given in the DO statement.

The start, stop, and increment values should be scalars or expressions with evaluations that yield scalars. The variable is given a new value for each repetition of the group. The index variable starts with the start value, then is incremented by the increment value each time. The iterations continue as long as the index variable is less than or equal to the stop value. If a negative increment is used, then the rules reverse so that the index variable decrements to a lower bound. Note that the start, stop, and increment expressions are evaluated only once before the looping starts.

For example, consider the following statements:
```

do i=1 to 5 by 2;
print 'THE VALUE OF I IS:' i;
end;

```

These statements produce the following output:

I
THE VALUE OF I IS: 1

I
THE VALUE OF I IS: 3

I
THE VALUE OF I IS:

\section*{DO DATA Statement}

\section*{repeats a loop until an end of file occurs}

DO DATA <variable=start TO stop>;
The inputs to the DO DATA statement are as follows:
variable is the name of a variable indexing the loop.
start is the starting value for the looping variable.
stop \(\quad\) is the stopping value for the looping variable.

The DO DATA statement is used for repetitive DO loops that need to be exited upon the occurrence of an end of file for an INPUT, READ, or other I/O statement. This form is common for loops that read data from either a sequential file or a SAS data set.

When an end of file is reached inside the DO DATA group, IML immediately jumps from the group and starts executing the statement following the END statement. DO DATA groups can be nested, where each end of file causes a jump from the most local DO DATA group. The DO DATA loop simulates the end-of-file behavior of the SAS DATA step. You should avoid using GOTO and LINK statements to jump out of a DO DATA group.

Examples of valid statements follow. The first example inputs the variable NAME from an external file for the first 100 lines or until the end of file, whichever occurs first. Here is the code:
```

do data i=1 to 100;
input name \$8.;
end;

```

Or, if reading from a SAS data set, then you can use the following code:
```

do data; /* read next obs until eof is reached */
read next var{x}; /* read only variable x */
end;

```

\section*{DO Statement with an UNTIL Clause}
conditionally executes statements iteratively
DO UNTIL(expression);
DO variable=start TO stop \(<\) BY increment \(>\) UNTIL(expression);
The inputs to the DO UNTIL statement are as follows:
\begin{tabular}{ll}
expression & \begin{tabular}{l}
is an expression that is evaluated at the bottom of the loop for being \\
true or false.
\end{tabular} \\
variable & is the name of a variable indexing the loop. \\
start & is the starting value for the looping variable. \\
stop & is the stopping value for the looping variable. \\
increment & is an increment value.
\end{tabular}

Using an UNTIL expression makes possible the conditional execution of a set of statements iteratively. The UNTIL expression is evaluated at the bottom of the loop, and the statements inside the loop are executed repeatedly as long as the expression yields a zero or missing value. In the example that follows, the body of the loop executes until the value of X exceeds 100 :
```

x=1;
do until (x>100);
x=x+1;
end;
print x; /* x=101 */

```

\section*{DO Statement with a WHILE Clause}
conditionally executes statements iteratively
DO WHILE(expression);
DO variable=start TO stop \(<\) BY increment \(>\) WHILE(expression);
The inputs to the DO WHILE statement are as follows:
expression is an expression that is evaluated at the top of the loop for being true or false.
variable is the name of a variable indexing the loop.
start is the starting value for the looping variable.
stop \(\quad\) is the stopping value for the looping variable.
increment is an increment value.

Using a WHILE expression makes possible the conditional execution of a set of statements iteratively. The WHILE expression is evaluated at the top of the loop, and the statements inside the loop are executed repeatedly as long as the expression yields a nonzero or nonmissing value.

Note that the incrementing is done before the WHILE expression is tested. The following example demonstrates the incrementing:
```

x=1;
do while(x<100);
x=x+1;
end;
print x; /* x=100 */

```

The next example increments the starting value by 2 :
```

y=1;
do x=1 to 100 by 2 while(y<200);
y=y\#x;
end; /* at end of loop, x=11 and y=945 */

```

\section*{DURATION Function}

\section*{calculates and returns a scalar containing the modified duration of a noncontingent cash flow.}

\section*{DURATION(times,flows,ytm)}

The DURATION function returns the modified duration of a noncontingent cash flow as a scalar.
times is an \(n\)-dimensional column vector of times. Elements should be nonnegative.
flows \(\quad\) is an \(n\)-dimensional column vector of cash flows.
\(\mathrm{ytm} \quad\) is the per-period yield-to-maturity of the cash-flow stream. This is a scalar and should be positive.

Duration of a security is generally defined as
\[
D=-\frac{\frac{d P}{P}}{d y}
\]

In other words, it is the relative change in price for a unit change in yield. Since prices move in the opposite direction to yields, the sign change preserves positivity for convenience. With cash flows that are not yield-sensitive and the assumption of parallel shifts to a flat term structure, duration is given by
\[
D_{\mathrm{mod}}=\frac{\sum_{k=1}^{K} t_{k} \frac{c(k)}{(1+y)^{t_{k}}}}{P(1+y)}
\]
where \(P\) is the present value, \(y\) is the per-period effective yield-to-maturity, \(K\) is the number of cash flows, and the \(k\) th cash flow is \(c(k), t_{k}\) periods from the present. This measure is referred to as modified duration to differentiate it from the first duration measure ever proposed, Macaulay duration:
\[
D_{\mathrm{Mac}}=\frac{\sum_{k=1}^{K} t_{k} \frac{c(k)}{(1+y)^{t_{k}}}}{P}
\]

This expression also reveals the reason for the name duration, since it is a present-value-weighted average of the duration (that is, timing) of all the cash flows and is hence an "average time-to-maturity" of the bond.

For example, consider the following statements:
```

times={1};
ytm={0.1};
flow={10};
duration=duration(times,flow,ytm);
print duration;

```

These statements produce the following output:

DURATION
0.9090909

\section*{ECHELON Function}

\section*{reduces a matrix to row-echelon normal form}

ECHELON(matrix)
where matrix is a numeric matrix or literal.
The ECHELON function uses elementary row operations to reduce a matrix to rowechelon normal form, as in the following example (Graybill 1969, p. 286):
```

a={$$
\begin{array}{lll}{3}&{6}&{9,}\end{array}
$$,
1 2 5,
2 4 10};
e=echelon(a);

```

The resulting matrix is as follows:
E \begin{tabular}{cccc}
3 rows & 3 cols & (numeric) \\
& & 2 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{tabular}

If the argument is a square matrix, then the row-echelon normal form can be obtained from the Hermite normal form by rearranging rows that are all zeros.

\section*{EDIT Statement}

\section*{opens a SAS data set for editing}
```

EDIT SAS-data-set <VAR operand $><$ WHERE(expression) $>$
$<$ NOBS name $>$;

```

The inputs to the EDIT statement are as follows:
SAS-data-set can be specified with a one-level name (for example, A) or a twolevel name (for example, SASUSER.A). For more information about specifying SAS data sets, refer to the chapter on SAS data sets in SAS Language Reference: Concepts.
operand selects a set of variables.
expression selects observations conditionally.
name names a variable to contain the number of observations.

The EDIT statement opens a SAS data set for reading and updating. If the data set has already been opened, the EDIT statement makes it the current input and output data sets.

You can specify a set of variables to use with the VAR clause, where operand can be specified as one of the following:
- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described in the following list:
\begin{tabular}{ll}
ALL & for all variables \\
CHAR & for all character variables \\
NUM & for all numeric variables
\end{tabular}

The following examples demonstrate each possible way you can use the VAR clause:
```

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var_all_; /* a keyword */

```

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause.

The general form of the WHERE clause is

\section*{WHERE(variable comparison-op operand)}

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is any one of the following comparison operators:
\(<\) less than
\(<=\) less than or equal to
\(=\) equal to
\(>\) greater than
\(>=\) greater than or equal to
^ \(=\) not equal to
? contains a given string
^? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:
\(\wedge=\wedge \quad \ll=\gg=\)

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:
\[
=?=:=*
\]

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is
```

clause\&clause (for an AND clause)
clauselclause (for an OR clause)

```
where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables and the expression on the right-hand side refers to matrix values.

The EDIT statement can define a set of variables and the selection criteria that are used to control access to data set observations. The NOBS clause returns the total number of observations in the data set in the variable name.

The VAR and WHERE clauses are optional and can be specified in any order. The NOBS clause is also optional.

See Chapter 6 for more information on editing SAS data sets.
To edit the data set DAT, or WORK.DAT, use the following statements:
```

edit dat;
edit work.dat;

```

To control the variables you want to edit and conditionally select observations for editing, use the VAR and WHERE clauses. For example, to read and update observations for variable \(I\) where \(I\) is greater than 9 , use the following statement:
```

edit work.dat var{i} where (i>9);

```

The following example uses the NOBS option:
```

/* if MYDATA has 10 observations, */
/* then ct is a numeric matrix with value 10 */
edit mydata nobs ct;

```

\section*{EIGEN Call}
computes eigenvalues and eigenvectors
CALL EIGEN(eigenvalues, eigenvectors, A) <VECL="Vl">;
where \(\mathbf{A}\) is an arbitrary square numeric matrix for which eigenvalues and eigenvectors are to be calculated.

The EIGEN call returns the following values:
eigenvalues a matrix to contain the eigenvalues of the input matrix.
eigenvectors names a matrix to contain the right eigenvectors of the input matrix.
\(v l \quad\) is an optional \(n \times n\) matrix containing the left eigenvectors of \(\mathbf{A}\) in the same manner that eigenvectors contains the right eigenvectors.

The EIGEN subroutine computes eigenvalues, a matrix containing the eigenvalues of A. If \(\mathbf{A}\) is symmetric, eigenvalues is the \(n \times 1\) vector containing the \(n\) real eigenvalues of \(\mathbf{A}\). If \(\mathbf{A}\) is not symmetric (as determined by the criteria in the symmetry test described later), eigenvalues is an \(n \times 2\) matrix containing the eigenvalues of the \(n \times n\) matrix \(\mathbf{A}\). The first column of \(\mathbf{A}\) contains the real parts, \(\operatorname{Re}(\lambda)\), and the second column contains the imaginary parts \(\operatorname{Im}(\lambda)\). Each row represents one eigenvalue, \(\operatorname{Re}(\lambda)+i \operatorname{Im}(\lambda)\).

If \(\mathbf{A}\) is symmetric, the eigenvalues are arranged in descending order. Otherwise, the eigenvalues are sorted first by their real parts, then by the magnitude of their imaginary parts. Complex conjugate eigenvalues, \(\operatorname{Re}(\lambda) \pm i \operatorname{Im}(\lambda)\), are stored in standard
order; that is, the eigenvalue of the pair with a positive imaginary part is followed by the eigenvalue of the pair with the negative imaginary part.

The EIGEN subroutine also computes eigenvectors, a matrix. If \(\mathbf{A}\) is symmetric, then eigenvectors has orthonormal column eigenvectors of \(\mathbf{A}\) arranged so that the matrices correspond; that is, the first column of eigenvectors is the eigenvector corresponding to the largest eigenvalue, and so forth. If \(\mathbf{A}\) is not symmetric, then eigenvectors is an \(n \times n\) matrix containing the right eigenvectors of \(\mathbf{A}\). If the eigenvalue in row \(i\) of eigenvalues is real, then column \(i\) of eigenvectors contains the corresponding real eigenvector. If rows \(i\) and \(i+1\) of eigenvalues contain complex conjugate eigenvalues \(\operatorname{Re}(\lambda) \pm i \operatorname{Im}(\lambda)\), then columns \(i\) and \(i+1\) of eigenvectors contain the real, \(\mathbf{u}\), and imaginary, \(\mathbf{v}\), parts, respectively, of the two corresponding eigenvectors \(\mathbf{u} \pm i \mathbf{v}\).

The eigenvalues of a matrix A are the roots of the characteristic polynomial, which is defined as \(p(z)=\operatorname{det}(z \mathbf{I}-\mathbf{A})\). The spectrum, denoted by \(\lambda(A)\), is the set of eigenvalues of the matrix \(A\). If \(\lambda(\mathbf{A})=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\), then \(\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \cdots \lambda_{n}\).

The trace of \(\mathbf{A}\) is defined by
\[
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}
\]
and \(\operatorname{tr}(\mathbf{A})=\lambda_{1}+\cdots+\lambda_{n}\).
An eigenvector is a nonzero vector, \(\mathbf{x}\), that satisfies \(\mathbf{A x}=\lambda \mathbf{x}\) for \(\lambda \in \lambda(\mathbf{A})\). Right eigenvectors satisfy \(\mathbf{A} \mathbf{x}=\lambda \mathbf{x}\), and left eigenvectors satisfy \(\mathbf{x}^{H} \mathbf{A}=\lambda \mathbf{x}^{H}\), where \(\mathbf{x}^{H}\) is the complex conjugate transpose of \(\mathbf{x}\). Taking the conjugate transpose of both sides shows that left eigenvectors also satisfy \(\mathbf{A}^{\prime} \mathbf{x}=\bar{\lambda} \mathbf{x}\).

The following are properties of the unsymmetric real eigenvalue problem, in which the real matrix \(\mathbf{A}\) is square but not necessarily symmetric:
- The eigenvalues of an unsymmetric matrix \(\mathbf{A}\) can be complex. If \(\mathbf{A}\) has a complex eigenvalue \(\operatorname{Re}(\lambda)+i \operatorname{Im}(\lambda)\), then the conjugate complex value \(\operatorname{Re}(\lambda)-\) \(i \operatorname{Im}(\lambda)\) is also an eigenvalue of \(\mathbf{A}\).
- The right and left eigenvectors corresponding to a real eigenvalue of \(\mathbf{A}\) are real. The right and left eigenvectors corresponding to conjugate complex eigenvalues of \(\mathbf{A}\) are also conjugate complex.
- The left eigenvectors of \(\mathbf{A}\) are the same as the complex conjugate right eigenvectors of \(\mathbf{A}^{\prime}\).

The three routines, EIGEN, EIGVAL, and EIGVEC, use the following test of symmetry for a square argument matrix \(\mathbf{A}\) :
1. Select the entry of \(\mathbf{A}\) with the largest magnitude:
\[
a_{\max }=\max _{i, j=1, \ldots, n}\left|a_{i, j}\right|
\]
2. Multiply the value of \(a_{\max }\) by the square root of the machine precision \(\epsilon\). (The value of \(\epsilon\) is the largest value stored in double precision that, when added to 1 in double precision, still results in 1.)
3. The matrix \(\mathbf{A}\) is considered unsymmetric if there exists at least one pair of symmetric entries that differs in more than \(a_{\max } \sqrt{\epsilon}\),
\[
\left|a_{i, j}-a_{j, i}\right|>a_{\max } \sqrt{\epsilon}
\]

Consider the following statement:
```

call eigen(m,e,a);

```

If \(\mathbf{A}\) is symmetric, then the output of this statement has the following properties:
\[
\begin{aligned}
\mathbf{A} * \mathbf{E} & =\mathbf{E} * \operatorname{diag}(\mathbf{M}) \\
\mathbf{E}^{\prime} * \mathbf{E} & =\mathbf{I}(\mathbf{N})
\end{aligned}
\]

These properties imply the following:
\[
\begin{aligned}
& \mathbf{E}^{\prime}=\operatorname{inv}(\mathbf{E}) \\
& \mathbf{A}=\mathbf{E} * \operatorname{diag}(\mathbf{M}) * \mathbf{E}^{\prime}
\end{aligned}
\]

The QL method is used to compute the eigenvalues (Wilkinson and Reinsch 1971).
In statistical applications, nonsymmetric matrices for which eigenvalues are desired are usually of the form \(\mathbf{E}^{-1} \mathbf{H}\), where \(\mathbf{E}\) and \(\mathbf{H}\) are symmetric. The eigenvalues \(\mathbf{L}\) and eigenvectors \(\mathbf{V}\) of \(\mathbf{E}^{-1} \mathbf{H}\) can be obtained by using the GENEIG subroutine or as follows:
```

f=root (einv);
a=f*h*f';
call eigen(l,w,a);
v=f'*w;

```

The computation can be checked by forming the residuals. Here is the code:
```

r=einv*h*v-v*diag(l);

```

The values in \(\mathbf{R}\) should be of the order of rounding error.
The following code computes the eigenvalues and left and right eigenvectors of a nonsymmetric matrix with four real and four complex eigenvalues:
\(\left.A=\begin{array}{rrllllll}-1 & 2 & 0 & 0 & 0 & 0 & 0 & 0, \\ -2 & -1 & 0 & 0 & 0 & 0 & 0 & 0, \\ 0 & 0 & 0.2379 & 0.5145 & 0.1201 & 0.1275 & 0 & 0, \\ 0 & 0 & 0.1943 & 0.4954 & 0.1230 & 0.1873 & 0 & 0, \\ 0 & 0 & 0.1827 & 0.4955 & 0.1350 & 0.1868 & 0 & 0, \\ 0 & 0 & 0.1084 & 0.4218 & 0.1045 & 0.3653 & 0 & 0, \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2, \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0\end{array}\right\} ;\)
call eigen(val,rvec,A) levec='lvec';

The sorted eigenvalues of this matrix are as follows:

\section*{VAL}
\begin{tabular}{rr}
1 & 1.7320508 \\
1 & -1.732051 \\
1 & 0 \\
0.2087788 & 0 \\
0.0222025 & 0 \\
0.0026187 & 0 \\
-1 & 2 \\
-1 & -2
\end{tabular}

You can verify the correctness of the left and right eigenvector computation by using the following code:
```

/* verify right eigenvectors are correct */
vec = rvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a * vec[,j] - val[j,1] * vec[,j];
if any( abs(v) > 1e-12 ) then
badVectors = badVectors || j;
end;
/* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
/* the real part */
rp = val[j,1] * vec[,j] - val[j,2] * vec[,j+1];
v = a * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] + val[j,2] * vec[,j];
u = a * vec[,j+1] - ip;
if any( abs(u) > 1e-12 ) | any( abs(v) > 1e-12 ) then
badVectors = badVectors || j || j+1;
end;
end;
if ncol( badVectors ) > O then
print "Incorrect right eigenvectors:" badVectors;
else print "All right eigenvectors are correct";

```

Similar code can be written to verify the left eigenvectors, using the fact that the left eigenvectors of \(\mathbf{A}\) are the same as the complex conjugate right eigenvectors of \(\mathbf{A}^{\prime}\). Here is the code:
```

/* verify left eigenvectors are correct */
vec = lvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a` * vec[,j] - val[j,1] * vec[,j];         if any( abs(v) > 1e-12 ) then             badVectors = badVectors || j;         end;     /* if eigenvalue is complex with positive imaginary part */     else if val[j,2] > 0. then do;         /* Note the use of complex conjugation */         /* the real part */         rp = val[j,1] * vec[,j] + val[j,2] * vec[,j+1];         v = a` * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] - val[j,2] * vec[,j];
u = a` * vec[,j+1] - ip;
if any( abs(u) > 1e-12 ) | any( abs(v) > 1e-12 ) then
badVectors = badVectors || j || j+1;
end;
end;
if ncol( badVectors ) > 0 then
print "Incorrect left eigenvectors:" badVectors;
else print "All left eigenvectors are correct";

```

The EIGEN call performs most of its computations in the memory allocated for returning the eigenvectors.

\section*{EIGVAL Function}

\section*{computes eigenvalues}

EIGVAL(A)
where \(\mathbf{A}\) is a square numeric matrix.
The EIGVAL function returns a column vector of the eigenvalues of A. See the description of the EIGEN subroutine for more details.

The following code computes Example 7.1.1 from Golub and Van Loan (1989):
```

a={ 67.00 177.60 -63.20,
-20.40 95.88 -87.16 ,
22.80 67.84 12.12 };
val = EIGVAL(a);
print val;

```

The matrix produced containing the eigenvalues is as follows:
```

VAL
75 100
75 -100
25
-100
O

```

Notice that \(a\) is not symmetric and that the eigenvalues are complex. The first column of the VAL matrix is the real part and the second column is the complex part of the three eigenvalues.

A symmetric example follows:
```

x={1 1,1 2,1 3,1 4};
xpx=t (x)*x;
a=eigval(xpx); /* xpx is a symmetric matrix */

```

The matrix produced containing the eigenvalues is as follows:
A
2 rows
1 col
(numeric)
33.401219
0.5987805

\section*{EIGVEC Function}

\section*{computes right eigenvectors}

EIGVEC(A)
where \(\mathbf{A}\) is a square numeric matrix.
The EIGVEC function creates a matrix containing the right eigenvectors of A. You can obtain the left eigenvectors by first transposing A. See the description of the EIGEN subroutine for more details.

An example calculating the eigenvectors of a symmetric matrix follows:
```

x={1 1,1 2,1 3,1 4};
xpx=t (x)*x;
a=eigvec(xpx); /* xpx is a symmetric matrix */

```

These statements produce the following matrix, which contains the eigenvectors:
A
2 rows 2 cols (numeric)
0.32200620 .9467376
\(0.9467376-0.322006\)

\section*{END Statement}

\section*{ends a DO loop or DO statement}

END:
See the description of the DO and END statements.

\section*{EXECUTE Call}

\section*{executes SAS statements immediately}

\section*{CALL EXECUTE(operands);}
where operands are character matrices or quoted literals containing valid SAS statements.

The EXECUTE subroutine pushes character arguments to the input command stream, executes them, and then returns to the calling module. You can specify up to 15 arguments. The subroutine should be called from a module rather than from the immediate environment (because it uses the resume mechanism that works only from modules). The strings you push do not appear in the log.

Following are examples of valid EXECUTE subroutines:
```

call execute("x={1 2 3, 4 5 6};");
call execute(" x 'ls';");
call execute(" dm 'log; color source red';");
call execute(concat(" title '",string,"';"));

```

For more details about the EXECUTE subroutine, see Chapter 15, "Using SAS/IML Software to Generate IML Statements."

\section*{EXP Function}

\section*{calculates the exponential}
EXP(matrix)
where matrix is a numeric matrix or literal.
The EXP function applies the exponential function to every element of the argument matrix. The exponential is the natural number \(e\) raised to the indicated power. An example of a valid statement follows:
```

b={{1 2 3 4}
a=exp (b) ;

```
\begin{tabular}{lllrr}
A & 1 row & 4 cols & (numeric) \\
2.7182818 & 7.3890561 & 20.085537 & 54.59815
\end{tabular}

If you want to compute the matrix exponential for some matrix, you can call the EXPMATRIX module in IMLMLIB.

\section*{FARMACOV Call}
computes the autocovariance function for an \(\operatorname{ARFIMA}(p, d, q)\) process
CALL FARMACOV(cov, \(d<\), phi, theta, sigma, p, q, lag>) ;
The inputs to the FARMACOV subroutine are as follows:
\(d \quad\) specifies a fractional differencing order. The value of \(d\) must be in the open interval \((-0.5,0.5)\) excluding zero. This input is required.
phi specifies an \(m_{p}\)-dimensional vector containing the autoregressive coefficients, where \(m_{p}\) is the number of the elements in the subset of the AR order. The default is zero. All the roots of \(\phi(B)=0\) should be greater than one in absolute value, where \(\phi(B)\) is the finite-order matrix polynomial in the backshift operator \(B\), such that \(B^{j} y_{t}=y_{t-j}\).
theta
specifies an \(m_{q}\)-dimensional vector containing the moving-average coefficients, where \(m_{q}\) is the number of the elements in the subset of the MA order. The default is zero.
\(p \quad\) specifies the subset of the AR order. The quantity \(m_{p}\) is defined as the number of elements of phi.

If you do not specify \(p\), the default subset is \(p=\left\{1,2, \ldots, m_{p}\right\}\).
For example, consider \(p h i=0.5\).
If you specify \(p=1\) (the default), the FARMACOV subroutine computes the theoretical autocovariance function of an \(\operatorname{ARFIMA}(1, d, 0)\) process as \(y_{t}=0.5 y_{t-1}+\epsilon_{t}\).
If you specify \(p=2\), the FARMACOV subroutine computes the autocovariance function of an \(\operatorname{ARFIMA}(2, d, 0)\) process as \(y_{t}=0.5 y_{t-2}+\epsilon_{t}\).
\(q \quad\) specifies the subset of the MA order. The quantity \(m_{q}\) is defined as the number of elements of theta.

If you do not specify \(q\), the default subset is \(q=\left\{1,2, \ldots, m_{q}\right\}\).
The usage of \(q\) is the same as that of \(p\).
lag specifies the length of lags, which must be a positive number. The default is \(l a g=12\).

The FARMACOV subroutine returns the following value:
cov is a lag +1 vector containing the autocovariance function of an \(\operatorname{ARFIMA}(p, d, q)\) process.

Consider the following \(\operatorname{ARFIMA}(1,0.3,1)\) process:
\[
(1-0.5 B)(1-B)^{0.3} y_{t}=(1+0.1 B) \epsilon_{t}
\]

In this process, \(\epsilon_{t} \sim N I D(0,1.2)\). To compute the autocovariance of this process, you can use the following code:
```

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmacov(cov, d, phi, theta, sigma) lag=5;
print cov;

```

For \(d \in(-0.5,0.5) \backslash\{0\}\), the series \(y_{t}\) represented as \((1-B)^{d} y_{t}=\epsilon_{t}\) is a stationary and invertible \(\operatorname{ARFIMA}(0, d, 0)\) process with the autocovariance function
\[
\gamma_{k}=\mathrm{E}\left(y_{t} y_{t-k}\right)=\frac{(-1)^{k} \Gamma(-2 d+1)}{\Gamma(k-d+1) \Gamma(-k-d+1)}
\]
and the autocorrelation function
\[
\rho_{k}=\frac{\gamma_{k}}{\gamma_{0}}=\frac{\Gamma(-d+1) \Gamma(k+d)}{\Gamma(d) \Gamma(k-d+1)} \sim \frac{\Gamma(-d+1)}{\Gamma(d)} k^{2 d-1}, k \rightarrow \infty
\]

Notice that \(\rho_{k}\) decays hyperbolically as the lag increases, rather than showing the exponential decay of the autocorrelation function of a stationary \(\operatorname{ARMA}(p, q)\) process.

The FARMACOV subroutine computes the autocovariance function of an ARFIMA \((p, d, q)\) process.

For \(d \in(0.5,0.5) \backslash\{0\}\), the series \(y_{t}\) is a stationary and invertible \(\operatorname{ARFIMA}(p, d, q)\) process represented as
\[
\phi(B)(1-B)^{d} y_{t}=\theta(B) \epsilon_{t}
\]
where \(\phi(B)=1-\phi_{1} B-\phi_{2} B^{2}-\cdots-\phi_{p} B^{p}\) and \(\theta(B)=1-\theta_{1} B-\theta_{2} B^{2}-\cdots-\) \(\theta_{q} B^{q}\) and \(\epsilon_{t}\) is a white noise process; all the roots of the characteristic AR and MA polynomial lie outside the unit circle.
Let \(x_{t}=\theta(B)^{-1} \phi(B) y_{t}\), so that \(x_{t}\) follows an \(\operatorname{ARFIMA}(0, d, 0)\) process; let \(z_{t}=\) \((1-B)^{d} y_{t}\), so that \(z_{t}\) follows an \(\operatorname{ARMA}(p, q)\) process; let \(\gamma_{k}^{x}\) be the autocovariance function of \(\left\{x_{t}\right\}\) and \(\gamma_{k}^{z}\) be the autocovariance function of \(\left\{z_{t}\right\}\).
Then the autocovariance function of \(\left\{y_{t}\right\}\) is as follows:
\[
\gamma_{k}=\sum_{j=-\infty}^{j=\infty} \gamma_{j}^{z} \gamma_{k-j}^{x}
\]

The explicit form of the autocovariance function of \(\left\{y_{t}\right\}\) is given by Sowell (1992, p. 175).

\section*{FARMAFIT Call}
estimate the parameters of an ARFIMA \((p, d, q)\) model
CALL FARMAFIT(\(d\), phi, theta, sigma, series <, p, q, opt>) ;
The inputs to the FARMAFIT subroutine are as follows:
series specifies a time series (assuming mean zero).
\(p \quad\) specifies the set or subset of the AR order. If you do not specify \(p\), the default is \(p=0\).

If you specify \(p=3\), the FARMAFIT subroutine estimates the coefficient of the lagged variable \(y_{t-3}\).

If you specify \(p=\{1,2,3\}\), the FARMAFIT subroutine estimates the coefficients of lagged variables \(y_{t-1}, y_{t-2}\), and \(y_{t-3}\).
\(q\) specifies the subset of the MA order. If you do not specify \(q\), the default is \(q=0\).
If you specify \(q=2\), the FARMAFIT subroutine estimates the coefficient of the lagged variable \(\epsilon_{t-2}\).

If you specify \(q=\{1,2\}\), the FARMAFIT subroutine estimates the coefficients of lagged variables \(\epsilon_{t-1}\) and \(\epsilon_{t-2}\).
opt specifies the method of computing the log-likelihood function.
opt=0 requests the conditional sum of squares function. This is the default.
opt=1 requests the exact log-likelihood function. This option requires that the time series be stationary and invertible.

The FARMAFIT subroutine returns the following values:
\(d \quad\) is a scalar containing a fractional differencing order.
phi is a vector containing the autoregressive coefficients.
theta is a vector containing the moving-average coefficients.
sigma is a scalar containing a variance of the innovation series.
Consider the following ARFIMA \((1,0.3,1)\) model:
\[
(1-0.5 B)(1-B)^{0.3} y_{t}=(1+0.1 B) \epsilon_{t}
\]

In this model, \(\epsilon_{t} \sim \operatorname{NID}(0,1)\). To estimate the parameters of this model, you can use the following code:
```

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta);
call farmafit(d, ar, ma, sigma, yt) p=1 q=1;
print d ar ma sigma;

```

The FARMAFIT subroutine estimates parameters \(d, \phi(B), \theta(B)\), and \(\sigma_{\epsilon}^{2}\) of an ARFIMA \((p, d, q)\) model. The log-likelihood function needs to be solved by iterative numerical procedures such as the quasi-Newton optimization. The starting value \(d\) is obtained by the approach of Geweke and Porter-Hudak (1983); the starting values of the AR and MA parameters are obtained from the least squares estimates.

\section*{FARMALIK Call}
computes the log-likelihood function of an \(\operatorname{ARFIMA}(p, d, q)\) model
CALL FARMALIK(InI, series, \(d<\), phi, theta, sigma, p, q, opt>) ;
The inputs to the FARMALIK subroutine are as follows:
\begin{tabular}{|c|c|}
\hline \(d\) & specifies a fractional differencing order. This argument is required; the value of \(d\) should be in the open interval \((-1,1)\) excluding zero. \\
\hline phi & specifies an \(m_{p}\)-dimensional vector containing the autoregressive coefficients, where \(m_{p}\) is the number of the elements in the subset of the AR order. The default is zero. \\
\hline theta & specifies an \(m_{q}\)-dimensional vector containing the moving-average coefficients, where \(m_{q}\) is the number of the elements in the subset of the MA order. The default is zero. \\
\hline sigma & specifies a variance of the innovation series. The default is one. \\
\hline \(p\) & specifies the subset of the AR order. See the FARMACOV subroutine for additional details. \\
\hline \(q\) & specifies the subset of the MA order. See the FARMACOV subroutine for additional details. \\
\hline opt & specifies the method of computing the log-likelihood function. \\
\hline & \(o p t=0 \quad\) requests the conditional sum of squares function. This is the default. \\
\hline & \(o p t=1\) requests the exact log-likelihood function. This option requires that the time series be stationary and invertible. \\
\hline
\end{tabular}

The FARMALIK subroutine returns the following value:
\(\ln l \quad\) is a three-dimensional vector. \(\ln l[1]\) contains the \(\log\)-likelihood function of the model; \(\operatorname{lnl}[2]\) contains the sum of the log determinant of the innovation variance; and \(\ln l[3]\) contains the weighted sum of squares of residuals. The \(\log\)-likelihood function is computed as \(-0.5 \times(\operatorname{lnl}[2]+\ln l[3])\). If the \(o p t=0\) is specified, only the weighted sum of squares of residuals returns in \(\ln l[1]\).

Consider the following ARFIMA \((1,0.3,1)\) model:
\[
(1-0.5 B)(1-B)^{0.3} y_{t}=(1+0.1 B) \epsilon_{t}
\]

In this model, \(\epsilon_{t} \sim N I D(0,1.2)\). To compute the log-likelihood function of this model, you can use the following code:
```

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmasim(yt, d, phi, theta, sigma);
call farmalik(lnl, yt, d, phi, theta, sigma);
print lnl;

```

The FARMALIK subroutine computes a log-likelihood function of the \(\operatorname{ARFIMA}(p, d, q)\) model. The exact log-likelihood function was proposed by Sowell (1992); the conditional sum of squares function was proposed by Chung (1996).

The exact log-likelihood function only considers a stationary and invertible \(\operatorname{ARFIMA}(p, d, q)\) process with \(d \in(-0.5,0.5) \backslash\{0\}\) represented as
\[
\phi(B)(1-B)^{d} y_{t}=\theta(B) \epsilon_{t}
\]
where \(\epsilon_{t} \sim N I D\left(0, \sigma^{2}\right)\).
Let \(Y_{T}=\left[y_{1}, y_{2}, \ldots, y_{T}\right]^{\prime}\) and the log-likelihood function is as follows without a constant term:
\[
\ell=-\frac{1}{2}\left(\log |\Sigma|+Y_{T}^{\prime} \Sigma^{-1} Y_{T}\right)
\]
where \(\Sigma=\left[\gamma_{i-j}\right]\) for \(i, j=1,2, \ldots, T\).
The conditional sum of squares function does not require the normality assumption. The initial observations \(y_{0}, y_{-1}, \ldots\) and \(\epsilon_{0}, \epsilon_{-1}, \ldots\) are set to zero.
Let \(y_{t}\) be an \(\operatorname{ARFIMA}(p, d, q)\) process represented as
\[
\phi(B)(1-B)^{d} y_{t}=\theta(B) \epsilon_{t}
\]
then the conditional sum of squares function is
\[
\ell=-\frac{T}{2} \log \left(\frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2}\right)
\]

\section*{FARMASIM Call}
generates an \(\operatorname{ARFIMA}(p, d, q)\) process
CALL FARMASIM(series, \(d<\), phi, theta, mu, sigma, \(n, p, q\), initial, seed>) ;

The inputs to the FARMASIM subroutine are as follows:
\(d \quad\) specifies a fractional differencing order. This argument is required; the value of \(d\) should be in the open interval \((-1,1)\) excluding zero.
phi specifies an \(m_{p}\)-dimensional vector containing the autoregressive coefficients, where \(m_{p}\) is the number of the elements in the subset of the AR order. The default is zero.
theta specifies an \(m_{q}\)-dimensional vector containing the moving-average coefficients, where \(m_{q}\) is the number of the elements in the subset of the MA order. The default is zero.
\(m u \quad\) specifies a mean value. The default is zero.
sigma specifies a variance of the innovation series. The default is one.
\(n \quad\) specifies the length of the series. The value of \(n\) should be greater than or equal to the AR order. The default is \(n=100\) is used.
\(p \quad\) specifies the subset of the AR order. See the FARMACOV subroutine for additional details.
\(q\) specifies the subset of the MA order. See the FARMACOV subroutine for additional details.
initial specifies the initial values of random variables. The initial value is used for the nonstationary process. If initial \(=a_{0}\), then \(y_{-p+1}, \ldots, y_{0}\) take the same value \(a_{0}\). If the initial option is not specified, the initial values are set to zero.
seed is a scalar containing the random number seed. At the first execution of the subroutine, the seed variable is used as follows:

If seed \(>0\), the input seed is used for generating the series.
If seed \(=0\), the system clock is used to generate the seed.
If seed \(<0\), the value \((-1) \times(\) seed \()\) is used for generating the series.
If the seed is not supplied, the system clock is used to generate the seed.
On subsequent calls of the subroutine in the DO loop-like environment, the seed variable is used as follows: If seed \(>0\), the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.

The FARMASIM subroutine returns the following value:
series is an \(n\) vector containing the generated \(\operatorname{ARFIMA}(p, d, q)\) process.

Consider the following \(\operatorname{ARFIMA}(1,0.3,1)\) process:
\[
(1-0.5 B)(1-B)^{0.3}\left(y_{t}-10\right)=(1+0.1 B) \epsilon_{t}
\]

In this process, \(\epsilon_{t} \sim N I D(0,1.2)\). To generate this process, you can use the following code:
```

d = 0.3;
phi = 0.5;
theta= -0.1;
mu = 10;
sigma= 1.2;
call farmasim(yt, d, phi, theta, mu, sigma, 100);
print yt;

```

The FARMASIM subroutine generates a time series of length \(n\) from an \(\operatorname{ARFIMA}(p, d, q)\) model. If the process is stationary and invertible, the initial values \(y_{-p+1}, \ldots, y_{0}\) are produced by using covariance matrices obtained from FARMACOV. If the process is nonstationary, the time series is recursively generated by using the user-defined initial value or the zero initial value.

To generate an \(\operatorname{ARFIMA}(p, d, q)\) process with \(d \in[0.5,1), x_{t}\) is first generated for \(d^{\prime} \in(-0.5,0)\), where \(d^{\prime}=d-1\) and then \(y_{t}\) is generated by \(y_{t}=y_{t-1}+x_{t}\).
To generate an \(\operatorname{ARFIMA}(p, d, q)\) process with \(d \in(-1,-0.5]\), a two-step approximation based on a truncation of the expansion \((1-B)^{d}\) is used; the first step is to generate an ARFIMA \((0, d, 0)\) process \(x_{t}=(1-B)^{-d} \epsilon_{t}\), with truncated movingaverage weights; the second step is to generate \(y_{t}=\phi(B)^{-1} \theta(B) x_{t}\).

\section*{FDIF Call}

\section*{obtains a fractionally differenced process}

CALL FDIF (out, series, d) ;
The inputs to the FDIF subroutine are as follows:
series specifies a time series with \(n\) length.
\(d \quad\) specifies a fractional differencing order. This argument is required; the value of \(d\) should be in the open interval \((-1,1)\) excluding zero.

The FDIF subroutine returns the following value:
out \(\quad\) is an \(n\) vector containing the fractionally differenced process.
Consider an ARFIMA \((1,0.3,1)\) process
\[
(1-0.5 B)(1-B)^{0.3} y_{t}=(1+0.1 B) \epsilon_{t}
\]

Let \(z_{t}=(1-B)^{0.3} y_{t}\); that is, \(z_{t}\) follows an \(\operatorname{ARMA}(1,1)\). To get the filtered series \(z_{t}\), you can use the following code:
```

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta) n=100;
call fdif(zt, yt, d);
print zt;

```

\section*{FFT Function}

\section*{performs the finite Fourier transform}

\section*{FFT(\(x\))}
where \(x\) is a \(1 \times n\) or \(n \times 1\) numeric vector.
The FFT function returns the cosine and sine coefficients for the expansion of a vector into a sum of cosine and sine functions.

The argument of the FFT function, \(x\), is a \(1 \times n\) or \(n \times 1\) vector. The value returned is the resulting transform, an \(n p \times 2\) matrix, where
\[
n p=\text { floor }\left(\frac{n}{2}+1\right)
\]

The elements of the first column of the returned matrix are the cosine coefficients; that is, the \(i\) th element of the first column is
\[
\sum_{j=1}^{n} x_{j} \cos \left(\frac{2 \pi}{n}(i-1)(j-1)\right)
\]
for \(i=1, \ldots, n p\), where the elements of \(x\) are denoted as \(x_{j}\). The elements of the second column of the returned matrix are the sine coefficients; that is, the \(i\) th element of the second column is
\[
\sum_{j=1}^{n} x_{j} \sin \left(\frac{2 \pi}{n}(i-1)(j-1)\right)
\]
for \(i=1, \ldots, n p\).
Note: For most efficient use of the FFT function, \(n\) should be a power of 2 . If \(n\) is a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z algorithm is used (Monro and Branch 1976).

The FFT function can be used to compute the periodogram of a time series. In conjunction with the inverse finite Fourier transform routine IFFT, the FFT function can be used to efficiently compute convolutions of large vectors (Gentleman and Sande 1966; Nussbaumer 1982).

As an example, suppose you measure a signal at constant time intervals. You believe the signal consists of a small number of Fourier components (that is, sines and
cosines) corrupted by noise. The following code uses the FFT function to transform the signal into the frequency domain. The code then prints the frequencies with the largest amplitudes in the signal. According to this analysis, the signal is primarily composed of a constant signal, a signal with frequency 4 (for example, \(A \cos (4 t)+B \sin (4 t)\)), a signal with frequency one, and a signal with frequency 3. The amplitudes of the remaining Fourier components, are all substantially smaller.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Signal \(=\) \{} \\
\hline 1.96 & 1.45 & 0.86 & 0.46 & 0.39 & 0.54 & -1.65 & 0.60 & 0.43 & 0.20 \\
\hline -1.15 & 1.10 & 0.42 & 3.22 & 2.02 & 3.41 & 3.46 & 3.51 & 4.33 & 4.38 \\
\hline 3.92 & 4.35 & 2.60 & 3.95 & 4.72 & 4.84 & 1.62 & 0.97 & 0.96 & 1.10 \\
\hline 2.53 & 1.09 & 2.84 & 2.51 & 2.38 & 2.40 & 2.76 & 3.42 & 3.78 & 4.08 \\
\hline 3.84 & 5.62 & 4.33 & 6.66 & 5.27 & 3.14 & 3.82 & 5.74 & 3.45 & 1.07 \\
\hline 0.31 & 2.07 & 0.49 & -1.85 & 0.61 & 0.35 & -0.89 & -0.92 & 0.33 & 2.31 \\
\hline 1.13 & 2.28 & 3.73 & 3.78 & 2.63 & 4.15 & 5.27 & 3.62 & 5.99 & 3.79 \\
\hline 4.00 & 3.18 & 3.03 & 3.52 & 2.08 & 1.70 & -1.50 & -1.35 & -0.34 & -1.52 \\
\hline -2.37 & -2.84 & -1.68 & -2.22 & -2.49 & -3.28 & -2.12 & -0.81 & 0.84 & 1.91 \\
\hline 2.10 & 2.24 & 1.24 & 3.24 & 2.89 & 3.14 & 4.21 & 2.65 & 4.67 & 3.87 \\
\hline \} '; & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\(\mathrm{z}=\mathrm{fft}\) (Signal);} \\
\hline \multicolumn{10}{|l|}{Amplitude \(=\mathrm{z}[, 1] \# \# 2+\mathrm{z}[, 2] \# \# 2 ;\)} \\
\hline \multicolumn{10}{|l|}{/* find index into Amplitude so that idx[1] is the largest value, idx[2] is the second largest value, etc. */} \\
\hline \multicolumn{10}{|l|}{/* print the 10 most dominant frequencies */} \\
\hline \multicolumn{10}{|l|}{Amplitude = Amplitude[idx[1:10],];} \\
\hline \multicolumn{10}{|l|}{print (idx[1:10]-1)[label="Freqs"] Amplitude[format=10.2];} \\
\hline
\end{tabular}
\begin{tabular}{rr}
Freqs & Amplitude \\
& \\
0 & 38757.80 \\
4 & 13678.28 \\
1 & 4077.99 \\
3 & 2726.76 \\
26 & 324.23 \\
44 & 269.48 \\
12 & 224.09 \\
20 & 217.35 \\
11 & 202.30 \\
23 & 201.05
\end{tabular}

Based on these results, you might choose to filter the signal to keep only the most dominant Fourier components. One way to accomplish this is to eliminate any frequencies with small amplitudes. When the truncated frequencies are transformed back by using IFFT, you obtain a filtered version of the original signal. The following code performs these tasks:
```

/* based on amplitudes, keep only first few dominant frequencies */
NumFreqs = 4;
FreqsToDrop = idx[(NumFreqs+1):nrow(idx)];
z[FreqsToDrop,] = 0;
FilteredSignal = ifft(z) / nrow(Signal);

```

\section*{FILE Statement}

\section*{opens or points to an external file}

FILE file-name \(<\) RECFM=N \(><\) LRECL=operand \(>\);
The inputs to the FILE statement are as follows:
file-name is a name (for defined filenames), a quoted literal, or an expression in parentheses (for pathnames).
RECFM \(=\mathrm{N} \quad\) specifies that the file is to be written as a pure binary file without record-separator characters.

LRECL=operand \(\quad\) specifies the record length of the output file. The default record length is 512.

You can use the FILE statement to open a file for output, or if the file is already open, to make it the current output file so that subsequent PUT statements write to it. The FILE statement is similar in syntax and operation to the INFILE statement. The FILE statement is described in detail in Chapter 7.

The file-name is either a predefined filename or a quoted string or character expression in parentheses referring to the pathname. There are two ways to refer to an input or output file: by a pathname and by a filename. The pathname is the name as known to the operating system. The filename is a SAS reference to the file established directly through a connection made with the FILENAME statement. You can specify a file in either way in the FILE and INFILE statements. To specify a filename as the operand, just give the name. The name must be one already connected to a pathname by a previously issued FILENAME statement. There are, however, two special filenames that are recognized by IML: LOG and PRINT. These refer to the standard output streams for all SAS sessions. To specify a pathname, put it in quotes or specify an expression yielding the pathname in parentheses.

When the pathname is specified, there is a limit of 64 characters to the operand.
Note that RECFM=U is equivalent to RECFM=N. If an output file is subsequently read by a SAS DATA step, RECFM=N must be specified in the DATA step to guarantee that the file is read properly.

Following are several valid uses of FILE statement:
```

file "student.dat"; /* by literal pathname */
filename out "student.dat"; /* specify filename OUT */

```
```

    file out; /* refer to by filename */
    file print; /* standard print output */
    file log; /* output to log */
    file "student.dat" recfm=n; /* for a binary file */

```

\section*{FIND Statement}

\section*{finds observations}

FIND <range> <WHERE(expression) \(>\) INTO matrix-name;
The inputs to the FIND statement are as follows:
range specifies a range of observations.
expression is an expression that is evaluated for being true or false.
matrix-name names a matrix to contain the observation numbers.

The FIND statement finds the observation numbers of records in range that satisfy the conditions of the WHERE clause. The FIND statement places these observation numbers in the numeric matrix whose name follows the INTO keyword.

You can specify a range of observations with a keyword or by record number using the POINT option. You can use any of the following keywords to specify range:

ALL all observations
CURRENT the current observation
NEXT <number \(>\quad\) the next observation or the next number of observations
AFTER all observations after the current one
POINT operand observations specified by number, where operand is one of the following.
\begin{tabular}{ll}
Operand & Example \\
\hline a single record number & point 5 \\
\begin{tabular}{l}
a literal giving several \\
record numbers
\end{tabular} & point \(\left\{\begin{array}{ll}2 & 5 \\
10\end{array}\right\}\) \\
\begin{tabular}{l}
the name of a matrix \\
containing record numbers
\end{tabular} & point \(p\) \\
an expression in parentheses & point \((p+1)\)
\end{tabular}

If the current data set has an index in use, the POINT option is invalid.
The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause. The general form of the WHERE clause is

\section*{WHERE(variable comparison-op operand)}

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
\(<\quad\) less than
\(<=\) less than or equal to
\(=\) equal to
\(>\) greater than
\(>=\) greater than or equal to
^ = not equal to
? contains a given string
^? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.
WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:
\[
\wedge=\wedge ? \ll=\gg=
\]

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:
\[
=?=:=*
\]

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is
\begin{tabular}{ll}
clause\&clause & (for an AND clause) \\
clauselclause & (for an OR clause)
\end{tabular}
where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables, and the expression on the right-hand side refers to matrix values.

Following are some valid examples of the FIND statement:
```

find all where(name=:"Smith") into p;
find next where(age>30) into p2;

```
\(\mathbf{P}\) and \(\mathbf{P} \mathbf{2}\) are column vectors containing the observation numbers that satisfy the WHERE clause in the given range. The default range is all observations.

\section*{FINISH Statement}
denotes the end of a module
FINISH <module-name>;
where module-name is the name of a user-defined module.
The FINISH statement signals the end of a module and the end of module definition mode. Optionally, the FINISH statement can take the module name as its argument. See the description of the START statement and consult Chapter 5 for further information about defining modules.

Some examples follow:
```

finish;
finish mod1;

```

\section*{FORCE Statement}
(see the description of the SAVE statement)

\section*{FORWARD Function}
calculates a column vector of forward rates given vectors of spot rates and times

\section*{FORWARD(times,spot_rates)}

The FORWARD function returns an \(n \times 1\) vector of (per-period) forward rates.
times is an \(n \times 1\) column vector of times in consistent units. Elements should be nonnegative.
spot_rates is an \(n \times 1\) column vector of corresponding (per-period) spot rates. Elements should be positive.

The FORWARD function transforms the given spot rates as
\[
\begin{aligned}
& f_{1}=s_{1} \\
& f_{i}=\left(\frac{\left(1+s_{i}\right)^{t_{i}}}{\left(1+s_{t_{i-1}}\right)^{t_{i-1}}}\right)^{\frac{1}{t_{i}-t_{i-1}}}-1 ; \quad i=2, \ldots, n
\end{aligned}
\]

For example, consider the following statements:
```

time=T(do (1, 5, 1));
spot=T(do(0.05,0.09,0.01));
forward=forward(time,spot);
print forward;

```

These statements produce the following output:

FORWARD
0.05
0.0700952
0.0902839
0.1105642
0.1309345

\section*{FREE Statement}

\section*{frees matrix storage space}

FREE matrices;
FREE / <matrices>;
where matrices are names of matrices.
The FREE statement causes the specified matrices to lose their values; the memory is then freed for other uses. After execution of the FREE statement, the matrix does not have a value, and it returns 0 for the NROW and NCOL functions. Any printing attributes (assigned by the MATTRIB statement) are not released.

The FREE statement is used mostly in large applications or under tight memory constraints to make room for more data (matrices) in the workspace.

For example, to free the matrices \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\), use the following statement:
```

free a b c;

```

If you want to free all matrices, specify a slash \((/)\) after the keyword FREE. If you want to free all matrices except a few, then list the ones you do not want to free after the slash. For example, to free all matrices except \(\mathbf{d}\) and \(\mathbf{e}\), use the following statement:
```

free / d e;

```

For more information, see the discussion of workspace storage in Chapter 19.

\section*{GAEND Call (Experimental)}
ends a genetic algorithm optimization and frees memory resources CALL GAEND(id);

The inputs to the GAEND call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAEND call ends the genetic algorithm calculations associated with id and frees up all associated memory.

See the GASETUP function for an example.

\section*{GAGETMEM Call (Experimental)}

\section*{gets members of the current solution population for a genetic algorithm opti-} mization

CALL GAGETMEM(members, values, id<, index \(>\));
The GAGETMEM call returns the following values:
members
values
is a matrix representing the members of the current solution population specified by the index parameter.
is a matrix of objective function values, with the value at each row corresponding to the solution in members.

The inputs to the GAGETMEM call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
index is a matrix of indices of the requested solution population members. If index is not specified the entire population is returned.

The GAGETMEM call is used to retrieve members of the solution population and their objective function values. If the elite parameter of the GASETSEL call is nonzero, then the first elite members of the population have the most optimal objective function values of the population, and those elite members are sorted in ascending order of objective function value for a minimization problem, and in descending order for a maximization problem.

If a single member is requested, that member is returned as-is in members. If more than one member is requested in a GAGETMEM call, each row of members has one solution, shaped into a row vector. If solutions are not of fixed length, then the number of columns of members equals the number of elements of the largest solution, and rows representing solutions with fewer elements have the extra elements filled in with missing values.

See the GASETUP function for an example.

\section*{GAGETVAL Call (Experimental)}
gets current solution objective function values for a genetic algorithm optimization

CALL GAGETVAL(values, id<, index >);
The GAGETVAL call returns the following values:
values is a matrix of objective function values for solutions in the current population specified by index. If index is not present, then values for all solutions in the population are returned. Each row in values corresponds to one solution.

The inputs to the GAGETVAL call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
index is a matrix of indices of the requested objective function values. If index is not specified, then all objective function values are returned.

The GAGETVAL call is used to retrieve objective function values of the current solution population. If the elite parameter of the GASETSEL call is nonzero, then the first elite members of the population have the most optimal objective function values of the population, and those elite members are sorted in ascending order of objective function value for a minimization problem, or in descending order for a maximization problem.

See the GASETUP function for an example.

\section*{GAINIT Call (Experimental)}
creates and initializes a solution population for a genetic algorithm optimization
CALL GAINIT(id, popsize \(<,<\) bounds \(><\), modname \(\gg\));
The inputs to the GAINIT call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
popsize is the number of solution matrices to create and initialize.
bounds is an optional parameter matrix specifying the lower and upper bounds for each element of a solution matrix. It is only used for integer and real fixed-length vector problem encoding.
modname
is the name of a user-written module to be called from GAINIT when generating the initial members of the solution population.

The GAINIT call creates the members and computes the objective values for an initial solution population for a genetic algorithm optimization. If the problem encoding is specified as sequence in the corresponding GASETUP function call, and no modname parameter is specified, then GAINIT creates an initial population of vectors of randomly ordered integer values ranging from 1 to the size parameter of the GASETUP function call. Otherwise, you control how the population is created and initialized with the bounds and modname parameters.

If real or integer fixed-length vector encoding is specified in the corresponding GASETUP function call, then the bounds parameter can be supplied as a \(2 x n\) matrix, where the dimension \(n\) equals the size parameter of the GASETUP function call: the first row gives the lower bounds of the corresponding vector elements and the second row gives the upper bounds. The solutions resulting from all IML-supplied crossover and mutation operators are checked to ensure they are within the upper and lower bounds, and any solution components violating the bounds are reset to the bound. However, if user-written modules are provided for these operators, the modules are expected to do the bounds checking internally. If no modname parameter is specified, the initial population is generated by random variation of the solution components between the lower and upper bounds.

For all problem encodings, if the modname parameter is specified, it is expected to be the name of a user-written subroutine module with one parameter. The module should generate and return an individual solution in that parameter. The GAINIT call invokes that module popsize times, once for each member of the initial solution population. The modname parameter is required if the encoding parameter of the corresponding GASETUP function call was 0 or if the bounds parameter is not specified for real or integer fixed-length vector encoding.

See the GASETUP function for an example.

\section*{GAREEVAL Call (Experimental)}

\section*{reevaluates the objective function values for a solution population of a genetic algorithm optimization}

\section*{CALL GAREEVAL(id);}

The inputs to the GAREEVAL call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAREEVAL call computes the objective values for a solution population of a genetic algorithm optimization. Since the GAINIT call and the GAREGEN call also evaluate the objective function values, it is usually not necessary to call GAREEVAL. It is provided to handle the situation of a user modifying an objective function in-dependently-for example, adjusting a global variable to relax or tighten a penalty constraint. In such a case, GAREEVAL should be called before the next GAREGEN call.

\section*{GAREGEN Call (Experimental)}
replaces the current solution population by applying selection, crossover, and mutation for a genetic algorithm optimization problem

\section*{CALL GAREGEN(id);}

The inputs to the GAREGEN call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAREGEN call applies the genetic algorithm to create a new solution population from the current population. As the first step, if the elite parameter of the corresponding GASETSEL call is nonzero, the best elite members of the current population are copied into the new population, sorted by objective value with the best objective value first. If a crossover operator has been specified in a corresponding GASETCRO call or a default crossover operator is in effect, the remaining members of the population are determined by selecting members of the current population, applying the crossover operator to generate offspring, and mutating the offspring according to the mutation probability and mutation operator. Either the mutation probability and operator are specified in the corresponding GASETMUT call or, if no such call is made, a default value of 0.05 is assigned to the mutation probability, and a default mutation operator is assigned based on the problem encoding (see the GASETMUT call). The offspring are then transferred to the new population. If the no-crossover option is specified in the GASETCRO call, then only mutation is applied to the non-elite members of the current population to form the new population. After the new population is formed, it becomes the current solution population, and the objective function specified in the GASETOBJ call is evaluated for each member.

See the GASETUP function for an example.

\section*{GASETCRO Call (Experimental)}
sets the crossover operator for a genetic algorithm optimization
CALL GASETCRO(id, crossprob, type \(<\), parm >);
The inputs to the GASETCRO call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
crossprob is the crossover probability, which has a range from zero to one. It specifies the probability that selected members of the current generation will undergo crossover to produce new offspring for the next generation.
type specifies the kind of crossover operator to be used. type is used in conjunction with parm to specify either a user-written module for the crossover operator, or one of several other operators that IML provides, as explained in the following list.
is a matrix whose interpretation depends on the value of type, as described in the following list.

The GASETCRO call enables you to specify the crossover operator to be used in the genetic algorithm optimization problem. You can specify the following options with the type parameter:
type \(=-1 \quad\) specifies that no crossover operator be applied, and the new population is generated by applying the mutation operator to the old population, according to the mutation probability.
type \(=0 \quad\) specifies that a user-written module, whose name is passed in the parm parameter, be used as the crossover operator. This module should be an IML subroutine with four parameters. The module should return the new offspring solutions in the first two parameters based on the input parent solutions, which are selected by the genetic algorithm and passed into the module in the last two parameters. The module is called once for each crossover operation within the GAREGEN call to create a new generation of solutions.
type \(=1 \quad\) specifies the simple operator, defined for fixed-length integer and real vector encoding. To apply this operator, a position \(k\) within the vector of length \(n\) is chosen at random, such that \(1 \leq k<n\). Then for parents \(p 1\) and \(p 2\) the offspring are as follows:
```

c1= p1[1,1:k] || p2[1,k+1:n];
c2= p2[1,1:k] || p1[1,k+1:n];

```

For real fixed-length vector encoding, you can specify an additional parameter, \(a\), with the parm parameter, where \(a\) is a scalar and \(0<\) \(a \leq 1\). It modifies the offspring as follows:
```

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];
x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

```

Note that for \(a=1\), which is the default value, \(x 2\) and \(x 1\) are the same as \(p 2\) and \(p 1\). Small values of \(a\) reduce the difference between the offspring and parents. For integer encoding, the parm parameter is ignored and \(a\) is always 1 .
type \(=2\) specifies the two-point operator, defined for fixed-length integer and real vector encoding with length \(n \geq 3\). To apply this operator, two positions \(k l\) and \(k 2\) within the vector are chosen at random, such that \(1 \leq k 1<k 2<n\). Element values between those positions are swapped between parents. For parents \(p 1\) and \(p 2\) the offspring are as follows:
```

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];
c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

```

For real vector encoding, you can specify an additional parameter, \(a\), in the parm field, where \(0<a \leq 1\). It modifies the offspring as follows:
```

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];
x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

```

Note that for \(a=1\), which is the default value, \(x 2\) and \(x 1\) are the same as \(p 2\) and \(p 1\). Small values of \(a\) reduce the difference between the offspring and parents. For integer encoding, the parm parameter is ignored if present and \(a\) is always 1 .
type \(=3\) specifies the arithmetic operator, defined for real and integer fixedlength vector encoding. This operator computes offspring of parents \(p 1\) and \(p 2\) as follows:
```

c1 = a * p1 + (1-a) * p2;
c2 = a * p2 + (1-a) * p1;

```
where \(a\) is a random number between 0 and 1 . For integer encoding, each component is rounded off to the nearest integer. It has the advantage that it always produces feasible offspring for a convex solution space. A disadvantage of this operator is that it tends to produce offspring toward the interior of the search region, so that it can be less effective if the optimum lies on or near the search region boundary.
type=4 specifies the heuristic operator, defined for real fixed-length vector encoding. This operator computes the first offspring from the two parents \(p 1\) and \(p 2\) as follows:
```

c1 = a * (p2 - p1) + p2;

```
where \(p 2\) is the parent with the better objective value, and \(a\) is a random number between 0 and 1 . The second offspring is computed as in the arithmetic operator, as follows:
```

c2 = (1 - a) * p1 + a * p2;

```

This operator is unusual in that it uses the objective value. It has the advantage of directing the search in a promising direction, and automatically fine-tuning the search in an area where solutions are clustered. If upper and lower bound constraints are specified in the GAINIT call, the offspring are checked against the bounds, and any component outside its bound is set equal to that bound.
type \(=5\) specifies the partial match operator, defined for sequence encoding. This operator produces offspring by transferring a subsequence from one parent, and filling the remaining positions in a way consistent with
the position and ordering in the other parent. Start with two parents and randomly chosen cutpoints as follows:
```

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

```

The first step is to cross the selected segments (. indicates positions yet to be determined):
```

c1 = {. . 9 3 4 1 . . .};
c2 = {. . 3 4 5 6 . . .};

```

Next, define a mapping according to the two selected segments, as follows:
\[
9-3,3-4,4-5,1-6
\]

Next, fill in the positions where there is no conflict from the corresponding parent:
```

c1 = {. 2 9 3 4 1 7 8 .};
c2 = { \& 7 3 4 4 5 6 2 . . };

```

Last, fill in the remaining positions from the subsequence mapping. In this case, for the first child \(1 \rightarrow 6\) and \(9 \rightarrow 3\), and for the second child \(5 \rightarrow 4,3 \rightarrow 9\), and \(6 \rightarrow 1\) :
```

c1 = {6 2 9 3 4 1 7 8 5};;
c2 = {8 7 3 4 5 6 2 9 1};

```

This operator tends to maintain similarity of both the absolute position and relative ordering of the sequence elements, and is useful for a wide range of sequencing problems.
type \(=6 \quad\) specifies the order operator, defined for sequence encoding. This operator produces offspring by transferring a subsequence of random length and position from one parent, and filling the remaining positions according to the order from the other parent. For parents \(p 1\) and \(p 2\), first choose a subsequence, as follows:
```

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};
c1 = {. . 345 6 . . .};
c2 = {. . 9 3 4 1 . . .};

```

Starting at the second cutpoint, the elements of \(p 2\) are in the following order (cycling back to the beginning):

\section*{2566879341}

After removing 3, 4, 5 and 6, which have already been placed in \(c l\), you have the following:

Placing these back in order, starting at the second cutpoint, yields the following:
```

c1 = {9 1 3 4 5 6 2 8 7};

```

Applying this logic to \(c 2\) yields the following:
```

c2 = {5 6 9 3 4 1 7 8 2 };

```

This operator maintains the similarity of the relative order, or adjacency, of the sequence elements of the parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman problem.
type=7 specifies the cycle operator, defined for sequence encoding. This operator produces offspring such that the position of each element value in the offspring comes from one of the parents. For example, consider the following parents \(p 1\) and \(p 2\) :
```

p1 = {1 1 2 3 4 5 5 6 7 8 9};;
p2 = {8 7 9 3 4 1 2 5 6};

```

For the first child, pick the first element from the first parent, as follows:
```

c1 = {1 . . . . . . . .};

```

To maintain the condition that the position of each element value must come from one of the parents, the position of the ' 8 ' value must come from \(p 1\), because the ' 8 ' position in \(p 2\) is already taken by the ' 1 ' in \(c 1\) :
```

c1 = {1 . . . . . . 8 .};

```

Now the position of ' 5 ' must come from \(p 1\), and so on until the process returns to the first position:
```

c1 = {1 . 3 4 5 6 . 8 9};

```

At this point, choose the remaining element positions from \(p 2\) :
```

c1 = {1 7 7 3 4 5 6 2 8 9};;

```

For the second child, starting with the first element from the second parent, similar logic produces the following:
```

c2 = {8 2 9 3 4 1 7 5 6};

```

This operator is most useful when the absolute position of the elements is of most importance to the objective value.

A GASETCRO call is required when 0 is specified for the encoding parameter in the GASETUP call, but for fixed-length vector and sequence encoding, a default crossover operator is used in the GAREGEN call when no GASETCRO call is made. For sequence encoding, the default is the partial match operator, unless the traveling salesman option was specified in the GASETOBJ call, in which case the order operator is the default. For integer fixed-length vector encoding, the default is the simple operator. For real fixed-length vector encoding, the default is the heuristic operator.

See the GASETUP function for an example.

\section*{GASETMUT Call (Experimental)}
sets the mutation operator for a genetic algorithm optimization
CALL GASETMUT(id, mutprob \(<\), type, \(<\), parm >>);
The inputs to the GASETMUT call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
mutprob
type specifies the kind of mutation operator to be used. type is used in conjunction with parm to specify either a user-written module for the mutation operator, or one of several other operators that IML provides, as explained in the following list.
parm is a matrix whose interpretation depends on the value of type, as described in the following list.

The GASETMUT call enables you to specify the frequency of mutation and the mutation operator to be used in the genetic algorithm optimization problem. If the type parameter is not specified, then the GASETMUT call only alters the mutation probability, without resetting the mutation operator, and any operator set by a previous GASETMUT call remains in effect. You can specify the following mutation operators with the type parameter:
type \(=0 \quad\) specifies that a user-written module, whose name is passed in the parm parameter, be used as the mutation operator. This module should be an IML subroutine with one parameter, which receives the solution to be mutated. The module is called once for each mutation operation, and is expected to modify the input solution according to the desired mutation operation. Any checking of bounds specified in the GAINIT call should be done inside the module; in this case they are not checked by IML.
type=1 specifies the uniform mutation operator, defined for fixed-length real or integer encoding, with upper and lower bounds specified in the GAINIT call. The parm parameter is not used with this option. To apply this operator, a position \(k\) is randomly chosen within the solution vector \(v\), and \(v[k]\) is modified to a random value between the upper and lower bounds for element \(k\). This operator can prove especially useful in early stages of the optimization, since it tends to distribute solutions widely across the search space, and avoid premature convergence to a local optimum. However, in later stages of an optimization with real vector encoding, when the search needs to be fine-tuned to home in on an optimum, the uniform operator can hinder the optimization.
type \(=2\) specifies the delta mutation operator, defined for integer and real fixedlength vector encoding. This operator first chooses an element of the solution at random, and then perturbs that element by a fixed amount, delta, which is set with the parm parameter. delta has the same dimension as the solution vectors, and each element delta \([k]\) is set to parm \([k]\), unless parm is a scalar, in which case all elements are set equal to parm. For integer encoding, all delta[\(k]\) are truncated to integers, if they are not integers in parm. To apply the mutation, a randomly chosen element \(k\) of the solution vector \(v\) is modified such that one of the following statements is true:
```

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or
v[k] = v[k] - delta[k];

```

If there are bounds specified for the problem in the GAINIT call, then \(v[k]\) is adjusted as necessary to fit within the bounds. This operator gives you the ability to control the scope of the search with the parm matrix. One possible strategy is to start with a larger delta value, and then reduce it with subsequent GASETMUT calls as the search progresses and begins to converge to an optimum. This operator is also useful if the optimum is known to be on or near a boundary, in which case delta can be set large enough to always perturb the solution element to a boundary.
type \(=3\) specifies the swap operator, which is defined for sequence problem encoding. This operator picks two random locations in the solution vector, and swaps their value. It is the default mutation operator for sequence encoding, except for when the traveling salesman option is specified in the GASETOBJ call. You can also specify that multiple swaps be made for each mutation with the parm parameter. The number of swaps defaults to 1 if parm is not specified, and is equal to parm otherwise.
type=4 specifies the invert operator, defined for sequence encoding. This operator picks two locations at random, and then reverses the order of elements between them. This operator is most often applied to the traveling salesman problem. The parm parameter is not used with this operator.

Mutation is generally useful in the application of the genetic algorithm to ensure that a diverse population of solutions is sampled to avoid premature convergence to a local optimum. In IML, more than one GASETMUT call can be made at any time in the progress of the algorithm. This enables flexible adaptation of the mutation process, either changing the mutation probability or changing the operator itself. You can do this to ensure a wide search at the beginning of the optimization, and then reduce the variation later to narrow the search close to an optimum.

A GASETMUT call is required when an encoding parameter of 0 is specified in the GASETUP call, but when no GASETMUT call is made for fixed-length vector and sequence encoding, a default value of 0.05 is set for mutprob, and a default
mutation operator is used in the GAREGEN call. The mutation operator defaults to the uniform operator for fixed-length vector encoding with bounds specified in the GAINIT call, the delta operator with a parm value of 1 for fixed-length vector encoding with no bounds specified, the invert operator for sequence encoding when the traveling salesman option is chosen in the GASETOBJ call, and the swap operator for all other sequence encoded problems.

See the GASETUP function for an example.

\section*{GASETOBJ Call (Experimental)}

\section*{sets the objective function for a genetic algorithm optimization}

CALL GASETOBJ (id, type \(<\), parm \(>\));
The inputs to the GASETOBJ call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
type specifies the type of objective function to be used.
parm is a matrix whose interpretation depends on the value of type, as described in the following list.

IML enables the specification of a user-written module to be used to compute the value of the objective function to be optimized, or a standard preset function can be specified. This is specified with the type and parm parameters.
type \(=0 \quad\) specifies that a user-written function module is to be minimized. The name of the module is supplied in the parm parameter. The specified module should take a single parameter representing a given solution, and return a scalar numeric value for the objective function.
type \(=1 \quad\) specifies that a user-written function module be maximized. The name of the module is supplied in the parm parameter. The specified module should take a single parameter representing a given solution, and return a scalar numeric value for the objective function.
type \(=2 \quad\) specifies an objective function from the traveling salesman problem, which is minimized. This option is valid only if sequence encoding is specified in the corresponding GASETUP function call, and the solution vector is to be interpreted as a circular route, with each element representing a location. The parm parameter should be a square cost matrix, such that \(\operatorname{parm}[i, j]\) is the cost of going from location \(i\) to location \(j\). The dimension of the matrix should be the same as the size parameter of the corresponding GASETUP function call.

The specified objective function is called once for each solution, to evaluate the objective values for the GAREGEN call, GAINIT call, and GAREEVAL call. Also,
the objective values for the current solution population are reevaluated if GASETOBJ is called after a GAINIT call.

See the GASETUP function for an example.

\section*{GASETSEL Call (Experimental)}
sets the selection parameters for a genetic algorithm optimization
CALL GASETSEL(id, elite, type, parm);
The inputs to the GASETSEL call are as follows:
id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
elite \(\quad\) specifies the number of solution population members to carry over unaltered to the next generation in the GAREGEN call. If nonzero, then elite members with the best objective function values will be carried over without crossover or mutation.
type specifies the selection method to use.
parm is a parameter used to control the selection pressure.

This module sets the selection parameters that are used in the GAREGEN call to select solutions for the crossover operation. IML currently enables you to choose between two variants of the "tournament" selection method in which a group of different solutions is picked at random from the current solution population, and the solution from that group with the best objective value is selected. In the first variation, chosen by setting type to 0 , the most optimal solution is always selected, and the parm parameter is used to specify the size of the group, always two or greater. The larger the group size, the greater the selective pressure. In the second variation, chosen by setting type \(=1\), the group size is set to 2 , and the best solution is chosen with probability specified by parm. If parm is 1 the best solution is always picked, and a parm value of 0.5 is equivalent to pure random selection. The parm value must be between 0.5 and 1 . The first variation, type \(=0\), always produces a selective pressure greater than for type=1. Higher selective pressure will lead to faster convergence of the genetic algorithm, but is more likely to give premature convergence to a local optimum.

In order to ensure that the best solution of the current solution population is always carried over to the next generation, an elite value of 1 should be specified. Higher values of elite generally lead to faster convergence of the algorithm, but they increase the chances of premature convergence to a local optimum. If GASETSEL is not called, default values of elite \(=1\), type \(=1\), and parm \(=2\) are used in the optimization.

See the GASETUP function for an example.

\section*{GASETUP Function (Experimental)}
sets up the problem encoding for a genetic algorithm optimization problem
GASETUP(encoding, size \(<\), seed \(>\))
The GASETUP function returns a scalar number identifying the genetic algorithm optimization problem, to be used in subsequent calls in setting up and executing the optimization.

The inputs to the GASETUP function are as follows:
\[
\begin{array}{ll}
\text { encoding } & \text { is a scalar number used to specify the form or structure of the problem } \\
\text { solutions to be optimized. A value of } 0 \text { is used to indicate a numeric } \\
\text { matrix of arbitrary dimensions, } 1 \text { to indicate a fixed-length floating- } \\
\text { point row vector, } 2 \text { to indicate a fixed-length integer row vector, and } 3 \\
\text { to indicate a fixed-length sequence of integers, with alternate solutions } \\
\text { distinguished by different sequence ordering. } \\
\text { size } & \begin{array}{l}
\text { is a numeric scalar, whose value is the vector or sequence length, if a } \\
\text { fixed-length encoding is specified. For arbitrary matrix encoding (en- } \\
\text { coding value of 0), size is not used. } \\
\text { is an optional initial random number seed to be used for the initializa- } \\
\text { tion and the selection process. If seed is not specified, or its value is } 0, \\
\text { an initial seed is derived from the current system time. }
\end{array} \\
\text { seed }
\end{array}
\]

GASETUP is the first call that must be made to set up a genetic algorithm optimization problem. It specifies the problem encoding, the size of a population member, and an optional seed to use to initialize the random number generator used in the selection process. GASETUP returns an identifying number that must be passed to the other modules that specify genetic operators and control the execution of the genetic algorithm. More than one optimization can be active concurrently, and optimization problems with different problem identifiers are completely independent. When a satisfactory solution has been determined, the optimization problem should be terminated with a call to GAEND to free up resources associated with the genetic algorithm.

The following example demonstrates the use of several genetic algorithm subroutines.
```

/* Use a genetic algorithm to explore the solution space for the
"traveling salesman" problem. First, define the objective
function to minimize:
Compute the sum of distances between sequence of cities */
start EvalFitness( pop ) global ( dist );
fitness = j( nrow(pop),1 );
do i = 1 to nrow (pop);
city1 = pop[i,1];
city2 = pop[i,ncol(pop)];
fitness[i] = dist[ city1, city2 ];
do j = 1 to ncol(pop)-1;
city1 = pop[i,j];

```
```

                city2 = pop[i,j+1];
                    fitness[i] = fitness[i] + dist[city1,city2];
        end;
    end;
    return ( fitness );
    finish;
/* Set up parameters for the genetic algorithm */
mutationProb = 0.15; /* prob that a child will be mutated */
numElite = 2; /* copy this many to next generation */
numCities = 15; /* number of cities to visit */
numGenerations = 100; /* number of generations to evolve */
seed = 54321; /* random number seed */
/* fix population size; generate random locations for cities */
popSize = max(30,2*numCities);
locations = uniform( j(numCities,2,seed) );
/* calculate distances between cities one time */
dist = j( numCities, numCities, 0 );
do i = 1 to numCities;
do j = 1 to i-1;
v = locations[i,]-locations[j,];
dist[i,j] = sqrt( v[\#\#] );
dist[j,i] = dist[i,j];
end;
end;
/* run the genetic algorithm */
id = gasetup( 3, numCities, seed);
call gasetobj(id, 0, "EvalFitness" );
call gasetcro(id, 1.0, 6);
call gasetmut(id, mutationProb, 3);
call gasetsel(id, numElite, 1, 0.95);
call gainit(id, popSize );
do i = 1 to numGenerations;
if mod(i,20)=0 then do;
call gagetval( value, id, 1 );
print "Iteration:" i "Top value:" value;
end;
call garegen(id);
end;
/* report final sequence for cities */
call gagetmem(mem, value, id, 1);
print mem, value;
call gaend(id);

```

\section*{GBLKVP Call}

\section*{defines a blanking viewport}

CALL GBLKVP(viewport \(<\), inside \(>\));
The inputs to the GBLKVP subroutine are as follows:

> viewport a numeric matrix or literal defining a viewport. This rectangular area's boundary is specified in normalized coordinates, where you specify the coordinates of the lower-left corner and the upper-right corner of the rectangular area in the form
\{minimum-x minimum-y maximum-x maximum-y\}
inside
is a numeric argument that specifies whether graphics output is to be clipped inside or outside the blanking area. The default is to clip outside the blanking area.

The GBLKVP subroutine defines an area, called the blanking area, in which nothing is drawn until the area is released. This routine is useful for clipping areas outside the graph or for blanking out inner portions of the graph. If inside is set to 0 (the default), no graphics output appears outside the blanking area. Setting inside to 1 clips inside the blanking areas.
Note that the blanking area (as specified by the viewport argument) is defined on the current viewport, and it is released when the viewport is changed or popped. At most one blanking area is in effect at any time. The blanking area can also be released by the GBLKVPD subroutine or another GBLKVP call. The coordinates in use for this graphics command are given in normalized coordinates because it is defined relative to the current viewport.

For example, to blank out a rectangular area with corners at the coordinates \((20,20)\) and \((80,80)\), relative to the currently defined viewport, use the following statement:
```

call gblkvp({20 20, 80 80});

```

No graphics or text can be written outside this area until the blanking viewport is ended.

Alternatively, if you want to clip inside the rectangular area, use the inside parameter, as follows:
```

call gblkvp({20 20, 80 80},1);

```

See also the description of the CLIP option in the RESET statement.

\section*{GBLKVPD Call}

\section*{deletes the blanking viewport}

CALL GBLKVPD;
The GBLKVPD subroutine releases the current blanking area. It enables graphics output to be drawn in the area previously blanked out by a call to the GBLKVP subroutine.

To release an area previously blanked out, as in the example for the GBLKVP subroutine, use the following statement.
```

/* define blanking viewport */
call gblkvp({20 20,80 80});
more graphics statements
/* now release the blanked out area */
call gblkvpd;
/* graphics or text can now be written to the area */
continue graphics statements

```

See also the description of the CLIP option in the RESET statement.

\section*{GCLOSE Call}

\section*{closes the graphics segment}

CALL GCLOSE;
The GCLOSE subroutine closes the current graphics segment. Once a segment is closed, no other primitives can be added to it. The next call to a graph-generating function begins building a new graphics segment. However, the GCLOSE subroutine does not have to be called explicitly to terminate a segment; the GOPEN subroutine causes GCLOSE to be called.

\section*{GDELETE Call}

\section*{deletes a graphics segment}

\section*{CALL GDELETE(segment-name);}
where segment-name is a character matrix or quoted literal containing the name of the segment.

The GDELETE subroutine searches the current catalog and deletes the first segment found with the name segment-name.

An example of a valid statement follows:
```

    /* SEG_A is defined as a character matrix */
    /* that contains the name of the segment to delete */
    call gdelete(seg_a);

```

The segment can also be specified as a quoted literal, as follows:
```

call delete("plot_13");

```

\section*{GDRAW Call}

\section*{draws a polyline}

CALL GDRAW (\(x, y<\), style \(><\), color \(><\), window \(><\), viewport \(>\));
The inputs to the GDRAW subroutine are as follows:
\(\left.\begin{array}{ll}x & \begin{array}{l}\text { is a vector containing the } x \text { coordinates of points used to draw a } \\
\text { sequence of lines. }\end{array} \\
\text { is a vector containing the } y \text { coordinates of points used to draw a } \\
\text { sequence of lines. }\end{array}\right\}\)\begin{tabular}{l}
is a numeric matrix or literal that specifies an index corresponding \\
to a valid line style. \\
is a valid SAS color, where color can be specified as a quoted text \\
string (such as 'RED'), the name of a character matrix containing \\
a valid color as an element, or a color number (such as 1). A color \\
number \(n\) refers to the \(n\)th color in the color list.
\end{tabular}
viewport is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}

The GDRAW subroutine draws a sequence of connected lines from points represented by values in \(x\) and \(y\), which must be vectors of the same length. If \(x\) and \(y\) have \(n\) points, there will be \(n-1\) lines. The first line will be from the point \((x(1), y(1))\) to \((x(2), y(2))\). The lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates. An example that uses the GDRAW subroutine follows:
```

    /* line from (50,50) to (75,75) - x and y take */
    /* default window range of 0 to 100 */
    call gdraw({50 75},{50 75});
call gshow;

```

\section*{GDRAWL Call}

\section*{draws individual lines}

CALL GDRAWL (\(x y 1, x y 2<\), style><, color><, window \(><\), viewport>);
The inputs to the GDRAWL subroutine are as follows:
\begin{tabular}{ll}
\(x y 1\) & is a matrix of points used to draw a sequence of lines. \\
\(x y 2\) & is a matrix of points used to draw a sequence of lines. \\
style & \begin{tabular}{l}
is a numeric matrix or literal that specifies an index corresponding \\
to a valid line style.
\end{tabular} \\
color & \begin{tabular}{l}
is a valid SAS color, where color can be specified as a quoted text \\
string (such as 'RED'), the name of a character matrix containing \\
a valid color as an element, or a color number (such as 1). A color \\
number \(n\) refers to the \(n\)th color in the color list.
\end{tabular} \\
window & \begin{tabular}{l}
is a numeric matrix or literal specifying a window. This is given in \\
world coordinates and has the form
\end{tabular}
\end{tabular}
\{minimum-x minimum-y maximum-x maximum-y\}
viewport
is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}

The GDRAWL subroutine draws a sequence of lines specified by their beginning and ending points. The matrices \(x y 1\) and \(x y 2\) must have the same number of rows and columns. The first two columns (other columns are ignored) of \(x y 1\) give the \(x, y\) coordinates of the beginning points of the line segment, and the first two columns of \(x y 2\) have \(x, y\) coordinates of the corresponding endpoints. If \(x y 1\) and \(x y 2\) have \(n\) rows, \(n\) lines are drawn. The first line is from \((x y 1(1,1), x y 1(1,2))\) to \((x y 2(1,1), x y 2(1,2))\). The lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates. An example that uses the GDRAWL call follows:
```

    /* line from (25,25) to (50,50) - x and y take */
    /* default window range of 0 to 100 */
    call gdrawl({25 25},{50 50});
call gshow;

```

\section*{GENEIG Call}

\section*{CALL GENEIG(eigenvalues, eigenvectors, symmetric-matrix1, symmetric-matrix2);}

The inputs to the GENEIG subroutine are as follows:
\begin{tabular}{ll}
eigenvalues & is a returned vector containing the eigenvalues. \\
eigenvectors & is a returned matrix containing the corresponding eigenvectors. \\
symmetric-matrix1 & is a symmetric numeric matrix. \\
symmetric-matrix2 & is a positive definite symmetric matrix.
\end{tabular}

The GENEIG subroutine computes eigenvalues and eigenvectors of the generalized eigenproblem. Consider the following statement:
```

call geneig (m,e,a,b);

```

This statement computes eigenvalues \(\mathbf{M}\) and eigenvectors \(\mathbf{E}\) of the generalized eigenproblem \(\mathbf{A} * \mathbf{E}=\mathbf{B} * \mathbf{E} * \operatorname{diag}(\mathbf{M})\), where \(\mathbf{A}\) and \(\mathbf{B}\) are symmetric and \(\mathbf{B}\) is positive definite. The vector \(\mathbf{M}\) contains the eigenvalues arranged in descending order, and the matrix \(\mathbf{E}\) contains the corresponding eigenvectors in the columns.

The following example is from Wilkinson and Reinsch (1971, p. 311):
```

a={10
b={12 11 -1 2 1,
1 14 1 1 -1 1,
-1 1 1 16 -1 1, 1,
2 -1 -1 12 -1,
1 1 1 1 -1 11};
call geneig(m,e,a,b);

```

The matrices produced are as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{M} \\
\hline \multicolumn{5}{|l|}{1.49235} \\
\hline \multicolumn{5}{|l|}{1.10928} \\
\hline \multicolumn{5}{|l|}{0.94385} \\
\hline \multicolumn{5}{|l|}{0.66366} \\
\hline \multicolumn{5}{|l|}{0.43278} \\
\hline \multicolumn{5}{|l|}{E} \\
\hline -0.07638 & 0.14201 & 0.19171 & -0.08292 & -0.13459 \\
\hline 0.01709 & 0.14242 & -0.15899 & -0.15314 & 0.06129 \\
\hline -0.06666 & 0.12099 & 0.07483 & 0.11860 & 0.15790 \\
\hline 0.08604 & 0.12553 & -0.13746 & 0.18281 & -0.10946 \\
\hline 0.28943 & 0.00769 & 0.08897 & -0.00356 & 0.04147 \\
\hline
\end{tabular}

\section*{GEOMEAN Function}
calculates geometric means

\section*{GEOMEAN (matrix)}
where matrix is a numeric matrix of nonnegative values.
The GEOMEAN function returns a scalar containing the geometric mean of the elements of the input matrix. The geometric mean of a set of nonnegative numbers \(a_{1}, a_{2}, \ldots, a_{n}\) is the \(n\)th root of the product \(a_{1} \cdot a_{2} \cdots a_{n}\).

The geometric mean is zero if any of the \(a_{i}\) are zero. The geometric mean is not defined for negative inputs. If any of the \(a_{i}\) are missing, they are excluded from the computation.

The geometric mean can be used to compute the average return on an investment. For example, the following data gives the annual returns on U.S. Treasury bonds from 1994-2004. The following statements compute that the average rate of return during this time was \(6.43 \%\) :
```

/* year return% */
TBonds = { 1994 -8.04,
1995 23.48,
1996 1.43,
1997 9.94,
1998 14.92,
1999 -8.25,
2000 16.66,
2001 5.57,
2002 15.12,
2003 0.38,
2004 4.49 };
proportion = 1 + TBonds[,2]/100; /* convert to proportion */
aveReturn = geomean( proportion );
print aveReturn;

```
aveReturn
1.0643334

\section*{GGRID Call}
draws a grid
CALL GGRID(\(x, y<\), style \(><\), color \(><\), window \(><\), viewport \(>\));
The inputs to the GGRID subroutine are as follows:
\(\left.\begin{array}{ll}x \text { and } y & \text { are vectors of points used to draw sequences of lines. } \\ \text { style } & \begin{array}{l}\text { is a numeric matrix or literal that specifies an index corresponding } \\ \text { to a valid line style. }\end{array} \\ \text { color } & \begin{array}{l}\text { is a valid SAS color, where color can be specified as a quoted text } \\ \text { string (such as 'RED'), the name of a character matrix containing }\end{array} \\ \text { a valid color as an element, or a color number (such as 1). A color } \\ \text { number } n \text { refers to the } n \text {th color in the color list. }\end{array}\right\}\)
\[
\{\text { minimum-x minimum-y maximum-x maximum-y }\}
\]
viewport is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}

The GGRID subroutine draws a sequence of vertical and horizontal lines specified by the \(x\) and \(y\) vectors, respectively. The start and end of the vertical lines are implicitly defined by the minimum and maximum of the \(y\) vector. Likewise, the start and end of the horizontal lines are defined by the minimum and maximum of the \(x\) vector. The grid lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates.

For example, use the following statements to place a grid in the lower-left corner of the screen:
```

x={10,20,30,40,50};
y=x;
/* The following GGRID command places a GRID */
/* in the lower left corner of the screen, */
/* assuming the default window and viewport */
call ggrid(x,y);
call gshow;

```

\section*{GINCLUDE Call}

\section*{includes a graphics segment}

\section*{CALL GINCLUDE(segment-name);}
where segment-name is a character matrix or quoted literal specifying a graphics segment.

The GINCLUDE subroutine includes in the current graph a previously defined graph named segment-name from the same catalog. The included segment is defined in the current viewport but not in the current window.

The implementation of the GINCLUDE subroutine makes it possible to include other segments in the current segment and reposition them in different viewports. Furthermore, a segment can be included by different graphs, thus effectively reducing storage space. Examples of valid statements follow:
```

    /* segment1 is a character variable */
    /*containing the segment name */
    segment1={myplot};
call ginclude(segment1);
/* specify the segment with quoted literal */
call ginclude("myseg");

```

\section*{GINV Function}

\section*{computes the generalized inverse}
GINV(matrix)
where matrix is a numeric matrix or literal.
The GINV function creates the Moore-Penrose generalized inverse of matrix. This inverse, known as the four-condition inverse, has these properties:

If \(\mathbf{G}=\operatorname{GINV}(\mathbf{A})\) then
\[
\mathbf{A G A}=\mathbf{A} \quad \mathbf{G A G}=\mathbf{G} \quad(\mathbf{A G})^{\prime}=\mathbf{A G} \quad(\mathbf{G A})^{\prime}=\mathbf{G A}
\]

The generalized inverse is also known as the pseudoinverse, usually denoted by \(\mathbf{A}^{-}\). It is computed by using the singular value decomposition (Wilkinson and Reinsch 1971).

See Rao and Mitra (1971) for a discussion of properties of this function.
Consider the following model:
\[
\mathbf{Y}=\mathbf{X} \beta+\epsilon
\]

Least squares regression for this model can be performed by using the following statement as the estimate of \(\beta\) :
```

b=ginv(x) *y;

```

This solution has minimum \(\mathbf{b}^{\prime} \mathbf{b}\) among all solutions minimizing \(\epsilon^{\prime} \epsilon\), where \(\epsilon=\mathbf{Y}-\) Xb.

Projection matrices can be formed by specifying \(\operatorname{GINV}(\mathbf{X}) * \mathbf{X}\) (row space) or \(\mathbf{X} * \operatorname{GINV}(\mathbf{X})\) (column space).
The following program demonstrates some common uses of the GINV function:
```

A = {llllll
1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };
/* find generalized inverse */
Ainv = ginv(A);
/* find LS solution: min |Ax-b|^2 */
b = { 3, 2, 4, 2, 1, 3 };
x = Ainv*b;
/* form projection matrix onto row space.
Note P = P` and P*P = P */
P = Ainv*A;
/* find numerical rank of A */
rankA = round(trace(P));
reset fuzz;
print Ainv, rankA, x, P;

```

AINV
\begin{tabular}{rrrrrr}
0.2666667 & 0.2666667 & 0.2666667 & -0.066667 & -0.066667 & -0.066667 \\
-0.066667 & -0.066667 & -0.066667 & 0.2666667 & 0.2666667 & 0.2666667 \\
0.4 & -0.1 & -0.1 & 0.4 & -0.1 & -0.1 \\
-0.1 & 0.4 & -0.1 & -0.1 & 0.4 & -0.1 \\
-0.1 & -0.1 & 0.4 & -0.1 & -0.1 & 0.4
\end{tabular} RANKA

4

X

2
1
1

0
2

P
\begin{tabular}{rrrrr}
0.8 & -0.2 & 0.2 & 0.2 & 0.2 \\
-0.2 & 0.8 & 0.2 & 0.2 & 0.2 \\
0.2 & 0.2 & 0.8 & -0.2 & -0.2 \\
0.2 & 0.2 & -0.2 & 0.8 & -0.2 \\
0.2 & 0.2 & -0.2 & -0.2 & 0.8
\end{tabular}

If \(A\) is an \(n \times m\) matrix, then, in addition to the memory allocated for the return matrix, the GINV function temporarily allocates an \(n^{2}+n m\) array for performing its computation.

\section*{GOPEN Call}
opens a graphics segment
CALL GOPEN(<segment-name \(><\), replace \(><\), description \(>\));
The inputs to the GOPEN subroutine are as follows:
segment-name
is a character matrix or quoted literal specifying the name of a graphics segment.
replace is a numeric argument.
description is a character matrix or quoted text string with a maximum length of 40 characters.

The GOPEN subroutine starts a new graphics segment. The window and viewport are reset to the default values (\(\{00100100\}\)) in both cases. Any attribute modified by using a GSET call is reset to its default value, which is set by the attribute's corresponding GOPTIONS value.

A nonzero value for replace indicates that the new segment should replace the first found segment with the same name, and zero indicates otherwise. If you do not specify the replace flag, the flag set by a previous GSTART call is used. By default, the GSTART subroutine sets the flag to NOREPLACE.

The description is a text string of up to 40 characters that you want to store with the segment to describe the graph.

Two graphs cannot have the same name. If you try to create a segment-say, PLOT_A-twice, the second segment is given a name generated by IML.

To open a new segment named COSINE, set replace to replace a like-named segment, and attach a description to the segment. Use the following statement:
```

call gopen('cosine',1,'Graph of Cosine Curve');

```

\section*{GOTO Statement}

\section*{jumps to a new statement}

\section*{GOTO label;}
where label is a labeled statement. Execution jumps to this statement. A label is a name followed by a colon (:).

The GOTO (or GO TO) statement directs IML to jump immediately to the statement with the given label and begin executing statements from that point. Any IML statement can have a label, which is a name followed by a colon preceding any executable statement.

GOTO statements are usually clauses of IF statements. For example:
```

if x>y then goto skip;
y=log(y-x);
yy=y-20;
skip: if y<0 then
do;
more statements
end;

```

The function of GOTO statements is usually better performed by DO groups. For example, the preceding statements could be better written as follows:
```

if x<=y then
do;
y=log(y-x);
yy=y-20;
end;
more statements

```

CAUTION: You can only use the GOTO statement inside a module or a DO group. As good programming practice, you should avoid using a GOTO statement when it refers to a label preceding the GOTO statement; otherwise, an infinite loop is possible.

\section*{GPIE Call}

\section*{draws pie slices}

CALL GPIE(\(x, y, r<\), angle1><, angle2><, color \(><\), outline \(>\)
\[
<, \text { pattern }><\text {, window }><\text {, viewport }>\text {); }
\]

The inputs to the GPIE subroutine are as follows:
\begin{tabular}{ll}
\(x\) and \(y\) & \begin{tabular}{l}
are numeric scalars (or possibly vectors) defining the center (or \\
centers) of the pie (or pies). \\
is a scalar or vector giving the radii of the pie slices.
\end{tabular} \\
\(r\) & \begin{tabular}{l}
is a scalar or vector giving the start angles. It defaults to 0.
\end{tabular} \\
angle1 \\
angle 2 & \begin{tabular}{l}
is a scalar or vector giving the terminal angles. It defaults to 360. \\
color \\
is a valid SAS color, where color can be specified as a quoted text \\
string (such as 'RED'), the name of a character matrix containing \\
a valid color as an element, or a color number (such as 1). A color \\
number \(n\) refers to the \(n\)th color in the color list.
\end{tabular} \\
outline & \begin{tabular}{l}
is an index indicating the side of the slice to draw. The default is 3. \\
is a character matrix or quoted literal that specifies the pattern with \\
which to fill the interior of a closed curve.
\end{tabular}
\end{tabular}
window is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form \{minimum-x minimum-y maximum-x maximum-y\}
viewport is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}

The GPIE subroutine draws one or more pie slices. The number of pie slices is the maximum dimension of the first five vectors. The angle arguments are specified in degrees. The start angle (anglel) defaults to 0 , and the terminal angle (angle2) defaults to 360 . Outline is an index that indicates the side of the slice to draw. The outline specification can be one of the following:
\(<0 \quad\) uses absolute value as the line style and draws no line segment from center to arc.

0 draws no line segment from center to arc.
1 draws an arc and line segment from the center to the starting angle point.
2 draws an arc and line segment from the center to the ending angle point.
3 draws all sides of the slice. This is the default.

Color, outline, and pattern can have more than one element. The coordinates in use for this graphics command are world coordinates. An example that uses the GPIE subroutine follows:
```

    /* draws a pie with 4 slices of equal size */
    call gpie(50,50,30,{0 90 180 270},{90 180 270 0});

```

\section*{GPIEXY Call}
converts from polar to world coordinates
CALL GPIEXY(\(x, y\), fract-radii, angles \(<\), center \(><\), radius \(><\), window \(>\));
The inputs to the GPIEXY subroutine are as follows:
\begin{tabular}{ll}
\(x\) and \(y\) & are vectors of coordinates returned by GPIEXY. \\
fract-radii & is a vector of fractions of the radius of the reference circle. \\
angles & is the vector of angle coordinates in degrees. \\
center & defines the reference circle. \\
radius & defines the reference circle.
\end{tabular}
window is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form
\(\{\) minimum- \(x\) minimum- y maximum- \(x\) maximum- \(y\}\)

The GPIEXY subroutine computes the world coordinates of a sequence of points relative to a circle. The \(x\) and \(y\) arguments are vectors of new coordinates returned by the GPIEXY subroutine. Together, the vectors fract-radii and angles define the points in polar coordinates. Each pair from the fract-radii and angles vectors yields a corresponding pair in the \(x\) and \(y\) vectors. For example, suppose fract-radii has two elements, 0.5 and 0.3 , and the corresponding two elements of angles are 90 and 30 . The GPIEXY subroutine returns two elements in the \(x\) vector and two elements in the \(y\) vector. The first \((x, y)\) pair locates a point halfway from the center to the reference circle on the vertical line through the center, and the second \((x, y)\) pair locates a point one-third of the way on the line segment from the center to the reference circle, where the line segment slants 30 degrees from the horizontal. The reference circle can be defined by an earlier GPIE call or another GPIEXY call, or it can be defined by specifying center and radius.

Graphics devices can have diverse aspect ratios; thus, a circle can appear distorted when drawn on some devices. The IML graphics subsystem adjusts computations to compensate for this distortion. Thus, for any given point, the transformation from polar coordinates to world coordinates might need an equivalent adjustment. The GPIEXY subroutine ensures that the same adjustment applied in the GPIE subroutine is applied to the conversion. An example that uses the GPIEXY call follows:
```

    /* add labels to a pie with 4 slices of equal size */
    call gpie(50,50,30,{0 90 180 270},{90 180 270 0});
call gpiexy(x,y,1.2,{45 135 225 315},{50 50},30,{0 0 100 100});
/* adjust for label size: */
x [4,]=x[4,]-3;
x [1,]=x[1,]-4;
x [2,]=x[2,]+1;
call gscript(x,y,{'QTR1' 'QTR2' 'QTR3' 'QTR4'});
call gshow;

```

\section*{GPOINT Call}
plots points
CALL GPOINT(\(x, y<\), symbol \(><\), color \(><\), height \(><\), window \(>\) <, viewport \(>\));

The inputs to the GPOINT subroutine are as follows:
\(x \quad\) is a vector containing the \(x\) coordinates of points.
\(y\) is a vector containing the \(y\) coordinates of points.
\begin{tabular}{ll}
symbol & \begin{tabular}{l}
is a character vector or quoted literal that specifies a valid plotting \\
symbol or symbols. \\
is a valid SAS color, where color can be specified as a quoted text \\
string (such as 'RED'), the name of a character matrix containing \\
a valid color as an element, or a color number (such as 1). A color \\
number \(n\) refers to the \(n\)th color in the color list.
\end{tabular} \\
color & \begin{tabular}{l}
is a numeric matrix or literal specifying the character height. \\
is a numeric matrix or literal specifying a window. This is given in \\
world coordinates and has the form
\end{tabular} \\
height \\
findow
\end{tabular}
\[
\{\text { minimum-x minimum-y maximum-x maximum-y\} }
\]

The GPOINT subroutine marks one or more points with symbols. The \(x\) and \(y\) vectors define the points where the markers are to be placed. The symbol and color arguments can have from one to as many elements as there are well-defined points. The coordinates in use for this graphics command are world coordinates.

In the example that follows, points on the line \(Y=X\) are generated for \(30 \leq X \leq 80\) and then plotted with the GPOINT call:
```

x=30:80;
y=x;
call gpoint (x,y);
call gshow;

```

As another example, you can plot symbols at specific locations on the screen by using the GPOINT subroutine. To print \(i\) in the lower-left corner and \(j\) in the upper-right corner, use the following statements:
```

call gpoint({10 80},{5 95},{i j});
call gshow;

```

See Chapter 12 for examples using the GPOINT subroutine.

\section*{GPOLY Call}

\section*{draws and fills a polygon}
```

CALL GPOLY( $x, y<$, style $><$, ocolor $><$, pattern $><$, color $>$
$<$, window $><$, viewport>);

```

The inputs to the GPOLY subroutine are as follows.
\(\left.\begin{array}{ll}x & \begin{array}{l}\text { is a vector defining the } x \text { coordinates of the corners of the polygon. }\end{array} \\
y & \begin{array}{l}\text { is a vector defining the } y \text { coordinates of the corners of the polygon. } \\
\text { is a numeric matrix or literal that specifies an index corresponding }\end{array} \\
\text { to a valid line style. }\end{array} \quad \begin{array}{l}\text { is a matrix or literal specifying a valid outline color. The ocolor } \\
\text { argument can be specified as a quoted text string (such as 'RED'), } \\
\text { the name of a character matrix containing a valid color as an ele- } \\
\text { ment, or a color number (such as 1). A color number } n \text { refers to } \\
\text { the } n \text {th color in the color list. }\end{array}\right]\)\begin{tabular}{l}
is a character matrix or quoted literal that specifies the pattern to \\
fill the interior of a closed curve.
\end{tabular}
\[
\{\text { minimum-x minimum-y maximum-x maximum-y }\}
\]
viewport is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum- \(y\) \}

The GPOLY subroutine fills an area enclosed by a polygon. The polygon is defined by the set of points given in the vectors \(x\) and \(y\). The color argument is the color used in shading the polygon, and ocolor is the outline color. By default, the shading color and the outline color are the same, and the interior pattern is empty. The coordinates in use for this graphics command are world coordinates. An example that uses the GPOLY subroutine follows:
```

xd={20 20 80 80}}\mathrm{ ;;
yd={35 85 85 35};
call gpoly (xd,yd, , ,'X','red');

```

\section*{GPORT Call}

\section*{defines a viewport}

CALL GPORT(viewport);
where viewport is a numeric matrix or literal defining the viewport. The rectangular area's boundary is specified in normalized coordinates, where you specify the coordinates of the lower-left corner and the upper-right corner of the rectangular area in the form
\[
\{\text { minimum-x minimum-y maximum-x maximum-y }\}
\]

The GPORT subroutine changes the current viewport. The viewport argument defines the new viewport by using device coordinates (always 0 to 100). Changing the viewport can affect the height of the character fonts; if so, you might want to modify the HEIGHT parameter. An example of a valid statement follows:
```

call gport({20 20 80 80});

```

The default values for viewport are 00100100 .

\section*{GPORTPOP Call}
pops the viewport
CALL GPORTPOP;
The GPORTPOP subroutine deletes the top viewport from the stack.

\section*{GPORTSTK Call}

\section*{stacks the viewport}

\section*{CALL GPORTSTK(viewport);}
where viewport is a numeric matrix or literal defined in normalized coordinates in the form
\(\{\) minimum-x minimum-y maximum-x maximum-y \(\}\)

The GPORTSTK subroutine stacks the viewport defined by the matrix viewport onto the current viewport; that is, the new viewport is defined relative to the current viewport. The coordinates in use for this graphics command are world coordinates. An example of a valid statement follows:
```

call gportstk({5 5 95 95});

```

\section*{GSCALE Call}
calculates round numbers for labeling axes
CALL GSCALE(scale, \(x\), nincr \(<\), nicenum \(><\), fixed-end \(>\));
The inputs to the GSCALE subroutine are as follows:
```

scale is a returned vector containing the scaled minimum data value, the
scaled maximum data value, and a grid increment.
x is a numeric matrix or literal.
nincr is the number of intervals desired.
nicenum is numeric and provides up to }10\mathrm{ numbers to use for scaling. By
default, nicenum is (1,2,2.5,5).
fixed-end is a character argument and specifies which end of the scale is held
fixed. The default is }\mathbf{x}\mathrm{ .

```

The GSCALE subroutine obtains simple (round) numbers with uniform grid interval sizes to use in scaling a linear axis. The GSCALE subroutine implements algorithm 463 of Collected Algorithms from CACM. The scale values are integer multiples of the interval size. They are returned in the first argument, a vector with three elements. The first element is the scaled minimum data value. The second element is the scaled maximum data value. The third element is the grid increment.

The required input parameters are \(x\), a matrix of data values, and nincr, the number of intervals desired. If nincr is positive, the scaled range includes approximately nincr intervals. If nincr is negative, the scaled range includes exactly ABS (nincr) intervals. The nincr parameter cannot be zero.

The nicenum and fixed-end arguments are optional. The nicenum argument provides up to 10 numbers, all between 1 and 10 (inclusive of the endpoints), to be used for scaling. The default for nicenum is \(1,2,2.5\), and 5 . The linear scale with this set of numbers is a scale with an interval size that is the product of an integer power of 10 and \(1,2,2.5\), or 5 . Changing these numbers alters the rounding of the scaled values.

For fixed-end, \(\mathbf{u}\) fixes the upper end; \(\mathbf{L}\) fixes the lower end; \(\mathbf{x}\) allows both ends to vary from the data values. The default is \(\mathbf{x}\). An example that uses the GSCALE subroutine follows:
```

    /* scalemat is set to {0,1000,100} */
    call gscale(scalmat, {1 1000}, 10);

```

\section*{GSCRIPT Call}
writes multiple text strings with special fonts
CALL GSCRIPT(\(x, y\), text \(<\), angle \(><\), rotate \(><\), height \(><\), font \(>\)
\(<\), color \(><\), window \(><\), viewport \(>\));
The inputs to the GSCRIPT subroutine are as follows:
\(x \quad\) is a scalar or vector containing the \(x\) coordinates of the lower left starting position of the text string's first character.
\(y \quad\) is a scalar or vector containing the \(y\) coordinates of the lower left starting position of the text string's first character.
text is a character vector of text strings.
angle is the slant of each text string.
rotate is the rotation of individual characters.
height is a real number specifying the character height.
font
color is a valid SAS color. The color argument can be specified as a quoted text string (such as 'RED'), the name of a character matrix containing a valid color as an element, or a color number (such as 1). A color number \(n\) refers to the \(n\)th color in the color list.
window
viewport is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}
is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}

The GSCRIPT subroutine writes multiple text strings with special character fonts. The \(x\) and \(y\) vectors describe the coordinates of the lower left starting position of the text string's first character. The color argument can have more than one element.

Note: Hardware characters cannot always be obtained if you change the HEIGHT or ASPECT parameters or if you use a viewport.

The coordinates in use for this graphics command are world coordinates. Examples of valid statements follow:
```

call gscript(7,y,names);
call gscript(50,50,"plot of height vs weight");
call gscript(10,90,"yaxis",-90,90);

```

\section*{GSET Call}

\section*{sets attributes for a graphics segment \\ CALL GSET(attribute \(<\), value \(>\));}

The inputs to the GSET subroutine are as follows:
\begin{tabular}{ll}
attribute & \begin{tabular}{l}
is a graphics attribute. The attribute argument can be a character \\
matrix or quoted literal.
\end{tabular} \\
value & \begin{tabular}{l}
is the value to which the attribute is set. The value argument is \\
specified as a matrix or quoted literal.
\end{tabular}
\end{tabular}

The GSET subroutine enables you to change the following attributes for the current graphics segment.
\begin{tabular}{ll}
aspect & \begin{tabular}{l}
a numeric matrix or literal that specifies the aspect ratio (width \\
relative to height) for characters. \\
a valid SAS color. The color argument can be specified as a quoted \\
text string (such as 'RED'), the name of a character matrix contain- \\
ing a valid color as an element, or a color number (such as 1). A \\
color number \(n\) refers to the \(n\)th color in the color list.
\end{tabular} \\
color & \begin{tabular}{l}
a character matrix or quoted literal that specifies a valid font name.
\end{tabular} \\
font \\
height & \begin{tabular}{l}
a numeric matrix or literal that specifies the character height.
\end{tabular} \\
pattern & \begin{tabular}{l}
a character matrix or quoted literal that specifies the pattern to use \\
to fill the interior of a closed curve.
\end{tabular} \\
style & \begin{tabular}{l}
a numeric matrix or literal that specifies an index corresponding to \\
a valid line style.
\end{tabular} \\
thick & \begin{tabular}{l}
an integer specifying line thickness.
\end{tabular}
\end{tabular}

To reset the IML default value for any one of the attributes, omit the second argument. Attributes are reset back to the default with a call to the GOPEN or GSTART subroutine. Single or double quotes can be used around this argument. For more information about the attributes, see Chapter 12.

Examples of valid statements follow:
```

call gset('pattern','m1n45');
call gset('font','simplex');
f=' font' ;
s='simplex';
call gset(f,s);

```

For example, the following statement resets color to its default:
```

call gset("color");

```

\section*{GSHOW Call}

\section*{shows a graph}

CALL GSHOW < (segment-name) >;
where segment-name is a character matrix or literal specifying a graphics segment.
If you do not specify segment-name, the GSHOW subroutine displays the current graph. If the current graph is active at the time that the GSHOW subroutine is called, it remains active after the call; that is, graphics primitives can still be added to the segment. On the other hand, if you specify segment-name, the GSHOW subroutine closes any active graphics segment, searches the current catalog for a segment with the given name, and then displays that graph. Examples of valid statements follow:
```

call gshow;
call gshow("plot_a5");
seg={myplot };
call gshow(seg);

```

\section*{GSORTH Call}

\section*{computes the Gram-Schmidt orthonormalization}

CALL GSORTH \((p, t\), lindep, \(a)\);
The inputs to the GSORTH subroutine are as follows:
```

p is an m\timesn column-orthonormal output matrix.
t is an upper triangular }n\timesn\mathrm{ output matrix.
lindep is a flag with a value of 0 if columns of }a\mathrm{ are independent and a value of 1 if they are dependent. The lindep argument is an output scalar.
a is an input m\timesn matrix.

```

The GSORTH subroutine computes the Gram-Schmidt orthonormal factorization of the \(m \times n\) matrix \(\mathbf{A}\), where \(m\) is greater than or equal to \(n\); that is, the GSORTH subroutine computes the column-orthonormal \(m \times n\) matrix \(\mathbf{P}\) and the upper triangular \(n \times n\) matrix \(\mathbf{T}\) such that
\[
\mathbf{A}=\mathbf{P} * \mathbf{T}
\]

If the columns of \(\mathbf{A}\) are linearly independent (that is, \(\operatorname{rank}(\mathbf{A})=n\)), then \(\mathbf{P}\) is fullrank column-orthonormal: \(\mathbf{P}^{\prime} \mathbf{P}=\mathbf{I}_{w}, \mathbf{T}\) is nonsingular, and the value of lindep (a scalar) is set to 0 . If the columns of \(\mathbf{A}\) are linearly dependent \((\operatorname{say}, \operatorname{rank}(\mathbf{A})=k<n)\) then \(n-k\) columns of \(\mathbf{P}\) are set to 0 , the corresponding rows of \(\mathbf{T}\) are set to 0 (\(\mathbf{T}\) is singular), and lindep is set to 1 . The pattern of zero columns in \(\mathbf{P}\) corresponds to the pattern of linear dependencies of the columns of \(\mathbf{A}\) when columns are considered in left-to-right order.

The GSORTH subroutines implements an algorithm described by Golub (1969).
The GSORTH subroutine is not recommended for the construction of matrices of values of orthogonal polynomials; the ORPOL function should be used for that purpose.

If lindep is 1 , you can rearrange the columns of \(\mathbf{P}\) and rows of \(\mathbf{T}\) so that the zero columns of \(\mathbf{P}\) are right-most-that is, \(\mathbf{P}=(\mathbf{P}(, 1), \mathbf{P}(, k), 0, \ldots, 0)\), where \(k\) is the column rank of \(\mathbf{A}\) and \(\mathbf{A}=\mathbf{P} * \mathbf{T}\) is preserved. The following statements make this rearrangement:
```

d=rank((ncol (t) - (1:ncol (t)) `) \#(vecdiag (t) =0));
temp=p;
p[,d] =temp;
temp=t;
t[,d] =temp;

```

An example of a valid GSORTH call follows:
```

x={1 1 1, 1 2 4, 1 3 9};
xpx=x '*x;
call gsorth(p, t, l, xpx);

```

These statements produce the following output matrices:

P
3 rows
3 cols
(numeric)
\(0.193247-0.7532590 .6286946\)
\(0.386494-0.530521-0.754434\)
0.90181930 .38877870 .1886084

T
3 rows 3 cols
(numeric)
15.52417539 .035892104 .99753 02.04918778 .4559365
\(0 \quad 0 \quad 0.1257389\)

L
1 row
1 col
(numeric)
0

\section*{GSTART Call}
initializes the graphics system
CALL GSTART(<catalog \(><\), replace \(>\));
The inputs to the GSTART subroutine are as follows:
catalog is a character matrix or quoted literal specifying the SAS catalog for saving the graphics segments.
replace is a numeric argument.
The GSTART subroutine activates the graphics system the first time it is called. A catalog is opened to capture the graphics segments to be generated in the session. If you do not specify a catalog, IML uses the temporary catalog WORK.GSEG.

The replace argument is a flag; a nonzero value indicates that the new segment should replace the first found segment with the same name. The replace flag set by the GSTART subroutine is a global flag, as opposed to the replace flag set by the GOPEN subroutine. When set by GSTART, this flag is applied to all subsequent segments created for this catalog, whereas with GOPEN, the replace flag is applied only to the segment that is being created. The GSTART subroutine sets the replace flag to 0 when the replace argument is omitted. The replace option can be very inefficient for a catalog with many segments. In this case, it is better to create segments with different names (if necessary) than to use the replace option.

The GSTART subroutine must be called at least once to load the graphics subsystem. Any subsequent GSTART calls are generally to change graphics catalogs or reset the global replace flag.

The GSTART subroutine resets the defaults for all graphics attributes that can be changed by the GSET subroutine. It does not reset GOPTIONS to their defaults unless the GOPTION corresponds to a GSET parameter. The GOPEN subroutine also resets GSET parameters.

An example of a valid statement follows:
```

call gstart;

```

\section*{GSTOP Call}

\section*{deactivates the graphics system}

CALL GSTOP;
The GSTOP subroutine deactivates the graphics system. The graphics subsystem is disabled until the GSTART subroutine is called again.

\section*{GSTRLEN Call}

\section*{finds the string length}

CALL GSTRLEN(length, text \(<\), height \(><\), font \(><\), window \(>\));
The inputs to the GSTRLEN subroutine are as follows:
length is a matrix of lengths specified in world coordinates.
text is a matrix of text strings.
height is a numeric matrix or literal specifying the character height.
font is a character matrix or quoted literal that specifies a valid font name.
window is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y \(\}\)

The GSTRLEN subroutine returns in world coordinates the graphics text lengths in a given font and for a given character height. The length argument is the returned matrix. It has the same shape as the matrix text. Thus, if text is an \(n \times m\) matrix of text strings, then length is an \(n \times m\) matrix of lengths in world coordinates. If you do not specify font, the default font is assumed. If you do not specify height, the default height is assumed. An example that uses the GSTRLEN subroutine follows:
```

    /* centers text strings about coordinate */
    /* points (50, 90) assume font=simplex */
    ht=2;
x=30;
y=90;
str='Nonparametric Cluster Analysis';
call gstrlen(len, str, ht, 'simplex');
call gscript(x-(len/2), y, str, ,,ht,'simplex');

```

\section*{GTEXT and GVTEXT Calls}
place text horizontally or vertically on a graph
CALL GTEXT \((x, y\), text \(<\), color \(><\), window \(><\), viewport \(>\));
CALL GVTEXT(\(x, y\), text \(<\), color \(><\), window \(><\), viewport \(>\));
The inputs to the GTEXT and GVTEXT subroutines are as follows:
\(x \quad\) is a scalar or vector containing the \(x\) coordinates of the lower left starting position of the text string's first character.
\(y\)
is a scalar or vector containing the \(y\) coordinates of the lower left starting position of the text string's first character.
text is a vector of text strings
color is a valid SAS color. The color argument can be specified as a quoted text string (such as 'RED'), the name of a character matrix containing a valid color as an element, or a color number (such as 1). A color number \(n\) refers to the \(n\)th color in the color list.
window
viewport
is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y \(\}\)
is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form

\section*{\(\{\) minimum- \(x\) minimum- \(y\) maximum-х maximum- \(y\}\)}

The GTEXT subroutine places text horizontally across a graph; the GVTEXT subroutine places text vertically on a graph. Both subroutines use hardware characters when possible. The number of text strings drawn is the maximum dimension of the first three vectors. The color argument can have more than one element. Hardware characters cannot always be obtained if you change the HEIGHT or ASPECT parameter (using GSET or GOPTIONS) or if you use a viewport. The coordinates in use for this graphics command are world coordinates.

Examples of the GTEXT and GVTEXT subroutines follow:
```

call gopen;
call gport({0 0 50 50});
call gset('height',4); /* shrink to one fourth of the screen */
call gtext(50,50,'Testing GTEXT: This will start in the
center of the viewport ');
call gshow;
call gopen;
call gvtext(.35,4.6,'VERTICAL STRING BY GVTEXT',
'white',{0.2 -1,1.5 6.5},{0 0,100 100});
call gshow;

```

\section*{GWINDOW Call}

\section*{defines the data window}

\section*{CALL GWINDOW(window);}
where window is a numeric matrix or literal specifying a window. The rectangular area's boundary is given in world coordinates, where you specify the lower-left and upper-right corners in the form
\[
\{\text { minimum- } x \text { minimum- } y \text { maximит- } x \text { тахітит- } y\}
\]

The GWINDOW subroutine sets up the window for scaling data values in subsequent graphics primitives. It is in effect until the next GWINDOW call or until the segment is closed. The coordinates in use for this graphics command are world coordinates. An example that uses the GWINDOW subroutine follows:
```

ydata}={2.358,0.606,3.669,1.000,0.981,1.192,0.926,1.590,
1.806,1.962,4.028,3.148,1.836,2.845,1.013,0.414};
xdata}={1.215,0.930,1.152,1.138,0.061,0.696,0.686,1.072
1.074,0.934,0.808,1.071,1.009,1.142,1.229,0.595};
/* WD shows the actual range of the data */
wd=(min(xdata) ||min(ydata)) //(max(xdata)||max(ydata));
call gwindow(wd);

```

\section*{GXAXIS and GYAXIS Calls}

\section*{draw a horizontal or vertical axis}

CALL GXAXIS(starting-point, length, nincr \(<\), nminor \(><\), noticklab>
\(<\), format \(><\), height \(><\), font \(><\), color \(><\), fixed-end \(>\)
\(<\), window \(><\), viewport>);
CALL GYAXIS(starting-point, length, nincr \(<\), nminor \(><\), noticklab>
\[
\begin{aligned}
& <, \text { format }><\text {, height }><\text {, font }><\text {, color }><\text {, fixed-end }> \\
& <\text {, window }><\text {, viewport }>\text {); }
\end{aligned}
\]

The inputs to the GXAXIS and GYAXIS subroutines are as follows:
starting-point is the \((x, y)\) starting point of the axis, specified in world coordinates.
length is a numeric scalar giving the length of the axis.
nincr \(\quad\) is a numeric scalar giving the number of major tick marks on the axis.
nminor
noticklab
format
height
font
color is a valid color. The color argument can be specified as a quoted text string (such as 'RED'), the name of a character matrix containing a valid color as an element, or a color number (such as 1). A color number \(n\) refers to the \(n\)th color in the color list.
fixed-end holds one end of the scale fixed. U fixes the upper end; L fixes the lower end; \(\mathbf{x}\) allows both ends to vary from the data values. In addition, you can specify \(\mathbf{N}\), which causes the axis routines to bypass the scaling routine. The interval between tick marks is length divided by (nincr-1). The default is \(\mathbf{x}\).
window \(\quad\) is a numeric matrix or literal specifying a window. This is given in world coordinates and has the form
\{minimum-x minimum-y maximum-x maximum-y\}
viewport is a numeric matrix or literal specifying a viewport. This is given in normalized coordinates and has the form
\[
\{\text { minimum- } x \text { minimит- } y \text { maximum- } x \text { тахітит- } y\}
\]

The GXAXIS subroutine draws a horizontal axis; the GYAXIS subroutine draws a vertical axis. The first three arguments are required.

The starting-point argument is a matrix of two numbers given in world coordinates. The matrix is the \((x, y)\) starting point of the axis.

The length argument is a scalar value giving the length of the \(x\) axis or \(y\) axis in world coordinates along the \(x\) or \(y\) direction.

The nincr argument is a scalar value giving the number of major tick marks shown on the axis. The first tick mark is on the starting point as specified.

The axis routines use the same scaling algorithm as the GSCALE subroutine. For example, if the \(x\) starting point is 10 and the length of the axis is 44 , and if you call the GSCALE subroutine with the \(x\) vector containing the two elements, 10 and 44, the scale obtained should be the same as that obtained by the GXAXIS subroutine. Sometimes, it can be helpful to use the GSCALE subroutine in conjunction with the axis routines to get more precise scaling and labeling.

For example, suppose you want to draw the axis for \(-2 \leq X \leq 2\) and \(-2 \leq Y \leq 2\). The following code draws these axes. Each axis is 4 units long. Note that the \(x\) axis begins at the point \((-2,0)\) and the \(y\) axis begins at the point \((0,-2)\). The tick marks can be set at each integer value, with minor tick marks in between the major tick marks. The noticklab option is turned off, so that the tick marks are not labeled.
```

call gport({20 20 80 80});
call gwindow({-2 -2 2 2});
call gxaxis ({-2,0},4,5,2,1);
call gyaxis({0,-2},4,5,2,1);

```

\section*{HADAMARD Function}
returns a Hadamard matrix
HADAMARD \((n,<, i>)\)
The inputs to the HADAMARD function are as follows:
\(n\)
specifies the order of the Hadamard matrix. Specify \(n\) such that \(n=1,2\), or a multiple of 4 and any of the following hold:
- \(n \leq 256\)
- \(n-1\) is prime
- \((n / 2)-1\) is prime and \(n / 2=2 \bmod 4\)
- \(n=2 h, 4 h, 8 h, \ldots, 2^{p} h\), where \(h\) is any \(n\) above

When any other \(n\) is specified, the HADAMARD function returns a zero.
\(i\)
specifies the row number to return. When \(i\) is not specified or \(i\) is negative, the full \(n \times n\) matrix is returned.

The HADAMARD function returns a Hadamard matrix, which is an \(n \times n\) matrix consisting entirely of the values 1 and -1 . The columns of a Hadamard matrix are all orthogonal. Hadamard matrices are frequently used to make orthogonal array experimental designs for two-level factors. For example, the following IML statements create a \(12 \times 12\) Hadamard matrix:
```

h = hadamard(12);
print h[format=2.];

```

The results are as follows:

H
\begin{tabular}{rrrrrrrrrrrr}
1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1
\end{tabular}

The first column is an intercept and the next 11 columns form an orthogonal array experimental design for 11 two-level factors in 12 runs, \(2^{11}\).

To request the 17 th row of a Hadamard matrix of order 448, use the following statement:
```

h = hadamard(448, 17);

```

\section*{HALF Function}
computes Cholesky decomposition
```

HALF( matrix)

```
where matrix is a numeric matrix or literal.
The HALF function is the same as the ROOT function. See the description of the ROOT function for Cholesky decomposition.

\section*{HANKEL Function}

\section*{generates a Hankel matrix}

HANKEL(matrix)
where matrix is a numeric matrix or literal.
The HANKEL function generates a Hankel matrix from a vector, or a block Hankel matrix from a matrix. A block Hankel matrix has the property that all matrices on the reverse diagonals are the same. The argument matrix is an \((n p) \times p\) or \(p \times(n p)\) matrix; the value returned is the \((n p) \times(n p)\) result.

The Hankel function uses the first \(p \times p\) submatrix \(\mathbf{A}_{1}\) of the argument matrix as the blocks of the first reverse diagonal. The second \(p \times p\) submatrix \(\mathbf{A}_{2}\) of the argument matrix forms the second reverse diagonal. The remaining reverse diagonals are formed accordingly. After the values in the argument matrix have all been placed, the rest of the matrix is filled in with 0 . If \(\mathbf{A}\) is \((n p) \times p\), then the first \(p\) columns of the returned matrix, \(\mathbf{R}\), are the same as \(\mathbf{A}\). If \(\mathbf{A}\) is \(p \times(n p)\), then the first \(p\) rows of \(\mathbf{R}\) are the same as \(\mathbf{A}\). The HANKEL function is especially useful in time series applications, where the covariance matrix of a set of variables representing the present and past and a set of variables representing the present and future is often assumed to be a block Hankel matrix. If
\[
\mathbf{A}=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\cdots| \mathbf{A}_{n}\right]
\]
and if \(\mathbf{R}\) is the matrix formed by the HANKEL function, then
\[
\mathbf{R}=\left[\begin{array}{c:c:c:c:c}
\mathbf{A}_{1} & \mathbf{A}_{2} & \mathbf{A}_{3} & \cdots & \mathbf{A}_{n} \\
\mathbf{A}_{2} & \mathbf{A}_{3} & \mathbf{A}_{4} & \cdots & \mathbf{0} \\
\mathbf{A}_{3} & \mathbf{A}_{4} & \mathbf{A}_{5} & \cdots & \mathbf{0} \\
\vdots & & & & \\
\mathbf{A}_{n} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right]
\]

If
\[
\mathbf{A}=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\vdots \\
\mathbf{A}_{n}
\end{array}\right]
\]
and if \(\mathbf{R}\) is the matrix formed by the HANKEL function, then
\[
\mathbf{R}=\left[\begin{array}{c|c|c|c|c}
\mathbf{A}_{1} & \mathbf{A}_{2} & \mathbf{A}_{3} & \cdots & \mathbf{A}_{n} \\
\mathbf{A}_{2} & \mathbf{A}_{3} & \mathbf{A}_{4} & \cdots & \mathbf{0} \\
\vdots & & & & \\
\\
\mathbf{A}_{n} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right]
\]

For example, consider the following IML code:
```

r=hankel({llllll

```

This code produces the following output:
R
5 rows
5 cols
(numeric)
\begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 0 \\
3 & 4 & 5 & 0 & 0 \\
4 & 5 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0
\end{tabular}

The following statement returns the matrix \(\mathbf{R}\), as shown:
```

r=hankel({1 2 ,
34,
5 6,
7 8});

```
 R 4 rows 4 cols (numeric)
\begin{tabular}{llll}
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8 \\
5 & 6 & 0 & 0 \\
7 & 8 & 0 & 0
\end{tabular}

The following statement returns a different matrix \(\mathbf{R}\), as shown:
```

r=hankel({$$
\begin{array}{lllll}{1}&{2}&{3}&{4}\end{array}
$$\mathrm{ ,}
5 6 7 8});

```
\begin{tabular}{ccccc}
& \multicolumn{2}{c}{4 rows } & 4 cols & (numeric) \\
& & 2 & 3 & 4 \\
1 & 6 & 7 & 8 \\
5 & 4 & 0 & 0 \\
3 & 8 & 0 & 0
\end{tabular}

\section*{HARMEAN Function}
calculates harmonic means

\section*{HARMEAN(matrix)}
where matrix is a numeric matrix of nonnegative values.
The HARMEAN function returns a scalar containing the harmonic mean of the elements of the input matrix. The harmonic mean of a set of positive numbers \(a_{1}, a_{2}, \ldots, a_{n}\) is \(n\) divided by the sum of the reciprocals of \(a_{i}\). That is, \(n / \sum a_{i}^{-1}\).

The harmonic mean is zero if any of the \(a_{i}\) are zero. The harmonic mean is not defined for negative inputs. If any of the \(a_{i}\) are missing, they are excluded from the computation.

The harmonic mean is sometimes used to compute an average sample size in an unbalanced experimental design. For example, the following statements compute an average sample size for five samples:
```

sizes = { 8, 12, 23, 10, 8 }; /* sample sizes */
aveSize = harmean( sizes );
print aveSize;

```
aveSize
10.486322

\section*{HDIR Function}

\section*{performs a horizontal direct product}

HDIR(matrix1, matrix2)
where matrixl and matrix2 are numeric matrices or literals.
The HDIR function performs a direct product on all rows of matrixl and matrix2 and creates a new matrix by stacking these row vectors into a matrix. This operation is useful in constructing design matrices of interaction effects. The matrixl and matrix2 arguments must have the same number of rows. The result has the same number of rows as matrixl and matrix2. The number of columns is equal to the product of the number of columns in matrixl and matrix2.

For example, the following statements produce the matrix \(\mathbf{C}\), as shown:
```

a={1 2,
2 4,
3 6};
b}={\begin{array}{ll}{0}\&{2,}
1 1,
0 -1};
c=hdir (a,b);

```

C
\begin{tabular}{lrlr}
3 rows & 4 cols & (numeric) \\
& & & 4 \\
0 & 2 & 0 & 4 \\
2 & 2 & 4 & -6
\end{tabular}

The HDIR function is useful for constructing crossed and nested effects from maineffect design matrices in ANOVA models.

\section*{HERMITE Function}
reduces a matrix to Hermite normal form

\section*{HERMITE(matrix)}
where matrix is a numeric matrix or literal.
The HERMITE function uses elementary row operations to reduce a matrix to Hermite normal form. For square matrices this normal form is upper triangular and idempotent.

If the argument is square and nonsingular, the result is the identity matrix. In general the result satisfies the following four conditions (Graybill 1969, p. 120):
- It is upper triangular.
- It has only values of 0 and 1 on the diagonal.
- If a row has a 0 on the diagonal, then every element in that row is 0 .
- If a row has a 1 on the diagonal, then every off-diagonal element is 0 in the column in which the 1 appears.

Consider the following example (Graybill 1969, p. 288):
```

a={$$
\begin{array}{lll}{3}&{6}&{9,}\end{array}
$$,
1 2 5,
2 4 10};
h=hermite (a);

```

These statements produce the following output:
\begin{tabular}{cccc}
3 rows & 3 cols & (numeric) \\
& & 2 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{tabular}

If the argument is a square matrix, then the Hermite normal form can be transformed into the row echelon form by rearranging rows in which all values are 0 .

\section*{HOMOGEN Function}

\section*{solves homogeneous linear systems}

HOMOGEN(matrix)
where matrix is a numeric matrix or literal.
The HOMOGEN function solves the homogeneous system of linear equations \(\mathbf{A} *\) \(\mathbf{X}=\mathbf{0}\) for \(\mathbf{X}\). For at least one solution vector \(\mathbf{X}\) to exist, the \(m \times n\) matrix \(\mathbf{A}\), \(m \geq n\), has to be of rank \(r<n\). The HOMOGEN function computes an \(n \times(n-r)\) column orthonormal matrix \(\mathbf{X}\) with the property \(\mathbf{A} * \mathbf{X}=\mathbf{0}, \mathbf{X}^{\prime} \mathbf{X}=\mathbf{I}\). If \(\mathbf{A}^{\prime} \mathbf{A}\)
is ill-conditioned, rounding-error problems can occur in determining the correct rank of \(\mathbf{A}\) and in determining the correct number of solutions \(\mathbf{X}\). Consider the following example (Wilkinson and Reinsch 1971, p. 149):
\(a=\left\{\begin{array}{rrrrr}22 & 10 & 2 & 3 & 7, \\
14 & 7 & 10 & 0 & 8, \\
-1 & 13 & -1 & -11 & 3, \\
-3 & -2 & 13 & -2 & 4, \\
9 & 8 & 1 & -2 & 4, \\
9 & 1 & -7 & 5 & -1, \\
2 & -6 & 6 & 5 & 1, \\
4 & 5 & 0 & -2 & 2\} ;\end{array}\right.\)
\begin{tabular}{l}
x \(=\) homogen \((a) ;\)
\end{tabular}

These statements produce the following solution:
X \begin{tabular}{cccc}
& 5 rows & 2 cols & (numeric) \\
& & 0 & \\
& -0.419095 & 0.4185481 & \\
& -0.052005 & 0.3487901 & \\
0.6760591 & 0.244153 & \\
& 0.4129773 & -0.802217
\end{tabular}

In addition, this function could be used to determine the rank of an \(m \times n\) matrix \(\mathbf{A}\), \(m \geq n\).

If \(X\) is an \(n \times m\) matrix, then, in addition to the memory allocated for the return matrix, the HOMOGEN function temporarily allocates an \(n^{2}+n m\) array for performing its computation.

\section*{I Function}

\section*{creates an identity matrix}

\section*{I(dimension)}
where dimension specifies the size of the identity matrix.
The I function creates an identity matrix with dimension rows and columns. The diagonal elements of an identity matrix are 1 s ; all other elements are 0 s. The value of dimension must be an integer greater than or equal to 1 . Noninteger operands are truncated to their integer part.

For example, consider the following statement:
```

a=I (3);

```

This statement yields the following result:

\section*{IF-THEN/ELSE Statement}

\section*{conditionally executes statements}

IF expression THEN statement1;

\section*{ELSE statement2;}

The inputs to the IF-THEN/ELSE statements are as follows:
expression is an expression that is evaluated for being true or false.
statementl is a statement executed when expression is true.
statement \(2 \quad\) is a statement executed when expression is false.

The IF statement contains an expression to be evaluated, the keyword THEN, and an action to be taken when the result of the evaluation is true.

The ELSE statement optionally follows the IF statement and gives an action to be taken when the IF expression is false. The expression to be evaluated is often a comparison. For example:
```

if max(a)<20 then p=0;
else p=1;

```

The IF statement results in the evaluation of the condition \(\operatorname{MAX}(\mathrm{A})<20\). If the largest value found in matrix \(\mathbf{A}\) is less than 20, \(\mathbf{P}\) is set to 0 . Otherwise, \(\mathbf{P}\) is set to 1 . See the description of the MAX function for details.

When the condition to be evaluated is a matrix expression, the result of the evaluation is another matrix. If all values of the result matrix are nonzero and nonmissing, the condition is true; if any element in the result matrix is 0 or missing, the condition is false. This evaluation is equivalent to using the ALL function.

For example, consider the following code:
```

if }\mathbf{x}<\textrm{y}\mathrm{ then
do;

```

This code produces the same result as the following code:
```

if all(x<y) then
do;

```

IF statements can be nested within the clauses of other IF or ELSE statements. IML imposes no limit on the number of nesting levels. Consider the following example:
```

if }x=y\mathrm{ then if abs (y)=z then
do;

```

CAUTION: Execution of THEN clauses occurs as if you were using the ALL function.

Consider the following statements:
```

if a^=b then do;
if ^(a=b) then do;

```

Both statements are valid, but the THEN clause in each case is executed only when all corresponding elements of \(\mathbf{A}\) and \(\mathbf{B}\) are unequal-that is, when none of the corresponding elements are equal.

Evaluation of the following statement requires only one element of \(\mathbf{A}\) and \(\mathbf{B}\) to be unequal for the expression to be true:
```

if any(a^=b) then do;

```

\section*{IFFT Function}

\section*{computes the inverse finite Fourier transform}

IFFT(\(f\))
where \(f\) is an \(n p \times 2\) numeric matrix.
The IFFT function expands a set of sine and cosine coefficients into a sequence equal to the sum of the coefficients times the sine and cosine functions. The argument \(f\) is an \(n p \times 2\) matrix; the value returned is an \(n \times 1\) vector.

Note: If the element in the last row and second column of \(f\) is exactly 0 , then \(n\) is \(2 n p-2\); otherwise, \(n\) is \(2 n p-1\).

The inverse finite Fourier transform of a two column matrix \(\mathbf{F}\), denoted by the vector x , is
\[
x_{i}=F_{1,1}+2 \sum_{j=2}^{n p}\left(F_{j, 1} \cos \left(\frac{2 \pi}{n}(j-1)(i-1)\right)+F_{j, 2} \sin \left(\frac{2 \pi}{n}(j-1)(i-1)\right)\right)+q_{i}
\]
for \(i=1, \ldots, n\), where \(q_{i}=(-1)^{i} \mathbf{F}_{n p, 1}\) if \(n\) is even, or \(q=0\) if \(n\) is odd.
Note: For most efficient use of the IFFT function, \(n\) should be a power of 2 . If \(n\) is a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z algorithm is used (Monro and Branch 1976).
\(\operatorname{IFFT}(\operatorname{FFT}(\mathrm{X})\)) returns \(n\) times \(\mathbf{x}\), where \(n\) is the dimension of \(\mathbf{x}\). If \(f\) is not the Fourier transform of a real sequence, then the vector generated by the IFFT function is not a true inverse Fourier transform. However, applications exist where the FFT and IFFT functions can be used for operations on multidimensional or complex data (Gentleman and Sande 1966; Nussbaumer 1982).

As an example, the convolution of two vectors \(\mathbf{x}(n \times 1)\) and \(\mathbf{y}(m \times 1)\) can be accomplished by using the following module:
```

start conv(u,v);
/* w = conv(u,v) convolves vectors u and v.
Algebraically, convolution is the same operation as
multiplying the polynomials whose coefficients are the
elements of u and v. Straight convolution is too slow,
so use the FFT.
Both of }u\mathrm{ and v are column vectors.
*/
m = nrow (u);
n = nrow(v);
wn = m + n - 1;
/* find p so that 2\#\#(p-1) < wn <= 2\#\#p */
p = ceil( log(wn)/ log(2) );
nice = 2\#\#p;
a = fft( u // j(nice-m,1,0) );
b = fft( v // j(nice-n, 1,0) );
/* complex multiplication of a and b */
wReal = a[,1]\#b[,1] - a[,2]\#b[,2];
wImag = a[,1]\#b[,2] + a[,2]\#b[,1];
w = wReal || wImag;
z=ifft(w);
z = z[1:wn,1] / nice; /* take real part and first wn elements */
return (z);
finish;
/* example of convolution of two waveforms */
TimeStep = 0.01;
t = T( do(0,8,TimeStep) );
Signal = j(nrow(t),1,5);
Signal[ loc(t>4) ] = -5;
ImpulseResponse = j(nrow(t),1,0);
ImpulseResponse[ loc(t<=2) ] = 3;
/* The time domain for this convolution is [0,16]
with the same time step.
For waveforms, rescale amplitude by the time step. */
y = conv(Signal,ImpulseResponse) * TimeStep;

```

Other applications of the FFT and IFFT functions include windowed spectral estimates and the inverse autocorrelation function.

\section*{INDEX Statement}

\section*{indexes a variable in a SAS data set \\ INDEX variables|NONE}
where variables are the names of variables for which indexes are to be built.
You can use the INDEX statement to create an index for the named variables in the current input SAS data set. An index is created for each variable listed if it does not already have an index. Current retrieval is set to the last variable indexed. Subsequent I/O operations such as LIST, READ, FIND, and DELETE can use this index to retrieve observations from the data set if IML determines that indexed retrieval will be faster. The indices are automatically updated when a data set is edited with the APPEND, DELETE, or REPLACE statements. Only one index is in effect at any given time. The SHOW contents command indicates which index is in use.

For example, the following statement creates indexes for the SAS data set CLASS in the order of NAME and the order of SEX:
index name sex;

Current retrieval is set to use SEX. A LISTall statement would list females before males.

An INDEX none statement can be used to set retrieval back to physical order.
When a WHERE clause is being processed, IML automatically determines which index to use, if any. The decision is based on the variables and operators involved in the WHERE clause, and the decision criterion is based on the efficiency of retrieval.

\section*{INFILE Statement}

\section*{opens a file for input}

INFILE operand <options>;
The inputs to the INFILE statement are as follows:
operand is either a predefined filename or a quoted string containing the filename or character expression in parentheses referring to the pathname.
options are explained in the following list.

You can use the INFILE statement to open an external file for input or, if the file is already open, to make it the current input file so that subsequent INPUT statements read from it.

The options available for the INFILE statement are described as follows.

\section*{LENGTH=variable}
specifies a variable in which the length of a record is stored as IML reads it in.

\section*{RECFM=N}
specifies that the file is to be read in as a pure binary file rather than as a file with record separator characters. To do this, you must use the byte operand \((<)\) in the INPUT statement to get new records rather than use separate input statements or the new line (/) operator.

The following options control how IML behaves when an INPUT statement tries to read past the end of a record. The default is STOPOVER.

\section*{FLOWOVER}
enables the INPUT statement to go to the next record to obtain values for the variables.

\section*{MISSOVER}
tolerates attempted reading past the end of the record by assigning missing values to variables read past the end of the record.

\section*{STOPOVER}
treats going past the end of a record as an error condition, which triggers an end-offile condition.

Several examples of INFILE statements follow:
```

filename in1 'student.dat'; /* specify filename IN1 */
infile in1; /* infile pathname */
infile 'student.dat'; /* path by quoted literal */
infile 'student.dat' missover; /* using options */

```

See Chapter 7 for further information.

\section*{INPUT Statement}
inputs data
INPUT < variables> <informats> < record-directives> < positionals>;
where the clauses and options are explained in the following list.
You can use the INPUT statement to input records from the current input file, placing the values into IML variables. The INFILE statement sets up the current input file. See Chapter 7 for details.

The INPUT statement contains a sequence of arguments that include the following:
variables specify the variable or variables you want to read from the current position in the record. Each variable can be followed immediately by an input format specification.
informats
specify an input format. These are of the form \(w . d\) or \(\$ w\). for standard numeric and character informats, respectively, where \(w\) is the width of the field and \(d\) is the decimal parameter, if any.

You can also use a SAS format of the form NAMEw.d, where NAME is the name of the format. Also, you can use a single \(\$\) or \(\&\) for list input applications. If the width is unspecified, the informat uses list-input rules to determine the length by searching for a blank (or comma) delimiter. The special format \(\$\) RECORD. is used for reading the rest of the record into one variable. For more information about formats, refer to \(S A S\) Language Reference: Dictionary.

Record holding is always implied for RECFM=N binary files, as if the INPUT statement has a trailing @ sign. For more information, see Chapter 7.

Examples of valid INPUT statements follow:
```

input x y;
input @1 name \$ @20 sex \$ @(20+2) age 3.;
eight=8;
input >9 <eight number2 ib8.;

```

The following example uses binary input:
```

file 'out2.dat' recfm=n ;
number=499; at=1;
do i = 1 to 5;
number=number+1;
put >at number ib8.; at=at+8;
end;
closefile 'out2.dat';
infile 'out2.dat' recfm=n;
size=8; /* 8 bytes */
do pos=1 to 33 by size;
input >pos number ib8.;
print number;
end;

```
record-directives
are used to advance to a new record. Record-directives are the following:
holding @ sign is used at the end of an INPUT statement to instruct IML to hold the current record so that you can continue to read from the record with later INPUT statements. Otherwise, IML automatically goes to the next record for the next INPUT statement.
/ advances to the next record.
> operand specifies that the next record to be read start at the indicated byte position in the file (for RECFM \(=\mathrm{N}\) files only). The operand is a literal number, a variable name, or an expression in parentheses.
instructs IML to read the indicated number of bytes as the next record. The record directive must be specified for binary files (\(\mathrm{RECFM}=\mathrm{N}\)). The operand is a literal number, a variable name, or an expression in parentheses.
positionals
instruct PROC IML to go to a specific column on the record. The positionals are the following:
@ operand instructs IML to go to the indicated column, where operand is a literal number, a variable name, or an expression in parentheses. For example, @ 30 means to go to column 30. The operand can also be a character operand when pattern searching is needed. For more information, see Chapter 7.
+ operand specifies to skip the indicated number of columns. The operand is a literal number, a variable name, or an expression in parentheses.

\section*{INSERT Function}

\section*{inserts one matrix inside another}
\[
\text { INSERT }(x, y, \text { row }<, \text { column }>)
\]

The inputs to the INSERT function are as follows:
\(x \quad\) is the target matrix. It can be either numeric or character.
\(y \quad\) is the matrix to be inserted into the target. It can be either numeric or character, depending on the type of the target matrix.
row is the row where the insertion is to be made.
column
is the column where the insertion is to be made.

The INSERT function returns the result of inserting the matrix \(y\) inside the matrix \(x\) at the place specified by the row and column arguments. This is done by splitting \(x\) either horizontally or vertically before the row or column specified and concatenating \(y\) between the two pieces. Thus, if \(x\) is \(m\) rows by \(n\) columns, row can range from 0 to \(m+1\) and column can range from 0 to \(n+1\). However, it is not possible to insert in both dimensions simultaneously, so either row or column must be 0 , but not both. The column argument is optional and defaults to 0 . Also, the matrices must conform in the dimension in which they are joined.

For example, consider the following statements:
```

a={1 2, 3 4};
b={5 6, 7 8};
c=insert (a, b, 2, 0);
d=insert (a, b, 0, 3);

```

These statements produce the following result:
C
4 rows
2 cols
(numeric)
1
2
5
6
8
3
4
D
2 rows
4 cols
(numeric)
\begin{tabular}{ll}
1 & 2 \\
3 & 4
\end{tabular}
\begin{tabular}{ll}
5 & 6 \\
7 & 8
\end{tabular}
\(\mathbf{C}\) shows the result of insertion in the middle, while \(\mathbf{D}\) shows insertion on an end.

\section*{INT Function}

\section*{truncates a value}
```

INT( matrix)

```
where matrix is a numeric matrix or literal.
The INT function truncates the decimal portion of the value of the argument. The integer portion of the value of the argument remains. The INT function takes the integer value of each element of the argument matrix.

An example that uses the INT function follows:
```

c=2.8;
b=int (c);

```
B
1 row
1 col
(numeric)

2

In the next example, notice that a value of 11 is returned. This is because of the maximal machine precision. If the difference is less than \(1 \mathrm{E}-12\), the INT function rounds up. Here is the code:
```

x={12.95 10.9999999999999,
-30.5 1e-6};
b=int (x);

```

11
0

\section*{INV Function}

\section*{computes the matrix inverse}

\section*{INV(matrix)}
where matrix is a square nonsingular matrix.
The INV function produces a matrix that is the inverse of matrix, which must be square and nonsingular.

For \(\mathbf{G}=\operatorname{INV}(\mathbf{A})\) the inverse has the properties
\[
\mathbf{G A}=\mathbf{A G}=\text { identity }
\]

To solve a system of linear equations \(\mathbf{A X}=\mathbf{B}\) for \(\mathbf{X}\), you can use the following statement:
```

x=inv(a)*b;

```

Note that the SOLVE function is more accurate and efficient for this task.
An example of valid usage is as follows:
```

A = {lllllll
1 0 0 1 0,
0 1 1 0 1,
100 0 1,
0 1 0 1 0};
b = {9,4,10, 8,2};
/* find inverse and solve linear system */
Ainv = inv(A);
x1 = Ainv*b;
/* solve by using a more efficient algorithm */
x2 = solve(A,b);

```

These statements produce the following output:
\begin{tabular}{cc}
X 1 & X 2 \\
& \\
3 & 3 \\
1 & 1 \\
4 & 4 \\
1 & 1 \\
5 & 5
\end{tabular}

The INV function uses an LU decomposition followed by back substitution to solve for the inverse, as described in Forsythe, Malcolm, and Moler (1967).

The INV function (as well as the DET and SOLVE functions) uses the following criterion to decide whether the input matrix, \(\mathbf{A}=\left[a_{i j}\right]_{i, j=1, \ldots, n}\), is singular:
\[
\text { sing }=100 \times M A C H E P S \times \max _{1 \leq i, j \leq n}\left|a_{i j}\right|
\]
where MACHEPS is the relative machine precision.
All matrix elements less than or equal to sing are now considered rounding errors of the largest matrix elements, so they are taken to be zero. For example, if a diagonal or triangular coefficient matrix has a diagonal value less than or equal to sing, the matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic operations to be performed on values that were essentially floating-point error. This occasionally yielded numerically unstable results. The new criterion is much more conservative, and it generates far fewer erroneous results. In some cases, you might need to scale the data to avoid singular matrices. If you think the new criterion is too strong, do the following:
- Try the GINV function to compute the generalized inverse.
- Examine the size of the singular values returned by the SVD function. The SVD function can be used to compute a generalized inverse with a userspecified singularity criterion.

If \(A\) is an \(n \times n\) matrix, the INV function allocates an \(n \times n\) matrix in order to return the inverse. It also temporarily allocates an \(n^{2}\) array in order to compute the inverse.

\section*{INVUPDT Function}

\section*{updates a matrix inverse}

INVUPDT(matrix, vector<, scalar>)
The inputs to the INVUPDT function are as follows:
matrix is an \(n \times n\) nonsingular matrix. In most applications matrix is symmetric positive definite.
vector \(\quad\) is an \(n \times 1\) or \(1 \times n\) vector.
scalar is a numeric scalar.

The Sherman-Morrison-Woodbury formula is
\[
\left(\mathbf{A}+\mathbf{U} \mathbf{V}^{\prime}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}+\mathbf{V}^{\prime} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{\prime} \mathbf{A}^{-1}
\]
where \(\mathbf{A}\) is an \(n \times n\) nonsingular matrix and \(\mathbf{U}\) and \(\mathbf{V}\) are \(n \times k\). The formula shows that a rank \(k\) update to \(\mathbf{A}\) corresponds to a rank \(k\) update of \(\mathbf{A}^{-1}\).

The INVUPDT function is used primarily to update a matrix inverse. The function implements the Sherman-Morrison-Woodbury formula for rank-one updates with \(\mathbf{U}=w \mathbf{X}\) and \(\mathbf{V}=\mathbf{X}\), where \(\mathbf{X}\) is an \(n \times 1\) vector and \(w\) is a scalar.

If \(\mathbf{M}=\mathbf{A}^{-1}\), then you can call the INVUPDT function as follows:
\[
\text { R=invupdt (} M, X, w) \text {; }
\]

This statement computes the following matrix:
\[
\mathbf{R}=\mathbf{M}-w \mathbf{M X}\left(\mathbf{I}+w \mathbf{X}^{\prime} \mathbf{M} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}
\]

The matrix \(\mathbf{R}\) is equivalent to \(\left(\mathbf{A}+w \mathbf{X} \mathbf{X}^{\prime}\right)^{-1}\). If \(\mathbf{A}\) is symmetric positive definite, then so is \(\mathbf{R}\).

If \(w\) is not specified, then it is given a default value of 1 .
A common use of the INVUPDT function is in linear regression. If \(\mathbf{Z}\) is a design matrix, \(\mathbf{M}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1}\) is the associated inverse crossproduct matrix, and \(\mathbf{v}\) is a new observation to be used in estimating the parameters of a linear model, then the inverse crossproducts matrix that includes the new observation can be updated from \(\mathbf{M}\) by using the following statement:
```

M2=invupdt (M,v);

```

If \(w\) is 1 , the function adds an observation to the inverse; if \(w\) is -1 , the function removes an observation from the inverse. If weighting is used, \(w\) is the weight.

To perform the computation, the INVUPDT function uses about \(2 n^{2}\) multiplications and additions, where \(n\) is the row dimension of the positive definite argument matrix.

The following program demonstrates adding or removing observations from a linear fit and updating the inverse crossproduct matrix:
```

X = {0,1,1,1,2,2,3,4,4};
Y = {1,1,2,6,2,3,3,3,4};
/* find linear fit */
Z = j(nrow(X),1,1) || x; /* design matrix */
M = inv(Z`*Z); b = M*Z`*Y; /* LS estimate */
resid = Y - Z*b; /* residuals */
print "Original Fit", b resid;
/* residual for observation (1,6) seems too large.
Take obs number 4 out of data set and refit. */
v = z[4,];
M = invupdt( M, v, -1 ); /* update inverse crossprod */
keepObs = (1:3) || (5:nrow(X));
Z = Z[keepObs,];

```
```

Y = Y[keepObs,];
b = M*Z`*Y; /* new LS estimate */ print "After deleting observation 4", b; /* Add a new obs (x,y) = (0,2) and refit. */ obs = {0 2}; v = 1 || obs[1]; /* new row in design matrix */ M = invupdt( M, v ); z = z // v; Y = Y // obs[2]; b = M*Z`*Y; /* new LS estimate */
print "After adding observation (0,2)", b;

```

The output is as follows:
\[
\begin{array}{rr}
\text { Original Fit } \\
\text { B } & \text { RESID } \\
2.0277778 & -1.027778 \\
0.375 & -1.402778 \\
-0.402778 \\
3.5972222 \\
-0.777778 \\
0.2222222 \\
-0.152778 \\
-0.527778 \\
0.4722222
\end{array}
\]

After deleting observation 4
B

> 1
> 0.6470588

After adding observation (0,2)

B
1.3
0.5470588

\section*{IPF Call}
performs an iterative proportional fit of a contingency table

CALL IPF(fit, status, dim, table, config \(<\), initab><, mod>);
The inputs to the IPF subroutine are as follows:
fit is a returned matrix. The matrix fit contains an array of the estimates of the expected number in each cell under the model specified in config. This matrix conforms to table, meaning that it has the same dimensions and order of variables.
status is a returned matrix. The status argument is a row vector of length 3 . status[1] is 0 if there is convergence to the desired accuracy, otherwise it is nonzero. status[2] is the maximum difference between estimates of the last two iterations of the IPF algorithm. status[3] is the number of iterations performed.
\(\operatorname{dim} \quad\) is an input matrix. If the problem contains \(v\) variables then \(\operatorname{dim}\) is \(1 \times v\) row vector. The value \(\operatorname{dim}[i]\) is the number of possible levels for variable \(i\) in a contingency table.
table is an input matrix. The table argument specifies an array of the number of observations at each level of each variable. Variables are nested across columns and then across rows.
config is an input matrix. The config argument specifies which marginal totals to fit. Each column of config specifies a distinct marginal in the model under consideration. Because the model is hierarchical, all subsets of specified marginals are included in fitting.
initab is an input matrix. The initab argument is an array of initial values for the iterative procedure. If you do not specify values, 1 s are used. For incomplete tables, initab is set to 1 if the cell is included in the design, and 0 if it is not.
mod is an input matrix. The mod argument is a two-element vector specifying the stopping criteria. If \(\bmod =\{\) maxdev, maxit \(\}\), then the procedure iterates either until the maximum difference between estimates of the last two iterations is less than maxdev or until maxit iterations are completed. Default values are maxdev \(=0.25\) and maxit \(=15\).

The IPF subroutine performs an iterative proportional fit of a contingency table. This is a standard statistical technique to obtain maximum likelihood estimates for cells under any hierarchical log-linear model. The algorithm is described in Bishop, Fienberg, and Holland (1975).

The matrix table must conform in size to the contingency table as specified in dim. In particular, if table is \(n \times m\), the product of the entries in dim must equal \(n m\). Furthermore, there must be some integer \(k\) such that the product of the first \(k\) entries in dim equals \(m\). If you specify initab, then it must be the same size as table.

\section*{Adjusting a Table from Marginals}

A common use of the IPF algorithm is to adjust the entries of a table in order to fit a new set of marginals while retaining the interaction between cell entries.

\section*{Example 1: Adjusting Marital Status by Age}

Bishop, Fienberg, and Holland (1975) present data from D. Friedlander showing the distribution of women in England and Wales according to their marital status in 1957. One year later, new official marginal estimates were announced. The problem is to adjust the entries in the 1957 table so as to fit the new marginals while retaining the interaction between cells. This problem can arise when you have internal cells that are known from sampling a population, and then get margins based on a complete census.

When you want to adjust an observed table of cell frequencies to a new set of margins, you must set the initab parameter to be the table of observed values. The new marginals are specified through the table argument. The particular cell values for table are not important, since only the marginals will be used (the proportionality between cells is determined by initab).

There are two easy ways to create a table that contains given margins. Recall that a table of independent variables has an expected cell value \(A_{i j}=(\) sum of row \(i)(\) sum of col \(j) /(\) sum of all cells \()\). Thus you could form a table with these cell entries. Another possibility is to use a "greedy algorithm" to assign as many of the marginals as possible to the first cell, then assign as many of the remaining marginals as possible to the second cell, and so on until all of the marginals have been distributed. Both of these approaches are encapsulated into modules in the following program:
```

/* Return a table such that cell (i,j) has value
(sum of row i) (sum of col j)/(sum of all cells) */
start GetIndepTableFromMargins( bottom, side );
if bottom[+] ^= side[+] then do;
print "Marginal totals are not equal";
abort;
end;
table = side*bottom/side[+];
return (table);
finish;
/* Use a "greedy" algorithm to create a table whose
marginal totals match given marginal totals.
Margin1 is the vector of frequencies totaled down
each column. Margin1 means that
Variable 1 has NOT been summed over.
Margin2 is the vector of frequencies totaled across
each row. Margin2 means that Variable 2
has NOT been summed over.
After calling, use SHAPE to change the shape of
the returned argument. */
start GetGreedyTableFromMargins( Margin1, Margin2 );
/* copy arguments so they are not corrupted */
m1 = colvec(Margin1); /* colvec is in IMLMLIB */
m2 = colvec(Margin2);
if m1[+] ^= m2[+] then do;
print "Marginal totals are not equal";

```
abort;
end;
dim1 \(=\) nrow (m1);
dim2 = nrow (m2);
table \(=j(1, \operatorname{dim} 1 * \operatorname{dim} 2,0)\);
/* give as much to cell (1,1) as possible,
then as much as remains to cell \((1,2)\), etc,
until all the margins have been distributed */
idx = 1;
do i2 = 1 to dim2;
do i1 = 1 to dim1;
\(\mathrm{t}=\mathrm{min}(\mathrm{m} 1[\mathrm{i} 1], \mathrm{m} 2[\mathrm{i} 2])\);
table[idx] = t;
\(i d x=i d x+1 ;\)
m1[i1] = m1[i1]-t;
\(\mathrm{m} 2[\mathrm{i} 2]=\mathrm{m} 2[\mathrm{i} 2]-\mathrm{t}\);
end;
end;
return (table);
finish;

Mod \(=\{0.01\) 15\}; /* tighten stopping criterion */
Columns \(=\) \{' Single' ' Married' 'Widow/Divorced' \};
Rows \(=\left\{{ }^{\prime} 15-19^{\prime}\right.\) ' \(20-24 \prime\) '25 - 29' '30 - 34'
' 35 - 39' ' \(40-44^{\prime}\) ' \(45-49 '\) ' 50 Or Over'\};
/* Marital status has 3 levels. Age has 8 levels */ Dim \(=\{38\}\);
/* Use known distribution for start-up values */ IniTab \(=\{1306830\),

619765 3,
2631194 9 ,
173137228 ,

171139351 ,
159137281 ,
2081350108 ,
111641002329 \};
```

/* New marginal totals for age by marital status */
NewMarital = { 3988 11702 2634 };
NewAge = {1412,1402,1450,1541,1681,1532,1662,7644};
/* Create any table with these marginals */
Table = GetGreedyTableFromMargins (NewMarital, NewAge);
Table = shape(Table, nrow(IniTab), ncol(IniTab));
/* Consider all main effects */
Config = {1 2};
call ipf(Fit,Status,Dim,Table,Config,IniTab,Mod);
if Status[1] = 0 then

```
```

    print 'Known Distribution (1957)',
            IniTab [colname=Columns rowname=Rows format=8.0],,
            'Adjusted Estimates Of Distribution (1958)',
            Fit [colname=Columns rowname=Rows format=8.2];
    else
print "IPF did not converge in "
(Status[3]) " iterations";

```

The results of this program are as follows. The same results are obtained if the table parameter is formed by using the "independent algorithm."
\begin{tabular}{l}
Known Distribution (1957) \\
\multicolumn{2}{c}{ INITAB } \\
Single
\end{tabular} Married Widow/Divorced

Adjusted Estimates Of Distribution (1958)
\begin{tabular}{lrrr}
& \multicolumn{2}{c}{ FIT } \\
& Single & Married Widow/Divorced \\
\(15-19\) & 1325.27 & 86.73 & 0.00 \\
\(20-24\) & 615.56 & 783.39 & 3.05 \\
\(25-29\) & 253.94 & 1187.18 & 8.88 \\
\(30-34\) & 165.13 & 1348.55 & 27.32 \\
\(35-39\) & 173.41 & 1454.71 & 52.87 \\
\(40-44\) & 147.21 & 1308.12 & 76.67 \\
\(45-49\) & 202.33 & 1352.28 & 107.40 \\
50 Or Over & 1105.16 & 4181.04 & 2357.81
\end{tabular}

\section*{Example 2: Adjusting Votes by Region}

A similar technique can be used to standardize data from raw counts into percentages. For example, consider data from a 1836 vote in the U.S. House of Representatives on a resolution that the House should adopt a policy of tabling all petitions for the abolition of slavery. Attitudes toward abolition were different among slaveholding states that would later secede from the Union ("the South"), slaveholding states that refused to secede ("the Border States"), and nonslaveholding states ("the North").

The raw votes for the resolution are defined in the following code. The data are hard to interpret because the margins are not homogeneous.
```

/* Yea Abstain Nay */
IniTab = { 61 12 60, /* North */
17 1, /* Border */
3922 7 }; /* South */

```

Standardizing the data by specifying homogeneous margins reveals interactions and symmetry that were not apparent in the raw data. Suppose the margins are specified as follows:
```

NewVotes = {100 100 100};
NewSection = {100,100,100};

```

In this case, the program for marital status by age can be easily rewritten to adjust the votes into a standardized form. The resulting output is as follows:
\begin{tabular}{rrrr}
& \multicolumn{2}{c}{ FIT } & \\
& Yea Abstain & Nay \\
North & 20.1 & 10.2 & 69.7 \\
Border & 47.4 & 42.8 & 9.8 \\
South & 32.5 & 47.0 & 20.5
\end{tabular}

\section*{Generating a Table with Given Marginals}

The "greedy algorithm" presented in the Marital-Status-By-Age example can be extended in a natural way to the case where you have \(n 1\)-way marginals and want to form an \(n\)-dimensional table. For example, a three-dimensional "greedy algorithm" would allocate the vector table as table=j(dim1*dim2*dim3,1,0); and have three nested loops as indicated in the following code. Afterwards the table parameter can be reshaped by using the SHAPE function.
```

do i3 = 1 to dim3;
do i2 = 1 to dim2;
do i1 = 1 to dim1;
t = min(m1[i1],m2[i2],m3[i3]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;
m3[i3] = m3[i3]-t;
end;
end;
end;

```

The idea of the "greedy algorithm" can be extended to marginals that are not 1-way. For example, the following three-dimensional table is similar to one appearing in Christensen (1997) based on data from M. Rosenberg. The table presents data on a person's self-esteem for people classified according to their religion and their father's educational level.
\begin{tabular}{ll|rrrrr}
\hline & & \multicolumn{5}{|c}{ Father's Educational Level } \\
& Self- & Not HS & HS & Some & Coll & Post \\
Religion & Esteem & Grad & Grad & Coll & Grad & Coll \\
\hline \multirow{3}{*}{ Catholic } & High & 575 & 388 & 100 & 77 & 51 \\
& Low & & & & & \\
\hline \multirow{2}{*}{ Jewish } & High & 117 & 153 & 40 & 37 & 19 \\
\hline & & & & 67 & 87 & 62 \\
& Low & 48 & 35 & 18 & 12 & 13 \\
\hline \multirow{2}{*}{ Protestant } & High & 359 & 233 & 109 & 197 & 90 \\
& Low & 159 & 173 & 47 & 82 & 32 \\
\hline
\end{tabular}

Since the father's education level is nested across columns, it is Variable 1 with levels corresponding to not finishing high school, graduating from high school, attending college, graduating from college, and attending graduate courses. The variable that varies the quickest across rows is Self-Esteem, so Self-Esteem is Variable 2 with values "High" and "Low." The Religion variable is Variable 3 with values "Catholic," "Jewish," and "Protestant."

The following program encodes this table, using the MARG call to compute a 2-way marginal table by summing over the third variable and a 1 -way marginal by summing over the first two variables. Then a new table (NewTable) is created by applying the greedy algorithm to the two marginals. Finally, the marginals of NewTable are computed and compared with those of table.
```

dim={5 2 3};
table={
/* Father's Education:
NotHSGrad HSGrad Col ColGrad PostCol
Self-
Relig Esteem
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,
/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,
/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32
};
config={ 1 3,
2 0 };
call marg(locmar, marginal, dim, table, config);
print locmar, marginal, table;
/* Examine marginals: The name indicates the

```
```

    variable(s) that are NOT summed over.
    The locmar variable tells where to index
    into the marginal variable. */
    Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];
NewTable = j(nrow(table), ncol(table),0);
/* give as much to cell (1,1,1) as possible,
then as much as remains to cell (1,1,2), etc,
until all the margins have been distributed. */
idx = 1;
do i3 = 1 to dim[3]; /* over Var3 */
do i2 = 1 to dim[2]; /* over Var2 */
do i1 = 1 to dim[1]; /* over Var1 */
/* Note Var12_Marg has Var1 varying across
the columns */
t = min(Var12_Marg[i2,i1],Var3_Marg[i3]);
NewTable[idx] = t;
idx = idx + 1;
Var12_Marg[i2,i1] = Var12_Marg[i2,i1]-t;
Var3_Marg[i3] = Var3_Marg[i3]-t;
end;
end;
end;
call marg(locmar, NewMarginal, dim, table, config);
maxDiff = abs(marginal-NewMarginal) [<>];
if maxDiff=0 then
print "Marginals are unchanged";
print NewTable;

```

The results of this program are as follows:

LOCMAR

1
11
\begin{tabular}{cccccccc}
& & & MARGINAL \\
& COL1 & COL2 & COL3 & COL4 & COL5 & COL6 & COL7 \\
ROW1 & 1051 & 723 & 276 & 361 & 203 & 474 & 361
\end{tabular}

MARGINAL
\begin{tabular}{rrrrrrr}
& COL8 & COL9 & COL10 & COL11 & COL12 & COL13 \\
ROW1 & 105 & 131 & 64 & 1707 & 561 & 1481
\end{tabular}
\begin{tabular}{rrrrr}
\multicolumn{5}{c}{ TABLE } \\
575 & 388 & 100 & 77 & 51 \\
267 & 153 & 40 & 37 & 19 \\
117 & 102 & 67 & 87 & 62 \\
48 & 35 & 18 & 12 & 13 \\
359 & 233 & 109 & 197 & 90 \\
159 & 173 & 47 & 82 & 32
\end{tabular}

Marginals are unchanged
\begin{tabular}{rrrrr}
\multicolumn{5}{c}{ NEWTABLE } \\
& & & & 0 \\
1051 & 656 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 67 & 276 & 218 & 0 \\
0 & 0 & 0 & 0 & 203 \\
0 & 0 & 0 & 143 & 64
\end{tabular}

\section*{Fitting a Log-Linear Model to a Table}

A second common usage of the IPF algorithm is to hypothesize that the table of observations can be fitted by a model with known effects and to ask whether the observed values indicate that the model hypothesis can be accepted or should be rejected. In this usage, you normally do not specify the initab argument to IPF (but see the comment on structural zeros in the section "Additional Details" on page 715).

Korff, Taback, and Beard (1952) reported statistics related to the outbreak of food poisoning at a company picnic. A total of 304 people at the picnic were surveyed to determine who had eaten either of two suspect foods: potato salad and crabmeat. The predictor variables are whether the individual ate potato salad (Variable 1: "Yes" or "No") and whether the person ate crabmeat (Variable 2: "Yes" or "No"). The response variable is whether the person was ill (Variable 3: "Ill" or "Not Ill"). The order of the variables is determined by the dim and table arguments to IPF. The variables are nested across columns, then across rows.
\begin{tabular}{l|rrrr}
\hline Crabmeat: & \multicolumn{2}{|c}{ Y E S } & \multicolumn{2}{c}{ N O } \\
Potato salad: & Yes & No & Yes & No \\
\hline Ill & 120 & 4 & 22 & 0 \\
Not Ill & 80 & 31 & 24 & 23 \\
\hline
\end{tabular}

The following program defines the variables and observations, and then fits three separate models. How well each model fits the data is determined by computing a Pearson chi-square statistic \(\chi^{2}=\sum(O-E)^{2} / E\), where the sum is over all cells,
\(O\) stands for the observed cell count, and \(E\) stands for the fitted estimate. Other statistics, such as the likelihood-ratio chi-square statistic \(G^{2}=-2 \sum O \log (E / O)\), could also be used.

The program first fits a model that excludes the three-way interaction. The model fits well, so you can conclude that an association between illness and potato salad does not depend on whether an individual ate crabmeat. The next model excludes the interaction between potato salad and illness. This model is rejected with a large chi-square value, so the data support an association between potato salad and illness. The last model excludes the interaction between the crabmeat and the illness. This model fits moderately well. Here is the code:
```

/* Compute a chi-square score for a table of observed
values, given a table of expected values. Compare
this score to a chi-square value with given degrees
of freedom at 95% confidence level. */
start ChiSqTest( obs, model, degFreedom );
diff = (obs - model)\#\#2 / model;
chiSq = diff[+];
chiSqCutoff = cinv(0.95, degFreedom);
print chiSq chiSqCutoff;
if chiSq > chiSqCutoff then
print "Reject hypothesis";
else
print "No evidence to reject hypothesis";
finish;
dim={2 2 2};
/* Crab meat: Y E S N O
Potato: Yes No Yes No */
table={ 120 4 22 0, /* Ill */
8031 24 23 }; /* Not Ill */
crabmeat = " C R A B N O C R A B";
potato = {'YesPot' 'NoPot' 'YesPot' 'NoPot'};
illness = {'Ill', 'Not Ill'};
hypoth = "Hypothesis: no three-factor interaction";
config={1 1 2,
2 3 3};
call ipf(fit,status,dim,table,config);
print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato
rowname=illness format=6.2];
run ChiSqTest(table, fit, 1); /* 1 deg of freedom */

```
/* Test for interaction between Var 3 (Illness) and
 Var 1 (Potato Salad) */
hypoth = "Hypothesis: no Illness-Potato Interaction";
```

config={1 2,
2 3};
call ipf(fit,status,dim,table,config);
print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato
rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */
/* Test for interaction between Var 3 (Illness) and
Var 2 (Crab meat) */
hypoth = "Hypothesis: no Illness-Crab Interaction";
config={1 1,
2 3};
call ipf(fit,status,dim,table,config);
print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato
rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

```

The associated output is as follows:

\section*{HYPOTH}

Hypothesis: no three-factor interaction

Fitted Model:
\begin{tabular}{lrrrrr}
& \multicolumn{2}{c}{ CRAB } & \multicolumn{1}{c}{ N O CRAB } \\
& YesPot & NoPot & YesPot & NoPot \\
& & & & & \\
Ill & 121.08 & 2.92 & 20.92 & 1.08 \\
Not Ill & 78.92 & 32.08 & 25.07 & 21.93
\end{tabular}

CHISQ CHISQCUTOFF
1.70213353 .8414588

No evidence to reject hypothesis

HYPOTH

Hypothesis: no interaction between Illness and Potatoes

Fitted Model:
\begin{tabular}{ccccc}
& \begin{tabular}{c}
C R A B \\
YesPot
\end{tabular} & \begin{tabular}{c}
N O C C R A B \\
NesPot
\end{tabular} & \begin{tabular}{c}
NoPot
\end{tabular} \\
Ill & & & & \\
& 105.53 & 18.47 & 14.67 & 7.33
\end{tabular}
```

Not Ill 94.47 16.53 31.33 15.67
CHISQ CHISQCUTOFF
44.344643 5.9914645
Reject hypothesis
HYPOTH
Hypothesis: no interaction between Illness and Crab
Fitted Model:
C R A B NO C R A B
YesPot NoPot YesPot NoPot
Ill 115.45 2.41 26.55 1.59
Not Ill 84.55 32.59 19.45 21.41
CHISQ CHISQCUTOFF
5.0945132 5.9914645
No evidence to reject hypothesis

```

\section*{Additional Details}

A few additional comments on the examples are in order.

Structural versus Random Zeros In the marriage-by-age example, the initab argument contained a zero for the "15-19 and Widowed/Divorced" category. Because the initab parameter determines the proportionality between cells, the fitted model retains a zero in that category. By contrast, in the potato-crabillness example, the table parameter contained a zero for number of illnesses observed among those who did not eat either crabmeat or potato salad. This is a sampling (or random) zero. Some models preserve that zero; others do not. If your table has a structural zero (for example, the number of ovarian cancers observed among male patients), then you can use the initab parameter to preserve that zero. Refer to Bishop, Fienberg, and Holland (1975) or the documentation for the CATMOD procedure in SAS/STAT for more information about structural zeros and incomplete tables.

The config Parameter The columns of this matrix specify which interaction effects should be included in the model. The following table gives the model and the configuration parameter for common interactions for an \(I \times J \times K\) table in three dimensions. The so-called noncomprehensive models that do not include all variables (for example, config \(=\{1\}\)) are not listed in the table, but can
be used. You can also specify combinations of main and interaction effects. For example, config \(=\left\{\begin{array}{l}13,20\}\end{array}\right)\) specifies all main effects and the \(1-\) 2 interaction. Bishop, Fienberg, and Holland (1975) and Christensen (1997) explain how to compute the degrees of freedom associated with any model. For models with structural zeros, computing the degrees of freedom is complicated.
\begin{tabular}{|c|c|c|}
\hline Model & Config & Degrees of Freedom \\
\hline No three-factor & \[
\begin{array}{rrr}
\{1 & 1 & 2, \\
2 & 3 & 3
\end{array}
\] & \((I-1)(J-1)(K-1)\) \\
\hline One two-factor absent & \[
\begin{aligned}
\{1 & 2, \\
3 & 3\} \\
\{1 & 2,
\end{aligned}
\] & \((I-1)(J-1) K\) \\
\hline & \[
\begin{aligned}
2 & 3\} \\
\{1 & 1 \\
2 & 3\}
\end{aligned}
\] & \((I-1) J(K-1)\)
\(I(J-1)(K-1)\) \\
\hline Two two-factor absent & \[
\begin{array}{ll}
\{2, & 3\} \\
\{1, & 3\} \\
\{1, & 2\}
\end{array}
\] & \[
\begin{aligned}
& (I-1)(J K-1) \\
& (J-1)(I K-1) \\
& (K-1)(I J-1)
\end{aligned}
\] \\
\hline No two-factor & \{1 123 3 & \(I J K-(I+J+K)+2\) \\
\hline Saturated & \(\{1,2,3\}\) & IJK \\
\hline
\end{tabular}

The Shape of the table Parameter Since variables are nested across columns and then across rows, any shape that conforms to the dim parameter is equivalent.
For example, the section "Generating a Table with Given Marginals" on page 709 presents data on a person's self-esteem for people classified according to their religion and their father's educational level. To save space, the educational levels are subsequently denoted by labels indicating the typical number of years spent in school: " \(<12\)," " 12 ," " \(<16\)," " 16 ," and " \(>16\)."

The table would be encoded as follows:
```

dim={5 2 3};
table={
/* Father's Education:
<12 12 <16 16 >16
Self-
Relig Esteem
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,
/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,
/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

```

The same information for the same variables in the same order could also be encoded into an \(n \times m\) table in two other ways. Recall that the product of
entries in \(\operatorname{dim}\) is \(n m\) and that \(m\) must equal the product of the first \(k\) entries of \(\operatorname{dim}\) for some \(k\). For this example, the product of the entries in \(\operatorname{dim}\) is 30 , and so the table must be \(6 \times 5,3 \times 10\), or \(1 \times 30\). The \(3 \times 10\) table is encoded as concatenating rows \(1-2,3-4\), and \(5-6\) to produce the following:
```

table={
/* Esteem: H I G H L O W */
/* <12 ... >16 <12 ... >16 */
575 ... 51 267 ... 19, /* Catholic */
117 ... 62 48 ... 13, /* Jewish */
359 ... 90 159 ... 32 /* Protestant*/
};

```

The \(1 \times 30\) table is encoded by concatenating all rows, as follows:

\section*{ITSOLVER Call}

\section*{solves a sparse linear system by using iterative methods}

CALL ITSOLVER(\(x\), error, iter, method, \(A, b,<\) precon \(>,<t o l>,<m a x i t e r>\), <start>, <history>);

The ITSOLVER call returns the following values:
\(x \quad\) is the solution to \(A x=b\).
error is the final relative error of the solution.
iter is the number of iterations executed.

The inputs to the ITSOLVER call are as follows:
method is the type of iterative method to use.
\(A \quad\) is the sparse coefficient matrix in the equation \(A x=b\).
\(b \quad\) is a column vector, the right side of the equation \(A x=b\).
precon is the name of a preconditioning technique to use.
tol is the relative error tolerance.
maxiter is the iteration limit.
start is a starting point column vector.
history is a matrix to store the relative error at each iteration.

The ITSOLVER call solves a sparse linear system by iterative methods, which involve updating a trial solution over successive iterations to minimize the error. The ITSOLVER call uses the technique specified in the method parameter to update the solution. The accepted method options are as follows:
method \(=\) ' CG ': conjugate gradient algorithm, when \(A\) is symmetric and positive definite.
method \(=\) 'CGS': conjugate gradient squared algorithm, for general \(A\).
method \(=\) 'MINRES': minimum residual algorithm, when \(A\) is symmetric indefinite.
method \(=\) 'BICG': biconjugate gradient algorithm, for general \(A\).

The input matrix \(A\) represents the coefficient matrix in sparse format; it is an \(n \times 3\) matrix, where \(n\) is the number of nonzero elements. The first column contains the nonzero values, while the second and third columns contain the row and column locations for the nonzero elements, respectively. For the algorithms assuming symmetric \(A\), conjugate gradient, and minimum residual, only the lower triangular elements should be specified. The algorithm continues iterating to improve the solution until either the relative error tolerance specified in tol is satisfied or the maximum number of iterations specified in maxiter is reached. The relative error is defined as
\[
\text { error }=\|A x-b\|_{2} /\left(\|b\|_{2}+\epsilon\right)
\]
where the \(\|\cdot\|_{2}\) operator is the Euclidean norm, and \(\epsilon\) is a machine-dependent epsilon value to prevent any division by zero. If tol or maxiter is not specified in the call, then a default value of \(10^{-7}\) is used for \(t o l\) and 100000 for maxiter.

The convergence of an iterative algorithm can often be enhanced by preconditioning the input coefficient matrix. The preconditioning option is specified with the precon parameter, which can take one of the following values:
```

precon = 'NONE': no preconditioning
precon = 'IC': incomplete Cholesky factorization, for method = 'CG' or 'MINRES'
only
precon = 'DIAG': diagonal Jacobi preconditioner, for method = 'CG' or 'MINRES'
only
precon = 'MILU': modified incomplete LU factorization, for method = 'BICG'
only

```

If precon is not specified, no preconditioning is applied.
A starting trial solution can be specified with the start parameter; otherwise the ITSOLVER call generates a zero starting point. You can supply a matrix to store the relative error at each iteration with the history parameter. The history matrix should be dimensioned with enough elements to store the maximum number of iterations you expect.

Your IML program should always check the returned error and iter parameters to verify that the desired relative error tolerance was reached. If not, your program might continue the solution process with another ITSOLVER call, with start set to the latest result. You might also try a different precon option to enhance convergence.
For example, use the biconjugate gradient algorithm to solve the system
\[
\left[\begin{array}{llrl}
3 & 2 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & -10 & 0 \\
0 & 3.2 & 0 & 3
\end{array}\right] x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\]

Here is the code:
```

/* value row column */
A = { 3 1 1 1,
2 1 2,
1.1 2 1,
4 4,
lll
-10 3 3,
34 4};

```
```

/* right hand side */

```
/* right hand side */
b = {1, 1, 1, 1};
b = {1, 1, 1, 1};
maxiter = 10;
maxiter = 10;
hist = j(maxiter,1,.);
hist = j(maxiter,1,.);
start = {1,1,1,1};
start = {1,1,1,1};
tol = 1e-10;
tol = 1e-10;
call itsolver(x, error, iter, 'bicg', A, b, 'milu', tol,
call itsolver(x, error, iter, 'bicg', A, b, 'milu', tol,
 maxiter, start, hist);
 maxiter, start, hist);
print x;
print x;
print iter error;
print iter error;
print hist;
```

print hist;

```

The results are as follows:
```

            X
        0.2040816
        0.1938776
        -0.080612
        0.1265306
        ITER ERROR
        3 3.494E-16
    ```

\title{
HIST \\ 0.0254375 \\ 0.0080432 \\ \(3.494 \mathrm{E}-16\)
}

Use the conjugate gradient algorithm solve the symmetric positive definite system
\[
\left[\begin{array}{llrl}
3 & 1.1 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & 10 & 0 \\
0 & 3.2 & 0 & 3
\end{array}\right] x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\]

Here is the code:
```

/* value row column */
A = { 3 1 1 1,
1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,
10 3 3,
3 4 4};
/* right hand side */
b = {1, 1, 1, 1};
call itsolver(x, error, iter, 'CG', A, b);
print x, iter, error;

```

The results are as follows:

ITER

4

ERROR
5.77E-15

\section*{J Function}

\section*{creates a matrix of identical values}
\[
\mathbf{J}(\text { nrow }<, \text { ncol<, value } \gg)
\]

The inputs to the J function are as follows:
nrow \(\quad\) is a numeric matrix or literal giving the number of rows.
ncol is a numeric matrix or literal giving the number of columns.
value \(\quad\) is a numeric or character matrix or literal for filling the rows and columns of the matrix.

The J function creates a matrix with nrow rows and ncol columns with all elements equal to value. If ncol is not specified, it defaults to nrow. If value is not specified, it defaults to 1 . The REPEAT and SHAPE functions can also perform this operation, and they are more general.

Examples of the J function are as follows:
```

b=j(3);

```


\section*{JROOT Function}
computes the first nonzero roots of a Bessel function of the first kind and the derivative of the Bessel function at each root
\[
\text { JROOT(} \nu, n \text {) }
\]

The JROOT function returns an \(n \times 2\) matrix with the calculated roots in the first column and the derivatives in the second column.

The inputs to the JROOT function are as follows:
```

is a scalar denoting the order of the Bessel function, with }\nu>-1
n is a positive integer denoting the number of roots.

```

The JROOT function returns a matrix in which the first column contains the first \(n\) roots of the Bessel function; these roots are the solutions to the equation
\[
J_{\nu}\left(x_{i}\right)=0, \quad i=1, \ldots, n
\]

The second column of this matrix contains the derivatives \(J_{\nu}^{\prime}\left(x_{i}\right)\) of the Bessel function at each of the roots \(x_{i}\). The expression \(J_{\nu}(x)\) is a solution to the differential equation
\[
x^{2} \frac{d^{2} J_{\nu}}{d x^{2}}+x \frac{d J_{\nu}}{d x}+\left(x^{2}-\nu^{2}\right) J_{\nu}=0
\]

One of the expressions for such a function is given by the series
\[
J_{\nu}(x)=\left(\frac{1}{2} z\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} z^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}
\]
where \(\Gamma(\cdot)\) is the gamma function. Refer to Abramowitz and Stegun (1972) for more details concerning the Bessel and gamma functions. The algorithm is a Newton method coupled with a reasonable initial guess. For large values of \(n\) or \(\nu\), the algorithm could fail due to machine limitations. In this case, JROOT returns a matrix with zero rows and zero columns. The values that cause the algorithm to fail are machine dependent.

The following code provides an example:
```

x = jroot(1,4);
print x;

```

To obtain only the roots, you can use the following statement, which extracts the first column of the returned matrix:
```

x = jroot (1,4)[,1];

```

\section*{KALCVF Call}
computes the one-step prediction \(z_{t+1 \mid t}\) and the filtered estimate \(z_{t \mid t}\), as well as their covariance matrices. The call uses forward recursions, and you can also use it to obtain \(k\)-step estimates.

CALL KALCVF (pred, vpred, filt, vfilt, data, lead, \(a, f, b, h\),
\[
v a r<, z 0, v z 0>) ;
\]

The inputs to the KALCVF subroutine are as follows:
\begin{tabular}{ll}
data \\
lead & is a \(T \times N_{y}\) matrix containing data \(\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{T}\right)^{\prime}\). \\
is the number of steps to forecast after the end of the data.
\end{tabular}\(\quad\)\begin{tabular}{l}
is an \(N_{z} \times 1\) vector for a time-invariant input vector in the transition \\
equation, or a \((T+\) lead \() N_{z} \times 1\) vector containing input vectors in \\
the transition equation. \\
is an \(N_{z} \times N_{z}\) matrix for a time-invariant transition matrix in the \\
transition equation, or a \((T+\) lead \() N_{z} \times N_{z}\) matrix containing \\
transition matrices in the transition equation. \\
is an \(N_{y} \times 1\) vector for a time-invariant input vector in the mea- \\
surement equation, or a \((T+\) lead \() N_{y} \times 1\) vector containing input \\
vectors in the measurement equation.
\end{tabular}

The KALCVF call returns the following values:
pred \(\quad\) is a \((T+\) lead \() \times N_{z}\) matrix containing one-step predicted state vectors \(\left(\mathbf{z}_{1 \mid 0}, \cdots, \mathbf{z}_{T+1 \mid T}, \mathbf{z}_{T+2 \mid T}, \cdots, \mathbf{z}_{T+\text { lead } \mid T}\right)^{\prime}\).
vpred
filt
vfilt
is a \((T+\) lead \() N_{z} \times N_{z}\) matrix containing mean square errors of predicted state vectors \(\left(\mathbf{P}_{1 \mid 0}, \cdots, \mathbf{P}_{T+1 \mid T}, \mathbf{P}_{T+2 \mid T}, \cdots, \mathbf{P}_{T+\text { lead } \mid T}\right)^{\prime}\). is a \(T \times N_{z}\) matrix containing filtered state vectors \(\left(\mathbf{z}_{1 \mid 1}, \cdots, \mathbf{z}_{T \mid T}\right)^{\prime}\).
is a \(T N_{z} \times N_{z}\) matrix containing mean square errors of filtered state vectors \(\left(\mathbf{P}_{1 \mid 1}, \cdots, \mathbf{P}_{T \mid T}\right)^{\prime}\).

The KALCVF call computes the conditional expectation of the state vector \(\mathbf{z}_{t}\) given the observations, assuming that the mean and the variance of the initial state vector are known. The filtered value is the conditional expectation of the state vector \(\mathbf{z}_{t}\) given the observations up to time \(t\). For \(k\)-step forecasting where \(k>0\), the conditional expectation at time \(t+k\) is computed given observations up to \(t\). For notation, \(\mathbf{V}_{t}\) and \(\mathbf{R}_{t}\) are variances of \(\eta_{t}\) and \(\epsilon_{t}\), respectively, and \(\mathbf{G}_{t}\) is a covariance of \(\eta_{t}\) and \(\epsilon_{t} . \mathbf{A}^{-}\) stands for the generalized inverse of \(\mathbf{A}\). The filtered value and its covariance matrix are denoted \(\mathbf{z}_{t \mid t}\) and \(\mathbf{P}_{t \mid t}\), respectively. For \(k>0, \mathbf{z}_{t+k \mid t}\) and \(\mathbf{P}_{t+k \mid t}\) stand for the \(k\)-step forecast of \(\mathbf{z}_{t+k}\) and its mean square error. The Kalman filtering algorithm for one-step prediction and filtering is given as follows:
\[
\begin{aligned}
\hat{\epsilon}_{t} & =\mathbf{y}_{t}-\mathbf{b}_{t}-\mathbf{H}_{t} \mathbf{z}_{t \mid t-1} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{z}_{t \mid t} & =\mathbf{z}_{t \mid t-1}+\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \hat{\epsilon}_{t} \\
\mathbf{P}_{t \mid t} & =\mathbf{P}_{t \mid t-1}-\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \\
\mathbf{K}_{t} & =\left(\mathbf{F}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \\
\mathbf{z}_{t+1 \mid t} & =\mathbf{a}_{t}+\mathbf{F}_{t \mathbf{z}_{t \mid t-1}}+\mathbf{K}_{t} \hat{\epsilon}_{t} \\
\mathbf{P}_{t+1 \mid t} & =\mathbf{F}_{t} \mathbf{P}_{t \mid t-1} \mathbf{F}_{t}^{\prime}+\mathbf{V}_{t}-\mathbf{K}_{t} \mathbf{D}_{t} \mathbf{K}_{t}^{\prime}
\end{aligned}
\]

And for \(k\)-step forecasting for \(k>1\),
\[
\begin{aligned}
\mathbf{z}_{t+k \mid t} & =\mathbf{a}_{t+k-1}+\mathbf{F}_{t+k-1} \mathbf{z}_{t+k-1 \mid t} \\
\mathbf{P}_{t+k \mid t} & =\mathbf{F}_{t+k-1} \mathbf{P}_{t+k-1 \mid t} \mathbf{F}_{t+k-1}^{\prime}+\mathbf{V}_{t+k-1}
\end{aligned}
\]

When you use the alternative transition equation
\[
\mathbf{z}_{t}=\mathbf{a}_{t}+\mathbf{F}_{t} \mathbf{z}_{t-1}+\eta_{t}
\]
the forward recursion algorithm is written
\[
\begin{aligned}
\hat{\epsilon}_{t} & =\mathbf{y}_{t}-\mathbf{b}_{t}-\mathbf{H}_{t} \mathbf{z}_{t \mid t-1} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{H}_{t} \mathbf{G}_{t}+\mathbf{G}_{t}^{\prime} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{z}_{t \mid t} & =\mathbf{z}_{t \mid t-1}+\left(\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \hat{\epsilon}_{t} \\
\mathbf{P}_{t \mid t} & =\mathbf{P}_{t \mid t-1}-\left(\mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-}\left(\mathbf{H}_{t} \mathbf{P}_{t \mid t-1}+\mathbf{G}_{t}^{\prime}\right) \\
\mathbf{K}_{t} & =\left(\mathbf{F}_{t+1} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \\
\mathbf{z}_{t+1 \mid t} & =\mathbf{a}_{t+1}+\mathbf{F}_{t+1} \mathbf{z}_{t \mid t-1}+\mathbf{K}_{t} \hat{\epsilon}_{t} \\
\mathbf{P}_{t+1 \mid t} & =\mathbf{F}_{t+1} \mathbf{P}_{t \mid t-1} \mathbf{F}_{t+1}^{\prime}+\mathbf{V}_{t+1}-\mathbf{K}_{t} \mathbf{D}_{t} \mathbf{K}_{t}^{\prime}
\end{aligned}
\]

And for \(k\)-step forecasting \((k>1)\),
\[
\begin{aligned}
\mathbf{z}_{t+k \mid t} & =\mathbf{a}_{t+k}+\mathbf{F}_{t+k} \mathbf{z}_{t+k-1 \mid t} \\
\mathbf{P}_{t+k \mid t} & =\mathbf{F}_{t+k} \mathbf{P}_{t+k-1 \mid t} \mathbf{F}_{t+k}^{\prime}+\mathbf{V}_{t+k}
\end{aligned}
\]

You can use the KALCVF call when you specify the alternative transition equation and \(\mathbf{G}_{t}=\mathbf{0}\).

The initial state vector and its covariance matrix of the time invariant Kalman filters are computed under the stationarity condition
\[
\begin{aligned}
\mathbf{z}_{1 \mid 0} & =(\mathbf{I}-\mathbf{F})^{-} \mathbf{a} \\
\mathbf{P}_{1 \mid 0} & =(\mathbf{I}-\mathbf{F} \otimes \mathbf{F})^{-} \operatorname{vec}(\mathbf{V})
\end{aligned}
\]
where \(\mathbf{F}\) and \(\mathbf{V}\) are the time-invariant transition matrix and the covariance matrix of transition equation noise, and \(\operatorname{vec}(\mathbf{V})\) is an \(N_{z}^{2} \times 1\) column vector that is constructed by the stacking \(N_{z}\) columns of matrix \(\mathbf{V}\). Note that all eigenvalues of the matrix \(\mathbf{F}\) are inside the unit circle when the SSM is stationary. When the preceding formula cannot be applied, the initial state vector estimate \(\mathbf{z}_{1 \mid 0}\) is set to \(\mathbf{a}_{1}\) and its covariance matrix \(\mathbf{P}_{1 \mid 0}\) is given by \(10^{6}\) I. Optionally, you can specify initial values.

The KALCVF call accepts missing values in observations. If there is a missing observation, the filtered state vector for the missing observation is given by the one-step forecast.

The following program gives an example of the KALCVF call:
```

q=2;
p=2;
n=10;
lead=3;
total=n+lead;
seed = 25735;
x=round(10*normal (j(n,p,seed))) /10;
f=round(10*normal (j(q*total,q, seed)))/10;
a=round(10*normal(j(total*q, 1, seed))) /10;
h=round(10*normal (j(p*total,q, seed))) /10;
b=round(10*normal (j(p*total, 1, seed))) /10;
do i = 1 to total;
temp=round(10*normal (j(p+q, p+q, seed)))/10;
var=var//(temp*temp');
end;
call kalcvf(pred,vpred,filt,vfilt,x,lead,a,f,b,h,var);
/* default initial state and covariance */
call kalcvs(sm,vsm,x,a,f,b,h,var,pred,vpred);
print sm [format=9.4] vsm [format=9.4];

```

This program produces the following output:
\begin{tabular}{rrrr}
SM & & \multicolumn{1}{c}{ VSM } & \\
& & & \\
-1.5236 & -0.1000 & 1.5813 & -0.4779 \\
0.3058 & -0.1131 & -0.4779 & 0.3963 \\
-0.2593 & 0.2496 & 2.4629 & 0.2426 \\
-0.5533 & 0.0332 & 0.2426 & 0.0944 \\
-0.5813 & 0.1251 & 0.2023 & -0.0228 \\
-0.3017 & 0.7480 & -0.0228 & 0.5799 \\
1.1333 & -0.2144 & 0.8615 & -0.7653 \\
1.5193 & -0.6237 & -0.7653 & 1.2334 \\
-0.6641 & -0.7770 & 1.0836 & 0.8706 \\
0.5994 & 2.3333 & 0.8706 & 1.5252 \\
& & 0.3677 & 0.2510 \\
& & 0.2510 & 0.2051 \\
& & 0.3243 & -0.4093 \\
& & -0.4093 & 1.2287 \\
& & 0.1736 & -0.0712 \\
& & 1.0712 & 0.9048 \\
& & 0.8748 & 0.8748 \\
& & 8.6650 & 1.6575 \\
& & 0.1841 & 4.4770
\end{tabular}

\section*{KALCVS Call}
uses backward recursions to compute the smoothed estimate \(\mathrm{z}_{t \mid T}\) and its covariance matrix, \(\mathbf{P}_{t \mid T}\), where \(T\) is the number of observations in the complete data set

CALL KALCVS(sm, vsm, data, \(a, f, b, h\), var, pred, vpred \(<, u n\), vun>);
The inputs to the KALCVS subroutine are as follows.
\[
\begin{array}{ll}
\text { data } \\
a & \text { is a } T \times N_{y} \text { matrix containing data }\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{T}\right)^{\prime} . \\
f & \text { is an } N_{z} \times 1 \text { vector for a time-invariant input vector in the transi- } \\
\text { tion equation, or a } T N_{z} \times 1 \text { vector containing input vectors in the } \\
\text { transition equation. } \\
b & \text { is an } N_{z} \times N_{z} \text { matrix for a time-invariant transition matrix in the } \\
\text { transition equation, or a } T N_{z} \times N_{z} \text { matrix containing } T \text { transition } \\
\text { matrices. } \\
\text { is an } N_{y} \times 1 \text { vector for a time-invariant input vector in the mea- } \\
\text { surement equation, or a } T N_{y} \times 1 \text { vector containing input vectors } \\
\text { in the measurement equation. }
\end{array}
\]
var
pred is a \(T \times N_{z}\) matrix containing one-step forecasts
vpred \(\quad\) is a \(T N_{z} \times N_{z}\) matrix containing mean square error matrices of predicted state vectors \(\left(\mathbf{P}_{1 \mid 0}, \cdots, \mathbf{P}_{T \mid T-1}\right)^{\prime}\).
un
vun
is an \(\left(N_{y}+N_{z}\right) \times\left(N_{y}+N_{z}\right)\) covariance matrix for the errors in the transition and the measurement equations, or a \(T\left(N_{y}+N_{z}\right) \times\) \(\left(N_{y}+N_{z}\right)\) matrix containing covariance matrices in the transition equation and measurement equation noises-that is, \(\left(\eta_{t}^{\prime}, \epsilon_{t}^{\prime}\right)^{\prime}\). \(\left(\mathbf{z}_{1 \mid 0}, \cdots, \mathbf{z}_{T \mid T-1}\right)^{\prime}\). is an optional \(1 \times N_{z}\) vector containing \(\mathbf{u}_{T}\). The returned value is \(\mathbf{u}_{0}\).
is an optional \(N_{z} \times N_{z}\) matrix containing \(\mathbf{U}_{T}\). The returned value is \(\mathbf{U}_{0}\).

The KALCVS call returns the following values:
sm
is a \(T \times N_{z}\) matrix containing smoothed state vectors \(\left(\mathbf{z}_{1 \mid T}, \cdots, \mathbf{z}_{T \mid T}\right)^{\prime}\).
vsm
is a \(T N_{z} \times N_{z}\) matrix containing covariance matrices of smoothed state vectors \(\left(\mathbf{P}_{1 \mid T}, \cdots, \mathbf{P}_{T \mid T}\right)^{\prime}\).

When the Kalman filtering is performed in the KALCVF call, the KALCVS call computes smoothed state vectors and their covariance matrices. The fixed-interval smoothing state vector at time \(t\) is obtained by the conditional expectation given all observations.

The smoothing algorithm uses one-step forecasts and their covariance matrices, which are given in the KALCVF call. For notation, \(\mathbf{z}_{t \mid T}\) is the smoothed value of the state vector \(\mathbf{z}_{t}\), and the mean square error matrix is denoted \(\mathbf{P}_{t \mid T}\). For smoothing,
\[
\begin{aligned}
\hat{\epsilon}_{t} & =\mathbf{y}_{t}-\mathbf{b}_{t}-\mathbf{H}_{t} \mathbf{z}_{t \mid t-1} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{K}_{t} & =\left(\mathbf{F}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \\
\mathbf{L}_{t} & =\mathbf{F}_{t}-\mathbf{K}_{t} \mathbf{H}_{t} \\
\mathbf{u}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \hat{\epsilon}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{u}_{t} \\
\mathbf{U}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{H}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{U}_{t} \mathbf{L}_{t} \\
\mathbf{z}_{t \mid T} & =\mathbf{z}_{t \mid t-1}+\mathbf{P}_{t \mid t-1} \mathbf{u}_{t-1} \\
\mathbf{P}_{t \mid T} & =\mathbf{P}_{t \mid t-1}-\mathbf{P}_{t \mid t-1} \mathbf{U}_{t-1} \mathbf{P}_{t \mid t-1}
\end{aligned}
\]
where \(t=T, T-1, \ldots, 1\). The initial values are \(\mathbf{u}_{T}=\mathbf{0}\) and \(\mathbf{U}_{T}=\mathbf{0}\).
When the SSM is specified by using the alternative transition equation
\[
\mathbf{z}_{t}=\mathbf{a}_{t}+\mathbf{F}_{t} \mathbf{z}_{t-1}+\eta_{t}
\]
the fixed-interval smoothing is performed by using the following backward recursions:
\[
\begin{aligned}
\hat{\epsilon}_{t} & =\mathbf{y}_{t}-\mathbf{b}_{t}-\mathbf{H}_{t} \mathbf{z}_{t \mid t-1} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{K}_{t} & =\mathbf{F}_{t+1} \mathbf{P}_{t \mid t-1} \mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \\
\mathbf{L}_{t} & =\mathbf{F}_{t+1}-\mathbf{K}_{t} \mathbf{H}_{t} \\
\mathbf{u}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \hat{\epsilon}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{u}_{t} \\
\mathbf{U}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{H}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{U}_{t} \mathbf{L}_{t} \\
\mathbf{z}_{t \mid T} & =\mathbf{z}_{t \mid t-1}+\mathbf{P}_{t \mid t-1} \mathbf{u}_{t-1} \\
\mathbf{P}_{t \mid T} & =\mathbf{P}_{t \mid t-1}-\mathbf{P}_{t \mid t-1} \mathbf{U}_{t-1} \mathbf{P}_{t \mid t-1}
\end{aligned}
\]
where it is assumed that \(\mathbf{G}_{t}=\mathbf{0}\).
You can use the KALCVS call regardless of the specification of the transition equation when \(\mathbf{G}_{t}=\mathbf{0}\). Harvey (1989) gives the following fixed-interval smoothing formula, which produces the same smoothed value:
\[
\begin{aligned}
\mathbf{z}_{t \mid T} & =\mathbf{z}_{t \mid t}+\mathbf{P}_{t}^{*}\left(\mathbf{z}_{t+1 \mid T}-\mathbf{z}_{t+1 \mid t}\right) \\
\mathbf{P}_{t \mid T} & =\mathbf{P}_{t \mid t}+\mathbf{P}_{t}^{*}\left(\mathbf{P}_{t+1 \mid T}-\mathbf{P}_{t+1 \mid t}\right) \mathbf{P}_{t}^{* \prime}
\end{aligned}
\]
where
\[
\mathbf{P}_{t}^{*}=\mathbf{P}_{t \mid t} \mathbf{F}_{t}^{\prime} \mathbf{P}_{t+1 \mid t}^{-}
\]
under the shifted transition equation, but
\[
\mathbf{P}_{t}^{*}=\mathbf{P}_{t \mid t} \mathbf{F}_{t+1}^{\prime} \mathbf{P}_{t+1 \mid t}^{-}
\]
under the alternative transition equation.
The KALCVS call is accompanied by the KALCVF call, as shown in the following code. Note that you do not need to specify UN and VUN.
```

call kalcvf(pred, vpred,filt,vfilt,y,0,a,f,b,h,var);
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

```

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0 , as in the following code:
```

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
n = nrow(y);
nz = ncol(f);
un = j(1,nz,0);
vun = j(nz,nz,0);
do i = 1 to n;
y_i = y[n-i+1,];
pred_i = pred[n-i+1,];
vpred_i = vpred[(n-i)*nz+1:(n-i+1)*nz,];
call kalcvs(sm_i,vsm_i,y_i,a,f,b,h,var,pred_i,vpred_i,un,vun);
sm = sm_i // sm;
vsm = vsm_i // vsm;
end;

```

The KALCVF call has an example program that includes the KALCVS call.

\section*{KALDFF Call}
computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The call estimates the conditional expectation of \(z_{t}\), and also estimates the initial random vector, \(\delta\), and its covariance matrix.

CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var,
intd, coefd <, n0, at, mt, qt>);
The inputs to the KALDFF subroutine are as follows:
\[
\begin{aligned}
& \text { data } \begin{array}{l}
\text { is a } T \times N_{y} \text { matrix containing data }\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{T}\right)^{\prime} \text {. } \\
\text { lead } \\
\text { is the number of steps to forecast after the end of the data set. } \\
\text { int } \\
\text { is an }\left(N_{y}+N_{z}\right) \times N_{\beta} \text { matrix for a time-invariant fixed matrix, or a } \\
(T+\text { lead })\left(N_{y}+N_{z}\right) \times N_{\beta} \text { matrix containing fixed matrices for the } \\
\text { time-variant model in the transition equation and the measurement } \\
\text { equation-that is, }\left(\mathbf{W}_{t}^{\prime}, \mathbf{X}_{t}^{\prime}\right)^{\prime} . \\
\text { is an }\left(N_{y}+N_{z}\right) \times N_{z} \text { matrix for a time-invariant coefficient, or a } \\
\\
(T+\text { lead })\left(N_{y}+N_{z}\right) \times N_{z} \text { matrix containing coefficients at each } \\
\text { time in the transition equation and the measurement equation-that } \\
\\
\text { is, }\left(\mathbf{F}_{t}^{\prime}, \mathbf{H}_{t}^{\prime}\right)^{\prime} . \\
\\
\text { is an }\left(N_{y}+N_{z}\right) \times\left(N_{y}+N_{z}\right) \text { matrix for a time-invariant variance } \\
\\
\text { matrix for the error in the transition equation and the error in the } \\
\\
\text { measurement equation, or a }(T+\text { lead })\left(N_{y}+N_{z}\right) \times\left(N_{y}+N_{z}\right) \\
\text { matrix containing covariance matrices for the error in the transi- } \\
\text { tion equation and the error in the measurement equation-that is, } \\
\\
\left(\eta_{t}^{\prime}, \epsilon_{t}^{\prime}\right)^{\prime} .
\end{array} \\
& \text { is an }\left(N_{z}+N_{\beta}\right) \times 1 \text { vector containing the intercept term in the } \\
& \text { equation for the initial state vector } \mathbf{z}_{0} \text { and the mean effect } \beta \text {-that } \\
& \text { is, }\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)^{\prime} .
\end{aligned}
\]
coefd \(\quad\) is an \(\left(N_{z}+N_{\beta}\right) \times N_{\delta}\) matrix containing coefficients for the initial state \(\delta\) in the equation for the initial state vector \(\mathbf{z}_{0}\) and the mean effect \(\beta\)-that is, \(\left(\mathbf{A}^{\prime}, \mathbf{B}^{\prime}\right)^{\prime}\).
\(n 0 \quad\) is an optional scalar including an initial denominator. If \(n 0>0\), the denominator for \(\hat{\sigma}_{t}^{2}\) is \(n 0\) plus the number \(n_{t}\) of elements of \(\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{t}\right)^{\prime}\). If \(n 0 \leq 0\) or \(n 0\) is not specified, the denominator for \(\hat{\sigma}_{t}^{2}\) is \(n_{t}\). With \(n 0 \geq 0\), the initial values, \(\mathbf{A}_{1}, \mathbf{M}_{1}\), and \(\mathbf{Q}_{1}\), are assumed to be known and, hence, \(a t\), \(m t\), and \(q t\) are used for input containing the initial values. If the value of \(n 0\) is negative or \(n 0\) is not specified, the initial values for \(a t, m t\), and \(q t\) are computed. The value of \(n 0\) is updated as \(\max (n 0,0)+n_{t}\) after the KALDFF call.
at is an optional \(k N_{z} \times\left(N_{\delta}+1\right)\) matrix. If \(n 0 \geq 0\), at contains \(\left(\mathbf{A}_{1}^{\prime}, \cdots, \mathbf{A}_{k}^{\prime}\right)^{\prime}\). However, only the first matrix \(\mathbf{A}_{1}\) is used as input. When you specify the KALDFF call, at returns \(\left(\mathbf{A}_{T-k+l \text { lead }+1}^{\prime}, \cdots, \mathbf{A}_{T+l e a d}^{\prime}\right)^{\prime}\). If \(n 0\) is negative or the matrix \(\mathbf{A}_{1}\) contains missing values, \(\mathbf{A}_{1}\) is automatically computed.
\(m t \quad\) is an optional \(k N_{z} \times N_{z}\) matrix. If \(n 0 \geq 0, m t\) contains \(\left(\mathbf{M}_{1}, \cdots, \mathbf{M}_{k}\right)^{\prime}\). However, only the first matrix \(\mathbf{M}_{1}\) is used as input. If \(n 0\) is negative or the matrix \(\mathrm{M}_{1}\) contains missing values, \(m t\) is used for output, and it contains \(\left(\mathbf{M}_{T-k+l e a d+1}, \cdots, \mathbf{M}_{T+l e a d}\right)^{\prime}\). Note that the matrix \(\mathbf{M}_{1}\) can be used as an input matrix if either of the off-diagonal elements is not missing. The missing element \(\mathbf{M}_{1}(i, j)\) is replaced by the nonmissing element \(\mathbf{M}_{1}(j, i)\).
\(q t\)
is an optional \(k\left(N_{\delta}+1\right) \times\left(N_{\delta}+1\right)\) matrix. If \(n 0 \geq 0\), qt contains \(\left(\mathbf{Q}_{1}, \cdots, \mathbf{Q}_{k}\right)^{\prime}\). However, only the first matrix \(\mathbf{Q}_{1}\) is used as input. If \(n 0\) is negative or the matrix \(\mathbf{Q}_{1}\) contains missing values, \(q t\) is used for output and contains \(\left(\mathbf{Q}_{T-k+l e a d+1}, \cdots, \mathbf{Q}_{T+l e a d}\right)^{\prime}\). The matrix \(\mathbf{Q}_{1}\) can also be used as an input matrix if either of the off-diagonal elements is not missing since the missing element \(\mathbf{Q}_{1}(i, j)\) is replaced by the nonmissing element \(\mathbf{Q}_{1}(j, i)\).

The KALDFF call returns the following values:
pred \(\quad\) is a \((T+\) lead \() \times N_{z}\) matrix containing estimated predicted state vectors \(\left(\hat{\mathbf{z}}_{1 \mid 0}, \cdots, \hat{\mathbf{z}}_{T+1 \mid T}, \hat{\mathbf{z}}_{T+2 \mid T}, \cdots, \hat{\mathbf{z}}_{T+\text { lead } \mid T}\right)^{\prime}\).
vpred
initial
\(s 2\)
is a \((T+\) lead \() N_{z} \times N_{z}\) matrix containing estimated mean square errors of predicted state vectors \(\left(\mathbf{P}_{1 \mid 0}, \cdots, \mathbf{P}_{T+1 \mid T}, \mathbf{P}_{T+2 \mid T}, \cdots, \mathbf{P}_{T+\text { lead } \mid T}\right)^{\prime}\). is an \(N_{d} \times\left(N_{d}+1\right)\) matrix containing an estimate and its variance for initial state \(\delta\), that is, \(\left(\hat{\delta}_{T}, \hat{\Sigma}_{\delta, T}\right)\).

The KALDFF call computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The SSM for the diffuse Kalman filter is written
\[
\begin{aligned}
\mathbf{y}_{t} & =\mathbf{X}_{t} \beta+\mathbf{H}_{t} \mathbf{z}_{t}+\epsilon_{t} \\
\mathbf{z}_{t+1} & =\mathbf{W}_{t} \beta+\mathbf{F}_{t} \mathbf{z}_{t}+\eta_{t} \\
\mathbf{z}_{0} & =\mathbf{a}+\mathbf{A} \delta \\
\beta & =\mathbf{b}+\mathbf{B} \delta
\end{aligned}
\]
where \(\mathbf{z}_{t}\) is an \(N_{z} \times 1\) state vector, \(\mathbf{y}_{t}\) is an \(N_{y} \times 1\) observed vector, and
\[
\begin{aligned}
{\left[\begin{array}{l}
\eta_{t} \\
\epsilon_{t}
\end{array}\right] } & \sim N\left(\mathbf{0}, \sigma^{2}\left[\begin{array}{ll}
\mathbf{V}_{t} & \mathbf{G}_{t} \\
\mathbf{G}_{t}^{\prime} & \mathbf{R}_{t}
\end{array}\right]\right) \\
\delta & \sim N\left(\mu, \sigma^{2} \Sigma\right)
\end{aligned}
\]

It is assumed that the noise vector \(\left(\eta_{t}^{\prime}, \epsilon_{t}^{\prime}\right)^{\prime}\) is independent and \(\delta\) is independent of the vector \(\left(\eta_{t}^{\prime}, \epsilon_{t}^{\prime}\right)^{\prime}\). The matrices, \(\mathbf{W}_{t}, \mathbf{F}_{t}, \mathbf{X}_{t}, \mathbf{H}_{t}, \mathbf{a}, \mathbf{A}, \mathbf{b}, \mathbf{B}, \mathbf{V}_{t}, \mathbf{G}_{t}\), and \(\mathbf{R}_{t}\), are assumed to be known. The KALDFF call estimates the conditional expectation of the state vector \(\mathbf{z}_{t}\) given the observations. The KALDFF subroutine also produces the estimates of the initial random vector \(\delta\) and its covariance matrix. For \(k\)-step forecasting where \(k>0\), the estimated conditional expectation at time \(t+k\) is computed with observations given up to time \(t\). The estimated \(k\)-step forecast and its estimated MSE are denoted \(\mathbf{z}_{t+k \mid t}\) and \(\mathbf{P}_{t+k \mid t}\) (for \(k>0\)). \(\mathbf{A}_{t+k(\delta)}\) and \(\mathbf{E}_{t(\delta)}\) are last-column-deleted submatrices of \(\mathbf{A}_{t+k}\) and \(\mathbf{E}_{t}\), respectively. The algorithm for one-step prediction is given as follows:
\[
\begin{aligned}
\mathbf{E}_{t} & =\left(\mathbf{X}_{t} \mathbf{B}, \mathbf{y}_{t}-\mathbf{X}_{t} \mathbf{b}\right)-\mathbf{H}_{t} \mathbf{A}_{t} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{M}_{t} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{Q}_{t+1} & =\mathbf{Q}_{t}+\mathbf{E}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{E}_{t} \\
& =\left[\begin{array}{cc}
\mathbf{S}_{t} & \mathbf{s}_{t} \\
\mathbf{s}_{t}^{\prime} & q_{t}
\end{array}\right] \\
\hat{\sigma}_{t}^{2} & =\left(q_{t}-\mathbf{s}_{t}^{\prime} \mathbf{S}_{t}^{-} \mathbf{s}_{t}\right) / n_{t} \\
\hat{\delta}_{t} & =\mathbf{S}_{t}^{-} \mathbf{s}_{t} \\
\hat{\Sigma}_{\delta, t} & =\hat{\sigma}_{t}^{2} \mathbf{S}_{t}^{-} \\
\mathbf{K}_{t} & =\left(\mathbf{F}_{t} \mathbf{M}_{t} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \\
\mathbf{A}_{t+1} & =\mathbf{W}_{t}(-\mathbf{B}, \mathbf{b})+\mathbf{F}_{t} \mathbf{A}_{t}+\mathbf{K}_{t} \mathbf{E}_{t} \\
\mathbf{M}_{t+1} & =\left(\mathbf{F}_{t}-\mathbf{K}_{t} \mathbf{H}_{t}\right) \mathbf{M}_{t} \mathbf{F}_{t}^{\prime}+\mathbf{V}_{t}-\mathbf{K}_{t} \mathbf{G}_{t}^{\prime} \\
\mathbf{z}_{t+1 \mid t} & =\mathbf{A}_{t+1}\left(-\hat{\delta}_{t}^{\prime}, 1\right)^{\prime} \\
\mathbf{P}_{t+1 \mid t} & =\hat{\sigma}_{t}^{2} \mathbf{M}_{t+1}+\mathbf{A}_{t+1(\delta)} \hat{\Sigma}_{\delta, t} \mathbf{A}_{t+1(\delta)}^{\prime}
\end{aligned}
\]
where \(n_{t}\) is the number of elements of \(\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{t}\right)^{\prime}\) plus \(\max (n 0,0)\). Unless initial values are given and \(n 0 \geq 0\), initial values are set as follows:
\[
\begin{aligned}
\mathbf{A}_{1} & =\mathbf{W}_{1}(-\mathbf{B}, \mathbf{b})+\mathbf{F}_{1}(-\mathbf{A}, \mathbf{a}) \\
\mathbf{M}_{1} & =\mathbf{V}_{1} \\
\mathbf{Q}_{1} & =\mathbf{0}
\end{aligned}
\]

For \(k\)-step forecasting where \(k>1\),
\[
\begin{aligned}
\mathbf{A}_{t+k} & =\mathbf{W}_{t+k-1}(-\mathbf{B}, \mathbf{b})+\mathbf{F}_{t+k-1} \mathbf{A}_{t+k-1} \\
\mathbf{M}_{t+k} & =\mathbf{F}_{t+k-1} \mathbf{M}_{t+k-1} \mathbf{F}_{t+k-1}^{\prime}+\mathbf{V}_{t+k-1} \\
\mathbf{D}_{t+k} & =\mathbf{H}_{t+k} \mathbf{M}_{t+k} \mathbf{H}_{t+k}^{\prime}+\mathbf{R}_{t+k} \\
\mathbf{z}_{t+k \mid t} & =\mathbf{A}_{t+k}\left(-\hat{\delta}_{t}^{\prime}, 1\right)^{\prime} \\
\mathbf{P}_{t+k \mid t} & =\hat{\sigma}_{t}^{2} \mathbf{M}_{t+k}+\mathbf{A}_{t+k(\delta)} \hat{\Sigma}_{\delta, t} \mathbf{A}_{t+k(\delta)}^{\prime}
\end{aligned}
\]

Note that if there is a missing observation, the KALDFF call computes the one-step forecast for the observation following the missing observation as the two-step forecast from the previous observation.

An example that uses the KALDFF call is in the documentation for the KALDFS call.

\section*{KALDFS Call}
computes the smoothed state vector and its mean square error matrix from the one-step forecast and mean square error matrix computed by KALDFF

CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at,
\[
m t, s 2<, u n, \text { vun>); }
\]

The inputs to the KALDFS subroutine are as follows:
data \(\quad\) is a \(T \times N_{y}\) matrix containing data \(\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{T}\right)^{\prime}\).
int \(\quad\) is an \(\left(N_{y}+N_{z}\right) \times N_{\beta}\) vector for a time-invariant intercept, or a \((T+\) lead \()\left(N_{y}+N_{z}\right) \times N_{\beta}\) vector containing fixed matrices for the time-variant model in the transition equation and the measurement equation-that is, \(\left(\mathbf{W}_{t}^{\prime}, \mathbf{X}_{t}^{\prime}\right)^{\prime}\).
coef is an \(\left(N_{y}+N_{z}\right) \times N_{z}\) matrix for a time-invariant coefficient, or a \((T+\) lead \()\left(N_{y}+N_{z}\right) \times N_{z}\) matrix containing coefficients at each time in the transition equation and the measurement equation-that is, \(\left(\mathbf{F}_{t}^{\prime}, \mathbf{H}_{t}^{\prime}\right)^{\prime}\).
var is an \(\left(N_{y}+N_{z}\right) \times\left(N_{y}+N_{z}\right)\) matrix for a time-invariant variance matrix for transition equation noise and the measurement equation noise, or a \((T+\) lead \()\left(N_{y}+N_{z}\right) \times\left(N_{y}+N_{z}\right)\) matrix containing
covariance matrices for the transition equation and measurement equation errors-that is, \(\left(\eta_{t}^{\prime}, \epsilon_{t}^{\prime}\right)^{\prime}\).
\begin{tabular}{ll}
bvec & is an \(N_{\beta} \times 1\) constant vector for the intercept for the mean effect \(\beta\). \\
bmat & is an \(N_{\beta} \times N_{\delta}\) matrix for the coefficient for the mean effect \(\beta\). \\
initial & \begin{tabular}{l}
is an \(N_{\delta} \times\left(N_{\delta}+1\right)\) matrix containing an initial random vector \\
estimate and its covariance matrix-that is, \(\left(\hat{\delta}_{T}, \hat{\Sigma}_{\delta, T}\right)\). \\
at \\
\(m t\) \\
is a \(T N_{z} \times\left(N_{\delta}+1\right)\) matrix containing \(\left(\mathbf{A}_{1}^{\prime}, \cdots, \mathbf{A}_{T}^{\prime}\right)^{\prime}\). \\
\(s 2\)
\end{tabular} \\
is a \(\left(T N_{z}\right) \times N_{z}\) matrix containing \(\left(\mathbf{M}_{1}, \cdots, \mathbf{M}_{T}\right)^{\prime}\). \\
vun & is the estimated variance in the end of the data set, \(\hat{\sigma}_{T}^{2}\). \\
& \begin{tabular}{l}
is an optional \(N_{z} \times\left(N_{\delta}+1\right)\) matrix containing \(\mathbf{u}_{T}\). The returned \\
value is \(\mathbf{u}_{0}\).
\end{tabular} \\
& \begin{tabular}{l}
is an optional \(N_{z} \times N_{z}\) matrix containing \(\mathbf{U}_{T}\). The returned value \\
is \(\mathbf{U}_{0}\).
\end{tabular}
\end{tabular}

The KALDFS call returns the following values:
sm is a \(T \times N_{z}\) matrix containing smoothed state vectors \(\left(\mathbf{z}_{1 \mid T}, \cdots, \mathbf{z}_{T \mid T}\right)^{\prime}\).
vsm
is a \(T N_{z} \times N_{z}\) matrix containing mean square error matrices of smoothed state vectors \(\left(\mathbf{P}_{1 \mid T}, \cdots, \mathbf{P}_{T \mid T}\right)^{\prime}\).

Given the one-step forecast and mean square error matrix in the KALDFF call, the KALDFS call computes a smoothed state vector and its mean square error matrix. Then the KALDFS subroutine produces an estimate of the smoothed state vector at time \(t\)-that is, the conditional expectation of the state vector \(\mathbf{z}_{t}\) given all observations. Using the notations and results from the KALDFF section, the backward recursion algorithm for smoothing is denoted for \(t=T, T-1, \ldots, 1\),
\[
\begin{aligned}
\mathbf{E}_{t} & =\left(\mathbf{X}_{t} \mathbf{B}, \mathbf{y}_{t}-\mathbf{X}_{t} \mathbf{b}\right)-\mathbf{H}_{t} \mathbf{A}_{t} \\
\mathbf{D}_{t} & =\mathbf{H}_{t} \mathbf{M}_{t} \mathbf{H}_{t}^{\prime}+\mathbf{R}_{t} \\
\mathbf{L}_{t} & =\mathbf{F}_{t}-\left(\mathbf{F}_{t} \mathbf{M}_{t} \mathbf{H}_{t}^{\prime}+\mathbf{G}_{t}\right) \mathbf{D}_{t}^{-} \mathbf{H}_{t} \\
\mathbf{u}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{E}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{u}_{t} \\
\mathbf{U}_{t-1} & =\mathbf{H}_{t}^{\prime} \mathbf{D}_{t}^{-} \mathbf{H}_{t}+\mathbf{L}_{t}^{\prime} \mathbf{U}_{t} \mathbf{L}_{t} \\
\mathbf{z}_{t \mid T} & =\left(\mathbf{A}_{t}+\mathbf{M}_{t} \mathbf{u}_{t-1}\right)\left(-\hat{\delta}_{T}^{\prime}, 1\right)^{\prime} \\
\mathbf{C}_{t} & =\mathbf{A}_{t}+\mathbf{M}_{t} \mathbf{u}_{t-1} \\
\mathbf{P}_{t \mid T} & =\hat{\sigma}_{T}^{2}\left(\mathbf{M}_{t}-\mathbf{M}_{t} \mathbf{R}_{t-1} \mathbf{M}_{t}\right)+\mathbf{C}_{t(\delta)} \hat{\Sigma}_{\delta, T} \mathbf{C}_{t(\delta)}^{\prime}
\end{aligned}
\]
where the initial values are \(\mathbf{u}_{T}=\mathbf{0}\) and \(\mathbf{U}_{T}=\mathbf{0}\), and \(\mathbf{C}_{t(\delta)}\) is the last-column-deleted submatrix of \(\mathbf{C}_{t}\). Refer to De Jong (1991) for details about smoothing in the diffuse Kalman filter.

The KALDFS call is accompanied by the KALDFF call as shown in the following code:
```

ny = ncol(y);
nz = ncol (coef);
nb = ncol(int);
nd = ncol (coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,
n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
call kaldfs(sm,vsm, x,int,coef,var,bvec,bmat,initial,at,mt,s2);

```

You can also compute the smoothed estimate and its covariance matrix observation by observation. When the SSM is time invariant, the following code performs smoothing. You should initialize UN and VUN as matrices of value \(\mathbf{0}\). Here is the code:
```

n = nrow(y);
ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol (coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred, vpred,initial,s2,y,0,int,coef,var,intd,coefd,
n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
un = j(nz,nd+1,0);
vun = j(nz,nz,0);
do i = 1 to n;
call kaldfs(sm_i,vsm_i,y[n-i+1],int,coef,var,bvec,bmat,
initial,at,mt,s2,un,vun);
sm = sm_i // sm;
vsm = vsm_i // vsm;
end;

```

\section*{LAV Call}
performs linear least absolute value regression by solving the \(L_{1}\) norm minimization problem

CALL LAV(rc, xr, \(a, b<,<x 0><, o p t \gg) ;\)
The LAV subroutine returns the following values:
rc
is a scalar return code indicating the reason for optimization termination.
\begin{tabular}{cl}
\hline\(r c\) & Termination \\
\hline 0 & Successful \\
1 & Successful, but approximate covariance matrix and standard \\
& errors cannot be computed \\
-1 or -3 & Unsuccessful: error in the input arguments \\
-2 & Unsuccessful: matrix \(\mathbf{A}\) is rank deficient \((\operatorname{rank}(\mathbf{A})<n)\) \\
-4 & Unsuccessful: maximum iteration limit exceeded \\
-5 & \begin{tabular}{l}
Unsuccessful: no solution found for ill-conditioned prob- \\
\\
\\
lem
\end{tabular} \\
\hline
\end{tabular}
\(x r \quad\) specifies a vector or matrix with \(n\) columns. If the optimization process is not successfully completed, \(x r\) is a row vector with \(n\) missing values. If termination is successful and the opt[3] option is not set, \(x r\) is the vector with the optimal estimate, \(x^{*}\). If termination is successful and the opt [3] option is specified, \(x r\) is an \((n+2) \times n\) matrix that contains the optimal estimate, \(x^{*}\), in the first row, the asymptotic standard errors in the second row, and the \(n \times n\) covariance matrix of parameter estimates in the remaining rows.

The inputs to the LAV subroutine are as follows:
a
specifies an \(m \times n\) matrix A with \(m \geq n\) and full column rank, \(\operatorname{rank}(\mathbf{A})=n\). If you want to include an intercept in the model, you must include a column of ones in the matrix \(\mathbf{A}\).
\(b \quad\) specifies the \(m \times 1\) vector \(\mathbf{b}\).
\(x 0 \quad\) specifies an optional \(n \times 1\) vector that specifies the starting point of the optimization.
opt is an optional vector used to specify options.
opt[1] specifies the maximum number maxi of outer iterations (this corresponds to the number of changes of the Huber parameter \(\gamma\)). The default is maxi \(=\min (100,10 n)\). (The number of inner iterations is
restricted by an internal threshold. If the number of inner iterations exceeds this threshold, a new outer iteration is started with an increased value of \(\gamma\).)
opt[2] specifies the amount of printed output. Higher values request additional output and include the output of lower values.
\begin{tabular}{cl}
\hline opt \([2]\) & Termination \\
\hline 0 & no output is printed \\
1 & error and warning messages are printed \\
2 & the iteration history is printed (this is the default) \\
3 & \begin{tabular}{l}
the \(n\) least squares (\(L_{2}\) norm) estimates are printed if no start- \\
\\
\\
\\
ing point is specified; the \(L_{1}\) norm estimates are printed; \\
if \(\operatorname{opt}[3]\) is set, the estimates are printed together with the \\
asymptotic standard errors
\end{tabular} \\
4 & \begin{tabular}{l}
the \(n \times n\) approximate covariance matrix of parameter esti- \\
mates is printed if \(\operatorname{opt} t[3]\) is set
\end{tabular} \\
5 & \begin{tabular}{l}
the residual and predicted values for all \(m\) rows (equations) \\
of \(\mathbf{A}\) are printed
\end{tabular} \\
\hline
\end{tabular}
\(\operatorname{opt}[3]\) specifies which estimate of the variance of the median of nonzero residuals is to be used as a factor for the approximate covariance matrix of parameter estimates and for the approximate standard errors (ASE). If opt \([3]=0\), the McKean-Schrader (1987) estimate is used, and if opt \([3]>0\), the Cox-Hinkley (1974) estimate, with \(v=\operatorname{opt}[3]\), is used. The default is \(\operatorname{opt}[3]=-1\) or \(\operatorname{opt}[3]=\)., which means that the covariance matrix is not computed.
\(\operatorname{opt}[4]\) specifies whether a computationally expensive test for necessary and sufficient optimality of the solution \(x\) is executed. The default is \(\operatorname{opt}[4]=0\) or \(\operatorname{opt}[4]=\)., which means that the convergence test is not performed.

Missing values are not permitted in the \(a\) or \(b\) argument. The \(x 0\) argument is ignored if it contains any missing values. Missing values in the opt argument cause the default value to be used.

The Least Absolute Values (LAV) subroutine is designed for solving the unconstrained linear \(L_{1}\) norm minimization problem,
\[
\min _{\mathbf{x}} L_{1}(\mathbf{x}) \quad \text { where } \quad L_{1}(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}=\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right|
\]
for \(m\) equations with \(n\) (unknown) parameters \(\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)\). This is equivalent to estimating the unknown parameter vector, \(\mathbf{x}\), by least absolute value regression in the model
\[
\mathbf{b}=\mathbf{A} \mathbf{x}+\boldsymbol{\epsilon}
\]
where \(\mathbf{b}\) is the vector of \(n\) observations, \(\mathbf{A}\) is the design matrix, and \(\boldsymbol{\epsilon}\) is a random error term.

An algorithm by Madsen and Nielsen (1993) is used, which can be faster for large values of \(m\) and \(n\) than the Barrodale and Roberts (1974) algorithm. The current version of the algorithm assumes that \(\mathbf{A}\) has full column rank. Also, constraints cannot be imposed on the parameters in this version.

The \(L_{1}\) norm minimization problem is more difficult to solve than the least squares (\(L_{2}\) norm) minimization problem because the objective function of the \(L_{1}\) norm problem is not continuously differentiable (the first derivative has jumps). A function that is continuous but not continuously differentiable is called nonsmooth. Using PROC NLP and the IML nonlinear optimization subroutines, you can obtain the estimates in linear and nonlinear \(L_{1}\) norm estimation (even subject to linear or nonlinear constraints) as long as the number of parameters, \(n\), is small. Using the nonlinear optimization subroutines, there are two ways to solve the nonlinear \(L_{p}\) norm, \(p \geq 1\), problem:
- For small values of \(n\), you can implement the Nelder-Mead simplex algorithm with the NLPNMS subroutine to solve the minimization problem in its original specification. The Nelder-Mead simplex algorithm does not assume a smooth objective function, does not take advantage of any derivatives, and therefore does not require continuous differentiability of the objective function. See the section "NLPNMS Call" on page 805 for details.
- Gonin and Money (1989) describe how an original \(L_{p}\) norm estimation problem can be modified to an equivalent optimization problem with nonlinear constraints which has a simple differentiable objective function. You can invoke the NLPQN subroutine, which implements a quasi-Newton algorithm, to solve the nonlinearly constrained \(L_{p}\) norm optimization problem. See the section "NLPQN Call" on page 815 for details about the NLPQN subroutine.

Both approaches are successful only for a small number of parameters and good initial estimates. If you cannot supply good initial estimates, the optimal results of the corresponding nonlinear least squares (\(L_{2}\) norm) estimation can provide fairly good initial estimates.

Gonin and Money (1989, pp. 44-45) show that the nonlinear \(L_{1}\) norm estimation problem
\[
\min _{\mathbf{x}} \sum_{i=1}^{m}\left|f_{i}(\mathbf{x})\right|
\]
can be reformulated as a linear optimization problem with nonlinear constraints in the following ways.
\[
\text { - } \left.\quad \min _{\mathbf{x}} \sum_{i=1}^{m} u_{i} \quad \text { subject to } \begin{array}{l}
f_{i}(\mathbf{x})-u_{i} \leq 0 \\
f_{i}(\mathbf{x})+u_{i} \geq 0 \\
u_{i}
\end{array}\right\} \quad i=1, \ldots, m
\]
is a linear optimization problem with \(2 m\) nonlinear inequality constraints in \(m+n\) variables \(u_{i}\) and \(x_{j}\).
- \(\quad \min _{\mathbf{x}} \sum_{i=1}^{m}\left(y_{i}+z_{i}\right) \quad\) subject to \(\left.\begin{array}{ll}f_{i}(\mathbf{x})+y_{i}-z_{i} & =0 \\ y_{i} \\ z_{i} & \geq 0 \\ \geq 0\end{array}\right\} \quad i=1, \ldots, m\)
is a linear optimization problem with \(2 m\) nonlinear equality constraints in \(2 m+\) \(n\) variables \(y_{i}, z_{i}\), and \(x_{j}\).

For linear functions \(f_{i}(\mathbf{x})=\sum_{j=1}^{n}\left(a_{i j} x_{j}-b_{i}\right), i=1, \ldots, m\), you obtain linearly constrained linear optimization problems, for which the number of variables and constraints is on the order of the number of observations, \(m\). The advantage that the algorithm by Madsen and Nielsen (1993) has over the Barrodale and Roberts (1974) algorithm is that its computational cost increases only linearly with \(m\), and it can be faster for large values of \(m\).

In addition to computing an optimal solution \(\mathbf{x}^{*}\) that minimizes \(L_{1}(\mathbf{x})\), you can also compute approximate standard errors and the approximate covariance matrix of \(\mathbf{x}^{*}\). The standard errors can be used to compute confidence limits.

The following example is the same one used for illustrating the LAV procedure by Lee and Gentle (1986). A and b are as follows:
\[
\mathbf{A}=\left[\begin{array}{rr}
1 & 0 \\
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & 2 \\
1 & 2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
2 \\
1 \\
-1 \\
2 \\
4
\end{array}\right]
\]

The following code specifies the matrix A , the vector B , and the options vector OPT. The options vector specifies that all output is printed (opt \([2]=5\)), that the asymptotic standard errors and covariance matrix are computed based on the McKean-Schrader (1987) estimate \(\lambda\) of the variance of the median (opt \([3]=0\)), and that the convergence test should be performed \((o p t[4]=1)\).
```

a={ 0, 1, -1, -1, 2, 2 };
m = nrow(a);
a = j(m,1,1.) || a;
b}={1, 2, 1, -1, 2, 4 }
opt= { . 5 0 1 };
call lav(rc,xr,a,b, opt);

```

The first part of the printed output refers to the least squares solution, which is used as the starting point. The estimates of the largest and smallest nonzero eigenvalues of \(\mathbf{A}^{\prime} \mathbf{A}\) give only an idea of the magnitude of these values, and they can be very crude approximations.

The second part of the printed output shows the iteration history.

The third part of the printed output shows the \(L_{1}\) norm solution (first row) together with asymptotic standard errors (second row) and the asymptotic covariance matrix of parameter estimates (the ASEs are the square roots of the diagonal elements of this covariance matrix).

The last part of the printed output shows the predicted values and residuals, as in Lee and Gentle (1986).

\section*{LCP Call}

\section*{solves the linear complementarity problem}

CALL LCP(rc, w, z, m, \(q<\), epsilon>);
The inputs to the LCP subroutine are as follows:
\begin{tabular}{ll}
\(m\) & is an \(m \times m\) matrix. \\
\(q\) & is an \(m \times 1\) matrix. \\
epsilon & is a scalar defining virtual zero. The default value of epsilon is \\
\(r c\) & \(1.0 \mathrm{E}-8\). \\
\(r\) & returns one of the following scalar return codes: \\
& \(0 \quad\) solution found \\
& \(1 \quad\) no solution possible \\
& \(5 \quad\) solution is numerically unstable \\
& \(6 \quad\) subroutine could not obtain enough memory \\
& \\
\(w\) and \(z\) & return the solution in an \(m\)-element column vector.
\end{tabular}

The LCP subroutine solves the linear complementarity problem:
\[
\begin{aligned}
\mathbf{w} & =\mathbf{M z}+\mathbf{q} \\
\mathbf{w}^{\prime} \mathbf{z} & =0 \\
\mathbf{w}, \mathbf{z} & \geq 0
\end{aligned}
\]

Consider the following example:
```

    q={1, 1};
    m={$$
\begin{array}{ll}{1}&{0,}\end{array}
$$,
0 1};
call lcp(rc,w,z,m,q);

```

The result is as follows:

RC
1 row
1 col
(numeric)
W
2 rows
1 col
(numeric)
1
1
Z
2 rows
1 col
(numeric)
0
0

The next example shows the relationship between quadratic programming and the linear complementarity problem. Consider the linearly constrained quadratic program:
\[
\begin{aligned}
\min \mathbf{c}^{\prime} \mathbf{x} & +\frac{1}{2} \mathbf{x}^{\prime} \mathbf{H} \mathbf{x} \\
\text { st. } \mathbf{G} \mathbf{x} & \geq \mathbf{b} \quad(\mathrm{QP}) \\
\mathbf{x} & \geq 0
\end{aligned}
\]

If \(\mathbf{H}\) is positive semidefinite, then a solution to the Kuhn-Tucker conditions solves QP. The Kuhn-Tucker conditions for QP are
\[
\begin{aligned}
\mathbf{c}+\mathbf{H} \mathbf{x} & =\mu+\mathbf{G}^{\prime} \lambda \\
\lambda^{\prime}(\mathbf{G} \mathbf{x}-\mathbf{b}) & =0 \\
\mu^{\prime} \mathbf{x} & =0 \\
\mathbf{G} \mathbf{x} & \geq \mathbf{b} \\
\mathbf{x}, \mu, \lambda & \geq 0
\end{aligned}
\]

In the linear complementarity problem, let
\[
\begin{aligned}
\mathbf{M} & =\left[\begin{array}{cc}
H & -G^{\prime} \\
G & 0
\end{array}\right] \\
\mathbf{w}^{\prime} & =\left(\mu^{\prime} \mathbf{s}^{\prime}\right) \\
\mathbf{z}^{\prime} & =\left(\mathbf{x}^{\prime} \lambda^{\prime}\right) \\
\mathbf{q}^{\prime} & =\left(\mathbf{c}^{\prime}-\mathbf{b}\right)
\end{aligned}
\]

Then the Kuhn-Tucker conditions are expressed as finding \(\mathbf{w}\) and \(\mathbf{z}\) that satisfy
\[
\begin{aligned}
\mathbf{w} & =\mathbf{M z}+\mathbf{q} \\
\mathbf{w}^{\prime} \mathbf{z} & =0 \\
\mathbf{w}, \mathbf{z} & \geq 0
\end{aligned}
\]

From the solution \(\mathbf{w}\) and \(\mathbf{z}\) to this linear complementarity problem, the solution to QP is obtained; namely, \(\mathbf{x}\) is the primal structural variable, \(\mathbf{s}=\mathbf{G x}-\mathbf{b}\) the surpluses,
and \(\mu\) and \(\lambda\) are the dual variables. Consider a quadratic program with the following data:
\[
\begin{aligned}
\mathbf{C}^{\prime} & =(1245) \mathbf{B}^{\prime}=(11) \\
\mathbf{H} & =\left[\begin{array}{rrrr}
100 & 10 & 1 & 0 \\
10 & 100 & 10 & 1 \\
1 & 10 & 100 & 10 \\
0 & 1 & 10 & 100
\end{array}\right] \\
\mathbf{G} & =\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
10 & 20 & 30 & 40
\end{array}\right]
\end{aligned}
\]

This problem is solved by using the LCP subroutine in PROC IML as follows:
```

    /*---- Data for the Quadratic Program -----*/
    c={1,2,3,4};
h={100 10 1 0, 10 100 10 1, 1 10 100 10, 0 1 10 100};
g={1 2 3 4, 10 20 30 40};
b}={1, 1}
/*----- Express the Kuhn-Tucker Conditions as an LCP ----*/
m=h||-g`;
m=m//(g|lj(nrow (g),nrow (g),0));
q=c//-b ;
/*----- Solve for a Kuhn-Tucker Point --------*/
call lcp(rc,w,z,m,q);
/*------ Extract the Solution to the Quadratic Program ----*/
x=z[1:nrow (h)];
print rc x;

```

The printed solution is as follows:
\begin{tabular}{cccc}
RC & 1 row & 1 col & (numeric) \\
X & 4 rows & 1 col & (numeric) \\
& & \\
& 0.0307522 & \\
& 0.0619692 & \\
& 0.0929721 & \\
& 0.1415983 &
\end{tabular}

\section*{LENGTH Function}

\section*{finds the lengths of character matrix elements}

\section*{LENGTH (matrix)}
where matrix is a character matrix or quoted literal.
The LENGTH function takes a character matrix as an argument and produces a numeric matrix as a result. The result matrix has the same dimensions as the argument and contains the lengths of the corresponding string elements in matrix. The length of a string is equal to the position of the rightmost nonblank character in the string. If a string is entirely blank, its length value is set to 1 . An example of the LENGTH function follows:
```

c={'Hello' 'My name is Jenny'};
b=length(c);

```


See also the description of the NLENG function.

\section*{LINK and RETURN Statements}
jump to another statement
LINK label;
statements
label:statements
RETURN;
The LINK statement, like the GOTO statement, directs IML to jump to the statement with the specified label. Unlike the GOTO statement, however, IML remembers where the LINK statement was issued and returns to that point when a RETURN statement is executed. This statement can only be used inside modules and DO groups.

The LINK statement provides a way of calling sections of code as if they were subroutines. The LINK statement calls the routine. The routine begins with the label and ends with a RETURN statement. LINK statements can be nested within other LINK statements to any level. A RETURN statement without a LINK statement is executed the same as the STOP statement.

Any time you use a LINK statement, you may consider using a RUN statement and a module defined using the START and FINISH statements instead.

An example that uses the LINK statement follows:
```

start a;
x=1;
y=2;
link sum1;
print z;
stop;
sum1:
z=x+y;
return;
finish a;
run a;

```
Z 1 row 1 col (numeric)

3

\section*{LIST Statement}

\section*{displays observations of a data set}

LIST \(<\) range \(><\) VAR operand \(><\) WHERE(expression) \(>\);
The inputs to the LIST statement are as follows:
\begin{tabular}{ll}
range & specifies a range of observations \\
operand & specifies a set of variables \\
expression & is an expression evaluated to be true or false
\end{tabular}

The LIST statement prints selected observations of a data set. If all data values for variables in the VAR clause fit on a single line, values are displayed in columns headed by the variable names. Each record occupies a separate line. If the data values do not fit on a single line, values from each record are grouped into paragraphs. Each element in the paragraph has the form name=value.

You can specify a range of observations with a keyword or by record number using the POINT option. You can use any of the following keywords to specify a range:

\section*{ALL}

CURRENT

NEXT < number>
AFTER
POINT operand
all observations
the current observation (this is the default for the LIST statement)
the next observation or the next number of observations
all observations after the current one
observations specified by number, where operand can be one of the following:
\begin{tabular}{ll}
Operand & Example \\
\hline a single record number & point 5 \\
\begin{tabular}{l}
a literal giving several \\
record numbers \\
the name of a matrix \\
containing record numbers \\
an expression in parentheses
\end{tabular} & point \(\left.\begin{array}{ll}2 & 5 \\
10\end{array}\right\}\) \\
& point \((p+1)\)
\end{tabular}

If the current data set has an index in use, the POINT option is invalid.
You can specify a set of variables to use with the VAR clause. The operand can be specified as one of the following:
- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described in the following list:
\begin{tabular}{ll}
ALL & for all variables \\
CHAR \(^{\text {CHUM_ }}\) & for all character variables \\
NUM & for all numeric variables
\end{tabular}

The following examples show each possible way you can use the VAR clause:
```

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */

```

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause. The general form of the WHERE clause is

\section*{WHERE(variable comparison-op operand)}

In the preceding statement,
variable \(\quad\) is a variable in the SAS data set.
comparison-op is any one of the following comparison operators:
\[
\begin{array}{ll}
< & \text { less than } \\
<= & \text { less than or equal to } \\
= & \text { equal to } \\
> & \text { greater than }
\end{array}
\]
```

>= greater than or equal to
^ not equal to
? contains a given string
^? does not contain a given string
=: begins with a given string
= * sounds like or is spelled like a given string

```
operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:
\[
\wedge=\wedge ? \ll=\gg=
\]

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:
= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is as follows:
\begin{tabular}{ll}
clause\&clause & (for an AND clause) \\
clauselclause & (for an OR clause)
\end{tabular}
where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables and the expression on the right-hand side refers to matrix values.

The following examples demonstrate the use of the LIST statement:
```

list all; /* lists whole data set */
list; /* lists current observation */
list var{name addr}; /* lists NAME and ADDR in current obs */
list all where(age>30); /* lists all obs where condition holds */
list next; /* lists next observation */
list point 24; /* lists observation 24 */
list point (10:15); /* lists observations 10 through 15 */

```

\section*{LMS Call}

\section*{performs robust regression}

CALL LMS(sc, coef, wgt, opt, \(y<,<x><\), sorb \(\gg\));
The Least Median of Squares (LMS) performs robust regression (sometimes called resistant regression) by minimizing the \(h\) th-ordered squared residual. The subroutine is able to detect outliers and perform a least squares regression on the remaining observations.

The algorithm used in the LMS subroutine is based on the PROGRESS program of Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy (1987). In the special case of regression through the origin with a single regressor, Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in general, find the slope that yields the least median of squares. Starting with release 9.2, the LMS subroutine uses the algorithm of Barreto and Maharry (2006) to obtain the correct LMS slope in the case of regression through the origin with a single regressor. In this case, inputs to the LMS subroutine specific to the PROGRESS algorithm are ignored and output specific to the PROGRESS algorithm is suppressed.

The value of \(h\) can be specified, but in most applications the default value works just fine and the results seem to be quite stable toward different choices of \(h\).

In the following discussion, \(N\) is the number of observations and \(n\) is the number of regressors. The inputs to the LMS subroutine are as follows:
opt refers to an options vector with the following components (missing values are treated as default values). The options vector can be a null vector.
opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not (opt \([1] \neq 0\)). If \(\operatorname{opt}[1]=0\), then a column of ones is added as the last column to the input matrix \(\mathbf{X}\); that is, you do not need to add this column of ones yourself. The default is \(\operatorname{opt}[1]=0\).
opt[2] specifies the amount of printed output. Higher values request additional output and include the output of lower values.
opt[2]=0 prints no output except error messages.
\(\operatorname{opt}[2]=1\) prints all output except (1) arrays of \(O(N)\), such as weights, residuals, and diagnostics; (2) the history of the optimization process; and (3) subsets that result in singular linear systems.
opt[2]=2 additionally prints arrays of \(O(N)\), such as weights, residuals, and diagnostics; also prints the case numbers of the observations in the best subset and some basic history of the optimization process.
\(\operatorname{opt}[2]=3\) additionally prints subsets that result in singular linear systems.

The default is opt \([2]=0\).
opt[3] specifies whether only LMS is computed or whether, additionally, least squares (LS) and weighted least squares (WLS) regression are computed.
\(\operatorname{opt}[3]=0\) computes only LMS.
\(\operatorname{opt}[3]=1\) computes, in addition to LMS, weighted least squares regression on the observations with small LMS residuals (where small is defined by opt[8]).
opt[3]=2 computes, in addition to LMS, unweighted least squares regression.
\(\operatorname{opt}[3]=3\) adds both unweighted and weighted least squares regression to LMS regression.

The default is \(\operatorname{opt}[3]=0\).
opt[4] specifies the quantile \(h\) to be minimized. This is used in the objective function. The default is \(\operatorname{opt}[4]=h=\left[\frac{N+n+1}{2}\right]\), which corresponds to the highest possible breakdown value. This is also the default of the PROGRESS program. The value of \(h\) should be in the range \(\frac{N}{2}+1 \leq h \leq \frac{3 N}{4}+\frac{n+1}{4}\)
opt[5] specifies the number \(N_{\text {Rep }}\) of generated subsets. Each subset consists of \(n\) observations \(\left(k_{1}, \ldots, k_{n}\right)\), where \(1 \leq k_{i} \leq N\). The total number of subsets consisting of \(n\) observations out of \(N\) observations is
\[
N_{\mathrm{tot}}=\binom{N}{n}=\frac{\prod_{j=1}^{n}(N-j+1)}{\prod_{j=1}^{n} j}
\]
where \(n\) is the number of parameters including the intercept.
Due to computer time restrictions, not all subset combinations of \(n\) observations out of \(N\) can be inspected for larger values of \(N\) and \(n\). Specifying a value of \(N_{\text {Rep }}<N_{\text {tot }}\) enables you to save computer time at the expense of computing a suboptimal solution.

If \(\operatorname{opt}[5]\) is zero or missing, the default number of subsets is taken from the following table.
\begin{tabular}{rrrrrrrrrrr}
\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(N_{\text {lower }}\) & 500 & 50 & 22 & 17 & 15 & 14 & 0 & 0 & 0 & 0 \\
\(N_{\text {upper }}\) & \(10^{6}\) & 1414 & 182 & 71 & 43 & 32 & 27 & 24 & 23 & 22 \\
\(N_{\text {Rep }}\) & 500 & 1000 & 1500 & 2000 & 2500 & 3000 & 3000 & 3000 & 3000 & 3000 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
\hline n & 11 & 12 & 13 & 14 & 15 \\
\hline\(N_{\text {lower }}\) & 0 & 0 & 0 & 0 & 0 \\
\(N_{\text {upper }}\) & 22 & 22 & 22 & 23 & 23 \\
\(N_{\text {Rep }}\) & 3000 & 3000 & 3000 & 3000 & 3000 \\
\hline
\end{tabular}

If the number of cases (observations) \(N\) is smaller than \(N_{\text {lower }}\), then all possible subsets are used; otherwise, \(N_{\text {Rep }}\) subsets are chosen randomly. This means that an exhaustive search is performed for \(\operatorname{opt}[5]=-1\). If \(N\) is larger than \(N_{\text {upper }}\), a note is printed in the \(\log\) file indicating how many subsets exist.
\(\operatorname{opt}[6]\) is not used.
opt[7] specifies whether the last argument sorb contains a given parameter vector \(\mathbf{b}\) or a given subset for which the objective function should be evaluated.
\(\operatorname{opt}[7]=0\) sorb contains a given subset index.
opt \([7]=1\) sorb contains a given parameter vector \(\mathbf{b}\).
The default is opt[7]=0.
\(\operatorname{opt}[8]\) is relevant only for LS and WLS regression (opt[3]>0). It specifies whether the covariance matrix of parameter estimates and approximate standard errors (ASEs) are computed and printed.
\(\operatorname{opt}[8]=0\) does not compute covariance matrix and ASEs.
\(\operatorname{opt}[8]=1\) computes covariance matrix and ASEs but prints neither of them.
opt \([8]=2\) computes the covariance matrix and ASEs but prints only the ASEs.
\(\operatorname{opt}[8]=3\) computes and prints both the covariance matrix and the ASEs.

The default is \(\operatorname{opt}[8]=0\).
\(y \quad\) refers to an \(N\) response vector \(\mathbf{y}\).
\(x \quad\) refers to an \(N \times n\) matrix \(\mathbf{X}\) of regressors. If opt[1] is zero or missing, an intercept \(\mathbf{x}_{n+1} \equiv 1\) is added by default as the last column of \(\mathbf{X}\). If the matrix \(\mathbf{X}\) is not specified, \(\mathbf{y}\) is analyzed as a univariate data set.
sorb refers to an \(n\) vector containing either of the following:
- \(n\) observation numbers of a subset for which the objective function should be evaluated; this subset can be the start for a pairwise exchange algorithm if opt[7] is specified.
- \(n\) given parameters \(\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)\) (including the intercept, if necessary) for which the objective function should be evaluated.

Missing values are not permitted in \(x\) or \(y\). Missing values in opt cause the default value to be used.

The LMS subroutine returns the following values:
sc is a column vector containing the following scalar information, where rows 1-9 correspond to LMS regression and rows 11-14 correspond to either LS or WLS:
\(s c[1] \quad\) the quantile \(h\) used in the objective function
\(s c[2] \quad\) number of subsets generated
\(s c[3] \quad\) number of subsets with singular linear systems
\(s c[4] \quad\) number of nonzero weights \(w_{i}\)
\(s c[5] \quad\) lowest value of the objective function \(F_{\text {LMS }}\) attained
\(s c\) [6] preliminary LMS scale estimate \(S_{P}\)
\(s c[7] \quad\) final LMS scale estimate \(S_{F}\)
\(s c[8] \quad\) robust \(R^{2}\) (coefficient of determination)
\(s c[9] \quad\) asymptotic consistency factor

If \(\operatorname{opt}[3]>0\), then the following are also set:
\(s c[11] \quad\) LS or WLS objective function (sum of squared residuals)
\(s c[12] \quad\) LS or WLS scale estimate
\(s c[13] \quad R^{2}\) value for LS or WLS
\(s c[14] \quad F\) value for LS or WLS

For \(\operatorname{opt}[3]=1\) or \(\operatorname{opt}[3]=3\), these rows correspond to WLS estimates; for opt \([3]=2\), these rows correspond to LS estimates.
coef is a matrix with \(n\) columns containing the following results in its rows:
coef[1,] LMS parameter estimates
\(\operatorname{coef}[2\),\(] indices of observations in the best subset\)

If \(\operatorname{opt}[3]>0\), then the following are also set:
coef[3] LS or WLS parameter estimates
coef[4] approximate standard errors of LS or WLS estimates
coef[5] \(t\)-values
coef[6] \(p\)-values
coef[7] lower boundary of Wald confidence intervals
coef[8] upper boundary of Wald confidence intervals

For \(\operatorname{opt}[3]=1\) or \(\operatorname{opt}[3]=3\), these rows correspond to WLS estimates; for opt \([3]=2\), to LS estimates.
\(w g t \quad\) is a matrix with \(N\) columns containing the following results in its rows:
\(w g t[1] \quad\) weights (\(=1\) for small, \(=0\) for large residuals)
\(w g t[2] \quad\) residuals \(r_{i}=y_{i}-\mathbf{x}_{i} \mathbf{b}\)
\(w g t[3]\) resistant diagnostic \(u_{i}\) (note that the resistant diagnostic cannot be computed for a perfect fit when the objective function is zero or nearly zero)

\section*{Example}

Consider results for Brownlee's (1965) stackloss data. The three explanatory variables correspond to measurements for a plant oxidizing ammonia to nitric acid:
- \(x_{1}\) air flow to the plant
- \(x_{2}\) cooling water inlet temperature
- \(x_{3}\) acid concentration
on 21 consecutive days. The response variable \(y_{i}\) gives the permillage of ammonia lost (stackloss). The data are also given by Rousseeuw and Leroy (1987, p. 76) and Osborne (1985, p. 267). Rousseeuw and Leroy (1987, p. 76) cite a large number of papers where this data set was analyzed and state that most researchers "concluded that observations \(1,3,4\), and 21 were outliers," and that some people also reported observation 2 as an outlier.

For \(N=21\) and \(n=4\) (three explanatory variables including intercept), you obtain a total of 5985 different subsets of 4 observations out of 21 . If you decide not to specify optn [5] , the LMS subroutine chooses \(N_{\text {rep }}=2000\) random sample subsets. Since there is a large number of subsets with singular linear systems, which you do not want to print, choose optn [2]=2 for reduced printed output. Here is the code:
\(\left.\begin{array}{rllll}\text { /* } & \text { X1 } & \text { X2 } & \text { X3 } & \text { Y } \\ 1 & 80 & 27 & 89 & 42, \\ 1 & 80 & 27 & 88 & 37, \\ 1 & 75 & 25 & 90 & 37, \\ 1 & 62 & 24 & 87 & 28, \\ 1 & 62 & 22 & 87 & 18, \\ 1 & 62 & 23 & 87 & 18, \\ 1 & 62 & 24 & 93 & 19, \\ 1 & 62 & 24 & 93 & 20, \\ 1 & 58 & 23 & 87 & 15, \\ 1 & 58 & 18 & 80 & 14, \\ 1 & 58 & 18 & 89 & 14, \\ 1 & 58 & 17 & 88 & 13, \\ 1 & 58 & 18 & 82 & 11, \\ 1 & 58 & 19 & 93 & 12, \\ 1 & 50 & 18 & 89 & 8, \\ 1 & 50 & 18 & 86 & 7, \\ 1 & 50 & 19 & 72 & 8, \\ 1 & 50 & 19 & 79 & 8, \\ 1 & 50 & 20 & 80 & 9, \\ 1 & 56 & 20 & 82 & 15, \\ 1 & 70 & 20 & 91 & 15\end{array}\right\} ;\)

The resulting output is as follows:

LMS: The 13th ordered squared residual will be minimized.

\section*{Median and Mean}

Median Mean
\begin{tabular}{lrr}
VAR1 & 58 & 60.428571429 \\
VAR2 & 20 & 21.095238095 \\
VAR3 & 87 & 86.285714286 \\
Intercep & 1 & 1 \\
Response & 15 & 17.523809524
\end{tabular}

Dispersion and Standard Deviation
Dispersion StdDev
\begin{tabular}{lrr}
VAR1 & 5.930408874 & 9.1682682584 \\
VAR2 & 2.965204437 & 3.160771455 \\
VAR3 & 4.4478066555 & 5.3585712381 \\
Intercep & 0 & 0 \\
Response & 5.930408874 & 10.171622524
\end{tabular}

The following are the results of LS regression:

\section*{Unweighted Least-Squares Estimation}

LS Parameter Estimates
\begin{tabular}{lrccc}
& \multicolumn{3}{c}{\begin{tabular}{c}
Approx \\
Std Err
\end{tabular}} & t Value
\end{tabular} \begin{tabular}{c}
Pr > \\
|t|
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Sum of Squares \(=178.8299616\) \\
Degrees of Freedom \(=17\) \\
LS Scale Estimate \(=3.2433639182\)
\end{tabular}} \\
\hline & \multicolumn{4}{|l|}{Cov Matrix of Parameter Estimates} \\
\hline & VAR1 & VAR2 & VAR3 & Intercep \\
\hline VAR1 & 0.018187 & -0.036511 & 0.007144 & 0.287587 \\
\hline VAR2 & -0.036511 & 0.135442 & 0.000010 & -0.651794 \\
\hline VAR3 & -0.007144 & 0.000011 & 0.024428 & -1.676321 \\
\hline Intercep & 0.287587 & -0.651794 & 1.676321 & 141.514741 \\
\hline \multicolumn{5}{|c|}{R -squared \(=0.9135769045\)} \\
\hline \multicolumn{5}{|c|}{\(\mathrm{F}(3,17)\) Statistic \(=59.9022259\)} \\
\hline \multicolumn{5}{|c|}{Probability \(=3.0163272 \mathrm{E}-9\)} \\
\hline
\end{tabular}

These are the LMS results for the 2,000 random subsets:
```

Random Subsampling for LMS

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Best} \\
\hline Subset & Singular & Criterion & Percent \\
\hline 500 & 23 & 0.163262 & 25 \\
\hline 1000 & 55 & 0.140519 & 50 \\
\hline 1500 & 79 & 0.140519 & 75 \\
\hline 2000 & 103 & 0.126467 & 100 \\
\hline \multicolumn{4}{|c|}{Minimum Criterion= 0.1264668282} \\
\hline \multicolumn{4}{|l|}{Least Median of Squares (LMS) Method} \\
\hline \multicolumn{4}{|l|}{Minimizing 13th Ordered Squared Residual.} \\
\hline \multicolumn{4}{|l|}{Highest Possible Breakdown Value \(=42.86 \%\) Random Selection of 2103 Subsets} \\
\hline \multicolumn{4}{|l|}{Among 2103 subsets 103 are singular.} \\
\hline \multicolumn{4}{|c|}{Observations of Best Subset} \\
\hline \multirow[t]{2}{*}{15} & 11 & 19 & 10 \\
\hline & \multicolumn{3}{|l|}{Estimated Coefficients} \\
\hline VAR1 & VAR2 & VAR3 & Intercep \\
\hline \multirow[t]{2}{*}{0.75} & 0.5 & 0 & -39.25 \\
\hline & Objecti reliminar & \[
\begin{aligned}
& \text { ction }=0 . \\
& \text { Scale }=1 .
\end{aligned}
\] & \[
78510755
\] \\
\hline
\end{tabular}

Robust R Squared \(=0.96484375\)
Final LMS Scale = 1.2076147288

For LMS observations, 1, 3, 4, and 21 have scaled residuals larger than 2.5 (table not shown) and are considered outliers. The corresponding WLS results are as follows:

\section*{Weighted Least-Squares Estimation}

RLS Parameter Estimates Based on LMS
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Variable} & \multicolumn{3}{|c|}{Approx} & \multirow[t]{2}{*}{Pr
|} \\
\hline & Estimate & Std Err & t Value & \\
\hline VAR1 & 0.797686 & 0.067439 & 11.83 & \(<.0001\) \\
\hline VAR2 & 0.577340 & 0.165969 & 3.48 & 0.0041 \\
\hline VAR3 & -0.067060 & 0.061603 & -1.09 & 0.2961 \\
\hline \multirow[t]{10}{*}{Intercep} & -37.652459 & 4.732051 & -7.96 & <. 0001 \\
\hline & \multicolumn{4}{|c|}{Lower WCI Upper WCI} \\
\hline & \multicolumn{4}{|c|}{\(0.665507 \quad 0.929864\)} \\
\hline & \multicolumn{4}{|c|}{\(0.252047 \quad 0.902634\)} \\
\hline & \multicolumn{4}{|c|}{-0.187800 0.053680} \\
\hline & \multicolumn{4}{|c|}{-46.927108 -28.37781} \\
\hline & \multicolumn{4}{|l|}{Weighted Sum of Squares \(=20.400800254\) Degrees of Freedom \(=13\)} \\
\hline & \multicolumn{4}{|l|}{RLS Scale Estimate \(=1.2527139846\)} \\
\hline & \multicolumn{4}{|l|}{Cov Matrix of Parameter Estimates} \\
\hline & VAR1 & VAR2 & VAR3 & Intercep \\
\hline VAR1 & 0.004548 & -0.007921 & -0.001199 & 0.001568 \\
\hline VAR2 & -0.007921 & 0.027546 & -0.000463 & -0.065018 \\
\hline VAR3 & -0.001199 & -0.000463 & 0.003795 & -0.246102 \\
\hline Intercep & 0.001568 & -0.065018 & -0.246102 & 22.392305 \\
\hline
\end{tabular}

Weighted R-squared \(=0.9750062263\)
F(3,13) Statistic \(=169.04317954\)
Probability \(=1.158521 \mathrm{E}-10\)
There are 17 points with nonzero weight.
Average Weight \(=0.8095238095\)

\section*{LOAD Statement}

\section*{loads modules and matrices from library storage}

LOAD <MODULE=(module-list) \(><\) matrix-list>;
The inputs to the LOAD statement are as follows:
module-list is a list of modules.
matrix-list is a list of matrices.

The LOAD statement loads modules or matrix values from the current library storage into the current workspace. For example, to load three modules A, B, and C and one matrix X , use the following statement:
load module=(A B C) \(x\);

The special operand _ALL_ can be used to load all matrices or all modules. For example, if you want to load all matrices, use the following statement:
load _all_;

If you want to load all modules, use the following statement:
load module=_all_;

To load all matrices and modules stored in the library storage, you can enter the LOAD command without any arguments, as follows:
load;

The storage library can be specified by using a RESET storage command. The default library is WORK.IMLSTOR. For more information, see Chapter 14 and the descriptions of the STORE, REMOVE, RESET, and SHOW statements.

\section*{LOC Function}

\section*{finds nonzero elements of a matrix}

\section*{LOC(matrix)}
where matrix is a numeric matrix or literal.
The LOC function creates a \(1 \times n\) row vector, where \(n\) is the number of nonzero elements in the argument. Missing values are treated as zeros. The values in the resulting row vector are the locations of the nonzero elements in the argument (in row-major order, like subscripting). For example, consider the following statements:
```

a={1 0 2 3 0};
b=loc(a);

```

Because the first, third, and fourth elements of \(\mathbf{A}\) are nonzero, these statements result in the following row vector:
B
1 row
3 cols
(numeric)
1
3
4

If every element of the argument vector is 0 , the result is empty; that is, \(\mathbf{B}\) has zero rows and zero columns.

The LOC function is useful for subscripting parts of a matrix that satisfy some condition.

For example, suppose you want to create a matrix \(\mathbf{Y}\) containing the rows of \(\mathbf{X}\) that have a positive element in the diagonal of \(\mathbf{X}\). Specify the following statements:
```

x={$$
\begin{array}{lll}{1}&{1}&{0,}\end{array}
$$,
0 -2 2,
0 0 3};
y=x[loc(vecdiag(x)>0),];

```

Because the first and third rows of \(\mathbf{X}\) have positive elements on the diagonal of \(\mathbf{X}\), the matrix \(\mathbf{Y}\) is as follows:
\begin{tabular}{cccc}
2 rows & 3 cols & (numeric) \\
& & & \\
1 & 1 & 0 \\
0 & 0 & 3
\end{tabular}

The following example selects all positive elements of a column vector \(\mathbf{A}\) :
```

a={0,
-1,
2,
0};
y=a[loc(a>0),];

```

The resulting output is as follows:
Y 1 row 1 col (numeric)

2

\section*{LOG Function}

\section*{takes the natural logarithm}

\section*{LOG(matrix)}
where matrix is a numeric matrix or literal.
The LOG function is the scalar function that takes the natural logarithm of each element of the argument matrix. An example of a valid statement follows:
```

c={12 3};
b=log(c);
print b;

```

B
00.69314721 .0986123

\section*{\(\overline{L P}\) Call}

\section*{solves the linear programming problem}

CALL LP(rc, \(x\), dual, \(a, b<\), cntl \(><, u><, 1><\), basis \(>\));
The inputs to the LP subroutine are as follows:
\(a \quad\) is an \(m \times n\) vector specifying the technological coefficients, where \(m\) is less than or equal to \(n\).
\(b \quad\) is an \(m \times 1\) vector specifying the right-side vector.
cntl is an optional row vector with 1 to 5 elements. If CNTL=(indx, nprimal, ndual, epsilon, infinity), then
indx is the subscript of nonzero objective coefficient.
nprimal is the maximum number of primal iterations.
ndual is the maximum number of dual iterations.
epsilon is the value of virtual zero.
infinity \(\quad\) is the value of virtual infinity.
The default values are as follows: indx equals \(n\), nprimal equals 999999 , ndual equals 999999 , epsilon equals \(1.0 \mathrm{E}-8\), and infinity is machine dependent. If you specify ndual or nprimal or both, then on return they contain the number of iterations actually performed.
\(u\) is an optional array of dimension \(n\) specifying upper bounds on the decision variables. If you do not specify \(u\), the upper bounds are assumed to be infinity.
\(l \quad\) is an optional array of dimension \(n\) specifying lower bounds on the decision variables. If \(l\) is not given, then the lower bounds are assumed to be 0 for all the decision variables. This includes the decision variable associated with the objective value, which is specified by the value of indx.
basis is an optional array of dimension \(n\) specifying the current basis. This is given by identifying which columns are explicitly in the basis and which columns are at their upper bound, as given in \(u\). The absolute value of the elements in this vector is a permutation of the column indices. The columns specified in the first \(m\) elements of basis are considered the explicit basis. The absolute value of the last \(n-m\) elements of basis are the indices of the nonbasic variables. Any of the last \(n-m\) elements of basis that are negative indicate that the corresponding nonbasic variable is at its upper bound. On return from the LP subroutine, the basis vector contains the final basis encountered. If you do not specify basis, then the subroutine assumes that an initial basis is in the last \(m\) columns of \(\mathbf{A}\) and that no nonbasic variables are at their upper bound.
\(r c\) returns one of the following scalar return codes:
0 solution is optimal
1 solution is primal infeasible and dual feasible
2 solution is dual infeasible and primal feasible
3 solution is neither primal nor dual feasible
4 singular basis encountered
5 solution is numerically unstable
6 subroutine could not obtain enough memory
7 number of iterations exceeded
\(x\)
returns the current primal solution in a column vector of length \(n\).
dual returns the current dual solution in a row vector of length \(m\).

The LP subroutine solves the linear program:
\[
\begin{aligned}
& \max (0, \ldots, 0,1,0, \ldots, 0) \mathbf{x} \\
& \text { st. } \mathbf{A x}=\mathbf{b} \\
& l \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
\]

The subroutine first inverts the initial basis. If the BASIS vector is given, then the initial basis is the \(m \times m\) submatrix identified by the first \(m\) elements in BASIS; otherwise, the initial basis is defined by the last \(m\) columns of \(\mathbf{A}\). If the initial basis is singular, the subroutine returns with \(\mathrm{RC}=4\). If the basis is nonsingular, then the current dual and primal solutions are evaluated. If neither is feasible, then the subroutine returns with \(\mathrm{RC}=3\). If the primal solution is feasible, then the primal algorithm iterates until either a dual feasible solution is encountered or the number of NPRIMAL iterations is exceeded. If the dual solution is feasible, then the dual algorithm iterates until either a primal feasible solution is encountered or the number of NDUAL iterations is exceeded. When a basis is identified that is both primal and dual feasible, then the subroutine returns with \(\mathrm{RC}=0\).

Note that care must be taken when solving a sequence of linear programs and using the NPRIMAL or NDUAL control parameters or both. Because the LP subroutine resets the NPRIMAL and NDUAL parameters to reflect the number of iterations executed, subsequent invocations of the LP subroutine will have the number of iterations limited to the number used by the last LP subroutine executed. In these cases you should consider resetting these parameters prior to each LP call.

Consider the following example to maximize \(X_{1}\) subject to the constraints \(X_{1}+X_{2} \leq\) 10 and \(X_{1} \geq 0\). The problem is solved by using the following code:
```

    /* the problem data */
    obj={1 0};
coef={1 1};
b={0, 10};
/* embed the objective function */
/* in the coefficient matrix */
a=obj//coef;
a=a||{-1, 0};
/* solve the problem */
call lp(rc,x,dual,a,b);

```

The result is as follows:
\begin{tabular}{|c|c|c|c|}
\hline RC & 1 row & 1 col & (numeric) \\
\hline & & 0 & \\
\hline x & 3 rows & 1 col & (numeric) \\
\hline & & 10 & \\
\hline & & 0 & \\
\hline & & 10 & \\
\hline DUAL & 1 row & 2 cols & (numeric) \\
\hline & -1 & 1 & \\
\hline
\end{tabular}

\section*{LTS Call}
performs robust regression
CALL LTS(sc, coef, wgt, opt, \(y<,\langle x\rangle<\), sorb \(\gg\));
A robust (resistant) regression method, defined by minimizing the sum of the \(h\) smallest squared residuals.

The Least Trimmed Squares (LTS) subroutine performs robust regression (sometimes called resistant regression). It is able to detect outliers and perform a least squares regression on the remaining observations. Beginning with SAS/IML 8.1, the LTS
subroutine implements a new algorithm, FAST-LTS, given by Rousseeuw and Van Driessen (1998). The new algorithm is set as the default. The algorithm in previous versions is temporarily available but will be phased out. See opt \([9]\) for details.

The value of \(h\) can be specified, but for many applications the default value works just fine and the results seem to be quite stable toward different choices of \(h\).

In the following discussion, \(N\) is the number of observations and \(n\) is the number of regressors. The inputs to the LTS subroutine are as follows:
opt refers to an options vector with the following components (missing values are treated as default values). The options vector can be a null vector.
opt \([1]\) specifies whether an intercept is used in the model (opt \([1]=0\)) or not (opt \([1] \neq 0\)). If \(\operatorname{opt}[1]=0\), then a column of ones is added as the last column to the input matrix \(\mathbf{X}\); that is, you do not need to add this column of ones yourself. The default is \(\operatorname{opt}[1]=0\).
opt[2] specifies the amount of printed output. Higher values request additional output and include the output of lower values.
opt \([2]=0\) prints no output except error messages.
\(\operatorname{opt}[2]=1\) prints all output except (1) arrays of \(O(N)\), such as weights, residuals, and diagnostics; (2) the history of the optimization process; and (3) subsets that result in singular linear systems.
opt[2]=2 additionally prints arrays of \(O(N)\), such as weights, residuals, and diagnostics; also prints the case numbers of the observations in the best subset and some basic history of the optimization process.
opt[2]=3 additionally prints subsets that result in singular linear systems.
The default is opt \([2]=0\).
opt[3] specifies whether only LTS is computed or whether, additionally, least squares (LS) and weighted least squares (WLS) regression are computed:
opt[3]=0 computes only LTS.
\(\operatorname{opt}[3]=1\) computes, in addition to LTS, weighted least squares regression on the observations with small LTS residuals (where small is defined by opt[8]).
\(\operatorname{opt}[3]=2\) computes, in addition to LTS, unweighted least squares regression.
\(\operatorname{opt}[3]=3\) adds both unweighted and weighted least squares regression to LTS regression.
The default is opt \([3]=0\).
\(\operatorname{opt}[4]\) specifies the quantile \(h\) to be minimized. This is used in the objective function. The default is \(\operatorname{opt}[4]=h=\left[\frac{N+n+1}{2}\right]\), which corresponds to the highest possible breakdown value. This is also the default of the PROGRESS program. The value of \(h\) should be in the range \(\frac{N}{2}+1 \leq h \leq \frac{3 N}{4}+\frac{n+1}{4}\)
opt[5] specifies the number \(N_{\text {Rep }}\) of generated subsets. Each subset consists of \(n\) observations (\(k_{1}, \ldots, k_{n}\)), where \(1 \leq k_{i} \leq N\). The total number of subsets consisting of \(n\) observations out of \(N\) observations is
\[
N_{\mathrm{tot}}=\binom{N}{n}=\frac{\prod_{j=1}^{n}(N-j+1)}{\prod_{j=1}^{n} j}
\]
where \(n\) is the number of parameters including the intercept.
Due to computer time restrictions, not all subset combinations of \(n\) observations out of \(N\) can be inspected for larger values of \(N\) and \(n\). Specifying a value of \(N_{\text {Rep }}<N_{\text {tot }}\) enables you to save computer time at the expense of computing a suboptimal solution.
When opt[5] is zero or missing:
If \(N>600\), the default FAST-LTS algorithm constructs up to five disjoint random subsets with sizes as equal as possible, but not to exceed 300. Inside each subset, the algorithm chooses 500/5 \(=100\) subset combinations of \(n\) observations.
For the default FAST-LTS algorithm with \(N<600\) or the previous algorithm (before SAS/IML 8.1), the number of subsets is taken from the following table.
\begin{tabular}{rrrrrrrrrrr}
\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(N_{\text {lower }}\) & 500 & 50 & 22 & 17 & 15 & 14 & 0 & 0 & 0 & 0 \\
\(N_{\text {upper }}\) & \(10^{6}\) & 1414 & 182 & 71 & 43 & 32 & 27 & 24 & 23 & 22 \\
\(N_{\text {Rep }}\) & 500 & 1000 & 1500 & 2000 & 2500 & 3000 & 3000 & 3000 & 3000 & 3000 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
n & 11 & 12 & 13 & 14 & 15 \\
\hline\(N_{\text {lower }}\) & 0 & 0 & 0 & 0 & 0 \\
\(N_{\text {upper }}\) & 22 & 22 & 22 & 23 & 23 \\
\(N_{\text {Rep }}\) & 3000 & 3000 & 3000 & 3000 & 3000 \\
\hline
\end{tabular}

If the number of cases (observations) \(N\) is smaller than \(N_{\text {lower }}\), then all possible subsets are used; otherwise, fixed 500 subsets for FASTLTS or \(N_{\text {Rep }}\) subsets for algorithm before SAS/IML 8.1 are chosen randomly. This means that an exhaustive search is performed for \(\operatorname{opt}[5]=-1\). If \(N\) is larger than \(N_{\text {upper }}\), a note is printed in the \(\log\) file indicating how many subsets exist.
\(\operatorname{opt}[6]\) is not used.
\(\operatorname{opt}[7]\) specifies whether the last argument sorb contains a given parameter vector \(\mathbf{b}\) or a given subset for which the objective function should be evaluated.
\(\operatorname{opt}[7]=0\) sorb contains a given subset index.
\(\operatorname{opt}[7]=1\) sorb contains a given parameter vector \(\mathbf{b}\).
The default is opt \([7]=0\).
\(\operatorname{opt}[8]\) is relevant only for LS and WLS regression (opt[3] >0). It specifies whether the covariance matrix of parameter estimates and approximate standard errors (ASEs) are computed and printed.
\(\operatorname{opt}[8]=0\) does not compute covariance matrix and ASEs.
\(\operatorname{opt}[8]=1\) computes covariance matrix and ASEs but prints neither of them.
\(\operatorname{opt}[8]=2\) computes the covariance matrix and ASEs but prints only the ASEs.
\(\operatorname{opt}[8]=3\) computes and prints both the covariance matrix and the ASEs.

The default is opt \([8]=0\).
\(\operatorname{opt}[9]\) is relevant only for LTS. If \(\operatorname{opt}[9]=0\), the algorithm FAST-LTS of Rousseeuw and Van Driessen (1998) is used. If \(\operatorname{opt}[9]=1\), the algorithm of Rousseeuw and Leroy (1987) is used. The default is \(\operatorname{opt}[9]=0\).
\(y \quad\) refers to an \(N\) response vector \(\mathbf{y}\).
\(x \quad\) refers to an \(N \times n\) matrix \(\mathbf{X}\) of regressors. If opt[1] is zero or missing, an intercept \(\mathbf{x}_{n+1} \equiv 1\) is added by default as the last column of \(\mathbf{X}\). If the matrix \(\mathbf{X}\) is not specified, \(\mathbf{y}\) is analyzed as a univariate data set.
sorb refers to an \(n\) vector containing either of the following:
- \(n\) observation numbers of a subset for which the objective function should be evaluated; this subset can be the start for a pairwise exchange algorithm if opt[7] is specified.
- \(n\) given parameters \(\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)\) (including the intercept, if necessary) for which the objective function should be evaluated.

Missing values are not permitted in \(x\) or \(y\). Missing values in opt cause the default value to be used.

The LTS subroutine returns the following values:
sc is a column vector containing the following scalar information, where rows 1-9 correspond to LTS regression and rows 11-14 correspond to either LS or WLS:
\(s c[1] \quad\) the quantile \(h\) used in the objective function
\(s c[2] \quad\) number of subsets generated
\(s c[3] \quad\) number of subsets with singular linear systems
\(s c[4] \quad\) number of nonzero weights \(w_{i}\)
\(s c[5] \quad\) lowest value of the objective function \(F_{\text {LTS }}\) attained
\(s c[6] \quad\) preliminary LTS scale estimate \(S_{P}\)
\(s c[7] \quad\) final LTS scale estimate \(S_{F}\)
\(s c[8] \quad\) robust \(R^{2}\) (coefficient of determination)
\(s c[9] \quad\) asymptotic consistency factor

If \(\operatorname{opt}[3]>0\), then the following are also set:
\(s c[11] \quad\) LS or WLS objective function (sum of squared residuals)
\(s c[12]\) LS or WLS scale estimate
\(s c[13] \quad R^{2}\) value for LS or WLS
\(s c[14] \quad F\) value for LS or WLS

For \(\operatorname{opt}[3]=1\) or \(\operatorname{opt}[3]=3\), these rows correspond to WLS estimates; for opt \([3]=2\), these rows correspond to LS estimates.
coef is a matrix with \(n\) columns containing the following results in its rows:
coef[1,] LTS parameter estimates
\(\operatorname{coef}[2\),\(] indices of observations in the best subset\)

If \(\operatorname{opt}[3]>0\), then the following are also set:
coef[3] LS or WLS parameter estimates
coef[4] approximate standard errors of LS or WLS estimates
\(\operatorname{coef[5]~} t\)-values
coef[6] \(p\)-values
coef[7] lower boundary of Wald confidence intervals
coef[8] upper boundary of Wald confidence intervals

For \(\operatorname{opt}[3]=1\) or \(\operatorname{opt}[3]=3\), these rows correspond to WLS estimates; for opt \([3]=2\), to LS estimates.
wgt is a matrix with \(N\) columns containing the following results in its rows:
\(w g t[1] \quad\) weights (\(=1\) for small, \(=0\) for large residuals)
\(\operatorname{wgt[2]}\) residuals \(r_{i}=y_{i}-\mathbf{x}_{i} \mathbf{b}\)
wgt[3] resistant diagnostic \(u_{i}\) (note that the resistant diagnostic cannot be computed for a perfect fit when the objective function is zero or nearly zero)

\section*{Example}

Consider Brownlee's (1965) stackloss data used in the example for the LMS subroutine.

For \(N=21\) and \(n=4\) (three explanatory variables including intercept), you obtain a total of 5,985 different subsets of 4 observations out of 21 . If you decide not to specify optn [5], the FAST-LTS algorithm chooses 500 random sample subsets, as in the following code:
\(a=a a[, 2: 4] ; b=a a[, 5] ;\)
optn = j(\(8,1,\).\() ;\)
optn[2]= 1; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
CALL LTS (sc, coef,wgt,optn,b,a);

The preceding program produces the following output:
```

    Least Trimmed Squares (LTS) Method
    Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %
Random Selection of }523\mathrm{ Subsets
Among 523 subsets 23 is/are singular.

```
The best half of the entire data set obtained after full
iteration consists of the cases:
\begin{tabular}{lllllll}
5 & 6 & 7 & 8 & 9 & 10 & 11 \\
12 & 15 & 16 & 17 & 18 & 19 & \\
Estimated Coefficients \\
VAR1 & VAR2 & \\
0.7409210642 & 0.3915267228 & 0.0111345398 & -37.32332647
\end{tabular}
```

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.973976868
Final LTS Scale = 1.0360272594

```

For LTS observations, \(1,2,3,4,13\), and 21 have scaled residuals larger than 2.5 (table not shown) and are considered outliers. Following are the corresponding WLS results:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS
\begin{tabular}{lrrrr}
& Estimate & \begin{tabular}{r}
Approx \\
Std Err
\end{tabular} & t Value & Pr > \\
Variable \(|t|\)
\end{tabular}

Lower WCI Upper WCI
\(0.602872 \quad 0.911008\)
0.1868760 .720184
\(-0.15919 \quad 0.054977\)
-41.5618 -26.5531
Weighted Sum of Squares \(=10.273044977\)
Degrees of Freedom \(=11\)
RLS Scale Estimate \(=0.9663918355\)
\begin{tabular}{lccc}
\multicolumn{4}{c}{ Cov Matrix of Parameter Estimates } \\
& VAR1 & VAR2 & VAR3
\end{tabular} Intercep

See the entry for the LMS subroutine for details.

\section*{LUPDT Call}
provides updating and downdating for rank deficient linear least squares solutions, complete orthogonal factorization, and Moore-Penrose inverses

CALL LUPDT(lup, bup, sup, \(l, z<, b, y<\), ssq>>);
The LUPDT subroutine returns the following values:
lup \(\quad\) is an \(n \times n\) lower triangular matrix \(\mathbf{L}\) that is updated or downdated by using the \(q\) rows in \(\mathbf{Z}\).
bup \(\quad\) is an \(n \times p\) matrix \(\mathbf{B}\) of right-hand sides that is updated or downdated by using the \(q\) rows in \(\mathbf{Y}\). If \(b\) is not specified, bup is not accessible.
sup \(\quad\) is a \(p\) vector of square roots of residual sum of squares that is updated or downdated by using the \(q\) rows in \(\mathbf{Y}\). If \(s s q\) is not specified, sup is not accessible.

The inputs to the LUPDT subroutine are as follows:
\(l \quad\) specifies an \(n \times n\) lower triangular matrix \(\mathbf{L}\) to be updated or downdated by \(q\) row vectors \(z\) stored in the \(q \times n\) matrix \(\mathbf{Z}\). Only the lower triangle of \(l\) is used; the upper triangle can contain any information.
\(z \quad\) is a \(q \times n\) matrix \(\mathbf{Z}\) used rowwise to update or downdate the matrix \(\mathbf{L}\).
\(b \quad\) specifies an optional \(n \times p\) matrix \(\mathbf{B}\) of right-hand sides that have to be updated or downdated simultaneously with \(\mathbf{L}\). If \(b\) is specified, the argument \(y\) must be specified.
\(y \quad\) specifies an optional \(q \times p\) matrix \(\mathbf{Y}\) used rowwise to update or downdate the right-hand-side matrix \(\mathbf{B}\).
specifies an optional \(p \times 1\) vector that, if \(b\) is specified, specifies the square root of the error sum of squares that should be updated or downdated simultaneously with \(\mathbf{L}\) and \(b\).

The relevant formula for the LUPDT call is \(\tilde{\mathbf{L}} \tilde{\mathbf{L}}^{\prime}=\mathbf{L} \mathbf{L}^{\prime}+\mathbf{Z Z} \mathbf{Z}^{\prime}\). See the example in the documentation for the RZLIND call.

\section*{MAD Function}

\section*{finds the univariate (scaled) median absolute deviation}
\(\mathbf{M A D}((x<, s p t>))\)
where
x \(\quad\) is an \(n \times p\) input data matrix.
spt is an optional string argument with the following values:
"MAD" for computing the MAD (which is the default)
"NMAD" for computing the normalized version of MAD
"SN" for computing \(S_{n}\)
"QN" for computing \(Q_{n}\)

The MAD function treats the input matrix \(x\) as univariate data by appending each row to the previous row to make a single row vector with elements \(x_{11}, \ldots, x_{1 p}, x_{21}, \ldots, x_{2 p}, \ldots, x_{n 1}, \ldots, x_{n p}\). In the following description, the notation \(x_{i}\) means the \(i\) th element of \(x\) when thought of as a row vector.

The MAD function can be used for computing one of the following three robust scale estimates:
- median absolute deviation (MAD) or normalized form of MAD:
\[
M A D_{n}=b * m e d_{i}^{n}\left|x_{i}-m e d_{j}^{n} x_{j}\right|
\]
where \(b=1\) is the unscaled default and \(b=1.4826\) is used for the scaled version (consistency with the Gaussian distribution).
- \(S_{n}\), which is a more efficient alternative to MAD:
\[
S_{n}=c_{n} * \text { med }_{i} \text { med }_{j \neq i}\left|x_{i}-x_{j}\right|
\]
where the outer median is a low median (order statistic of rank \(\left[\frac{n+1}{2}\right]\)) and the inner median is a high median (order statistic of rank \(\left[\frac{n}{2}+1\right]\)), and where \(c_{n}\) is a scalar depending on sample size \(n\).
- \(Q_{n}\) is another efficient alternative to MAD. It is based on the \(k\) th-order statistic of the \(\binom{n}{2}\) inter-point distances:
\[
Q_{n}=d_{n} *\left\{\left|x_{i}-x_{j}\right| ; \quad i<j\right\}_{(k)} \quad \text { with } \quad k \approx\binom{n}{2} / 4
\]
where \(d_{n}\) is a scalar similar to but different from \(c_{n}\). See Rousseeuw and Croux (1993) for more details.

The scalars \(c_{n}\) and \(d_{n}\) are defined as follows:
\[
c_{n}=1.1926 *\left\{\begin{array}{ll}
.743 & \text { for } \mathrm{n}=2 \\
1.851 & \text { for } \mathrm{n}=3 \\
.954 & \text { for } \mathrm{n}=4 \\
1.351 & \text { for } \mathrm{n}=5 \\
.993 & \text { for } \mathrm{n}=6 \\
1.198 & \text { for } \mathrm{n}=7 \\
1.005 & \text { for } \mathrm{n}=8 \\
1.131 & \text { for } \mathrm{n}=9 \\
n /(n-0.9) & \text { odd } \mathrm{n} \\
1.0 & \text { otherwise }
\end{array} \quad d_{n}=2.2219 * \begin{cases}.399 & \text { for } \mathrm{n}=2 \\
.994 & \text { for } \mathrm{n}=3 \\
.512 & \text { for } \mathrm{n}=4 \\
.844 & \text { for } \mathrm{n}=5 \\
.611 & \text { for } \mathrm{n}=6 \\
.857 & \text { for } \mathrm{n}=7 \\
.669 & \text { for } \mathrm{n}=8 \\
.872 & \text { for } \mathrm{n}=9 \\
n /(n+1.4) & \text { uneven } \mathrm{n} \\
n /(n+3.8) & \text { even } \mathrm{n}\end{cases}\right.
\]

\section*{Example}

The following example uses the univariate data set of Barnett and Lewis (1978). The data set is used in Chapter 9 to illustrate the univariate LMS and LTS estimates. Here is the code:
```

b = { 3, 4, 7, 8, 10, 949, 951 };
rmad1 = mad(b);
rmad2 = mad(b,"mad");
rmad3 = mad(b,"nmad");
rmad4 = mad(b,"sn");
rmad5 = mad(b,"qn");
print "Default MAD=" rmad1,
"Common MAD =" rmad2,
"MAD*1.4826 =" rmad3,
"Robust S_n =" rmad4,
"Robust Q_n =" rmad5;

```

This program produces the following output:
```

Default MAD=
4
Common MAD = 4
MAD*1.4826 = 5.9304089
Robust S_n = 7.143674
Robust Q_n = 5.7125049

```

\section*{MARG Call}
evaluates marginal totals in a multiway contingency table
CALL MARG(locmar, marginal, dim, table, config);
The inputs to the MARG subroutine are as follows:
\begin{tabular}{ll}
locmar & \begin{tabular}{l}
is a returned matrix containing a vector of indices to each new set \\
of marginal totals under the model specified by config. A marginal \\
total is exhibited for each level of the specified marginal. These \\
indices help locate particular totals.
\end{tabular} \\
marginal & \begin{tabular}{l}
is a return vector of marginal totals.
\end{tabular} \\
dim & \begin{tabular}{l}
is an input matrix. If the problem contains \(v\) variables then dim is \\
\(1 \times v\) row vector. The value dim[i] is the number of possible levels \\
for variable \(i\) in a contingency table.
\end{tabular} \\
table & \begin{tabular}{l}
is an input matrix. The table argument specifies an array of the \\
number of observations at each level of each variable. Variables \\
are nested across columns and then across rows.
\end{tabular} \\
config & \begin{tabular}{l}
is an input matrix. The config argument specifies which marginal \\
totals to evaluate. Each column of config specifies a distinct \\
marginal in the model under consideration.
\end{tabular}
\end{tabular}

The matrix table must conform in size to the contingency table specified in dim. In particular, if table is \(n \times m\), the product of the entries in the dim vector must equal \(n m\). In addition, there must be some integer \(k\) such that the product of the first \(k\) entries in dim equals \(m\). See the description of the IPF function for more information about specifying table.

For example, consider the three-dimensional table discussed in the IPF call, based on data appearing in Christensen (1997). The table presents data on a person's selfesteem for people classified according to their religion and their father's educational level.
\begin{tabular}{ll|rrrrr}
\hline & & \multicolumn{5}{|c}{ Father's Educational Level } \\
& Self- & Not HS & HS & Some & Coll & Post \\
Religion & Esteem & Grad & Grad & Coll & Grad & Coll \\
\hline \multirow{3}{*}{ Catholic } & High & 575 & 388 & 100 & 77 & 51 \\
& Low & 267 & 153 & 40 & 37 & 19 \\
\hline \multirow{3}{*}{ Jewish } & High & 117 & 102 & 67 & 87 & 62 \\
& & & & & & \\
& Low & 48 & 35 & 18 & 12 & 13 \\
\hline \multirow{2}{*}{ Protestant } & High & 359 & 233 & 109 & 197 & 90 \\
& Low & 159 & 173 & 47 & 82 & 32 \\
\hline
\end{tabular}

As explained in the IPF documentation, the father's education level is Variable 1, self-esteem is Variable 2, and religion is Variable 3.

The following program encodes this table, uses the MARG call to compute a 2 -way marginal table by summing over the third variable and a 1 -way marginal by summing over the first two variables.
```

dim={5 2 3};
table={
/* Father's Education:
NotHSGrad HSGrad Col ColGrad PostCol
Self-
Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,
/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,
/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32
};
config = { 1 3,
2 0 };
call marg(locmar, marginal, dim, table, config);
print locmar, marginal;
/* Examine marginals: The name indicates the
variable(s) that are NOT summed over.
The locmar variable tells where to index
into the marginal variable. */
Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

```

The results of this program are as follows:

\section*{LOCMAR}

1
11
\begin{tabular}{ccrccccr}
& & \multicolumn{7}{c}{ MARGINAL } \\
& COL1 & COL2 & COL3 & COL4 & COL5 & COL6 & COL7 \\
ROW1 & 1051 & 723 & 276 & 361 & 203 & 474 & 361 \\
& & & MARGINAL \\
& COL8 & COL9 & COL10 & COL11 & COL12 & COL13 & \\
ROW1 & 105 & 131 & 64 & 1707 & 561 & 1481 &
\end{tabular}
\begin{tabular}{rrrrr}
\multicolumn{5}{c}{ VAR12_MARG } \\
1051 & 723 & 276 & 361 & 203 \\
474 & 361 & 105 & 131 & 64
\end{tabular}

VAR3_MARG

1707
561
1481

The first marginal total is contained in locations 1 through 10 of the marginal vector. It represents the results of summing table over the religion variable. The first entry of marginal is the number of subjects with high self-esteem whose fathers did not graduate from high school \((1051=575+117+359)\). The second entry is the number of subjects with high self-esteem whose fathers were high school graduates \((723=388+102+233)\). The tenth entry is the number of subjects with low selfesteem whose fathers had some post-collegiate education \((64=19+13+32)\).

The second marginal is contained in locations 11 through 13 of the marginal vector. It represents the results of summing table over the education and self-esteem variables. The eleventh entry of the marginal vector is the number of Catholics in the study. The thirteenth entry is the number of Protestants.

\section*{MATTRIB Statement}
associates printing attributes with matrices
MATTRIB name \(<\) ROWNAME=row-name \(>\)
<COLNAME=column-name \(>\) LLABEL=label \(><\) FORMAT=format \(>\);
The inputs to the MATTRIB subroutine are as follows:
name is a character matrix or quoted literal giving the name of a matrix.
column-name
label
format
row-name is a character matrix or quoted literal specifying row names. is a character matrix or quoted literal specifying column names. is a character matrix or quoted literal associating a label with the matrix. The label argument has a maximum length of 256 characters. is a valid SAS format.

The MATTRIB statement associates printing attributes with matrices. Each matrix can be associated with a ROWNAME= matrix and a COLNAME= matrix, which is used whenever the matrix is printed to label the rows and columns, respectively. The statement is written as the keyword MATTRIB followed by a list of one or more names and attribute associations. It is not necessary to specify all attributes. The
attribute associations are applied to the previous name. Thus, the following statement gives a row name RA and a column name \(C A\) to \(\mathbf{A}\), and a column name \(C B\) to \(\mathbf{B}\) :
```

mattrib a rowname=ra colname=ca b colname=cb;

```

You cannot group names; although the following statement is valid, it does not associate anything with \(\mathbf{A}\).
```

mattrib a b rowname=n;

```

The values of the associated matrices are not looked up until they are needed. Thus, they need not have values at the time the MATTRIB statement is specified. They can be specified later when the object matrix is printed. The attributes continue to bind with the matrix until reassigned with another MATTRIB statement. To eliminate an attribute, specify EMPTY as the name, for example, ROWNAME=EMPTY. Labels can be up to 40 characters long. Longer labels are truncated. Use the SHOW names statement to view current matrix attributes.

An example that uses the MATTRIB statement follows:
```

rows=' xr1':'xr5';
print rows;
ROWS
xr1 xr2 xr3 xr4 xr5
cols='cl1':'cl5';
print cols;
COLS
cl1 cl2 cl3 cl4 cl5

```
```

x={1 1 1 1,2 2 2 2,3 3 3 3};

```
x={1 1 1 1,2 2 2 2,3 3 3 3};
mattrib x rowname=(rows [1:3])
mattrib x rowname=(rows [1:3])
 colname=(cols [1:4])
 colname=(cols [1:4])
 label={'matrix, x'}
 label={'matrix, x'}
 format=5.2;
 format=5.2;
print x;
print x;
\begin{tabular}{lllll}
& & \multicolumn{3}{c}{ matrix, } \\
& cl1 & cl2 & cl3 & cl4 \\
& & & & \\
xr1 & 1.00 & 1.00 & 1.00 & 1.00 \\
xr2 & 2.00 & 2.00 & 2.00 & 2.00 \\
xr3 & 3.00 & 3.00 & 3.00 & 3.00
\end{tabular}
```


## MAX Function

finds the maximum value of matrix
MAX( matrix $1<$, matrix $2, \ldots$, matrix $15>$ )
where matrix is a numeric or character matrix or literal.
The MAX function produces a single numeric value (or a character string value) that is the largest element (or highest character string value) in all arguments. There can be as many as 15 argument matrices. The function checks for missing numeric values and does not include them in the result. If all arguments are missing, then the machine's most negative representable number is the result.

If you want to find the elementwise maximums of the corresponding elements of two matrices, use the maximum operator (<>).

For character arguments, the size of the result is the size of the largest of all arguments.

An example that uses the MAX function follows:

```
c = { 1 -123 13 56 128 -81 12 };
b=max (c);
print b;
```

B

128

## MAXQFORM Call

computes the subsets of a matrix system that maximize the quadratic form
CALL MAXQFORM( rc, maxq, $V, b<$, best>);
If $\mathbf{V}$ and $\mathbf{b}$ are an $n \times n$ matrix and an $n \times 1$ vector, respectively, then the MAXQFORM function computes the subsets of components $s$ such that $\mathbf{b}^{\prime}[s] \mathbf{V}^{-1}[s, s] \mathbf{b}[s]$ is maximized.

The MAXQFORM subroutine returns the following values:
$r c$ is one of the following scalar return codes:

0 normal return
1 error: the number of elements of $\mathbf{b}$ is too large to process
2 error: $\mathbf{V}$ is not positive semidefinite
is an $m \times(n+2)$ matrix, where $m$ is the total number of subsets computed and $n$ is the number of elements in $\mathbf{b}$. The value of $m$ depends on the value of best and is equal to $2^{n}-1$ if best is not specified. Each row of maxq contains information for a selected subset of $\mathbf{V}$ and b. The first element of the row is the number of components in the subset. The second element is the value of the quadratic form. The following elements of the row are either 0 or 1 , to indicate whether the corresponding components of $\mathbf{V}$ and $\mathbf{b}$ are included in the subset.

The inputs to the MAXQFORM subroutine are as follows:
$V \quad$ specifies an $n \times n$ positive semidefinite matrix. Often this is generated as a crossproduct matrix, $\mathbf{X}^{\prime} \mathbf{X}$, where $\mathbf{X}$ is a $k \times n$ matrix.
$b \quad$ specifies an $n \times 1$ vector. Often this arises as $\mathbf{X}^{\prime} \mathbf{y}$, where $\mathbf{X}$ is a $k \times n$ matrix, and $\mathbf{y}$ is a $k \times 1$ vector.
best
specifies an optional scalar. If best is specified with the value $p$, then the $p$ subsets with the largest value for the quadratic form are returned for each subset size.

The leaps and bounds algorithm by Furnival and Wilson (1974) computes the maximum value of quadratic forms for subsets of components. Many statistics computed as a quadratic form can then be used as the criterion for the method of subset selection. These include the regression sum of squares, Wald statistics, and score statistics.

Consider the following fitness data, which consists of observations with values for age measured in years, weight measured in kilograms, time to run 1.5 miles measured in minutes, heart rate while resting, heart rate while running, maximum heart rate recorded while running, and oxygen intake rate while running measured in milliliters per kilogram of body weight per minute.

| fit $=$ | $\{$ |  |  |  |  |  |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- |
| 44 | 89.47 | 11.37 | 62 | 178 | 182 | 44.609, |
| 40 | 75.07 | 10.07 | 62 | 185 | 185 | 45.313, |
| 44 | 85.84 | 8.65 | 45 | 156 | 168 | 54.297, |
| 42 | 68.15 | 8.17 | 40 | 166 | 172 | 59.571, |
| 38 | 89.02 | 9.22 | 55 | 178 | 180 | 49.874, |
| 47 | 77.45 | 11.63 | 58 | 176 | 176 | 44.811, |
| 40 | 75.98 | 11.95 | 70 | 176 | 180 | 45.681, |
| 43 | 81.19 | 10.85 | 64 | 162 | 170 | 49.091, |
| 44 | 81.42 | 13.08 | 63 | 174 | 176 | 39.442, |
| 38 | 81.87 | 8.63 | 48 | 170 | 186 | 60.055, |
| 44 | 73.03 | 10.13 | 45 | 168 | 168 | 50.541, |
| 45 | 87.66 | 14.03 | 56 | 186 | 192 | 37.388, |
| 45 | 66.45 | 11.12 | 51 | 176 | 176 | 44.754, |
| 47 | 79.15 | 10.60 | 47 | 162 | 164 | 47.273, |
| 54 | 83.12 | 10.33 | 50 | 166 | 170 | 51.855, |
| 49 | 81.42 | 8.95 | 44 | 180 | 185 | 49.156, |
| 51 | 69.63 | 10.95 | 57 | 168 | 172 | 40.836, |

$\left.\begin{array}{rrrrrrl}51 & 77.91 & 10.00 & 48 & 162 & 168 & 46.672, \\ 48 & 91.63 & 10.25 & 48 & 162 & 164 & 46.774, \\ 49 & 73.37 & 10.08 & 67 & 168 & 168 & 50.388, \\ 57 & 73.37 & 12.63 & 58 & 174 & 176 & 39.407, \\ 54 & 79.38 & 11.17 & 62 & 156 & 165 & 46.080, \\ 52 & 76.32 & 9.63 & 48 & 164 & 166 & 45.441, \\ 50 & 70.87 & 8.92 & 48 & 146 & 155 & 54.625, \\ 51 & 67.25 & 11.08 & 48 & 172 & 172 & 45.118, \\ 54 & 91.63 & 12.88 & 44 & 168 & 172 & 39.203, \\ 51 & 73.71 & 10.47 & 59 & 186 & 188 & 45.790, \\ 57 & 59.08 & 9.93 & 49 & 148 & 155 & 50.545, \\ 49 & 76.32 & 9.40 & 56 & 186 & 188 & 48.673, \\ 48 & 61.24 & 11.50 & 52 & 170 & 176 & 47.920, \\ 52 & 82.78 & 10.50 & 53 & 170 & 172 & 47.467\end{array}\right\} ;$

Use the following IML statement to center the data.

```
fit = fit - j(31,1,1) * fit[:,];
```

Now compute the crossproduct matrices, as follows:

```
x = fit[,1:6];
y = fit[,7];
xpx = x`*x;
xpy = x`*y;
```

The following statements compute the best three regression sums of squares for each size of regressor set:

```
call maxqform(rc, maxq, xpx, xpy, 3);
print maxq;
```


## MCD Call

## finds the minimum covariance determinant estimator

CALL MCD( sc, coef, dist, opt, $x$ );
The MCD call is the robust (resistant) estimation of multivariate location and scatter, defined by minimizing the determinant of the covariance matrix computed from $h$ points. The algorithm for the MCD subroutine is based on the FAST-MCD algorithm given by Rousseeuw and Van Driessen (1999).

The MCD subroutine computes the minimum covariance determinant estimator. These robust locations and covariance matrices can be used to detect multivariate outliers and leverage points. For this purpose, the MCD subroutine provides a table of robust distances.

In the following discussion, $N$ is the number of observations and $n$ is the number of regressors. The inputs to the MCD subroutine are as follows:
refers to an options vector with the following components (missing values are treated as default values):
opt[1] specifies the amount of printed output. Higher option values request additional output and include the output of lower values.
$\operatorname{opt}[1]=0$ prints no output except error messages.
$\operatorname{opt}[1]=1$ prints most of the output.
opt $[1]=2$ additionally prints case numbers of the observations in the best subset and some basic history of the optimization process.
$\operatorname{opt}[1]=3$ additionally prints how many subsets result in singular linear systems.

The default is opt $[1]=0$.
$\operatorname{opt}[2] \quad$ specifies whether the classical, initial, and final robust covariance matrices are printed. The default is $\operatorname{opt}[2]=0$. Note that the final robust covariance matrix is always returned in coef.
$\operatorname{opt}[3] \quad$ specifies whether the classical, initial, and final robust correlation matrices are printed or returned:
opt[3]=0 does not return or print.
$\operatorname{opt}[3]=1$ prints the robust correlation matrix.
$\operatorname{opt}[3]=2$ returns the final robust correlation matrix in coef.
$\operatorname{opt}[3]=3$ prints and returns the final robust correlation matrix.
opt[4] specifies the quantile $h$ used in the objective function. The default is $\operatorname{opt}[4]=h=\left[\frac{N+n+1}{2}\right]$. If the value of $h$ is specified outside the range $\frac{N}{2}+1 \leq h \leq \frac{3 N}{4}+\frac{n+1}{4}$, it is reset to the closest boundary of this region.
opt[5] specifies the number $N_{\text {Rep }}$ of subset generations. This option is the same as described for the LTS subroutines. Due to computer time restrictions, not all subset combinations can be inspected for larger values of $N$ and $n$.
When opt[5] is zero or missing:
If $N>600$, construct up to five disjoint random subsets with sizes as equal as possible, but not to exceed 300 . Inside each subset, choose $500 / 5=100$ subset combinations of $n$ observations.
If $N<600$, the number of subsets is taken from the following table.

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $N_{\text {lower }}$ | 500 | 50 | 22 | 17 | 15 | 14 | 0 | 0 | 0 | 0 |


| n | 11 | 12 | 13 | 14 | 15 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $N_{\text {lower }}$ | 0 | 0 | 0 | 0 | 0 |

If the number of cases (observations) $N$ is smaller than $N_{\text {lower }}$, then all possible subsets are used; otherwise, 500 subsets are chosen randomly. This means that an exhaustive search is performed for $\operatorname{opt}[5]=-1$. If $N$ is larger than $N_{\text {upper }}$, a note is printed in the log file indicating how many subsets exist.
$x \quad$ refers to an $N \times n$ matrix $\mathbf{X}$ of regressors.

Missing values are not permitted in $x$. Missing values in opt cause the default value to be used.

The MCD subroutine returns the following values:
sc is a column vector containing the following scalar information:
$s c[1] \quad$ the quantile $h$ used in the objective function
$s c[2] \quad$ number of subsets generated
$s c[3] \quad$ number of subsets with singular linear systems
$s c[4] \quad$ number of nonzero weights $w_{i}$
$s c[5] \quad$ lowest value of the objective function $F_{\mathrm{MCD}}$ attained (smallest determinant)
$s c[6]$ Mahalanobis-like distance used in the computation of the lowest value of the objective function $F_{\mathrm{MCD}}$
$s c[7]$ the cutoff value used for the outlier decision
coef is a matrix with $n$ columns containing the following results in its rows:
coef[1] location of ellipsoid center
$\operatorname{coef}[2] \quad$ eigenvalues of final robust scatter matrix
$\operatorname{coef}[3: 2+\mathrm{n}]$ the final robust scatter matrix for $\operatorname{opt}[2]=1$ or opt[2]=3
$\operatorname{coef}[2+\mathrm{n}+1: 2+2 \mathrm{n}]$ the final robust correlation matrix for opt $[3]=1$ or opt $[3]=3$
dist is a matrix with $N$ columns containing the following results in its rows:
dist[1] Mahalanobis distances
dist[2] robust distances based on the final estimates
$\operatorname{dist}[3] \quad$ weights $(=1$ for small, $=0$ for large robust distances)

## Example

Consider Brownlee's (1965) stackloss data used in the example for the MVE subroutine.

For $N=21$ and $n=4$ (three explanatory variables including intercept), you obtain a total of 5,985 different subsets of 4 observations out of 21 . If you decide not to specify optn [5], the MCD algorithm chooses 500 random sample subsets, as in the following code:

| /* | X1 | x 2 | x3 | Y | Stackloss data */ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a \mathrm{a}=\{1$ | 1 | 80 | 27 | 89 | 42, |
|  | 1 | 80 | 27 | 88 | 37, |
|  | 1 | 75 | 25 | 90 | 37, |
|  | 1 | 62 | 24 | 87 | 28, |
|  | 1 | 62 | 22 | 87 | 18, |
|  | 1 | 62 | 23 | 87 | 18, |
|  | 1 | 62 | 24 | 93 | 19, |
|  | 1 | 62 | 24 | 93 | 20, |
|  | 1 | 58 | 23 | 87 | 15, |
|  | 1 | 58 | 18 | 80 | 14, |
|  | 1 | 58 | 18 | 89 | 14, |
|  | 1 | 58 | 17 | 88 | 13, |
|  | 1 | 58 | 18 | 82 | 11, |
|  | 1 | 58 | 19 | 93 | 12, |
|  | 1 | 50 | 18 | 89 | 8, |
|  | 1 | 50 | 18 | 86 | 7, |
|  | 1 | 50 | 19 | 72 | 8 , |
|  | 1 | 50 | 19 | 79 | 8, |
|  | 1 | 50 | 20 | 80 | 9, |
|  | 1 | 56 | 20 | 82 | 15, |
|  | 1 | 70 | 20 | 91 | 15 \}; |

$a=a a[, 2: 4]$
optn $=j(8,1,$.$) ;$
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
CALL MCD (sc, xmcd,dist,optn,a);

The first part of the output of this program is a summary of the MCD algorithm and the final $h$ points selected, as follows:

Fast MCD by Rousseeuw and Van Driessen

| Number of Variables | 3 |
| :--- | ---: |
| Number of Observations | 21 |
| Default Value for h | 12 |
| Specified Value for h | 12 |
| Breakdown Value | 42.86 |
| - Highest Possible Breakdown Value - |  |

The best half of the entire data set obtained after full iteration consists of the cases:

| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The second part of the output is the MCD estimators of the location, scatter matrix, and correlation matrix, as follows:


The MCD scatter matrix is multiplied by a factor to make it consistent when all the data come from a single Gaussian distribution.

|  | Consistent Scatter Matrix |  |  |
| :---: | :---: | :---: | :---: |
|  | VAR1 |  |  |
|  |  | VAR2 |  |
|  |  |  |  |
| VAR1 | 8.6578437815 | 8.0502757968 | 7.8983838007 |
| VAR2 | 8.0502757968 | 12.708297013 | 8.4553211199 |
| VAR3 | 7.8983838007 | 8.4553211199 | 31.998580526 |

The final output presents a table containing the classical Mahalanobis distances, the robust distances, and the weights identifying the outlying observations (that is, leverage points when explaining $y$ with these three regressor variables):


Robust distances are based on reweighted estimates.

The cutoff value is the square root of the 0.975 quantile of the chi square distribution with 3 degrees of freedom.

Points whose robust distance exceeds 3.0575159206 have received a zero weight in the last column above.

There were 9 such points in the data. These may include boundary cases.
Only points whose robust distance is substantially larger than the cutoff should be considered outliers.

## MIN Function

finds the smallest element of a matrix
$\operatorname{MIN}($ matrix $1<$, matrix $2, \ldots$, matrix $15>$ )
where matrix is a numeric or character matrix or literal.
The MIN function produces a single numeric value (or a character string value) that is the smallest element (lowest character string value) in all arguments. There can be as many as 15 argument matrices. The function checks for missing numeric values and excludes them from the result. If all arguments are missing, then the machine's largest representable number is the result.

If you want to find the elementwise minimums of the corresponding elements of two matrices, use the element minimum operator ( $><$ ).

For character arguments, the size of the result is the size of the largest of all arguments.

An example that uses the MIN function follows:

```
c = { 1 -123 13 56 128 -81 12 };
b=min(c);
print b;
```

B
$-123$

## MOD Function

## computes the modulo (remainder)

MOD( value, divisor)
The inputs to the MOD function are as follows:
$\begin{array}{ll}\text { value } & \text { is a numeric matrix or literal giving the dividend. } \\ \text { divisor } & \text { is a numeric matrix or literal giving the divisor. }\end{array}$
The MOD function is the scalar function returning the remainder of the division of elements of the first argument by elements of the second argument.

If either operand is a scalar, the MOD function performs the operation for each element of the matrix with the scalar value. If either operand is a row or column vector, then the operation is performed using that vector on each of the rows or columns of the matrix.

Unlike the MOD function in Base SAS, the IML MOD function does not perform any numerical "fuzzing" to return an exact zero when the result would otherwise be very small. Thus the results of the IML MOD function is more similar to the MODZ function in Base SAS.

An example of a valid statement follows:

```
c = { -7 14 20 -81 23 };
b=mod(c,4);
print b;
```

B

0
-1
3

## MODULEI Call

calls an external routine without any return code
CALL MODULEI( control, modname, <matrix1,.. .,matrix13>);
The inputs to the MODULEI subroutine are as follows:
control is a character matrix containing a control string.
modname $\quad$ is a character matrix containing the name of the external routine to be called.
matrix
matrices with parameters to be passed to the external routine.

The CALL MODULEI routine executes a routine modname that resides in an external shared library with the specified arguments.

The MODULEI call routine is the IML version of the MODULE call routine that is available in the SAS DATA step. It is also closely related to the MODULEIN function, which returns a scalar numeric value, and the MODULEIC function, which returns a character value. CALL MODULEI builds a parameter list by using the information in the arguments and a routine description and argument attribute table that you define in a separate file. The attribute table is a sequential text file that contains descriptions of the routines that you can invoke with the CALL MODULEI routine and MODULEIN and MODULEIC functions. The purpose of the table is to define how CALL MODULEI should interpret its supplied arguments when it builds a parameter list to pass to the external routine. The attribute table should contain a description for each external routine that you intend to call, and descriptions of each argument associated with that routine. This enables you to call external routines that have been compiled in different programming languages that use different calling and matrix representation conventions.

Before you invoke CALL MODULEI, you must define the fileref of SASCBTBL to point to the external file that contains the attribute table. You can name the file whatever you want when you create it. You can then use SAS/IML matrices as arguments to CALL MODULEI and ensure that these arguments are properly converted before being passed to the external routine. The exact syntax for the attribute table is system dependent, and can be found in the SAS companion guide for the system you are using. Attempting to use CALL MODULEI for a module without a correct attribute table entry can cause the SAS System to fail or even force you to reset your computer.

## MODULEIC Function

calls an external routine that returns a character
MODULEIC( control, modname, <matrix1,. . .,matrix13>);
The inputs to the MODULEIC function are as follows:
control is a character matrix containing a control string.
modname $\quad$ is a character matrix containing the name of the external routine to be called.
matrix matrices with parameters to be passed to the external routine.

The MODULEIC routine executes a routine modname that resides in an external shared library with the specified arguments, and returns a character value. The description of this function is identical that for to the MODULEI call, except that the MODULEIC function returns a character value from the external routine.

See the MODULEI call for a full description of the function and its inputs.

## MODULEIN Function

calls an external routine that returns a numeric value
MODULEIN( control, modname, <matrix1,. ..,matrix13>);
The inputs to the MODULEIN function are as follows:

| control | is a character matrix containing a control string. |
| :--- | :--- |
| modname | is a character matrix containing the name of the external rou- <br> tine to be called. |
| matrix | matrices with parameters to be passed to the external routine. |

The MODULEIN routine executes a routine modname that resides in an external shared library with the specified arguments, and returns a character value. The description of this function is identical that for to the MODULEI call, except that the MODULEIN function returns a scalar numeric value from the external routine.

See the MODULEI call for a full description of the function and its inputs.
This example invokes the changi routine from the TRYMOD.DLL module on a Windows platform. Use the following attribute table.

```
routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;
```

The following PROC IML code calls the changi function:

```
proc iml;
 x1=J(4,5,0);
 do i=1 to 4;
 do j=1 to 5;
 x1[i,j]=i*10+j+3;
 end;
 end;
 y1=x1;
 x2=x1;
 y2=y1;
 rc=modulein('*i',' changi', 6,x2);
```


## MVE Call

## finds the minimum volume ellipsoid estimator

CALL MVE( sc, coef, dist, opt, $x<, s>$ );
The MVE call is the robust (resistant) estimation of multivariate location and scatter, defined by minimizing the volume of an ellipsoid containing $h$ points.

The MVE subroutine computes the minimum volume ellipsoid estimator. These robust locations and covariance matrices can be used to detect multivariate outliers and leverage points. For this purpose, the MVE subroutine provides a table of robust distances.

In the following discussion, $N$ is the number of observations and $n$ is the number of regressors. The inputs to the MVE subroutine are as follows:
opt refers to an options vector with the following components (missing values are treated as default values):
opt[1] specifies the amount of printed output. Higher option values request additional output and include the output of lower values.
$\operatorname{opt}[1]=0$ prints no output except error messages.
$\operatorname{opt}[1]=1$ prints most of the output.
$\operatorname{opt}[1]=2$ additionally prints case numbers of the observations in the best subset and some basic history of the optimization process.
$\operatorname{opt}[1]=3$ additionally prints how many subsets result in singular linear systems.

The default is opt $[1]=0$.
opt[2] specifies whether the classical, initial, and final robust covariance matrices are printed. The default is opt[2]=0. Note that the final robust covariance matrix is always returned in coef.
opt[3] specifies whether the classical, initial, and final robust correlation matrices are printed or returned:
$\operatorname{opt}[3]=0$ does not return or print.
$\operatorname{opt}[3]=1$ prints the robust correlation matrix.
$\operatorname{opt}[3]=2$ returns the final robust correlation matrix in coef.
$\operatorname{opt}[3]=3$ prints and returns the final robust correlation matrix.
$\operatorname{opt}[4] \quad$ specifies the quantile $h$ used in the objective function. The default is $\operatorname{opt}[5]=h=\left[\frac{N+n+1}{2}\right]$. If the value of $h$ is specified outside the range $\frac{N}{2}+1 \leq h \leq \frac{3 N}{4}+\frac{n+1}{4}$, it is reset to the closest boundary of this region.
opt[5] specifies the number $N_{\text {Rep }}$ of subset generations. This option is the same as described previously for the LMS and LTS subroutines. Due to computer time restrictions, not all subset combinations can be inspected for larger values of $N$ and $n$. If opt[5] is zero or missing, the default number of subsets is taken from the following table.

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $N_{\text {lower }}$ | 500 | 50 | 22 | 17 | 15 | 14 | 0 | 0 | 0 | 0 |
| $N_{\text {upper }}$ | $10^{6}$ | 1414 | 182 | 71 | 43 | 32 | 27 | 24 | 23 | 22 |
| $N_{\text {Rep }}$ | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3000 | 3000 | 3000 | 3000 |


| n | 11 | 12 | 13 | 14 | 15 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $N_{\text {lower }}$ | 0 | 0 | 0 | 0 | 0 |
| $N_{\text {upper }}$ | 22 | 22 | 22 | 23 | 23 |
| $N_{\text {Rep }}$ | 3000 | 3000 | 3000 | 3000 | 3000 |

If the number of cases (observations) $N$ is smaller than $N_{\text {lower }}$, then all possible subsets are used; otherwise, $N_{\text {Rep }}$ subsets are chosen randomly. This means that an exhaustive search is performed for $o p t[5]=-1$. If $N$ is larger than $N_{\text {upper }}$, a note is printed in the log file indicating how many subsets exist.
$x \quad$ refers to an $N \times n$ matrix $\mathbf{X}$ of regressors.
$s \quad$ refers to an $n+1$ vector containing $n+1$ observation numbers of a subset for which the objective function should be evaluated, where $n$ is the number of parameters. In other words, the MVE algorithm computes the minimum volume of the ellipsoid containing the observation numbers contained in $s$.

Missing values are not permitted in $x$. Missing values in opt cause the default value to be used.

The MVE subroutine returns the following values:
$s c \quad$ is a column vector containing the following scalar information:
$s c[1] \quad$ the quantile $h$ used in the objective function
$s c[2] \quad$ number of subsets generated
$s c[3] \quad$ number of subsets with singular linear systems
$s c[4] \quad$ number of nonzero weights $w_{i}$
$s c[5] \quad$ lowest value of the objective function $F_{\text {MVE }}$ attained (volume of smallest ellipsoid found)
$s c[6] \quad$ Mahalanobis-like distance used in the computation of the lowest value of the objective function $F_{\text {MVE }}$
$s c[7]$ the cutoff value used for the outlier decision
coef is a matrix with $n$ columns containing the following results in its rows:

| $\operatorname{coef}[1]$ | location of ellipsoid center <br> eigenvalues of final robust scatter matrix |
| :--- | :--- |
| $\operatorname{coef}[2]$ | the final robust scatter matrix for $\operatorname{opt}[2]=1$ or <br> $\operatorname{opt}[2]=3$ |
| $\operatorname{coef}[2+2+\mathrm{n}]$ |  |

dist is a matrix with $N$ columns containing the following results in its rows:
dist[1] Mahalanobis distances
dist[2] robust distances based on the final estimates
dist[3] weights ( $=1$ for small, $=0$ for large robust distances)

## Example

Consider results for Brownlee's (1965) stackloss data. The three explanatory variables correspond to measurements for a plant oxidizing ammonia to nitric acid on 21 consecutive days:

- $x_{1}$ air flow to the plant
- $x_{2}$ cooling water inlet temperature
- $x_{3}$ acid concentration

The response variable $y_{i}$ gives the permillage of ammonia lost (stackloss). These data are also given by Rousseeuw and Leroy (1987, p. 76).
aa $\left.=\begin{array}{cccccc}\text { /* } & \text { X1 } & \text { X2 } & \text { X3 } & \mathrm{Y} & \text { Stackloss data */ } \\ 1 & 80 & 27 & 89 & 42, \\ 1 & 80 & 27 & 88 & 37, \\ 1 & 75 & 25 & 90 & 37, \\ 1 & 62 & 24 & 87 & 28, \\ 1 & 62 & 22 & 87 & 18, \\ 1 & 62 & 23 & 87 & 18, \\ 1 & 62 & 24 & 93 & 19, \\ 1 & 62 & 24 & 93 & 20, \\ 1 & 58 & 23 & 87 & 15, \\ 1 & 58 & 18 & 80 & 14, \\ 1 & 58 & 18 & 89 & 14, \\ 1 & 58 & 17 & 88 & 13, \\ 1 & 58 & 18 & 82 & 11, \\ 1 & 58 & 19 & 93 & 12, \\ 1 & 50 & 18 & 89 & 8, \\ 1 & 50 & 18 & 86 & 7, \\ 1 & 50 & 19 & 72 & 8, \\ 1 & 50 & 19 & 79 & 8, \\ 1 & 50 & 20 & 80 & 9, \\ 1 & 56 & 20 & 82 & 15, \\ 1 & 70 & 20 & 91 & 15\end{array}\right\} ;$

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers where this data set was analyzed and state that most researchers "concluded that observations 1, 3, 4, and 21 were outliers"; some people also reported observation 2 as an outlier.

By default, subroutine MVE chooses only 2,000 randomly selected subsets in its search. There are in total 5,985 subsets of 4 cases out of 21 cases. Here is the code:

```
a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */
```

CALL MVE (sc, xmve,dist,optn,a);

The first part of the output shows the classical scatter and correlation matrix:

```
Minimum Volume Ellipsoid (MVE) Estimation
 Consider Ellipsoids Containing 12 Cases.
```

    Classical Covariance Matrix
            VAR1
    VAR3

VAR1
84.057142857
22.657142857
24.571428571

VAR2 22.657142857
9.9904761905
6.6214285714

VAR3 24.571428571
6.6214285714
28.714285714

|  | Classical Correlation Matrix |  |  |
| :--- | ---: | ---: | ---: |
|  |  |  |  |
|  | VAR1 | VAR2 | VAR3 |
|  |  |  |  |
| VAR1 | 1 | 0.781852333 | 0.5001428749 |
| VAR2 | 0.781852333 | 1 | 0.3909395378 |
| VAR3 | 0.5001428749 | 0.3909395378 | 1 |

Classical Mean

VAR1 60.428571429
VAR2 21.095238095
VAR3 86.285714286

There are 5985 subsets of 4 cases out of 21 cases. All 5985 subsets will be considered.

The second part of the output shows the results of the optimization (complete subset sampling):


The third part of the output shows the optimization results after local improvement:


The final output presents a table containing the classical Mahalanobis distances, the robust distances, and the weights identifying the outlying observations (that is leverage points when explaining $y$ with these three regressor variables):

| Unsquared Mahalanobis Distance and Unsquared Rousseeuw Distance of Each Observation |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | Mahalanobis | Robust |  |
| N | Distances | Distances | Weight |
| 1 | 2.253603 | 5.528395 | 0 |
| 2 | 2.324745 | 5.637357 | 0 |
| 3 | 1.593712 | 4.197235 | 0 |
| 4 | 1.271898 | 1.588734 | 1.000000 |
| 5 | 0.303357 | 1.189335 | 1.000000 |
| 6 | 0.772895 | 1.308038 | 1.000000 |

```
\begin{tabular}{rrrr}
7 & 1.852661 & 1.715924 & 1.000000 \\
8 & 1.852661 & 1.715924 & 1.000000 \\
9 & 1.360622 & 1.226680 & 1.000000 \\
10 & 1.745997 & 1.936256 & 1.000000 \\
11 & 1.465702 & 1.493509 & 1.000000 \\
12 & 1.841504 & 1.913079 & 1.000000 \\
13 & 1.482649 & 1.659943 & 1.000000 \\
14 & 1.778785 & 1.689210 & 1.000000 \\
15 & 1.690241 & 2.230109 & 1.000000 \\
16 & 1.291934 & 1.767582 & 1.000000 \\
17 & 2.700016 & 2.431021 & 1.000000 \\
18 & 1.503155 & 1.523316 & 1.000000 \\
19 & 1.593221 & 1.710165 & 1.000000 \\
20 & 0.807054 & 0.675124 & 1.000000 \\
21 & 2.176761 & 3.657281 & 0
\end{tabular}
 Distribution of Robust Distances
 MinRes 1st Qu. Median
 0.6751244996 1.5084120761 1.7159242054
 Mean 3rd Qu. MaxRes
 2.2282960174
 2.0831826658
 5.6373573538
 Cutoff Value = 3.0575159206
The cutoff value is the square root of
 the 0.975 quantile of the chi square
distribution with 3 degrees of freedom.
There are 4 points with large robust distances receiving
zero weights. These may include boundary cases.
Only points whose robust distances are substantially larger
than the cutoff value should be considered outliers.
```


## NAME Function

## lists the names of arguments

## NAME( arguments);

where arguments are the names of existing matrices.
The NAME function returns the names of the arguments in a column vector. In the following example, $\mathbf{N}$ is a $3 \times 1$ character matrix of element size 8 containing the character values $\mathrm{A}, \mathrm{B}$, and C :

```
n=name (a,b,c);
```

The main use of the NAME function is with macros when you want to use an argument for both its name and its value.

## NCOL Function

finds the number of columns of a matrix

## NCOL( matrix)

where matrix is a numeric or character matrix.
The NCOL function returns a single numeric value that is the number of columns in matrix. If the matrix has not been given a value, the NCOL function returns a value of 0 .

For example, to let B contain the number of columns of matrix $\mathbf{S}$, use the following statement:

```
b=ncol(s);
```


## NLENG Function

finds the size of an element

## NLENG( matrix)

where matrix is a numeric or character matrix.
The NLENG function returns a single numeric value that is the size in bytes of each element in matrix. All matrix elements have the same size. If the matrix does not have a value, then the NLENG function returns a value of 0 . This function is different from the LENGTH function, which returns the size of each element of a character matrix, omitting the trailing blanks.

The following statement returns the value 7 :

```
a=nleng({"ab " "ijklm ",
 "x" " "});
```


## Nonlinear Optimization and Related Subroutines

Table 20.1. Nonlinear Optimization and Related Subroutines

## Optimization Subroutines

Conjugate Gradient Optimization Method
CALL NLPCG( rc, xr, "fun", x0 <, opt, blc, tc, par, "ptit", "grd">);
Double Dogleg Optimization Method
CALL NLPDD( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);
Nelder-Mead Simplex Optimization Method
CALL NLPNMS( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);
Newton-Raphson Optimization Method
CALL NLPNRA( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);
Newton-Raphson Ridge Optimization Method
CALL NLPNRR( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);
(Dual) Quasi-Newton Optimization Method
CALL NLPQN( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "nlc", "jacnlc"> );
Quadratic Optimization Method
CALL NLPQUA( rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);
Trust-Region Optimization Method
CALL NLPTR( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);

## Least Squares Subroutines

Hybrid Quasi-Newton Least Squares Methods
CALL NLPHQN( rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);
Levenberg-Marquardt Least Squares Method
CALL NLPLM( rc, xr, "fun", x0, opt <,blc, tc, par, "ptit", "jac">);

## Supplementary Subroutines

Approximate Derivatives by Finite Differences
CALL NLPFDD( $f, g$, $h$, "fun", x0<,par, "grd">);
Feasible Point Subject to Constraints
CALL NLPFEA( $x r, x 0$, blc $<, p a r>)$;

Note: The names of the optional arguments can be used as keywords. For example, the following statements are equivalent:

```
call nlpnrr(rc,xr,"fun",x0,,,ter,,,"grad");
call nlpnrr(rc,xr,"fun",x0) tc=ter grd="grad";
```

All the optimization subroutines require at least two input arguments.

- The NLPQUA subroutine requires the quad matrix argument, which specifies the symmetric matrix $\mathbf{G}$ of the quadratic problem. The input can be dense or sparse. Other optimization subroutines require the fun module argument, which specifies an IML module that defines the objective function or functions. For least squares subroutines, the FUN module must return a column vector of length $m$ that corresponds to the values of the $m$ functions $f_{1}(x), \ldots, f_{m}(x)$, each evaluated at the point $x=\left(x_{1}, \ldots, x_{n}\right)$. For other subroutines, the FUN module must return the value of the objective function $f=f(x)$ evaluated at the point $x$.
- The argument $x 0$ specifies a row vector that defines the number of parameters $n$. If $x 0$ is a feasible point, it represents a starting point for the iterative optimization process. Otherwise, a linear programming algorithm is called at the start of each optimization subroutine to replace the input $x 0$ by a feasible starting point.

The other arguments that can be used as input are described in the following list. As indicated in Table 20.1, not all input arguments apply to each subroutine.
Note that you can specify optional arguments with the keyword=argument syntax.

- The opt argument indicates an options vector that specifies details of the optimization process, such as particular updating techniques and whether the objective function is to be maximized instead of minimized. See the section "Options Vector" on page 347 for details.
- The blc argument specifies a constraint matrix that defines lower and upper bounds for the $n$ parameters as well as general linear equality and inequality constraints. For details, see the section "Parameter Constraints" on page 345.
- The $t c$ argument specifies a vector of thresholds corresponding to the termination criteria tested in each iteration. See the section "Termination Criteria" on page 352 for details.
- The par argument specifies a vector of control parameters that can be used to modify the algorithms if the default settings do not complete the optimization process successfully. For details, see the section "Control Parameters Vector" on page 359 .
- The "ptit" module argument specifies an IML module that replaces the subroutine used to print the iteration history and test the termination criteria. If the "ptit" module is specified, the matrix specified by the $t c$ argument has no effect. See the section "Termination Criteria" on page 352 for details.
- The " $g r d$ " module argument specifies an IML module that computes the gradient vector, $g=\nabla f$, at a given input point $x$. See the section "Objective Function and Derivatives" on page 337 for details.
- The "hes" module argument specifies an IML module that computes the $n \times n$ Hessian matrix, $\mathbf{G}=\nabla^{2} f$, at a given input point $x$. See the section "Objective Function and Derivatives" on page 337 for details.
- The "jac" module argument specifies an IML module that computes the $m \times n$ Jacobian matrix, $\mathbf{J}=\left(\nabla f_{i}\right)$, of the $m$ least squares functions at a given input point $x$. See the section "Objective Function and Derivatives" on page 337 for details.
- The " $n l c$ " module argument specifies an IML module that computes general equality and inequality constraints. This is the method by which nonlinear constraints must be specified. For details, see the section "Parameter Constraints" on page 345 .
- The "jacnlc" module argument specifies an IML module that computes the Jacobian matrix of first-order derivatives of the equality and inequality constraints specified by the NLC module. For details, see the section "Parameter Constraints" on page 345.
- The lin argument specifies the linear part of the quadratic optimization problem. See the section "NLPQUA Call" on page 821 for details.

The modules that can be used as input arguments for the subroutines ("fun," " grd," "hes," "jac," "ptit," "nlc," and "jacnlc") accept only a single input parameter $x=$ $\left(x_{1}, \ldots, x_{n}\right)$. You can provide more input parameters for these modules by using the GLOBAL clause. See the section "Using the GLOBAL Clause" on page 81 for an example.

All the optimization subroutines return the following results:

- The scalar return code $r c$ indicates the reason for the termination of the optimization process. A return code $r c>0$ indicates successful termination corresponding to one of the specified termination criteria. A return code $r c<0$ indicates unsuccessful termination-that is, that the result $x r$ is unreliable. See the section "Definition of Return Codes" on page 337 for more details.
- The row vector $x r$, which has length $n$, the number of parameters, contains the optimal point when $r c>0$.


## NLPCG Call

nonlinear optimization by conjugate gradient method
CALL NLPCG( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPCG subroutine requires function and gradient calls; it does not need secondorder derivatives. The gradient vector contains the first derivatives of the objective function $f$ with respect to the parameters $x_{1}, \ldots, x_{n}$, as follows:

$$
g(x)=\nabla f(x)=\left(\frac{\partial f}{\partial x_{j}}\right)
$$

If you do not specify an IML module with the " $g r d$ " argument, the first-order derivatives are approximated by finite difference formulas using only function calls. The NLPCG algorithm can require many function and gradient calls, but it requires less memory than other subroutines for unconstrained optimization. In general, many iterations are needed to obtain a precise solution, but each iteration is computationally inexpensive. You can specify one of four update formulas for generating the conjugate directions with the fourth element of the opt input argument.

| Value of $\operatorname{opt}[4]$ | Update Method |
| :---: | :--- |
| 1 | Automatic restart method of Powell (1977) and Beale (1972). |
| 2 | This is the default. |
| 3 | Fletcher-Reeves update (Fletcher 1987) |
| 4 | Polak-Ribiere update (Fletcher 1987) |
| Conjugate-descent update of Fletcher (1987) |  |

The NLPCG subroutine is useful for optimization problems with large $n$. For the unconstrained or boundary constrained case, the NLPCG method needs only order $n$ bytes of working memory, whereas the other optimization methods require order $n^{2}$ bytes of working memory. During $n$ successive iterations, uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of $n$ conjugate search directions. In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default linesearch method uses quadratic interpolation and cubic extrapolation to obtain a step size $\alpha$ that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. You can specify other line-search algorithms with the fifth element of the opt argument.

For an example of the NLPCG subroutine, see the section "Constrained Betts Function" on page 329.

## NLPDD Call

nonlinear optimization by double dogleg method
CALL NLPDD( rc, xr, "fun", x0<,opt, blc, tc, par, "ptit", "grd">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The double dogleg optimization method combines the ideas of the quasi-Newton and trust-region methods. In each iteration, the algorithm computes the step, $s^{(k)}$, as a linear combination of the steepest descent or ascent search direction, $s_{1}^{(k)}$, and a quasi-Newton search direction, $s_{2}^{(k)}$, as follows:

$$
s^{(k)}=\alpha_{1} s_{1}^{(k)}+\alpha_{2} s_{2}^{(k)}
$$

The step $s^{(k)}$ must remain within a specified trust-region radius (refer to Fletcher 1987). Hence, the NLPDD subroutine uses the dual quasi-Newton update but does
not perform a line search. You can specify one of two update formulas with the fourth element of the opt input argument.

| Value of opt[4] | Update Method |
| :---: | :--- |
| 1 | Dual BFGS update of the Cholesky factor of the Hessian matrix. <br>  <br> 2 |
| This is the default. |  |

The double dogleg optimization technique works well for medium to moderately large optimization problems, in which the objective function and the gradient are much faster to compute than the Hessian. The implementation is based on Dennis and Mei (1979) and Gay (1983), but it is extended for boundary and linear constraints. The NLPDD subroutine generally needs more iterations than the techniques that require second-order derivatives (NLPTR, NLPNRA, and NLPNRR), but each of the NLPDD iterations is computationally inexpensive. Furthermore, the NLPDD subroutine needs only gradient calls to update the Cholesky factor of an approximate Hessian.

In addition to the standard iteration history, the NLPDD routine prints the following information:

- The heading lambda refers to the parameter $\lambda$ of the double dogleg step. A value of 0 corresponds to the full (quasi-) Newton step.
- The heading slope refers to $g^{T} s$, the slope of the search direction at the current parameter iterate $x^{(k)}$. For minimization, this value should be significantly smaller than zero.

The following statements invoke the NLPDD subroutine to solve the constrained Betts optimization problem (see the section "Constrained Betts Function" on page 329).

```
start F_BETTS (x);
 f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
 return(f);
finish F_BETTS;
con = { 2. -50. . .,
 50. 50. . .,
 10. -1. 1. 10.};
x = {-1. -1.};
optn = {0 1};
call nlpdd(rc,xres,"F_BETTS",x,optn,con);
```

The preceding statements produce the following iteration history.

```
Double Dogleg Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
```

Without Parameter Scaling Gradient Computed by Finite Differences Parameter Estimates 2 Lower Bounds 2 Upper Bounds 2 Linear Constraints 1

Optimization Start
Active Constraints 0 Objective Function -98.5376 Max Abs Gradient Element 2 Radius 1

| Iter | Restarts | Function <br> Calls | Active <br> Constraints | Objective <br> Function |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 2 | 0 | -99.54678 |
| 2 | 0 | 3 | 0 | -99.59120 |
| 3 | 0 | 5 | 0 | -99.90252 |
| 4 | 0 | 6 | 1 | -99.96000 |
| 5 | 0 | 7 | 1 | -99.96000 |
| 6 | 0 | 8 | 1 | -99.96000 |
|  |  |  |  |  |
|  |  |  |  |  |
|  | Objective | Max Abs |  | Slope of |
|  | Function | Gradient |  | Search |
| Iter | Change | Element | Lambda | Direction |
|  |  |  |  |  |
| 1 | 0.0092 | 0.1346 | 6.012 | -1.805 |
| 2 | 0.3113 | 0.1279 | 0 | -0.0228 |
| 3 | 0.0575 | 0.004342 | 0 | -0.209 |
| 4 | $4.66 \mathrm{E}-6$ | 0.000079 | 0 | -0.0975 |
| 5 | $1.559 \mathrm{E}-9$ | 0 | 0 | $-458 \mathrm{E}-8$ |
| 6 |  |  | 0 | $-16 \mathrm{E}-10$ |

## Optimization Results

| Iterations | 6 | Function Calls | 9 |
| :--- | ---: | :--- | :--- |
| Gradient Calls | 8 | Active Constraints | 1 |
| Objective Function | -99.96 | Max Abs Gradient Element | 0 |
| Slope of Search Direction | $-1.56621 E-9$ | Radius | 1 |

GCONV convergence criterion satisfied.

## NLPFDD Call

approximates derivatives by finite-differences method

CALL NLPFDD ( $f, g$, $h$, "fun", x0, <,par, "grd"> );
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPFDD subroutine can be used for the following tasks:

- If the module "fun" returns a scalar, the NLPFDD subroutine computes the function value $f$, the gradient vector $g$, and the Hessian matrix $h$, all evaluated at the point $x 0$.
- If the module "fun" returns a column vector of $m$ function values, the subroutine assumes that a least squares function is specified, and it computes the function vector $f$, the Jacobian matrix $\mathbf{J}$, and the crossproduct of the Jacobian matrix $\mathbf{J}^{\prime} \mathbf{J}$ at the point $x 0$. Note that in this case, you must set the first element of the par argument to $m$.

If any of the results cannot be computed, the subroutine returns a missing value for that result.

You can specify the following input arguments with the NLPFDD subroutine:

- The "fun" argument refers to an IML module that returns either a scalar value or a column vector of length $m$. This module returns the value of the objective function or, for least squares problems, the values of the $m$ functions that the objective function comprises.
- The $x 0$ argument is a vector of length $n$ that defines the point at which the functions and derivatives should be computed.
- The par argument is a vector that defines options and control parameters. Note that the par argument in the NLPFDD call is different from the one used in the optimization subroutines.
- The " $g r d$ " argument is optional and refers to an IML module that returns a vector defining the gradient of the function at $x 0$. If the fun argument returns a vector of values instead of a scalar, the " $g r d$ " argument is ignored.

If the "fun" module returns a scalar, the subroutine returns the following values:

- $f$ is the value of the function at the point $x 0$.
- $g$ is a vector containing the value of the gradient at the point $x 0$. If you specify the "grd" argument, the gradient is computed from that module. Otherwise, the approximate gradient is computed by a finite difference approximation using calls of the function module in a neighborhood of $x 0$.
- $h$ is a matrix containing a finite difference approximation of the value of the Hessian at the point $x 0$. If you specify the " $g r d$ " argument, the Hessian is computed by calls of that module in a neighborhood of $x 0$. Otherwise, it is computed by calls of the function module in a neighborhood of $x 0$.

If the "fun" module returns a vector, the subroutine returns the following values:

- $f$ is a vector containing the values of the $m$ functions comprising the objective function at the point $x 0$.
- $g$ is the $m \times n$ Jacobian matrix $\mathbf{J}$, which contains the first-order derivatives of the functions with respect to the parameters, evaluated at $x 0$. It is computed by finite difference approximations in a neighborhood of $x 0$.
- $h$ is the $n \times n$ crossproduct of the Jacobian matrix, $\mathbf{J}^{T} \mathbf{J}$. It is computed by finite difference approximations in a neighborhood of $x 0$.

The par argument is a vector of length 3 .

- $\operatorname{par}[1]$ corresponds to the $\operatorname{opt}[1]$ argument in the optimization subroutines. This argument is relevant only to least squares optimization methods, in which case it specifies the number of functions returned by the module "fun". If par[1] is missing or is smaller than 1 , it is set to 1 .
- $\operatorname{par}[2]$ corresponds to the $\operatorname{opt}[8]$ argument in the optimization subroutines. It determines what type of approximation is to be used and how the finite difference interval, $h$, is to be computed. See the section "Finite-Difference Approximations of Derivatives" on page 342 for details.
- $\operatorname{par}[3]$ corresponds to the $\operatorname{par}[8]$ argument in the optimization subroutines. It specifies the number of accurate digits in evaluating the objective function. The default is $-\log _{10}(\epsilon)$, where $\epsilon$ is the machine precision.

If you specify a missing value in the par argument, the default value is used.
The NLPFDD subroutine is particularly useful for checking your analytical derivative specifications of the " $g r d$ ", "hes", and "jac" modules. You can compare the results of the modules with the finite difference approximations of the derivatives of $f$ at the point $x 0$ to verify your specifications.

In the unconstrained Rosenbrock problem (see the section "Unconstrained Rosenbrock Function" on page 327), the objective function is

$$
f(x)=50\left(x_{2}-x_{1}^{2}\right)^{2}+\frac{1}{2}\left(1-x_{1}\right)^{2}
$$

Then the gradient and the Hessian, evaluated at the point $x=(2,7)$, are

$$
\begin{aligned}
& g^{\prime}=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
200 x_{1}^{3}-200 x_{1} x_{2}+x_{1}-1 \\
-100 x_{1}^{2}+100 x_{2}
\end{array}\right]=\left[\begin{array}{r}
-1199 \\
300
\end{array}\right] \\
& \mathbf{H}=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
600 x_{1}^{2}-200 x_{2}+1 & -200 x_{1} \\
-200 x_{1} & 100
\end{array}\right]=\left[\begin{array}{rr}
1001 & -400 \\
-400 & 100
\end{array}\right]
\end{aligned}
$$

The following statements define the Rosenbrock function and use the NLPFDD call to compute the gradient and the Hessian.

```
start F_ROSEN(x);
 y1 = 10. * (x[2] - x[1] * x[1]);
 y2 = 1. - x[1];
 f = .5 * (y1 * y1 + y2 * y2);
 return(f);
finish F_ROSEN;
x = {2 7};
CALL NLPFDD(crit,grad,hess,"F_ROSEN",x);
print grad;
print hess;
```

Here is the resulting output:

GRAD
-1199 300. 00001

HESS
1000.9998-400.0018
-400.0018 99.999993

If the Rosenbrock problem is considered from a least squares perspective, the two functions are

$$
\begin{aligned}
f_{1}(x) & =10\left(x_{2}-x_{1}^{2}\right) \\
f_{2}(x) & =1-x_{1}
\end{aligned}
$$

Then the Jacobian and the crossproduct of the Jacobian, evaluated at the point $x=$ $(2,7)$, are

$$
\begin{aligned}
\mathbf{J} & =\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-20 x_{1} & 10 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
-40 & 10 \\
-1 & 0
\end{array}\right] \\
\mathbf{J}^{T} \mathbf{J} & =\left[\begin{array}{cc}
400 x_{1}^{2}+1 & -200 x_{1} \\
-200 x_{1} & 100
\end{array}\right]=\left[\begin{array}{rr}
1601 & -400 \\
-400 & 100
\end{array}\right]
\end{aligned}
$$

The following statements define the Rosenbrock problem in a least squares framework and use the NLPFDD call to compute the Jacobian and the crossproduct matrix. Since the value of the PARMS variable, which is used for the par argument, is 2 , the NLPFDD subroutine allocates memory for a least squares problem with two functions, $f_{1}(x)$ and $f_{2}(x)$.

```
start F_ROSEN(x);
 y = j(2,1,0.);
```

```
 y[1] = 10. * (x[2] - x[1] * x[1]);
 y[2] = 1. - x[1];
 return(y);
finish F_ROSEN;
x = {2 7};
parms = 2;
CALL NLPFDD(fun,jac,crpj,"F_ROSEN",x,parms);
print jac;
print crpj;
```

The finite difference approximations for the Jacobian follow.

| JAC |  |  |
| ---: | ---: | ---: |
|  |  | 10 |
| -40 |  | 0 |
| -1 |  |  |
|  |  |  |
|  |  |  |
| CRPJ |  |  |
|  |  | -400 |
| 1601 | 100 |  |

## NLPFEA Call

computes feasible points subject to constraints
CALL NLPFEA( $x r, x 0, b l c<, p a r>)$;
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPFEA subroutine tries to compute a point that is feasible subject to a set of boundary and linear constraints. You can specify boundary and linear constraints that define an empty feasible region, in which case the subroutine returns missing values.

You can specify the following input arguments with the NLPFEA subroutine:

- $x 0$ is a row vector defining the coordinates of a point that is not necessarily feasible for a set of linear and boundary constraints.
- $b l c$ is an $m \times n$ matrix defining a set of $m$ boundary and linear constraints. See the section "Parameter Constraints" on page 345 for details.
- par is a vector of length two. The argument is different from the one used in the optimization subroutines. The first element sets the LCEPS parameter, which controls how precisely the returned point must satisfy the constraints. The second element sets the LCSING parameter, which specifies the criterion for deciding when constraints are considered linearly dependent. For details, see the section "Control Parameters Vector" on page 359.

The NLPFEA subroutine returns the $x r$ argument. The result is a vector containing either the $n$ coordinates of a feasible point, which indicates that the subroutine was successful, or missing values, which indicates that the subroutine could not find a feasible point.

The following statements call the NLPFEA subroutine with the constraints from the Betts problem (see the section "Constrained Betts Function" on page 329) and an initial infeasible point $x_{0}=(-17,-61)$. The subroutine returns the feasible point $(2,-50)$ as the vector XFEAS.

```
con = { 2. -50. . .,
 50. 50. . .,
 10. -1. 1. 10.};
x = {-17. -61};
call nlpfea(xfeas,x,con);
```


## NLPHQN Call

calculates hybrid quasi-Newton least squares
CALL NLPHQN( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "jac">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPHQN subroutine uses one of the Fletcher and Xu (1987) hybrid quasiNewton methods. Refer also to Al-Baali and Fletcher (1985, 1986). In each iteration, the subroutine uses a criterion to decide whether a Gauss-Newton or a dual quasiNewton search direction is appropriate. You can choose one of three criteria (HY1, HY2, or HY3) proposed by Fletcher and Xu (1987) with the sixth element of the opt vector. The default is HY2. The subroutine computes the crossproduct Jacobian (for the Gauss-Newton step), updates the Cholesky factor of an approximate Hessian (for the quasi-Newton step), and performs a line search to compute an approximate minimum along the search direction. The default line-search technique used by the NLPHQN method is designed for least squares problems (refer to Lindström and Wedin 1984, and Al-Baali and Fletcher 1986), but you can specify a different linesearch algorithm with the fifth element of the opt argument. See the section "Options Vector" on page 347 for details.

You can specify two update formulas with the fourth element of the opt argument as indicated in the following table.

| Value of opt $[4]$ | Update Method |
| :---: | :--- |
| 1 | Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update <br> of the Cholesky factor of the Hessian matrix. This is the default. |
| 2 | Dual Davidon, Fletcher, and Powell (DDFP) update of the <br> Cholesky factor of the Hessian matrix. |

The NLPHQN subroutine needs approximately the same amount of working memory as the NLPLM subroutine, and in most applications, the latter seems to be superior.

Hence, the NLPHQN method is recommended only when the NLPLM method encounters problems.

Note: In least squares subroutines, you must set the first element of the opt vector to $m$, the number of functions.

In addition to the standard iteration history, the NLPHQN subroutine prints the following information:

- Under the heading Iter, an asterisk (*) printed after the iteration number indicates that, on the basis of the Fletcher and Xu (1987) criterion, the subroutine used a Gauss-Newton search direction instead of a quasi-Newton search direction.
- The heading alpha is the step size, $\alpha$, computed with the line-search algorithm.
- The heading slope refers to $g^{T} s$, the slope of the search direction at the current parameter iterate $x^{(k)}$. For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The following statements use the NLPHQN call to solve the unconstrained Rosenbrock problem (see the section "Unconstrained Rosenbrock Function" on page 327).

```
title 'Test of NLPHQN subroutine: No Derivatives';
start F_ROSEN(x);
 y = j(1,2,0.);
 y[1] = 10. * (x[2] - x[1] * x[1]);
 y[2] = 1. - x[1];
 return(y);
finish F_ROSEN;
x = {-1.2 1.};
optn = {2 2};
call nlphqn(rc,xr,"F_ROSEN",x,optn);
```

The iteration history for the subroutine follows.


```
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
 Version HY2 of Fletcher & Xu (1987)
 Gradient Computed by Finite Differences
 CRP Jacobian Computed by Finite Differences
 Parameter Estimates 2
 Functions (Observations) 2
 Optimization Start
```

Active Constraints Max Abs Gradient Element
107.7999987

```
```

```
Objective Function 12.1
```

```
```

Objective Function 12.1

```
\begin{tabular}{rrrrr}
Iter & Restarts & \begin{tabular}{r}
Function \\
Calls
\end{tabular} & \begin{tabular}{r}
Active \\
Constraints
\end{tabular} & \begin{tabular}{r}
Objective \\
Function
\end{tabular} \\
1 & 0 & 3 & 0 & \\
\(2 *\) & 0 & 5 & 0 & 7.22423 \\
\(3 *\) & 0 & 7 & 0 & 0.97090 \\
4 & 0 & 9 & 0 & 0.81911 \\
5 & 0 & 19 & 0 & 0.69103 \\
\(6 *\) & 0 & 21 & 0 & 0.47345 \\
\(7 *\) & 0 & 22 & 0 & 0.35906 \\
\(8 *\) & 0 & 24 & 0 & 0.23342 \\
\(9 *\) & 0 & 26 & 0 & 0.14799 \\
\(10 *\) & 0 & 28 & 0 & \(1.98834 \mathrm{E}-6\) \\
\(11 *\) & 0 & 32 & \(7.0768 \mathrm{E}-10\) \\
\(12 *\) & 0 & 0 & \(2.0246 \mathrm{E}-21\)
\end{tabular}
Objective
Function
Change \(\quad\)\begin{tabular}{r}
Max Abs \\
Gradient \\
Element
\end{tabular}\(\quad\)\begin{tabular}{r}
Step \\
Size
\end{tabular}\(\quad\)\begin{tabular}{r}
Slope of \\
Search \\
Direction
\end{tabular}

Optimization Results
\begin{tabular}{lrlr}
Iterations & 12 & Function Calls & 33 \\
Jacobian Calls & 13 & Gradient Calls & 19 \\
Active Constraints & 0 & Objective Function & \(2.024612 \mathrm{E}-21\) \\
Max Abs Gradient Element & \(1.816863 \mathrm{E}-10\) & Slope of Search Direction & \(-1.415366 \mathrm{E}-9\)
\end{tabular}

ABSGCONV convergence criterion satisfied.
\begin{tabular}{lrr}
& Parameter Estimates \\
N Parameter & Estimate & \begin{tabular}{c}
Gradient \\
Objective \\
Function
\end{tabular} \\
\begin{tabular}{lll}
\(1 \times 1\) & 1.000000 & \(1.816863 \mathrm{E}-10\) \\
\(2 \times 2\) & 1.000000 & \(-1.22069 \mathrm{E}-10\)
\end{tabular} \\
Value of Objective Function \(=2.024612 \mathrm{E}-21\)
\end{tabular}

\section*{NLPLM Call}

\section*{calculates Levenberg-Marquardt least squares}

CALL NLPLM(rc, xr, "fun", x0, opt, blc, tc, par, "ptit", "jac">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPLM subroutine uses the Levenberg-Marquardt method, which is an efficient modification of the trust-region method for nonlinear least squares problems and is implemented as in Moré (1978). This is the recommended algorithm for small to medium least squares problems. Large least squares problems can often be processed more efficiently with other subroutines, such as the NLPCG and NLPQN methods. In each iteration, the NLPLM subroutine solves a quadratically constrained quadratic minimization problem that restricts the step to the boundary or interior of an \(n\)-dimensional elliptical trust region.

The \(m\) functions \(f_{1}(x), \ldots, f_{m}(x)\) are computed by the module specified with the "fun" module argument. The \(m \times n\) Jacobian matrix, \(\mathbf{J}\), contains the first-order derivatives of the \(m\) functions with respect to the \(n\) parameters, as follows:
\[
\mathbf{J}(x)=\left(\nabla f_{1}, \ldots, \nabla f_{m}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)
\]

You can specify \(\mathbf{J}\) with the " \(j a c\) " module argument; otherwise, the subroutine will compute it with finite difference approximations. In each iteration, the subroutine computes the crossproduct of the Jacobian matrix, \(\mathbf{J}^{T} \mathbf{J}\), to be used as an approximate Hessian.

Note: In least squares subroutines, you must set the first element of the opt vector to \(m\), the number of functions.

In addition to the standard iteration history, the NLPLM subroutine also prints the following information:
- Under the heading Iter, an asterisk \((*)\) printed after the iteration number indicates that the computed Hessian approximation was singular and had to be ridged with a positive value.
- The heading lambda represents the Lagrange multiplier, \(\lambda\). This has a value of zero when the optimum of the quadratic function approximation is inside the trust region, in which case a trust-region-scaled Newton step is performed. It is greater than zero when the optimum is at the boundary of the trust region, in which case the scaled Newton step is too long to fit in the trust region and a quadratically constrained optimization is done. Large values indicate optimization difficulties, and as in Gay (1983), a negative value indicates the special case of an indefinite Hessian matrix.
- The heading rho refers to \(\rho\), the ratio between the achieved and predicted difference in function values. Values that are much smaller than one indicate optimization difficulties. Values close to or larger than one indicate that the trust region radius can be increased.

See the section "Unconstrained Rosenbrock Function" on page 327 for an example that uses the NLPLM subroutine to solve the unconstrained Rosenbrock problem.

\section*{NLPNMS Call}

\section*{nonlinear optimization by Nelder-Mead simplex method}

CALL NLPNMS(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "nlc">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The Nelder-Mead simplex method is one of the subroutines that can solve optimization problems with nonlinear constraints. It does not use any derivatives, and it does not assume that the objective function has continuous derivatives. However, the objective function must be continuous. The NLPNMS technique uses a large number of function calls, and it can be unable to generate precise results when \(n>40\).

The NLPNMS subroutine uses the following simplex algorithms:
- For unconstrained or only boundary-constrained problems, the original NelderMead simplex algorithm is implemented and extended to boundary constraints. This algorithm does not compute the objective for infeasible points, and it is invoked if the "nlc" module argument is not specified and the blc argument contains at most two rows (corresponding to lower and upper bounds).
- For linearly or nonlinearly constrained problems, a slightly modified version of Powell's (1992) Constrained Optimization BY Linear Approximations (COBYLA) implementation is used. This algorithm is invoked if the "nlc" module argument is specified or if at least one linear constraint is specified with the blc argument.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear constraints, but in the unconstrained or boundary-constrained cases, it can be faster. It changes the shape of the simplex by adapting the nonlinearities of the objective function; this contributes to an increased speed of convergence.

\section*{Powell's COBYLA Algorithm}

Powell's COBYLA algorithm is a sequential trust-region algorithm that tries to maintain a regularly shaped simplex throughout the iterations. The algorithm uses a monotone-decreasing radius, \(\rho\), of a spheric trust region. The modification implemented in the NLPNMS call permits an increase of the trust-region radius \(\rho\) in special situations. A sequence of iterations is performed with a constant trust-region radius \(\rho\) until the computed function reduction is much less than the predicted reduction. Then, the trust-region radius \(\rho\) is reduced. The trust-region radius is increased only if the computed function reduction is relatively close to the predicted reduction and if the simplex is well-shaped. The start radius, \(\rho_{\text {beg }}\), can be specified with the second element of the par argument, and the final radius, \(\rho_{\text {end }}\), can be specified with the ninth element of the \(t c\) argument. Convergence to small values of \(\rho_{\text {end }}\), or highprecision convergence, can require many calls of the function and constraint modules and can result in numerical problems. The main reasons for the slow convergence of the COBYLA algorithm are as follows:
- Linear approximations of the objective and constraint functions are used locally.
- Maintaining the regularly shaped simplex and not adapting its shape to nonlinearities yields very small simplexes for highly nonlinear functions, such as fourth-order polynomials.

To allocate memory for the vector returned by the " \(n l c\) " module argument, you must specify the total number of nonlinear constraints with the tenth element of the opt argument. If any of the constraints are equality constraints, the number of equality constraints must be specified by the eleventh element of the opt argument. See the section "Parameter Constraints" on page 345 for details.

For more information about the special sets of termination criteria used by the NLPNMS algorithms, see the section "Termination Criteria" on page 352.

In addition to the standard iteration history, the NLPNMS subroutine prints the following information. For unconstrained or boundary-constrained problems, the subroutine also prints
- difcrit, which, in this subroutine, refers to the difference between the largest and smallest function values of the \(n+1\) simplex vertices
- std, which is the standard deviation of the function values of the simplex vertices
- deltax, which is the vertex length of a restarted simplex. If there are convergence problems, the algorithm restarts the iteration process with a simplex of smaller vertex length.
- size, which is the average \(L_{1}\) distance of the simplex vertex with the smallest function value to the other simplex vertices

For linearly and nonlinearly constrained problems, the subroutine prints the following:
- conmax is the maximum constraint violation.
- meritf is the value of the merit function, \(\Phi\).
- difmerit is the difference between adjacent values of the merit function.
- \(\rho\) is the trust-region radius.

The following code uses the NLPNMS call to solve the Rosen-Suzuki problem (see the section "Rosen-Suzuki Problem" on page 331), which has three nonlinear constraints:
```

start F_HS43(x);
f = x*x` + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];     return(f); finish F_HS43; start C_HS43(x);     c = j(3,1,0.);     c[1] = 8 - x*x' - x[1] + x[2] - x[3] + x[4];     c[2] = 10 - x*x` - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]
- 2.*x[1] + x[2] + x[4];
return(c);
finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpnms(rc,xres,"F_HS43",x,optn,,,,,"C_HS43");

```

Part of the output produced by the preceding code follows.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
Optimization Start \\
Parameter Estimates
\end{tabular}} \\
\hline N & Parameter & Estimate \\
\hline 1 & X1 & 1.000000 \\
\hline 2 & x2 & 1.000000 \\
\hline 3 & x3 & 1.000000 \\
\hline 4 & X4 & 1.000000 \\
\hline
\end{tabular}

Nelder-Mead Simplex Optimization
COBYLA Algorithm by M.J.D. Powell (1992)
```

    Minimum Iterations 0
    Maximum Iterations 1000
    Maximum Function Calls 3000
    Iterations Reducing Constraint Violation 0
    ABSFCONV Function Criterion 0
    FCONV Function Criterion 2.220446E-16
    FCONV2 Function Criterion 1E-6
    FSIZE Parameter
    ABSXCONV Parameter Change Criterion 0.0001
    XCONV Parameter Change Criterion 0
    XSIZE Parameter 0
    ABSCONV Function Criterion -1.34078E154
    Initial Simplex Size (INSTEP) 0.5
    Singularity Tolerance (SINGULAR) 1E-8
    Nelder-Mead Simplex Optimization
    COBYLA Algorithm by M.J.D. Powell (1992)
        Parameter Estimates 4
    Nonlinear Constraints 3
    Optimization Start
    Objective Function -29.5 Maximum Constraint Violation 4.5

```
Iter \begin{tabular}{rrrrr}
Restarts & \begin{tabular}{r}
Function \\
Calls
\end{tabular} & \begin{tabular}{r}
Maximum \\
Objective \\
Function
\end{tabular} & \begin{tabular}{r}
Constraint \\
Violation
\end{tabular} \\
1 & 0 & 12 & -52.80342 & \\
2 & 0 & 17 & -39.51475 & 4.3411 \\
3 & 0 & 53 & -44.02098 & 0.0227 \\
4 & 0 & 62 & -44.00214 & 0.00949 \\
5 & 0 & 72 & -44.00009 & 0.000833 \\
6 & 0 & 79 & -44.00000 & \(1.783 \mathrm{E}-6\) \\
7 & 0 & 90 & -44.00000 & \(1.363 \mathrm{E}-7\) \\
8 & 0 & 94 & -44.00000 & \(1.543 \mathrm{E}-8\)
\end{tabular}
\begin{tabular}{rrrr}
& & \begin{tabular}{r}
Between \\
Actual
\end{tabular} \\
Iter & Merit & \begin{tabular}{r}
Fund \\
Function
\end{tabular} \\
& & Change & \begin{tabular}{r}
Predicted \\
Change
\end{tabular} \\
1 & -42.3031 & 12.803 & \\
2 & -39.3797 & -2.923 & 0.000 \\
3 & -43.9727 & 4.593 & 0.0625 \\
4 & -43.9977 & 0.0249 & 0.0156 \\
5 & -43.9999 & 0.00226 & 0.0039 \\
6 & -44.0000 & 0.00007 & 0.0010 \\
7 & -44.0000 & \(1.74 \mathrm{E}-6\) & 0.0002 \\
8 & -44.0000 & \(5.33 \mathrm{E}-7\) & 0.0001
\end{tabular}
\begin{tabular}{lrlr}
Iterations & 8 & Function Calls & 95 \\
Restarts & 0 & Objective Function & \(\mathbf{- 4 4 . 0 0 0 0 0 0 0 3}\) \\
Maximum Constraint Violation & \(1.543059 \mathrm{E}-8\) & Merit Function & -43.99999999 \\
Actual Over Pred Change & 0.0001 & &
\end{tabular}

ABSXCONV convergence criterion satisfied.
WARNING: The point \(x\) is feasible only at the LCEPSILON= \(1 E-7\) range.

Optimization Results
Parameter Estimates
N Parameter Estimate
\begin{tabular}{lrr}
1 X1 & -0.000034167 \\
2 X2 & 1.000004 \\
3 X3 & 2.000023 \\
4 X4 & -0.999971
\end{tabular}

Value of Objective Function \(=\mathbf{- 4 4 . 0 0 0 0 0 0 0 3}\)

\section*{NLPNRA Call}
nonlinear optimization by Newton-Raphson method
CALL NLPNRA(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPNRA algorithm uses a pure Newton step at each iteration when both the Hessian is positive definite and the Newton step successfully reduces the value of the objective function. Otherwise, it performs a combination of ridging and line-search to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian matrix to make it positive definite (refer to Eskow \& Schnabel 1991).

The subroutine uses the gradient \(g^{(k)}=\nabla f\left(x^{(k)}\right)\) and the Hessian matrix
\(\mathbf{G}^{(k)}=\nabla^{2} f\left(x^{(k)}\right)\), and it requires continuous first- and second-order derivatives of the objective function inside the feasible region. If second-order derivatives are computed efficiently and precisely, the NLPNRA method does not need many function, gradient, and Hessian calls, and it can perform well for medium to large problems.

Note that using only function calls to compute finite difference approximations for second-order derivatives can be computationally very expensive and can contain significant rounding errors. If you use the " \(g r d\) " input argument to specify a module that computes first-order derivatives analytically, you can reduce drastically the computation time for numerical second-order derivatives. The computation of the finite difference approximation for the Hessian matrix generally uses only \(n\) calls of the module that specifies the gradient.

In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation. You can specify other line-search algorithms with the fifth element of the opt argument. See the section "Options Vector" on page 347 for details.

In unconstrained and boundary constrained cases, the NLPNRA algorithm can take advantage of diagonal or sparse Hessian matrices that are specified by the input argument "hes". To use sparse Hessian storage, the value of the ninth element of the opt argument must specify the number of nonzero Hessian elements returned by the Hessian module. See the section "Objective Function and Derivatives" on page 337 for more details.

In addition to the standard iteration history, the NLPNRA subroutine prints the following information:
- The heading alpha is the step size, \(\alpha\), computed with the line-search algorithm.
- The heading slope refers to \(g^{T} s\), the slope of the search direction at the current parameter iterate \(x^{(k)}\). For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The following statements invoke the NLPNRA subroutine to solve the constrained Betts optimization problem (see the section "Constrained Betts Function" on page 329). The iteration history follows.
```

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);
finish F_BETTS;
con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};
x = {-1. -1.};

```
```

optn = {0 2};
call nlpnra(rc,xres,"F_BETTS",x,optn,con);
quit;

```

 Newton-Raphson Optimization with Line Search

Without Parameter Scaling
 Gradient Computed by Finite Differences
 CRP Jacobian Computed by Finite Differences
 Parameter Estimates 2
 Lower Bounds 2
 Upper Bounds 2
 Linear Constraints 1
 Optimization Start
Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2
\begin{tabular}{crrrr}
Iter & Restarts & \begin{tabular}{r}
Function \\
Calls
\end{tabular} & \begin{tabular}{r}
Active \\
Constraints
\end{tabular} & \begin{tabular}{r}
Objective \\
Function
\end{tabular} \\
1 & 0 & 2 & 0 & -98.81551 \\
\(2 *\) & 0 & 3 & 0 & -99.40840 \\
\(3 *\) & 0 & 4 & 1 & -99.87504 \\
4 & 0 & 5 & 1 & -99.96000 \\
5 & 0 & 6 & 1 & -99.96000
\end{tabular}
\begin{tabular}{crrrr}
Iter & \begin{tabular}{r}
Objective \\
Function \\
Change
\end{tabular} & \begin{tabular}{r}
Max Abs \\
Gradient \\
Element
\end{tabular} & \begin{tabular}{r}
Step \\
Size
\end{tabular} & \begin{tabular}{r}
Slope of \\
Search \\
Direction
\end{tabular} \\
1 & 0.2779 & 1.8000 & 0.100 & -2.925 \\
\(2 *\) & 0.5929 & 1.2713 & 0.294 & -2.365 \\
\(3 *\) & 0.4666 & 0.5829 & 0.542 & -1.181 \\
4 & 0.0850 & 0.000039 & 1.000 & -0.170 \\
5 & \(3.9 \mathrm{E}-10\) & \(9.537 \mathrm{E}-7\) & 1.000 & \(-76 \mathrm{E}-11\)
\end{tabular}
\begin{tabular}{lrlr}
Iterations & 5 & Function Calls & 7 \\
Hessian Calls & 6 & Active Constraints & 1 \\
Objective Function & -99.96 & Max Abs Gradient Element & 0 \\
Slope of Search Direction & \(-7.64376 \mathrm{E}-10\) & Ridge & 0 \\
& & & \\
GCONV convergence criterion satisfied. &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Optimization Results Parameter Estimates} \\
\hline & & Gradient & Active \\
\hline & & Objective & Bound \\
\hline N Parameter & Estimate & Function & Constraint \\
\hline \(1 \mathrm{X1}\) & 2.000000 & 0.040000 & Lower BC \\
\hline \(2 \times 2\) & -0.000000196 & 0 & \\
\hline
\end{tabular}
\(110.00000=-10.0000+10.0000 * \mathrm{X} 1-1.0000 * \mathrm{X} 2\)

\section*{NLPNRR Call}
nonlinear optimization by Newton-Raphson ridge method
CALL NLPNRR(rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPNRR algorithm uses a pure Newton step when both the Hessian is positive definite and the Newton step successfully reduces the value of the objective function. Otherwise, a multiple of the identity matrix is added to the Hessian matrix.

The subroutine uses the gradient \(g^{(k)}=\nabla f\left(x^{(k)}\right)\) and the Hessian matrix
\(\mathbf{G}^{(k)}=\nabla^{2} f\left(x^{(k)}\right)\), and it requires continuous first- and second-order derivatives of the objective function inside the feasible region.

Note that using only function calls to compute finite difference approximations for second-order derivatives can be computationally very expensive and can contain significant rounding errors. If you use the " \(g r d\) " input argument to specify a module that computes first-order derivatives analytically, you can reduce drastically the computation time for numerical second-order derivatives. The computation of the finite difference approximation for the Hessian matrix generally uses only \(n\) calls of the module that specifies the gradient.

The NLPNRR method performs well for small to medium-sized problems, and it does not need many function, gradient, and Hessian calls. However, if the gradient is not specified analytically by using the " \(g r d\) " module argument, or if the computation of the Hessian module specified with the "hes" argument is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

In addition to the standard iteration history, the NLPNRR subroutine prints the following information:
- The heading ridge refers to the value of the nonnegative ridge parameter. A value of zero indicates that a Newton step is performed. A value greater than zero indicates either that the Hessian approximation is zero or that the Newton step fails to reduce the optimization criterion. A large value can indicate optimization difficulties.
- The heading rho refers to \(\rho\), the ratio of the achieved difference in function values and the predicted difference, based on the quadratic function approximation. A value that is much smaller than one indicates possible optimization difficulties.

The following statements invoke the NLPNRR subroutine to solve the constrained Betts optimization problem (see the section "Constrained Betts Function" on page 329). The iteration history follows.
```

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);
finish F_BETTS;
con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};
x = {-1. -1.};
optn = {0 2};
call nlpnrr(rc,xres,"F_BETTS",x,optn,con);
quit;

```

```

                                    Linear Constraints
    1 59.00000:
10.0000 <= + 10.0000 * X1
- 1.0000 *
Newton-Raphson Ridge Optimization

```
 Without Parameter Scaling
 Gradient Computed by Finite Differences
 CRP Jacobian Computed by Finite Differences
 Parameter Estimates 2
 Lower Bounds
 2
 Upper Bounds
 2
 Upper Bounds 2
 Linear Constraints 1
 Optimization Start
\begin{tabular}{lll}
Active Constraints & 0 & Objective Function \\
Max Abs Gradient Element & 2 & \\
\\
lend\{jverbatim \(\}\) & \\
\begin } \{ \text { kverbatim } \}
\end{tabular}
\begin{tabular}{rrrrr}
Iter & Restarts & \begin{tabular}{r}
Function \\
Calls
\end{tabular} & \begin{tabular}{r}
Active \\
Constraints
\end{tabular} & \begin{tabular}{r}
Objective \\
Function
\end{tabular} \\
1 & 0 & 2 & 1 & -99.87337 \\
2 & 0 & 3 & 1 & -99.96000 \\
3 & 0 & 4 & 1 & -99.96000
\end{tabular}
\begin{tabular}{rrrrr}
& & & \begin{tabular}{r}
Ratio \\
Objective \\
Function \\
Change
\end{tabular} & \begin{tabular}{r}
Max Abs \\
Gradient \\
Element
\end{tabular} \\
& & & Ridge & \begin{tabular}{r}
and
\end{tabular} \\
Iteredicted \\
Change
\end{tabular}
\begin{tabular}{lrlr}
\multicolumn{2}{c}{ Optimization Results } & \\
Iterations & 3 & Function Calls & 5 \\
Hessian Calls & 4 & Active Constraints & 1 \\
Objective Function & -99.96 & Max Abs Gradient Element & 0 \\
Ridge & 0 & Actual Over Pred Change & 1.0135158294
\end{tabular}
GCONV convergence criterion satisfied.
```

Optimization Results
Parameter Estimates


1

```
Linear Constraints Evaluated at Solution
10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2
```


## NLPQN Call

nonlinear optimization by quasi-Newton method
CALL NLPQN( rc, xr, "fun", x0<,opt, blc, tc, par, "ptit", "grd", "nlc", "jacnlc">);

See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPQN subroutine uses (dual) quasi-Newton optimization techniques, and it is one of the two subroutines available that can solve problems with nonlinear constraints. These techniques work well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian matrix. The NLPQN subroutine does not need to compute secondorder derivatives, but it generally requires more iterations than the techniques that compute second-order derivatives.

The two categories of problems solved by the NLPQN subroutine are unconstrained or linearly constrained problems and nonlinearly constrained problems. Unconstrained or linearly constrained problems do not use the "nlc" or "jacnlc" module arguments, whereas nonlinearly constrained problems use the arguments to specify the nonlinear constraints and the Jacobian matrix of their first-order derivatives, respectively.

The type of optimization problem specified determines the algorithm that the subroutine invokes. The algorithms are very different, and they use different sets of termination criteria. For more details, see the section "Termination Criteria" on page 352.

## Unconstrained or Linearly Constrained QN Optimization

The NLPQN subroutine invokes this algorithm if you do not specify the "nlc" argument. Using the fourth element of the opt argument, you can specify two update formulas for either the original quasi-Newton algorithm or the dual quasi-Newton algorithm, as indicated in the following table:

| Value of opt[4] | Update Method |
| :---: | :--- |
| 1 | Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update <br> of the Cholesky factor of the Hessian matrix. This is the default. |
| 2 | Dual Davidon, Fletcher, and Powell (DDFP) update of the <br> Cholesky factor of the Hessian matrix. |
| 4 | Original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up- <br> date of the inverse Hessian matrix. |
| Original Davidon, Fletcher, and Powell (DFP) update of the in- <br> verse Hessian matrix. |  |

In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive definiteness of the quasi-Newton update. In these cases, either the update is skipped or the iterations are restarted with an identity matrix resulting in the steepest descent or ascent search direction. You can specify line-search algorithms different from the default method with the fifth element of the opt argument.

Note: In SAS 6.08, the DBFGS and DDFP updates were implemented with the NLPDQN subroutine. In SAS 6.09 and in later releases, these updates are specified with the NLPQN subroutine, and the NLPDQN subroutine is not permitted.

The following statements invoke the NLPQN subroutine to solve the Rosenbrock problem (see the section "Unconstrained Rosenbrock Function" on page 327):

```
start F_ROSEN(x);
 y1 = 10. * (x[2] - x[1] * x[1]);
 y2 = 1. - x[1];
 f = .5 * (y1 * y1 + y2 * y2);
 return(f);
finish F_ROSEN;
x = {-1.2 1.};
optn = {0 2 . 2};
call nlpqn(rc,xr,"F_ROSEN",x,optn);
```

Since OPTN[4] $=2$, the DDFP update is performed. The gradient is approximated by finite differences since no module is specified that computes the first-order derivatives. Part of the iteration history follows. In addition to the standard iteration history, the NLPQN subroutine prints the following information for unconstrained or linearly constrained problems:

- The heading alpha is the step size, $\alpha$, computed with the line-search algorithm.
- The heading slope refers to $g^{T} s$, the slope of the search direction at the current parameter iterate $x^{(k)}$. For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.


| Iter | Restarts | Function <br> Calls | Active <br> Constraints | Objective <br> Function |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 4 | 0 |  |
| 2 | 0 | 7 | 0 | 2.06405 |
| 3 | 0 | 10 | 0 | 1.92035 |
| 4 | 0 | 13 | 0 | 1.78089 |
| 5 | 0 | 17 | 0 | 1.33331 |
| 6 | 0 | 22 | 0 | 1.13400 |
| 7 | 0 | 24 | 0 | 0.93915 |
| 8 | 0 | 30 | 0 | 0.84821 |
| 9 | 0 | 32 | 0 | 0.54334 |
| 10 | 0 | 37 | 0 | 0.46593 |
| 12 | 0 | 41 | 0 | 0.35322 |
| 12 | 0 | 41 | 0 | 0.20282 |
| 13 | 0 | 46 | 0 | 0.20282 |
| 14 | 0 | 51 | 0 | 0.11714 |
| 15 | 0 | 53 | 0 | 0.07149 |
| 16 | 0 | 58 | 0 | 0.04746 |
| 17 | 0 | 60 | 0 | 0.02759 |
| 18 | 0 | 62 | 0 | 0.01625 |
| 19 | 0 | 66 | 0 | 0.00475 |
| 20 | 0 | 70 | 0 | 0.00167 |
|  | 0 |  | 0.0005952 |  |

818 - Chapter 20. Language Reference

21
23
23
24
25
23

| 0 | 72 |
| :--- | ---: |
| 0 | 78 |
| 0 | 78 |
| 0 | 80 |
| 0 | 119 |


| 0 | 0.0000771 |
| :--- | ---: |
| 0 | $2.39914 \mathrm{E}-8$ |
| 0 | $2.39914 \mathrm{E}-8$ |
| 0 | $5.0936 \mathrm{E}-11$ |
| 0 | $3.9538 \mathrm{E}-11$ |


| Iter | Objective Function Change | Max Abs Gradient Element | Step <br> Size | Slope of Search Direction |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 10.0359 | 0.7917 | 0.0340 | -628.8 |
| 2 | 0.1437 | 8.6301 | 6.557 | -0.0363 |
| 3 | 0.1395 | 11.0943 | 8.193 | -0.0288 |
| 4 | 0.4476 | 7.6069 | 33.376 | -0.0269 |
| 5 | 0.1993 | 0.9386 | 15.438 | -0.0260 |
| 6 | 0.1948 | 3.5290 | 11.537 | -0.0233 |
| 7 | 0.0909 | 4.8308 | 8.124 | -0.0193 |
| 8 | 0.3049 | 4.1770 | 35.143 | -0.0186 |
| 9 | 0.0774 | 0.9479 | 8.708 | -0.0178 |
| 10 | 0.1127 | 2.5981 | 10.964 | -0.0147 |
| 11 | 0.0894 | 3.3028 | 13.590 | -0.0121 |
| 12 | 0.0610 | 0.6451 | 10.000 | -0.0116 |
| 13 | 0.0857 | 1.6603 | 11.395 | -0.0102 |
| 14 | 0.0456 | 2.4050 | 11.559 | -0.0074 |
| 15 | 0.0240 | 0.5628 | 6.868 | -0.0071 |
| 16 | 0.0199 | 1.3282 | 5.365 | -0.0055 |
| 17 | 0.0113 | 1.9246 | 5.882 | -0.0035 |
| 18 | 0.0115 | 0.6357 | 8.068 | -0.0032 |
| 19 | 0.00307 | 0.4810 | 2.336 | -0.0022 |
| 20 | 0.00108 | 0.6043 | 3.287 | -0.0006 |
| 21 | 0.000518 | 0.0289 | 2.329 | -0.0004 |
| 22 | 0.000075 | 0.0365 | 1.772 | -0.0001 |
| 23 | $1.897 \mathrm{E}-6$ | 0.00158 | 1.159 | -331E-8 |
| 24 | $2.394 \mathrm{E}-8$ | 0.000016 | 0.967 | -46E-9 |
| 25 | 1.14E-11 | $7.962 \mathrm{E}-7$ | 1.061 | -19E-13 |

## Optimization Results

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

## Gradient

Objective
N Parameter
Estimate
Function

```
1 X1
Value of Objective Function = 3.953804E-11
```


## Nonlinearly Constrained QN Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an efficient modification of Powell's (1978a, 1982b) Variable Metric Constrained WatchDog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both the VMCWD and VF02AD algorithms use Fletcher's VE02AD algorithm, which is also part of the Harwell library, for positive definite quadratic programming. This NLPQN implementation uses a quadratic programming subroutine that updates and downdates the Cholesky factor when the active set changes (refer to Gill et al. 1984). The nonlinear NLPQN algorithm is not a feasible point algorithm, and the value of the objective function is not required to decrease monotonically. Instead, the algorithm tries to reduce a linear combination of objective function and constraint violations.

The following are similarities and differences between this algorithm and Powell's VMCWD algorithm:

- You can use the sixth element of the opt argument to modify the algorithm used by the NLPQN subroutine. If you specify opt $[6]=2$, which is the default, the evaluation of the Lagrange vector $\mu$ is performed the same way as described in Powell (1982b). Note, however, that the VMCWD program seems to have a bug in the implementation of formula (4.4) in Powell (1982b). If you specify opt $[6]=1$, the original update of $\mu$ used in the VF02AD algorithm in Powell (1978a) is performed.
- Instead of updating an approximate Hessian matrix, this algorithm uses the dual BFGS or dual DFP update that updates the Cholesky factor of an approximate Hessian. If the condition of the updated matrix gets too bad, a restart is done with a positive diagonal matrix. At the end of the first iteration after each restart, the Cholesky factor is scaled.
- The Cholesky factor is loaded into the quadratic programming subroutine, which ensures positive definiteness of the problem. During the quadratic programming step, the Cholesky factor of the projected Hessian matrix $Z_{k}^{T} G Z_{k}$ is updated simultaneously with $Q T$ decomposition when the active set changes. Refer to Gill et al. (1984) for more information.
- The line-search strategy is very similar to that of Powell's algorithm, but this algorithm does not call for derivatives during the line search. For that reason, this algorithm generally needs fewer derivative calls than function calls, whereas the VMCWD algorithm always requires the same number of derivative calls as function calls. Also, Powell's line-search method sometimes uses steps that are too long during the early iterations. In those cases, you can use the second element of the par argument to restrict the step length $\alpha$ in the first five iterations. See the section "Control Parameters Vector" on page 359 for more details.
- The watchdog strategy is also similar to that of Powell's algorithm. However, this algorithm does not return automatically after a fixed number of iterations to a previous, more optimal point. A return to such a point is further delayed if the observed function reduction is close to the expected function reduction of the quadratic model.
- Although Powell's termination criterion, the FTOL2 criterion, can still be used, the NLPQN implementation uses, by default, two other termination criteria (GTOL and ABSGTOL).

This algorithm is automatically invoked if the " $n l c$ " argument is specified. The module specified with the " $n l c$ " argument must return a vector of length $n c$, where $n c$ is the total number of constraints. Letting nec be the number of equality constraints, the constraints must be of the following form:

$$
\begin{array}{rlrl}
c_{i}(x) & =0, & & i=1, \ldots, n e c \\
c_{i}(x) \geq 0, & & i=n e c+1, \ldots, n c
\end{array}
$$

The first nec elements of the returned vector contain the $c_{i}$ for the equality constraints, and the remaining elements contain the $c_{i}$ for the inequality constraints.

Note: You must specify the total number of constraints with the tenth element of the opt argument, and if there are any equality constraints, you must specify that number, $n e c$, with the eleventh element of the opt argument.

The nonlinear NLPQN algorithm requires the Jacobian matrix of the first-order derivatives of the $n c$ constraints returned by the module specified by the " $n l c$ " argument. You can provide these derivatives by specifying a module with the "jacnlc" argument. This module must return the Jacobian matrix $\mathbf{J}$ of first-order partial derivatives. That is, $\mathbf{J}$ is an $n c \times n$ matrix such that the entry in the $i$ th row and $j$ th column is given by

$$
\mathbf{J}(i, j)=\frac{\partial c_{i}}{\partial x_{j}}
$$

If you specify an " $n l c$ " module without specifying a "jacnlc" argument, finite difference approximations of the first-order derivatives of the constraints are used. You can use the ninth element of the par argument to specify the number of accurate digits used in evaluating the constraints.

You can specify two update formulas with the fourth element of the opt argument as indicated in the following table:

| Value of opt $[4]$ | Update Method |
| :---: | :--- |
| 1 | Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update <br> of the Cholesky factor of the Hessian matrix. This is the default. |
| 2 | Dual Davidon, Fletcher, and Powell (DDFP) update of the <br> Cholesky factor of the Hessian matrix. |

This algorithm uses its own line-search technique. None of the options and parameters that control the line search in the other algorithms apply in the nonlinear NLPQN algorithm, with the exception of the second element of the par vector, which can be used to restrict the length of the step size in the first five iterations.

See Example 11.8 for an example where you need to specify a value for the second element of the par argument. The values of the fourth, fifth, and sixth elements of the par vector, which control the processing of linear and boundary constraints, are valid only for the quadratic programming subroutine used in each iteration of the NLPQN call. For a simple example of the NLPQN subroutine, see the section "Rosen-Suzuki Problem" on page 331.

## NLPQUA Call

nonlinear optimization by quadratic method
CALL NLPQUA( rc, xr, quad, x0 <,opt, blc, tc, par, "ptit", lin>);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.

The NLPQUA subroutine uses a fast algorithm for maximizing or minimizing the quadratic objective function

$$
\frac{1}{2} x^{T} G x+g^{T} x+\mathrm{con}
$$

subject to boundary constraints and general linear equality and inequality constraints. The algorithm is memory-consuming for problems with general linear constraints.

The matrix $G$ must be symmetric but not necessarily positive definite (or negative definite for maximization problems). The constant term con affects only the value of the objective function, not its derivatives or the optimal point $x^{*}$.

The algorithm is an active-set method in which the update of active boundary and linear constraints is done separately. The $Q T$ decomposition of the matrix $A_{k}$ of active linear constraints is updated iteratively (refer to Gill et al. 1984). If $n_{f}$ is the number of free parameters (that is, $n$ minus the number of active boundary constraints), and $n_{a}$ is the number of active linear constraints, then $Q$ is an $n_{f} \times n_{f}$ orthogonal matrix containing null space $Z$ in its first $n_{f}-n_{a}$ columns and range space $Y$ in its last $n_{a}$ columns. The matrix $T$ is an $n_{a} \times n_{a}$ triangular matrix of the form $t_{i j}=0$ for $i<n-j$. The Cholesky factor of the projected Hessian matrix $Z_{k}^{T} G Z_{k}$ is updated simultaneously with the $Q T$ decomposition when the active set changes.

The objective function is specified by the input arguments quad and lin, as follows:

- The quad argument specifies the symmetric $n \times n$ Hessian matrix, $G$, of the quadratic term. The input can be in dense or sparse form. In dense form, all $n^{2}$ entries of the quad matrix must be specified. If $n \leq 3$, the dense specification must be used. The sparse specification can be useful when $G$ has many zero
elements. You can specify an $n n \times 3$ matrix in which each row represents one of the $n n$ nonzero elements of $G$. The first column specifies the row location in $G$, the second column specifies the column location, and the third column specifies the value of the nonzero element.
- The lin argument specifies the linear part of the quadratic optimization problem. It must be a vector of length $n$ or $n+1$. If $l i n$ is a vector of length $n$, it specifies the vector $g$ of the linear term, and the constant term con is considered zero. If $l i n$ is a vector of length $n+1$, then the first $n$ elements of the argument specify the vector $g$ and the last element specifies the constant term con of the objective function.

As in the other optimization subroutines, you can use the $b l c$ argument to specify boundary and general linear constraints, and you must provide a starting point $x 0$ to determine the number of parameters. If $x 0$ is not feasible, a feasible initial point is computed by linear programming, and the elements of $x 0$ can be missing values.

Assuming nonnegativity constraints $x \geq 0$, the quadratic optimization problem solved with the LCP call, which solves the linear complementarity problem. Refer to SAS/IML Software: Usage and Reference, Version 6, First Edition for details.

Choosing a sparse (or dense) input form of the quad argument does not mean that the algorithm used in the NLPQUA subroutine is necessarily sparse (or dense). If the following conditions are satisfied, the NLPQUA algorithm will store and process the matrix $G$ as sparse:

- No general linear constraints are specified.
- The memory needed for the sparse storage of $G$ is less than $80 \%$ of the memory needed for dense storage.
- $G$ is not a diagonal matrix. If $G$ is diagonal, it is stored and processed as a diagonal matrix.

The sparse NLPQUA algorithm uses a modified form of minimum degree Cholesky factorization (George and Liu 1981).

In addition to the standard iteration history, the NLPNRA subroutine prints the following information:

- The heading alpha is the step size, $\alpha$, computed with the line-search algorithm.
- The heading slope refers to $g^{T} s$, the slope of the search direction at the current parameter iterate $x^{(k)}$. For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The Betts problem (see the section "Constrained Betts Function" on page 329) can be expressed as a quadratic problem in the following way:

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad G=\left[\begin{array}{cc}
0.02 & 0 \\
0 & 2
\end{array}\right], \quad g=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \text { con }=-100
$$

Then

$$
\frac{1}{2} x^{T} G x-g^{T} x+\text { con }=0.5\left[0.02 x_{1}^{2}+2 x_{2}^{2}\right]-100=0.01 x_{1}^{2}+x_{2}^{2}-100
$$

The following statements use the NLPQUA subroutine to solve the Betts problem:

```
lin = { 0. 0. -100};
quad = { 0.02 0.0,
 0.0 2.0 };
c = { 2. -50. . .,
 50. 50. . .,
 10. -1. 1. 10.};
x = { -1. -1.};
optn = {0 2};
CALL NLPQUA(rc,xres,quad,x,optn,c,,,,lin);
```

The quad argument specifies the $G$ matrix, and the lin argument specifies the $g$ vector with the value of con appended as the last element. The matrix C specifies the boundary constraints and the general linear constraint.

The iteration history follows.



Prameter Rstimates

|  | Estimate | Gradient <br> Objective <br> Function | Active <br> Bound <br> Constraint |
| :--- | ---: | ---: | ---: |
| 1 X1 | 2.000000 | 0.040000 | Lower BC |
| 2 X2 | 0 | 0 |  |

Value of Objective Function $=-99.96$

Linear Constraints Evaluated at Solution
$1 \quad 10.00000=-10.0000+10.0000 * \mathrm{x} 1-1.0000 * \mathrm{x} 2$

## NLPTR Call

nonlinear optimization by trust-region method

CALL NLPTR( rc, xr, "fun", x0 <,opt, blc, tc, par, "ptit", "grd", "hes">);
See the section "Nonlinear Optimization and Related Subroutines" on page 791 for a listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and outputs of all NLP subroutines.
The NLPTR subroutine is a trust-region method that uses the gradient $g^{(k)}=\nabla f\left(x^{(k)}\right)$ and Hessian matrix $\mathbf{G}^{(k)}=\nabla^{2} f\left(x^{(k)}\right)$. It requires that the objective function $f=f(x)$ has continuous first- and second-order derivatives inside the feasible region.

The $n \times n$ Hessian matrix $\mathbf{G}$ contains the second derivatives of the objective function $f$ with respect to the parameters $x_{1}, \ldots, x_{n}$, as follows:

$$
G(x)=\nabla^{2} f(x)=\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}\right)
$$

The trust-region method works by optimizing a quadratic approximation to the nonlinear objective function within a hyperelliptic trust region. This trust region has a radius, $\Delta$, that constrains the step size corresponding to the quality of the quadratic approximation. The method is implemented by using Dennis, Gay, and Welsch (1981), Gay (1983), and Moré and Sorensen (1983).

Note that finite difference approximations for second-order derivatives using only function calls are computationally very expensive. If you specify first-order derivatives analytically with the " grd " module argument, you can drastically reduce the computation time for numerical second-order derivatives. Computing the finite difference approximation for the Hessian matrix $\mathbf{G}$ generally uses only $n$ calls of the module that computes the gradient analytically.
The NLPTR method performs well for small to medium-sized problems and does not need many function, gradient, and Hessian calls. However, if the gradient is not specified analytically by using the " $g r d$ " argument or if the computation of the Hessian module, as specified by the "hes" module argument, is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

In addition to the standard iteration history, the NLPTR subroutine prints the following information:

- Under the heading Iter, an asterisk $\left({ }^{*}\right)$ printed after the iteration number indicates that the computed Hessian approximation was singular and had to be ridged with a positive value.
- The heading lambda represents the Lagrange multiplier, $\lambda$. This has a value of zero when the optimum of the quadratic function approximation is inside the trust region, in which case a trust-region-scaled Newton step is performed. It is greater than zero when the optimum is at the boundary of the trust region, in which case the scaled Newton step is too long to fit in the trust region and a quadratically constrained optimization is done. Large values indicate optimization difficulties, and as in Gay (1983), a negative value indicates the special case of an indefinite Hessian matrix.
- The heading radius refers to $\Delta$, the radius of the trust region. Small values of the radius combined with large values of $\lambda$ in subsequent iterations indicate optimization problems.

For an example of the use of the NLPTR subroutine, see the section "Unconstrained Rosenbrock Function" on page 327.

## NORMAL Function

## generates a pseudo-random normal deviate

## NORMAL( seed)

where seed is a numeric matrix or literal. The seed argument can be any integer value up to $2^{31}-1$.

The NORMAL function is a scalar function that returns a pseudo-random number having a normal distribution with a mean of 0 and a standard deviation of 1 . The NORMAL function returns a matrix with the same dimensions as the argument. The first argument on the first call is used for the seed (or if that is 0 , the system clock is used for the seed). This function is synonymous with the DATA step function RANNOR. The Box-Muller transformation of the UNIFORM function deviates is used to generate the numbers. The following code produces the output vector $\mathbf{B}$, as shown:

```
seed = 123456;
c = j(10,1, seed);
b = normal (c);
print b;
 B
-0.109483
-0.348785
1.1202546
-2.513766
1.3630022
```


## NROW Function

## finds the number of rows of a matrix

## NROW( matrix)

where matrix is a numeric or character matrix.
The NROW function returns a single numeric value that is the number of rows in matrix. If the matrix has not been given a value, the NROW function returns a value of 0 .

For example, to let J contain the number of rows of the matrix $\mathbf{S}$, use the following statement:

## NUM Function

produces a numeric representation of a character matrix

## NUM( matrix)

where matrix is a character matrix or a quoted literal.
The NUM function takes as an argument a character matrix with elements that are character numerics; and produces a numeric matrix with dimensions that are the same as the dimensions of the argument and with elements that are the numeric representations (double-precision floating-point) of the corresponding elements of the argument.

An example that uses the NUM function follows:

```
c={'1' '2' '3'};
j=num(c);
 C 1 row (character, size 1)
 123
J 1 row
```

See also the description of the CHAR function, which does the reverse conversion.

## ODE Call

performs numerical integration of vector differential equations of the form

$$
\frac{d \mathbf{y}}{d t}=f(t, \mathbf{y}(t)) \quad \text { with } \mathbf{y}(0)=\mathbf{c}
$$

CALL ODE ( $r$, "dername", $c, t, h<, \mathbf{J =}$ "jacobian" $><$, EPS=eps $><$, "data" $>$ );
The ODE subroutine returns the following values:
$r$
is a numeric matrix that contains the results of the integration over connected subintervals. The number of columns in $r$ is equal to the number of subintervals of integration as defined by the argument $t$. In case of any error in the integration on any subinterval, partial results will not be reported in $r$.

The inputs to the ODE subroutine are as follows:

$$
\begin{aligned}
& \text { "dername" } \begin{array}{l}
\text { specifies the name of an IML module used to evaluate the integrand. } \\
c
\end{array} \quad \text { specifies an initial value vector for the variable } \mathbf{y} .
\end{aligned}
$$

$t \quad$ specifies a sorted vector that describes the limits of integration over connected subintervals. The simplest form of the vector $t$ contains only the limits of the integration on one interval. The first component of $t$ should contain the initial value, and the second component should be the final value of the independent variable. For more advanced usage of the ODE subroutine, the vector $t$ can contain more than two components. The components of the vector must be sorted in ascending order. Two consecutive components of the vector $t$ are interpreted as a subinterval. The ODE call reports the final result of integration at the right endpoint of each subinterval. This information is vital if $f(\cdot)$ has internal points of discontinuity. To produce accurate solutions, it is essential that you provide the location of these points in the variable $t$, since the continuity of the forcing function is vital to the internal control of error.
$h \quad$ specifies a numeric vector that contains three components: the minimum allowable step size, hmin; the maximum allowable step size, hmax; and the initial step size to start the integration process, hinit.
"jacobian" optionally specifies the name of an IML module that is used to evaluate the Jacobian analytically. The Jacobian is the matrix $J$, with

$$
J_{i j}=\frac{\partial f_{i}}{\partial y_{j}}
$$

If the "jacobian" module is not specified, the ODE call uses a finitedifference method to approximate the Jacobian. The keyword for this option is J.
eps specifies a scalar indicating the required accuracy. It has a default value of $1 \mathrm{E}-4$. The keyword for this option is EPS.
data (scalar, optional, character, input) a valid predefined SAS data set name that is used to save the successful independent and dependent variables of the integration at each step.

The ODE subroutine is an adaptive, variable order, variable step-size, stiff integrator based on implicit backward-difference methods. Refer to Aiken (1985), Bickart and Picel (1973), Donelson and Hansen (1971), Gaffney (1984), and Shampine (1978). The integrator is an implicit predictor-corrector method that locally attempts to maintain the prescribed precision eps relative to

$$
d=\max _{0 \leq t \leq T}\left(\|y(t)\|_{\infty}, 1\right)
$$

As you can see from the expression, this quantity is dynamically updated during the integration process and can help you to understand the validity of the results reported by the subroutine.

Consider the differential equation

$$
\frac{d y}{d t}=-t y \text { with } y=0.5 \text { at } t=0
$$

The following statements attempt to find the solution at $t=1$ :

```
/* Define the integrand */
start fun(t,y);
 v = -t*y;
 return(v);
finish;
/* Call ODE */
c = 0.5;
t = { 0 1};
h = { 1E-12 1 1E-5};
call ode(r,"FUN",c,t,h);
print r[format=E21.14];
```

In this case, the integration is carried out over $(0,1)$ to give the value of $y$ at $t=1$. The optional parameter eps has not been specified, so it is internally set to $1 \mathrm{E}-4$. Also, the optional parameter "jacobian" has not been specified, so finite-difference methods are used to estimate the Jacobian. The accuracy of the answer can be increased by specifying eps. For example, set eps=1E-7, as follows:

```
/* Define the integrand */
start fun(t,y);
 v = -t*y;
 return(v);
finish;
/* Call ODE */
c = 0.5;
t = {0 1};
h = {1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;
print r[format =E21.14];
```

Compare this value to $0.5 e^{-0.5}=3.03265329856310 \mathrm{E}-01$ and observe that the result is correct through the sixth decimal digit and has an error relative to 1 that is $O(1 \mathrm{E}-7)$.

If the solution was desired at 1 and 2 with an accuracy of $1 \mathrm{E}-7$, you would use the following statements:

```
/* Define the integrand */
start fun(t,y);
 v = -t*y;
 return(v);
finish;
/* Call ODE */
c = 0.5;
t = {0 1 2};
```

```
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;
print r[format=E21.14];
```

Note that R contains the solution at $t=1$ in the first column and at $t=2$ in the second column.

Now consider the smoothness of the forcing function $f(\cdot)$. For the purpose of estimating errors, adaptive methods require some degree of smoothness in the function $f(\cdot)$. If this smoothness is not present in $f(\cdot)$ over the interior and including the left endpoint of the subinterval, the reported result will not have the desired accuracy. The function $f(\cdot)$ must be at least continuous. If the function does not meet this requirement, you should specify the discontinuity as an intermediate point. For example, consider the differential equation

$$
\frac{d y}{d t}= \begin{cases}t & \text { if } t<1 \\ 0.5 t^{2} & \text { if } t \geq 1\end{cases}
$$

To find the solution at $t=2$, use the following statements:

```
/* Define the integrand */
start fun(t,y);
 if t<1 then v = t;
 else v = .5*t*t;
 return(v);
finish;
/* Call ODE */
c = 0;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps = 1E-12;
print r[format =E21.14];
```

In the preceding case, the integration is carried out over a single interval, $(0,2)$. The optional parameter eps is specified to be $1 \mathrm{E}-12$. The optional parameter jacobian is not specified, so finite-difference methods are used to estimate the Jacobian.

Note that the value of R does not have the required accuracy (it should contain a 12 decimal-place representation of $5 / 3$ ), although no error message is produced. The reason is that the function is not continuous at the point $t=1$. Even the lowest-order method cannot produce a local reliable error estimate near the point of discontinuity. To avoid this problem, you can create subintervals so that the integration is carried out first over $(0,1)$ and then over $(1,2)$. The following code implements this method:

```
/* Define the integrand */
start fun(t,y);
 if t < 1 then v = t;
 else v = .5*t*t;
```

```
 return(v);
finish;
/* Call ODE */
c = 0;
t ={ 0 1 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];
```

The variable R contains the solutions at both $t=1$ and $t=2$, and the errors are of the specified order. Although there is no interest in the solution at the point $t=1$, the advantage of specifying subintervals with no discontinuities is that the function $f(\cdot)$ is infinitely differentiable in each subinterval.

When $f(\cdot)$ is continuous, the ODE subroutine can compute the integration to the specified precision, even if the function is defined piecewise. Consider the differential equation

$$
\frac{d y}{d t}= \begin{cases}t & \text { if } t<1 \\ t^{2} & \text { if } t \geq 1\end{cases}
$$

The following code finds the solution at $t=2$ : Since the function $f(\cdot)$ is continuous, the requirements for error control are satisfied.

```
/* Define the integrand */
start fun(t,y);
 if t < 1 then v = t;
 else v = t*t;
 return(v);
finish;
/* Call ODE */
c = 0.5;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];
```

This example compares the ODE call to an eigenvalue decomposition for stiff-linear systems. In the problem

$$
\frac{d \mathbf{y}}{d t}=\mathbf{A y} \text { with } \mathbf{y}(0)=\mathbf{c}
$$

where $\mathbf{A}$ is a symmetric constant matrix, the solution can be written in terms of the eigenvalue decomposition, as follows:

$$
\mathbf{y}(t)=\mathbf{U} e^{\mathbf{D} t} \mathbf{U}^{\prime} \mathbf{c}
$$

where $\mathbf{U}$ is the matrix of eigenvectors and $\mathbf{D}$ is a diagonal matrix with the eigenvalues on its diagonal.

The following statements produce two solutions, one by using the ODE call and the other by using the eigenvalue decomposition:

```
 /* Define the integrand */
 start fun(t,x) global(a,count);
 count = count+1;
 v = a*x;
 return(v);
finish;
/* Define the Jacobian */
start jac(t,x) global(a);
 v = a;
 return(v);
finish;
a={llllll
 -1 -2 3-1,
 -2 3 -4 -3,
 -3 -1 -3 -5 };
 /* Call ODE */
 count = 0;
 t = { 0 1 2};
 h = {1E-12 1 1E-5};
 eps = 1E-9;
 c = {1, 0, 0, 0 };
 call ode(z,"FUN",c,t,h) eps=eps j="JAC";
 print z[format=E21.14];
 print count;
/* Do the eigenvalue decomposition */
start eval(t) global(d,u,c);
 v = u*diag (exp (d*t)) *u`*c;
 return(v);
finish;
call eigen(d,u,a);
free z1;
do i = 1 to nrow(t)*ncol(t) -1;
 z1 = z1 || (eval(t[i+1]));
end;
print z1[format=E21.14];
```

The question now is whether or not this is an $O(1 \mathrm{E}-9)$ result. Note that for the problem

$$
d=\max _{0 \leq t \leq T}\left(\|y(t)\|_{\infty}, 1\right)=1
$$

with the $1 \mathrm{E}-6$ result, the ODE call should attempt to maintain an accuracy of $1 \mathrm{E}-9$ relative to 1 . Therefore, the $1 \mathrm{E}-6$ result should have almost three correct decimal places. At $t=2$, the first component of $\mathbf{Z}$ is $6.58597048842310 \mathrm{E}-06$, while its more accurate value is $6.58580950203220 \mathrm{E}-06$, showing an $O(1 \mathrm{E}-10)$ error.

The ODE subroutine can fail for problems with unusual qualitative properties, such as finite escape time in the interval of integration (that is, the solution goes towards infinity at some finite time). In such cases, try testing with different subintervals and different levels of accuracy to gain some qualitative information about the behavior of the solution of the differential equation.

## ODSGRAPH Call

## renders a graph by using ODS Statistical Graphics

CALL ODSGRAPH ( name, template, matrix $1<$, matrix2,...,matrix $13>$ );
The inputs to the ODSGRAPH subroutine are as follows:
\(\left.$$
\begin{array}{ll}\text { name } & \begin{array}{l}\text { is a character matrix or quoted literal that assigns a name to } \\
\text { the graph. The name is used to identify the output graph in the }\end{array}
$$ <br>

SAS Results window.\end{array}\right]\)| is a character matrix or quoted literal that names the template |
| :--- |
| used to render the graph. |

The ODSGRAPH subroutine (which requires a license for SAS/GRAPH) renders a graph defined by the input template. Data for the graph are in the columns of the matrix arguments. Column names are assigned to the matrices by using the MATTRIB statement or by using the COLNAME= option in a READ statement. This is illustrated in the following example, which produces a three-dimensional surface plot:

```
proc template;
 define statgraph SurfacePlot;
 BeginGraph;
 layout overlay3d;
 surfaceplotparm x=x y=y z=z / surfacetype=fill;
 endlayout;
 EndGraph;
 end;
run;
title 'Surface Plot';
ods html;
proc iml;
XDiv = do(-5, 5, 0.25);
```

```
YDiv = do(-5, 5, 0.25);
x = j(ncol(XDiv) *ncol(YDiv), 1);
y = j(ncol(XDiv) *ncol(YDiv), 1);
k = 1;
do i = 1 to ncol(YDiv);
 do j = 1 to ncol(XDiv);
 x[k] = XDiv[j];
 y[k] = YDiv[i];
 k = k + 1;
 end;
end;
z = sin(sqrt(x##2 + y##2));
matrix = x || y || z;
mattrib matrix colname={"x" "y" "z"};
call odsgraph("surface","SurfacePlot",matrix);
quit;
ods html close;
```

In the example, the TEMPLATE procedure defines a template for a surface plot. The ODSGRAPH subroutine calls ODS to render the graph by using the layout in the template. (The example renders the graph in the HTML destination; you can also render the graph in the default listing destination.) The data for the graph are contained in a matrix. The MATTRIB statement associates the columns of the matrix with the variable names required by the template.

You can also create graphs from data read from a data set. If $x, y$, and $z$ are variables in a data set, then the following statements plot these variables:

```
use myData;
read all into matrix [colname = c];
call odsgraph("surface","SurfacePlot",matrix);
```

Since column names created via a READ statement are permanently associated with the INTO matrix, you do not need to use a MATTRIB statement for this example.

The SAS/IML sample code includes other examples of plots available by using ODS Statistical Graphics.

## OPSCAL Function

rescales qualitative data to be a least squares fit to qualitative data
OPSCAL( mlevel, quanti<, qualit>)
The inputs to the OPSCAL function are as follows:
mlevel specifies a scalar that has one of two values. When mlevel is 1 the qualit matrix is at the nominal measurement level; when mlevel is 2 it is at the ordinal measurement level.
quanti specifies an $m \times n$ matrix of quantitative information assumed to be at the interval level of measurement.
qualit specifies an $m \times n$ matrix of qualitative information whose level of measurement is specified by mlevel. When qualit is omitted, mlevel must be 2 . When omitted, a temporary qualit is constructed that contains the integers from 1 to $n$ in the first row, from $n+1$ to $2 n$ in the second row, from $2 n+1$ to $3 n$ in the third row, and so forth, up to the integers ( $m-1$ ) $n$ to $m n$ in the last $(m$ th) row. Note that you cannot specify qualit as a character matrix.

The result of the OPSCAL function is the optimal scaling transformation of the qualitative (nominal or ordinal) data in qualit. The optimal scaling transformation result

- is a least squares fit to the quantitative data in quanti
- preserves the qualitative measurement level of qualit

When qualit is at the nominal level of measurement, the optimal scaling transformation result is a least squares fit to quanti, given the restriction that the category structure of qualit must be preserved. If element $i$ of qualit is in category $c$, then element $i$ of the optimum scaling transformation result is the mean of all those elements of quanti that correspond to elements of qualit that are in category $c$.

For example, consider these statements:

```
quanti={\begin{array}{llllllllllll}{5}&{4}&{6}&{7}&{4}&{6}&{2}&{4}&{8}&{6}\end{array}};
qualit={6 6 2 12 4 10 4 10 8 6};;
os=opscal (1,quanti,qualit);
```

The resulting vector OS has the following values:

|  | OS |  | 1 row | 10 cols | (numeric) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 5 | 6 | 7 | 3 | 5 | 3 |
| 0 | 5 | 8 | 5 |  |  |  |  |

The optimal scaling transformation result is said to preserve the nominal measurement level of qualit because wherever there was a qualit category $c$, there is now a result category label $v$. The transformation is least squares because the result element $v$ is the mean of appropriate elements of quanti. This is Young's (1981) discretenominal transformation.

When qualit is at the ordinal level of measurement, the optimal scaling transformation result is a least squares fit to quanti, given the restriction that the ordinal structure of qualit must be preserved. This is done by determining blocks of elements of qualit so that if element $i$ of qualit is in block $b$, then element $i$ of the result is the mean of all those quanti elements corresponding to block $b$ elements of qualit so that the means are (weakly) in the same order as the elements of qualit. For example, consider these statements:

```
quanti={\begin{array}{llllllllllll}{5}&{4}&{6}&{7}&{4}&{6}&{2}&{4}&{8}&{6}\end{array}};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(2,quanti,qualit);
```

The resulting vector OS has the following values:

|  |  | OS |  | 1 | row | 10 | cols |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | (numeric) |
| :---: |

This transformation preserves the ordinal measurement level of qualit because the elements of qualit and the result are (weakly) in the same order. It is least squares because the result elements are the means of appropriate elements of quanti. By comparing this result to the nominal one, you see that categories whose means are incorrectly ordered have been merged together to form correctly ordered blocks. This is known as Kruskal's (1964) least squares monotonic transformation. Consider the following statements:

```
quanti={[\begin{array}{llllllllllll}{5}&{3}&{6}&{7}&{5}&{7}&{8}&{6}&{7}&{8}\end{array}};
os=opscal (2,quanti) ;
```

These statements imply that

```
qualit={\begin{array}{llllllllllll}{1}&{2}&{3}&{4}&{5}&{6}&{7}&{8}&{9}&{10}\end{array}};
```

This means that the resulting vector has the following values:

|  | OS | 1 row | 10 cols | (numeric) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 4 | 6 | 6 | 6 | 7 | 7 |
| $:$ | 7 | 7 | 8 |  |  |  |  |

## ORPOL Function

## generates orthogonal polynomials on a discrete set of points

ORPOL( $x<$, maxdegree $<$, weights $\gg$ )
The inputs to the ORPOL function are as follows:
$x \quad$ is an $n \times 1$ vector of values on which the polynomials are to be defined.
maxdegree specifies the maximum degree polynomial to be computed. If maxdegree is omitted, the default value is $\min (n, 19)$. If weights is specified, maxdegree must also be specified.
weights specifies an $n \times 1$ vector of nonnegative weights associated with the points in $x$. If you specify weights, you must also specify maxdegree. If maxdegree is not specified or is specified incorrectly, the default weights (all weights are 1) are used.

The ORPOL matrix function generates orthogonal polynomials evaluated at the $n$ points contained in $x$ by using the algorithm of Emerson (1968). The result is a column-orthonormal matrix $\mathbf{P}$ with $n$ rows and maxdegree +1 columns such that $\mathbf{P}^{\prime} \operatorname{diag}($ weights $) \mathbf{P}=\mathbf{I}$. The result of evaluating the polynomial of degree $j-1$ at the $i$ th element of $x$ is stored in $\mathbf{P}[i, j]$.

The maximum number of nonzero orthogonal polynomials $(r)$ that can be computed from the vector and the weights is the number of distinct values in the vector, ignoring any value associated with a zero weight.

The polynomial of maximum degree has degree of $r-1$. If the value of maxdegree exceeds $r-1$, then columns $r+1, r+2, \ldots$, maxdegree +1 of the result are set to 0 . In this case,

$$
\mathbf{P}^{\prime} \operatorname{diag}(\text { weights }) \mathbf{P}=\left[\begin{array}{cc}
I(r) & 0 \\
0 & 0
\end{array}\right]
$$

The following statement results in a matrix with three orthogonal columns:

```
x = T(1:5);
P = orpol(x,2);
```

| P |  |  |
| :---: | :---: | :---: |
| 0.4472136 | -0.632456 | 0.5345225 |
| 0.4472136 | -0.316228 | -0.267261 |
| 0.4472136 | 0 | -0.534522 |
| 0.4472136 | 0.3162278 | -0.267261 |
| 0.4472136 | 0.6324555 | 0.5345225 |

The first column is a polynomial of degree 0 (a constant polynomial) evaluated at each point of $x$. The second column is a polynomial of degree 1 evaluated at each point of $x$. The third column is a polynomial of degree 2 evaluated at each point of $x$.

## Normalization of the Polynomials

The columns of $\mathbf{P}$ are orthonormal with respect to the inner product

$$
\langle f, g\rangle=\sum_{i=1}^{n} f\left(x_{i}\right) g\left(x_{i}\right) w_{i}
$$

as the following code shows.

```
start InnerProduct(f,g,w);
 h = f#g#w;
 return (h[+]);
finish;
/* Verify orthonormal */
reset fuzz; /* print tiny numbers as zero */
w = j(ncol(x),1,1); /* default weight is all ones */
```

```
do i = 1 to 3;
 do j = 1 to i;
 InnerProd = InnerProduct(P[,i], P[,j], w);
 print i j InnerProd;
 end;
end;
```

Some reference books on orthogonal polynomials do not normalize the columns of the matrix that represents the orthogonal polynomials. For example, a textbook might give the following as a fourth-degree polynomial evaluated on evenly spaced data:

```
textbookPoly = { 1 -2 2 -1 1,
 1 -1 -1 2 -4,
 1 0 -2 0 6,
 1 1 -1 -2 -4,
 1 2 2 1 1 };
```

To compare this representation to the normalized representation that ORPOL produces, use the following program:

```
/* Normalize the columns of textbook representation */
normalPoly = textbookPoly;
do i = 1 to ncol(normalPoly);
 v = normalPoly[,i];
 norm = sqrt(v[##]);
 normalPoly[,i] = v / norm;
end;
/* Compare the normalized matrix with ORPOL */
x = T(1:5); /* Any evenly spaced data gives the same answer */
imlPoly = orpol(x, 4);
diff = imlPoly - normalPoly;
maxDiff = abs(diff) [<>];
reset fuzz; /* print tiny numbers as zero */
print maxDiff;
```


## MAXDIFF

0

## Polynomial Regression

A typical use for orthogonal polynomials is to fit a polynomial to a set of data. Given a set of points $\left(x_{i}, y_{i}\right), i=1, \ldots, m$, the classical theory of orthogonal polynomials says that the best approximating polynomial of degree $d$ is given by

$$
f_{d}=\sum_{i=1}^{d+1} c_{i} P_{i}
$$

where $c_{i}=\left\langle y, P_{i}\right\rangle /\left\langle P_{i}, P_{i}\right\rangle$ and where $P_{i}$ is the $i$ th column of the matrix $\mathbf{P}$ returned by ORPOL. But the matrix is orthonormal with respect to the inner product, so $\left\langle P_{i}, P_{i}\right\rangle=1$ for all $i$. Thus you can easily compute a regression onto the span of polynomials.

In the following program, the weight vector is used to overweight or underweight particular data points. The researcher has reasons to doubt the accuracy of the first measurement. The last data point is also underweighted because it is a leverage point and is believed to be an outlier. The second data point was measured twice and is overweighted. (Rerunning the program with a weight vector of all ones, and examining the new values of the fit variable is a good way to understand the effect of the weight vector.)

```
x = {0.1, 2, 3, 5, 8, 10, 20};
y ={0.5, 1, 0.1, -1, -0.5, -0.8, 0.1};
/* The second measurement was taken twice.
 The first and last data points are underweighted
 because of uncertainty in the measurements. */
w = {0.5, 2, 1, 1, 1, 1, 0.2};
maxDegree = 4;
P = orpol (x,maxDegree,w);
/* The best fit by a polynomial of degree k is
 Sum C_i P_i where c_i = <f,P_i> */
c = j(1,maxDegree+1);
do i = 1 to maxDegree+1;
 c[i] = InnerProduct(y,P[,i],w);
end;
FitResults = j(maxDegree+1,2);
do k = 1 to maxDegree+1;
 fit = P[,1:k] * c[1:k];
 resid = y - fit;
 FitResults[k,1] = k-1; /* degree of polynomial */
 FitResults[k,2] = resid[##]; /* sum of square errors */
end;
print FitResults[colname={"Degree" "SSE"}];
```

The results of this program are as follows:

## FITRESULTS

Degree SSE
03.1733014
14.6716722
21.3345326
31.3758639
40.8644558

## Testing Linear Hypotheses

ORPOL can also be used to test linear hypotheses. Suppose you have an experimental design with $k$ factor levels. (The factor levels can be equally or unequally spaced.) At the $i$ th level, you record $n_{k}$ observation, $i=1 \ldots k$. If $n_{1}=n_{2}=\ldots=n_{k}$, then the design is said to be balanced, otherwise it is unbalanced. You want to fit a polynomial model to the data and then ask how much variation in the data is explained by the linear component, how much variation is explained by the quadratic component after the linear component is taken into account, and so on for the cubic, quartic, and higher-level components.

To be completely concrete, suppose you have four factor levels (1, 4, 6, and 10) and that you record seven measurements at first level, two measurements at the second level, three measurements at the third level, and four measurements at the fourth level. This is an example of an unbalanced and unequally spaced factor-level design. The following program uses orthogonal polynomials to compute the Type I sum of squares for the linear hypothesis. (The program works equally well for balanced designs and for equally spaced factor levels.)

The program calls ORPOL to generate the orthogonal polynomial matrix $\mathbf{P}$, and uses it to form the Type I hypothesis matrix $\mathbf{L}$. The program then uses the DESIGN function to generate $\mathbf{X}$, the design matrix associated with the experiment. The program then computes $\mathbf{b}$, the estimated parameters of the linear model.

Since $\mathbf{L}$ was expressed in terms of the orthogonal polynomial matrix $\mathbf{P}$, the computations involved in forming the Type I sum of squares are considerably simplified.

Here is the code:

```
/* unequally spaced and unbalanced factor levels */
levels = {
1,1,1,1,1,1,1,
4,4,
6,6,6,
10,10,10,10};
/* data for y. Make sure the data are sorted
 according to the factor levels */
y = {
2.804823, 0.920085, 1.396577, -0.083318,
3.238294, 0.375768, 1.513658, /* level 1 */
3.913391, 3.405821, /* level 4 */
6.031891, 5.262201, 5.749861, /* level 6 */
10.685005, 9.195842, 9.255719, 9.204497 /* level 10 */
};
a = {1,4,6,10}; /* spacing */
trials = {7,2,3,4}; /* sample sizes */
maxDegree = 3; /* model with Intercept,a,a##2,a##3 */
P = orpol(a,maxDegree,trials);
/* Test linear hypotheses:
```

```
 How much variation is explained by the
 i_th polynomial component after components
 0..(i-1) have been taken into account? */
/* the columns of L are the coefficients of the
 orthogonal polynomial contrasts */
L = diag(trials)*P;
/* form design matrix */
x = design(levels);
/* compute b, the estimated parameters of the
 linear model. b is the mean of the y values
 at each level.
 b = ginv(x' *x) * x' * y
 but since x is the output from DESIGN, then
 x`*x = diag(trials) and so
 ginv(x'*x) = diag(1/trials) */
b = diag(1/trials) *x`*y;
/* (L`*b)[i] is the best linear unbiased estimated
 (BLUE) of the corresponding orthogonal polynomial
 contrast */
blue = L`*b;
/* the variance of (L`*b) is
 var(L`*b) = L`*ginv(x`*x) *L
 =[P`*diag(trials)]*diag(1/trials)*[diag(trials)*P]
 = P`*diag(trials)*P
 = Identity (by definition of P)
 so therefore the standardized square of
 (L`*b) is computed as
 SS1[i] = (blue[i]*blue[i])/var(L`*b)[i,i])
 = (blue[i])##2 */
```

```
SS1 = blue # blue;
```

SS1 = blue \# blue;
rowNames = {'Intercept' 'Linear' 'Quadratic' 'Cubic'};
rowNames = {'Intercept' 'Linear' 'Quadratic' 'Cubic'};
print SS1[rowname=rowNames format=11.7 label="Type I SS"];

```
print SS1[rowname=rowNames format=11.7 label="Type I SS"];
```

The resulting output is as follows:

## Type I SS

```
Intercept 331.8783538
Linear 173.4756050
Quadratic 0.4612604
Cubic 0.0752106
```

This indicates that most of the variation in the data can be explained by a first-degree polynomial.

## Generating Families of Orthogonal Polynomials

There are classical families of orthogonal polynomials (for example, Legendre, Laguerre, Hermite, and Chebyshev) that arise in the study of differential equations and mathematical physics. These "named" families are orthogonal on particular intervals ( $a, b$ ) with respect to the inner product $\int_{b}^{a} f(x) g(x) w(x) d x$. The functions returned by ORPOL are different from these named families because ORPOL uses a different inner product. There are no IML functions that can automatically generate these families; however, you can write an IML program to generate them.

Each named polynomial family $\left\{p_{j}\right\}, j \geq 0$ satisfies a three-term recurrence relation of the form

$$
p_{j}=\left(A_{j}+x B_{j}\right) p_{j-1}-C_{j} p_{j-2}
$$

where the constants $A_{j}, B_{j}$, and $C_{j}$ are relatively simple functions of $j$. To generate these "named" families, use the three-term recurrence relation for the family. The recurrence relations are found in references such as Abramowitz and Stegun (1972) or Thisted (1988).

For example, the so-called Legendre polynomials (represented $P_{j}$ for the polynomial of degree $j$ ) are defined on $(-1,1)$ with the weight function $w(x)=1$. They are standardized by requiring that $P_{j}(1)=1$ for all $j \geq 0$. Thus $P_{0}(x)=1$. The linear polynomial $P_{1}(x)=a+b x$ is orthogonal to $P_{0}$ so that

$$
\int_{-1}^{1} P_{1}(x) P_{0}(x) d x=\int_{-1}^{1} a+b x d x=0
$$

which implies $a=0$. The standardization $P_{1}(1)=1$ implies that $P_{1}(x)=x$. The remaining Legendre polynomials can be computed by looking up the three-term recurrence relation: $A_{j}=0, B_{j}=(2 j-1) / j$, and $C_{j}=(j-1) j$. The following program computes Legendre polynomials evaluated at a set of points.

```
maxDegree = 6;
/* evaluate polynomials at these points */
x = T(do(-1,1,0.05));
/* define the standard Legendre Polynomials
 Using the 3-term recurrence with
 A[j]=0, B[j]=(2j-1)/j, and C[j]=(j-1)/j
 and the standardization P_j(1)=1
 which implies P_0(x)=1, P_1(x)=x. */
legendre = j(nrow (x), maxDegree+1);
legendre[,1] = 1; /* P_0 */
legendre[,2] = x; /* P_1 */
do j = 2 to maxDegree;
 legendre[,j+1] = (2*j-1)/j # x # legendre[,j] -
 (j-1)/j # legendre[,j-1];
end;
```


## ORTVEC Call

provides columnwise orthogonalization by the Gram-Schmidt process and stepwise QR decomposition by the Gram-Schmidt process

CALL ORTVEC( $w, r, \rho$, lindep, $v<, q>$ );
The ORTVEC subroutine returns the following values:
$w$
If the Gram-Schmidt process converges (lindep $=0$ ), $w$ is the $m \times 1$ vector $\mathbf{w}$ orthonormal to the columns of $\mathbf{Q}$, which is assumed to have $n \leq m$ (nearly) orthonormal columns. If the Gram-Schmidt process does not converge (lindep $=1$ ), $w$ is a vector of missing values. For stepwise QR decomposition, $w$ is the $(n+1)$ th orthogonal column of the matrix $\mathbf{Q}$. If there is no matrix $\mathbf{Q}$, that is, if the $q$ argument is not specified, $w$ is the normalized value of the vector $\mathbf{v}$,

$$
\mathbf{w}=\frac{\mathbf{v}}{\sqrt{\mathbf{v}^{\prime} \mathbf{v}}}
$$

If the Gram-Schmidt process converges (lindep $=0$ ), $r$ specifies the $n \times 1$ vector $\mathbf{r}$ of Fourier coefficients. If the Gram-Schmidt process does not converge (lindep $=1$ ), $r$ is a vector of missing values. If the $q$ argument is not specified, $r$ is a vector with zero dimension. For stepwise QR decomposition, $r$ contains the $n$ upper triangular elements of the $(n+$ 1)th column of $\mathbf{R}$.
$\rho \quad$ If the Gram-Schmidt process converges (lindep $=0$ ), $\rho$ specifies the distance from $\mathbf{w}$ to the range of $\mathbf{Q}$. Even if the Gram-Schmidt process converges, if $\rho$ is sufficiently small, the vector $\mathbf{v}$ can be linearly dependent on the columns of $\mathbf{Q}$. If the Gram-Schmidt process does not converge (lindep $=1$ ), $\rho$ is set to 0 . For stepwise QR decomposition, $\rho$ contains the diagonal element of the $(n+1)$ th column of $\mathbf{R}$.
lindep returns a value of 1 if the Gram-Schmidt process does not converge in 10 iterations. In most cases, if lindep $=1$, the input vector $\mathbf{v}$ is linearly dependent on the $n$ columns of the input matrix $\mathbf{Q}$. In that case, $\rho$ is set to 0 , and the results $w$ and $r$ contain missing values. If linde $p=0$, the Gram-Schmidt process did converge, and the results $w, r$, and $\rho$ are computed.

The inputs to the ORTVEC subroutine are as follows:
$v$
specifies an $m \times 1$ vector $\mathbf{v}$ that is to be orthogonalized to the $n$ columns of $\mathbf{Q}$. For stepwise $\mathbf{Q R}$ decomposition of a matrix, $\mathbf{v}$ is the $(n+1)$ th matrix column before its orthogonalization.
$q$
specifies an optional $m \times n$ matrix $\mathbf{Q}$ that is assumed to have $n \leq m$ (nearly) orthonormal columns. Thus, the $n \times n$ matrix $\mathbf{Q}^{\prime} \mathbf{Q}$ should approximate the identity matrix. The column orthonormality assumption
is not tested in the ORTVEC call. If it is violated, the results are not predictable. The argument $q$ can be omitted or can have zero rows and columns. For stepwise QR decomposition of a matrix, $q$ contains the first $n$ matrix columns that are already orthogonal.

The relevant formula for the ORTVEC subroutine is

$$
\mathbf{v}=\mathbf{Q r}+\rho \mathbf{w}
$$

Assuming that the $m \times n$ matrix $\mathbf{Q}$ has $n$ (nearly) orthonormal columns, the ORTVEC subroutine orthogonalizes the vector $\mathbf{v}$ to the columns of $\mathbf{Q}$. The vector $\mathbf{r}$ is the array of Fourier coefficients, and $\rho$ is the distance from $\mathbf{w}$ to the range of $\mathbf{Q}$.

There are two special cases:

- If $m>n$, ORTVEC normalizes the result $\mathbf{w}$, so that $\mathbf{w}^{\prime} \mathbf{w}=1$.
- If $m=n$, the output vector $\mathbf{w}$ is the null vector.

The case $m<n$ is not possible since $\mathbf{Q}$ is assumed to have $n$ (nearly) orthonormal columns.

To initialize a stepwise QR decomposition, ORTVEC can be called to normalize $\mathbf{v}$ only, that is, to compute $\mathbf{w}=\mathbf{v} / \sqrt{\mathbf{v}^{\prime} \mathbf{v}}$ and $\rho=\sqrt{\mathbf{v}^{\prime} \mathbf{v}}$ only. There are two ways of using the ORTVEC call for this reason:

- Omit the last argument $q$, as in call ortvec (w,r,rho,lindep, v);
- Provide a matrix $\mathbf{Q}$ with zero rows and columns, for example, by using the free q; command.

In both cases, $\mathbf{r}$ is a column vector with zero rows.
The ORTVEC subroutine is useful for the following applications:

- performing stepwise QR decomposition. Compute $\mathbf{Q}$ and $\mathbf{R}$, so that $\mathbf{A}=\mathbf{Q R}$, where $\mathbf{Q}$ is column orthonormal, $\mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{I}$, and $\mathbf{R}$ is upper triangular. The $j$ th step is applied to the $j$ th column, $\mathbf{v}$, of $\mathbf{A}$, and it computes the $j$ th column $\mathbf{w}$ of $\mathbf{Q}$ and the $j$ th column, $(\mathbf{r} \rho 0)^{\prime}$, of $\mathbf{R}$.
- computing the $m \times(m-n)$ null space matrix, $\mathbf{Q}_{2}$, corresponding to an $m \times n$ range space matrix, $\mathbf{Q}_{1}(m>n)$, by the following stepwise process: set $\mathbf{v}=$ $\mathbf{e}_{i}$ (where $\mathbf{e}_{i}$ is the $i$ th unit vector) and try to make it orthogonal to all column vectors of $\mathbf{Q}_{1}$ and the already generated $\mathbf{Q}_{2}$, if the subroutine is successful, append $\mathbf{w}$ to $\mathbf{Q}_{2}$; otherwise, try $\mathbf{v}=\mathbf{e}_{i+1}$.

The $4 \times 3$ matrix $\mathbf{Q}$ contains the unit vectors $\mathbf{e}_{1}, \mathbf{e}_{3}$, and $\mathbf{e}_{4}$. The column vector $\mathbf{v}$ is pairwise linearly independent with the three columns of $\mathbf{Q}$. As expected, the ORTVEC call computes the vector $\mathbf{w}$ as the unit vector $\mathbf{e}_{2}$ with $\mathbf{u}=(1,1,1)$ and $\rho=1$. Here is the code:

```
q = { 1 0 0,
 0 0 0,
 0 1 0,
 0 0 1 };
v = { 1, 1, 1, 1 };
call ortvec(w,u,rho,lindep,v,q) ;
print rho u w;
```

You can perform the QR decomposition of the linearly independent columns of an $m \times n$ matrix $\mathbf{A}$ with the following statements:

```
a = { . . . enter matrix A here . . . };
nind = 0; ndep = 0; dmax = 0.;
n = ncol(a); m = nrow(a);
free q;
do j = 1 to n;
 v = a[,j];
 call ortvec(w,u,rho,lindep,v,q);
 aro = abs(rho);
 if aro > dmax then dmax = aro;
 if aro <= 1.e-10 * dmax then lindep = 1;
 if lindep = 0 then do;
 nind = nind + 1;
 q = q l| w;
 if nind = n then r = r || (u // rho);
 else r = r || (u // rho // j(n-nind,1,0.));
 end;
 else do;
 print "Column " j " is linearly dependent.";
 ndep = ndep + 1; ind[ndep] = j;
 end;
end;
```

Next, process the remaining columns of $\mathbf{A}$ :

```
do j = 1 to ndep;
 k = ind[ndep-j+1];
 v = a[,k];
 call ortvec(w,u,rho,lindep,v,q);
 if lindep = 0 then do;
 nind = nind + 1;
 q = q || w;
 if nind = n then r = r || (u // rho);
 else r = r || (u // rho // j(n-nind,1,0.));
 end;
end;
```

Now compute the null space in the last columns of $\mathbf{Q}$ :

```
do i = 1 to m;
 if nind < m then do;
 v = j(m,1,0.); v[i] = 1.;
```

```
 call ortvec(w,u,rho,lindep,v,q);
 aro = abs(rho);
 if aro > dmax then dmax = aro;
 if aro <= 1.e-10 * dmax then lindep = 1;
 if lindep = O then do;
 nind = nind + 1;
 q = q || w;
 end;
 else print "Unit vector" i "linearly dependent.";
 end;
end;
if nind < m then do;
 print "This is theoretically not possible.";
end;
```


## PAUSE Statement

interrupts module execution
PAUSE <expression> <*>;
The inputs to the PAUSE statement are as follows:
expression is a character matrix or quoted literal giving a message to print. * suppresses any messages.

The PAUSE statement stops execution of a module, saves the calling chain so that execution can resume later (by a RESUME statement), prints a pause message that you can specify, and puts you in immediate mode so you can enter more statements.

You can specify an operand in the PAUSE statement to supply a message to be printed for the pause prompt. If no operand is specified, the following default message is printed:

```
paused in module XXX
```

In this case, $X X X$ is the name of the module containing the pause. If you want to suppress all messages in a PAUSE statement, use an asterisk as the operand, as follows:

```
pause *;
```

The PAUSE statement should only be specified in modules. It generates a warning if executed in immediate mode.

When an error occurs while executing inside a module, IML automatically behaves as though a PAUSE statement was issued. IML prints the following note:

```
paused in module
```

IML also puts you in immediate mode within the module environment, where you can correct the error. You can then resume execution from the statement following the one where the error occurred by issuing a RESUME command.

IML supports pause processing of both subroutine and function modules. See also the description of the SHOW statement using the PAUSE option.

## PGRAF Call

## produces scatter plots

CALL PGRAF $(x y<, i d><, x l a b e l><$, ylabel $><$, title $>)$;
The inputs to the PGRAF subroutine are as follows:

| $x y$ | is an $n \times 2$ matrix of $(x, y)$ points. | | |
|---|---|---|---|
| id | is an $n \times 1$ character matrix of labels for each point. The PGRAF <br> subroutine uses up to 8 characters per point. If $i d$ is a scalar ( $1 \times$ <br> 1), then the same label is used for all of the points. The label is <br> centered over the actual point location. If you do not specify $i d, \mathbf{x}$ |
| is the default character for labeling the points. |  |
| is a character scalar or quoted literal that labels the $x$ axis (centered |  |
| beneath the $x$ axis). |  |$\quad$| is a character scalar or quoted literal that labels the $y$ axis (printed |
| :--- |
| verabel |
| vertically to the left of the $y$ axis). |

The PGRAF subroutine produces a scatter plot suitable for display on a line printer or similar device.

The following statements specify a plotting symbol, axis labels, and a title to produce the plot shown.


## POLYROOT Function

## finds zeros of a real polynomial

## POLYROOT( vector)

where vector is an $n \times 1$ (or $1 \times n$ ) vector containing the coefficients of an $(n-1)$ degree polynomial with the coefficients arranged in order of decreasing powers. The POLYROOT function returns the array $r$, which is an $(n-1) \times 2$ matrix containing the roots of the polynomial. The first column of $r$ contains the real part of the complex roots and the second column contains the imaginary part. If a root is real, the imaginary part is 0 .

The POLYROOT function finds the real and complex roots of a polynomial with real coefficients.

The POLYROOT function uses an algorithm proposed by Jenkins and Traub (1970) to find the roots of the polynomial. The algorithm is not guaranteed to find all roots of the polynomial. An appropriate warning message is issued when one or more roots cannot be found. If $r$ is given as a root of the polynomial $P(x)$, then $1+P(R)=1$ based on the rounding error of the computer that is employed.

For example, suppose you want to find the roots of the polynomial

$$
P(x)=0.2567 x^{4}+0.1570 x^{3}+0.0821 x^{2}-0.3357 x+1
$$

Use the following IML code to produce the result shown.

```
p={0.2567 0.1570 0.0821 -0.3357 1};
r=polyroot(p);
```

R 4 rows 2 cols (numeric)

$$
\begin{array}{ll}
0.8383029 & 0.8514519 \\
0.8383029 & -0.851452 \\
-1.144107 & 1.1914525 \\
-1.144107 & -1.191452
\end{array}
$$

The polynomial has two conjugate pairs of roots that, within machine precision, are given by $r=0.8383029 \pm 0.8514519 i$ and $r=-1.144107 \pm 1.1914525 i$.

## PRINT Statement

## prints matrix values

```
PRINT < matrices> < (expression)> <"message">
 \(<\) pointer-controls> <[options]>;
```

The inputs to the PRINT statement are as follows:
matrices are the names of matrices.
(expression) is an expression in parentheses that is evaluated. The result of the evaluation is printed. The evaluation of a subscripted matrix used as an expression results in printing the submatrix.
"message" is a message in quotes.
pointer-controls control the pointer for printing. For example, using a comma (,) skips a single line and using a slash (/) skips to a new page.
[options] are described in the following list.

The PRINT statement prints the specified matrices or message. The following options can appear in the PRINT statement. They are specified in brackets after the matrix name to which they apply.

## COLNAME=matrix

specifies the name of a character matrix whose first ncol elements are to be used for the column labels of the matrix to be printed, where ncol is the number of columns in the matrix. (You can also use the RESET autoname statement to automatically label columns as COL1, COL2, and so on.)

## FORMAT=format

specifies a valid SAS or user-defined format to use in printing the values of the matrix, for example:

```
print x[format=5.3];
```

LABEL=label
specifies the name of a scalar character matrix or literal to use as a label when printing the matrix. For example:

```
print x[label="Net Pay"];
```


## ROWNAME=matrix

specifies the name of a character matrix whose first nrow elements are to be used for the row labels of the matrix to be printed, where nrow is the number of rows in the matrix and where the scan to find the first nrow elements goes across row 1 , then across row 2, and so forth through row $n$. (You can also use the RESET autoname statement as follows to automatically label rows as ROW1, ROW2, and so on.)

```
reset autoname;
```

For example, you can use the following statements to print a matrix called $\mathbf{X}$ in format 12.2 with columns labeled AMOUNT and NET PAY, and rows labeled DIV A and DIV B:

```
x={45.125 50.500,
 75.375 90.825};
r={"DIV A" "DIV B"};
c={"AMOUNT" "NET PAY"};
print x[rowname=r colname=c format=12.2];
```

The output is as follows:

| X | AMOUNT | NET PAY |
| :--- | ---: | ---: |
|  |  |  |
| DIV A | 45.13 | 50.50 |
| DIV B | 75.38 | 90.83 |

To permanently associate the preceding options with a matrix name, refer to the description of the MATTRIB statement.

If there is not enough room to print all the matrices across the page, then one or more matrices are printed out in the next group. If there is not enough room to print all the columns of a matrix across the page, then the columns are folded, with the continuation lines identified by a colon (:).

The spacing between adjacent matrices can be controlled by the SPACES= option of the RESET statement. The FW= option of the RESET statement can be used to control the number of print positions used to print each numeric element. For more print-related options, including the PRINTADV option, see the description of the RESET statement. The following example shows how to print part of a matrix:

```
y=1:10;
 /* prints first five elements of y*/
print (y[1:5]) [format=5.1];
```


## PRODUCT Function

multiplies matrices of polynomials
PRODUCT( $a, b<, \operatorname{dim}>$ )
The inputs to the PRODUCT function are as follows:
$a \quad$ is an $m \times(n s)$ numeric matrix. The first $m \times n$ submatrix contains the constant terms of the polynomials, the second $m \times n$ submatrix contains the first-order terms, and so on.
$b \quad$ is an $n \times(p t)$ matrix. The first $n \times p$ submatrix contains the constant terms of the polynomials, the second $n \times p$ submatrix contains the first-order terms, and so on.
$\operatorname{dim} \quad$ is a $1 \times 1$ matrix, with value $p>0$. The value of this matrix is used to set the dimension $p$ of the matrix $b$. If omitted, the value of $p$ is set to 1 .

The PRODUCT function multiplies matrices of polynomials. The value returned is the $m \times(p(s+t-1))$ matrix of the polynomial products. The first $m \times p$ submatrix contains the constant terms, the second $m \times p$ submatrix contains the first-order terms, and so on.

Note: The PRODUCT function can be used to multiply the matrix operators employed in a multivariate time series model of the form

$$
\Phi_{1}(B) \Phi_{2}(B) \mathbf{Y}_{t}=\Theta_{1}(B) \Theta_{2}(B) \epsilon_{t}
$$

where $\Phi_{1}(B), \Phi_{2}(B), \Theta_{1}(B)$, and $\Theta_{2}(B)$ are matrix polynomial operators whose first matrix coefficients are identity matrices. Often $\Phi_{2}(B)$ and $\Theta_{2}(B)$ represent seasonal components that are isolated in the modeling process but multiplied with the other operators when forming predictors or estimating parameters. The RATIO function is often employed in a time series context as well.

For example, the following statement produces the matrix $\mathbf{R}$, as shown:

```
r=product({\begin{array}{llll}{1}&{2}&{3}&{4,}\end{array},
 5 6 7 8},
 {1 2 3,
 4 6}, 1);
```

| 2 rows |  | 4 cols | (numeric) |
| ---: | ---: | ---: | :---: |
| 9 | 31 | 41 | 33 |
| 29 | 79 | 105 | 69 |

## PURGE Statement

removes observations marked for deletion and renumbers records

## PURGE;

The PURGE data processing statement is used to remove observations marked for deletion and to renumber the remaining observations. This closes the gaps created by deleted records. Execution of this statement can be time-consuming because it involves rewriting the entire data set.

CAUTION: Any indexes associated with the data set are lost after a purge.
IML does not do an automatic purge for you at quit time.
In the example that follows, a data set named A is created. Then, you begin an IML session and edit A. You delete the fifth observation, list the data set, and issue a PURGE statement to delete the fifth observation and renumber the remaining observations.

```
data a;
 do i=1 to 10;
 output;
 end;
run;
proc iml;
 edit a;
 delete point 5;
 list all;
 purge;
 list all;
```


## PUSH Call

## pushes SAS statements into the command input stream

CALL PUSH( argument1<, argument2,..., argument15>);
where argument is a character matrix or quoted literal containing valid SAS statements.

The PUSH subroutine pushes character arguments containing valid SAS statements (usually SAS/IML statements or global statements) to the input command stream. You can specify up to 15 arguments. Any statements pushed to the input command queue get executed when the module is put in a hold state. This is usually induced by one of the following:

- an execution error within a module
- an interrupt
- a pause command

The string pushed is read before any other lines of input. If you call the PUSH subroutine several times, the strings pushed each time are ahead of the less recently
pushed strings. If you would rather place the lines after others in the input stream, then use the QUEUE command instead.

The strings you push do not appear on the log.
CAUTION: Do not push too much code at one time.
Pushing too much code at one time, or getting into infinite loops of pushing, causes problems that can result in exiting the SAS system.

For details, see Chapter 15.
An example that uses the PUSH subroutine follows:

```
start;
 code='reset pagesize=25;';
 call push(code,'resume;');
 pause;
 /* show that pagesize was set to 25 during */
 /* a PAUSE state of a module */
 show options;
finish;
run;
```


## PUT Statement

## writes data to an external file

$$
\text { PUT <operand }><\text { record-directives }><\text { positionals }><\text { format }>;
$$

The inputs to the PUT statement are as follows:


```
put >3 x 3.2;
```

positionals
specify the column on the record to which the PUT statement should go. There are two types of positionals:
@ operand specifies to go to the indicated column, where operand is a literal number, a variable name, or an expression in parentheses. For example, @30 means to go to column 30 .

+ operand
specifies that the indicated number of columns are to be skipped, where operand is a literal number, a variable name, or an expression in parentheses.
format
specifies a valid SAS or user-defined output format. These are of the form $w . d$ or $\$ w$. for standard numeric and character formats, respectively, where $w$ is the width of the field and $d$ is the decimal parameter, if any. They can also be a named format of the form NAMEw.d, where NAME is the name of the format. If the width is unspecified, then a default width is used; this is 9 for numeric variables.

The PUT statement writes to the file specified in the previously executed FILE statement, putting the values from IML variables. The statement is described in detail in Chapter 7.

The PUT statement is a sequence of positionals and record directives, variables, and formats. An example that uses the PUT statement follows:

```
/* output variable A in column 1 using SAS format 6.4. */
/* Skip 3 columns and output X using format 8.4 */
put @1 a 6.4 +3 x 8.4;
```


## PV Function

calculates the present value of a vector of cash flows and returns a scalar
PV( times,flows,freq, rates)
The PV function returns a scalar containing the present value of the cash flows based on the specified frequency and rates.
times is an $n \times 1$ column vector of times. Elements should be nonnegative.
flows is an $n \times 1$ column vector of cash flows.
freq is a scalar that represents the base of the rates to be used for discounting the cash flows. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If -1 , the rates represent per-period discount factors. No other negative values are accepted.
rates is an $n \times 1$ column vector of rates to be used for discounting the cash flows. Elements should be positive.

A general present value relationship can be written as

$$
P=\sum_{k=1}^{K} c(k) D\left(t_{k}\right)
$$

where $P$ is the present value of the asset, $\{c(k)\} k=1, \ldots, K$ is the sequence of cash flows from the asset, $t_{k}$ is the time to the $k$ th cash flow in periods from the present, and $D(t)$ is the discount function for time $t$.
With per-unit-time-period discount factors $d_{t}$ :

$$
D(t)=d_{t}^{t}
$$

With continuous compounding:

$$
D(t)=e^{-r_{t} t}
$$

With discrete compounding:

$$
D(t)=(1+f r)^{-t / f}
$$

where $f>0$ is the frequency, the reciprocal of the number of compoundings per unit time period.

The following code presents an example of the PV function:

```
data a;
 pv=mort(.,438.79,.10/12,30*12);
run;
proc print data=a;
run;
/* Use PROC IML PV function to compute PV. */
proc iml;
/* If rate is specified as annual rate divided */
/* by 12 and FREQ=1, then results are equal */
/* to those computed by the MORT function. */
timesn=t(do (1, 360,1));
flows=repeat (438.79,360);
rate=repeat (.10/12,360);
freq=1;
pv=pv(timesn,flows,freq,rate);
```

```
print pv;
/* If rate is specified as annual rate, then */
/* the cash flow TIMES need to be specified */
/* in 1/12 increments and the FREQ=1/12. This */
/* specification returns the same result as */
/* the MORT function and the previous PV run. */
timesn=t(do(1/12,30,1/12));
flows=repeat (438.79,360);
rate=repeat (.10,360); /* specify annual rate */
freq=1/12; /* 12 compoundings annually: freq=1/12 */
pv=pv(timesn,flows,freq,rate);
print pv;
quit;
```

The result is as follows:

```
Obs pv
 1 50000.48
 pv
50000.48
 pv
50000.48
```


## QR Call

## produces the QR decomposition of a matrix by Householder transformations

CALL QR( $q, r$, piv, lindep, $a<$, ord $><, b>$ );
The QR subroutine returns the following values:
$q \quad$ specifies an orthogonal matrix $\mathbf{Q}$ that is the product of the Householder transformations applied to the $m \times n$ matrix $\mathbf{A}$, if the $b$ argument is not specified. In this case, the $\min (m, n)$ Householder transformations are applied, and $q$ is an $m \times m$ matrix. If the $b$ argument is specified, $q$ is the $m \times p$ matrix $\mathbf{Q}^{\prime} \mathbf{B}$ that has the transposed Householder transformations $\mathbf{Q}^{\prime}$ applied on the $p$ columns of the argument matrix $\mathbf{B}$.
$r$
specifies a $\min (m, n) \times n$ upper triangular matrix $\mathbf{R}$ that is the upper part of the $m \times n$ upper triangular matrix $\widetilde{\mathbf{R}}$ of the QR decomposition of the matrix $\mathbf{A}$. The matrix $\widetilde{\mathbf{R}}$ of the QR decomposition can be obtained by vertical concatenation (by using the IML operator $/ /$ ) of the ( $\mathrm{m}-$ $\min (m, n)) \times n$ zero matrix to the result matrix $\mathbf{R}$.
piv specifies an $n \times 1$ vector of permutations of the columns of $\mathbf{A}$; that is, on return, the QR decomposition is computed, not of $\mathbf{A}$, but of the permuted matrix whose columns are $\left[\mathbf{A}_{p i v[1]} \cdots \mathbf{A}_{p i v[n]}\right]$. The vector $p i v$ corresponds to an $n \times n$ permutation matrix $\boldsymbol{\Pi}$.
lindep $\quad$ is the number of linearly dependent columns in matrix $\mathbf{A}$ detected by applying the $\min (m, n)$ Householder transformations in the order specified by the argument vector piv.

The inputs to the QR subroutine are as follows:
$a$
specifies an $m \times n$ matrix $\mathbf{A}$ that is to be decomposed into the product of the orthogonal matrix $\mathbf{Q}$ and the upper triangular matrix $\widetilde{\mathbf{R}}$.
ord $\quad$ specifies an optional $n \times 1$ vector that specifies the order of Householder transformations applied to matrix $\mathbf{A}$, as follows:

$$
\begin{array}{ll}
\operatorname{ord}[j]>0 & \begin{array}{l}
\text { Column } j \text { of } \mathbf{A} \text { is an initial column, meaning it has to } \\
\text { be processed at the start in increasing order of } \operatorname{ord}[j] .
\end{array} \\
\operatorname{crd}[j]=0 & \begin{array}{l}
\text { Column } j \text { of } \mathbf{A} \text { can be permuted in order of decreas- } \\
\text { ing residual Euclidean norm (pivoting). }
\end{array} \\
\operatorname{crd}[j]<0 & \begin{array}{l}
\text { Column } j \text { of } \mathbf{A} \text { is a final column, meaning it has to } \\
\text { be processed at the end in decreasing order of } \operatorname{ord}[j] .
\end{array}
\end{array}
$$

The default is $\operatorname{ord}[j]=j$, in which case the Householder transformations are done in the same order that the columns are stored in matrix A (without pivoting).
b specifies an optional $m \times p$ matrix $\mathbf{B}$ that is to be multiplied by the transposed $m \times m$ matrix $\mathbf{Q}^{\prime}$. If $b$ is specified, the result $q$ contains the $m \times p$ matrix $\mathbf{Q}^{\prime} \mathbf{B}$. If $b$ is not specified, the result $q$ contains the $m \times m$ matrix $\mathbf{Q}$.

The $\mathbf{Q R}$ subroutine decomposes an $m \times n$ matrix $\mathbf{A}$ into the product of an $m \times m$ orthogonal matrix $\mathbf{Q}$ and an $m \times n$ upper triangular matrix $\widetilde{\mathbf{R}}$, so that

$$
\mathbf{A} \Pi=\mathbf{Q} \widetilde{\mathbf{R}}, \quad \mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{Q Q}^{\prime}=\mathbf{I}_{m}
$$

by means of $\min (m, n)$ Householder transformations.
The $m \times m$ orthogonal matrix $\mathbf{Q}$ is computed only if the last argument $b$ is not specified, as in the following code:

```
call qr(q,r,piv,lindep,a,ord);
```

In many applications, the number of rows, $m$, is very large. In these cases, the explicit computation of the $m \times m$ matrix $\mathbf{Q}$ can require too much memory or time.

In the usual case where $m>n$,

$$
\begin{aligned}
\mathbf{A}=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] & \mathbf{Q}=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \\
\widetilde{\mathbf{R}}=\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & \mathbf{R}=\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right] \\
\mathbf{Q}=\left[\mathbf{Q}_{1} \mathbf{Q}_{2}\right], & \widetilde{\mathbf{R}}=\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{R}$ is the result returned by the QR subroutine.
The $n$ columns of matrix $\mathbf{Q}_{1}$ provide an orthonormal basis for the $n$ columns of $\mathbf{A}$ and are called the range space of $\mathbf{A}$. Since the $m-n$ columns of $\mathbf{Q}_{2}$ are orthogonal to the $n$ columns of $\mathbf{A}, \mathbf{Q}_{2}^{\prime} \mathbf{A}=\mathbf{0}$, they provide an orthonormal basis for the orthogonal complement of the columns of $\mathbf{A}$ and are called the null space of $\mathbf{A}$.

In the case where $m<n$,

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \\
\widetilde{\mathbf{R}}=\mathbf{R}=\left[\begin{array}{lllll}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & *
\end{array}\right]
\end{gathered}
$$

Specifying the argument ord as an $n$ vector lets you specify a special order of the columns in matrix $\mathbf{A}$ on which the Householder transformations are applied. When you specify the ord argument, the columns of $\mathbf{A}$ can be divided into the following groups:

- $\operatorname{ord}[j]>0:$ Column $j$ of $\mathbf{A}$ is an initial column, meaning it has to be processed at the start in increasing order of ord $[j]$. This specification defines the first $n l$ columns of A that are to be processed.
- $\operatorname{ord}[j]=0$ : Column $j$ of $\mathbf{A}$ is a pivot column, meaning it is to be processed in order of decreasing residual Euclidean norms. The pivot columns of A are processed after the $n l$ initial columns and before the nu final columns.
- $\operatorname{ord}[j]<0$ : Column $j$ of $\mathbf{A}$ is a final column, meaning it has to be processed at the end in decreasing order of $\operatorname{ord}[j]$. This specification defines the last $n u$ columns of $\mathbf{A}$ that are to be processed. If $n>m$, some of these columns will not be processed at all.

There are two special cases:

- If you do not specify the $\operatorname{ord}$ argument, the default values $\operatorname{ord}[j]=j$ are used. In this case, Householder transformations are done in the same order in which the columns are stored in $\mathbf{A}$ (without pivoting).
- If you set all components of ord to zero, the Householder transformations are done in order of decreasing Euclidean norms of the columns of $\mathbf{A}$.

The resulting $n \times 1$ vector piv specifies the permutation of the columns of $\mathbf{A}$ on which the Householder transformations are applied; that is, on return, the QR decomposition is computed, not of $\mathbf{A}$, but of the matrix with columns that are permuted in the order
$\mathbf{A}_{p i v[1]}, \ldots, \mathbf{A}_{p i v[n]}$.
To check the QR decomposition, use the following statements to compute the three residual sum of squares, represented by the variables SS0, SS1, and SS2, which should be close to zero:

```
m = nrow(a); n = ncol(a);
call qr(q,r,piv,lindep,a,ord);
ss0 = ssq(a[,piv] - q[,1:n] * r);
ss1 = ssq(q * q` - i(m));
ss2 = ssq(q` * q - i(m));
```

If the QR subroutine detects linearly dependent columns while processing matrix $\mathbf{A}$, the column order given in the result vector piv can differ from an explicitly specified order in the argument vector ord. If a column of $\mathbf{A}$ is found to be linearly dependent on columns already processed, this column is swapped to the end of matrix $\mathbf{A}$. The order of columns in the result matrix $\mathbf{R}$ corresponds to the order of columns processed in $\mathbf{A}$. The swapping of a linearly dependent column of $\mathbf{A}$ to the end of the matrix corresponds to the swapping of the same column in $\mathbf{R}$ and leads to a zero row at the end of the upper triangular matrix $\mathbf{R}$.

The scalar result lindep counts the number of linearly dependent columns that are detected in constructing the first $\min (m, n)$ Householder transformations in the order specified by the argument vector ord. The test of linear dependence depends on the size of the singularity criterion used; currently it is specified as $1 \mathrm{E}-8$.

Solving the linear system $\mathbf{R x}=\mathbf{Q}^{\prime} \mathbf{b}$ with an upper triangular matrix $\mathbf{R}$ whose columns are permuted corresponding to the result vector piv leads to a solution $\mathbf{x}$ with permuted components. You can reorder the components of $\mathbf{x}$ by using the index vector piv at the left-hand side of an expression, as follows:

```
call qr(qtb,r,piv,lindep,a,ord,b);
x[piv] = inv(r) * qtb[1:n,1:p];
```

The following example solves the full-rank linear least squares problem. Specify the argument $b$ as an $m \times p$ matrix $\mathbf{B}$, as follows:

When you specify the $b$ argument, the QR call computes the matrix $\mathbf{Q}^{\prime} \mathbf{B}$ (instead of $\mathbf{Q}$ ) as the result $q$. Now you can compute the $p$ least squares solutions $\mathbf{x}_{k}$ of an overdetermined linear system with an $m \times n, m>n$ coefficient matrix $\mathbf{A}$, $\operatorname{rank}(\mathbf{A})$ $=n$, and $p$ right-hand sides $\mathbf{b}_{k}$ stored as the columns of the $m \times p$ matrix $\mathbf{B}$ :

$$
\min _{\mathbf{x}_{k}}\left\|\mathbf{A} \mathbf{x}_{k}-\mathbf{b}_{k}\right\|^{2}, \quad k=1, \ldots, p
$$

where $\|\cdot\|$ is the Euclidean vector norm. This is accomplished by solving the $p$ upper triangular systems with back-substitution:

$$
\mathbf{x}_{k}=\boldsymbol{\Pi}^{\prime} \mathbf{R}^{-1} \mathbf{Q}_{1}^{\prime} \mathbf{b}_{k}, \quad k=1, \ldots, p
$$

For most applications, $m$, the number of rows of $\mathbf{A}$, is much larger than $n$, the number of columns of $\mathbf{A}$, or $p$, the number of right-hand sides. In these cases, you are advised not to compute the large $m \times m$ matrix $\mathbf{Q}$ (which can consume too much memory and time) if you can solve your problem by computing only the smaller $m \times p$ matrix $\mathbf{Q}^{\prime} \mathbf{B}$ implicitly. For example, use the first five columns of the $6 \times 6$ Hilbert matrix A, as follows:

```
a= { 36 -630 3360 -7560 7560 -2772,
 -630 14700 -88200 211680 -220500 83160,
 3360-88200 564480 -1411200 1512000 -582120,
 -7560 211680 -1411200 3628800 -3969000 1552320,
 7560 -220500 1512000 -3969000 4410000 -1746360,
 -2772 83160 -582120 1552320 -1746360 698544 };
b= { 463, -13860, 97020, -258720, 291060, -116424};
n = 5; aa = a[,1:n];
call qr(qtb,r,piv,lindep,aa,,b);
if lindep=0 then x=inv(r)*qtb[1:n];
print x;
```

Note that you are using only the first $n$ rows, $\mathbf{Q}_{1}^{\prime} \mathbf{B}$, of $\mathbf{Q T B}$. The IF-THEN statement of the preceding code can be replaced by the more efficient TRISOLV function, as follows:

```
if lindep=0 then x=trisolv(1,r,qtb[1:n],piv);
print x;
```

Both cases produce the following output:
$X$
1
0.5
0.3333333
0.25
0.2

For information about solving rank-deficient linear least squares problems, see the RZLIND call.

## QUAD Call

performs numerical integration of scalar functions in one dimension over infinite, connected semi-infinite, and connected finite intervals

$$
\begin{aligned}
& \text { CALL QUAD( } r \text {, "fun", points }<, \text { EPS=eps }><, \text { PEAK=peak }> \\
& \quad<, \text { SCALE=scale }><, \text { MSG=msg><, CYCLES=cycles }>\text { ); }
\end{aligned}
$$

The QUAD subroutine returns the following value:
$r \quad$ is a numeric vector containing the results of the integration. The size of $r$ is equal to the number of subintervals defined by the argument points. Should the numerical integration fail on a particular subinterval, the corresponding element of $r$ is set to missing.

The inputs to the QUAD subroutine are as follows:
"fun" specifies the name of an IML module used to evaluate the integrand.
points specifies a sorted vector that provides the limits of integration over connected subintervals. The simplest form of the vector provides the limits of the integration on one interval. The first element of points should contain the left limit. The second element should be the right limit. A missing value of . M in the left limit is interpreted as $-\infty$, and a missing value of. P is interpreted as $+\infty$. For more advanced usage of the QUAD call, points can contain more than two elements. The elements of the vector must be sorted in an ascending order. Each two consecutive elements in points defines a subinterval, and the subroutine reports the integration over each specified subinterval. The use of subintervals is important because the presence of internal points of discontinuity in the integrand hinders the algorithm.
eps is an optional scalar specifying the desired relative accuracy. It has a default value of $1 \mathrm{E}-7$. You can specify eps with the keyword EPS.
peak is an optional scalar that is the approximate location of a maximum of the integrand. By default, it has a location of 0 for infinite intervals, a location that is one unit away from the finite boundary for semi-infinite intervals, and a centered location for bounded intervals. You can specify peak with the keyword PEAK.
scale $\quad$ is an optional scalar that is the approximate estimate of any scale in the integrand along the independent variable (see the examples). It has a default value of 1 . You can specify scale with the keyword SCALE.
$m s g \quad$ is an optional character scalar that restricts the number of messages produced by the QUAD subroutine. If $m s g=$ "NO" then it does not produce any warning messages. You can specify $m s g$ with the keyword MSG.
cycles is an optional integer indicating the maximum number of refinements the QUAD subroutine can make in order to achieve the required accuracy. It has a default value of 8 . You can specify cycles with the keyword CYCLES.

If the dimensions of any optional argument are $0 \times 0$, the QUAD subroutine uses its default value.

The QUAD subroutine is a numerical integrator based on adaptive Romberg-type integration techniques. Refer to Rice (1973), Sikorsky (1982), Sikorsky and Stenger (1984), and Stenger (1973a, 1973b, 1978). Many adaptive numerical integration methods (Ralston and Rabinowitz 1978) start at one end of the interval and proceed towards the other end, working on subintervals while locally maintaining a certain prescribed precision. This is not the case with the QUAD call. The QUAD call is an adaptive global-type integrator that produces a quick, rough estimate of the integration result and then refines the estimate until achieving the prescribed accuracy. This gives the subroutine an advantage over Gauss-Hermite and Gauss-Laguerre quadratures (Ralston and Rabinowitz 1978, Squire 1987), particularly for infinite and semiinfinite intervals, because those methods perform only a single evaluation.

Consider the integral

$$
\int_{0}^{\infty} e^{-t} d t
$$

The following statements evaluate this integral:

```
/* Define the integrand */
start fun(t);
 v = exp (-t);
 return(v);
finish;
/* Call QUAD */
a = { 0 .P };
call quad(z,"fun",a);
print z[format=E21.14];
```

The integration is carried out over the interval $(0, \infty)$, as specified by the variable A. Note that the missing value in the second element of $A$ is interpreted as $\infty$. The values of $e p s=1 \mathrm{E}-7$, peak $=1$, scale $=1$, and cycles $=8$ are used by default.

The following code performs the integration over two subintervals, as specified by the variable A:

```
/* Define the integrand */
start fun(t);
 v = exp(-t);
 return(v);
finish;
```

```
/* Call QUAD */
a = { 0 3 .P };
call quad(z,"fun",a);
print z[format=E21.14];
```

Note that the elements of A are in ascending order. The integration is carried out over $(0,3)$ and $(3, \infty)$, and the corresponding results are shown in the output. The values of eps $=1 \mathrm{E}-7$, peak $=1$, scale $=1$, and cycles $=8$ are used by default. To obtain the results of integration over $(0, \infty)$, use the SUM function on the elements of the vector $\mathbf{Z}$, as follows:

```
b = sum(z);
print b[format=E21.14];
```

The purpose of the peak and scale options is to enable you to avoid analytically changing the variable of the integration in order to produce a well-conditioned integrand that permits the numerical evaluation of the integration.

Consider the integration

$$
\int_{0}^{\infty} e^{-10000 t} d t
$$

The following statements evaluate this integral:

```
/* Define the integrand */
start fun(t);
 v = exp(-10000*t);
 return(v);
finish;
/* Call QUAD */
a = { 0 .P };
/* Either syntax can be used */
/* call quad(z,"fun",a,1E-10,0.0001); or */
call quad(z,"fun",a) eps=1E-10 peak=0.0001 ;
print z[format=E21.14];
```

Only one interval exists. The integration is carried out over $(0, \infty)$. The default values of scale $=1$ and cycles $=8$ are used.

If you do not specify a peak value, the integration cannot be evaluated to the desired accuracy, a message is printed to the LOG, and a missing value is returned. Note that peak can still be set to $1 \mathrm{E}-7$ and the integration will be successful. The evaluation of the integrand at peak must be nonzero for the computation to continue. You should adjust the value of peak to get a nonzero evaluation at peak before trying to adjust scale. Reducing scale decreases the initial step size and can lead to an increase in the number of function evaluations per step at a linear rate.

Consider the integration

$$
\int_{-\infty}^{\infty} e^{-100000(t-3)^{2}} d t
$$

The following statements evaluate this integral:

```
/* Define the integrand */
start fun(t);
 v = exp(-100000*(t-3)*(t-3));
 return(v);
finish;
/* Call QUAD */
a = { .M .P };
call quad(z,"fun",a) eps=1E-10 peak=3 scale=0.001 ;
print z[format=E21.14];
```

Only one interval exists. The integration is carried out over $(-\infty, \infty)$. The default value of cycles=8 has been used.

If you use the default value of scale, the integral cannot be evaluated to the desired accuracy, and a missing value is returned. The variables scale and cycles can be used to increase the number of possible function evaluations; the number of possible function evaluations increases linearly with the reciprocal of scale, but it potentially increases in an exponential manner when cycles is increased. Increasing the number of function evaluations increases execution time.

When you perform double integration, you must separate the variables between the iterated integrals. There should be a clear distinction between the variables of the one-dimensional integration at hand and the parameters to be passed to the integrand. Posting the correct limits of integration is also an important issue. For example, consider the binormal probability, given by

$$
\operatorname{probbnrm}(a, b, \rho)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{a} \int_{-\infty}^{b} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right) d y d x
$$

The inner integral is

$$
g(x, b, \rho)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \int_{-\infty}^{b} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right) d y
$$

with parameters $x$ and $\rho$, and the limits of integration are from $-\infty$ to $b$. The outer integral is then

$$
\operatorname{probbnrm}(a, b, \rho)=\int_{-\infty}^{a} g(x, b, \rho) d x
$$

with the limits from $-\infty$ to $a$.
You can write the equation in the form of a function with the parameters $a, b, \rho$ as arguments. The following statements provide an example of this technique:

```
start norpdf2 (t) global (yv,rho,omrho2, count);
```



```
/* This function is the density function and requires */
/* the variable \(T\) (passed in the argument) */
/* and a list of parameters, YV, RHO, OMRHO2, COUNT */
/* (defined in the GLOBAL clause) */
```



```
 count \(=\) count +1 ;
 q=(t\#t-2\#rho\#t\#yv+yv\#yv)/omrho2;
 \(\mathrm{p}=\exp (-\mathrm{q} / 2)\);
 return (p) ;
finish;
```

start marginal(v) global (yy,yv,eps);

/* The inner integral */
/* The limits of integration from .M to YY */
/* YV is passed as a parameter to the inner integral*/

interval = .M || yy;
if ( $\mathrm{v}<-12$ ) then return (0);
yv = v;
call quad(pm, "NORPDF2",interval) eps=eps;
return (pm);
finish;
start norcdf2 (a,b,rrho) global (yy, rho, omrho2,eps);

/* Post some global parameters */
/* YY, RHO, OMRHO2 */
/* EPS will be set from IML */
/* RHO and B cannot be arguments in the GLOBAL */
/* list at the same time */

rho = rrho;
yy = b;
omrho2 = 1-rho\#rho;

/* The outer integral */
/* The limits of integration */
/*-------------------------------------------------*/
interval= .M || a;

/*Note that EPS the keyword = EPS the variable */
/*-------------------------------------------------*/
call quad(p,"MARGINAL",interval) eps=eps;
/*--------------------------*/
/* PER will be reset here */

```
 /*------------------------------*/
 per = 1/(8#atan(1) #sqrt(omrho2)) * p;
 return(per);
finish;
/*-------------------------------------*/
/*First set up the global constants */
/*------------------------------------*/
count = 0;
eps = 1E-11;
/*---------------------------------------*/
/* Do the work and print the results */
/*---*/
p = norcdf2(2,1,0.1);
print p[format=E21.14];
print count;
```

The variable COUNT contains the number of times the NORPDF2 module is called. Note that the value computed by the NORCDF2 module is very close to that returned by the PROBBNRM function, as computed by the following statements:

```
/*---*/
/* Calculate the value with the PROBBNRM function */
/*--*/
pp = probbnrm(2,1,0.1);
print pp[format=E21.14];
```

Note the following:

- The iterated inner integral cannot have a left endpoint of $-\infty$. For large values of $v$, the inner integral does not contribute to the answer but still needs to be calculated to the required relative accuracy. Therefore, either cut off the function (when $v \leq-12$ ), as in the MARGINAL module in the preceding code, or have the intervals start from a reasonable cutoff value. In addition, the QUAD call stops if the integrands appear to be identically 0 (probably caused by underflow) over the interval of integration.
- This method of integration (iterated, one-dimensional integrals) is extremely conservative and requires unnecessary function evaluations. In this example, the QUAD call for the inner integration lacks information about the final value that the QUAD call for the outer integration is trying to refine. The lack of communication between the two QUAD routines can cause useless computations to be performed in the inner integration.
To illustrate this idea, let the relative error be $1 \mathrm{E}-11$ and let the answer delivered by the outer integral be 0.8 , as in this example. Any computation of the inner execution of the QUAD call that yields $0.8 \mathrm{E}-11$ or less does not contribute to the final answer of the QUAD call for the outer integral. However, the inner integral lacks this information, and for a given value of the parameter
$y v$, it attempts to compute an answer with much more precision than is necessary. The lack of communication between the two QUAD subroutines prevents the introduction of better cut-offs. Although this method can be inefficient, the final calculations are accurate.


## QUEUE Call

## queues SAS statements into the command input stream

CALL QUEUE( argument1<, argument2,..., argument15>);
where argument is a character matrix or quoted literal containing valid SAS statements.

The QUEUE subroutine places character arguments containing valid SAS statements (usually SAS/IML statements or global statements) at the end of the input command stream. You can specify up to 15 arguments. The string queued is read after other lines of input already on the queue. If you want to push the lines in front of other lines already in the queue, use the PUSH subroutine instead. Any statements queued to the input command queue get executed when the module is put in a hold state. This is usually induced by one of the following:

- an execution error within a module
- an interrupt
- a pause command.

The strings you queue do not appear on the log.
CAUTION: Do not queue too much code at one time.
Queuing too much code at one time, or getting into infinite loops of queuing, causes problems that can result in exiting the SAS System.

For more examples, consult Chapter 15.
An example that uses the QUEUE subroutine follows:

```
start mod(x);
 code='x=0;';
 call queue (code,'resume;');
 pause;
finish;
x=1;
run mod(x);
print(x);
```

This code produces the following result:

## QUIT Statement

## exits from IML

QUIT;
Use the QUIT statement to exit IML. If a DATA or PROC statement is encountered, QUIT is implied. The QUIT statement is executed immediately; therefore, you cannot use QUIT as an executable statement, that is, as part of a module or conditional clause. (See the description of the ABORT statement.)

PROC IML closes all open data sets and files when a QUIT statement is encountered. Workspace and symbol spaces are freed up. If you need to use any matrix values or any module definitions in a later session, you must store them in a storage library before you quit.

## RANDGEN Call

generates random numbers from a specified distribution
CALL RANDGEN( result, distname<, parm1><, parm2><, parm3>);
The inputs to the RANDGEN call are as follows:
result is a matrix that is to be filled with random samples from the specified distribution.
distname is the name of the distribution that is to be sampled.
parml is a distribution shape parameter.
parm2 is a distribution shape parameter.
parm3 is a distribution shape parameter.

The RANDGEN call generates random numbers by using the same numerical method as the RAND function in base SAS, with the efficiency optimized for IML. You can initialize the random number stream used by RANDGEN with the RANDSEED call. The result parameter should be preallocated to a size equal to the number of samples you want to generate. If result is not initialized, then it receives a single random sample.

The following distributions can be sampled.

## Bernoulli Distribution

The random sample $x$ is from the probability density function:

$$
f(x)= \begin{cases}1 & \text { for } p=0, x=0 \\ p^{x}(1-p)^{1-x} & \text { for } 0<p<1, x=0,1 \\ 1 & \text { for } p=1, x=1\end{cases}
$$

$x$ is in the range: $x=0,1$
$p$ is the success probability, with range: $0 \leq p \leq 1$

## Beta Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}
$$

$x$ is in the range: $0<x<1$
$a$ and $b$ are shape parameters, with range: $a>0$ and $b>0$

## Binomial Distribution

The random sample $x$ is from the probability density function:

$$
f(x)= \begin{cases}1 & \text { for } p=0, x=0 \\ \binom{n}{x} p^{x}(1-p)^{1-x} & \text { for } 0<p<1, x=0, \ldots, n \\ 1 & \text { for } p=1, x=1\end{cases}
$$

$x$ is in the range: $x=0,1, \ldots, n$
$p$ is a success probability, with range: $0 \leq p \leq 1$
$n$ specifies the number of independent trials, with range: $n=1,2, \ldots$

## Cauchy Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

$x$ is in the range: $-\infty<x<\infty$

## Chi-Square Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{2^{-d f / 2}}{\Gamma\left(\frac{d f}{2}\right)} x^{d f / 2-1} e^{-x / 2}
$$

$x$ is in the range: $x>0$
$d f$ is degrees of freedom, with range: $d f>0$

## Erlang Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{1}{\Gamma(a)} x^{a-1} e^{-x}
$$

$x$ is in the range: $x>0$
$a$ is an integer shape parameter, with range: $a=1,2, \ldots$

## Exponential Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=e^{-x}
$$

$x$ is in the range: $x>0$

## F Distribution ( $F_{n, d}$ )

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{\Gamma\left(\frac{n+d}{2}\right) n^{\frac{n}{2}} d^{\frac{d}{2}} x^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{d}{2}\right)(d+n x)^{\frac{n+d}{2}}}
$$

$x$ is in the range: $x>0$
$n$ and $d$ are degrees of freedom, with range: $n>0$ and $d>0$

## Gamma Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{x^{a-1}}{\Gamma(a)} e^{-x}
$$

$x$ is in the range: $x>0$
$a$ is a shape parameter: $a>0$

## Geometric Distribution

The random sample $x$ is from the probability density function:

$$
f(x)= \begin{cases}(1-p)^{x-1} p & \text { for } 0<p<1, x=1,2, \ldots \\ 1 & \text { for } p=1, x=1\end{cases}
$$

$x$ is in the range: $x=1,2, \ldots$
$p$ is the success probability, with range: $0<p \leq 1$

## Hypergeometric Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{\binom{R}{x}\binom{N-R}{n-x}}{\binom{N}{n}}
$$

$x$ is in the range: $x=\max (0,(n-(N-R))), \ldots, \min (n, R)$
$N$ is the population size, with range: $N=1,2, \ldots$
$R$ is the size of the category of interest, with range: $R=0,1, \ldots, N$
$n$ is the sample size, with range: $n=0,1, \ldots, N$

## Lognormal Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{e^{-\ln ^{2}(x) / 2}}{x \sqrt{2 \pi}}
$$

$x$ is in the range: $x \geq 0$

## Negative Binomial Distribution

The random sample $x$ is from the probability density function:

$$
f(x)= \begin{cases}\binom{x+k-1}{k-1}(1-p)^{x} p^{k} & \text { for } 0<p<1, x=0,1, \ldots \\ 1 & \text { for } p=1, x=0\end{cases}
$$

$x$ is in the range: $x=0,1, \ldots$
$p$ is the success probability with range: $0<p \leq 1$
$k$ is an integer number that counts the number of successes, with range: $k=1,2, \ldots$

## Normal Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{1}{\lambda \sqrt{2 \pi}} \exp \left(-\frac{(x-\theta)^{2}}{2 \lambda^{2}}\right)
$$

$x$ is in the range: $-\infty<x<\infty$
$\theta$ is the mean, with range: $-\infty<\theta<\infty$. This parameter is optional and defaults to 0 .
$\lambda$ is the standard deviation, with range: $\lambda>0$. This parameter is optional and defaults to 1 .

## Poisson Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{m^{x} e^{-m}}{x!}
$$

$x$ is in the range: $x=0,1, \ldots$
$m$ is the mean, with range $m>0$

## T Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{\Gamma\left(\frac{d f+1}{2}\right)}{\sqrt{d f \pi} \Gamma\left(\frac{d f}{2}\right)}\left(1+\frac{x^{2}}{d f}\right)^{-\frac{d f+1}{2}}
$$

$x$ is in the range: $-\infty<x<\infty$
$d f$ is the degrees of freedom, with the range: $d f>0$

## Table Distribution

The random sample $i$ is from the probability density function:

$$
f(i)= \begin{cases}p_{i} & \text { for } i=1,2, \ldots, n \\ 1-\sum_{j=1}^{n} p_{j} & \text { for } i=n+1\end{cases}
$$

where $p$ is a vector of probabilities, such that $0 \leq p \leq 1$, and $n$ is the largest integer such that $n \leq$ size of $p$ and

$$
\sum_{j=1}^{n} p_{j} \leq 1
$$

## Triangle Distribution

The random sample $x$ is from the probability density function:

$$
f(x)= \begin{cases}\frac{2 x}{h} & \text { for } 0 \leq x \leq h \\ \frac{2(1-x)}{1-h} & \text { for } h<x \leq 1\end{cases}
$$

$x$ is in the range: $0 \leq x \leq 1$
$h$ is the horizontal location of the peak of the triangle, with range: $0 \leq h \leq 1$

## Uniform Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=1
$$

$x$ is in the range: $0<x<1$

## Weibull Distribution

The random sample $x$ is from the probability density function:

$$
f(x)=\frac{a}{b^{a}} x^{a-1} e^{-\left(\frac{x}{b}\right)^{a}}
$$

$x$ is in the range: $x \geq 0$
$a$ and $b$ are shape parameters, with range $a>0$ and $b>0$
The following table describes how parameters of the RANDGEN call correspond to the distribution parameters.

Table 20.2. Parameter Assignments for Distributions

| Distribution | distname | parm1 | parm2 | parm3 |
| :---: | :---: | :---: | :---: | :---: |
| Bernoulli | 'BERNOULLI' | $p$ |  |  |
| Beta | 'BETA' | $a$ | $b$ |  |
| Binomial | 'BINOMIAL' | $p$ | $n$ |  |
| Cauchy | ' CAUCHY ' |  |  |  |
| Chi-Square | 'CHISQUARE' | $d f$ |  |  |
| Erlang | 'ERLANG' | $a$ |  |  |
| Exponential | 'EXPONENTIAL' |  |  |  |
| $F_{n, d}$ | 'F' | $n$ | $d$ |  |
| Gamma | 'GAMMA' | $a$ |  |  |
| Geometric | 'GEOMETRIC' | $p$ |  |  |
| Hypergeometric | 'HYPERGEOMETRIC' | $N$ | $R$ | $n$ |
| Lognormal | 'LOGNORMAL' |  |  |  |
| Negative Binomial | 'NEGBINOMIAL' | $p$ | $k$ |  |
| Normal | 'NORMAL' | $\theta$ | $\lambda$ |  |
| Poisson | 'POISSON' | $m$ |  |  |
| T | 'T' | $d f$ |  |  |
| Table | 'TABLE' | $p$ |  |  |
| Triangle | 'TRIANGLE' | $h$ |  |  |
| Uniform | 'UNIFORM' |  |  |  |
| Weibull | 'WEIBULL' | $a$ | $b$ |  |

In practice, distname can be in lowercase or uppercase, and you only need to specify enough letters to distinguish one distribution from the others. For example,

```
/* generate 10 samples from a Bernoulli distribution */
r = j(10,1,.);
call randgen(r,'ber',p);
```

Except for the normal distribution, you must specify the parameters listed for each of the preceding distributions or IML will report an error. For the normal distribution, default values of $\theta=0$ and $\lambda=1$ are used if none are supplied.

The following example illustrates the use of the RANDGEN call.

```
call randseed(12345);
/* get four random observations from each distribution */
x = j(1,4,.);
/* each row of m comes from a different distribution */
m = j(20,4,.);
call randgen(x,'BERN',0.75);
m[1,] = x;
call randgen(x,'BETA',3,0.1);
m[2,] = x;
call randgen(x,'BINOM',10,0.75);
m[3,] = x;
call randgen (x,'CAUCHY');
m[4,] = x;
call randgen(x,'CHISQ',22);
m[5,] = x;
call randgen(x,'ERLANG', 7);
m[6,] = x;
call randgen(x,'EXPO');
m[7,] = x;
call randgen(x,'F', 12,322);
m[8,] = x;
call randgen(x,'GAMMA', 7.25);
m[9,] = x;
call randgen(x,'GEOM',0.02);
m[10,] = x;
call randgen(x,'HYPER',10,3,5);
m[11,] = x;
call randgen(x,'LOGN');
m[12,] = x;
call randgen(x,'NEGB',0.8,5);
m[13,] = x;
call randgen(x,'NORMAL'); /* default parameters */
m[14,] = x;
call randgen(x,'POISSON',6.1);
m[15,] = x;
call randgen(x,'T',4);
m[16,] = x;
p = {0.1 0.2 0.25 0.1 0.15 0.1 0.1};
call randgen(x,'TABLE',p);
m[17,] = x;
call randgen(x,'TRIANGLE',0.7);
m[18,] = x;
```

```
call randgen(x,'UNIFORM');
m[19,] = x;
call randgen(x,'WEIB',0.25,2.1);
m[20,] = x;
print m;
```

The output is as follows:

|  | $M$ |  |  |
| ---: | ---: | ---: | ---: |
|  |  | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 0.9999234 | 0.9842784 | 0.9997739 |
| 7 | 8 | 5 | 10 |
| -1.209834 | 3.9732282 | -0.048339 | -1.337284 |
| 30.300691 | 20.653151 | 27.301922 | 26.878221 |
| 10.636299 | 4.6455449 | 7.5284821 | 2.5558646 |
| 0.2449632 | 2.7656037 | 4.2254588 | 0.2866158 |
| 0.7035829 | 1.2676112 | 0.9806787 | 1.4811389 |
| 8.475216 | 8.8723256 | 8.2993617 | 8.0409742 |
| 109 | 4 | 33 | 30 |
| 1 | 1 | 2 | 1 |
| 0.7784513 | 0.9792472 | 0.6018993 | 0.3643607 |
| 3 | 2 | 0 | 2 |
| 0.0053637 | 1.4026784 | -0.271338 | -0.416685 |
| 5 | 11 | 8 | 4 |
| 1.3237918 | 0.0505162 | -0.660845 | -0.634447 |
| 2 | 3 | 2 | 3 |
| 0.5270875 | 0.6909336 | 0.8607548 | 0.5450831 |
| 0.4064393 | 0.7464901 | 0.3463207 | 0.2615394 |
| 0.4183405 | 0.9981923 | 16.812803 | 0.0001131 |

## RANDSEED Call

sets initial random seed for RANDGEN call
CALL RANDSEED( seed<, reinit>);
The inputs to the RANDSEED call are as follows:
seed is a number to be used to initialize the RANDGEN random number generator.
reinit specifies whether or not the random number stream can be reinitialized after the first initialization, within the same IML session.

The RANDSEED call creates an initial random seed for subsequent RANDGEN calls. If RANDSEED is not called, an initial seed is generated from the system clock. This call is normally used when it is desirable to reproduce the same random number stream in different IML sessions. The optional reinit parameter controls whether the seed will be reinitialized within the same IML session. If it is set to one, identical seeds will produce the same random number sequence; otherwise a second call to RANDSEED within the same IML session is ignored. Normally you should not
specify reinit, or you should set it to zero to ensure that you are working with an independent random number stream within your IML session.

## RANK Function

## ranks elements of a matrix

## RANK( matrix)

where matrix is a numeric matrix or literal.
The RANK function creates a new matrix containing elements that are the ranks of the corresponding elements of matrix. The ranks of tied values are assigned arbitrarily rather than averaged. (See the description of the RANKTIE function.)

For example, the following statements produce the vector $\mathbf{Y}$, as shown:

```
x={2 2 1 0 5};
y=rank (x);
```

Y
3
4
2
1
5

The RANK function can be used to sort a vector $\mathbf{x}$, as follows:

```
b=x;
x [, rank (x)]=b;
```

x
0
1
2
2
5

You can also sort a matrix by using the SORT subroutine.
The RANK function can also be used to find anti-ranks of $\mathbf{x}$, as follows:

```
r=rank(x);
i=r;
i [,r]=1:ncol(x);
```

1
2
5

While the RANK function only ranks the elements of numerical matrices, you can rank the elements of a character matrix by using the UNIQUE function, as demonstrated in the following code:

```
/* Create RANK-like functionality for character matrices */
start rankc(x);
 /* the unique function returns a sorted list */
 s = unique(x);
 idx = j(nrow(x), ncol(x));
 ctr = 1; /* there can be duplicate values in x */
 do i = 1 to ncol(s); /* for each unique value */
 t = loc(x = s[i]);
 nDups = ncol(t);
 idx[t] = ctr : ctr+nDups-1;
 ctr = ctr + nDups;
 end;
 return (idx);
finish;
/* call the RANKC module */
x = { every good boy does fine and good and well every day};
r = rankc(x);
sortedx=x;
sortedx[r] = x;
print r, x, sortedx;
/* note that ranking is in ASCII order, where capital
 letters precede lower case letters. To get case-insensitive
 behavior, transform matrix before comparison */
x = {'a' 'b' 'X' 'Y' };
asciiOrder = rankc(x);
alphaOrder = rankc(upcase(x));
print x, asciiOrder, alphaOrder;
```

IML does not have a function that directly computes the rank of a matrix. You can use the following technique to compute the rank of matrix A :

```
rank=round(trace(ginv(a) *a));
```


## RANKTIE Function

ranks matrix elements by using tie averaging

## RANKTIE( matrix)

where matrix is a numeric matrix or literal.
The RANKTIE function creates a new matrix containing elements that are the ranks of the corresponding elements of matrix. The ranks of tied values are averaged.

For example, the following statements produce the vector $\mathbf{Y}$, as shown:

```
x={2 2 1 0 5};
y=ranktie(x);
```

3.5
2
1
5

The RANKTIE function differs from the RANK function in that RANKTIE averages the ranks of tied values, whereas RANK breaks ties arbitrarily.

While the RANK function only ranks the elements of numerical matrices, you can rank the elements of a character matrix by using the UNIQUE function, as demonstrated in the following code:

```
/* Create RANKTIE-like functionality for character matrices */
start ranktiec(x);
 s = unique(x);
 idx = j(nrow(x), ncol(x));
 ctr = 1; /* there can be duplicate values in x */
 do i = 1 to ncol(s); /* for each unique value */
 t = loc(x = s[i]);
 nDups = ncol(t);
 idx[t] = ctr+(nDups-1)/2; /* =(ctr:ctr+nDups-1) [:] */
 ctr = ctr + nDups;
 end;
 return (idx);
finish;
/* call the RANKTIEC module */
x = { every good boy does fine and good and well every day};
rt = ranktiec(x);
print x, rt;
```


## RATES Function

calculates a column vector of (per-period, such as per-year) interest rates converted from one base to another

## RATES( rates,oldfreq,newfreq)

The RATES function returns an $n \times 1$ vector of interest rates converted from one base to another.
rates is an $n \times 1$ column vector of rates corresponding to the old base. Elements should be positive.
oldfreq is a scalar that represents the old base. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If -1 , the rates represent discount factors. No other negative values are accepted.
newfreq is a scalar that represents the new base. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If -1 , the rates represent discount factors. No other negative values are accepted.

Let $D(t)$ be the discount function, which is the present value of a unit amount to be received $t$ periods from now. The discount function can be expressed in three
different ways:
with per-period discount factors $d_{t}$ :

$$
D(t)=d_{t}^{t}
$$

with continuous compounding:

$$
D(t)=e^{-r_{t} t}
$$

with discrete compounding:

$$
D(t)=(1+f r)^{-t / f}
$$

where $0<f<1$ is the frequency, the reciprocal of the number of compoundings per period. The RATES function converts between these three representations.

For example, the following code uses the RATES function:

```
rates=T(do(0.1,0.3,0.1));
oldfreq=0;
newfreq=0;
rates=rates (rates,oldfreq, newfreq);
print rates;
```

The output is as follows:
RATES
0.1
0.2
0.3

## RATIO Function

## divides matrix polynomials

returns a matrix containing the terms of $\Phi(B)^{-1} \Theta(B)$ considered as a matrix of rational functions in $B$ that have been expanded as power series

RATIO( ar, ma, terms $<$, dim $>$ )
The inputs to the RATIO function are as follows:
ar is an $n \times(n s)$ matrix representing a matrix polynomial generating function, $\Phi(B)$, in the variable $B$. The first $n \times n$ submatrix represents the constant term and must be nonsingular, the second $n \times n$ submatrix represents the first-order coefficients, and so on.
is an $n \times(m t)$ matrix representing a matrix polynomial generating function, $\Theta(B)$, in the variable $B$. The first $n \times m$ submatrix represents the constant term, the second $n \times m$ submatrix represents the first-order term, and so on.
terms is a scalar containing the number of terms to be computed, denoted by $r$ in the following discussion. This value must be positive.
$\operatorname{dim} \quad$ is a scalar containing the value of $m$, a dimension of the matrix $m a$. The default value is 1 .

The RATIO function multiplies a matrix of polynomials by the inverse of another matrix of polynomials. It is useful for expressing univariate and multivariate ARMA models in pure moving-average or pure autoregressive forms.

The value returned is an $n \times(m r)$ matrix containing the terms of $\Phi(B)^{-1} \Theta(B)$ considered as a matrix of rational functions in $B$ that have been expanded as power series.

Note: The RATIO function can be used to consolidate the matrix operators employed in a multivariate time series model of the form

$$
\Phi(B) \mathbf{Y}_{t}=\Theta(B) \epsilon_{t}
$$

where $\Phi(B)$ and $\Theta(B)$ are matrix polynomial operators whose first matrix coefficients are identity matrices. The RATIO function can be used to compute a truncated form of $\Psi(B)=\Phi(B)^{-1} \Theta(B)$ for the equivalent infinite-order model

$$
\mathbf{Y}_{t}=\Psi(B) \epsilon_{t}
$$

The RATIO function can also be employed for simple scalar polynomial division, giving a truncated form of $\theta(x) / \phi(x)$ for two scalar polynomials $\theta(x)$ and $\phi(x)$.

The cumulative sum of the elements of a column vector $\mathbf{x}$ can be obtained by using the following statement:

```
ratio({ 1 -1} ,x,ncol(x));
```

Consider the following example for multivariate ARMA $(1,1)$ :

```
ar={1 0 -. 5 2,
 0 1 3 -.8};
ma={1 0 .9 . 7,
 0 1 2 -. 4};
psi=ratio(ar,ma,4,2);
```

The matrix produced is as follows:

|  | PSI |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 0 | 1.4 | -1.3 | 2.7 | -1.45 | 11.35 |
| $:$ | -9.165 |  |  |  |  |  |  |
|  | 0.726 | 1 | -1 | 0.4 | -5 | 4.22 | -12.1 |

## RDODT and RUPDT Calls

## downdate and update QR and Cholesky decompositions

CALL RDODT( def, rup, bup, sup, $r, z<, b, y<$, ssq>>);
CALL RUPDT( rup, bup, sup, $r, z<, b, y<$, ssq>>);
The RDODT and RUPDT subroutines return the values:
def is only used for downdating, and it specifies whether the downdating of matrix $\mathbf{R}$ by using the $q$ rows in argument $z$ has been successful. The result $d e f=2$ means that the downdating of $\mathbf{R}$ by at least one row of $\mathbf{Z}$ leads to a singular matrix and cannot be completed successfully (since the result of downdating is not unique). In that case, the results rup, bup, and sup contain missing values only. The result def=1 means that the residual sum of squares, $s s q$, could not be downdated successfully and the result sup contains missing values only. The result $d e f=0$ means that the downdating of $\mathbf{R}$ by $\mathbf{Z}$ was completed successfully.
rup $\quad$ is the $n \times n$ upper triangular matrix $\mathbf{R}$ that has been updated or downdated by using the $q$ rows in $\mathbf{Z}$.
bup $\quad$ is the $n \times p$ matrix $\mathbf{B}$ of right-hand sides that has been updated or downdated by using the $q$ rows in argument $y$. If the argument $b$ is not specified, bup is not computed.
sup $\quad$ is a $p$ vector of square roots of residual sum of squares that is updated or downdated by using the $q$ rows of argument $y$. If $s s q$ is not specified, sup is not computed.

The inputs to the RDODT and RUPDT subroutines are as follows:
$r \quad$ specifies an $n \times n$ upper triangular matrix $\mathbf{R}$ to be updated or downdated by the $q$ rows in $\mathbf{Z}$. Only the upper triangle of $\mathbf{R}$ is used; the lower triangle can contain any information.
$z \quad$ specifies a $q \times n$ matrix $\mathbf{Z}$ used rowwise to update or downdate the matrix $\mathbf{R}$.
b
$y$
ssq
specifies an optional $n \times p$ matrix $\mathbf{B}$ of right-hand sides that have to be updated or downdated simultaneously with $\mathbf{R}$. If $b$ is specified, the argument $y$ must also be specified.
specifies an optional $q \times p$ matrix $\mathbf{Y}$ used rowwise to update or downdate the right-hand side matrix $\mathbf{B}$. If $b$ is specified, the argument $y$ must also be specified.
is an optional $p$ vector that, if $b$ is specified, specifies the square root of the error sum of squares that should be updated or downdated simultaneously with $\mathbf{R}$ and $\mathbf{B}$.

The upper triangular matrix $\mathbf{R}$ of the $\mathbf{Q R}$ decomposition of an $m \times n$ matrix $\mathbf{A}$,

$$
\mathbf{A}=\mathbf{Q R}, \text { where } \mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{Q Q}^{\prime}=\mathbf{I}_{m}
$$

is recomputed efficiently in two cases:

- update: An $n$ vector $\mathbf{z}$ is added to matrix $\mathbf{A}$.
- downdate: An $n$ vector $\mathbf{z}$ is deleted from matrix $\mathbf{A}$.

Computing the whole QR decomposition of matrix A by Householder transformations requires $4 m n^{2}-4 n^{3} / 3$ floating-point operations, whereas updating or downdating the QR decomposition (by Givens rotations) of one row vector $\mathbf{z}$ requires only $2 n^{2}$ floating-point operations.

If the QR decomposition is used to solve the full-rank linear least squares problem

$$
\min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|^{2}=s s q
$$

by solving the nonsingular upper triangular system

$$
\mathbf{x}=\mathbf{R}^{-1} \mathbf{Q}^{\prime} \mathbf{b}
$$

then the RUPDT and RDODT subroutines can be used to update or downdate the $p$-transformed right-hand sides $\mathbf{Q}^{\prime} \mathbf{B}$ and the residual sum-of-squares $p$ vector ssq provided that for each $n$ vector $\mathbf{z}$ added to or deleted from $\mathbf{A}$ there is also a $p$ vector $\mathbf{y}$ added to or deleted from the $m \times p$ right-hand-side matrix $\mathbf{B}$.

If the arguments $z$ and $y$ of the subroutines RUPDT and RDODT contain $q>1$ row vectors for which $\mathbf{R}$ (and $\mathbf{Q}^{\prime} \mathbf{B}$, and eventually $s s q$ ) is to be updated or downdated, the process is performed stepwise by processing the rows $\mathbf{z}_{k}$ (and $\mathbf{y}_{k}$ ), $k=1, \ldots, q$, in the order in which they are stored.

The QR decomposition of an $m \times n$ matrix $\mathbf{A}, m \geq n, \operatorname{rank}(\mathbf{A})=n$,

$$
\mathbf{A}=\mathbf{Q R}, \text { where } \mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{Q Q}^{\prime}=\mathbf{I}_{m}
$$

corresponds to the Cholesky factorization

$$
\mathbf{C}=\mathbf{R}^{\prime} \mathbf{R} \text {, where } \mathbf{C}=\mathbf{A}^{\prime} \mathbf{A}
$$

of the positive definite $n \times n$ crossproduct matrix $\mathbf{C}=\mathbf{A}^{\prime} \mathbf{A}$. In the case where $m \geq n$ and $\operatorname{rank}(\mathbf{A})=n$, the upper triangular matrix $\mathbf{R}$ computed by the QR decomposition (with positive diagonal elements) is the same as the one computed by Cholesky factorization except for numerical error,

$$
\mathbf{A}^{\prime} \mathbf{A}=(\mathbf{Q R})^{\prime}(\mathbf{Q R})=\mathbf{R}^{\prime} \mathbf{R}
$$

Adding a row vector $\mathbf{z}$ to matrix $\mathbf{A}$ corresponds to the rank-1 modification of the crossproduct matrix $\mathbf{C}$

$$
\widetilde{\mathbf{C}}=\mathbf{C}+\mathbf{z}^{\prime} \mathbf{z} \text {, where } \widetilde{\mathbf{C}}=\widetilde{\mathbf{A}}^{\prime} \widetilde{\mathbf{A}}
$$

and the $(m+1) \times n$ matrix $\widetilde{\mathbf{A}}$ contains all rows of $\mathbf{A}$ with the row $\mathbf{z}$ added.
Deleting a row vector $\mathbf{z}$ from matrix $\mathbf{A}$ corresponds to the rank-1 modification

$$
\mathbf{C}^{*}=\mathbf{C}-\mathbf{z}^{\prime} \mathbf{z} \text {, where } \mathbf{C}^{*}=\mathbf{A}^{* \prime} \mathbf{A}^{*}
$$

and the $(m-1) \times n$ matrix $\mathbf{A}^{*}$ contains all rows of $\mathbf{A}$ with the row $\mathbf{z}$ deleted. Thus, you can also use the subroutines RUPDT and RDODT to update or downdate the Cholesky factor $\mathbf{R}$ of a positive definite crossproduct matrix $\mathbf{C}$ of $\mathbf{A}$.

The process of downdating an upper triangular matrix $\mathbf{R}$ (and eventually a residual sum-of-squares vector $s s q$ ) is not always successful. First of all, the downdated matrix $\mathbf{R}$ could be rank deficient. Even if the downdated matrix $\mathbf{R}$ is of full rank, the process of downdating can be ill-conditioned and does not work well if the downdated matrix is close (by rounding errors) to a rank-deficient one. In these cases, the downdated matrix $\mathbf{R}$ is not unique and cannot be computed by subroutine RDODT. If $\mathbf{R}$ cannot be computed, def returns 2, and the results rup, bup, and sup return missing values.

The downdating of the residual sum-of-squares vector $s s q$ can be a problem, too. In practice, the downdate formula

$$
s s q_{\text {new }}=\sqrt{s s q_{\text {old }}-s s q_{\text {dod }}}
$$

cannot always be computed because, due to rounding errors, the radicand can be negative. In this case, the result vector sup returns missing values, and def returns 1.

You can use various methods to compute the $p$ columns $\mathbf{x}_{k}$ of the $n \times p$ matrix $\mathbf{X}$ that minimize the $p$ linear least squares problems with an $m \times n$ coefficient matrix $\mathbf{A}, m \geq n, \operatorname{rank}(\mathbf{A})=n$, and $p$ right-hand-side vectors $\mathbf{b}_{k}$ (stored columnwise in the $m \times p$ matrix $\mathbf{B}$ ). The first of the following methods solves the normal equations and cannot be applied to the example with the $6 \times 5$ Hilbert matrix since too much rounding error is introduced. Therefore, use the following simple example:

```
a={ 1 3,
 2 2,
 3 1 };
b = { 1, 1, 1};
m = nrow(a);
n = ncol(a);
p = 1;
```

- Cholesky Decomposition of Crossproduct Matrix:

```
aa = a` * a; ab = a` * b;
r = root(aa);
x = trisolv(2,r,ab);
x = trisolv(1,r,x);
```

- QR Decomposition by Householder Transformations:

```
call qr(qtb,r,piv,lindep,a, ,b);
x = trisolv(1,r[,piv],qtb[1:n,]);
```

- Stepwise Update by Givens Rotations:

```
r = j(n,n,0.); qtb = j(n,p,0.); ssq = j(1,p,0.);
do i = 1 to m;
 z = a[i,];
 y = b[i,];
 call rupdt(rup,bup,sup,r,z,qtb,y,ssq);
 r = rup;
 qtb = bup;
 ssq = sup;
end;
x = trisolv(1,r,qtb);
```

Or equivalently:

```
r = j(n,n,0.);
qtb = j(n,p,0.);
ssq = j(1,p,0.);
call rupdt(rup,bup,sup,r,a,qtb,b,ssq);
x = trisolv(1, rup,bup);
```

- Singular Value Decomposition:

```
call svd(u,d,v,a);
d = diag(1 / d);
x = v * d * u' * b;
```

For the preceding $3 \times 2$ example matrix $\mathbf{A}$, each method obtains the unique LS estimator:

```
ss = ssq(a * x - b);
print ss x;
```

To compute the (transposed) matrix $\mathbf{Q}$, you can use the following specification:

```
r = shape (0,n,n);
y = i(m);
qt = shape(0,n,m);
call rupdt(rup,qtup,sup,r,a,qt,y);
```


## READ Statement

reads observations from a data set

```
READ \(<\) range \(><\) VAR operand \(><\) WHERE(expression) \(>\)
 \(<\) INTO name \(<\) [ROWNAME=row-name
 COLNAME=column-name] \(\gg\);
```

The inputs to the READ function are as follows:

| range | specifies a range of observations. |
| :--- | :--- |
| operand | selects a set of variables. |
| expression | is evaluated for being true or false. |
| name | is the name of the target matrix. |
| row-name | is a character matrix or quoted literal giving descriptive row labels. |
| column-name | is a character matrix or quoted literal giving descriptive column <br> labels. |

The clauses and options are explained in the following lists.
Use the READ statement to read variables or records from the current SAS data set into column matrices of the VAR clause or into the single matrix of the INTO clause. When the INTO clause is used, each variable in the VAR clause becomes a column of the target matrix, and all variables in the VAR clause must be of the same type. If you specify no VAR clause, the default variables for the INTO clause are all numeric variables. Read all character variables into a target matrix by using VAR _CHAR_.

You can specify a range of observations with a keyword or by record number using the POINT option. You can use any of the following keywords to specify a range:

| ALL | all observations |
| :--- | :--- |
| CURRENT | the current observation |
| NEXT <number $>$ | the next observation or the next number of observations |
| AFTER | all observations after the current one |
| POINT operand | observations specified by number, where operand can be one <br> of the following. |


| Operand | Example |
| :--- | :--- |
| a single record number | point 5 |
| a literal giving several <br> record numbers | point $\left\{\begin{array}{ll}2 & 5 \\ \text { 10 }\end{array}\right\}$ |
| the name of a matrix <br> containing record numbers <br> an expression in parentheses | point $p$ |
|  | point $(p+1)$ |

If the current data set has an index in use, the POINT option is invalid.
You can specify a set of variables to use with the VAR clause. The operand in the VAR clause can be one of the following:

- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of keywords described in the following list:

| _ALL_ | for all variables |
| :--- | :--- |
| _CHAR_ | for all character variables |
| _NUM_ | for all numeric variables. |

The following examples demonstrate each possible way you can use the VAR clause.

```
var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */
```

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause. The general form of the WHERE clause is as follows:

## WHERE( variable comparison-op operand)

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
$<\quad$ less than
$<=$ less than or equal to
$=$ equal to
$>$ greater than
>= greater than or equal to
${ }^{\wedge}=$ not equal to
? contains a given string
^ ? does not contain a given string
$=$ : begins with a given string
=* sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:

```
^ ^ ^ < <= > >=
```

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

$$
=? \quad=: \quad=*
$$

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is

| clause\&clause | (for an AND clause) |
| :--- | :--- |
| clauselclause | (for an OR clause) |

where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables, and the expression on the right-hand side refers to matrix values.

You can specify ROWNAME $=$ and COLNAME $=$ matrices as part of the INTO clause. The COLNAME= matrix specifies the name of a new character matrix to be created. This COLNAME $=$ matrix is created in addition to the target matrix of the INTO clause and contains variable names from the input data set corresponding to columns of the target matrix. The COLNAME= matrix has dimension $1 \times n v a r$, where nvar is the number of variables contributing to the target matrix.

The ROWNAME= option specifies the name of a character variable in the input data set. The values of this variable are put in a character matrix with the same name as the variable. This matrix has the dimension nobs $\times 1$, where nobs is the number of observations in the range of the READ statement.

The range, VAR, WHERE, and INTO clauses are all optional and can be specified in any order.

Row and column names created via a READ statement are permanently associated with the INTO matrix. You do not need to use a MATTRIB statement to get this association.

For example, to read all observations from the data set variables NAME and AGE, use a READ statement with the VAR clause and the keyword ALL for the range operand. This creates two IML variables with the same names as the data set variables. Here is the statement:

```
read all var{name age};
```

To read all variables for the 23rd observation only, use the following statement:

```
read point 23;
```

To read the data set variables NAME and ADDR for all observations with a STATE value of NJ , use the following statement:

```
read all var{name addr} where(state="NJ");
```

See Chapter 6 for further information.

## REMOVE Function

## discards elements from a matrix

REMOVE( matrix, indices)
The inputs to the REMOVE function are as follows:
matrix $\quad$ is a numeric or character matrix or literal.
indices refers to a matrix containing the indices of elements that are removed from matrix.

The REMOVE function returns as a row vector elements of the first argument, with elements corresponding to the indices in the second argument discarded and the gaps removed. The first argument is indexed in row-major order, as in subscripting, and the indices must be in the range 1 to the number of elements in the first argument. Noninteger indices are truncated to their integer part. You can repeat the indices, and you can give them in any order. If all elements are removed, the result is a null matrix (zero rows and zero columns).

Thus, the following statement removes the third element, producing the result shown:

```
a=remove({ 5 6, 7 8} , 3);
```

A
568

The following statement causes all but the fourth element to be removed, giving the result shown:

```
a=remove({ 5 6 7 8} , { 3 2 3 1});
```

A
8

## REMOVE Statement

REMOVE <MODULE=(module-list) <matrix-list>>;
The inputs to the REMOVE statement are as follows:
module-list specifies a module or modules to remove from storage.
matrix-list specifies a matrix or matrices to remove from storage.
The REMOVE statement removes matrices or modules or both from the current library storage. For example, the following statement removes the three modules A, B, and C and the matrix X :

```
remove module=(A B C) X;
```

The special operand _ALL_ can be used to remove all matrices or all modules or both. For example, the following statement removes everything:

```
remove _all_ module=_all_;
```

See Chapter 14, "Storage Features," and also the descriptions of the LOAD, STORE, RESET, and SHOW statements for related information.

## RENAME Call

## renames a SAS data set

CALL RENAME( < libname,> member-name, new-name);
The inputs to the RENAME subroutine are as follows:

| libname | is a character matrix or quoted literal containing the name of the <br> SAS data library |
| :--- | :--- |
| member-name | is a character matrix or quoted literal containing the current name <br> of the data set. |
| new-name | is a character matrix or quoted literal containing the new data set <br> name. |

The RENAME subroutine renames a SAS data set in the specified library. All of the arguments can directly be specified in quotes, although quotes are not required. If a one-level data set name is specified, the libname specified by the RESET deflib statement is used. Examples of valid statements follow:

```
call rename('a','b');
call rename(a,b);
call rename(work,a,b);
```


## REPEAT Function

creates a new matrix of repeated values
REPEAT( matrix, nrow, ncol)
The inputs to the REPEAT function are as follows:
matrix $\quad$ is a numeric matrix or literal.
nrow gives the number of times matrix is repeated across rows.
ncol gives the number of times matrix is repeated across columns.

The REPEAT function creates a new matrix by repeating the values of the argument matrix $n r o w^{*}$ ncol times, ncol times across the rows, and nrow times down the columns. The matrix argument can be numeric or character. For example, the following statements result in the matrix $\mathbf{Y}$, repeating the $\mathbf{X}$ matrix twice down and three times across:

```
x={ 1 2 ,
 3 4};
y=repeat (x,2,3);
```

    Y
    | 1 | 2 | 1 | 2 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 3 | 4 | 3 | 4 |
| 1 | 2 | 1 | 2 | 1 | 2 |
| 3 | 4 | 3 | 4 | 3 | 4 |

## REPLACE Statement

replaces values in observations and updates observations
REPLACE <range $><$ VAR operand $><$ WHERE(expression) $>$;
The inputs to the REPLACE statement are as follows:
range specifies a range of observations.
operand selects a set of variables.
expression is evaluated for being true or false.
The REPLACE statement replaces the values of observations in a SAS data set with current values of IML matrices with the same name. Use the range, VAR, and WHERE arguments to limit replacement to specific variables and observations. Replacement matrices should be the same type as the data set variables. The REPLACE statement uses matrix elements in row order replacing the value in the $i$ th observation with the $i$ th matrix element. If there are more observations in range than matrix elements, the REPLACE statement continues to use the last matrix element.

For example, the following statements cause all occurrences of ILL to be replaced by IL for the variable STATE:

```
state="IL";
replace all var{state} where(state="ILL");
```

You can specify a range of observations with a keyword or by record number using the POINT option. You can use any of the following keywords to specify a range:

## ALL all observations

CURRENT the current observation
NEXT <number> the next observation or the next number of observations
AFTER
all observations after the current one
POINT operand observations by number, where operand can be one of the following:

| Operand | Example |
| :--- | :--- |
| a single record number | point 5 |
| a literal giving several <br> record numbers <br> the name of a matrix <br> containing record numbers <br> an expression in parentheses | point $\left.\begin{array}{ll}2 & 5 \\ 10\end{array}\right\}$ |
|  | point $p$ |

If the current data set has an index in use, the POINT option is invalid.
You can specify a set of variables to use with the VAR clause. The variables argument can have the following values:

- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the keywords described in the following list:

| _ALL_ | for all variables |
| :--- | :--- |
| _CHAR_ | for all character variables |
| _NUM_ | for all numeric variables |

The following examples demonstrate each possible way you can use the VAR clause.

```
var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword
 */
```

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause. The general form of the WHERE clause is

## WHERE( variable comparison-op operand)

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is any one of the following comparison operators:
$<\quad$ less than
<= less than or equal to
$=$ equal to
$>$ greater than
$>=$ greater than or equal to
$\wedge=$ not equal to
? contains a given string
^? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.
WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:

$$
\wedge=\wedge ? \ll=\gg=
$$

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

$$
=?=:=*
$$

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is

```
clause&clause (for an AND clause)
clauselclause (for an OR clause)
```

where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables, and the expression on the right-hand side refers to matrix values.

The following statement replaces all variables in the current observation:
replace;

## RESET Statement

## sets processing options

```
RESET <options>;
```

where the options are described in the following list.
The RESET statement sets processing options. The options described in the following list are currently implemented options. Note that the prefix NO turns off the feature where indicated. For options that take operands, the operand should be a literal, a name of a matrix containing the value, or an expression in parentheses. The SHOW options statement displays the current settings of all of the options.

## AUTONAME

NOAUTONAME
specifies whether rows are automatically labeled ROW1, ROW2, and so on, and columns are labeled COL1, COL2, and so on, when a matrix is printed. Row-name and column-name attributes specified in the PRINT statement or associated via the MATTRIB statement override the default labels. The AUTONAME option causes the SPACES option to be reset to 4 . The default is NOAUTONAME.

## CENTER

## NOCENTER

specifies whether output from the PRINT statement is centered on the page. The default is CENTER. This resets the global CENTER/NOCENTER option for the SAS session.

## CLIP

NOCLIP
specifies whether SAS/IML graphs are automatically clipped outside the viewport; that is, any data falling outside the current viewport is not displayed. NOCLIP is the default.

## DEFLIB=operand

specifies the default libname for SAS data sets when no other libname is given. This defaults to USER if a USER libname is set up, or WORK if not. The libname operand can be specified with or without quotes.

## DETAILS

NODETAILS
specifies whether additional information is printed from a variety of operations, such as when files are opened and closed. The default is NODETAILS.

## FLOW

NOFLOW
specifies whether operations are shown as executed. It is used for debugging only. The default is NOFLOW.

FUZZ <=number>
NOFUZZ
specifies whether very small numbers are printed as zero rather than in scientific notation. If the absolute value of the number is less than the value specified in number, it will be printed as 0 . The number argument is optional, and the default value varies across hosts but is typically around $1 \mathrm{E}-12$. The default is NOFUZZ.

## $\mathrm{FW}=$ number

sets the field width for printing numeric values. The default field width is 9 .

## LINESIZE=n

specifies the linesize for printing. The default value is usually 78. This resets the global LINESIZE option for the SAS session.

## LOG <br> NOLOG

specifies whether output is routed to the log file rather than to the print file. On the $\log$, the results are interleaved with the statements and messages. The NOLOG option routes output to the OUTPUT window in the SAS windowing environment and to the listing file in batch mode. The default is NOLOG.

## NAME <br> NONAME

specifies whether the matrix name or label is printed with the value for the PRINT statement. The default is NAME.

## PAGESIZE=n

specifies the pagesize for printing. The default value is usually 21 . This resets the global PAGESIZE option for the SAS session.

## PRINT <br> NOPRINT

specifies whether the final results from assignment statements are printed automatically. NOPRINT is the default.

## PRINTADV=n

inserts blank lines into the log before printing out the value of a matrix. The default, PRINTADV=2, causes two blank lines to be inserted.

## PRINTALL

## NOPRINTALL

specifies whether the intermediate and final results are printed automatically. The default is NOPRINTALL.

## SPACES=n

specifies the number of spaces between adjacent matrices printed across the page. The default value is 1 , except when AUTONAME is on. Then, the default value is 4 .

## STORAGE=<libname.> memname;

specifies the file to be the current library storage for STORE and LOAD statements. The default library storage is WORK.IMLSTOR. The libname argument is optional and defaults to SASUSER. It can be specified with or without quotes.

## RESUME Statement

resumes execution

## RESUME;

The RESUME statement enables you to continue execution from the line in the module where the most recent PAUSE statement was executed. PROC IML issues an automatic pause when an error occurs inside a module. If a module was paused due to an error, the RESUME statement resumes execution immediately after the statement that caused the error. The SHOW pause statement displays the current state of all paused modules.

## RETURN Statement

returns to caller

$$
\text { RETURN }<\text { (operand) }>\text {; }
$$

where operand is the value of the function returned. Use operand only in function modules.

The RETURN statement causes IML to return to the calling point in a program. If a LINK statement has been issued, IML returns to the statement following the LINK. If no LINK statement was issued, the RETURN statement exits a module. If not in a module, execution is stopped (as with a STOP statement), and IML looks for more statements to parse.

The RETURN statement with an operand is used in function modules that return a value. The operand can be a variable name or an expression. It is evaluated, and the value is returned.

See the description of the LINK statement. Also, see Chapter 5 for details.
If you use a LINK statement, you need a RETURN statement at the place where you want to go back to the statement after LINK.

If you are writing a function, use a RETURN to return the value of the function. Here is an example:

```
start sum1 (a,b);
 sum=a+b;
 return(sum);
finish;
```


## ROOT Function

## ROOT( matrix)

where matrix is a symmetric positive-definite matrix.
The ROOT function performs the Cholesky decomposition of a matrix (for example, A) such that

$$
\mathbf{U}^{\prime} \mathbf{U}=\mathbf{A}
$$

where $\mathbf{U}$ is upper triangular. The matrix $\mathbf{A}$ must be symmetric and positive definite.
For example, consider the following statements:

```
xpx={25 0 5, 0 4 6, 5 6 59};
U=root (xpx);
```

These statements produce the following result:

## U

| 5 | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 2 | 3 |
| 0 | 0 | 7 |

If you need to solve a linear system and you already have a Cholesky decomposition of your matrix, then use the TRISOLV function as illustrated in the following code.

```
b = {5, 2, 53};
/* want to solve xpx * t = b
 First solve U' z = b,
 then solve U t = z */
z = trisolv(2,U,b);
t = trisolv(1,U,z);
```

The solution is as follows:

```
T
 O
-1
 1
```

The ROOT function performs most of its computations in the memory allocated for returning the Cholesky decomposition.

## ROWCAT Function

## concatenates rows without using blank compression

ROWCAT( matrix $<$, rows $<$, columns $\gg$ );
The inputs to the ROWCAT function are as follows:

| matrix | is a character matrix or quoted literal. |
| :--- | :--- |
| rows | select the rows of matrix. |
| columns | select the columns of matrix. |

The ROWCAT function takes a character matrix or submatrix as its argument and creates a new matrix with one column whose elements are the concatenation of all row elements into a single string. If the argument has $n$ rows and $m$ columns, the result will have $n$ rows and 1 column. The element length of the result will be $m$ times the element length of the argument. The optional rows and columns arguments can be used to select which rows and columns are concatenated.

For example, the following statements produce the $2 \times 1$ matrix shown:

```
b={"ABC" "D " "EF ",
 " GH" " I " " JK"};
a=rowcat (b);
```

    A 2 rows 1 col (character, size 9)
        ABCD EF
            GH I JK
    Quotes (") are needed only if you want to embed blanks or special characters or to maintain uppercase and lowercase distinctions.

The form
ROWCAT( matrix, rows, columns)
returns the same result as
ROWCAT( matrix[rows, columns])
The form
ROWCAT( matrix, rows)
returns the same result as
ROWCAT( matrix[rows,])

## ROWCATC Function

## concatenates rows using blank compression

ROWCATC( matrix $<$, rows $<$, columns $\gg$ );
The inputs to the ROWCATC function are as follows:

| matrix | is a character matrix or quoted literal. |
| :--- | :--- |
| rows | select the rows of matrix. |
| columns | select the columns of matrix. |

The ROWCATC function works the same way as the ROWCAT function except that blanks in element strings are moved to the end of the concatenation. For example, the following statements produce the matrix $\mathbf{A}$ as shown:

```
b={"ABC" "D " "EF ",
 " GH" " I " " JK"};
a=rowcatc (b);
```

    A 2 rows 1 col (character, size 9)
    ABCDEF
GHIJK

Quotes (") are needed only if you want to embed blanks or special characters or to maintain uppercase and lowercase distinctions.

## RUN Statement

## executes statements in a module

RUN <name> <(arguments)>;
The inputs to the RUN statement are as follows:

$$
\begin{array}{ll}
\text { name } & \text { is the name of a user-defined module or an IML built-in subroutine. } \\
\text { arguments } & \begin{array}{l}
\text { are arguments to the subroutine. Arguments can be both local and } \\
\text { global. }
\end{array}
\end{array}
$$

The RUN statement executes a user-defined module or invokes PROC IML's built-in subroutines.

The resolution order for the RUN statement is

1. A user-defined module
2. An IML built-in function or subroutine

This resolution order need only be considered if you have defined a module that has the same name as an IML built-in subroutine. If a RUN statement cannot be resolved at resolution time, a warning is produced. If the RUN statement is still unresolved when executed and a storage library is open at the time, IML attempts to load a module from that storage. If no module is found, then the program is interrupted and an error message is generated. By default, the RUN statement tries to run the module named MAIN.

You will usually want to supply both a name and arguments, as follows:

```
run myf1 (a,b,c);
```

See Chapter 5 for further details.

## RUPDT Call

## update QR and Cholesky decompositions

CALL RUPDT( rup, bup, sup, $r, z<, b, y<$, ssq>>);
See the entry for the RDODT subroutine for details.

## RZLIND Call

## computes rank deficient linear least squares solutions, complete orthogonal factorization, and Moore-Penrose inverses

CALL RZLIND( lindep, rup, bup, $r<$, sing $><, b>$ );
The RZLIND subroutine returns the following values:
lindep is a scalar giving the number of linear dependencies that are recognized in $\mathbf{R}$ (number of zeroed rows in rup $[n, n]$ ).
rup $\quad$ is the updated $n \times n$ upper triangular matrix $\mathbf{R}$ containing zero rows corresponding to zero recognized diagonal elements in the original $\mathbf{R}$.
bup $\quad$ is the $n \times p$ matrix $\mathbf{B}$ of right-hand sides that is updated simultaneously with $\mathbf{R}$. If $b$ is not specified, bup is not accessible.

The inputs to the RZLIND subroutine are as follows:
sing is an optional scalar specifying a relative singularity criterion for the
$r$
b
specifies the $n \times n$ upper triangular matrix $\mathbf{R}$. Only the upper triangle of $r$ is used; the lower triangle can contain any information. diagonal elements of $\mathbf{R}$. The diagonal element $r_{i i}$ is considered zero if $r_{i i} \leq \operatorname{sing}\left\|\mathbf{r}_{i}\right\|$, where $\left\|\mathbf{r}_{i}\right\|$ is the Euclidean norm of column $\mathbf{r}_{i}$ of $\mathbf{R}$. If the value provided for sing is not positive, the default value $\sin g=$ $1000 \epsilon$ is used, where $\epsilon$ is the relative machine precision.
specifies the optional $n \times p$ matrix $\mathbf{B}$ of right-hand sides that have to be updated or downdated simultaneously with $\mathbf{R}$.

The singularity test used in the RZLIND subroutine is a relative test using the Euclidean norms of the columns $\mathbf{r}_{i}$ of $\mathbf{R}$. The diagonal element $r_{i i}$ is considered as nearly zero (and the $i$ th row is zeroed out) if the following test is true:

$$
r_{i i} \leq \operatorname{sing}\left\|\mathbf{r}_{i}\right\|, \text { where }\left\|\mathbf{r}_{i}\right\|=\sqrt{\mathbf{r}_{i}^{\prime} \mathbf{r}_{i}}
$$

Providing an argument $\operatorname{sing} \leq 0$ is the same as omitting the argument sing in the RZLIND call. In this case, the default is $\sin g=1000 \epsilon$, where $\epsilon$ is the relative machine precision. If $\mathbf{R}$ is computed by the QR decomposition $\mathbf{A}=\mathbf{Q R}$, then the Euclidean norm of column $i$ of $\mathbf{R}$ is the same (except for rounding errors) as the Euclidean norm of column $i$ of $\mathbf{A}$.

Consider the following possible application of the RZLIND subroutine. Assume that you want to compute the upper triangular Cholesky factor $\mathbf{R}$ of the $n \times n$ positive semidefinite matrix $\mathbf{A}^{\prime} \mathbf{A}$,

$$
\mathbf{A}^{\prime} \mathbf{A}=\mathbf{R}^{\prime} \mathbf{R} \text { where } \mathbf{A} \in \mathcal{R}^{m \times n}, \operatorname{rank}(\mathbf{A})=r, r \leq n \leq m
$$

The Cholesky factor $\mathbf{R}$ of a positive definite matrix $\mathbf{A}^{\prime} \mathbf{A}$ is unique (with the exception of the sign of its rows). However, the Cholesky factor of a positive semidefinite (singular) matrix $\mathbf{A}^{\prime} \mathbf{A}$ can have many different forms.

In the following example, $\mathbf{A}$ is a $12 \times 8$ matrix with linearly dependent columns $\mathbf{a}_{1}=\mathbf{a}_{2}+\mathbf{a}_{3}+\mathbf{a}_{4}$ and $\mathbf{a}_{1}=\mathbf{a}_{5}+\mathbf{a}_{6}+\mathbf{a}_{7}$ with $r=6, n=8$, and $m=12$.

```
a={11 1 0 0 1 0 0,
 1 1 0 0 1 0 0,
 1 1 0 0 0 1 0,
 1100001,
 1 0 1 0 1 0 0,
 1 0 1 0 0 1 0,
 1 0 1 0 0 1 0,
 1 0 1 0 0 0 1,
 1 0 0 1 1 0 0,
 1 0 0 1 0 1 0,
 1 0 0 1 0 0 1,
 1001 0 0 1};
a = a || uniform(j(12,1,1));
aa = a' * a;
m}=\mathrm{ nrow(a); n = ncol(a);
```

Applying the ROOT function to the coefficient matrix $\mathbf{A}^{\prime} \mathbf{A}$ of the normal equations generates an upper triangular matrix $\mathbf{R}_{1}$ where linearly dependent rows are zeroed out. You can verify that $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{R}_{1}^{\prime} \mathbf{R}_{1}$. Here is the code:

```
r1 = root(aa);
ss1 = ssq(aa - r1` * r1);
print ss1 r1 [format=best6.];
```

Applying the QR subroutine with column pivoting on the original matrix $\mathbf{A}$ yields a different result, but you can also verify $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{R}_{2}^{\prime} \mathbf{R}_{2}$ after pivoting the rows and columns of $\mathbf{A}^{\prime} \mathbf{A}$. Here is the code:

```
ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
ss2 = ssq(aa[pivqr,pivqr] - r2` * r2);
print ss2 r2 [format=best6.];
```

Using the RUPDT subroutine for stepwise updating of $\mathbf{R}$ by the $m$ rows of $\mathbf{A}$ finally results in an upper triangular matrix $\mathbf{R}_{3}$ with $n-r$ nearly zero diagonal elements. However, other elements in rows with nearly zero diagonal elements can have significant values. The following statements verify that $\mathbf{A}^{\prime} \mathbf{A}=\mathbf{R}_{3}^{\prime} \mathbf{R}_{3}$ :

```
r3 = shape (0,n,n);
call rupdt(rup,bup,sup,r3,a);
r3 = rup;
ss3 = ssq(aa - r3` * r3);
print ss3 r3 [format=best6.];
```

The result $\mathbf{R}_{3}$ of the RUPDT subroutine can be transformed into the result $\mathbf{R}_{1}$ of the ROOT function by left applications of Givens rotations to zero out the remaining significant elements of rows with small diagonal elements. Applying the RZLIND subroutine on the upper triangular result $\mathbf{R}_{3}$ of the RUPDT subroutine generates a Cholesky factor $\mathbf{R}_{4}$ with zero rows corresponding to diagonal elements that are small, giving the same result as the ROOT function (except for the sign of rows) if its singularity criterion recognizes the same linear dependencies. Here is the code:

```
call rzlind(lind,r4,bup,r3);
ss4 = ssq(aa - r4` * r4);
print ss4 r4 [format=best6.];
```

Consider the rank-deficient linear least squares problem:

$$
\min _{\mathbf{x}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2} \text { where } \mathbf{A} \in \mathcal{R}^{m \times n}, \operatorname{rank}(\mathbf{A})=r, r \leq n \leq m
$$

For $r=n$, the optimal solution, $\hat{\mathbf{x}}$, is unique; however, for $r<n$, the rank-deficient linear least squares problem has many optimal solutions, each of which has the same least squares residual sum of squares:

$$
\mathrm{ss}=(\mathbf{A} \hat{\mathbf{x}}-\mathbf{b})^{\prime}(\mathbf{A} \hat{\mathbf{x}}-\mathbf{b})
$$

The solution of the full-rank problem, $r=n$, is illustrated in the QR call. The following list shows several solutions to the singular problem. The following example uses the $12 \times 8$ matrix from the preceding section and generates a new column vector b. The vector $\mathbf{b}$ and the matrix $\mathbf{A}$ are shown in the output.

```
b = uniform(j(12,1,1));
ab = a` * b;
print b a [format=best6.];
```

Each entry in the following list solves the rank-deficient linear least squares problem. Note that while each method minimizes the residual sum of squares, not all of the given solutions are of minimum Euclidean length.

- Use the singular value decomposition of $\mathbf{A}$, given by $\mathbf{A}=\mathbf{U D V}^{\prime}$. Take the reciprocals of significant singular values and set the small values of $\mathbf{D}$ to zero.

```
call svd(u,d,v,a);
t = 1e-12 * d[1];
do i=1 to n;
 if d[i] < t then d[i] = 0.;
 else d[i] = 1. / d[i];
end;
x1 = v * diag(d) * u' * b;
len1 = x1` * x1;
ss1 = ssq(a * x1 - b);
x1 = x1`;
print ss1 len1, x1 [format=best6.];
```

The solution $\hat{\mathbf{x}}_{1}$ obtained by singular value decomposition, $\hat{\mathbf{x}}_{1}=\mathbf{V D}^{-} \mathbf{U}^{\prime} \mathbf{b} / 4$, is of minimum Euclidean length.

- Use QR decomposition with column pivoting:

$$
\mathbf{A} \boldsymbol{\Pi}=\mathbf{Q R}=\left[\begin{array}{ll}
\mathbf{Y} & \mathbf{Z}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R}_{1} & \mathbf{R}_{2} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]=\mathbf{Y}\left[\begin{array}{ll}
\mathbf{R}_{1} & \mathbf{R}_{2}
\end{array}\right]
$$

Set the right part $\mathbf{R}_{2}$ to zero and invert the upper triangular matrix $\mathbf{R}_{1}$ to obtain a generalized inverse $\mathbf{R}^{-}$and an optimal solution $\hat{\mathbf{x}}_{2}$ :

```
\(\mathbf{R}^{-}=\left[\begin{array}{c}\mathbf{R}_{1}^{-1} \\ \mathbf{0}\end{array}\right] \quad \hat{\mathbf{x}}_{2}=\boldsymbol{\Pi} \mathbf{R}^{-} \mathbf{Y}^{\prime} \mathbf{b}\)
 ord \(=j(n, 1,0) ;\)
 call qr (qtb,r2, pivqr, lindqr, a,ord,b);
 \(\mathrm{nr}=\mathrm{n}\) - lindqr;
 \(r=r 2[1: n r, 1: n r] ;\)
 \(\mathrm{x} 2=\operatorname{shape}(0, \mathrm{n}, 1)\);
 x2[pivqr] = trisolv(1,r,qtb[1:nr]) // j(lindqr,1,0.);
 len2 = \(\times 2\) ' * \(\times 2\);
 ss2 \(=\) ssq(a * \(x 2\) - b);
 \(\mathrm{x} 2=\mathrm{x} \mathbf{2}^{\text {'; }}\)
 print ss2 len2, \(x 2\) [format=best6.];
```

Note that the residual sum of squares is minimal, but the solution $\hat{\mathbf{x}}_{2}$ is not of minimum Euclidean length.

- Use the result $\mathbf{R}_{1}$ of the ROOT function on page 900 to obtain the vector piv indicating the zero rows in the upper triangular matrix $\mathbf{R}_{1}$ :

```
r1 = root(aa);
nr = n - lind;
piv = shape(0,n,1);
j1 = 1; j2 = nr + 1;
do i=1 to n;
 if r1[i,i] ^= 0 then do;
 piv[j1] = i; j1 = j1 + 1;
 end;
 else do;
 piv[j2] = i; j2 = j2 + 1;
 end;
end;
```

Now compute $\hat{\mathbf{x}}_{3}$ by solving the equation $\hat{\mathbf{x}}_{3}=\mathbf{R}^{-1} \mathbf{R}^{-1} \mathbf{A}^{\prime} \mathbf{b}$.

```
r = r1[piv[1:nr],piv[1:nr]];
x = trisolv(2,r,ab[piv[1:nr]]);
x = trisolv(1,r,x);
x3 = shape (0,n,1);
x3[piv] = x // j(lind,1,0.);
len3 = x3' * x3;
ss3 = ssq(a * x3 - b);
x3 = x3`;
print ss3 len3, x3 [format=best6.];
```

Note that the residual sum of squares is minimal, but the solution $\hat{\mathbf{x}}_{3}$ is not of minimum Euclidean length.

- Use the result $\mathbf{R}_{3}$ of the RUPDT call on page 901 and the vector piv (obtained in the previous solution), which indicates the zero rows of upper triangular matrices $\mathbf{R}_{1}$ and $\mathbf{R}_{3}$. After zeroing out the rows of $\mathbf{R}_{3}$ belonging to small diagonal pivots, solve the system $\hat{\mathbf{x}}_{4}=\mathbf{R}^{-1} \mathbf{Y}^{\prime} \mathbf{b}$.

```
r3 = shape (0,n,n);
qtb = shape (0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind, r4,bup,r3,,qtb);
qtb = bup[piv[1:nr]];
x = trisolv(1,r4[piv[1:nr],piv[1:nr]],qtb);
x4 = shape (0,n,1);
x4[piv] = x // j(lind,1,0.);
len4 = x4` * x4;
ss4 = ssq(a * x4 - b);
x4 = x4`;
print ss4 len4, x4 [format=best6.];
```

Since the matrices $\mathbf{R}_{4}$ and $\mathbf{R}_{1}$ are the same (except for the signs of rows), the solution $\hat{\mathbf{x}}_{4}$ is the same as $\hat{\mathbf{x}}_{3}$.

- Use the result $\mathbf{R}_{4}$ of the RZLIND call in the previous solution, which is the result of the first step of complete $Q R$ decomposition, and perform the second
step of complete QR decomposition. The rows of matrix $\mathbf{R}_{4}$ can be permuted to the upper trapezoidal form

$$
\left[\begin{array}{cc}
\widehat{R} & \mathrm{~T} \\
0 & 0
\end{array}\right]
$$

where $\widehat{\mathbf{R}}$ is nonsingular and upper triangular and $\mathbf{T}$ is rectangular. Next, perform the second step of complete QR decomposition with the lower triangular matrix

$$
\left[\begin{array}{c}
\widehat{\mathbf{R}}^{\prime} \\
\mathbf{T}^{\prime}
\end{array}\right]=\overline{\mathbf{Y}}\left[\begin{array}{c}
\overline{\mathbf{R}} \\
\mathbf{0}
\end{array}\right]
$$

which leads to the upper triangular matrix $\overline{\mathbf{R}}$.

```
r = r4[piv[1:nr],]';
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb);
x5 = q * (y // j(lind,1,0.));
len5 = x5' * x5;
ss5 = ssq(a * x5 - b);
x5 = x5';
print ss5 len5, x5 [format=best6.];
```

The solution $\hat{\mathbf{x}}_{5}$ obtained by complete QR decomposition has minimum Euclidean length.

- Perform both steps of complete QR decomposition. The first step performs the pivoted QR decomposition of $\mathbf{A}$,

$$
\mathbf{A} \Pi=\mathbf{Q R}=\mathbf{Y}\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]=\mathbf{Y}\left[\begin{array}{c}
\widehat{\mathbf{R}} \mathbf{T} \\
\mathbf{0}
\end{array}\right]
$$

where $\widehat{\mathbf{R}}$ is nonsingular and upper triangular and $\mathbf{T}$ is rectangular. The second step performs a QR decomposition as described in the previous method. This results in

$$
\mathbf{A} \Pi=\mathbf{Y}\left[\begin{array}{cc}
\overline{\mathbf{R}}^{\prime} & 0 \\
0 & 0
\end{array}\right] \overline{\mathbf{Y}}^{\prime}
$$

where $\overline{\mathbf{R}}^{\prime}$ is lower triangular.

```
ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,]`;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb[1:nr]);
x6 = shape(0,n,1);
x6[pivqr] = q * (y // j(lindqr,1,0.));
len6 = x6` * x6;
ss6 = ssq(a * x6 - b);
x6 = x6`;
print ss6 len6, x6 [format=best6.];
```

The solution $\hat{\mathbf{x}}_{6}$ obtained by complete QR decomposition has minimum Euclidean length.

- Perform complete QR decomposition with the QR and LUPDT calls:

```
ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr]`; z = r2[1:nr,nr+1:n]`;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
x7 = shape(0,n,1);
x7[pivqr] = rd` * qtb[1:nr,];
len7 = x7` * x7;
ss7 = ssq(a * x7 - b);
x7 = x7`;
print ss7 len7, x7 [format=best6.];
```

The solution $\hat{\mathbf{x}}_{7}$ obtained by complete QR decomposition has minimum Euclidean length.

- Perform complete QR decomposition with the RUPDT, RZLIND, and LUPDT calls:

```
r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt (rup,bup,sup,r3,a,qtb,b) ;
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]';
z = r4[piv[1:nr],piv[nr+1:n]]';
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
x8 = shape(0,n,1);
x8 = rd` * qtb[piv[1:nr],];
len8 = x8' * x8;
ss8 = ssq(a * x8 - b);
x8 = x8';
print ss8 len8, x8 [format=best6.];
```

The solution $\hat{\mathbf{x}}_{8}$ obtained by complete QR decomposition has minimum Euclidean length. The same result can be obtained with the APPCORT or COMPORT call.

You can use various methods to compute the Moore-Penrose inverse $\mathbf{A}^{-}$of a rectangular matrix A using orthogonal methods. The entries in the following list find the Moore-Penrose inverse of the matrix A shown on page 901.

- Use the GINV operator. The GINV operator in IML uses the singular decomposition $\mathbf{A}=\mathbf{U D V}^{\prime}$. The result $\mathbf{A}^{-}=\mathbf{V D}^{-} \mathbf{U}^{\prime}$ should be identical to the result given by the next solution.

```
ga = ginv(a);
t1 = a * ga; t2 = t1`;
t3 = ga * a; t4 = t3';
ss1 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss1, ga [format=best6.];
```

- Use singular value decomposition. The singular decomposition $\mathbf{A}=$ UDV $^{\prime}$ with $\mathbf{U}^{\prime} \mathbf{U}=\mathbf{I}_{m}, \mathbf{D}=\operatorname{diag}\left(d_{i}\right)$, and $\mathbf{V}^{\prime} \mathbf{V}=\mathbf{V V}^{\prime}=\mathbf{I}_{n}$, can be used to compute $\mathbf{A}^{-}=\mathbf{V D}^{\dagger} \mathbf{U}^{\prime}$, with $\mathbf{D}^{\dagger}=\operatorname{diag}\left(d_{i}^{\dagger}\right)$ and

$$
d_{i}^{\dagger}=\left\{\begin{array}{cl}
0 & \text { where } d_{i} \leq \epsilon \\
1 / d_{i} & \text { otherwise }
\end{array}\right.
$$

The result $\mathbf{A}^{-}$should be the same as that given by the GINV operator if the singularity criterion $\epsilon$ is selected correspondingly. Since you cannot specify the criterion $\epsilon$ for the GINV operator, the singular value decomposition approach can be important for applications where the GINV operator uses an unsuitable $\epsilon$ criterion. The slight discrepancy between the values of SS1 and SS2 is due to rounding that occurs in the statement that computes the matrix GA.

```
call svd(u,d,v,a);
do i=1 to n;
 if d[i] <= 1e-10 * d[1] then d[i] = 0.;
 else d[i] = 1. / d[i];
end;
ga = v * diag(d) * u';
t1 = a * ga; t2 = t1';
t3 = ga * a; t4 = t3';
ss2 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss2;
```

- Use complete QR decomposition. The complete QR decomposition

$$
\mathbf{A}=\mathbf{Y}\left[\begin{array}{cc}
\overline{\mathbf{R}}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \overline{\mathbf{Y}}^{\prime} \boldsymbol{\Pi}^{\prime}
$$

where $\overline{\mathbf{R}}^{\prime}$ is lower triangular, yields the Moore-Penrose inverse

$$
\begin{aligned}
& \mathbf{A}^{-}=\Pi \overline{\mathbf{Y}}\left[\begin{array}{cc}
\overline{\mathbf{R}}^{-1} & 0 \\
0 & \mathbf{0}
\end{array}\right] \mathbf{Y}^{\prime} \\
& \text { ord }=j(n, 1,0) \text {; } \\
& \text { call } \mathrm{qr}(\mathrm{q} 1, \mathrm{r} 2, \mathrm{pivqr}, \text { lindqr,a,ord) ; } \\
& \mathrm{nr}=\mathrm{n} \text { - lindqr; } \\
& \mathrm{q} 1=\mathrm{q} 1[, 1: \mathrm{nr}] ; \mathrm{r}=\mathrm{r} 2[1: \mathrm{nr}, \mathrm{]} \text {; } \\
& \text { call qr(q2,r5, piv2,lin2,r); } \\
& \text { tt = trisolv(4,r5`, q1 }) \text {; } \\
& \text { ga }=\text { shape ( } 0, \mathrm{n}, \mathrm{~m} \text { ); } \\
& \text { ga[pivqr,] = q2 * (tt // shape ( } 0, \mathrm{n}-\mathrm{nr}, \mathrm{~m} \text { )) ; } \\
& \text { t1 = a * ga; t2 = t1`; }
\end{aligned}
$$

```
t3 = ga * a; t4 = t3`;
ss3 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss3;
```

- Use complete QR decomposition with QR and LUPDT:

```
ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
r = r2[1:nr,1:nr]`; z = r2[1:nr,nr+1:n]`;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga[pivqr,] = rd' * q[,1:nr]`;
t1 = a * ga; t2 = t1`;
t3 = ga * a; t4 = t3';
ss4 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss4;
```

- Use complete QR decomposition with RUPDT and LUPDT:

```
r3 = shape (0,n,n);
y = i (m); qtb = shape(0,n,m);
call rupdt (rup,bup,sup,r3,a,qtb,y);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]`;
z = r4[piv[1:nr],piv[nr+1:n]]`;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga = rd` * qtb[piv[1:nr],];
t1 = a * ga; t2 = t1`;
t3 = ga * a; t4 = t3';
ss5 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss5;
```


## SAVE Statement

## saves data

SAVE;
The SAVE statement forces out any data residing in output buffers for all active output data sets and files to ensure that the data are written to disk. This is equivalent to closing and then reopening the files.

## SEQ, SEQSCALE, and SEQSHIFT Calls

perform discrete sequential tests
CALL SEQ( prob, domain $<,<$ TSCALE=tscale $><,<$ EPS=eps $>$
$<,<$ DEN=den $\ggg>$ );
CALL SEQSCALE( prob, gscale, domain, level $<,<$ IGUESS=iguess $>$
$<,<$ TSCALE=tscale $><,<$ EPS=eps $><,<$ DEN=den $\ggg \gg$ );
CALL SEQSHIFT( prob, shift, domain, plevel<, <IGUESS=iguess>
$<,<$ TSCALE=tscale $><,<$ EPS=eps $><,<$ DEN=den $\ggg \gg$ );
The SEQSHIFT subroutine returns the following values:

| prob | is an $(m+1) \times n$ matrix. The $[i, j]$ entry in the array contains the prob- <br> ability at the $[i, j]$ entry of the argument domain. Also, the probability <br> at infinity at every level $j$ is returned in the last entry ( $[m+1, j])$ of <br> column $j . ~ U p o n ~ a ~ s u c c e s s f u l ~ c o m p l e t i o n ~ o f ~ a n y ~ r o u t i n e, ~ t h i s ~ v a r i a b l e ~$ |
| :--- | :--- |
| is always returned. |  |

The inputs to the SEQSHIFT subroutine are as follows:
domain $\quad$ specifies an $m \times n$ matrix containing the boundary points separating the intervals of continuation/stopping of the sequential test. Each column $k$ contains the boundary points at level $k$ sorted in an ascending order, with . M and . P representing $-\infty$ and $+\infty$, respectively. They must start on the first row, and any remaining entries must be filled with a missing value. Elements that follow the missing value in any column are ignored. The number of columns $n$ is equal to the number of stages present in the sequential test. The row dimension $m$ must be even, and it is equal to the maximum number of boundary points in a level. In fact, domain is the tabular form of the finite boundary points. Entries in domain with absolute values that exceed a standardized value of 8 at any level are internally reset to a standardized value of 8 or -8 , depending on the sign of the entry. This is reflected in the results returned for the probabilities and the densities.
tscale specifies an optional $n-1$ vector that describes the time intervals between two consecutive stages. In the absence of tscale, these time intervals are internally set to 1 . The IML keyword for tscale is TSCALE.
$\begin{array}{ll}\text { eps } & \begin{array}{l}\text { specifies an optional numeric parameter for controlling the absolute } \\ \text { precision of the computation. In the absence of eps, the precision is } \\ \text { internally set to 1E-7. The IML keyword for eps is EPS. }\end{array} \\ \text { den } & \begin{array}{l}\text { specifies an optional character string to describe the name of an } m \times n \\ \text { matrix. The }[i, j] \text { entry in the matrix returns the density of the distribu- } \\ \text { tion at the }[i, j] \text { entry of the matrix specified by the domain argument. } \\ \text { The IML keyword for den is DEN. }\end{array} \\ \text { Thess } \begin{array}{l}\text { specifies an optional numeric parameter that contains an initial guess } \\ \text { for the variable gscale in the SEQSCALE subroutine or for the variable } \\ \text { mean in the SEQSHIFT subroutine. In general, very good estimates } \\ \text { for these initial guesses can be provided by an iterative process, and } \\ \text { these estimates become extremely valuable near convergence. The IML } \\ \text { keyword for iguess is IGUESS. }\end{array} \\ \text { level } \begin{array}{l}\text { specifies a numeric parameter in the SEQSCALE subroutine that con- } \\ \text { tains the required significance level to be achieved through scaling the } \\ \text { domain (see the description of SEQSCALE). }\end{array} \\ \text { plevel } \begin{array}{l}\text { specifies a numeric parameter in the SEQSHIFT subroutine that pro- } \\ \text { vides the required power level to be achieved through shifting the do- } \\ \text { main (see the description of SEQSHIFT). }\end{array}\end{array}$

## SEQ Call

To compute the probability from a sequential test, you must specify a matrix containing the boundaries. With the optional additional information concerning the time intervals and the target accuracy, or their default values, the SEQ subroutine returns the matrix that contains the probability and optionally returns the density from a sequential test evaluated at each given point of the boundary. Let $C_{j}$ denote the continuation set at each level $j . C_{j}$ is defined to be the union at the $j$ th level of all the intervals bounded from below by the points with even indices $0,2,4, \ldots$ and from above by the points with odd indices $1,3, \ldots$.

The SEQ call computes, with $\mu=0$, the densities

$$
f_{j}(s, \mu)=\int_{C_{j-1}} \phi\left(s-y, \mu, t_{j-1}\right) f_{j-1}(y, \mu) d y, \text { for } j=2,3, \ldots
$$

with

$$
f_{1}(s, \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{(s-\mu)^{2}}{2}\right]
$$

and

$$
\phi(s, \mu, t)=\frac{1}{\sqrt{2 \pi t}} \exp \left[-\frac{(s-\mu)^{2}}{2 t}\right]
$$

with the associated probability at any point $a$ at level $j$ to be

$$
P_{j}(a, \mu)=\int_{C_{j-1}} \Phi\left(a-y, \mu, t_{j}\right) f_{j-1}(y, \mu) d y, \text { for } j=2,3, \ldots
$$

with

$$
\Phi(b, \mu, t)=\int_{-\infty}^{b} \phi(s, \mu, t) d s
$$

The notation $\tau$ denotes the vector of time intervals $t_{1}, \ldots, t_{n-1}$, and $P_{j}(g, \mu, \tau)$ denotes the probability of continuation at the $j$ th level for a given domain $g$, a given mean $\mu$, and a given time vector $\tau$. The variance at the $j$ th level can be calculated from $\tau$.

$$
\begin{aligned}
\sigma_{1}^{2} & =1 \\
\sigma_{j+1}^{2} & =\sigma_{j}^{2}+\tau_{j}, \text { for } j=1,2, \ldots
\end{aligned}
$$

It is important to understand the limitations that are imposed internally on the domain by the numerical method. Any element $g_{i j}$ will always be limited within a symmetric interval with standardized values not to exceed 8 . That is,

$$
g_{i j}=\max \left[\min \left(g_{i j}, 8 \sigma_{j}\right),-8 \sigma_{j}\right]
$$

## SEQSCALE Call

Given a domain $g$, an optional time vector $\tau$, and a probability level $p_{s}$, the SEQSCALE subroutine finds the amount of scaling $s$ that would solve the problem

$$
P_{n}(g s, 0)=p_{s}
$$

The result for the amount of scaling $s$ is returned as the second argument of the SEQSCALE subroutine, scale. Note that because of the complexity of the problem, the SEQSCALE subroutine will not attempt to scale a domain with multiple intervals of continuation.

For a significance level of $\alpha$, set $p_{s}=1-\alpha$.

## SEQSHIFT Call

Given a geometry $g$, an optional time vector $\tau$, and a power level $1-\beta$, the SEQSHIFT subroutine finds the mean $\mu$ that solves $\mu \geq 0$ such that $P_{n}(g, \mu)=\beta$.

Actually, a simple transformation of the variables in the sequential problem yields the following result:

$$
P_{j}\left(g^{\mu}, 0\right)=P_{j}(g, \mu), \text { for } j=1,2, \ldots, n
$$

where $g^{\mu}$ is given by $g_{i j}^{\mu}=g_{i j}-\mu j$.

Many options are available with the NLP family of optimization routines, which are described in Chapter 4, "Nonlinear Optimization Subroutines."

Consider the following continuation intervals:

$$
\begin{aligned}
& C_{1}=\{-6,2\} \\
& C_{2}=\{-6,3\} \\
& C_{3}=\{-6,4,5,6\} \\
& C_{4}=\{-6,4\}
\end{aligned}
$$

The following IML program computes the probability from the sequential test at each boundary point specified in the geometry.

```
/* function to insert in m the geometry column a at level k*/
start table(m,a,k);
 if ncol(m) = 0 & nrow (m) = 0 then m = j(nrow(a),k,.);
 if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
 if ncol(m) < k then m = m l| j(nrow(m),k-ncol(m),.);
 m[1:nrow(a),k] = a;
finish;
call table(m, {-6,2},1);
call table (m,{-6,3},2);
call table (m, {-6,4,5,6},3);
call table(m,{-6,4},4);
call seq(prob,m) eps = 1.e-8 den="density";
print m;
print prob;
print density;
```

The following output displays the values returned for $m$, prob and den, respectively.
The probability at the level $k=3$ at the point $x=6$ is $\operatorname{prob}[4,3]=0.96651$, while the density at the same point is density $[4,3]=0.0000524$.

Consider the continuation intervals

$$
\begin{aligned}
& C_{1}=\{-20,2\} \\
& C_{2}=\{-20,20\} \\
& C_{3}=\{-3,3\}
\end{aligned}
$$

Note that the continuation at level 2 can be effectively considered infinite, and it does not numerically affect the results of the computation at level 3. The following IML program verifies this by using the tscale parameter to compute this problem.

```
reset nocenter;
/* function to insert in m the geometry column a at level k*/
start table(m,a,k);
 if ncol(m) = 0 & nrow (m) = 0 then m = j(nrow(a),k,.);
 if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
```

```
 if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
 m[1:nrow(a),k] = a;
finish;
call table(m, {-20,2},1);
call table(m,{-20,20},2);
call table(m, {-3,3},3);
/***/
/* TSCALE has the default value of 1 */
/**************************************/
call seq(prob1,m) eps = 1.e-8 den="density";
print m[format=f5.] prob1[format=e12.5];
call table(mm, {-20,2},1);
call table(mm, {-3,3},2);
 /* You can show a 2-step separation between the levels */
 /* while dropping the intermediate level at 2 */
tscale = { 2 };
call seq(prob2,mm) eps = 1.e-8 den="density" TSCALE=tscale;
print mm[format=f5.] prob2[format=e12.5];
```

The values returned for the variables $m$ and probl as well as $m m$ and prob2 are shown in the output.

Some internal limitations are imposed on the geometry. Consider the three-level case with geometry $m$ in the preceding code. Since the tscale variable is not specified, it is set to its default value, $(1,1)$. The variance at the $j$ th level is $\sigma_{j}^{2}=j$ for $j=1,2,3$. The first level has a lower boundary point of -20 , as represented by the value of $m[1,1]$. Since the absolute standardized value is larger than 8 , this point is replaced internally by the value -8 . Hence, the densities and the probabilities reported for the first level at this point are not for the given value -20 ; instead, they are for the internal value of -8 . For practical purposes, this limitation is not severe since the absolute error introduced is of the order of $10^{-16}$.

The computations performed by the first call of the SEQ subroutine can be simplified since the second level is large enough to be considered infinite. The matrix MM contains the first and third columns of the matrix M. However, in order to specify the two-step separation between the levels, you must specify tscale $=2$.

This example verifies some of the results published in Table 3 of Pocock (1982). That is, the following IML program verifies for the given domain that the significance level is 0.05 and that the power is $1-\beta$ under the alternative hypothesis:

```
/**/
/* first check whether the numbers yield */
/* 0.95 for the alpha level */
/***/
bm
 ={-3.663 -2.884 -2.573 -2.375 -2.037,
 -2.988 -2.537 -2.407 -2.346 -2.156,
```

```
 -2.598 -2.390 -2.390 -2.390 -2.310,
 -2.446 -2.404 -2.404 -2.404 -2.396};
bplevel = { 0.5 0.25 0.1 0.05};
level = 0.95; /* this the required alpha value */
sigma = diag(sqrt(1:5)); /* global sigma matrix */
do i = 1 to 4;
 m = bm[i,];
 plevel = bplevel[i];
 geom = (m//(-m))*sigma;
 /****************************/
 /* Try the null hypothesis */
 /******************************/
 call seq(prob,geom) eps = 1.e-10;
 palpha = (prob[2,]-prob[1,])[5];
 /*************************************/
 /* Try the alternative hypothesis */
 /**********************************/
 call seqshift(prob,mean,geom,plevel);
 beta = (prob[2,] -prob[1,])[5];
 p = prob[3,]-prob[2,]+prob[1,];
 /**************************************/
 /* Number of patients per group */
 /***************************************/
 tn = 4*mean##2;
 maxn = 5*tn;
 /***************************************/
 /* compute the average sample number */
 /*************************************/
 asn = tn *(5 - (4:0) * p`);
 summary = summary // (palpha || level || beta ||
 plevel || tn || maxn ||asn);
end;
print summary[format=10.5];
```

Note that the variables eps and tscale have been internally set to their default values. The following values are returned for the matrix SUMMARY:

These values compare well with the values shown in Table 3 of Pocock (1982). Differences are of the order of $10^{-5}$.

This example shows how to verify the results in Table 1 of Wang and Tsiatis (1987). For a given $\delta$, the following program finds $\Gamma$ that yields a symmetric continuation
interval given by

$$
-\Gamma j^{\delta} \leq C_{j} \leq \Gamma j^{\delta}
$$

with a given significance level of $\alpha$ :

```
start func(delta,k) global(level);
 m = ((1:k))##delta;
 mm = (-m//m);
 /************************************/
 /* meet the significance level */
 /* by scaling */
 /***********************************/
 call seqscale(prob,scale,mm,level);
 return(scale);
finish;
/***********************************/
/* alpha levels of 0.05 and 0.01 */
/************************************/
blevel = {0.95 0.99};
do i = 1 to 2;
 level = blevel[i];
 free summary;
 do delta = 0 to . }7\mathrm{ by .1;
 free row;
 do k=2 to 5;
 x = func(delta,k);
 row = row || x;
 end;
 summary = summary //row;
 end;
 print summary[format=10.5];
end;
```

The value of SUMMARY for the 0.95 level is as follows.
The value for SUMMARY for the 0.99 level is as follows.
Note that since eps and tscale are not specified, they are internally set to their default values.

This example verifies the results in Table 2 of Pocock (1977). The following program finds $\Gamma$ that yields a symmetric continuation interval given by

$$
-\Gamma \sqrt{j} \leq C_{j} \leq \Gamma \sqrt{j}
$$

for five groups. The overall significance level is $\alpha$ (the probability palpha=1- ), and the power is $1-\beta$.

```
%let nl = 5;
start func(plevel) global(level,scale,mean,palpha,beta,tn,asn);
 m = sqrt((1: &nl));
 mm = -m //m;
 /***********************************/
 /* meet the significance level */
 /* by scaling */
 /**********************************/
 call seqscale(prob,scale,mm,level);
 palpha = (prob[2,]-prob[1,])[&nl];
 mm = mm *scale;
 /**********************************/
 /* meet the power condition */
 /*******************************/
 call seqshift(prob,mean,mm,plevel);
 return (mean);
finish;
/*****************/
/* alpha = 0.95 */
/****************/
level = 9.50000E-01;
bplevel = { 0.5 . 25 . 1 0.05 0.01};
free summary;
do i = 1 to 5;
 summary = summary || func(bplevel[i]);
end;
print summary[format=10.5];
```

The value returned for SUMMARY are shown in the following table, and the entries agree with Table 2 of Pocock (1977).

SUMMARY
0.99359
1.31083
1.59229
1.75953
2.07153

This example illustrates how to find the optimal boundary of the $\delta$-class of Wang and Tsiatis (1987). The $\delta$-class boundary has the form

$$
-\Gamma j^{\delta} \leq C_{j} \leq \Gamma j^{\delta}
$$

The $\delta$-class boundary is optimal if it minimizes the average sample number while satisfying the required significance level $\alpha$ and the required power $1-\beta$. You can use the following program to verify some of the results published in Tables 2 and 3 of Wang and Tsiatis (1987):

```
%let nl=5;
start func(delta) global(level,plevel,mean,
 scale,alpha,beta,tn,asn);
 m = ((1: &nl))##delta;
 mm = (-m//m);
 /**********************************/
 /* meet the significance level */
 /*********************************/
 call seqscale(prob,scale,mm,level);
 alpha = (prob[2,]-prob[1,])[&nl];
 mm = mm *scale;
 /***********************************/
 /* meet the power condition */
/************************************/
 call seqshift(prob,mean,mm,plevel);
 beta = (prob[2,]-prob[1,])[&nl];
 /***************************************/
 /* compute the average sample number */
 /**************************************/
 p = prob[3,]-prob[2,]+prob[1];
 tn = 4*mean##2; /* number per group */
 asn = tn *(&nl - p *(%eval(&nl-1):0) ');
 return(asn);
finish;
/**/
/* set up the global variables needed by func */
/**/
level = 0.95;
plevel = 0.01;
/***/
/* set up the controlling options of the */
/* optimization routine */
/**/
opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epsd;
/*****************************/
/* provide the initial guess */
```

```
/* and let nlpdd do the work */
/*****************************/
delta = 0.5;
call nlpdd(rc,rx,"func",delta) opt=opt tc=tc par=par;
```

The following output displays the results.

N Parameter \begin{tabular}{rrr}
Optimization Start <br>
Parameter Estimates

$\quad$

Gradient <br>
Objective
\end{tabular}

Value of Objective Function $=35.232023082$

Double Dogleg Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Without Parameter Scaling
Gradient Computed by Finite Differences
Number of Parameter Estimates 1

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

| Active Constraints |  |  | 0 Criterion $=35.232$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Max Abs Gradient Element |  |  | 98 Radius $=1.000$ |  |
| Iter | Restart | $\begin{aligned} & \text { Function } \\ & \text { Calls } \end{aligned}$ | ive <br> raints | Objective Function |
| 1 | 0 | 3 |  | 34.8914 |
| 2* | 0 | 4 |  | 34.8774 |
| 3* | 0 | 5 | O | 34.8774 |
| Iter | difcrit | maxgrad | lambda | slope |
| 1 | 0.3406 | 1.644 | 49.273 | -0.830 |
| 2* | 0.0140 | 0.0440 | 0 | -0.0144 |
| 3* | 0.00001 | 0.00013 | 0 | -1E-5 |

```
Iterations 3 Function Calls 6
Gradient Calls 5 Active Constraints 0
Criterion 34.877417 Max Grad Element 0.000126832
Slope -0.0000100034 Radius 1
NOTE: FCONV convergence criterion satisfied.
Optimization Results
Parameter Estimates
\begin{tabular}{llc}
N Parameter & Estimate & Gradient \\
1 X1 & 0.586554 & -0.0001268
\end{tabular}
Value of Objective Function = 34.877416815
```

The optimal function value of 34.88 agrees with the entry in Table 2 of Wang and Tsiatis (1987) for five groups, $\alpha=0.05$, and $1-\beta=0.99$. Note that the variables eps and tscale are internally set to their default values. For more information about the NLPDD subroutine, see the section "NLPDD Call" on page 794. For details about the opt, $t c$, and par arguments in the NLPDD call, see the section "Options Vector" on page 347, the section "Termination Criteria" on page 352, and the section "Control Parameters Vector" on page 359, respectively.

You can replicate other values in Table 2 of Wang and Tsiatis (1987) by changing the values of the variables NL and PLEVEL. You can obtain values from Table 3 by changing the value of the variable LEVEL to 0.99 and specifying NL and PLEVEL accordingly.

This example illustrates how to find the boundaries that minimize ASN given the required significance level and the required power. It replicates some of the results published in Table 3 of Pocock (1982). The IML program computes the domain that

- minimizes the ASN
- yields a given significance level of 0.05
- yields a given power $1-\beta$ under the alternative hypothesis

The last two nonlinear conditions on the optimization process can be incorporated as a penalty applied on the error in these nonlinear conditions. The following IML program does the computations for a power of 0.9.

```
%let nl=5;
start func(m) global(level,plevel,sigma,epss,
 geometry, stgeom,gscale,mean, alpha,beta,tn,asn);
 m = abs(m);
 mm = (-m // m)*sigma;
 /***********************************/
 /* meet the significance level */
 /*********************************/
```

```
 call seqscale(prob,gscale,mm,level) iguess=gscale eps=epss;
 stgeom = gscale*m;
 geometry= mm*gscale;
 alpha = (prob[2,]-prob[1,])[&nl];
 /**********************************/
 /* meet the power condition */
 /********************************/
 call seqshift(prob,mean,geometry,plevel) iguess=mean eps=epss;
 beta = (prob[2,]-prob[1,])[&nl];
 p = prob[3,] - prob[2,]+prob[1,];
 /**/
 /* compute the average sample number */
 /***/
 tn = 4*mean##2; /* number per group */
 asn = tn *(&nl - p *(%eval(&nl-1):0) ');
 return(asn);
finish;
/***/
/* set up the global variables needed by func */
/***/
epss = 1.e-8;
epso = 1.e-5;
level = 9.50000E-01;
plevel = 0.05;
sigma = diag(sqrt(1:5));
/***/
/* set up the controlling options of the */
/* optimization routine */
/***/
opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epso;
/**************************************/
/* provide the constraint matrix */
/* you need monotonically increasing */
/* significance levels */
/***/
con = { ,
 ,
 1 -1 . . . 1 0,
 . 1 -1 . . 1 0 ,
```

```
 . . 1 1 -1 . . 1 0 % ,
/**********************************/
/* provide the initial guess */
/* and let nlp do the work */
/**********************************/
 = { 1 1 1 1 1 1 1 1 };
call nlpdd(rc,rx,"func",m) opt=opt blc = con tc=tc par=par;
print stgeom;
```

Note that while eps has been set to eps=10-8, tscale has been internally set to its default value. You can choose to run the IML program with and without the specification of the keyword IGUESS to see the effect on the execution time.

Note the following about the optimization process:

- Different levels of precision are imposed on different modules. In this example, epss, which is used as the precision for the sequential tests, is $1 \mathrm{E}-8$. The absolute and relative function criteria for the objective function are set to $\operatorname{par}[7]=1 \mathrm{E}-5$ and $t c[7]=1 \mathrm{E}-4$, respectively. Since finite differences are used to compute the first and second derivatives, the sequential test should be more precise than the optimization routine. Otherwise, the finite difference estimation is worthless. Optimally, if the precision of the function evaluation is $O(\epsilon)$, the first- and second-order derivatives should be estimated with perturbations $O\left(\epsilon^{\frac{1}{2}}\right)$ and $O\left(\epsilon^{\frac{1}{3}}\right)$, respectively. For example, if all three precision levels are set to $1 \mathrm{E}-5$, the optimization process does not work properly.
- Line search techniques that do not depend on the computation of the derivative are preferable.
- The amount of printed information from the optimization routines is controlled by $\operatorname{opt}[2]$ and can be set to any value between 0 and 3 , with larger numbers representing more printed output.


## SEQSCALE Call

performs discrete sequential tests
CALL SEQSCALE( prob, gscale, domain, level<, <IGUESS=iguess>

$$
<,<\text { TSCALE }=\text { tscale }><,<\text { EPS }=e p s><,<\text { DEN }=\text { den } \ggg \gg) \text {; }
$$

See the entry for the SEQ subroutine for details.

## SEQSHIFT Call

performs discrete sequential tests
CALL SEQSHIFT( prob, shift, domain, plevel<, <IGUESS=iguess>

$$
<,<\text { TSCALE }=\text { tscale }><,<\text { EPS }=e p s><,<\text { DEN }=\text { den } \ggg \gg) \text {; }
$$

See the entry for the SEQ subroutine for details.

## SETDIF Function

## compares elements of two matrices

SETDIF( matrix1, matrix2)
The inputs to the SETDIF function are as follows:

| matrix1 | is a reference matrix. Elements of matrixl not found in matrix2 are |
| :--- | :--- |
| returned in a vector. It can be either numeric or character. |  |
| matrix2 | is the comparison matrix. Elements of matrixl not found in ma- <br> trix2 are returned in a vector. It can be either numeric or character, <br> depending on the type of matrix1. |

The SETDIF function returns as a row vector the sorted set (without duplicates) of all element values present in matrixl but not in matrix2. If the resulting set is empty, the SETDIF function returns a null matrix (with zero rows and zero columns). The argument matrices and result can be either both character or both numeric. For character matrices, the element length of the result is the same as the element length of the matrixl. Shorter elements in the second argument are padded on the right with blanks for comparison purposes.

For example, the following statements produce the matrix $\mathbf{C}$, as shown:

```
a={1 2 4 5};
b={3 4}}\mathrm{ ;;
c=setdif(a,b);
```

C

1 row

1

3 cols

2
5

## SETIN Statement

## makes a data set current for input

SETIN SAS-data-set <NOBS name> <POINT operand>;
The inputs to the SETIN statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a twolevel name (for example, SASUSER.A). For more information about specifying SAS data sets, see the chapter on data sets in $S A S$ Language Reference: Concepts.
name
is the name of a variable to contain the number of observations in the data set.
operand specifies the current observation.

The SETIN statement chooses the specified data set from among the data sets already opened for input by the EDIT or USE statement. This data set becomes the current input data set for subsequent data management statements. The NOBS option is not required. If specified, the NOBS option returns the number of observations in the data set in the scalar variable name. The POINT option makes the specified observation the current one. It positions the data set to a particular observation. The SHOW datasets command lists data sets already opened for input.

In the example that follows, if the data set WORK.A has 20 observations, the variable SIZE is set to 20. Also, the current observation is set to 10 .
setin work.a nobs size point 10 ;
list; /* lists observation 10 */

## SETOUT Statement

## makes a data set current for output

```
SETOUT SAS-data-set <NOBS name> <POINT operand>;
```

The inputs to the SETOUT statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a twolevel name (for example, SASUSER.A). For more information about specifying SAS data sets, see the chapter on SAS data sets in SAS Language Reference: Concepts.
name $\quad$ is the name of a variable to contain the number of observations in the data set.
operand specifies the observation to be made the current observation.
The SETOUT statement chooses the specified data set from among those data sets already opened for output by the EDIT or CREATE statement. This data set becomes the current output data set for subsequent data management statements. If specified, the NOBS option returns the number of observations currently in the data set in the scalar variable name. The POINT option makes the specified observation the current one.

In the example that follows, the data set WORK.A is made the current output data set and the fifth observation is made the current observation. The number of observations in WORK.A is returned in the variable SIZE.

```
setout work.a nobs size point 5;
```


## SHAPE Function

## reshapes and repeats values

SHAPE( matrix $<$, nrow $<$, ncol $<$, pad-value $\ggg$ )
The inputs to the SHAPE function are as follows:

$$
\text { matrix } \quad \text { is a numeric or character matrix or literal. }
$$

nrow gives the number of rows of the new matrix.
ncol gives the number of columns of the new matrix.
pad-value is a fill value.

The SHAPE function shapes a new matrix from a matrix with different dimensions; nrow specifies the number of rows, and ncol specifies the number of columns in the new matrix. The operator works for both numeric and character operands. The three ways of using the function are outlined in the following list:

- If only nrow is specified, the number of columns is determined as the number of elements in the object matrix divided by nrow. The number of elements must be exactly divisible; otherwise, a conformability error is diagnosed.
- If both nrow and ncol are specified, but not pad-value, the result is obtained moving along the rows until the desired number of elements is obtained. The operation cycles back to the beginning of the object matrix to get more elements, if needed.
- If pad-value is specified, the operation moves the elements of the object matrix first and then fills in any extra positions in the result with the pad-value.

If nrow or ncol is specified as 0 , the number of rows or columns, respectively, becomes the number of values divided by ncol or nrow.

For example, the following statement produces the result shown:

```
r=shape(12, 3,4);
```

R
3 rows
4 cols
(numeric)

12
12
12
12
12
12
12
12

The following statement produces the result matrix by moving along the rows until the desired number of elements is obtained, cycling back as necessary:
r=shape (77, 1, 5) ;

Here is the output:

| R | 1 row | 5 cols | (numeric) |  |
| :--- | :---: | :---: | :---: | :---: |
| 77 | 77 | 77 | 77 | 77 |

The following statement has nrow specified and converts the $3 \times 2$ matrix into a $2 \times 3$ matrix:
r=shape (\{1 2, 3 4, 5 6\}, 2);

Here is the output:
R
2 rows
3 cols
(numeric)
1
2
3
$4 \quad 5$
6

The following statement demonstrates the cycling back and repetition of elements in row-major order until the number of elements desired is obtained:

```
r=shape({99 31},3,3);
```

Here is the output:

| 3 | rows | 3 cols | (numeric) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 99 | 31 | 99 |  |
| 31 | 99 | 31 |  |
| 99 | 31 | 99 |  |

## SHOW Statement

## prints system information

SHOW operands;
where operands are any of the valid operands to the SHOW statement. These are given in the following list.

The SHOW statement prints system information. The following operands are available:

ALL shows all the information included by OPTIONS, SPACE, DATASETS, FILES, and MODULES.

ALLNAMES
CONTENTS shows the names and attributes of the variables in the current SAS data set.

DATASETS shows all open SAS data sets.

FILES shows all open files.
MEMORY
returns the size of the largest chunk of main memory available.
MODULES shows all modules that exist in the current IML environment. A module already referenced but not yet defined is listed as undefined.
name
shows attributes of the specified matrix. If the name of a matrix is one of the SHOW keywords, then both the information for the keyword and the matrix are shown.
NAMES shows attributes of all matrices having values. Attributes include number of rows, number of columns, data type, and size.
OPTIONS shows current settings of all IML options (see the RESET statement).
PAUSE shows the status of all paused modules that are pending resume.
SPACE shows the workspace and symbolspace size and their current usage.
STORAGE shows the modules and matrices in the current IML library storage.
WINDOWS shows all active windows opened by WINDOW statements.

An example of a valid statement follows:

```
show all;
```


## SOLVE Function

## solves a system of linear equations

## SOLVE $(A, B)$

The inputs to the SOLVE function are as follows:
$A \quad$ is an $n \times n$ nonsingular matrix.
$B \quad$ is an $n \times p$ matrix.

The SOLVE function solves the set of linear equations $\mathbf{A X}=\mathbf{B}$ for $\mathbf{X}$. A must be square and nonsingular.
$\mathbf{X}=\operatorname{SOLVE}(\mathbf{A}, \mathbf{B})$ is equivalent to using the $\operatorname{INV}$ function as $\mathbf{X}=\operatorname{INV}(\mathbf{A}) * \mathbf{B}$. However, the SOLVE function is recommended over the INV function because it is more efficient and more accurate. An example follows:

```
x=solve (a,b);
```

The solution method used is discussed in Forsythe, Malcolm, and Moler (1967).
The SOLVE function (as well as the DET and INV functions) uses the following criterion to decide whether the input matrix, $\mathbf{A}=\left[a_{i j}\right]_{i, j=1, \ldots, n}$, is singular:

$$
\text { sing }=100 \times M A C H E P S \times \max _{1 \leq i, j \leq n}\left|a_{i j}\right|
$$

where MACHEPS is the relative machine precision.
All matrix elements less than or equal to sing are now considered rounding errors of the largest matrix elements, so they are taken to be zero. For example, if a diagonal or triangular coefficient matrix has a diagonal value less than or equal to sing, the matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic operations to be performed on values that were essentially floating-point error. This occasionally yielded numerically unstable results. The new criterion is much more conservative, and it generates far fewer erroneous results. In some cases, you might need to scale the data to avoid singular matrices. If you think the new criterion is too strong, do the following:

- Try the GINV function to compute the generalized inverse.
- Examine the size of the singular values returned by the SVD function. The SVD function can be used to compute a generalized inverse with a userspecified singularity criterion.

If $A$ is an $n \times n$ matrix, the SOLVE function temporarily allocates an $n^{2}$ array in addition to the memory allocated for the return matrix.

## SOLVELIN CalI

## solves a sparse symmetric linear system by direct decomposition

CALL SOLVELIN( $x$, status, $A, b$, method);
The SOLVELIN call returns the following values:
$x \quad$ is the solution to $A x=b$.
status is the final status of the solution.

The inputs to the SOLVELIN call are as follows:
$A \quad$ is the sparse coefficient matrix in the equation $A x=b$.
$b \quad$ is the right side of the equation $A x=b$.
method is the name of the decomposition to be used.
The SOLVELIN call uses direct decomposition to solve sparse symmetric linear systems. The input matrix $A$ represents the coefficient matrix in sparse format; it is an $n$ by 3 matrix, where $n$ is the number of nonzero elements. The first column contains the nonzero values, while the second and third columns contain the row and column locations for the nonzero elements, respectively. Since $A$ is assumed to be symmetric, only the elements on and below the diagonal should be specified, and it is an error to specify elements above the diagonal.

The solution to the system is returned in $x$. Your program should also check the returned status to make sure that a solution was found.
status $=0$ indicates success.
status $=1$ indicates the matrix A is not positive-definite.
status $=2$ indicates the system ran out of memory.

If the SOLVELIN call is unable to solve your system, you can try the iterative method call ITSOLVER.

Two different factorization methods are available from the call, Cholesky and Symbolic LDL, specified as 'CHOL' or 'LDL' with the method parameter. Both these factorizations are applicable only to positive-definite symmetric systems; if your system is not positive-definite or not symmetric, you can use an ITSOLVER call.

The following example uses SOLVELIN to solve the system:

$$
\left[\begin{array}{llll}
3 & 1.1 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & 10 & 0 \\
0 & 3.2 & 0 & 3
\end{array}\right] x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

```
/* value rrow column */
/* right hand side */
b = {1, 1, 1, 1};
call solvelin(x, status, A, b, 'LDL');
print status x;
```

The results are as follows:

$$
\begin{array}{rr}
\text { STATUS } & \mathrm{X} \\
0 & 2.68 \\
& -6.4 \\
& 0.74 \\
& 7.16
\end{array}
$$

## SORT Call

## CALL SORT( matrix, by $<$, descend $>$ )

The inputs to the SORT call are as follows:
matrix is the input matrix, which is sorted in place by the call.
by is either a numeric matrix of column numbers, or a character matrix containing the names of columns corresponding to column labels assigned to matrix by a MATTRIB statement or READ statement.
descend is an optional matrix, indicating which columns, if any, should be descending order. Any by columns not specified as descending will be ascending. If descend $=b y$, then all by columns will be descending; if descend is skipped or is a null matrix, then all by columns will be ascending.

The SORT call is used to sort a matrix, rearranging its rows according to the columns and order determined by the by and descend inputs. Because the sort is done in place, very little additional memory space is required. The SORT call is not as fast as the SORTNDX call for matrices with large rows. After a matrix has been sorted, the unique combinations of values in the by columns can be obtained from the UNIQUEBY function.

For example, the following statements produce the matrix $\mathbf{M}$, as shown:

```
m={1 1 0,
 2 0,
 1 1 1,
 2 2 2};
call sort(m, {1 3}, {3});
```

M

| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 0 |
| 2 | 2 | 2 |
| 2 | 2 | 0 |

## SORT Statement

## sorts a SAS data set

SORT <DATA=>SAS-data-set $<$ OUT=SAS-data-set $>$

## BY $<$ DESCENDING $>$ variables;

where you can use the following clauses with the SORT statement:

DATA=SAS-data-set names the SAS data set to be sorted. It can be specified with a one-level name (for example, A) or a two-level name (for example, SASUSER.A). For more information
about specifying SAS data sets, see the chapter on SAS data sets in SAS Language Reference: Concepts. Note that the DATA= portion of the specification is optional.
OUT=SAS-data-set specifies a name for the output data set. If this clause is omitted, the DATA= data set is sorted and the sorted version replaces the original data set.
BY variables

DESCENDING
specifies the variables to be sorted. A BY clause must be used with the SORT statement. specifies the variables are to be sorted in descending order.

The SORT statement sorts the observations in a SAS data set by one or more variables, stores the resulting sorted observations in a new SAS data set, or replaces the original. As opposed to all other IML data processing statements, it is mandatory that the data set to be sorted be closed prior to the execution of the SORT statement.

The SORT statement first arranges the observations in the order of the first variable in the BY clause; then it sorts the observations with a given value of the first variable by the second variable, and so forth. Every variable in the BY clause can be preceded by the keyword DESCENDING to denote that the variable that follows is to be sorted in descending order. Note that the SORT statement in IML always retains the same relative positions of the observations with identical BY variable values.

For example, the following IML statement sorts the SAS data set CLASS by the variables AGE and HEIGHT, where AGE is sorted in descending order, and all observations with the same AGE value are sorted by HEIGHT in ascending order:

```
sort class out=sclass by descending age height;
```

The output data set SCLASS contains the sorted observations. When a data set is sorted in place (without the OUT= clause) any indexes associated with the data set become invalid and are automatically deleted.

Note that all the clauses of the SORT statement must be specified in the order given in the preceding list.

## SORTNDX Call

creates an index to reorder a matrix by specified columns
CALL SORTNDX( index, matrix, by<, descend $>$ )
The SORTNDX call returns the following value:
index is a vector such that index[i] is the row index of the $i$ th element of matrix when sorted according to by and descend. Consequently, matrix $[$ index, $]$ is the sorted matrix.

The inputs to the SORTNDX call are as follows:
matrix $\quad$ is the input matrix, which is not modified by the call.
by is either a numeric matrix of column numbers, or a character matrix containing the names of columns corresponding to column labels assigned to matrix by a MATTRIB statement or READ statement.
descend is an optional matrix, indicating which columns, if any, should be descending order. Any by columns not specified as descending will be ascending. If descend $=b y$, then all by columns will be descending; if descend is skipped or is a null matrix, then all by columns will be ascending.

The SORTNDX call can be used to process the rows of a matrix in different sorted order, without having to actually modify it.

For example, the following statements result in the output shown:

```
m={1 1 0,
 2 0 0,
 1 3 1,
 2 2 2 };
call SORTNDX(ndx, m, {1 3}, {3});
```

NDX

3
1
4
2

The matrix can be physically sorted with the SORT call), as follows:

```
call SORTNDX(ndx, m, by);
m = m[ndx,];
```

The SORTNDX call can be used with the UNIQUEBY function to extract the unique combinations of values in the by columns.

## SOUND Call

## produces a tone

CALL SOUND( freq<, dur>);
The inputs to the SOUND subroutine are as follows:
freq is a numeric matrix or literal giving the frequency in hertz.
dur is a numeric matrix or literal giving the duration in seconds. Note that the $d u r$ argument differs from that in the DATA step.

The SOUND subroutine generates a tone using freq for frequency (in hertz) and dur for duration (in seconds). Matrices can be specified for frequency and duration to produce multiple tones, but if both arguments are nonscalar, then the number of elements must match. The duration argument is optional and defaults to 0.25 (one quarter second).

For example, the following statements produce tones from an ascending musical scale, all with a duration of 0.2 seconds:

```
notes=400#(2##do(0, 1, 1/12));
call sound(notes,0.2);
```


## SPLINE and SPLINEC Calls

## provide cubic spline fits

CALL SPLINE( fitted, data<, smooth $><$, delta $><$, nout $>$
$<$, type $><$, slope $>$ );
CALL SPLINEC( fitted, coeff, endSlopes, data $<$, smooth $><$, delta $>$
$<$, nout $><$, type $><$, slope $>$ );
The SPLINE subroutine is the same as SPLINEC but does not return the matrix of spline coefficients needed to call SPLINEV, nor does it return the slopes at the endpoints of the curve.

The SPLINEC subroutine returns the following values:
fitted is an $n \times 2$ matrix of fitted values.
coeff is an $n \times 5$ (or $n \times 9$ ) matrix of spline coefficients. The matrix contains the cubic polynomial coefficients for the spline for each interval. Column 1 is the left endpoint of the $x$-interval for the regular (nonparametric) spline or the left endpoint of the parameter for the parametric spline. Columns $2-5$ are the constant, linear, quadratic, and cubic coefficients, respectively, for the $x$-component. If a parametric spline is used, then columns $6-9$ are the constant, linear, quadratic, and cubic coefficients, respectively, for the $y$-component. The coefficients for each interval are with respect to the variable $x-x_{i}$ where $x_{i}$ is the left endpoint of the interval and $x$ is the point of interest. The matrix coeff can be processed to yield the integral or the derivative of the spline. This, in turn, can be used with the SPLINEV function to evaluate the resulting curves. The SPLINEC call returns coeff.
endSlopes is a $1 \times 2$ matrix containing the slopes of the two ends of the curve expressed as angles in degrees. The SPLINEC call returns the endSlopes argument.

The inputs to the SPLINEC subroutine are as follows:

| data | specifies a $n \times 2$ (or $n \times 3$ ) matrix of ( $x, y$ ) points on which the spline is <br> to be fit. The optional third column is used to specify a weight for each <br> data point. If smooth $>0$, the weight column is used in calculations. A <br> weight $\leq 0$ causes the data point to be ignored in calculations. |
| :--- | :--- |
| smooth | is an optional scalar specifying the degree of smoothing to be used. If <br> smooth is omitted or set equal to 0 , then a cubic interpolating spline is <br> fit to the data. If smooth $>0$, then a cubic spline is used. Larger values <br> of smooth generate more smoothing. |
| delta | is an optional scalar specifying the resolution constant. If delta is spec- <br> ified, the fitted points are spaced by the amount delta on the scale of <br> the first column of data if a regular spline is used or on the scale of the <br> curve length if a parametric spline is used. If both nout and delta are <br> specified, nout is used and delta is ignored. <br> is an optional scalar specifying the number of fitted points to be com- <br> puted. The default is nout=200. If nout is specified, then nout equally <br> spaced points are returned. The nout argument overrides the delta ar- <br> gument. |
| type | is an optional $1 \times 1$ (or $1 \times 2$ ) character matrix or quoted literal giving <br> the type of spline to be used. The first element of type should be one of <br> the following: |

- periodic, which requests periodic endpoints
- zero, which sets second derivatives at endpoints to 0

The type argument controls the endpoint constraints unless the slope argument is specified. If periodic is specified, the response values at the beginning and end of column 2 of data must be the same unless the smoothing spline is being used. If the values are not the same, an error message is printed and no spline is fit. The default value is zero. The second element of type should be one of the following.

- nonparametric, which requests a nonparametric spline
- parametric, which requests a parametric spline

If parametric is specified, a parameter sequence $\left\{t_{i}\right\}$ is formed as follows: $t_{1}=0$ and

$$
t_{i}=t_{i-1}+\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}
$$

Splines are then fit to both the first and second columns of data. The resulting splined values are paired to form the output. Changing the relative scaling of the first two columns of data changes the output because the sequence $\left\{t_{i}\right\}$ assumes Euclidean distance.
Note that if the points are not arranged in strictly ascending order by the first columns of data, then a parametric method must be used. An error message results if the nonparametric spline is requested.
slope $\quad$ is an optional $1 \times 2$ matrix of endpoint slopes given as angles in degrees. If a parametric spline is used, the angle values are used modulo 360 . If a nonparametric spline is used, the tangent of the angles is used to set the slopes (that is, the effective angles range from -90 to 90 degrees).

Refer to Stoer and Bulirsch (1980), Reinsch (1967), and Pizer (1975) for descriptions of the methods used to fit the spline. For simplicity, the following explanation assumes that the data matrix does not contain a weighting column.

Nonparametric splines can be used to fit data for which you believe there is a functional relationship between the X and Y variables. The unique values of X (stored in the first column of data) form a partition $\left\{a=x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ of the interval $[a, b]$. You can use a spline to interpolate the data (produce a curve that passes through each data point) provided that there is a single Y value for each X value. The spline is created by constructing cubic polynomials on each subinterval $\left[x_{i}, x_{i+1}\right]$ so that the value of the cubic polynomials and their first two derivatives coincide at each $x_{i}$.

An interpolating spline is not uniquely determined by the set of Y values. To achieve a unique interpolant, $S$, you must specify two constraints on the endpoints of the interval $[a, b]$. You can achieve uniqueness by specifying one of the following conditions:

- $S^{\prime \prime}(a)=0, S^{\prime \prime}(b)=0$. The second derivative at both endpoints is zero. This is the default condition, but can be explicitly set by using type=' zero'.
- Periodic conditions. If your data are periodic so that $x_{1}$ can be identified with $x_{n}$, and if $y_{1}=y_{n}$, then the interpolating spline already satisfies $S(a)=S(b)$. Setting type=' periodic' further requires that $S^{\prime}(a)=S^{\prime}(b)$ and $S^{\prime \prime}(a)=$ $S^{\prime \prime}(b)$.
- Fixed slopes at endpoints. Setting slope $=\left\{y_{1}^{\prime}, y_{n}^{\prime}\right\}$ requires that $S^{\prime}(a)=y_{1}^{\prime}$ and $S^{\prime}(b)=y_{n}^{\prime}$.

The following code gives three examples of computing an interpolating spline for data. Note that the first and last Y values are the same, so you can ask for a periodic spline.

```
data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
/* Compute three spline interpolants of the data */
/* (1) a cubic spline with type=zero (the default) */
call spline(fitted,data);
/* (2) A periodic spline */
call spline(periodicFitted,data) type='periodic';
/* (3) A spline with specific slopes at endpoints */
call spline(slopeFitted,data) slope={45 30};
```

You can also use a spline to smooth data. In general, a smoothing spline will not pass through any data pair exactly. A very small value of the smooth smoothing parameter will approximate an interpolating polynomial for data in which each unique X value is assigned the mean of the Y values corresponding to that X value. As the smooth parameter gets very large, the spline will approximate a linear regression.

The following code computes two smoothing splines for the same data as in the previous example. The spline coefficients are passed to the SPLINEV function which evaluates the smoothing spline at the original X values. Note that the smoothing spline does not pass through the original $Y$ values. Note also that the smoothing parameter for the periodic spline is smaller, so the periodic spline has more "wiggles" than the corresponding spline with the larger smoothing parameter.

```
data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
/* Compute spline smoothers of the data. */
call splinec(fitted,coeff,endSlopes,data) smooth=1;
/* Evaluate the smoother at the original X positions */
smoothFit = splinev(coeff, data[,1]);
/* Compute periodic spline smoother of the data. */
call splinec(fitted,coeff,endSlopesP,data)
 smooth=0.1 type='periodic';
/* Evaluate the smoother at the original X positions */
smoothPeriodicFit = splinev(coeff, data[,1]);
/* Compare the two fits. Verify that the periodic
 spline has identical slopes at the end points. */
print smoothFit smoothPeriodicFit, endSlopesP;
\begin{tabular}{|c|c|}
\hline SMOOTHFIT & SMOOTHPERIODICFIT \\
\hline 04.4761214 & 04.7536432 \\
\hline 14.002489 & 13.5603915 \\
\hline 24.2424509 & 24.3820561 \\
\hline 34.8254655 & 34.47148 \\
\hline 45.7817386 & 45.8811872 \\
\hline 56.3661254 & 56.8331581 \\
\hline 66.0606327 & 66.1180839 \\
\hline 75.2449764 & 74.7536432 \\
\hline \multicolumn{2}{|c|}{ENDSLOPESP} \\
\hline
\end{tabular}
```

A parametric spline can be used to interpolate or smooth data for which there does not seem to be a functional relationship between the X and Y variables. A partition $\left\{t_{i}\right\}$ is formed as explained in the documentation for the type parameter. Splines are then used to fit the X and Y values independently.

The following program fits a parametric curve to data that is shaped like an "S." The variable fitted is returned as a numParam $\times 2$ matrix that contains the ordered pairs corresponding to the parametric spline. These ordered pairs correspond to numParam evenly spaced points in the domain of the parameter $t$.

The purpose of the SPLINEV function is to evaluate (or score) an interpolating or smoothing spline at an arbitrary set of points. The following program shows how to construct the parameters corresponding to the original data by using the formula specified in the documentation for the type argument. These parameters are used to construct the evenly spaced parameters corresponding to the data in the fitted matrix.

```
data}={3 7, 2 7, 1 6, 1 5, 2 4, 3 3, 3 2, 2 1, 1 1}
/* Compute parametric spline interpolant */
numParam = 20;
call splinec(fitted,coeff,endSlopes,data)
 nout=numParam type={'zero' 'parametric'};
/* Form the parameters mapped onto the data */
/* Evaluating the splines at t would return data */
t = j(nrow(data),1,0); /* first parameter is zero */
do i = 2 to nrow(t);
 t[i] = t[i-1] + sqrt((data[i,1]-data[i-1,1])##2 +
 (data[i,2]-data[i-1,2])##2);
end;
/* construct numParam evenly-spaced parameters
 between 0 and t[nrow(t)] */
params = do(0, t[nrow(t)], t[nrow(t)]/(numParam-1)) ';
/* evaluate the parametric spline at these points */
xy = splinev(coeff, params);
print params fitted xy;
```

The output from this program is as follows:

PARAMS

| 0 | 3 | 7 | 3 | 7 |
| ---: | ---: | ---: | ---: | ---: |
| 0.6897753 | 2.3002449 | 7.0492667 | 2.3002449 | 7.0492667 |
| 1.3795506 | 1.6566257 | 6.8416091 | 1.6566257 | 6.8416091 |
| 2.0693259 | 1.1581077 | 6.3289203 | 1.1581077 | 6.3289203 |
| 2.7591012 | 0.9203935 | 5.6475064 | 0.9203935 | 5.6475064 |
| 3.4488765 | 1.0128845 | 4.9690782 | 1.0128845 | 4.9690782 |
| 4.1386518 | 1.4207621 | 4.4372889 | 1.4207621 | 4.4372889 |
| 4.8284271 | 2 | 4 | 2 | 4 |
| 5.5182024 | 2.5792379 | 3.5627111 | 2.5792379 | 3.5627111 |
| 6.2079777 | 2.9871155 | 3.0309218 | 2.9871155 | 3.0309218 |
| 6.897753 | 3.0796065 | 2.3524936 | 3.0796065 | 2.3524936 |
| 7.5875283 | 2.8418923 | 1.6710797 | 2.8418923 | 1.6710797 |

8.2773036
2.34337431 .1583909
2.34337431 .1583909
8.9670789
1.69975510 .9507333
1.69975510 .9507333
9.6568542 1 1 1

Attempting to evaluate a spline outside of its domain of definition will result in a missing value. For example, the following code defines a spline on the interval $[0,7]$. Attempting to evaluate the spline at points outside of this interval ( -1 or 20 ) results in missing values.

```
data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
call splinec(fitted,coeff,endSlopes,data) slope={45 45};
v = splinev(coeff,{-1 1 2 3 3.5 4 20});
print v;
```

| V |  |
| ---: | ---: |
| -1 |  |
| 1 | 3 |
| 2 | 5 |
| 3 | 4 |
| 3.5 | 4.7073171 |
| 4 | 6 |
| 20 | . |

One use of splines is to estimate the integral of a function that is known only by its value at a discrete set of points. Many people are familiar with elementary methods of numerical integration such as the Left-Hand Rule, the Trapezoid Rule, and Simpson's Rule. In the Left-Hand Rule, the integral of discrete data is estimated by the exact integral of a piecewise constant function between the data. In the Trapezoid Rule, the integral is estimated by the exact integral of a piecewise linear function connecting the data. In Simpson's Rule, the integral is estimated as the exact integral of a piecewise quadratic function between the data points.

Since a cubic spline is a sequence of cubic polynomials, it is possible to compute the exact integral of the cubic spline and use this as an estimate for the integral of the discrete data. The next example takes a function defined by discrete data and finds the integral and the first moment of the function.
The implementation of the integrand function (fcheck) uses a useful trick to evaluate a spline at a single point. Note that if you pass in a scalar argument to the SPLINEV function, you get back a vector that represents the evaluation of the spline along evenly spaced points. To get around this, the function evaluates the spline at the vector $\mathrm{x} / / \mathrm{x}$ and then takes the entry in the first row, second column. This number is the value of the spline evaluated at $x$. Here is the code:

```
x = { 0, 2, 5, 7, 8, 10 };
y = x + 0.1*sin(x);
a = x || y;
call splinec(fit,coeff,endSlopes,a);
start fcheck(x) global(coeff,pow);
 /* The first column of v contains the points of evaluation
```

```
 while the second column contains the evaluation. */
 v = x##pow # splinev(coeff,x //x)[1,2];
 return(v);
finish;
/* use QUAD to integrate */
start moment(po) global(coeff,pow);
 pow = po;
 call quad(z,'fcheck', coeff[,1]) eps = 1.e-10;
 v1 = sum(z);
 return(v1);
finish;
mass = moment (0); /* to compute the mass */
mass = mass //
 (moment(1)/mass) // /* to compute the mean */
 (moment(2)/mass) ; /* to compute the meansquare */
print mass;
/* Check the computation by using Gauss-Legendre integration: this
 is good for moments up to maxng. */
gauss = {
 -9.3246951420315205e-01
 -6.6120938646626448e-01
 -2.3861918608319743e-01
 2.3861918608319713e-01
 6.6120938646626459e-01
 9.3246951420315183e-01,
 1.713244923791701e-01
 3.607615730481388e-01
 4.679139345726905e-01
 4.679139345726904e-01
 3.607615730481389e-01
 1.713244923791707e-01 };
ngauss = ncol(gauss);
maxng = 2*ngauss-4;
start moment1(pow) global(coeff,gauss,ngauss,maxng);
 if pow < maxng then do;
 nrow = nrow(coeff);
 ncol = ncol(coeff);
 left = coeff[1:nrow-1,1];
 right = coeff[2:nrow,1];
 mid = 0.5*(left+right);
 interv = 0.5*(right - left);
 /* scale the weights on each interval */
 wgts = shape(interv*gauss[2,],1);
 /* scale the points on each interval */
 pts = shape(interv*gauss[1,] + mid * repeat(1,1,ngauss),1) ;
 /* evaluate the function */
 eval = splinev(coeff,pts)[,2]`;
 mat = sum (wgts#pts##pow#eval);
 end;
 return(mat);
finish;
mass = moment1(0); /* to compute the mass */
mass = mass // (moment1(1)/mass) // (moment1(2)/mass) ;
```

print mass; /* should agree with earlier result */

The program prints the following results:

MASS
50.204224
6.658133
49.953307

MASS
50.204224
6.658133
49.953307

## SPLINEV Function

## provides cubic spline evaluations

SPLINEV( coeff<, delta<, nout $\gg$ )
The SPLINEV function returns a two-column matrix containing the points of evaluation in the first column and the corresponding fitted values of the spline in the second column.

The inputs to the SPLINEV function are as follows:

| coeff | is an $n \times 5$ (or $n \times 9$ ) matrix of spline coefficients, as returned by the |
| :--- | :--- |
| SPLINEC Call. The coeff argument should not contain missing values. |  |
| delta | is an optional vector specifying evaluation points. If delta is a scalar, <br> the spline is evaluated at equally spaced points delta apart. If delta is <br> a vector arranged in ascending order, the spline is evaluated at each of <br> these values. Evaluation at a point outside the support of the spline re- <br> sults in a missing value in the output. If you specify the delta argument, <br> you cannot specify the nout argument. <br> nout |
|  | is an optional scalar specifying the number of fitted points desired. The <br> default is nout=200. If you specify the nout argument, you cannot spec- <br> ify the delta argument. |

See the section "SPLINE and SPLINEC Calls" on page 931 for details and examples.

## SPOT Function

## calculates a column vector of spot rates given vectors of forward rates and times SPOT( times,forward_rates)

The SPOT function returns an $n \times 1$ vector of (per-period) spot rates.
times is an $n \times 1$ column vector of times in consistent units. Elements should be nonnegative.
forward_rates is an $n \times 1$ column vector of corresponding (per-period) forward rates. Elements should be positive.

The SPOT function transforms the given spot rates as

$$
\begin{aligned}
& s_{1}=f_{1} \\
& s_{i}=\left(\prod_{j=1}^{j=i}\left(1+f_{j}\right)^{t_{j}-t_{j-1}}\right)^{\frac{1}{t_{i}}}-1 ; \quad i=2, \ldots, n
\end{aligned}
$$

where, by convention, $t_{0}=0$.
For example, the following code produces the output shown:

```
time=T(do (1, 5, 1));
forward=T(do(0.05,0.09,0.01));
spot=spot (time,forward);
print spot;
```

SPOT
0.05
0.0549882
0.0599686
0.0649413
0.0699065

## SQRSYM Function

converts a symmetric matrix to a square matrix
SQRSYM ( matrix)
where matrix is a symmetric numeric matrix.
The SQRSYM function takes a matrix such as those generated by the SYMSQR function and transforms it back into a square matrix. The elements of the argument are unpacked into the lower triangle of the result and reflected across the diagonal into the upper triangle.

For example, consider the following two statements, which are equivalent:

```
sqr=sqrsym(symsqr({1 2, 3 4}));
sqr=sqrsym({ 1, 3, 4});
```

Both statements produce the following result:
SQR
2 rows
2 cols
(numeric)
1
3
3 4

## SQRT Function

## calculates the square root <br> SQRT( matrix)

where matrix is a numeric matrix or literal.
The SQRT function is the scalar function returning the positive square roots of each element of the argument. An example of a valid statement follows.

```
a={ 1 2 3 4 };
c=sqrt (a);
print c;
```

> C
11.41421361 .7320508

2

## SSQ Function

calculates the sum of squares of all elements
SSQ( matrix $1<$, matrix2,. .., matrix $15>$ )
where matrix is a numeric matrix or literal.
The SSQ function returns as a single numeric value the (uncorrected) sum of squares for all the elements of all arguments. You can specify as many as 15 numeric argument matrices.

The SSQ function checks for missing arguments and does not include them in the accumulation. If all arguments are missing, the result is 0 .

An example of a valid statement follows:

```
a={1 2 3, 4 5 6};
x=ssq(a);
```


## START and FINISH Statements

define a module

```
START \(<\) name \(><\) (arguments) \(><\) GLOBAL(arguments) \(>\);
```

    module statements;
    FINISH <name>;
The inputs to the START and FINISH statements are as follows:
name $\quad$ is the name of a user-defined module.
arguments are names of variable arguments to the module. Arguments can be either input variables or output (returned) variables. Arguments listed in the GLOBAL clause are treated as global variables. Otherwise, the arguments are local.
module statements are statements making up the body of the module.

The START statement instructs IML to enter a module-collect mode to collect the statements of a module rather than execute them immediately. The FINISH statement signals the end of a module. Optionally, the FINISH statement can take the module name as its argument. When no name argument is given in the START statement, the module name MAIN is used by default. If an error occurs during module compilation, the module is not defined. See Chapter 5 for details.

The following example defines a module named MYMOD that has two local variables ( A and B ) and two global variables ( X and Y ). The module creates the variable Y from the arguments $\mathrm{A}, \mathrm{B}$, and X .

```
start mymod(a,b) global(x,y);
 y=a*x+b;
finish;
```


## STOP Statement

## stops execution of statements

## STOP;

The STOP statement stops the IML program, and no further matrix statements are executed. However, IML continues to execute if more statements are entered. See also the descriptions of the RETURN and ABORT statements.

If IML execution was interrupted by a PAUSE statement or by a break, the STOP statement clears all the paused states and returns to immediate mode.
IML supports STOP processing of both regular and function modules.

## STORAGE Function

## lists names of matrices and modules in storage

## STORAGE();

The STORAGE function returns a matrix of the names of all of the matrices and modules in the current storage library. The result is a character vector with each matrix or module name occupying a row. Matrices are listed before modules. The SHOW storage command separately lists all of the modules and matrices in storage.

For example, the following statements reset the current library storage to MYLIB and then print a list of the modules and matrices in storage:

```
reset storage="MYLIB";
```

Issue the following command to get the resulting matrix:

```
a=storage();
print a;
```


## STORE Statement

stores matrices and modules in library storage
STORE <MODULE=(module-list) $><$ matrix-list>;
The inputs to the STORE statement are as follows.
module-list is a list of module names.
matrix-list is a list of matrix names.

The STORE statement stores matrices or modules in the storage library. For example, the following statement stores the modules $\mathrm{A}, \mathrm{B}$, and C and the matrix X :

```
store module=(A B C) X;
```

The special operand _ALL_ can be used to store all matrices or all modules. For example, the following statement stores all matrices and modules:

```
store _all_ module=_all_;
```

The storage library can be specified by using the RESET storage command and defaults to WORK.IMLSTOR. The SHOW storage command lists the current contents of the storage library. The following statement stores all matrices:
store;
See Chapter 14, "Storage Features," and also the descriptions of the LOAD, REMOVE, RESET, and SHOW statements for related information.

## SUBSTR Function

## takes substrings of matrix elements <br> SUBSTR( matrix, position<, length>)

The inputs to the SUBSTR function are as follows:

$$
\begin{array}{ll}
\text { matrix } & \text { is a character matrix or quoted literal. } \\
\text { position } & \text { is a numeric matrix or scalar giving the starting position. } \\
\text { length } & \text { is a numeric matrix or scalar giving the length of the substring. }
\end{array}
$$

The SUBSTR function takes a character matrix as an argument along with starting positions and lengths and produces a character matrix with the same dimensions as the argument. Elements of the result matrix are substrings of the corresponding argument elements. Each substring is constructed by using the starting position supplied. If a length is supplied, this length is the length of the substring. If no length is supplied, the remainder of the argument string is the substring.

The position and length arguments can be scalars or numeric matrices. If position or length is a matrix, its dimensions must be the same as the dimensions of the argument matrix or submatrix. If either one is a matrix, its values are applied to the substringing of the corresponding elements of the matrix. If length is supplied, the element length of the result is MAX(length); otherwise, the element length of the result is

$$
\text { NLENG(matrix) }-\operatorname{MIN}(\text { position })+1
$$

The following statements return the output shown:

```
B={abc def ghi, jkl mno pqr};
a=substr(b, 3,2);
```



The element size of the result is 2 ; the elements are padded with blanks.

## SUM Function

## sums all elements

SUM( matrix1<, matrix2,. .., matrix15>)
where matrix is a numeric matrix or literal.
The SUM function returns as a single numeric value the sum of all the elements in all arguments. There can be as many as 15 argument matrices. The SUM function
checks for missing values and does not include them in the accumulation. It returns 0 if all values are missing.

For example, consider the following statements:

```
a={2 1, 0 -1};
b=sum(a);
```

These statements return the following scalar:
$B \quad 1$ row 1 col (numeric)

2

## SUMMARY Statement

computes summary statistics for SAS data sets

```
SUMMARY <CLASS operand> <VAR operand> <WEIGHT operand>
\(<\) STAT operand \(><\) OPT operand \(><\) WHERE(expression) \(>\);
```

where the operands used by most clauses take either a matrix name, a matrix literal, or an expression yielding a matrix name or value. A discussion of the clauses and operands follows.

The SUMMARY statement computes statistics for numeric variables for an entire data set or a subset of observations in the data set. The statistics can be stratified by the use of CLASS variables. The computed statistics are displayed in tabular form and optionally can be saved in matrices. Like most other IML data processing statements, the SUMMARY statement works on the current data set.

The following options are available with the SUMMARY statement:

## CLASS operand

specifies the variables in the current input SAS data set to be used to group the summaries. The operand is a character matrix containing the names of the variables, for example:

```
summary class { age sex} ;
```

Both numeric and character variables can be used as CLASS variables.
VAR operand
calculates statistics for a set of numeric variables from the current input data set. The operand is a character matrix containing the names of the variables. Also, the special keyword _NUM_ can be used as a VAR operand to specify all numeric variables. If the VAR clause is missing, the SUMMARY statement produces only the number of observations in each class group.

## WEIGHT operand

specifies a character value containing the name of a numeric variable in the current data set whose values are to be used to weight each observation. Only one variable can be specified.

## STAT operand

computes the statistics specified. The operand is a character matrix containing the names of statistics. For example, to get the mean and standard deviation, specify the following:

## summary stat $\{$ mean std\};

The following list describes the keywords that can be specified as the STAT operand:

CSS computes the corrected sum of squares.
MAX computes the maximum value.
MEAN computes the mean.
MIN computes the minimum value.
N
computes the number of observations in the subgroup used in the computation of the various statistics for the corresponding analysis variable.

NMISS computes the number of observations in the subgroup having missing values for the analysis variable.
STD computes the standard deviation.
SUM computes the sum.
SUMWGT computes the sum of the WEIGHT variable values if WEIGHT is specified; otherwise, IML computes the number of observations used in the computation of statistics.
USS computes the uncorrected sum of squares.

VAR computes the variance.

When the STAT clause is omitted, the SUMMARY statement computes these statistics for each variable in the VAR clause:

- MAX
- MEAN
- MIN
- STD

Note that NOBS, the number of observations in each CLASS group, is always given.
suppresses the printing of the results from the SUMMARY statement. The SAVE option requests that the SUMMARY statement save the resultant statistics in matrices. The operand is a character matrix containing one or more of the options.

When the SAVE option is set, the SUMMARY statement creates a CLASS vector for each CLASS variable, a statistic matrix for each analysis variable, and a column vector named _NOBS_. The CLASS vectors are named by the corresponding CLASS variable and have an equal number of rows. There are as many rows as there are subgroups defined by the interaction of all CLASS variables. The statistic matrices are named by the corresponding analysis variable. Each column of the statistic matrix corresponds to a statistic requested, and each row corresponds to the statistics of the subgroup defined by the CLASS variables. If no CLASS variable has been specified, each statistic matrix has one row, containing the statistics of the entire population. The _NOBS_ vector contains the number of observations for each subgroup.

The default is PRINT NOSAVE.

## WHERE expression

conditionally selects observations, within the range specification, according to conditions given in expression. The general form of the WHERE clause is

## WHERE( variable comparison-op operand)

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
$<$ less than
<= less than or equal to
$=$ equal to
$>$ greater than
>= greater than or equal to
^ = not equal to
? contains a given string
^ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.
WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:

$$
\wedge=\wedge ? \ll=\gg=
$$

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

$$
=?=:=*
$$

Logical expressions can be specified within the WHERE clause, by using the AND (\&) and OR (I) operators. The general form is
clause\&clause (for an AND clause)
clauselclause (for an OR clause)
where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.
Note: The expression on the left-hand side refers to values of the data set variables, and the expression on the right-hand side refers to matrix values.

See Chapter 6 for an example that uses the SUMMARY statement.

## SVD Call

## computes the singular value decomposition

CALL SVD( $u, q, v, a)$;
In the SVD subroutine:
$a$
is the input matrix that is decomposed as described in the following discussion.
$u, q$, and $v \quad$ are the returned decomposition matrices.

The SVD subroutine decomposes a real $m \times n$ matrix $\mathbf{A}$ (where $m$ is greater than or equal to $n$ ) into the form

$$
\mathbf{A}=\mathbf{U} * \operatorname{diag}(\mathbf{Q}) * \mathbf{V}^{\prime}
$$

where

$$
\mathbf{U}^{\prime} \mathbf{U}=\mathbf{V}^{\prime} \mathbf{V}=\mathbf{V} \mathbf{V}^{\prime}=\mathbf{I}_{n}
$$

and $\mathbf{Q}$ contains the singular values of $\mathbf{A}$. $\mathbf{U}$ is $m \times n, \mathbf{Q}$ is $n \times 1$, and $\mathbf{V}$ is $n \times n$.
When $m$ is greater than or equal to $n, \mathbf{U}$ consists of the orthonormal eigenvectors of $\mathbf{A} \mathbf{A}^{\prime}$, and $\mathbf{V}$ consists of the orthonormal eigenvectors of $\mathbf{A}^{\prime} \mathbf{A}$. $\mathbf{Q}$ contains the square roots of the eigenvalues of $\mathbf{A}^{\prime} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\prime}$, except for some zeros.

If $m$ is less than $n$, a corresponding decomposition is done where $\mathbf{U}$ and $\mathbf{V}$ switch roles:

$$
\mathbf{A}=\mathbf{U} * \operatorname{diag}(\mathbf{Q}) * \mathbf{V}^{\prime}
$$

but

$$
\mathbf{U}^{\prime} \mathbf{U}=\mathbf{U} \mathbf{U}^{\prime}=\mathbf{V}^{\prime} \mathbf{V}=\mathbf{I}_{w}
$$

The singular values are sorted in descending order.
For information about the method used in the SVD subroutine, refer to Wilkinson and Reinsch (1971). Consider the following example (Wilkinson and Reinsch 1971, p. 149):

```
a={lllllll}22 10 2 7,
 14 7 10 0 8,
 -1 13 -1 -11 3,
 -3 -2 13 -2 4,
 9 8 1 -2 4,
 9 1 1-7 5 -1,
 2 -6 6 5 1,
 4 5 0 -2 2};
call svd(u,q,v,a);
reset fuzz; /* print small numbers as zero */
zero = ssq(a - u*diag(q)*v`);
```

The matrix is rank- 3 with exact singular values $\sqrt{1248}, 20, \sqrt{384}, 0$, and 0 . Because of the repeated singular values, the last two columns of the $\mathbf{U}$ matrix are not uniquely determined. A valid result is the following:


The SVD routine performs most of its computations in the memory allocated for returning the singular value decomposition.

## SWEEP Function

## sweeps a matrix

SWEEP( matrix, index-vector)
The inputs to the SWEEP function are as follows:
matrix $\quad$ is a numeric matrix or literal.
index-vector is a numeric vector indicating the pivots.

The SWEEP function sweeps matrix on the pivots indicated in index-vector to produce a new matrix. The values of the index vector must be less than or equal to the number of rows or the number of columns in matrix, whichever is smaller.

For example, suppose that $\mathbf{A}$ is partitioned into

$$
\left[\begin{array}{cc}
\mathbf{R} & \mathbf{S} \\
\mathbf{T} & \mathbf{U}
\end{array}\right]
$$

such that $\mathbf{R}$ is $q \times q$ and $\mathbf{U}$ is $(m-q) \times(n-q)$. Let

$$
I=\left[\begin{array}{llllll}
1 & 2 & 3 & \cdot & .
\end{array}\right]
$$

Then, the statement

```
B=sweep (A,I);
```

becomes

$$
\left[\begin{array}{cc}
\mathbf{R}^{-1} & \mathbf{R}^{-1} \mathbf{S} \\
-\mathbf{T} \mathbf{R}^{-1} & \mathbf{U}-\mathbf{T R}^{-1} \mathbf{S}
\end{array}\right]
$$

The index vector can be omitted. In this case, the function sweeps the matrix on all pivots on the main diagonal 1:MIN(nrow,ncol).

The SWEEP function has sequential and reversibility properties when the submatrix swept is positive definite:

- $\operatorname{SWEEP}(\operatorname{SWEEP}(\mathbf{A}, 1), 2)=\operatorname{SWEEP}(\mathbf{A},\{12$ \})
- $\operatorname{SWEEP}(\operatorname{SWEEP}(\mathbf{A}, \mathbf{I}), \mathbf{I})=\mathbf{A}$

See Beaton (1964) for more information about these properties.
To use the SWEEP function for regression, suppose the matrix A contains

$$
\left[\begin{array}{ll}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Y} \\
\mathbf{Y}^{\prime} \mathbf{X} & \mathbf{Y}^{\prime} \mathbf{Y}
\end{array}\right]
$$

where $\mathbf{X}^{\prime} \mathbf{X}$ is $k \times k$.
Then $\mathbf{B}=\operatorname{SWEEP}(\mathbf{A}, 1 \ldots k)$ contains

$$
\left[\begin{array}{cc}
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
-\mathbf{Y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} & \mathbf{Y}^{\prime}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \mathbf{Y}
\end{array}\right]
$$

The partitions of $\mathbf{B}$ form the beta values, SSE , and a matrix proportional to the covariance of the beta values for the least squares estimates of $\mathbf{B}$ in the linear model

$$
\mathbf{Y}=\mathbf{X B}+\epsilon
$$

If any pivot becomes very close to zero (less than or equal to $1 \mathrm{E}-12$ ), the row and column for that pivot are zeroed. See Goodnight (1979) for more information.

An example that uses the SWEEP function for regression follows:

```
x = { 1 1 1,
 1 2 4,
 1 3 9,
 1 4 16,
 1 5 25,
 1 6 36,
 1 7 49,
 1 8 64 };
y = { 3.929,
 5.308,
 7.239,
 9.638,
 12.866,
 17.069,
 23.191,
 31.443 };
```

```
n = nrow(x); /* number of observations */
```

n = nrow(x); /* number of observations */
k = ncol(x); /* number of variables */
k = ncol(x); /* number of variables */
xy = x|ly; /* augment design matrix */
xy = x|ly; /* augment design matrix */
A = xy` * xy; /* form cross products */ A = xy` * xy; /* form cross products */
S = sweep( A, 1:k );
S = sweep( A, 1:k );
beta = S[1:k,4]; /* parameter estimates */
beta = S[1:k,4]; /* parameter estimates */
sse = S[4,4]; /* sum of squared errors */
sse = S[4,4]; /* sum of squared errors */
mse = sse / (n-k); /* mean squared error */
mse = sse / (n-k); /* mean squared error */
cov = S[1:k, 1:k] \# mse; /* covariance of estimates */

```
cov = S[1:k, 1:k] # mse; /* covariance of estimates */
```

```
print cov, beta, sse;
```

cov

$$
\begin{array}{ccc}
0.9323716 & -0.436247 & 0.0427693 \\
-0.436247 & 0.2423596 & -0.025662 \\
0.0427693 & -0.025662 & 0.0028513
\end{array}
$$

## BETA

5.0693393
-1. 109935
0.5396369

SSE
2.395083

The SWEEP function performs most of its computations in the memory allocated for the result matrix.

## SYMSQR Function

converts a square matrix to a symmetric matrix
SYMSQR( matrix)
where matrix is a square numeric matrix.
The SYMSQR function takes a square numeric matrix (size $n \times n$ ) and compacts the elements from the lower triangle into a column vector $(n(n+1) / 2$ rows). The matrix is not checked for actual symmetry.

The following statement produces the output shown:

```
sym=symsqr({1 2, 3 4});
SYM 3 rows 1 col (numeric)
1
3
4
```

Note that the 2 is lost since it is only present in the upper triangle.

## T Function

transposes a matrix
T( matrix)
where matrix is a numeric or character matrix or literal.
The T (transpose) function returns the transpose of its argument. It is equivalent to the transpose operator as written with a transpose postfix operator ('), but since some keyboards do not support the backquote character, this function is provided as an alternate.

For example, the following statements produce the matrix $\mathbf{Y}$, as shown:

```
x={1 2, 3 4};
y=t(x);
```

Y
2 rows
2 cols
(numeric)

1
3
2
4

## TEIGEN Call

## computes the eigenvalues and eigenvectors of square matrices

The TEIGEN subroutine is an alias for the EIGEN subroutine.

## TEIGVAL Function

## compute eigenvalues of square matrices

The TEIGVAL function is an alias for the EIGVAL function.

## TEIGVEC Function

compute eigenvectors of square matrices
The TEIGVEC function is an alias for the EIGVEC function.

## TOEPLITZ Function

## generates a Toeplitz or block-Toeplitz matrix

TOEPLITZ $(a)$
where $a$ is either a vector or a numeric matrix.
The TOEPLITZ function generates a Toeplitz matrix from a vector, or a block Toeplitz matrix from a matrix. A block Toeplitz matrix has the property that all matrices on the diagonals are the same. The argument $a$ is an $(n p) \times p$ or $p \times(n p)$ matrix; the value returned is the $(n p) \times(n p)$ result.

The TOEPLITZ function uses the first $p \times p$ submatrix, $\mathbf{A}_{1}$, of the argument matrix as the blocks of the main diagonal. The second $p \times p$ submatrix, $\mathbf{A}_{2}$, of the argument matrix forms one secondary diagonal, with the transpose $\mathbf{A}_{2}^{\prime}$ forming the other. The remaining diagonals are formed accordingly. If the first $p \times p$ submatrix of the argument matrix is symmetric, the result is also symmetric. If $\mathbf{A}$ is $(n p) \times p$, the first $p$ columns of the returned matrix, $\mathbf{R}$, are the same as $\mathbf{A}$. If $\mathbf{A}$ is $p \times(n p)$, the first $p$ rows of $\mathbf{R}$ are the same as $\mathbf{A}$. The TOEPLITZ function is especially useful in time series applications, where the covariance matrix of a set of variables with its lagged set of variables is often assumed to be a block Toeplitz matrix.

If

$$
\mathbf{A}=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\cdots| \mathbf{A}_{n}\right]
$$

and if $\mathbf{R}$ is the matrix formed by the TOEPLITZ function, then

$$
\mathbf{R}=\left[\begin{array}{c:c|c|c|c}
\mathbf{A}_{1} & \mathbf{A}_{2} & \mathbf{A}_{3} & \cdots & \mathbf{A}_{n} \\
\mathbf{A}_{2}^{\prime} & \mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{n-1} \\
\mathbf{A}_{3}^{\prime} & \mathbf{A}_{2}^{\prime} & \mathbf{A}_{1} & \cdots & \mathbf{A}_{n-2} \\
\vdots & & & & \\
\mathbf{A}_{n}^{\prime} & \mathbf{A}_{n-1}^{\prime} & \mathbf{A}_{n-2}^{\prime} & \cdots & \mathbf{A}_{1}
\end{array}\right]
$$

If

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{A}_{1} \\
\mathbf{A}_{2} \\
\vdots \\
\mathbf{A}_{n}
\end{array}\right]
$$

and if $\mathbf{R}$ is the matrix formed by the TOEPLITZ function, then

$$
\mathbf{R}=\left[\begin{array}{c|c|c|c|c}
\mathbf{A}_{1} & \mathbf{A}_{2}^{\prime} & \mathbf{A}_{3}^{\prime} & \cdots & \mathbf{A}_{n}^{\prime} \\
\mathbf{A}_{2} & \mathbf{A}_{1} & \mathbf{A}_{2}^{\prime} & \cdots & \mathbf{A}_{n-1}^{\prime} \\
\vdots & & & & \\
\\
\mathbf{A}_{n} & \mathbf{A}_{n-1} & \mid \mathbf{A}_{n-2} & \cdots & \mathbf{A}_{1}
\end{array}\right]
$$

Three examples follow.

```
r=toeplitz(1:5);
```

R
5 rows
5 cols
(numeric)
1
2
3
4

| 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |
| 2 | 1 | 2 | 3 |
| 3 | 2 | 1 | 2 |



## TPSPLINE Call

## computes thin-plate smoothing splines

CALL TPSPLINE( fitted, coeff, adiag, gcv, $x, y<$, lambda $>$ );
The TSPLINE subroutine computes thin-plate smoothing spline (TPSS) fits to approximate smooth multivariate functions that are observed with noise. The generalized cross validation (GCV) function is used to select the smoothing parameter.

The TPSPLINE subroutine returns the following values:
fitted
coeff is a vector of spline coefficients. The vector contains the coefficients for basis functions in the null space and the representer of evaluation functions at unique design points. (Refer to Wahba 1990 for more detail on reproducing kernel Hilbert space and representer of evaluation functions.) The length of coeff vector depends on the number of unique design points and the number of variables in the spline model. In general, let nuobs and $k$ be the number of unique rows and the number of columns of $\mathbf{x}$ respectively. The length of coeff equals to $k+$ nuobs +1 . The coeff vector can be used as an input of TPSPLNEV to evaluate the resulting TPSS fit at new data points.
adiag is an $n \times 1$ vector of diagonal elements of the "hat" matrix. See the "Details" section.
$g c v \quad$ If lambda is not specified, then $g c v$ is the minimum value of the GCV function. If lambda is specified, then $g c v$ is a vector (or scalar if lambda is a scalar) of GCV values evaluated at the lambda points. It provides you with both the ability to study the GCV curves by plotting $g c v$ against lambda and the chance to identify a possible local minimum.

The inputs to the TPSPLINE subroutine are as follows:
$x \quad$ is an $n \times k$ matrix of design points on which the TPSS is to be fit. The $k$ is the number of variables in the spline model. The columns of $x$ need to be linearly independent and contain no constant column.
$y \quad$ is the $n \times 1$ vector of observations.
lambda is a optional $q \times 1$ vector containing $\lambda$ values in $\log _{10}(n \lambda)$ scale. This option gives you the power to control how you want the TPSPLINE subroutine to function. If lambda is not specified (or lambda is specified and $q>1$ ) the GCV function is used to choose the "best" $\lambda$ and the returning fitted values are based on the $\lambda$ that minimizes the GCV function. If lambda is specified and $q=1$, no minimization of the GCV function is involved and the fitted, coeff and adiag values are all based on the TPSS fit using this particular lambda. This gives you the freedom to choose the $\lambda$ that you deem appropriate.

Aside from the values returned, the TPSPLINE subroutine also prints other useful information such as the number of unique observations, the dimensions of the null space, the number of parameters in the model, a GCV estimate of $\lambda$, the smoothing penalty, the residual sum of square, the trace of $(I-A(\lambda))$, an estimate of $\sigma^{2}$, and the sum of squares for replication.

Note: No missing values are accepted within the input arguments. Also, you should use caution if you want to specify small lambda values. Since the true $\lambda=\left(10^{\log _{10} l^{l a m b d a}}\right) / n$, a very small value for lambda can cause $\lambda$ to be smaller than the magnitude of machine error and usually the returned $g c v$ values from such a $\lambda$ cannot be trusted. Finally, when using TPSPLINE be aware that TPSS is a computationally intensive method. Therefore a large data set (that is, a large number of unique design points) will take a lot of computer memory and time.

For convenience, the TPSS method is illustrated with a two-dimensional independent variable $\mathbf{X}=\left(\mathbf{x}^{1}, \mathbf{x}^{2}\right)$. More details can be found in Wahba (1990), or in Bates et al. (1987).

Assume that the data are from the model

$$
y_{i}=f\left(\mathbf{x}_{i}\right)+\epsilon_{i},
$$

where $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n$ are the observations. The function $f$ is unknown and you assume that it is reasonably smooth. The error terms $\epsilon_{i}, i=1, \ldots, n$ are independent zero-mean random variables.

You measure the smoothness of $f$ by the integral over the entire plane of the square of the partial derivatives of $f$ of total order 2, that is

$$
J_{2}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\frac{\partial^{2} f}{\partial x_{1}^{2}}\right]^{2}+2\left[\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\right]^{2}+\left[\frac{\partial^{2} f}{\partial x_{2}^{2}}\right]^{2} d x_{1} d x_{2}
$$

Using this as a smoothness penalty, the thin-plate smoothing spline estimate $f_{\lambda}$ of $f$ is the minimizer of

$$
S_{\lambda}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda J_{2}(f)
$$

Duchon (1976) derived that the minimizer $f_{\lambda}$ can be represented as

$$
f_{\lambda}(\mathbf{x})=\sum_{i=1}^{3} \beta_{i} \phi_{i}(\mathbf{x})+\sum_{i=1}^{n} \delta_{i} E_{2}\left(\mathbf{x}-\mathbf{x}_{i}\right)
$$

where $\left(\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \phi_{3}(\mathbf{x})\right)=\left(1, \mathbf{x}^{1}, \mathbf{x}^{2}\right)$ and $E_{2}(\mathbf{s})=\frac{1}{2^{3} \pi}\|\mathbf{s}\|^{2} \ln (\|\mathbf{s}\|)$.
Let matrix $\mathbf{K}$ have entries $(\mathbf{K})_{i j}=E_{2}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)$ and matrix $\mathbf{T}$ have entries $(\mathbf{T})_{i j}=$ $\phi_{j}\left(\mathbf{x}_{i}\right)$. Then the minimization problem can be rewritten as finding coefficients $\beta$ and $\delta$ to minimize

$$
S_{\lambda}(\beta, \delta)=\frac{1}{n}\|\mathbf{y}-\mathbf{T} \beta-\mathbf{K} \delta\|^{2}+\lambda \delta^{T} \mathbf{K} \delta
$$

The final TPSS fits can be viewed as a type of generalized ridge regression estimator. The $\lambda$ is called the smoothing parameter, which controls the balance between the goodness of fit and the smoothness of the final estimate. The smoothing parameter can be chosen by minimizing the generalized cross validation function (GCV). If you write

$$
\hat{\mathbf{y}}=\mathbf{A}(\lambda) \mathbf{y}
$$

and call the $\mathbf{A}(\lambda)$ as the "hat" matrix, the GCV function $V(\lambda)$ is defined as

$$
V(\lambda)=\frac{(1 / n) \|\left(\mathbf{I}-\mathbf{A}(\lambda) \mathbf{y} \|^{2}\right.}{[(1 / n) \operatorname{tr}(\mathbf{I}-\mathbf{A}(\lambda))]^{2}}
$$

The returned values from this function call provide the $\hat{\mathbf{y}}$ as fitted, the $(\beta, \delta)$ as coeff, and $\operatorname{diag}(A(\lambda))$ as adiag.

To evaluate the TPSS fit $f_{\lambda}(\mathbf{x})$ at new data points, you can use the TPSPLNEV call.

Suppose $\mathbf{X}^{\text {new }}$, a $m \times k$ matrix, contains the $m$ new data points at which you want to evaluate $f_{\lambda}$. Let $\left(\mathbf{T}_{i j}^{\text {new }}\right)=\phi_{j}\left(\mathbf{x}_{i}^{\text {new }}\right)$ and $\left(\mathbf{K}_{i j}^{\text {new }}\right)=E_{2}\left(\mathbf{x}_{i}^{\text {new }}-\mathbf{x}_{j}\right)$ be the $i j$ th elements of $\mathbf{T}^{\text {new }}$ and $\mathbf{K}^{\text {new }}$ respectively. The prediction at new data points $\mathbf{X}^{\text {new }}$ is

$$
\mathbf{y}_{\text {pred }}=T^{\text {new }} \beta+K^{\text {new }} \delta
$$

Therefore, using the coefficient $(\beta, \delta)$ obtained from TPSPLINE call, the $\mathbf{y}_{\text {pred }}$ can be easily evaluated.

An example is given in the documentation for the TPSPLNEV call.

## TPSPLNEV Call

## evaluates the thin-plate smoothing spline at new data points

It can be used only after the TPSPLINE call.
CALL TPSPLNEV( pred, xpred, $x$, coeff);
The TPSPLNEV subroutine returns the following value:
pred is an $m \times 1$ vector of the predicated values of the TPSS fit evaluated at $m$ new data points.

The inputs to the TPSPLNEV subroutine are as follows:
xpred is an $m \times k$ matrix of data points at which the $f_{\lambda}$ is evaluated, where $m$ is the number of new data points and $k$ is the number of variables in the spline model.
$x \quad$ is an $n \times k$ matrix of design points that is used as an input of TPSPLINE call.
coeff is the coefficient vector returned from the TPSPLINE call.

See the previous section on the TPSPLINE call for details about the TSPLNEV subroutine.

As an example, consider the following data set, which consists of two independent variables. The plot of the raw data can be found in the first panel of Figure 20.1.

$$
\begin{aligned}
& x=\{-1.0-1.0 \text {, } \\
& \text {. } 0 \text {-1.0, } \\
& 1.0-1.0 \text {, } \\
& \text {-. } 5 \text {-. 5, } \\
& \text {-1.0 -1.0, } \\
& \text {-. } 5 \text {-1.0, } \\
& \text {-. } 5 \text {-1. 0, } \\
& \text {. } 0 \text {-1.0, . } 5 \text {-1.0, } \\
& \text {-1.0 -.5, } \\
& \text {. } 5 \text {-1.0, } \\
& 1.0-1.0 \text {, } \\
& \text {. } 0 \text {-. 5, } \\
& \text {-1.0 -. 5, } \\
& \text {. } 5 \text {-. 5, } \\
& \text {-. } 5 \text {-. 5, } \\
& \text { 1.0-.5, } \\
& \text {. } 0 \text {-. 5, } \\
& \text {-1.0.0, } \\
& \text {-. } 5 \text {. 0, } \\
& 1.0-.5 \text {, } \\
& \text {. } 0 \text {. 0, }
\end{aligned}
$$

| -1.01 .0, | -1.01 .0, | -.51 .0, | -.51 .0, |
| ---: | ---: | ---: | ---: | ---: |
| .01 .0, | .01 .0, | .51 .0, | .51 .0, |
| 1.01 .0, | $1.01 .0\} ;$ |  |  |
| $\mathrm{y}=\{15.54483570$, | 15.76312613, | 18.67397826, | 18.49722167, |
| 19.66086310, | 19.80231311, | 18.59838649, | 18.51904737, |
| 15.86842815, | 16.03913832, | 10.92383867, | 11.14066546, |
| 14.81392847, | 14.82830425, | 16.56449698, | 16.44307297, |
| 14.90792284, | 15.05653924, | 10.91956264, | 10.94227538, |
| 9.614920104, | 9.646480938, | 14.03133439, | 14.03122345, |
| 15.77400253, | 16.00412514, | 13.99627680, | 14.02826553, |
| 9.557001644, | 9.584670472, | 11.20625177, | 11.08651907, |
| 14.83723493, | 14.99369172, | 16.55494349, | 16.51294369, |
| 14.98448603, | 14.71816070, | 11.14575565, | 11.17168689, |
| 15.82595514, | 15.96022497, | 18.64014953, | 18.56095997, |
| 19.54375504, | 19.80902641, | 18.56884576, | 18.61010439, |

Now generate a sequence of $\lambda$ from -3.8 to -3.3 so that you can study the GCV function within this range. Use the following statement:

```
lambda=T(do(-3.8,-3.3,0.1));
```

Use the following IML statement to do the thin-plate smoothing spline fit and returning the fitted values on those design points.

```
call tpspline(fit,coef,adiag,gcv, x, y,lambda);
```

The output from this call follows.

## SUMMARY OF TPSPLINE CALL

| Number of observations | 50 |
| :--- | ---: |
| Number of unique design points | 25 |
| Dimension of polynomial Space | 3 |
| Number of Parameters | 28 |


| GCV Estimate of Lambda | 0.00000668 |
| :--- | ---: |
| Smoothing Penalty | 2558.14323 |
| Residual Sum of Squares | 0.24611 |
| Trace of (I-A) | 25.40680 |
| Sigma^2 estimate | 0.00969 |
| Sum of Squares for Replication | 0.24223 |

After this TPSPLINE call, you obtained the fitted value. The fitted surface is plotted in the second panel of Figure 20.1. Also in Figure 20.1, panel 4, you plot the GCV function values against lambda. From panel 2, you see that because of the spare design points, the fitted surface is a little bit rough. In order to study the TPSS fit $f_{\lambda}(\mathbf{x})$ more closely, you use the following IML statements to generate a more dense grid on $[-1,1] \times[-1,1]$.

```
do i1=-1 to 1 by 0.1;
 do i2=-1 to 1 by 0.1;
 x1=x1||i1;
 x2=x2||i2;
 end;
end;
x1=t (x1);
x2=t (x2);
xpred=x1||x2;
```

Now you can use the function TPSPLNEV to evaluate $f_{\lambda}(\mathbf{x})$ on this dense grid. Here is the statement:

```
call tpsplnev(pred, xpred, x, coef);
```

The final fitted surface is plotted in Figure 20.1, panel 3.


Figure 20.1. Plots of Fitted Surface

## TRACE Function

## sums diagonal elements

TRACE( matrix)
where matrix is a numeric matrix or literal.
The TRACE function produces a single numeric value that is the sum of the diagonal elements of matrix. For example, the following statement produces the output shown:

```
a=trace({5 2, 1 3});
```

A
1 row
1 col
(numeric)

8

## TRISOLV Function

solves linear systems with triangular matrices
TRISOLV( code, $r, b<$, piv>)
The TRISOLV function returns the following value:
$x \quad$ is the $n \times p$ matrix $\mathbf{X}$ containing $p$ solutions of the $p$ linear systems specified by code, $r$, and $b$.

The inputs to the TRISOLV function are as follows:
code specifies which of the following forms of triangular linear system has to be solved:

| code $=1$ | solve $\mathbf{R x}=\mathbf{b}, \mathbf{R}$ upper triangular |
| :--- | :--- |
| code $=2$ | solve $\mathbf{R}^{\prime} \mathbf{x}=\mathbf{b}, \mathbf{R}$ upper triangular |
| code $=3$ | solve $\mathbf{R}^{\prime} \mathbf{x}=\mathbf{b}, \mathbf{R}$ lower triangular |
| code $=4$ | solve $\mathbf{R x}=\mathbf{b}, \mathbf{R}$ lower triangular |

$r$
$b \quad$ specifies the $n \times p$ matrix, $\mathbf{B}$, of $p$ right-hand sides $\mathbf{b}_{k}$.
piv specifies an optional $n$ vector that relates the order of the columns of matrix $\mathbf{R}$ to the order of the columns of an original coefficient matrix $\mathbf{A}$ for which matrix $\mathbf{R}$ has been computed as a factor. For example, the vector piv can be the result of the QR decomposition of a matrix $\mathbf{A}$ whose columns were permuted in the order $\mathbf{A}_{p i v[1]}, \ldots, \mathbf{A}_{p i v[n]}$.

For code $=1$ and $\operatorname{code}=3$, the solution is obtained by backward elimination. For code $=2$ and code $=4$, the solution is obtained by forward substitution.

If TRISOLV recognizes the upper or lower triangular matrix $\mathbf{R}$ as a singular matrix (that is, one that contains at least one zero diagonal element), it exits with an error message.

Consider the following example:

```
R={11 0 0 0,
 3 2 0 0,
 1 -3 5 0,
 2 7 9 -1 };
b}={1, 1, 4, -6 }
x = trisolv(4, R, b);
print x;
```


## x

1
-1
0
1

Also see the example in the QR call section.

## TSBAYSEA Call

performs Bayesian seasonal adjustment modeling
CALL TSBAYSEA( trend, season, series, adjust, abic, data
<,order, sorder, rigid, npred, opt, cntl, print>);
The inputs to the TSBAYSEA subroutine are as follows:
data specifies a $T \times 1($ or $1 \times T)$ data vector.
order specifies the order of trend differencing. The default is order $=2$.
sorder specifies the order of seasonal differencing. The default is sorder=1.
rigid specifies the rigidity of the seasonal pattern. The default is rigid=1.
npred specifies the length of the forecast beyond the available observations. The default is npred $=0$.
opt specifies the options vector.
opt[1] specifies the number of seasonal periods (speriod). By default, $\operatorname{opt}[1]=12$.
$\operatorname{opt}[2] \quad$ specifies the year when the series starts (year). If opt[2]=0, there will be no trading day adjustment. By default, opt[2]=0.
$\operatorname{opt}[3]$ specifies the month when the series starts (month). If opt[2]=0, this option is ignored. By default, opt[3]=1.
opt[4] specifies the upper limit value for outlier determination (rlim). Outliers are considered as missing values. If this value is less than or equal to 0 , TSBAYSEA assumes that the input data does not contain outliers. The default is rlim=0. See the section "Missing Values" on page 290.
opt[5] refers to the number of time periods processed at one time (span). The default is opt $[5]=4$.
$\operatorname{opt}[6] \quad$ specifies the number of time periods to be shifted (shift). By default, $o p t[6]=1$.
opt[7] controls the transformation of the original series (logt). If $\operatorname{opt}[7]=1, \log$ transformation is requested. No transformation ( opt[7]=0) is the default.
cntl specifies control values for the TSBAYSEA subroutine. These values are automatically set. Be careful if you change these values.
cntl[1] controls the adaptivity of the trading day adjustment component ( $w$ trd). The default is $\operatorname{cntl[1]=1.0.}$
cntl[2] controls the sum of seasonal components within a period (zersum). The larger the value of cntl[2], the closer to zero this sum is. By default, $\operatorname{cntl[2]=1.0.}$
cntl[3] controls the leap year effect (delta). The default is cntl[3]=7.0.
cntl[4] specifies the prior variance of the initial trend (alpha). The default is $\operatorname{cntl[4]=0.01}$.
cntl[5] specifies the prior variance of the initial seasonal component (beta). The default is $\operatorname{cntl}[5]=0.01$. [.03in]
cntl[6] specifies the prior variance of the initial sum of seasonal components (gamma). The default is $\operatorname{cntl}[6]=0.01$.
print requests the power spectrum and the estimated and forecast values of time series components. If print $=2$, the spectra of irregular, differenced trend and seasonal series are printed, together with estimates and forecast values. If print $=1$, only the estimates and forecast values of time series components are printed.
If print $=0$, printed output is suppressed. The default is print $=0$.

The TSBAYSEA subroutine returns the following values:
trend refers to the estimate and forecast of the trend component.
season refers to the estimate and forecast of the seasonal component.
series refers to the smoothed and forecast values of the time series.
adjust refers to the seasonally adjusted series.
abic refers to the value of ABIC from the final estimates.
Bayesian seasonal adjustments are performed with the TSBAYSEA subroutine. The smoothness of the trend and seasonal components is controlled by the prior distribution. The Akaike Bayesian information criterion (ABIC) is defined to compare with alternative models. The basic TSBAYSEA procedure processes the block of data in which the length is SPAN*SPERIOD, while the first block of data consists of length $(2 *$ SPAN- 1$) *$ SPERIOD. The block of data is shifted successively by SHIFT*SPERIOD.

The TSBAYSEA call decomposes the series $y_{t}$ into the following form:

$$
y_{t}=T_{t}+S_{t}+\epsilon_{t}
$$

where $T_{t}$ is a trend component, $S_{t}$ denotes a seasonal component, and $\epsilon_{t}$ is an irregular component. To estimate the seasonal and trend components, some constraints are imposed such that the sum of squares of $\nabla^{k} T_{t}, \nabla_{L}^{l} S_{t}$, and $\sum_{i=0}^{L-1} S_{t-i}$ is small, where $\nabla$ and $\nabla_{L}$ are difference operators. Then the solution can be obtained by minimizing

$$
\sum_{t=1}^{N}\left\{\left(y_{t}-T_{t}-S_{t}\right)^{2}+d^{2}\left[s^{2}\left(\nabla^{k} T_{t}\right)^{2}+\left(\nabla_{L}^{l} S_{t}\right)^{2}+z^{2}\left(S_{t}+\cdots+S_{t-L+1}\right)^{2}\right]\right\}
$$

where $d$ measures the smoothness of the trend and seasonality, $s$ measures the smoothness of the trend, and $z$ is a smoothness constant for the sum of the seasonal variability. The value of $d$ is estimated while the constants, $s$ and $z$, are chosen a priori. The value of $s$ is equal to $\frac{1}{\text { RIGID }}$, and the constant $z$ is determined as ZERSUM*RIGID/SPERIOD ${ }^{1 / 2}$. The larger the constant RIGID, the more rigid the seasonal pattern is. See the section "Bayesian Constrained Least Squares" on page 285 for more information.

To analyze the monthly data with rigidity 0.5 , you can specify either of the following two statements:

```
call tsbaysea(trend,season,series,adj,abic) data=z order=2
 sorder=1 rigid=0.5 npred=10 print=2;
```

call tsbaysea (trend, season, series, adj, abic, z, 2, 1, 0.5, 10, , , 2);

The TREND, SEASON, and SERIES components contain 10-period-ahead forecast values as well as the smoothed estimates. The detailed result is also printed since the PRINT=2 option is specified.

## TSDECOMP Call

analyzes nonstationary time series by using smoothness priors modeling
CALL TSDECOMP( comp, est, aic, data, <,xdata, order, sorder,
nar, npred, init, opt, icmp, print>);
The inputs to the TSDECOMP subroutine are as follows:
data specifies a $T \times 1$ (or $1 \times T)$ data vector.
xdata specifies a $T \times K$ explanatory data matrix.
order specifies the order of trend differencing $(0,1,2$, or 3$)$. The default is 2 .
sorder specifies the order of seasonal differencing $(0,1$, or 2$)$. The default is 1 .
nar specifies the order of the AR process. The default is 0 .
npred specifies the length of the forecast beyond the available observations. The default is 0 .
init specifies the initial values of parameters. The initial values are specified as variances for trend difference equation, AR process, seasonal difference equation, regression equation, and partial AR coefficients. The corresponding default variance values are $0.005,0.8,1 \mathrm{E}-5$, and $1 \mathrm{E}-5$. The default partial AR coefficient values are determined as

$$
\psi_{i}=0.88 \times(-0.6)^{i-1} \quad i=1,2, \ldots, n a r
$$

opt specifies the options vector.
$\operatorname{opt}[1]$ specifies the mean deletion option. The mean of the original series is subtracted from the series if opt $[1]=-1$. By default, the original series is processed ( opt $[1]=0$ ). When regressors are specified, only the $\operatorname{opt}[1]=0$ option is accepted.
$\operatorname{opt}[2] \quad$ specifies the trading day adjustment. The default is $\operatorname{opt}[2]=0$.
$\operatorname{opt}[3] \quad$ specifies the year $(\geq 1900)$ when the series starts. If $\operatorname{opt}[3]=0$, there is no trading day adjustment. By default, opt $[3]=0$.
$\operatorname{opt}[4]$ specifies the number of seasons within a period (speriod). By default, $\operatorname{opt}[4]=12$.
$\operatorname{opt}[5] \quad$ controls the transformation of the original series. If opt[5]=1, log transformation is requested. By default, there is no transformation (opt[5]=0).
$\operatorname{opt}[6] \quad$ specifies the maximum number of iterations allowed. The default is $\operatorname{opt}[6]=200$.
opt[7] specifies the update technique for the quasi-Newton optimization technique. If $\operatorname{opt}[7]=1$ is specified, the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update method is used. If opt[7]=2 is specified, the dual Davidon, Fletcher, and Powell (DFP) update method is used. The default is opt $[7]=1$.
opt[8] specifies the line search technique for the quasi-Newton optimization method. The default is $\operatorname{opt}[8]=2$.
$\operatorname{opt}[8]=1 \quad$ specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and extrapolation.
$\operatorname{opt}[8]=2 \quad$ specifies a line search method that requires more objective function calls than gradient calls for cubic interpolation and extrapolation.
$\operatorname{opt}[8]=3 \quad$ specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and extrapolation.
$\operatorname{opt}[8]=4 \quad$ specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and stepwise extrapolation.
$\operatorname{opt}[8]=5 \quad$ specifies a line search method that is a modified version of $\operatorname{opt}[8]=4$.
$\operatorname{opt}[8]=6$ specifies the golden section line search method that uses only function values for linear approximation.
$\operatorname{opt}[8]=7$ specifies the bisection line search method that uses only function values for linear approximation.
$\operatorname{opt}[8]=8 \quad$ specifies the Armijo line search method that uses only function values for linear approximation.
opt [9] specifies the upper bound of the variance estimates. If you specify opt $[9]=v a l u e$, the variances are estimated with the constraint that $\sigma \leq$ value. When you specify the $\operatorname{opt}[9]=0$ option, the upper bound is not imposed. The default is $\operatorname{opt}[9]=0$.
opt [10] specifies the length of data used in backward filtering for the Kalman filter initialization. The default value of opt[10] is 100 if the number of observations is greater than 100 ; otherwise, the default value is the number of observations.
icmp specifies which component is calculated.
icmp $=1$ requests the estimate and forecast of trend component.
icmp $=2$ requests the estimate and forecast of seasonal component.
icmp $=3$ requests the estimate and forecast of AR component.
icmp $=4$ requests the trading day adjustment component.
icmp $=5$ requests the regression component.
icmp $=6$ requests the time-varying regression coefficients.
You can calculate multiple components by specifying a vector. For example, you can specify icmp $=\left\{\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right\}$.
print specifies the print option. By default, printed output is suppressed (print=0). If you specify print $=1$, the subroutine prints the final estimates. The iteration history is printed if you specify print $=2$.

The TSDECOMP subroutine returns the following values:
comp refers to the estimate and forecast of the trend component.
est refers to the parameter estimates including coefficients of the AR process.
aic refers to the AIC statistic obtained from the final estimates.

The TSDECOMP subroutine analyzes nonstationary time series by using smoothness priors modeling (see the section "Smoothness Priors Modeling" on page 272 for more details). The likelihood function is maximized with respect to hyperparameters. The Kalman filter algorithm is used for filtering, smoothing, and forecasting. The TSDECOMP call decomposes the time series $y_{t}$ as follows:

$$
y_{t}=T_{t}+S_{t}+T D_{t}+u_{t}+R_{t}+\epsilon_{t}
$$

where $T_{t}$ represents the trend component, $S_{t}$ denotes the seasonal component, $T D_{t}$ represents the trading day adjustment component, $u_{t}$ denotes the autoregressive process component, $R_{t}$ denotes regression effect components, and $\epsilon_{t}$ represents the irregular term with zero mean and constant variance.

The trend components are constrained as follows:

$$
\nabla^{k} T_{t}=w_{1 t}, \quad w_{1 t} \sim N\left(0, \tau_{1}^{2}\right)
$$

When you specify the ORDER=0 option, the trend component is not estimated. The maximum order of differencing is $3(k=0, \ldots, 3)$.

The seasonal components are denoted as a stochastically perturbed equation:

$$
\left(1+\sum_{i=1}^{L-1} \mathbf{B}^{i}\right)^{l} S_{t}=w_{2 t}, \quad w_{2 t} \sim N\left(0, \tau_{2}^{2}\right)
$$

When you specify $\operatorname{SORDER}=0$, the seasonal component is not estimated. The maximum value of $l$ is $2(l=0,1$, or 2$)$.

The stationary autoregressive (AR) process is denoted as a stochastically perturbed equation:

$$
u_{t}=\sum_{i=1}^{p} \alpha_{i} u_{t-i}+w_{3 t}, \quad w_{3 t} \sim N\left(0, \tau_{3}^{2}\right)
$$

where $p$ is the order of AR process. When NAR $=0$ is specified, the AR process component is not estimated.
The time-varying regression coefficients are estimated if you include exogenous variables:

$$
R_{t}=\mathbf{X}_{t} \beta_{t}
$$

where $\mathbf{X}_{t}$ contains $m$ regressors except the constant term and $\beta_{t}^{\prime}=\left(\beta_{1 t}, \ldots, \beta_{m t}\right)$. The time-varying coefficients $\beta_{t}$ follow the random walk process:

$$
\beta_{j t}=\beta_{j t-1}+v_{j t}, \quad v_{j t} \sim N\left(0, \sigma_{j}^{2}\right)
$$

where $\beta_{j t}$ is an element of the coefficient vector $\beta_{t}$.
The trading day adjustment component $T D_{t}$ is deterministically restricted. See the section "State Space and Kalman Filter Method" on page 287, for more information.

You can estimate the time-varying coefficient model as follows:

```
call tsdecomp COMP=beta ORDER=0 SORDER=0 NAR=0
 DATA=y XDATA=x ICMP=6;
```

The output matrix BETA contains time-varying regression coefficients.

## TSMLOCAR Call

analyzes nonstationary or locally stationary time series by using the minimum AIC procedure

CALL TSMLOCAR( arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);
The inputs to the TSMLOCAR subroutine are as follows:
data specifies a $T \times 1($ or $1 \times T)$ data vector.
maxlag specifies the maximum lag of the AR process. This value should be less than half the length of locally stationary spans. The default is maxlag=10.
opt specifies an options vector.
opt[1] specifies the mean deletion option. The mean of the original data is deleted if $\operatorname{opt}[1]=-1$. An intercept coefficient is estimated if $\operatorname{opt}[1]=1$. If $\operatorname{opt}[1]=0$, the original input data are processed assuming that the mean value of the input series is 0 . The default is $\operatorname{opt}[1]=0$.
opt[2] specifies the span length to be used when breaking up the time series into separate blocks. By default, opt $[2]=0$, which forces all of the time series values into a single span.
opt[3] specifies the minimum AIC option. If opt[3]=0, the maximum lag AR process is estimated. If opt $[3]=1$, the minimum AIC procedure is performed. The default is opt[3]=1.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used ( missing $=0$ ). The missing $=1 \mathrm{op}-$ tion ignores observations with missing values. If you specify the missing=2 option, the missing values are replaced with the sample mean. print $]$ specifies the print option. By default, printed output is suppressed (print=0).

The print $=1$ option prints the AR estimation result, while the print $=2$ option plots the power spectral density as well as the AR estimates.

The TSMLOCAR subroutine returns the following values:
arcoef refers to an nar $\times 1$ AR coefficient vector of the final model if the intercept estimate is not included. If $\operatorname{opt}[1]=1$, the first element of the arcoef vector is an intercept estimate.
$e v \quad$ refers to the error variance.
nar is the selected AR order of the final model. If opt[3]=0, nar=maxlag.
aic refers to the minimum AIC value of the final model.
start refers to the starting position of the input series, which corresponds to the first observation of the final model.
finish refers to the ending position of the input series, which corresponds to the last observation of the final model.

The TSMLOCAR subroutine analyzes nonstationary (or locally stationary) time series by using the minimum AIC procedure. The data of length $T$ is divided into $J$ locally stationary subseries, which consist of $\frac{T}{J}$ observations. See the section "Nonstationary Time Series" on page 276 for details.

## TSMLOMAR Call

analyzes nonstationary or locally stationary multivariate time series by using the minimum AIC procedure

CALL TSMLOMAR( arcoef, ev, nar, aic, start, finish, data
<,maxlag, opt, missing, print>);
The inputs to the TSMLOMAR subroutine are as follows:
data specifies a $T \times M$ data matrix, where $T$ is the number of observations and $M$ is the number of variables to be analyzed.
maxlag
specifies the maximum lag of the vector AR (VAR) process. This value should be less than $\frac{1}{2 M}$ of the length of locally stationary spans. The default is maxlag $=10$.
opt specifies an options vector.
$\operatorname{opt}[1] \quad$ specifies the mean deletion option. The mean of the original data is deleted if $\operatorname{opt}[1]=-1$. An intercept coefficient is estimated if $\operatorname{opt}[1]=1$. If $\operatorname{opt}[1]=0$, the original input data are processed assuming that the mean values of input series are zeroes. The default is opt $[1]=0$.
$\operatorname{opt}[2]$ specifies the span length to be used when breaking up the time series into separate blocks. By default, opt $[2]=0$, which forces all of the time series values into a single span.
$\operatorname{opt}[3] \quad$ specifies the minimum AIC option. If opt[3]=0, the maximum lag VAR process is estimated. If $\operatorname{opt}[3]=1$, a minimum AIC procedure is used. The default is opt $[3]=1$.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing $=2$ option, the missing values are replaced with the sample mean.
print specifies the print option. By default, printed output is suppressed (print=0). The print=1 option prints the AR estimates, minimum AIC, minimum AIC order, and innovation variance matrix.

The TSMLOMAR subroutine returns the following values.
arcoef refers to an $M \times(M *$ nar $)$ VAR coefficient vector of the final model if the intercept vector is not included. If opt $[1]=1$, the first column of the arcoef matrix is an intercept estimate vector.
$e v \quad$ refers to the error variance matrix.
nar is the selected VAR order of the final model. If $\operatorname{opt}[3]=0$, nar=maxlag.
aic refers to the minimum AIC value of the final model.
start refers to the starting position of the input series data, which corresponds to the first observation of the final model.
finish refers to the ending position of the input series data, which corresponds to the last observation of the final model.

The TSMLOMAR subroutine analyzes nonstationary (or locally stationary) multivariate time series by using the minimum AIC procedure. The data of length $T$ is divided into $J$ locally stationary subseries. See "Nonstationary Time Series" in the section "Nonstationary Time Series" on page 276 for details.

## TSMULMAR Call

## estimates VAR processes by using the minimum AIC procedure

CALL TSMULMAR( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);
The inputs to the TSMULMAR subroutine are as follows:
data specifies a $T \times M$ data matrix, where $T$ is the number of observations and $M$ is the number of variables to be analyzed.
maxlag specifies the maximum lag of the VAR process. This value should be less than $\frac{1}{2 M}$ of the length of input data. The default is maxlag $=10$.
opt specifies an options vector.
$\operatorname{opt}[1] \quad$ specifies the mean deletion option. The mean of the original data is deleted if $\operatorname{opt}[1]=-1$. An $M \times 1$ intercept vector is estimated if $\operatorname{opt}[1]=1$. If $\operatorname{opt}[1]=0$, the original input data are processed assuming that the mean value of the input data is 0 . The default is $\operatorname{opt}[1]=0$.
$\operatorname{opt}[2] \quad$ specifies the minimum AIC option. If opt $[2]=0$, the maximum lag AR process is estimated. If $\operatorname{opt}[2]=1$, the minimum AIC procedure is used, while the opt $[2]=2$ option specifies the VAR order selection method based on the AIC. The default is opt $[2]=1$.
$\operatorname{opt}[3] \quad$ specifies instantaneous response modeling if $\operatorname{opt}[3]=1$. The default is $\operatorname{opt}[3]=0$. See the section "Multivariate Time Series Analysis" on page 279 for more information.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the miss$i n g=2$ option, the missing values are replaced with the sample mean.
print specifies the print option. By default, printed output is suppressed (print=0). The print $=1$ option prints the final estimation result, while the print $=2$ option prints intermediate and final results.

The TSMULMAR subroutine returns the following values:
arcoef refers to an $M \times(M *$ nar $)$ AR coefficient matrix if the intercept is not included. If $\operatorname{opt}[1]=1$, the first column of the arcoef matrix is an intercept vector estimate.
$e v \quad$ refers to the error variance matrix.
nar is the selected VAR order of the minimum AIC procedure. If $\operatorname{opt}[2]=0$, nar=maxlag. aic] refers to the minimum AIC value.

The TSMULMAR subroutine estimates the VAR process by using the minimum AIC method. The widely used VAR order selection method is added to the original TIMSAC program, which considers only the possibilities of zero coefficients at the beginning and end of the model. The TSMULMAR subroutine can also estimate the instantaneous response model. See the section "Multivariate Time Series Analysis" on page 279 for details.

## TSPEARS Call

analyzes periodic AR models with the minimum AIC procedure
CALL TSPEARS( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);
The inputs to the TSPEARS subroutine are as follows:
data specifies a $T \times 1$ (or $1 \times T)$ data matrix.
maxlag specifies the maximum lag of the periodic AR process. This value should be less than $\frac{1}{2 J}$ of the input series. The default is maxlag $=10$.
opt specifies an options vector.
opt[1] specifies the mean deletion option. The mean of the original data is deleted if $\operatorname{opt}[1]=-1$. An intercept coefficient is estimated if $\operatorname{opt}[1]=1$. If $\operatorname{opt}[1]=0$, the original input data are processed assuming that the mean values of input series are zeroes. The default is opt $[1]=0$.
$\operatorname{opt}[2] \quad$ specifies the number of instants per period. By default, opt[2]=1.
$\operatorname{opt}[3] \quad$ specifies the minimum AIC option. If $\operatorname{opt}[3]=0$, the maximum lag AR process is estimated. If $\operatorname{opt}[3]=1$, the minimum AIC procedure is used. The default is $\operatorname{opt}[3]=1$.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing $=1$ option ignores observations with missing values. If you specify the missing $=2$ option, the missing values are replaced with the sample mean.
print specifies the print option. By default, printed output is suppressed (print=0). The print $=1$ option prints the periodic AR estimates and intermediate process.

The TSPEARS subroutine returns the following values:
arcoef refers to a periodic AR coefficient matrix of the periodic AR model. If $\operatorname{opt}[1]=1$, the first column of the arcoef matrix is an intercept estimate vector.
$e v \quad$ refers to the error variance.
nar refers to the selected AR order vector of the periodic AR model.
aic refers to the minimum AIC values of the periodic AR model.

The TSPEARS subroutine analyzes the periodic AR model by using the minimum AIC procedure. The data of length $T$ are divided into $d$ periods. There are $J$ instants in one period. See the section "Multivariate Time Series Analysis" on page 279 for details.

## TSPRED Call

provides predicted values of univariate and multivariate ARMA processes when the ARMA coefficients are input

CALL TSPRED( forecast, impulse, mse, data, coef, nar, nma
<,ev, npred, start, constant>);
The inputs to the TSPRED subroutine are as follows:
data specifies a $T \times M$ data matrix if the intercept is not included, where $T$ denotes the length of the time series and $M$ is the number of variables to be analyzed. If the univariate time series is analyzed, the input data should be a column vector
coef refers to the $M(P+Q) \times M$ ARMA coefficient matrix, where $P$ is an AR order and $Q$ is an MA order. If the intercept term is included (constant $=1$ ), the first row of the coefficient matrix is considered as the intercept term and the coefficient matrix is an $M(P+Q+1) \times M$ matrix. If there are missing values in the coef matrix, these are converted to zero.
nar specifies the order of the AR process. If the subset AR process is requested, nar should be a row or column vector. The default is nar $=0$.
nma specifies the order of the MA process. If the subset MA process is requested, $n m a$ should be a vector. The default is $n m a=0$.
$e v \quad$ specifies the error variance matrix. If the $e v$ matrix is not provided, the prediction error covariance will not be computed.
npred specifies the maximum length of multistep forecasting. The default is npred=0.
start specifies the position where the multistep forecast starts. The default is start $=T$.
constant specifies the intercept option. No intercept estimate is included if constant $=0$; otherwise, the intercept estimate is included in the first row of the coefficient matrix. If constant $=-1$, the coefficient matrix is estimated by using mean deleted series. By default, constant $=0$.

The TSPRED subroutine returns the following values:
forecast refers to predicted values.
impulse refers to the impulse response function.
$m s e \quad$ refers to the mean square error of $s$-step-ahead forecast. A scalar missing value is returned if the error variance ( $e v$ ) is not provided.

## TSROOT Call

calculates AR and MA coefficients from the characteristic roots of the model or calculates the characteristic roots of the model from the AR and MA coefficients

CALL TSROOT( matout, matin, nar, nma, <,qcoef, print>);
The inputs to the TSROOT subroutine are as follows:
matin refers to the (nar $+n m a) \times 2$ characteristic root matrix if the polynomial (ARMA) coefficients are requested ( $q$ coef $=1$ ), where the first column of the matin matrix contains the real part of the root and the second column of the matin matrix contains the imaginary part of the root. When the characteristic roots are requested ( $q$ coef=0), the first nar rows are complex AR coefficients and the last nma rows are complex MA coefficients. The default is $q c o e f=0$.
nar specifies the order of the AR process. If you specify the subset AR model, the input nar should be a row or column vector.
nma specifies the order of the MA process. If you specify the subset MA model, the input $n m a$ should be a row or column vector.
qcoef requests the ARMA coefficients when the characteristic roots are provided ( $q c o e f=1$ ). By default, the characteristic roots of the polynomial are calculated ( $q c o e f=0$ ).
print specifies the print option if print=1. By default, printed output is suppressed (print=0).

The TSROOT subroutine returns the following values
matout refers to the characteristic root matrix if $q c o e f=0$; otherwise, the matout matrix contains the AR and MA coefficients.

## TSTVCAR Call

analyzes time series that are nonstationary in the covariance function
CALL TSTVCAR( arcoef, variance, est, aic, data
<,nar, init, opt, outlier, print>);
The inputs to the TSTVCAR subroutine are as follows:
data specifies a $T \times 1($ or $1 \times T)$ data vector.
nar specifies the order of the AR process. The default is nar=8.
init specifies the initial values of the parameter estimates. The default is ( $1 \mathrm{E}-4$, $0.3,1 \mathrm{E}-5,0$ ).
opt specifies an options vector.
$\operatorname{opt}[1]$ specifies the mean deletion option. The mean of the original series is subtracted from the series if opt $[1]=-1$. By default, the original series is processed $(\operatorname{opt}[1]=0)$.
opt[2] specifies the filtering period (nfilter). The number of state vectors is determined by $\frac{T}{\text { nfilter }}$. The default is $\operatorname{opt}[2]=10$.
$\operatorname{opt}[3] \quad$ specifies the numerical differentiation method. If $\operatorname{opt}[3]=1$, the one-sided (forward) differencing method is used. The two-sided (or central) differencing method is used if $\operatorname{opt}[3]=2$. The default is $\operatorname{opt}[3]=1$.
outlier
specifies the vector of outlier observations. The value should be less than or equal to the maximum number of observations. The default is outlier $=0$.
print specifies the print option. By default, printed output is suppressed (print $=0$ ). The print $=1$ option prints the final estimates. The iteration history is printed if print $=2$.

The TSTVCAR subroutine returns the following values:
arcoef refers to the time-varying AR coefficients.
variance refers to the time-varying error variances. See the section "Smoothness Priors Modeling" on page 272 for details.
est refers to the parameter estimates.
aic refers to the value of AIC from the final estimates.

Nonstationary time series modeling usually deals with nonstationarity in the mean. The TSTVCAR subroutine analyzes the model that is nonstationary in the covariance. Smoothness priors are imposed on each time-varying AR coefficient and frequency response function. See the section "Nonstationary Time Series" on page 276 for details.

## TSUNIMAR Call

## determines the order of an AR process with the minimum AIC procedure and estimates the AR coefficients

CALL TSUNIMAR( arcoef, ev, nar, aic, data
<,maxlag, opt, missing, print>);
The inputs to the TSUNIMAR subroutine are as follows:
data specifies a $T \times 1$ (or $1 \times T)$ data vector, where $T$ is the number of observations.
maxlag specifies the maximum lag of the AR process. This value should be less than half the number of observations. The default is maxlag $=10$.
opt specifies an options vector.
$\operatorname{opt}[1]$ specifies the mean deletion option. The mean of the original data is deleted if $\operatorname{opt}[1]=-1$. An intercept term is estimated if $\operatorname{opt}[1]=1$. If $\operatorname{opt}[1]=0$, the original input data are processed assuming that the mean value of the input data is 0 . The default is $\operatorname{opt}[1]=0$.
opt[2] specifies the minimum AIC option. If opt[2]=0, the maximum lag AR process is estimated. The minimum AIC option, opt $[2]=1$, is the default.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing $=2$ option, the missing values are replaced with the sample mean.
print specifies the print option. By default, printed output is suppressed (print=0). The print $=1$ option prints the final estimation result, while the print $=2$ option prints intermediate and final results.

The TSUNIMAR subroutine returns the following values.
arcoef refers to an nar $\times 1$ AR coefficient vector if the intercept is not included. If $\operatorname{opt}[1]=1$, the first element of the $\operatorname{arcoef}$ vector is an intercept estimate.
ev refers to the error variance.
nar refers to the selected AR order by minimum AIC procedure. If opt $[2]=0$, nar $=$ maximum lag.
aic refers to the minimum AIC value.
The TSUNIMAR subroutine determines the order of the AR process by using the minimum AIC procedure and estimates the AR coefficients. All AR coefficient estimates up to maximum lag are printed if you specify the print option. See the section "Least Squares and Householder Transformation" on page 284 for more information.

## TYPE Function

## determines the type of a matrix

## TYPE( matrix)

where matrix is a numeric or character matrix or literal.
The TYPE function returns a single character value; it is $\mathbf{N}$ if the type of the matrix is numeric; it is C if the type of the matrix is character; it is U if the matrix does not have a value. Examples of valid statements follow.

The following statements set R to C :

```
a={tom};
r=type(a);
```

The following statements set R to U :

```
free a;
r=type(a);
```

The following statements set R to N :

```
a={1 2 3}}
```

r=type (a);

## UNIFORM Function

## generates pseudo-random uniform deviates

UNIFORM( seed)
where seed is a numeric matrix or literal. The seed can be any integer value up to $2^{31}-1$.

The UNIFORM function returns one or more pseudo-random numbers with a uniform distribution over the interval 0 to 1 . The UNIFORM function returns a matrix with the same dimensions as the argument. The first argument on the first call is used for the seed, or if that argument is 0 , the system clock is used for the seed. The function is equivalent to the DATA step function RANUNI. An example of a valid statement follows:

```
seed = 123456;
c = j(5,1, seed);
b = uniform(c);
print b;
```

B
0.73902
0.2724794
0.7095326
0.3191636
0.367853

## UNION Function

## performs unions of sets

UNION( matrix1<, matrix2,. . ., matrix15>)
where matrix is a numeric or character matrix or quoted literal.
The UNION function returns as a row vector the sorted set (without duplicates) which is the union of the element values present in its arguments. There can be up to 15 arguments, which can be either all character or all numeric. For character arguments, the element length of the result is the longest element length of the arguments. Shorter character elements are padded on the right with blanks. This function is identical to the UNIQUE function. For example, the following statements produce the output shown:

```
a={1 2 4 5};
b={3 4};
c=union(a,b);
```



5 cols

3
(numeric)

4

5

The UNION function can be used to sort elements of a matrix when there are no duplicates by calling UNION with a single argument.

## UNIQUE Function

## sorts and removes duplicates

UNIQUE( matrix1<, matrix2,..., matrix15>)
where matrix is a numeric or character matrix or quoted literal.
The UNIQUE function returns as a row vector the sorted set (without duplicates) of all the element values present in its arguments. The arguments can be either all numeric or all character, and there can be up to 15 arguments specified. This function is identical to the UNION function, the description of which includes an example.

## UNIQUEBY Function

returns the locations of the unique by-group combinations for a sorted or indexed matrix

## UNIQUEBY( matrix, by, index)

The inputs to the UNIQUEBY function are as follows:
matrix is the input matrix, which must be sorted or indexed according to the by columns.
by is either a numeric matrix of column numbers, or a character matrix containing the names of columns corresponding to column labels assigned to matrix by a MATTRIB statement or READ statement.
index is a vector such that index $[i]$ is the row index of the $i$ th element of matrix when sorted according to by. Consequently, matrix[index, ] is the sorted matrix. index can be computed for a matrix and a given set of by columns with the SORTNDX call. If the matrix is known to be sorted according to the by columns already, then index should be just 1:nrow(matrix)

The UNIQUEBY function returns a column vector, whose $i$ th row gives the row in index whose value is the row in matrix of the $i$ th unique combination of values in the by columns. Suppose you submit the following statement:

```
unique_rows = uniqueby(matrix, by, index);
```

Once you have submitted this statement, the following statement gives the values of the unique by combinations:

```
unique = matrix[index[unique_rows], by];
```

In addition, the following statement gives the number of unique values:
n = nrow ( unique );

The following statement gives the number of rows in the $i$ th by combination, except for the last combination.
size $=$ unique_rows[i+1] - unique_rows[i];

The last combination is given by the following statement:

```
size_last = nrow(matrix) - unique_rows[nrow(unique_rows)] + 1;
```

If matrix is already sorted according to the by columns (see the SORT call), then UNIQUEBY can be called with 1:nrow(matrix) for the index argument, as follows:
unique_loc $=$ uniqueby ( matrix, by, 1:nrow(matrix) );

## USE Statement

## opens a SAS data set for reading

USE SAS-data-set $<$ VAR operand $><$ WHERE(expression) $>$
<NOBS name>;
The inputs to the USE statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a twolevel name (for example, SASUSER.A). For more information about specifying SAS data sets, see the chapter on SAS data sets in SAS Language Reference: Concepts.
operand selects a set of variables.
expression is evaluated for being true or false.
name $\quad$ is the name of a variable to contain the number of observations.

If the data set has not already been opened, the USE statement opens the data set for read access. The USE statement also makes the data set the current input data set so that subsequent statements act on it. The USE statement optionally can define selection criteria that are used to control access.

The VAR clause specifies a set of variables to use, where operand can be any of the following:

- a literal containing variable names
- the name of a matrix containing variable names
- an expression in parentheses yielding variable names
- one of the following keywords:

| _ALL_ | for all variables |
| :--- | :--- |
| _CHAR_ | for all character variables |
| _NUM_ | for all numeric variables |

The following examples demonstrate each possible way you can use the VAR clause:

```
var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var('time1':'time9'); /* an expression */
var _all_; /* a keyword */
```

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the clause. The general form of the WHERE clause is as follows:

## WHERE( variable comparison-op operand)

In the preceding statement,
variable is a variable in the SAS data set.
comparison-op is one of the following comparison operators:
$<\quad$ less than
$<=$ less than or equal to
$=$ equal to
> greater than
$>=$ greater than or equal to
$\wedge=$ not equal to
? contains a given string
^? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string
operand is a literal value, a matrix name, or an expression in parentheses.
WHERE comparison arguments can be matrices. For the following operators, the WHERE clause succeeds if all the elements in the matrix satisfy the condition:

$$
\text { ^ }=\text { ^? \ll= \gg= }
$$

For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

$$
=\text { ? =: =* }
$$

Logical expressions can be specified within the WHERE clause by using the AND (\&) and OR (I) operators. The general form is

```
clause&clause (for an AND clause)
clauselclause (for an OR clause)
```

where clause can be a comparison, a parenthesized clause, or a logical expression clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables, and the expression on the right-hand side refers to matrix values.

The VAR and WHERE clauses are optional, and you can specify them in any order. If a data set is already open, all the options that the data set was first opened with are still in effect. To override any old options, the new USE statement must explicitly specify the new options. Examples of valid statements follow.

```
use class;
use class var{name sex age};
use class var{name sex age} where(age>10);
```


## VALSET Call

## performs indirect assignment

CALL VALSET( char-scalar, argument);
The inputs to the VALSET subroutine are as follows:
char-scalar is a character scalar containing the name of a matrix.
argument is a value to which the matrix is set.

The VALSET subroutine expects a single character string argument containing the name of a matrix. It looks up the matrix and moves the value of the second argument to this matrix. For example, the following statements find that the value of the argument $\mathbf{B}$ is $\mathbf{A}$ and then assign the value 99 to $\mathbf{A}$, the indirect result:

```
b="A";
call valset(b,99);
```

The previous value of the indirect result is freed. The following statement sets $\mathbf{B}$ to 99 , but the value of $\mathbf{A}$ is unaffected by this statement:

```
b=99;
```


## VALUE Function

## assigns values by indirect reference

## VALUE( char-scalar)

where char-scalar is a character scalar containing the name of a matrix.
The VALUE function expects a single character string argument containing the name of a matrix. It looks up the matrix and moves its value to the result. For example, the following statements find that the value of the argument $\mathbf{B}$ is $\mathbf{A}$, then look up $\mathbf{A}$ and copy the value 123 to $\mathbf{C}$ :

```
a={\begin{array}{lll}{1}&{2}&{3}\end{array}};
b="A";
c=value (b) ;
```

Here is the resulting output:

| 1 row | 3 cols | (numeric) |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 3 |

## VARMACOV Call

computes the theoretical cross-covariance matrices for a stationary VARMA $(p, q)$ model

CALL VARMACOV( cov, phi, theta, sigma <, p, q, lag> );
The inputs to the VARMACOV subroutine are as follows:
phi specifies a $k m_{p} \times k$ matrix, $\Phi$, containing the autoregressive coefficient matrices, where $m_{p}$ is the number of elements in the subset of the AR order and $k \geq 2$ is the number of variables. All the roots of $|\Phi(B)|=0$ should be greater than one in absolute value, where $\Phi(B)$ is the finite order matrix polynomial in the backshift operator $B$, such that $B^{j} \mathbf{y}_{t}=\mathbf{y}_{t-j}$. You must specify either phi or theta.
theta specifies a $k m_{q} \times k$ matrix containing the moving-average coefficient matrices, where $m_{q}$ is the number of the elements in the subset of the MA order. You must specify either phi or theta.
sigma specifies a $k \times k$ symmetric positive-definite covariance matrix of the innovation series. If sigma is not specified, then an identity matrix is used.
$p \quad$ specifies the subset of the AR order. The quantity $m_{p}$ is defined as

$$
m_{p}=\operatorname{nrow}(p h i) / n c o l(p h i)
$$

where $\operatorname{nrow}(p h i)$ is the number of rows of the matrix phi and $n c o l(p h i)$ is the number of columns of the matrix phi.

If you do not specify $p$, the default subset is $p=\left\{1,2, \ldots, m_{p}\right\}$.
For example, consider a 4-dimensional vector time series, and phi is a $4 \times 4$ matrix. If you specify $p=1$ (the default, since $m_{p}=4 / 4=1$ ), the VARMACOV subroutine computes the theoretical cross-covariance matrices of $\operatorname{VAR}(1)$ as $\mathbf{y}_{t}=\Phi \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}$.

If you specify $p=2$, the VARMACOV subroutine computes the crosscovariance matrices of $\operatorname{VAR}(2)$ as $\mathbf{y}_{t}=\Phi \mathbf{y}_{t-2}+\boldsymbol{\epsilon}_{t}$.

Let $p h i=\left[\Phi_{1}^{\prime}, \Phi_{2}^{\prime}\right]^{\prime}$ be an $8 \times 4$ matrix. If you specify $p=\{1,3\}$, the VARMACOV subroutine computes the cross-covariance matrices of $\operatorname{VAR}(3)$ as $\mathbf{y}_{t}=\Phi_{1} \mathbf{y}_{t-1}+\Phi_{2} \mathbf{y}_{t-3}+\boldsymbol{\epsilon}_{t}$. If you do not specify $p$, the VARMACOV subroutine computes the cross-covariance matrices of $\operatorname{VAR}(2)$ as $\mathbf{y}_{t}=\Phi_{1} \mathbf{y}_{t-1}+\Phi_{2} \mathbf{y}_{t-2}+\epsilon_{t}$.
$q \quad$ specifies the subset of the MA order. The quantity $m_{q}$ is defined as

$$
m_{q}=\operatorname{nrow}(\text { theta }) / n \operatorname{col}(\text { theta })
$$

where $\operatorname{nrow}($ theta) is the number of rows of matrix theta and ncol(theta) is the number of columns of matrix theta.

If you do not specify $q$, the default subset is $q=\left\{1,2, \ldots, m_{q}\right\}$.
The usage of $q$ is the same as that of $p$.
lag specifies the length of lags, which must be a positive number. If $l a g=h$, the VARMACOV computes the cross-covariance matrices from lag zero to lag $h$. By default, lag $=12$.

The VARMACOV subroutine returns the following value:
cov is a $k(\operatorname{lag}+1) \times k$ matrix that contains the theoretical cross-covariance matrices of the VARMA $(p, q)$ model.

Consider the following bivariate $(k=2)$ VARMA $(1,1)$ model:

$$
\begin{aligned}
& \mathbf{y}_{t}=\Phi \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}-\Theta \epsilon_{t-1} \\
& \Phi=\left[\begin{array}{cc}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right] \quad \Theta=\left[\begin{array}{cc}
-0.6 & 0.3 \\
0.3 & 0.6
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right]
\end{aligned}
$$

To compute the cross-covariance matrices of this model, you can use the following statements:

```
phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmacov(cov, phi, theta, sigma) lag=5;
```


## VARMALIK Call

computes the log-likelihood function for a VARMA $(p, q)$ model
CALL VARMALIK( Inl, series, phi, theta, sigma <, p, q, opt> );
The inputs to the VARMALIK subroutine are as follows:
series specifies an $n \times k$ matrix containing the vector time series (assuming mean zero), where $n$ is the number of observations and $k \geq 2$ is the number of variables.
phi specifies a $k m_{p} \times k$ matrix containing the autoregressive coefficient matrices, where $m_{p}$ is the number of the elements in the subset of the AR order. You must specify either phi or theta.
theta specifies a $k m_{q} \times k$ matrix containing the moving-average coefficient matrices, where $m_{q}$ is the number of the elements in the subset of the MA order. You must specify either phi or theta.
sigma specifies a $k \times k$ covariance matrix of the innovation series. If you do not specify sigma, an identity matrix is used.
$p \quad$ specifies the subset of the AR order. See the VARMACOV subroutine.
$q$ specifies the subset of the MA order. See the VARMACOV subroutine.
opt specifies the method of computing the log-likelihood function:
opt=0 requests the multivariate innovations algorithm. This algorithm requires that the time series is stationary and does not contain missing observations.
opt=1 requests the conditional log-likelihood function. This algorithm requires that the number of the observations in the time series must be greater than $p+q$ and that the series does not contain missing observations.
$o p t=2$ requests the Kalman filtering algorithm. This is the default and is used if the required conditions in $o p t=0$ and $o p t=1$ are not satisfied.

The VARMALIK subroutine returns the following value:
$\ln l \quad$ is a $3 \times 1$ matrix containing the log-likelihood function, the sum of $\log$ determinant of the innovation variance, and the weighted sum of squares of residuals. The log-likelihood function is computed as $-0.5 \times$ (the sum of last two terms).

The options opt=0 and opt=2 are equivalent for stationary time series without missing values. Setting opt=0 is useful for a small number of the observations and a high order of $p$ and $q ; o p t=1$ is useful for a high order of $p$ and $q ; o p t=2$ is useful for a low order of $p$ and $q$, or for missing values in the observations.

Consider the following bivariate ( $k=2$ ) VARMA $(1,1)$ model:

$$
\begin{aligned}
& \mathbf{y}_{t}=\Phi \mathbf{y}_{t-1}+\boldsymbol{\epsilon}_{t}-\Theta \boldsymbol{\epsilon}_{t-1} \\
& \Phi=\left[\begin{array}{cc}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right] \quad \Theta=\left[\begin{array}{cc}
-0.6 & 0.3 \\
0.3 & 0.6
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right]
\end{aligned}
$$

To compute the log-likelihood function of this model, you can use the following statements:

```
phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta) sigma=sigma;
call varmalik(lnl, yt, phi, theta, sigma);
```


## VARMASIM Call

generates a VARMA $(p, q)$ time series
CALL VARMASIM( series, phi, theta, mu, sigma, $n<, p, q$, initial, seed>);
The inputs to the VARMASIM subroutine are as follows:
phi specifies a $k m_{p} \times k$ matrix containing the autoregressive coefficient matrices, where $m_{p}$ is the number of the elements in the subset of the AR order and $k \geq 2$ is the number of variables. You must specify either phi or theta.
theta
mu
sigma specifies a $k \times k$ covariance matrix of the innovation series. If sigma is not specified, an identity matrix is used.
$n \quad$ specifies the length of the series. If $n$ is not specified, $n=100$ is used.
$p \quad$ specifies the subset of the AR order. See the VARMACOV subroutine.
$q \quad$ specifies the subset of the MA order. See the VARMACOV subroutine.
initial specifies the initial values of random variables. If initial $=a_{0}$, then $\mathbf{y}_{-p+1}, \ldots, \mathbf{y}_{0}$ and $\boldsymbol{\epsilon}_{-q+1}, \ldots, \boldsymbol{\epsilon}_{0}$ all take the same value $a_{0}$. If the initial option is not specified, the initial values are estimated for the stationary vector time series; the initial values are assumed as zero for the nonstationary vector time series.
seed is a scalar containing the random number seed. At the first execution of the subroutine, the seed variable is used as follows:

If seed $>0$, the input seed is used for generating the series.

If seed $=0$, the system clock is used to generate the seed.
If seed $<0$, the value $(-1) \times($ seed $)$ is used for generating the series.
If the seed is not supplied, the system clock is used to generate the seed.
On subsequent calls of the subroutine in the DO loop like environment the seed variable is used as follows: If seed $>0$, the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.

The VARMASIM subroutine returns the following value:
series is an $n \times k$ matrix containing the generated $\operatorname{VARMA}(p, q)$ time series. When either the initial option is specified or zero initial values are used, these initial values are not included in series.

Consider the following bivariate $(k=2)$ stationary VARMA $(1,1)$ time series:

$$
\begin{aligned}
& \mathbf{y}_{t}-\boldsymbol{\mu}=\Phi\left(\mathbf{y}_{t-1}-\boldsymbol{\mu}\right)+\boldsymbol{\epsilon}_{t}-\Theta \epsilon_{t-1} \\
& \Phi=\left[\begin{array}{cc}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right] \quad \Theta=\left[\begin{array}{cc}
-0.6 & 0.3 \\
0.3 & 0.6
\end{array}\right] \quad \boldsymbol{\mu}=\left[\begin{array}{l}
10 \\
20
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right]
\end{aligned}
$$

To generate this series, you can use the following statements:

```
phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta, mu, sigma, 100);
```

Consider a bivariate ( $k=2$ ) nonstationary VARMA(1,1) time series with the same $\boldsymbol{\mu}, \Sigma$, and $\Theta$ in the previous example and the following AR coefficient:

$$
\Phi=\left[\begin{array}{cc}
1.0 & 0 \\
0 & 0.3
\end{array}\right]
$$

To generate this series, you can use the following statements:

```
phi = { 1.0 0.0, 0.0 0.3 };
call varmasim(yt, phi, theta, mu, sigma, 100) initial=3;
```


## VECDIAG Function

## VECDIAG( square-matrix)

where square-matrix is a square numeric matrix.
The VECDIAG function creates a column vector whose elements are the main diagonal elements of square-matrix. For example, the following statements produce the column vector shown:

```
a={2 1, 0 -1};
c=vecdiag(a);
```

C
2 rows
1 col
(numeric)
2
-1

## VNORMAL Call

generates a multivariate normal random series
CALL VNORMAL( series, mu, sigma, $n<$, seed>);
The inputs to the VNORMAL subroutine are as follows:
$m u \quad$ specifies a $k \times 1$ (or $1 \times k$ ) mean vector, where $k \geq 2$ is the number of variables. You must specify either $m u$ or sigma. If $m u$ is not specified, a zero vector is used.
sigma specifies a $k \times k$ symmetric positive-definite covariance matrix. By default, sigma is an identity matrix with dimension $k$. You must specify either $m u$ or sigma. If sigma is not specified, an identity matrix is used.
$n \quad$ specifies the length of the series. If $n$ is not specified, $n=100$ is used.
seed is a scalar containing the random number seed. At the first execution of the subroutine, the seed variable is used as follows:

If seed $>0$, the input seed is used for generating the series.
If seed $=0$, the system clock is used to generate the seed.
If seed $<0$, the value $(-1) \times($ seed $)$ is used for generating the series.
If the seed is not supplied, the system clock is used to generate the seed.
On subsequent calls of the subroutine in the DO loop like environment the seed variable is used as follows: If seed $>0$, the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.

The VNORMAL subroutine returns the following value:
series is an $n \times k$ matrix that contains the generated normal random series.

Consider a bivariate ( $k=2$ ) normal random series with mean $\boldsymbol{\mu}$ and covariance matrix $\Sigma$, where

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
10 \\
20
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{cc}
1.0 & 0.5 \\
0.5 & 1.25
\end{array}\right]
$$

To generate this series, you can use the following statements:

```
mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call vnormal(et, mu, sigma, 100);
```


## VTSROOT Call

calculates the characteristic roots of the model from AR and MA characteristic functions

CALL VTSROOT( root, phi, theta<, p, q>);
The inputs to the VTSROOT subroutine are as follows:
phi specifies a $k m_{p} \times k$ matrix containing the autoregressive coefficient matrices, where $m_{p}$ is the number of the elements in the subset of the AR order and $k \geq 2$ is the number of variables. You must specify either phi or theta.
theta specifies a $k m_{q} \times k$ matrix containing the moving-average coefficient matrices, where $m_{q}$ is the number of the elements in the subset of the MA order. You must specify either phi or theta.
$p \quad$ specifies the subset of the AR order. See the VARMACOV subroutine.
$q$ specifies the subset of the MA order. See the VARMACOV subroutine.

The VTSROOT subroutine returns the following value:
root is a $k\left(p_{\max }+q_{\max }\right) \times 5$ matrix, where $p_{\max }$ is the maximum order of the AR characteristic function and $q_{\max }$ is the maximum order of the MA characteristic function. The first $k p_{\max }$ rows refer to the results of the AR characteristic function; the last $k q_{\max }$ rows refer to the results of the MA characteristic function.

The first column contains the real parts, $x$, of eigenvalues of companion matrix associated with the $\operatorname{AR}\left(p_{\max }\right)$ or $\mathrm{MA}\left(q_{\max }\right)$ characteristic function; the second column contains the imaginary parts, $y$, of the eigenvalues; the third column contains the moduli of the eigenvalues, $\sqrt{x^{2}+y^{2}}$; the fourth column contains the arguments $(\arctan (y / x))$ of the eigenvalues, measured in radians from the positive real axis. The fifth column contains the arguments expressed in degrees rather than radians.

Consider the roots of the characteristic functions, $\Phi(B)=I-\Phi B$ and $\Theta(B)=$ $I-\Theta B$, where $I$ is an identity matrix with dimension 2 and

$$
\Phi=\left[\begin{array}{cc}
1.2 & -0.5 \\
0.6 & 0.3
\end{array}\right] \quad \Theta=\left[\begin{array}{cc}
-0.6 & 0.3 \\
0.3 & 0.6
\end{array}\right]
$$

To compute these roots, you can use the following statements:

```
phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
call vtsroot(root, phi, theta);
```


## WAVFT Call

## computes fast wavelet transform

CALL WAVFT( decomp, data, opt $<$, levels $>$ );
The fast wavelet transform (WAVFT) subroutine computes a specified discrete wavelet transform of the input data by using the algorithm of Mallat (1989). This transform decomposes the input data into sets of detail and scaling coefficients defined at a number of scales or "levels."

The input data are used as scaling coefficients at the top level in the decomposition. The fast wavelet transform then recursively computes a set of detail and a set of scaling coefficients at the next lower level by respectively applying "low pass" and "high pass" conjugate mirror filters to the scaling coefficients at the current level. The number of coefficients in each of these new sets is approximately half the number of scaling coefficients at the level above them. Depending on the filters being used, a number of additional scaling coefficients, known as boundary coefficients, can be involved. These boundary coefficients are obtained by extending the sequence of interior scaling coefficients using a specified method.

Details of the discrete wavelet transform and the fast wavelet transformation algorithm are available in many references, including Mallat (1989), Daubechies (1992), and Ogden (1997).

The inputs to the WAVFT subroutine are as follows:
data specifies the data to transform. These data must be in either a row or column vector.
opt refers to an options vector with the following components:
$\operatorname{opt}[1] \quad$ specifies the boundary handling used in computing the wavelet transform. At each level of the wavelet decomposition, necessary boundary scaling coefficients are obtained by extending the interior scaling coefficients at that level as follows:
opt $[1]=0 \quad$ specifies extension by zero.
$\operatorname{opt}[1]=1$ specifies periodic extension.
opt $[1]=2$ specifies polynomial extension.
opt $[1]=3$ specifies extension by reflection.
$\operatorname{opt}[1]=4$ specifies extension by anti-symmetric reflection.
opt[2] specifies the polynomial degree that is used for polynomial extension. The value of $\operatorname{opt}[2]$ is ignored if $\operatorname{opt}[1] \neq 2$.
opt $[2]=0$ specifies constant extension.
$\operatorname{opt}[2]=1$ specifies linear extension.
$\operatorname{opt}[2]=2$ specifies quadratic extension.
opt[3] specifies the wavelet family.
$\operatorname{opt}[3]=1$ specifies the Daubechies Extremal phase family (Daubechies, 1992).
opt $[3]=2$ specifies the Daubechies Least Asymmetric family (also known as the Symmlet family) (Daubechies, 1992).
opt[4] specifies the wavelet family member. Valid values are
$\operatorname{opt}[4]=1$ through 10, if $\operatorname{opt}[3]=1$
$\operatorname{opt}[4]=4$ through 10 , if $\operatorname{opt}[3]=2$
Some examples of wavelet specifications are
$o p t=\{1.11\} ; \quad$ specifies the first member (more commonly known as the Haar system) of the Daubechies extremal phase family with periodic boundary handling.
$o p t=\{2125\} ; \quad$ specifies the fifth member of the Symmlet family with linear extension boundary handling.
levels is an optional scalar argument that specifies the number of levels from the top level to be computed in the decomposition. If you do not specify this argument, then the decomposition terminates at level 0 . Usually, you do not need to specify this optional argument. You use this option to avoid unneeded computations in situations where you are interested in only the higher level detail and scaling coefficients.

## The WAVFT subroutine returns

decomp a row vector that encapsulates the specified wavelet transform. The information that is encoded in this vector includes:

- the options specified for computing the transform
- the number of detail coefficients at each level of the decomposition
- all detail coefficients
- the scaling coefficients at the bottom level of the decomposition
- boundary scaling coefficients at all levels of the decomposition

Note: decomp is a private representation of the specified wavelet transform and is not intended to be interpreted in its raw form. Rather, you should use this vector as an input argument to the WAVIFT, WAVPRINT, WAVGET, and WAVTHRSH subroutines

The following program shows an example that uses wavelet calls to estimate and reconstruct a piecewise constant function:

```
/* define a piecewise constant step function */
start blocky(t);
 /* positions (p) and magnitudes (h) of jumps */
 p}={\begin{array}{lllllllllllll}{0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81};}
 h}={4-5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1 -4.2};
 y=j(1, ncol (t), 0);
 do i=1 to ncol(p);
 diff=((t-p[i])>=0);
 y=y+h[i]*diff;
 end;
 return (y);
finish blocky;
n=2##8;
x=1:n;
x=(x-1)/n;
y=blocky (x);
optn = { 2, /* polynomial extension at boundary */
 1, /* using linear polynominal */
 1, /* Daubechies Extremal phase */
 3 /* family member 3 */
 };
call wavft(decomp, y, optn);
call wavprint(decomp,1); /* print summary information */
/* perform permanent thresholding */
threshOpt = { 2, /* soft thresholding */
 2, /* global threshold */
 ., /* ignored */
 -1 /* apply to all levels */
 };
call wavthrsh(decomp, threshOpt);
/* request detail coefficients at level 4 */
call wavget(detail4,decomp,2,4);
/* reconstruct function by using wavelets */
call wavift(estimate, decomp);
errorSS=ssq(y-estimate);
print errorSS;
```

Decomposition Summary

| Decomposition Name | DECOMP |
| :--- | ---: |
| Wavelet Family | Daubechies Extremal Phase |
| Family Member | 3 |
| Boundary Treatment | Recursive Linear Extension |
| Number of Data Points |  |
| Start Level | 256 |

ERRORSS
$1.746 \mathrm{E}-25$

## WAVGET Call

## extracts wavelet information

CALL WAVGET( result, decomp, request $<$, options $>$ );
The WAVGET subroutine is used to return information that is encoded in a wavelet decomposition.

The required inputs are
decomp specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
request specifies a scalar indicating what information is to be returned.
You can specify different optional arguments depending on the value of request:
request $=1$ requests the number of points in the input data vector.
result returns as a scalar containing this number.
request $=2$ requests the detail coefficients at a specified level. Valid syntax is

CALL WAVGET( result, decomp, 2, level <, opt> );
where the argument
level is the level at which the detail coefficients are requested.
opt is an optional vector which specifies the thresholding to be applied to the returned detail coefficients. See the WAVIFT subroutine call for details. If you omit this argument, no thresholding is applied.
result returns as a column vector containing the specified detail coefficients.
request $=3$ requests the scaling coefficients at a specified level. Valid syntax is

CALL WAVGET( result, decomp, 3, level <, opt $>$ );
where the argument
level is the level at which the scaling coefficients are requested.
opt is an optional vector that specifies the thresholding to be applied. See the WAVIFT subroutine call for a description of this vector. The scaling coefficients at the requested level are obtained by using the inverse wavelet transform, after applying the specified thresholding. If you omit this argument, no thresholding is applied.
result returns as a column vector containing the specified scaling coefficients.
request $=4$ requests the thresholding status of the detail coefficients in $d e$ comp.
result returns as a scalar whose value is
0 , if the detail coefficients have not been thresholded
1, otherwise
request $=5$ requests the wavelet options vector that you specified in the WAVFT subroutine call to compute decomp.
result returns as a column vector with 4 elements containing the specified options vector. See the WAVFT subroutine call for the interpretation of the vector entries.
request $=6$ requests the index of the top level in decomp.
result returns as a scalar containing this number.
request $=7$ requests the index of the lowest level in decomp.
result returns as a scalar containing this number.
request $=8$ requests a vector evaluating the father wavelet used in decomp, at an equally spaced grid spanning the support of the father wavelet. The number of points in the grid is specified as a power of 2 times the support width of the father wavelet. For wavelets in the Daubechies extremal phase and least asymmetric families, the support width of the father wavelet is $2 m-1$, where $m$ is the family member. Valid syntax is

CALL WAVGET( result, decomp, $8<$, power $>$ );
where the optional argument
power is the exponent of 2 determining the number of grid points used. power defaults to 8 if you do not specify this argument.
result returns as a column vector containing the specified evaluation of the father wavelet.

An example is available in the documentation for the WAVFT subroutine.

## WAVIFT Call

## computes inverse fast wavelet transform

CALL WAVIFT( result, decomp $<$, opt $<$, level $\gg$ );
The Inverse Fast Wavelet Transform (WAVIFT) subroutine computes the inverse wavelet transform of a wavelet decomposition computed by using the WAVFT subroutine. Details of this algorithm are available in many references, including Mallat (1989), Daubechies (1992), and Ogden (1997).

The inverse transform yields an exact reconstruction of the original input data, provided that no smoothing is specified. Alternatively, a smooth reconstruction of the input data can be obtained by thresholding the detail coefficients in the decomposition prior to applying the inverse transformation. Thresholding, also known as shrinkage, replaces the detail coefficient $d_{j}^{(i)}$ at level $i$ by $\delta_{T_{i}}\left(d_{j}^{(i)}\right)$, where the $\delta_{T}(x)$ is a shrinkage function and $T_{i}$ is the threshold value used at level $i$. The SAS/IML wavelet subroutines support hard and soft shrinkage functions (Donoho and Johnstone 1994) and the nonnegative garrote shrinkage function (Breiman 1995). These functions are defined as follows:

$$
\begin{aligned}
\delta_{T}^{\text {hard }}(x) & = \begin{cases}0 & |x| \leq T \\
x & |x|>T\end{cases} \\
\delta_{T}^{\text {soft }}(x) & = \begin{cases}0 & |x| \leq T \\
x-T & x>T \\
x+T & x<-T\end{cases} \\
\delta_{T}^{\text {garrote }}(x) & = \begin{cases}0 & |x| \leq T \\
x-T^{2} / x & |x|>T\end{cases}
\end{aligned}
$$

You can specify several methods for choosing the threshold values. Methods in which the threshold $T_{i}$ varies with the level $i$ are called adaptive. Methods where the same threshold is used at all levels are called global.

The inputs to the WAVIFT subroutine are as follows:
decomp specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
opt refers to an options vector that specifies the thresholding algorithm. If this optional argument is not specified, then no thresholding is applied.

The options vector has the following components:
opt[1] specifies the thresholding policy.
$\operatorname{opt}[1]=0$ specifies that no thresholding be done. If $\operatorname{opt}[1]=0$ then all other entries in the options vector are ignored.
opt $[1]=1 \quad$ specifies hard thresholding.
$o p t[1]=2$ specifies soft thresholding.
opt $[1]=3$ specifies garrote thresholding.
opt[2] specifies the method for selecting the threshold.
opt[2]=0 specifies a global user-supplied threshold.
$\operatorname{opt}[2]=1 \quad$ specifies a global threshold chosen by using the minimax criterion of Donoho and Johnstone (1994).
opt $[2]=2$ specifies a global threshold defined by using the universal criterion of Donoho and Johnstone (1994).
$\operatorname{opt}[2]=3$ specifies an adaptive method where the thresholds at each level $i$ are chosen to minimize an approximation of the $L^{2}$ risk in estimating the true data values using the reconstruction with thresholded coefficients (Donoho and Johnstone 1995).
$\operatorname{opt}[2]=4$ specifies a hybrid method of Donoho and Johnstone (1995). The universal threshold as specified by opt $[2]=2$ is used at levels where most of the detail coefficients are essentially zero. The risk minimization method as specified by $\operatorname{opt}[2]=4$ is used at all other levels.
$\operatorname{opt}[3]$ specifies the value of the global user-supplied threshold if $\operatorname{opt}[2]=1$. It is ignored if $\operatorname{opt}[2] \neq 1$.
$\operatorname{opt}[4]$ specifies the number of levels starting at the highest detail coefficient level at which thresholding is to be applied. If this value is negative or missing, thresholding is applied at all levels in decomp.

Some common examples of threshold options specifications are:
$o p t=\{13 .-1\}$; specifies hard thresholding with a minimax threshold applied at all levels in the decomposition. This threshold is named "RiskShrink" in Donoho and Johnstone (1994).
$o p t=\{22 .-1\} ; \quad$ specifies soft thresholding with a universal threshold applied at all levels in the decomposition. This threshold is named "VisuShrink" in Donoho and Johnstone (1994).
$o p t=\{24 .-1\} ; \quad$ specifies soft thresholding with level dependent thresholds which minimize the Stein Unbiased Estimate of Risk (SURE). This threshold is named "SureShrink" in Donoho and Johnstone (1995).
level is an optional scalar argument that specifies the level at which the reconstructed data are to be returned. If this argument is not specified then the reconstructed data are returned at the top level defined in decomp.

The WAVIFT subroutine returns
result a vector obtained by inverting, after thresholding the detail coefficients, the discrete wavelet transform encoded in decomp. The row or column orientation of result is the same as that of the input data specified in the corresponding WAVFT subroutine call. If you specify the optional level argument, result contains the reconstruction at the specified level, otherwise the reconstruction corresponds to the top level in the decomposition.

An example is available in the documentation for the WAVFT subroutine.

## WAVPRINT Call

## displays wavelet information

CALL WAVPRINT( decomp, request $<$, options $>$ );
The WAVPRINT subroutine is used to display the information that is encoded in a wavelet decomposition.

The required inputs are
decomp
specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
request
specifies a scalar indicating what information is to be displayed.
You can specify different optional arguments depending on the value of request:
request $=1$ displays information about the wavelet family used to perform the wavelet transform. No additional arguments need to be specified.
request $=2$ displays the detail coefficients by level. Valid syntax is
CALL WAVPRINT( decomp, $2<$, lower $<$, upper $\gg$ );
where the argument
lower is optional and specifies the lowest level to be displayed. The default value of lower is the lowest level in decomp.
upper is optional and specifies the upper level to be displayed. The default value of upper is the highest detail level in decomp.
request $=3$ displays the scaling coefficients by level. Valid syntax is
CALL WAVPRINT( decomp, $3<$, lower $<$, upper $\gg$ );
where the argument
lower is optional and specifies the lowest level to be displayed. The default value of lower is the lowest level in decomp.
upper is optional and specifies the upper level to be displayed. The default value of upper is the top level in decomp.
request $=4$ displays thresholded detail coefficients by level. Valid syntax is
CALL WAVPRINT( decomp, $4,<$ opt $<$, lower $<$, upper $\ggg$ );
where the argument
opt is an optional vector which specifies the thresholding to be applied to the displayed detail coefficients. See the WAVIFT subroutine call for details. If you omit this argument, no thresholding is applied.
lower is optional and specifies the lowest level to be displayed. The default value of lower is the lowest level in decomp.
upper is optional and specifies the upper level to be displayed. The default value of upper is the highest detail level in decomp.

An example is available in the documentation for the WAVFT subroutine.

## WAVTHRSH Call

## thresholds wavelet detail coefficients

## CALL WAVTHRSH( decomp, opt );

The wavelet threshold (WAVTHRSH) subroutine thresholds the detail coefficients in a wavelet decomposition.

The required inputs are
decomp specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
opt refers to an options vector that specifies the thresholding algorithm used. See the WAVIFT subroutine call for a description of this options vector.

On return, the detail coefficients encoded in decomp are replaced by their thresholded values. Note that this action is not reversible. If you want to retain the original detail coefficients, you should not use the WAVTHRSH subroutine to do thresholding. Rather, you should supply the thresholding argument where appropriate in the WAVIFT, WAVGET, and WAVPRINT subroutine calls.

An example is available in the documentation for the WAVFT subroutine.

## WINDOW Statement

opens a display window

$$
\begin{aligned}
& \text { WINDOW <CLOSE=> window-name }<\text { window-options }> \\
& \quad<\text { GROUP=group-name field-specs }> \\
& <\ldots \text { GROUP=group-name field-specs }>\text {; }
\end{aligned}
$$

where the arguments and options are described in the following list.
The WINDOW statement defines a window on the display and can include a number of fields. The DISPLAY statement actually writes values to the window. The following fields can be specified in the WINDOW statement:
window-name
specifies a name 1 to 8 characters long for the window. This name is displayed in the upper-left border of the window.

## CLOSE=window-name

closes the window.
window-options
control the size, position, and other attributes of the window. The attributes can also be changed interactively with window commands such as WGROW, WDEF, WSHRINK, and COLOR. A description of the window options follows.

## GROUP=group-name

starts a repeating sequence of groups of fields defined for the window. The groupname specification is a name 1 to 8 characters long used to identify a group of fields in a later DISPLAY statement.

## field-specs

are a sequence of field specifications made up of positionals, field operands, formats, and options. These are described in the next section.
The following window options can be specified in the WINDOW statement:

## CMNDLINE=name

specifies the name of a variable in which the command line entered by the user will be stored.

## COLOR=operand

specifies the background color for the window. The operand is either a quoted character literal, a name, or an operand. The valid values are "WHITE," "BLACK," "GREEN," "MAGENTA," "RED," "YELLOW," "CYAN," "GRAY," and "BLUE." The default value is "BLACK."

COLUMNS=operand
specifies the starting number of columns for the window. The operand is either a literal number, a variable name, or an expression in parentheses. The default value is 78 columns.

## ICOLUMN=operand

specifies the initial starting column position of the window on the display. The operand is either a literal number or a variable name. The default value is column 1.

## IROW=operand

specifies the initial starting row position of the window on the display. The operand is either a literal number or a variable name. The default value is row 1 .

## MSGLINE=operand

specifies the message to be displayed on the standard message line when the window is made active. The operand is almost always the name of a variable, but a character literal can be used.

## ROWS=operand

determines the starting number of rows of the window. The operand is either a literal number, the name of a variable containing the number, or an expression in parentheses yielding the number. The default value is 23 rows.

Both the WINDOW and DISPLAY statements accept field specifications, which have the following general form:

```
<positionals> field-operand <format> <field-options>
```

In the preceding statement,

| positionals | are directives determining the position on the screen to begin the <br> field. There are four kinds of positionals; any number of positionals <br> are accepted for each field operand. |
| :--- | :--- |
| \# operand |  |
| specifies the row position; that is, it moves the current position to |  |
| column 1 of the specified line. The operand is either a number, a |  |
| name, or an expression in parentheses. |  |
| specifies that the current position move to column 1 of the next |  |
| row. |  |
| specifies the column position. The operand is either a number, a |  |
| name, or an expression in parentheses. The @ directive should |  |
| come after the \# position if \# is specified. |  |

specifies that the field is protected; that is, you cannot enter values in the field. If the field operand is a literal, it is already protected.

## COLOR=operand

specifies the color of the field. The operand is a literal character value in quotes, a variable name, or an expression in parentheses. The colors available are "WHITE," "BLACK," "GREEN," "MAGENTA,""RED," "YELLOW," "CYAN,""GRAY," and "BLUE." Note that the color specification is different from that of the corresponding DATA step value because it is an operand rather than a name without quotes. The default value is "BLUE."

## XMULT Function

## performs accurate matrix multiplication

## XMULT( matrix1, matrix2)

where matrixl and matrix2 are numeric matrices.
The XMULT function computes the matrix product like the matrix multiplication operator (*) except XMULT uses extended precision to accumulate sums of products. You should use the XMULT function only when you need great accuracy.

The following program uses the XMULT function:

```
a=1e13;
b=1e13;
c=100*a;
a=a+1;
x=c || a || b || c;
y=c || a || (-b) || (-c);
z=xmult(x,y`); /* correct answer */
print z [format=16.0];
wrong = x * y`; /* loss of precision */
print wrong [format=16.0];
```

Z

20000000000001

WRONG

19997367730176

## XSECT Function

intersects sets

## XSECT( matrix $1<$, matrix $2, \ldots$, matrix $15>$ )

where matrix is a numeric or character matrix or quoted literal.
The XSECT function returns as a row vector the sorted set (without duplicates) of the element values that are present in all of its arguments. This set is the intersection of the sets of values in its argument matrices. When the intersection is empty, the XSECT function returns a null matrix (zero rows and zero columns). There can be up to 15 arguments, which must all be either character or numeric. For characters, the element length of the result is the same as the shortest of the element lengths of the arguments. For comparison purposes, shorter elements are padded on the right with blanks.

For example, the following statements return the result shown:

```
a={\begin{array}{llll}{1}&{2}&{4}&{5}\end{array}};
b={3 4};
c=xsect (a,b);
```

C
1 row
1 col
(numeric)

4

## YIELD Function

## calculates yield-to-maturity of a cash-flow stream and returns a scalar <br> YIELD( times,flows,freq, value)

The YIELD function returns a scalar containing yield-to-maturity of a cash-flow stream based on frequency and value specified.
times is an $n$-dimensional column vector of times. Elements should be nonnegative.
flows $\quad$ is an $n$-dimensional column vector of cash flows.
freq is a scalar that represents the base of the rates to be used for discounting the cash flows. If positive, it represents discrete compounding as the reciprocal of the number of compoundings. If zero, it represents continuous compounding. No negative values are accepted.
value is a scalar that is the discounted present value of the cash flows.

The present value relationship can be written as

$$
P=\sum_{k=1}^{K} c(k) D\left(t_{k}\right)
$$

where $P$ is the present value of the asset, $\{c(k)\} k=1, \ldots K$ is the sequence of cash flows from the asset, $t_{k}$ is the time to the $k$ th cash flow in periods from the present,
and $D(t)$ is the discount function for time $t$.

With continuous compounding:

$$
D(t)=e^{-y t}
$$

With discrete compounding:

$$
D(t)=(1+f y)^{-t / f}
$$

where $f>0$ is the frequency, the reciprocal of the number of compoundings per unit time period, and $y$ is the yield-to-maturity. The YIELD function solves for $y$.

For example, the following code produces the output shown:

```
timesn=T(do(1, 100,1));
flows=repeat (10,100);
freq=50;
value=682.31027;
yield=yield(timesn,flows,freq,value);
print yield;
```

    YIELD
    0.0100001

## Base SAS Functions Accessible from SAS/IML

The following Base SAS functions are either not available from IML, or behave differently from the Base SAS function of the same name.

| Function | Comment |
| :--- | :--- |
| CALL CATS | return variable must be preinitialized |
| MAD | conflicts with built-in function of the same name |
| MEDIAN | conflicts with IMLMLIB function of the same name |
| MOD | base function performs "fuzzing;" IML does not |
| CALL PRXNEXT | return variables must be preinitialized |
| CALL PRXPOSN | return variables must be preinitialized |
| CALL PRXSUBSTR | return variables must be preinitialized |
| CALL RXCHANGE | return variables must be preinitialized |
| CALL RXMATCH | return variables must be preinitialized |
| CALL RXSUBSTR | return variables must be preinitialized |
| CALL SCAN | return variables must be preinitialized |
| VVALUE | not applicable: interrogates DATA step variables |
| VVALUEX | not applicable: interrogates DATA step variables |
| VNEXT | not applicable: interrogates DATA step variables |

There are some Base SAS functions that are not supported by SAS/IML. For example, the DATA step permits N -literals (strings that end with ' N ') to be interpreted as the name of a variable, but IML does not.

The following Base SAS functions can be called from SAS/IML. The functions are documented in the SAS Language Reference: Dictionary. In some cases, SAS/IML does not accept all variations in the syntax. For example, SAS/IML does not accept the OF keyword as a way to generate an argument list in the RANGE function.

The functions displayed in italics are documented elsewhere in this user's guide. These functions operate on matrices as well as on scalar values, as do many of the mathematical and statistical functions.

## Bitwise Logical Operation Functions

BAND returns the bitwise logical AND of two arguments
BLSHIFT performs a bitwise logical left shift of an argument by a specified amount
BNOT returns the bitwise logical NOT of an argument
BOR returns the bitwise logical OR of two arguments
BRSHIFT performs a bitwise logical right shift of an argument by a specified amount
BXOR returns the bitwise logical EXCLUSIVE OR of two arguments

## Character and Formatting Functions

ANYALNUM

ANYALPHA
ANYCNTRL
ANYDIGIT searches a character string for a digit and returns the first position at which it is found
ANYFIRST searches a character string for a character that is valid as the first character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found

## ANYGRAPH

ANYLOWER

ANYNAME

ANYPRINT
searches a character string for an alphanumeric character and returns the first position at which it is found searches a character string for an alphabetic character and returns the first position at which it is found
searches a character string for a control character and returns the first position at which it is found searches a character string for a graphical character and returns the first position at which it is found searches a character string for a lowercase letter and returns the first position at which it is found
searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found
first position at which it is found first position at which it is found
$\left.\begin{array}{ll}\text { ANYPUNCT } & \begin{array}{l}\text { searches a character string for a punctuation character and returns } \\ \text { the first position at which it is found } \\ \text { searches a character string for a white-space character (blank, hor- } \\ \text { izontal and vertical tab, carriage return, line feed, form feed) and } \\ \text { returns the first position at which it is found } \\ \text { searches a character string for an uppercase letter and returns the } \\ \text { first position at which it is found }\end{array} \\ \text { ANYSPACE } & \\ \text { searches a character string for a hexadecimal character that repre- } \\ \text { sents a digit and returns the first position at which that character is } \\ \text { found } \\ \text { returns one character in the ASCII or EBCDIC collating sequence } \\ \text { concatenates character strings without removing leading or trailing }\end{array}\right\}$

| INDEXC | searches a character expression for specific characters |
| :---: | :---: |
| INDEXW | searches a character expression for a specified string as a word |
| INPUTC | applies a character informat at run time |
| INPUTN | applies a numeric informat at run time |
| LEFT | left aligns a character expression |
| LENGTH | returns the length of a character string |
| LENGTHC | returns the length of a character string, including trailing blanks |
| LENGTHM | returns the amount of memory (in bytes) that is allocated for a character string |
| LENGTHN | returns the length of a nonblank character string, excluding trailing blanks, and returns 0 for a blank character string |
| LOWCASE | converts all letters in an argument to lowercase |
| CALL MISSING | assigns a missing value to the specified character or numeric variable |
| NLITERAL | converts a character string that you specify to a SAS name literal ( N -literal) |
| NOTALNUM | searches a character string for a nonalphanumeric character and returns the first position at which it is found |
| NOTALPHA | searches a character string for a nonalphabetic character and returns the first position at which it is found |
| NOTCNTRL | searches a character string for a character that is not a control character and returns the first position at which it is found |
| NOTDIGIT | searches a character string for any character that is not a digit and returns the first position at which that character is found |
| NOTFIRST | searches a character string for an invalid first character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found |
| NOTGRAPH | searches a character string for a nongraphical character and returns the first position at which it is found |
| NOTLOWER | searches a character string for a character that is not a lowercase letter and returns the first position at which that character is found |
| NOTNAME | searches a character string for an invalid character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found |
| NOTPRINT | searches a character string for a nonprintable character and returns the first position at which it is found |
| NOTPUNCT | searches a character string for a character that is not a punctuation character and returns the first position at which it is found |
| NOTSPACE | searches a character string for a character that is not a white-space character (blank, horizontal and vertical tab, carriage return, line feed, form feed) and returns the first position at which it is found |
| NOTUPPER | searches a character string for a character that is not an uppercase letter and returns the first position at which that character is found |
| NOTXDIGIT | searches a character string for a character that is not a hexadecimal digit and returns the first position at which that character is found |
| NVALID | checks a character string for validity for use as a SAS variable name in a SAS statement |
| PROPCASE | converts all words in an argument to proper case |


| PUTC | applies a character format at run time |
| :---: | :---: |
| PUTN | applies a numeric format at run time |
| REPEAT | repeats a character expression |
| REVERSE | reverses a character expression |
| RIGHT | right aligns a character expression |
| SCAN | selects a given word from a character expression |
| CALL SCAN | returns the position and length of a given word from a character expression |
| ROUNDEX | encodes a string to facilitate searching |
| SPEDIS | determines the likelihood of two words matching, expressed as the asymmetric spelling distance between the two words |
| STRIP | returns a character string with all leading and trailing blanks removed |
| SUBPAD | returns a substring that has a length you specify, using blank padding if necessary |
| SUBSTRN | returns a substring, allowing a result with a length of zero |
| SUBSTR | extracts substrings of character expressions |
| TRANSLATE | replaces specific characters in a character expression |
| TRANWRD | replaces or removes all occurrences of a word in a character string |
| TRIM | removes trailing blanks from character expressions and returns one blank if the expression is missing |
| TRIMN | removes trailing blanks from character expressions and returns a null string (zero blanks) if the expression is missing |
| UPCASE | converts all letters in an argument to uppercase |
| UUIDGEN | returns the short or binary form of a Universal Unique Identifier (UUID) |
| VERIFY | returns the position of the first character that is unique to an expression |

## Character String Matching Functions and Subroutines

CALL RXCHANGE
CALL RXFREE

RXMATCH
RXPARSE
CALL RXSUBSTR

CALL PRXCHANGE
CALL PRXDEBUG

CALL PRXFREE

PRXMATCH

CALL PRXNEXT
changes one or more substrings that match a pattern
frees memory allocated by other regular expression (RX) functions and CALL routines
finds the beginning of a substring that matches a pattern parses a pattern
finds the position, length, and score of a substring that matches a pattern
performs a pattern matching substitution
enables Perl regular expressions in a DATA step to send debug output to the SAS log
frees unneeded memory that was allocated for a Perl regular expression
searches for a pattern match and returns the position at which the pattern is found
returns the position and length of a substring that matches a pattern and iterates over multiple matches within one string

PRXPAREN
PRXPARSE

CALL PRXPOSN
CALL PRXSUBSTR
returns the last bracket match for which there is a match in a pattern compiles a Perl regular expression that can be used for pattern matching of a character value
returns the start position and length for a capture buffer returns the position and length of a substring that matches a pattern

## Date and Time Functions

DATDIF returns the number of days between two dates
DATE returns the current date as a SAS date value
DATEJUL
DATEPART
converts a Julian date to a SAS date value
extracts the date from a SAS datetime value
DATETIME returns the current date and time of day as a SAS datetime value
DAY
DHMS
HMS
HOUR returns the day of the month from a SAS date value returns a SAS datetime value from date, hour, minute, and seconds

INTCK returns the integer number of time intervals in a given time span
INTNX advances a date, time, or datetime value by a given interval, and returns a date, time, or datetime value
JULDATE returns the Julian date from a SAS date value
JULDATE7 returns a seven-digit Julian date from a SAS date value
MDY returns a SAS date value from month, day, and year values
MINUTE
MONTH
QTR
SECOND
TIME
TIMEPART
TODAY
WEEKDAY
YEAR
returns the minute from a SAS time or datetime value returns the month from a SAS date value returns the quarter of the year from a SAS date value
returns the second from a SAS time or datetime value
returns the current time of day
extracts a time value from a SAS datetime value returns the current date as a SAS date value

YRDIF returns the day of the week from a SAS date value

YRDIF returns the difference in years between two dates
YYQ returns a SAS date value from the year and quarter

## Descriptive Statistics Functions and Subroutines

| CMISS | returns the number of missing values for numeric or character ma- <br> trices |
| :--- | :--- |
| CSS | returns the corrected sum of squares <br> returns the coefficient of variation |
| CV | returns the geometric mean |
| EUCOMEAN | returns the Euclidean norm of the nonmissing arguments |
| GEOMEANZ | returns the geometric mean without fuzzing the values of the argu- <br> ments that are approximately 0 |
| HARMEAN | returns the harmonic mean |


| HARMEANZ | returns the harmonic mean without fuzzing the values of the argu- <br> ments that are approximately 0 |
| :--- | :--- |
| IQR | returns the interquartile range |

## Double-Byte Character String Functions

Many of the Base SAS character functions have analogous companion functions that take double-byte character strings (DBCS) as arguments. These functions (for example, KCOMPARE, KCVT, KINDEX, and KSUBSTR) are accessible from SAS/IML. See the SAS Language Reference: Dictionary for a complete list of DBCS functions.

## External Files Functions

DROPNOTE deletes a note marker from a SAS data set or an external file and returns a value
EXIST verifies the existence of a SAS data library member
FAPPEND appends the current record to the end of an external file and returns a value
FCLOSE closes an external file, directory, or directory member, and returns a value
FCOL returns the current column position in the File Data Buffer (FDB)
FDELETE deletes an external file or an empty directory
FEXIST verifies the existence of an external file associated with a fileref and returns a value

FGET copies data from the File Data Buffer (FDB) into a variable and returns a value
FILEEXIST
verifies the existence of an external file by its physical name and returns a value
FILENAME assigns or deassigns a fileref for an external file, directory, or output device and returns a value
FILEREF verifies that a fileref has been assigned for the current SAS session and returns a value
FINFO returns the value of a file information item
FNOTE identifies the last record that was read and returns a value that FPOINT can use
FOPEN opens an external file and returns a file identifier value
FOPTNAME returns the name of an item of information about a file
FOPTNUM
returns the number of information items that are available for an external file
FPOINT positions the read pointer on the next record to be read and returns a value
FPOS sets the position of the column pointer in the File Data Buffer (FDB) and returns a value
FPUT moves data to the File Data Buffer (FDB) of an external file, starting at the FDB's current column position, and returns a value
FREAD reads a record from an external file into the File Data Buffer (FDB) and returns a value
FREWIND positions the file pointer to the start of the file and returns a value
FRLEN returns the size of the last record read, or, if the file is opened for output, returns the current record size
FSEP sets the token delimiters for the FGET function and returns a value
FWRITE writes a record to an external file and returns a value
MOPEN opens a file by directory identifier and member name, and returns the file identifier or a 0
PATHNAME returns the physical name of a SAS data library or of an external file, or returns a blank
SYSMSG returns the text of error messages or warning messages from the last data set or external file function execution
SYSRC returns a system error number

## File I/O Functions

ATTRC returns the value of a character attribute for a SAS data set
ATTRN returns the value of a numeric attribute for the specified SAS data set
CEXIST verifies the existence of a SAS catalog or SAS catalog entry and returns a value
CLOSE closes a SAS data set and returns a value
CUROBS returns the observation number of the current observation
DROPNOTE deletes a note marker from a SAS data set or an external file and returns a value

| DSNAME | returns the SAS data set name that is associated with a data set identifier |
| :---: | :---: |
| EXIST | verifies the existence of a SAS data library member |
| FETCH | reads the next nondeleted observation from a SAS data set into the |
|  | Data Set Data Vector (DDV) and returns a value reads a specified observation from a SAS data set into the Data Set |
| FET | reads a specified observation from a SAS data set into the Data Set Data Vector (DDV) and returns a value |
| GETVARC | returns the value of a SAS data set character variable |
| GETVARN | returns the value of a SAS data set numeric variable |
| LIBNAME | assigns or deassigns a libref for a SAS data library and returns a value |
| LIB | verifies that a libref has been assigned and returns a value |
| NOTE | returns an observation ID for the current observation of a SAS data set |
| OPEN | opens a SAS data set and returns a value |
| PATHNAME | returns the physical name of a SAS data library or of an external file, or returns a blank |
| POINT | locates an observation identified by the NOTE function and returns a value |
| REWIND | positions the data set pointer at the beginning of a SAS data set and returns a value |
| SYSMSG | returns the text of error messages or warning messages from the last data set or external file function execution |
| SYSRC | returns a system error number |
| VARFMT | returns the format assigned to a SAS data set variable |
| VARINFMT | returns the informat assigned to a SAS data set variable |
| VARLABEL | returns the label assigned to a SAS data set variable |
| VARLEN | returns the length of a SAS data set variable |
| VARNAME | returns the name of a SAS data set variable |
| VARNUM | returns the number of a variable's position in a SAS data set |
| VARTYPE | urns the data type of a SAS data set var |

## Financial Functions

COMPOUND
CONVX
CONVXP
DACCDB
DACCDBSL

DACCSL
DACCSYD
DACCTAB
DEPDB
DEPDBSL
DEPSL
returns compound interest parameters
returns the convexity for an enumerated cash flow returns the convexity for a periodic cash flow stream returns the accumulated declining balance depreciation returns the accumulated declining balance with conversion to a straight-line depreciation returns the accumulated straight-line depreciation returns the accumulated sum-of-years-digits depreciation returns the accumulated depreciation from specified tables returns the declining balance depreciation returns the declining balance with conversion to a straight-line depreciation returns the straight-line depreciation

DEPSYD
DEPTAB
DUR
INTRR
IRR
MORT
NETPV
NPV
PVP
SAVING
YIELDP
returns the sum-of-years-digits depreciation returns the depreciation from specified tables returns the modified duration for an enumerated cash flow returns the internal rate of return as a decimal returns the internal rate of return as a percentage returns amortization parameters returns the net present value as a decimal returns the net present value as a percentage returns the present value for a periodic cash flow stream returns the future value of a periodic saving returns the yield-to-maturity for a periodic cash flow stream

## Macro Functions and Subroutines

CALL RESOLVE CALL SYMGET
CALL SYMGETN SYMEXIST CALL SYMPUT
CALL SYMPUTN
CALL SYMPUTX
resolves the value of a text expression at execution time returns the character value of a macro variable returns the numeric value of a macro variable indicates the existence of a macro variable sets the character value of a macro variable sets the numeric value of a macro variable assigns a value to a macro variable and removes both leading and trailing blanks

## Mathematical Functions and Subroutines

CALL ALLPERM ABS AIRY
BETA
COALESCE
COALESCEC

COMB
COMPFUZZ
CONSTANT
CNONCT
DAIRY
DEVIANCE
DIGAMMA
ERF
ERFC
EXP
FACT
FNONCT
GAMMA
IBESSEL
generates all permutations of the values of several variables. returns the absolute value
returns the Airy function
returns the value of the beta function.
returns the first non-missing value from a list of numeric arguments
returns the first non-missing value from a list of character arguments
returns the number of combinations of $n$ items taken $r$ at a time returns the result of a fuzzy comparison of numeric values returns some machine and mathematical constants
returns the noncentrality parameter from a chi-squared distribution returns the derivative of the Airy function returns the deviance from a specified distribution returns the DIGAMMA function
returns the normal error function
returns the complementary normal error function
returns the exponential function
returns the factorial of an integer
returns the noncentrality parameter of an F distribution
returns the gamma function
returns a modified Bessel function

| JBESSEL | returns a Bessel function |
| :--- | :--- |
| LOGBETA | returns the logarithm of the beta function |
| LGAMMA | returns the natural logarithm of the gamma function <br> returns the natural (base $e$ ) logarithm |
| LOG | returns the logarithm base 2 |
| LOG2 | returns the logarithm base 10 |
| LOG10 | returns the logistic value of each argument |
| CALL LOGISTIC |  |
| $M O D$ | returns the remainder value |
| CALL RANPERK | randomly permutes the values of the arguments, and returns a per- <br> mutation of $k$ out of $n$ values |
| CALL RANPERM | randomly permutes the values of the arguments <br> returns the number of permutations of $n$ items taken $r$ at a time |
| PERM | returns the sign of a value |
| SIGN | returns the softmax value for each argument |
| CALL SOFTMAX the square root of a value |  |
| SQRT | returns the value of the noncentrality parameter from the <br> TNONCT |
| student's $t$ distribution |  |

## Probability Functions

| CDF | computes cumulative distribution functions |
| :--- | :--- |
| LOGCDF | returns the logarithm of a left cumulative distribution function <br> LOGPDF <br> computes the logarithm of a probability function <br> LOGSDF |
| computes the logarithm of a survival function |  |
| PDFISSON | computes probability density functions |
| PROBBETA | returns the probability from a Poisson distribution |
| PROBBNML | returns the probability from a beta distribution |
| PROBBNRM | returns the probability from the bivariate normal distribution |
| PROBCHI | returns the probability from a chi-squared distribution |
| PROBF | returns the probability from an F distribution |
| PROBGAM | returns the probability from a gamma distribution |
| PROBHYPR | returns the probability from a hypergeometric distribution |
| PROBMC | returns a probability or a quantile from various distributions for |
| PROBNEGB | multiple comparisons of means <br> returns the probability from a negative binomial distribution |
| PROBNORM | returns the probability from the standard normal distribution |
| PROBT | returns the probability from a $t$ distribution |
| SDF | computes a survival function |

## Quantile Functions

BETAINV
CINV FINV
GAMINV
returns a quantile from the beta distribution returns a quantile from the chi-squared distribution returns a quantile from the F distribution returns a quantile from the gamma distribution

PROBIT returns a quantile from the standard normal distribution
QUANTILE returns the quantile from the specified distribution
TINV returns a quantile from the $t$ distribution

## Random Number Functions and Subroutines

NORMAL
RANBIN
RANCAU
RAND
RANEXP
RANGAM
RANNOR
RANPOI
RANTBL
RANTRI
RANUNI
CALL STREAMINIT

UNIFORM
returns a random variate from a normal distribution returns a random variate from a binomial distribution returns a random variate from a Cauchy distribution returns a random variate from a specified distribution returns a random variate from an exponential distribution returns a random variate from a gamma distribution returns a random variate from a normal distribution returns a random variate from a Poisson distribution returns a random variate from a tabled probability returns a random variate from a triangular distribution returns a random variate from a uniform distribution specifies a seed value to use for subsequent random number generation by the RAND function. returns a random variate from a uniform distribution

## State and Zip Code Functions

| FIPNAME | converts FIPS codes to uppercase state names |
| :--- | :--- |
| FIPNAMEL | converts FIPS codes to mixed-case state names |
| FIPSTATE | converts FIPS codes to two-character postal codes |
| STFIPS | converts state postal codes to FIPS state codes |
| converts state postal codes to uppercase state names |  |
| STNAME | converts state postal codes to mixed-case state names <br> returns a city name and the two-character postal code that corre- <br> STNAMEL |
| ZIPCITY | sponds to a zip code |
| ZIPCITYDISTANCEE | returns the geodetic distance between two zip code locations <br> converts zip codes to FIPS state codes |
| ZIPFIPS | converts zip codes to uppercase state names <br> ZIPNAME |
| ZIPNAMEL | converts zip codes to mixed-case state names |
| ZIPSTATE |  |

## Trigonometric and Hyperbolic Functions

| ARCOS | returns the arccosine |
| :--- | :--- |
| ARSIN | returns the arcsine |
| ATAN | returns the arctangent |
| ATAN2 | returns the arc tangent of two numeric variables |
| COS | returns the cosine |
| COSH | returns the hyperbolic cosine |
| SIN | returns the sine |

SINH returns the hyperbolic sine
TAN returns the tangent
CALL TANH returns the hyperbolic tangent of each argument
TANH returns the hyperbolic tangent

## Truncation Functions

CEIL returns the smallest integer $\geq$ the argument
CEILZ returns the smallest integer that is greater than or equal to the argument, using zero fuzzing
FLOOR returns the largest integer $\leq$ the argument
FLOORZ returns the largest integer that is less than or equal to the argument, using zero fuzzing
FUZZ returns the nearest integer if the argument is within $1 \mathrm{E}-12$
$I N T \quad$ returns the integer portion of a value
INTZ returns the integer portion of the argument, using zero fuzzing
MODZ returns the remainder from the division of the first argument by the second argument, using zero fuzzing
ROUND rounds a value to the nearest round-off unit
ROUNDE rounds the first argument to the nearest multiple of the second argument, and returns an even multiple when the first argument is halfway between the two nearest multiples
ROUNDZ rounds the first argument to the nearest multiple of the second argument, with zero fuzzing
TRUNC returns a truncated numeric value of a specified length

## Web Tools

HTMLDECODE

HTMLENCODE

URLDECODE
URLENCODE
decodes a string containing HTML numeric character references or HTML character entity references and returns the decoded string
encodes characters by using HTML character entity references and returns the encoded string
returns a string that was decoded using the URL escape syntax returns a string that was encoded using the URL escape syntax

## References

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications, Inc.

Aiken, R. C. (1985), Stiff Computation, New York: Oxford University Press, Inc.
Al-Baali, M. and Fletcher, R. (1985), "Variational Methods for Nonlinear Least Squares," Journal of the Operations Research Society, 36, 405-421.

Al-Baali, M. and Fletcher, R. (1986), "An Efficient Line Search for Nonlinear Least Squares," Journal of Optimization Theory Application, 48, 359-377.

Ansley, C. (1979), "An Algorithm for the Exact Likelihood of a Mixed Autoregressive-Moving Average Process," Biometrika, 66, 59-65.

Ansley, C. F. (1980), "Computation of the Theoretical Autocovariance Function for a Vector ARMA Process," Journal of Statistical Computation and Simulation, 12, 15-24.

Ansley, C. F. and Kohn, R. (1986), "A Note on Reparameterizing a Vector Autoregressive Moving Average Model to Enforce Stationary," Journal of Statistical Computation and Simulation, 24, 99-106.

Barnett, V. and Lewis, T. (1978), Outliers in Statistical Data, New York: John Wiley $\&$ Sons, Inc.

Barreto, H. and Maharry, D. (2006), "Least Median of Squares and Regression Through the Origin," Computatitional Statistics and Data Analysis, 50, 1391-1397.

Barrodale, I. and Roberts, F. D. K. (1974), "Algorithm 478: Solution of an Overdetermined System of Equations in the $L_{1}$-Norm," Communications ACM, 17, 319-320.

Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987), "GCVPACK-Routines for Generalized Cross Validation," Communications in Statistics: Simulation and Computation, 16, 263-297.

Beale, E. M. L. (1972), "A Derivation of Conjugate Gradients," in Numerical Methods for Nonlinear Optimization, ed. F. A. Lootsma (ed.), London: Academic Press.

Beaton, A. E. (1964), "The Use of Special Matrix Operations in Statistical Calculus," Research Bulletin RB-64-51, Princeton: Educational Testing Service.

Bickart, T. A. and Picel, Z. (1973), "High Order Stiffly Stable Composite Multistep Methods for Numerical Integration of Stiff Differential Equations," in BIT, 13, 272-286.

Bishop, Y. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate Analysis: Theory and Practice, Cambridge, MA: MIT Press.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, Oakland, CA: Holden-Day.

Breiman, L. (1995), "Better Subset Regression Using the Nonnegative Garrote," Technometrics, 37, 373-384.

Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second Edition, New York: Springer-Verlag.

Brownlee, K. A. (1965), Statistical Theory and Methodology in Science and Engineering, New York: John Wiley \& Sons, Inc.

Charnes, A., Frome, E. L., and Yu, P. L. (1976), "The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family," Journal of the American Statistical Association, 71, 169-172.

Christensen, Ronald (1997), Log-Linear Models and Logistic Regression, Second ed., New York: Springer-Verlag.

Chung, C. F. (1996), "A Generalized Fractionally Integrated ARMA Process," Journal of Time Series Analysis, 2, 111-140.

Cox, D. R. and Hinkley, D. V. (1974), Theoretical Statistics, London: Chapman and Hall.

Daubechies, I. (1992), Ten Lectures on Wavelets, Volume 61, CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, PA: Society for Industrial and Applied Mathematics.

Davies, L. (1992), "The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator," The Annals of Statistics, 20, 1828-1843.

De Boor, C. (2001), A Practical Guide to Splines. Revised Edition, New York: Springer-Verlag.

De Jong, P. (1991), "Stable Algorithms for the State Space Model," Journal of Time Series Analysis, 12, 143-157.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), "An Adaptive Nonlinear Least Squares Algorithm," ACM Transactions on Mathematical Software, 7, 348-368.

Dennis, J. E. and Mei, H. H. W. (1979), "Two New Unconstrained Optimization Algorithms which Use Function and Gradient Values," Journal of Optimization Theory Applications, 28, 453-482.

Donelson, J. and Hansen, E. (1971), "Cyclic Composite Predictor-Corrector Methods," SIAM Journal on Numerical Analysis, 8, 137-157.
Donoho, D. L., and Johnstone, I. M. (1994), "Ideal Spatial Adaptation via Wavelet Shrinkage," Biometrika, 81, 425-455.

Donoho, D. L., and Johnstone, I. M. (1995), "Adapting to Unknown Smoothness via Wavelet Shrinkage," Journal of the American Statistical Association, 90, 1200-1224.

Duchon, J. (1976), "Fonctions-Spline et Esperances Conditionnelles de Champs Guassiens," Ann. Sci. Univ. Clermont Ferrand II Math, 14, 19-27.

Emerson, Phillip L. (1968), "Numerical construction of orthogonal polynomials from a general recurrence formula," Biometrics 24, 695-701.

Eskow, E. and Schnabel, R. B. (1991), "Algorithm 695: Software for a New Modified Cholesky Factorization," ACM Transactions on Mathematical Software, 17, 306-312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester, England: John Wiley \& Sons, Ltd.
Fletcher, R. and Xu, C. (1987), "Hybrid Methods for Nonlinear Least Squares," Journal of Numerical Analysis, 7, 371-389.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1967), Computer Solution of Linear Algebraic Systems, Chapter 17, Englewood Cliffs, NJ: Prentice-Hall, Inc.

Furnival, G. M. and Wilson, R. W. (1974), "Regression by Leaps and Bounds," Technometrics, 16, 499-511.

Gaffney, P. W. (1984), "A Performance Evaluation of Some FORTRAN Subroutines for the Solution of Stiff Oscillatory Ordinary Differential Equations," Association for Computing Machinery, Transactions on Mathematical Software, 10, 58-72.

Gay, D. M. (1983), "Subroutines for Unconstrained Minimization," ACM Transactions on Mathematical Software, 9, 503-524.

Gentleman, W. M. and Sande, G. (1966), "Fast Fourier Transforms for Fun and Profit," AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563-578.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Geweke, J. and Porter-Hudak, S. (1983), "The Estimation and Application of Long Memory Time Series Models," Journal of Time Series Analysis, 4, 221-238.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints," ACM Transactions on Mathematical Software, 10, 282-298.

Golub, G. H. (1969), "Matrix Decompositions and Statistical Calculations" in Statistical Computation, ed. R.C. Milton and J.A. Nelder, New York: Academic Press.

Golub, G. H., and Van Loan, C. F. (1989), Matrix Computations, Second Edition, Baltimore: Johns Hopkins University Press.

Gonin, R. and Money, A. H. (1989), Nonlinear $L_{p}$-norm Estimation, New York: M. Dekker, Inc.

Goodnight, J. H. (1979), "A Tutorial on the SWEEP Operator," The American Statistician, 33, 149-158.

Graybill, F. A. (1969), Introduction to Matrices with Applications in Statistics, Belmont, CA: Wadsworth, Inc.

Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969), "Analysis of Categorical Data by Linear Models," Biometrics, 25, 489-504.

Hadley, G. (1963), Linear Programming, Reading, MA: Addison-Wesley Publishing Company, Inc.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.

Jenkins, M. A. and Traub, J. F. (1970), " A Three-Stage Algorithm for Real Polynomials Using Quadratic Iteration," SIAM Journal of Numerical Analysis, 7, 545-566.

Jenrich, R. I. and Moore, R. H. (1975), "Maximum Likelihood Estimation by Means of Nonlinear Least Squares," American Statistical Association, 1975 Proceedings of the Statistical Computing Section, 57-65.

Kaiser, H. F. and Caffrey, J. (1965), "Alpha Factor Analysis," Psychometrika, 30, 1-14.

Kastenbaum, M. A. and Lamphiear, D. E. (1959), "Calculation of Chi-Square to Test the No Three-Factor Interaction Hypothesis," Biometrics, 15, 107-122.

Kohn, R. and Ansley, C. F. (1982), "A Note on Obtaining the Theoretical Autocovariances of an ARMA Process," Journal of Statistical Computation and Simulation, 15, 273-283.

Korff, F. A., Taback, M. A. M., and Beard, J. H. (1952), "A Coordinated Investigation of a Food Poisoning Outbreak," Public Health Reports, 67, 909-913.

Kruskal, J. B. (1964), "Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis," Psychometrika, 29, 1-27.

Lee, W. and Gentle, J. E. (1986), "The LAV Procedure," SUGI Supplemental Library User's Guide, Cary, NC: SAS Institute, Chapter 21, 257-260.

Lindström, P. and Wedin, P. A. (1984), "A New Linesearch Algorithm for Nonlinear Least Squares Problems," Mathematical Programming, 29, 268-296.

Madsen, K. and Nielsen, H. B. (1993), "A Finite Smoothing Algorithm for Linear $L_{1}$ Estimation," SIAM Journal on Optimization, 3, 223-235.

Mallat, S. (1989), "Multiresolution Approximation and Wavelets," Transactions of the American Mathematical Society, 315, 69-88.

McKean, J. W. and Schrader, R. M. (1987), "Least Absolute Errors Analysis of Variance," Statistical Data Analysis - Based on $L_{1}$ Norm and Related Methods, ed. Y. Dodge, Amsterdam: North Holland, 297-305.

McLeod, I. (1975), "Derivation of the Theoretical Autocovariance Function of Autoregressive-Moving Average Time Series," Applied Statistics, 24, 255-256.

Mittnik, S. (1990), "Computation of Theoretical Autocovariance Matrices of Multivariate Autoregressive Moving Average Time Series," Journal of Royal Statistical Society, B, 52, 151-155.

Monro, D. M. and Branch, J. L. (1976), "Algorithm AS 117. The Chirp Discrete Fourier Transform and General Length," Applied Statistics, 26, 351-361.

Moré, J. J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and Theory," Lecture Notes in Mathematics 630, ed. G.A. Watson, New York: Springer-Verlag, 105-116.

Moré, J. J. and Sorensen, D. C. (1983), "Computing a Trust-Region Step," SIAM Journal on Scientific and Statistical Computing, 4, 553-572.

Nelder, J. A. and Wedderburn, R. W. M. (1972), "Generalized Linear Models," Journal of the Royal Statistical Society, A.3, 370.

Nussbaumer, H. J. (1982), Fast Fourier Transform and Convolution Algorithms, Second Edition, New York: Springer-Verlag.

Ogden, R. T. (1997), Essential Wavelets for Statistical Applications and Data Analysis, Boston: Birkhäuser.

Osborne, M. R. (1985), Finite Algorithms in Optimization and Data Analysis, New York: John Wiley \& Sons, Inc.

Pizer, S. M. (1975), Numerical Computing and Mathematical Analysis, Chicago, IL: Science Research Associates, Inc.

Pocock, S. J. (1977), "Group Sequential Methods in the Design and Analysis of Clinical Trials," Biometrika, 64, 191-199.

Pocock, S. J. (1982), "Interim Analyses for Randomized Clinical Trials: The group Sequential Approach," Biometrics, 38, 153-162.

Powell, M. J. D. (1977), "Restart Procedures for the Conjugate Gradient Method," Mathematical Programming, 12, 241-254.

Powell, M. J. D. (1978a), "A Fast Algorithm for Nonlinearly Constraint Optimization Calculations," Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630, ed. G.A. Watson, New York: Springer-Verlag, 144-175.

Powell, M. J. D. (1982b), "VMCWD: A Fortran Subroutine for Constrained Optimization," DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), "A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation," DAMTP/NA5, Cambridge, England.

Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis, New York: McGraw-Hill, Inc.

Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and Its Applications, New York: John Wiley \& Sons, Inc.
Reinsch, Christian H. (1967), "Smoothing by Spline Functions," Numerische Mathematik, 10, 177-183.

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, Second Edition, New York: Springer-Verlag.

Rice, S. O. (1973), "Efficient Evaluation of Integrals of Analytic Functions by the Trapezoidal Rule," Bell System Technical Journal, 52:5, 702-722.

Rousseeuw, P. J. (1984), "Least Median of Squares Regression," Journal of the American Statistical Association, 79, 871-880.

Rousseeuw, P. J. (1985), "Multivariate Estimation with High Breakdown Point," in Mathematical Statistics and Applications, ed. by W. Grossmann, G. Pflug, I. Vincze, and W. Wertz, Dordrecht: Reidel Publishing Company, 283-297.

Rousseeuw, P. J. and Croux, C. (1993), "Alternatives to the Median Absolute Deviation," Journal of the American Statistical Association, 88, 1273-1283.

Rousseeuw, P. J. and Hubert, M. (1997), "Recent Developments in PROGRESS," $L_{1-}$ Statistical Procedures and Related Topics, ed. by Y. Dodge, IMS Lecture Notes - Monograph Series, No. 31, 201-214.

Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection, New York: John Wiley \& Sons, Inc.

Rousseeuw, P. J. and Van Driessen, K. (1998), "Computing LTS Regression for Large Data Sets," Technical Report, University of Antwerp, submitted.

Rousseeuw, P. J. and Van Driessen, K. (1999), "A Fast Algorithm for the Minimum Covariance Determinant Estimator," Technometrics, 41, 212-223.

Rousseeuw, P. J. and Van Zomeren, B. C. (1990), "Unmasking Multivariate Outliers and Leverage Points," Journal of the American Statistical Association, 85, 633-639.

Schatzoff, M., Tsao, R., and Fienberg, S. (1968), "Efficient Calculation of All Possible Regressions," Technometrics, 4.

Shampine, L. (1978), "Stability Properties of Adams Codes," Association for Computing Machinery, Transactions on Mathematical Software, 4, 323-329.

Singleton, R. C. (1969), "An Algorithm for Computing the Mixed Radix Fast Fourier Transform," IEEE Transactions on Audio and Electroacoustics, AU-17, 93-103.

Sikorsky, K. (1982), "Optimal Quadrature Algorithms in $H_{P}$ Spaces," Numerische Mathematik, 39, 405-410.

Sikorsky, K. and Stenger, F. (1984), "Optimal Quadratures in $H_{P}$ Spaces," Association for Computing Machinery, Transactions on Mathematical Software, 3, 140-151.

Sowell, F. B. (1992), "Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models," Journal of Econometrics, 53, 165-188.

Squire, W. (1987), "Comparison of Gauss-Hermite and Midpoint Quadrature with the Application of the Voigt Function," Numerical Integration: Recent Developments, eds. P. Keast and G. Fairweather, Boston: Reidel, 111-112.

Stenger, F. (1973a), "Integration Formulas Based on the Trapezoidal Formula," Journal of the Institute of Mathematics and Its Applications, 12, 103-114.

Stenger, F. (1973b), "Remarks on Integration Formulas Based on the Trapezoidal Formula," Journal of the Institute of Mathematics and Its Applications, 19, 145-147.

Stenger, F. (1978), "Optimal Convergence of minimum Norm Approximations in $H_{P}$, " Numerische Mathematik, 29, 345-362.

Stoer, J. and Bulirsch, R. (1980), Introduction to Numerical Analysis, New York: Springer-Verlag.

Thisted, Ronald A. (1988), Elements of Statistical Computing: Numerical Computation, London: Chapman and Hall.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for Industrial and Applied Mathematics.

Wang, S. and Tsiatis, A. (1987), "Approximately Optimal One Parameter Boundaries for Group Sequential Trials," Biometrics, 43, 193-199.

1020 - Chapter 20. Language Reference

Wilkinson, J. H. and Reinsch, C., eds., (1971), Handbook for Automatic Computation: Linear Algebra, Volume 2, New York: Springer-Verlag.

Woodfield, Terry J. (1988), "Simulating Stationary Gaussian ARMA Time Series," Computer Science and Statistics: Proceedings of the 20th Symposium on the Interface, 612-617.

Young, F. W. (1981), "Quantitative Analysis of Qualitative Data," Psychometrika, 46, 357-388.

## Chapter 21 Module Library

## Chapter Contents

OVERVIEW ..... 1023
Contents of IMLMLIB ..... 1023
IMLMLIB and the STORAGE library ..... 1024
Accessing the IML Source Code ..... 1025
Order of Resolution ..... 1025
Error Diagnostics ..... 1026
Modules for Multivariate Random Sampling ..... 1026
MODULES REFERENCE ..... 1027
COLVEC Function ..... 1027
CORR Function ..... 1027
EXPMATRIX Function ..... 1027
GBXWHSKR Call ..... 1028
GPROBCNT Call ..... 1028
GXYPLOT Call ..... 1029
MEDIAN Function ..... 1029
QUADREG Call ..... 1029
QUARTILE Function ..... 1030
RANDDIRICHLET Function ..... 1030
RANDMULTINOMIAL Function ..... 1032
RANDMVT Function ..... 1033
RANDNORMAL Function ..... 1035
RANDWISHART Function ..... 1036
REGRESS Call ..... 1037
ROWVEC Function ..... 1038
RSUBSTR Function ..... 1038
STANDARD Function ..... 1039
TABPRT Call ..... 1039
REFERENCES ..... 1039

## Chapter 21 <br> Module Library

## Overview

IMLMLIB is a library of modules written in the IML language. These modules can be used as though they were built-in functions of IML.

The library contains both functions and subroutines. You can invoke functions in assignment statements or expressions. You can invoke subroutines by using CALL or RUN statements. IML automatically loads, resolves, and executes a module when you use it.

## Contents of IMLMLIB

The library contains the following modules. Many of them are derived from the examples in the IML sample library. Each module is described in detail at the end of this chapter.

## COLVEC

converts a matrix into a column vector
CORR
computes correlation coefficients
EXPMATRIX
computes the exponential of a matrix
GBXWHSKR
draws a box-and-whiskers plot
GPROBCNT
draws probability contours for $x-y$ data
GXYPLOT
draws scatter plots of $x-y$ data
MEDIAN
returns the median of numeric data
QUADREG
performs quadratic regression
QUARTILE
computes quartiles

## RANDDIRICHLET

generates a random sample from a Dirichlet distribution

## RANDMULTINOMIAL

generates a random sample from a multinomial distribution

## RANDMVT

generates a random sample from a multivariate Student's $t$ distribution

## RANDNORMAL

generates a random sample from a multivariate normal distribution
RANDWISHART
generates a random sample from a Wishart distribution
REGRESS
performs regression analysis
ROWVEC
converts a matrix into a row vector
RSUBSTR
replaces substrings
STANDARD
standardizes numeric data
TABPRT
prints matrices in tabular format

## IMLMLIB and the STORAGE library

IML enables you to store and load matrices and modules in your own STORAGE library (refer to the chapter on storage features in SAS/IML Software: Usage and Reference, Version 6). The IMLMLIB library is different from this STORAGE library. IMLMLIB contains predefined modules that can be loaded only by IML.

The STORAGE library, on the other hand, is under the control of the user. You can store and load both matrices and modules. The STORE, LOAD, REMOVE, and RESET STORAGE commands apply only to the STORAGE library. You cannot store additional modules in IMLMLIB.

You can use the SHOW command to obtain information about the IMLMLIB and STORAGE libraries.

- SHOW OPTIONS displays the current settings of both STORAGE and IMLMLIB libraries and their open status.
- SHOW STORAGE displays the contents of the STORAGE library.
- SHOW IMLMLIB displays the contents of the IMLMLIB library.
- SHOW MODULES displays the names of the modules existing in the current environment. These include modules loaded from the STORAGE library or the IMLMLIB library and modules defined in the current session.


## Accessing the IML Source Code

The IMLMLIB library is a catalog residing in the SASHELP directory. The catalog contains one entry of type IMOD for each module. Each entry is a module stored in its compiled form.

The IML source code defining the modules is available in the catalog SASHELP.IML. There is an entry of type SOURCE for each module. You can view the source code in the program editor window under DMS by using the COPY command and specifying the four-level name:

## SASHELP.IML.modulename.SOURCE

The source code is generally followed by examples of its use.
The source code can be edited for customization or enhancements, and can be included in other IML applications. The modules also illustrate a variety of IML features that can be used to solve more complex problems.

## Order of Resolution

SAS/IML resolves functions and subroutines in the following order:

- Functions

1. IML's built-in functions
2. User-defined IML modules existing in the current environment
3. STORAGE library, if open
4. SAS DATA step functions
5. IMLMLIB library

- CALL statement

1. IML's built-in calls
2. User-defined IML modules existing in the current environment
3. STORAGE library, if open
4. SAS DATA step call
5. IMLMLIB library

- RUN statement

1. User-defined IML modules existing in the current environment
2. STORAGE library, if open
3. IML's built-in calls
4. SAS DATA step call
5. IMLMLIB library

## Error Diagnostics

When an error occurs in any IML module, IML pauses in the module and prints error diagnostics with a full traceback that can help in locating the problem. In the case of loaded modules, however, the traceback includes line offsets instead of the absolute SAS LOG line numbers. The offsets can be used to track the problem into the actual source code that originally defined the module. The START statement at the beginning of the module definition is always at offset $=1$.

Note that offsets apply only to loaded modules. For modules explicitly defined in any given session, absolute line numbers are printed in the traceback.

## Modules for Multivariate Random Sampling

For certain kinds of statistical simulations and Bayesian analyses, it is necessary to generate random samples of $N$ observations from multivariate distributions in $p$ variables. SAS/IML software provides the RANDGEN function for generating random samples from univariate distributions. However, the only subroutine for sampling from multivariate distributions is the VNORMAL call, which samples from multivariate normal distributions.

The typical method of generating a multivariate sample is to transform a sample from a related univariate distribution. Thus SAS/IML is a natural choice for generating samples from common multivariate distributions.

The SAS/IML function modules and associated multivariate distributions are as follows:

## RANDDIRICHLET

generates a random sample from a Dirichlet distribution (a multivariate generalization of the beta distribution).

## RANDMULTINOMIAL

generates a random sample from a multinomial distribution (a multivariate generalization of the binomial distribution).

## RANDMVT

generates a random sample from a multivariate Student's $t$ distribution.

## RANDNORMAL

generates a random sample from a multivariate normal distribution.

## RANDWISHART

generates a random sample from a Wishart distribution (a multivariate generalization of the gamma distribution).

All of the modules compute their results by using transformations of univariate random samples generated by the RANDGEN function. Thus you can use the RANDSEED subroutine to set the seed for the modules.

While you can currently sample from a multivariate normal distribution by using the built-in SAS/IML subroutine VNORMAL, VNORMAL does not use the random
number seed set in RANDSEED. Thus, to ensure independence and reproducibility of random number streams, the RANDNORMAL function is provided in this package.

For an overview of multivariate sampling, see Gentle (2003).

## Modules Reference

## COLVEC Function

## converts a matrix into a column vector

COLVEC( matrix)
where matrix is any $n \times m$ matrix.
The COLVEC function returns an $n m \times 1$ vector. It converts a matrix into a column vector in row-major order. The returned vector has 1 column and $n m$ rows. The first $m$ elements in the vector correspond to the first row of the input matrix, the next $m$ elements correspond to the second row, and so on.

## CORR Function

computes correlation coefficients
CORR( matrix)
where matrix is any $n \times m$ matrix, $m$ is the number of variables, and $n$ is the number of data points.

The CORR function returns an $m \times m$ matrix of correlation coefficients. It computes the correlation between variables for any multivariate numeric data.

## EXPMATRIX Function

## computes the exponential of a matrix

## EXPMATRIX( matrix)

where matrix is any $n \times n$ matrix.
Given a matrix $A$, the EXPMATRIX function returns an $n \times n$ matrix approximating $e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$. The function uses a Padé approximation algorithm as presented in Golub and Van Loan (1989, p. 558).

Note that this module does not exponentiate each entry of a matrix; for that, use the EXP function.

The following example demonstrates the EXPMATRIX function. For the matrix used in the example, $e^{t A}$ is the matrix $\left(\begin{array}{cc}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right)$. Here is the code:

```
A = { 1 1, 0 1 };
t = 3;
X = ExpMatrix(t*A);
```

```
ExactAnswer \(=(\exp (t)| | t * \exp (t)) / /\)
 (0 l| exp(t));
print X, ExactAnswer;
```

The output from this code is
X
20.08553760 .256611
020.085537

## EXACTANSWER

20.08553760 .256611
020.085537

## GBXWHSKR Call

## draws box-and-whiskers plots <br> RUN GBXWHSKR( matrix);

where matrix is any $n \times m$ matrix.
The GBXWHSKR module draws a box-and-whiskers plot for univariate numeric data contained in the specified matrix. The box outlines the quartile range, and the minimum, median, and maximum points are labeled on the plot. You cannot produce graphics until you invoke the CALL GSTART statement. The plot created by the GBXWHSKR module remains open for further additions until you specify the CALL GCLOSE statement, which terminates the current graphics segment. The module source code can be edited for changes, such as adding viewports, text, or colors.

## GPROBCNT Call

## draws probability contours

RUN GPROBCNT $(x, y<, p>)$;
The inputs to the GPROBCNT subroutine are as follows:

```
x is any }n\timesm\mathrm{ matrix of }x\mathrm{ values.
y is a corresponding n\timesm matrix of }y\mathrm{ values.
p is an optional probability value matrix.
```

The GPROBCNT module draws one contour curve corresponding to each value in the matrix $p$, which must contain entries between zero and one. If you do not specify the matrix $p$, contours for the probability values of $0.5,0.8$, and 0.9 are drawn. You cannot produce graphics until you specify the CALL GSTART statement. The contour plot remains open for further additions until you specify the CALL GCLOSE statement, which terminates the current graphics segment. Note that this module cannot be used for general contour plots of three-dimensional data.

## GXYPLOT Call

draws a scatter plot of any $x-y$ data
RUN GXYPLOT( $x, y$ );
The inputs to the GXYPLOT subroutine are as follows:

| $x$ | is any $n \times m$ matrix of $x$ values. |
| :--- | :--- |
| $y$ | is a corresponding $n \times m$ matrix of $y$ values. |

The GXYPLOT module draws a simple scatter plot of any numeric $x-y$ data. Axes with labeled tickmarks are drawn as well. You cannot produce graphics until you specify the CALL GSTART statement. The plot remains open for further additions (such as a title and axis labels) until you specify the CALL GCLOSE statement, which terminates the current graphics segment. The module uses the GPOINT, GXAXIS, and GYAXIS calls to plot the points. The module source code can be edited to specify many of the options available for these calls.

## MEDIAN Function

returns the median of numeric data MEDIAN( matrix)
where matrix is any $n \times m$ matrix.
The MEDIAN function returns the median value for each column in the matrix. It computes the median of univariate numeric data contained in the specified matrix. When the number of data points is odd, it returns the middle element from the sorted order. When the number of data points is even, it returns the mean of the middle two elements. Missing values are ignored. If all values in a column are missing, the return value for that column is missing.

## QUADREG Call

## performs quadratic response surface regression

RUN QUADREG( xopt, yopt, type, parms, $x, y$ );
The inputs to the GPROBCNT subroutine are as follows:
xopt $\quad$ is a returned value containing $m \times 1$ critical factor values.
yopt is a returned value containing the critical response value.
type is a returned character string containing the solution type (maximum or minimum).
is a returned value containing the parameter estimates for the quadratic model.
is an $n \times m$ factor matrix, where $m$ is the number of factor variables and $n$ is the number of data points.
$y \quad$ is an $n \times 1$ response vector.
The QUADREG module fits a regression model with a complete quadratic set of regressions across several factors. The estimated model parameters are divided into a vector of linear coefficients and a matrix of quadratic coefficients to obtain critical factor values that optimize the response. It further determines the type of the optima (maximum, minimum, or saddle point) by computing the eigenvalues of the estimated parameters.

## QUARTILE Function

computes quartiles for any univariate numeric data

## QUARTILE ( matrix)

where matrix is any $n \times m$ matrix.
The QUARTILE function returns a $5 \times 1$ column vector for each column in the matrix. The column vector contains the minimum, lower quartile, median, upper quartile, and maximum values for the numeric data in the specified matrix. Missing values are ignored. If all values in a column are missing, the return values for that column are missing.

## RANDDIRICHLET Function

 generates a random sample from a Dirichlet distributionRANDDIRICHLET( N, Shape )
The inputs are as follows:
$N \quad$ is the number of desired observations sampled from the distribution.
Shape is a $1 \times(p+1)$ vector of shape parameters for the distribution, Shape $[i]>0$.

The Dirichlet distribution is a multivariate generalization of the beta distribution. The RANDDIRICHLET function returns an $N \times p$ matrix containing $N$ random draws from the Dirichlet distribution.

If $X=\left\{X_{1} X_{2} \ldots X_{p}\right\}$ with $\sum_{i=1}^{p} X_{i}<1$ and $X_{i}>0$ follows a Dirichlet distribution with shape parameter $\alpha=\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{p+1}\right\}$, then

- the probability density function for $x$ is

$$
f(x ; \alpha)=\frac{\Gamma\left(\sum_{i=1}^{p+1} \alpha_{i}\right)}{\prod_{i=1}^{p+1} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{p} x_{i}^{\alpha_{i}-1}\left(1-x_{1}-x_{2}-\ldots-x_{p}\right)^{\alpha_{p+1}-1}
$$

- if $p=1$, the probability distribution is a beta distribution.
- if $\alpha_{0}=\Sigma_{i=1}^{p+1} \alpha_{i}$, then
- the expected value of $X_{i}$ is $\alpha_{i} / \alpha_{0}$.
- the variance of $X_{i}$ is $\alpha_{i}\left(\alpha_{0}-\alpha_{i}\right) /\left(\alpha_{0}^{2}\left(\alpha_{0}+1\right)\right)$.
- the covariance of $X_{i}$ and $X_{j}$ is $-\alpha_{i} \alpha_{j} /\left(\alpha_{0}^{2}\left(\alpha_{0}+1\right)\right)$.

The following example generates 1000 samples from a two-dimensional Dirichlet distribution. Each row of the returned matrix x is a row vector sampled from the Dirichlet distribution. The example then computes the sample mean and covariance and compares them with the expected values. Here are the code and the output:

```
call randseed(1);
n = 1000;
Shape = {2, 1, 1};
x = RANDDIRICHLET (n, Shape);
Shape0 = sum(Shape);
d = nrow (Shape)-1;
s = Shape[1:d];
ExpectedValue = s`/Shape0;
Cov = -s*s` / (Shape0##2*(Shape0+1));
/* replace diagonal elements with variance */
Variance = s#(Shape0-s) / (Shape0##2*(Shape0+1));
do i = 1 to d;
 Cov[i,i] = Variance[i];
end;
SampleMean = x[:,];
n = nrow (x);
y = x - repeat(SampleMean, n);
SampleCov = y`*y / (n-1);
print SampleMean ExpectedValue, SampleCov Cov;
\begin{tabular}{crr}
SampleMean & \multicolumn{2}{c}{ ExpectedValue } \\
\(0.4992449 \quad 0.2485677\) & 0.5 & 0.25 \\
SampleCov & \multicolumn{2}{c}{ Cov } \\
& 0.05 & -0.025 \\
0.0502652 & -0.026085 & -0.025
\end{tabular} 0.0375
```

For further details about sampling from the Dirichlet distribution, see Kotz, Balakrishnan, and Johnson (2000, p. 448); Gentle (2003, p. 205); or Devroye (1986, p. 593).

## RANDMULTINOMIAL Function

generates a random sample from a multinomial distribution
RANDMULTINOMIAL( N, NumTrials, Prob )
The inputs are as follows:
$N \quad$ is the number of desired observations sampled from the distribution.
NumTrials is the number of trials for each observation. NumTrials $[j] \geq 0$, for
$j=1 \ldots p$.
Prob is a $1 \times p$ vector of probabilities with $0<\operatorname{Prob}[j] \leq 1$ and $\Sigma_{j=1}^{p} \operatorname{Prob}[j]=1$.

The multinomial distribution is a multivariate generalization of the binomial distribution. For each trial, $\operatorname{Prob}[j]$ is the probability of event $E_{j}$, where the $E_{j}$ are mutually exclusive and $\Sigma_{j=1}^{p} \operatorname{Prob}[j]=1$.
The RANDMULTINOMIAL function returns an $N \times p$ matrix containing $N$ observations of NumTrials random draws from the multinomial distribution. Each row of the resulting matrix is an integer vector $\left\{X_{1} X_{2} \ldots X_{p}\right\}$ with $\Sigma X_{j}=$ NumTrials. That is, for each row, $X_{j}$ indicates how many times event $E_{j}$ occurred in NumTrials trials.

If $X=\left\{X_{1} X_{2} \ldots X_{p}\right\}$ follows a multinomial distribution with $n$ trials and probabilities $\rho=\left\{\rho_{1} \rho_{2} \ldots \rho_{p}\right\}$, then

- the probability density function for $x$ is

$$
f(x ; n, \rho)=\frac{n!}{\prod_{i=1}^{p} x_{i}!} \prod_{i=1}^{p} \rho_{i}{ }^{x_{i}}
$$

- the expected value of $X_{i}$ is $n \rho_{i}$.
- the variance of $X_{i}$ is $n \rho_{i}\left(1-\rho_{i}\right)$.
- the covariance of $X_{i}$ with $X_{j}$ is $-n \rho_{i} \rho_{j}$.
- if $p=1$ then $X$ is constant.
- if $p=2$ then $X_{1}$ is $\operatorname{Binomial}\left(n, \rho_{1}\right)$ and $X_{2}$ is $\operatorname{Binomial}\left(n, \rho_{2}\right)$.

The following example generates 1000 samples from a multinomial distribution with three mutually exclusive events. For each sample, 10 events are generated. Each row of the returned matrix $x$ represents the number of times each event was observed. The example then computes the sample mean and covariance and compares them with the expected values. Here are the code and the output:

```
call randseed(1);
prob = {0.3,0.6,0.1};
NumTrials = 10;
```

```
N = 1000;
x = RANDMULTINOMIAL (N,NumTrials,prob);
ExpectedValue = NumTrials * prob`;
Cov = -NumTrials*prob*prob';
/* replace diagonal elements of Cov with Variance */
Variance = -NumTrials*prob#(1-prob);
d = nrow (prob);
do i = 1 to d;
 Cov[i,i] = Variance[i];
end;
SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y`*y / (n-1);
print SampleMean, ExpectedValue, SampleCov, Cov;
```

SampleMean ExpectedValue

| 2.971 | 5.972 | 1.057 | 3 | 6 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SampleCov |  | Cov |  |  |  |
| 2.0622212 | -1.746559 | -0.315663 | -2.1 | -1.8 | -0.3 |
| -1.746559 | 2.3775936 | -0.631035 | -1.8 | -2.4 | -0.6 |
| -0.315663 | -0.631035 | 0.9466977 | -0.3 | -0.6 | -0.9 |

For further details about sampling from the multinomial distribution, see Gentle 2003, p. 198, or Fishman 1996, pp. 224-225.

## RANDMVT Function

generates a random sample from a multivariate Student's $t$ distribution
RANDMVT( N, DF, Mean, Cov )
The inputs are as follows:
$N \quad$ is the number of desired observations sampled from the multivariate Student's $t$ distribution.
$D F \quad$ is a scalar value representing the degrees of freedom for the $t$ distribution.

Mean is a $1 \times p$ vector of means.
Cov $\quad$ is a $p \times p$ symmetric positive definite variance-covariance matrix.

The RANDMVT function returns an $N \times p$ matrix containing $N$ random draws from the Student's $t$ distribution with $D F$ degrees of freedom, mean vector Mean, and covariance matrix Cov.

If $X$ follows a multivariate $t$ distribution with $\nu$ degrees of freedom, mean vector $\mu$, and variance-covariance matrix $\Sigma$, then

- the probability density function for $x$ is

$$
f(x ; \nu, \mu, \Sigma)=\frac{\Gamma((\nu+p) / 2)}{|\Sigma|^{1 / 2}(\pi \nu)^{p / 2} \Gamma(\nu / 2)}\left(1+\frac{(x-\mu) \Sigma^{-1}(x-\mu)^{T}}{\nu}\right)^{-(\nu+p) / 2}
$$

- if $p=1$, the probability density function reduces to a univariate Student's $t$ distribution.
- the expected value of $X_{i}$ is $\mu_{i}$.
- the covariance of $X_{i}$ and $X_{j}$ is $\frac{\nu}{\nu-2} \Sigma_{i j}$ when $\nu>2$.

The following example generates 1000 samples from a two-dimensional $t$ distribution with 7 degrees of freedom, mean vector (12), and covariance matrix S. Each row of the returned matrix x is a row vector sampled from the $t$ distribution. The example then computes the sample mean and covariance and compares them with the expected values. Here are the code and the output:

```
call randseed(1);
N=1000;
DF = 4;
Mean = {1 2};
S = {1 1, 1 5};
x = RandMVT(N, DF, Mean, S);
SampleMean = x[:,];
n = nrow (x);
y = x - repeat(SampleMean, n);
SampleCov = y`*y / (n-1);
Cov = (DF/(DF-2)) * S;
print SampleMean Mean, SampleCov Cov;
```

| SampleMean | Mean |  |  |
| :---: | :---: | :---: | :---: |
| 1.07686362 .0893911 | 1 |  | 2 |
| SampleCov | Cov |  |  |
| 1.80678111 .8413406 | 2 |  | 2 |
| 1.84134069 .7900638 | 2 |  | 10 |

In the preceding example, the columns (marginals) of $\mathbf{x}$ do not follow univariate $t$ distributions. If you want a sample whose marginals are univariate $t$, then you need to scale each column of the output matrix:

```
x = RandMVT(N, DF, Mean, S);
StdX = x / sqrt(diag(S)); /* StdX columns are univariate t */
```

Equivalently, you can generate samples whose marginals are univariate $t$ by passing in a correlation matrix instead of a general covariance matrix.

For further details about sampling from the multivariate $t$ distribution, see Kotz and Nadarajah (2004, pp. 1-11).

## RANDNORMAL Function

generates a random sample from a multivariate normal distribution
RANDNORMAL( N, Mean, Cov )
The inputs are as follows:
$N \quad$ is the number of desired observations sampled from the multivariate normal distribution.

Mean is a $1 \times p$ vector of means.
Cov is a $p \times p$ symmetric positive definite variance-covariance matrix.
The RANDNORMAL function returns an $N \times p$ matrix containing $N$ random draws from the multivariate normal distribution with mean vector Mean and covariance matrix Cov.

If $X$ follows a multivariate normal distribution with mean vector $\mu$ and variancecovariance matrix $\Sigma$, then

- the probability density function for $x$ is

$$
f(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{(x-\mu) \Sigma^{-1}(x-\mu)^{T}}{2}\right)
$$

- if $p=1$, the probability density function reduces to a univariate normal distribution.
- the expected value of $X_{i}$ is $\mu_{i}$.
- the covariance of $X_{i}$ and $X_{j}$ is $\Sigma_{i j}$.

The following example generates 1000 samples from a two-dimensional multivariate normal distribution with mean vector (12), correlation matrix Corr, and variance vector Var. Each row of the returned matrix x is a row vector sampled from the multivariate normal distribution. The example then computes the sample mean and covariance and compares them with the expected values. Here are the code and the output:

```
call randseed(1);
N=1000;
Mean = {1 2};
Corr = {0.6 0.5,0.5 0.9};
Var = {4 9};
/*create the covariance matrix*/
```

```
Cov = Corr # sqrt(Var' * Var);
x = RANDNORMAL(N, Mean, Cov);
SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y`*y / (n-1);
print SampleMean Mean, SampleCov Cov;
```

SampleMean

| 1.06196042 .1156084 | 1 | 2 |  |
| :---: | ---: | ---: | ---: |
| SampleCov | Cov |  |  |
|  |  | 2.4 | 3 |
| 2.5513518 | 3.2729559 | 3 | 8.1 |

For further details about sampling from the multivariate normal distribution, see Gentle (2003, p. 197).

## RANDWISHART Function

 generates a random sample from a Wishart distributionRANDWISHART( N, DF, Sigma)
The inputs are as follows:
$N \quad$ is the number of desired observations sampled from the distribution.
$D F \quad$ is a scalar value representing the degrees of freedom, $D F \geq p$.
Sigma
is a $p \times p$ symmetric positive definite matrix.
The RANDWISHART function returns an $N \times(p \times p)$ matrix containing $N$ random draws from the Wishart distribution with $D F$ degrees of freedom. Each row of the returned matrix represents a $p \times p$ matrix.

The Wishart distribution is a multivariate generalization of the gamma distribution. (Note, however, that Kotz, Balakrishnan, and Johnson 2000 suggest that the term "multivariate gamma distribution" should be restricted to those distributions for which the marginal distributions are univariate gamma. This is not the case with the Wishart distribution.) A Wishart distribution is a probability distribution for nonnegative definite matrix-valued random variables. These distributions are often used to estimate covariance matrices.

If a $p \times p$ nonnegative definite matrix $X$ follows a Wishart distribution with parameters $\nu$ degrees of freedom and a $p \times p$ symmetric positive definite matrix $\Sigma$, then

- the probability density function for $x$ is

$$
f(x ; \nu, \Sigma)=\frac{|x|^{(\nu-p-1) / 2} \exp \left(-\frac{1}{2} \operatorname{trace}\left(x \Sigma^{-1}\right)\right)}{2^{p \nu / 2}|\Sigma|^{\nu / 2} \pi^{p(p-1) / 4} \prod_{i=1}^{p} \Gamma\left(\frac{\nu-i+1}{2}\right)}
$$

- if $p=1$ and $\Sigma=1$, then the Wishart distribution reduces to a chi-square distribution with $\nu$ degrees of freedom.
- the expected value of $X$ is $\nu \Sigma$.

The following example generates 1000 samples from a Wishart distribution with 7 degrees of freedom and $2 \times 2$ matrix parameter $S$. Each row of the returned matrix $x$ represents a $2 \times 2$ nonnegative definite matrix. (You can reshape the $i$ th row of x with the SHAPE function.) The example then computes the sample mean and compares them with the expected value. Here are the code and the output:

```
call randseed(1);
N=1000;
DF = 7;
S = {1 1, 1 5};
x = RandWishart(N, DF, S);
ExpectedValue = DF * S;
SampleMean = shape(x[:,], 2, 2);
print SampleMean ExpectedValue;
```

SampleMean
7.051863314 .103727
14.10372728 .207453

ExpectedValue $7 \quad 14$ 1428

For further details about sampling from the Wishart distribution, see Johnson (1987, pp. 203-204).

## REGRESS Call

## performs regression analysis

$$
\text { RUN REGRESS( } x, y, \text { name, }<t v a l\rangle,<|1\rangle,<|2\rangle,<|3\rangle) \text {; }
$$

The inputs to the REGRESS subroutine are as follows:
$x \quad$ is an $n \times m$ numeric matrix, where $m$ is the number of variables and $n$ is the number of data points.
$y \quad$ is an $n \times 1$ response vector.
name $\quad$ is an $m \times 1$ matrix of variable names.
tval is an optional $t$-value.
$l 1, l 2, l 3 \quad$ are optional $1 \times m$ vectors that specify linear combinations of coefficients for hypothesis testing.

The REGRESS module does regression analysis and prints results. The design matrix is given by $x$, and $y$ is the response vector. The name vector identifies each of the variables. If you specify a $t$-value, the module prints a table of observed and predicted values, residuals, hat diagonal, and confidence limits for the mean and predicted values. If you also specify linear combinations with $l l, l 2$, and $l 3$, the module performs the hypothesis test $\mathbf{H}: l^{\prime} b=0$, where $b$ is the vector of parameter estimates.

## ROWVEC Function

## converts a matrix into a row vector

## ROWVEC( matrix)

where matrix is any $n \times m$ matrix.
The ROWVEC function returns a $1 \times n m$ vector. The specified matrix is converted into a row vector in row-major order. The returned vector has 1 row and $n m$ columns. The first $n$ elements in the vector correspond to the first row of the input matrix, the next $n$ elements correspond to the second row, and so on.

## RSUBSTR Function

replaces substrings in each entry of a given matrix
RSUBSTR( $x, p, l, r$ )
The inputs to the RSUBSTR subroutine are as follows:

| $x$ | is any $m \times n$ character matrix. |
| :--- | :--- |
| $p$ | is an $m \times n$ matrix or a scalar that determines the starting positions for <br> substrings to be replaced. |
| $l$ | is an $m \times n$ matrix or a scalar that determines the lengths of substrings <br> to be replaced. |
| $r$ | is an $m \times n$ matrix or a scalar that specifies the replacement strings. |

The RSUBSTR function returns an $m \times n$ matrix with substrings replaced. It replaces or substitutes substrings of the input matrix with new strings. If $l$ is zero, the replacement string in $r$ is simply inserted into the input matrix $x$ at the position indicated by $p$.

For example, the following statements replace the first two characters of each entry in the matrix X with the corresponding entry in the matrix R :

```
proc iml;
 x = {abc def ghi,jkl mno pqr};
 r = {z y x, w v u};
 p = 1;
 l = 2;
 c=rsubstr(x,p,l,r);
 print x;
 print c;
```


## STANDARD Function

## standardizes numeric data

## STANDARD ( matrix)

where matrix is any $n \times m$ matrix, $n$ is the number of data points, and $m$ is the number of variables.

The STANDARD function returns a standardized $n \times m$ matrix. It standardizes each column of the input matrix, so that the mean of each column is zero and the standard deviation for each column is one.

## TABPRT Call

prints matrices in tabular format
RUN TABPRT( matrix);
where matrix is any $n \times m$ matrix.
The TABPRT module prints any numeric or character matrix in table format. The regular PRINT command output is often difficult to read, especially for large matrices, where individual rows can wrap around. The module source code can be edited for further cosmetic changes, such as alternative format or field width, or for assigning specific row and column labels.

## References

Devroye, L. (1986), Nonuniform Random Variate Generation, New York: SpringerVerlag.

Fishman, G. S. (1996), Monte Carlo: Concepts, Algorithms, and Applications, New York: John Wiley \& Sons.

Gentle, J. E. (2003), Random Number Generation and Monte Carlo Methods, Second Edition, Berlin: Springer-Verlag.

Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, Second Edition, Baltimore: Johns Hopkins University Press.

Johnson, M. (1987), Multivariate Statistical Simulation, New York: John Wiley \& Sons.

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), Continuous Multivariate Distributions, Second Edition, Wiley-Interscience.

Kotz, S. and Nadarajah, S. (2004), Multivariate t Distributions and Their Applications, Cambridge University Press.

## Subject Index

## A

ABORT statement exiting IML, 577
ABS statement
absolute value, 577
ADDITION operator adds corresponding matrix elements, 562
ALL statement
checking for nonzero elements, 577
ANY function
checking for nonzero elements, 578
APPEND statement
SAS data sets, 580
APPLY function, 582
ARMACOV call
autocovariance sequence, 583
ARMALIK call
log likelihood and residuals, 585
ARMASIM function
simulating univariate ARMA series, 586

## B

Basic time series analysis
autocovarince function of ARMA model, 240
example, 238
generating an ARMA process, 240
log-likelihood function of ARMA model, 240
overview, 238
Bessel function
finding nonzero roots and derivatives of, 720
Biconjugate Gradient Algorithm, 529, 534
BLOCK function
forming block-diagonal matrices, 588
Box-and-whiskers plots, 1026
BRANKS function
computing bivariate ranks, 589
BSPLINE function
computing B-spline basis, 589
BTRAN function
computing the block transpose, 592
BYTE function
translating numbers to ordinal characters, 592

## C

CALL statement
calling a subroutine or function, 593
Calling External Modules, 562
CHANGE call
replacing text in an array, 594
CHAR function
character representation of a numeric matrix, 594
Character Functionality, 554
CHOOSE function
choosing and changing elements, 595
CLOSE statement
closing SAS data sets, 596
CLOSEFILE statement
closing a file, 597
COMPARISON operator
compare matrix elements, 563
CONCAT function
performing elementwise string concatenation, 600
CONCATENATION operator, horizontal
concatenates matrices horizontally, 564
CONCATENATION operator, vertical
concatenates matrices vertically, 565
Conjugate Gradient Algorithm, 529, 531
CONTENTS function
obtaining the variables in SAS data sets, 601
Control Statements, 559
CONVEXIT function
calculating convexity of noncontingent cash flows, 602
Correlation coefficient computation, 1025
COVLAG function
computing autocovariance estimates, 602
CREATE statement
creating new SAS data sets, 603
CSHAPE function
reshaping and repeating character values, 605
CUSUM function
calculating cumulative sums, 607
CVEXHULL function
finding a convex hull, 608
D
Dataset and File Functionality, 560
DATASETS function
obtaining names of SAS data sets, 608
DELETE call
deleting SAS data sets, 609
DELETE statement marking observations for deletion, 610
DESIGN function
creating a design matrix, 612

## DESIGNF function

creating a full-rank design matrix, 612
DET function
computing determinants of a square matrix, 613
DIAG function
creating a diagonal matrix, 614
DIRECT PRODUCT operator
takes the direct product of two matrices, 566
DISPLAY statement
displaying fields in display windows, 614
DIVISION operator
performs elementwise division, 567
DO and END statements
grouping statements as a unit, 616
DO DATA statement
repeating a loop until, 618
DO function
producing an arithmetic series, 615
DO statement
DATA clause, 618
UNTIL clause, 619
WHILE clause, 619
DO statement, iterative
iteratively executing a DO group, 617
DO UNTIL statement
conditionally executing statements iteratively, 619
DO WHILE statement
conditionally executing statements iteratively, 619
DURATION function
calculating modified duration of noncontingent cash flows, 620

## E

ECHELON function
reducing a matrix to row-echelon normal form, 621
EDIT statement
opening a SAS data set for editing, 622
EIGEN call
computing eigenvalues and eigenvectors, 624
Eigenvalue Decomposition
compared with ODE call, 829
EIGVAL function
computing eigenvalues, 628
EIGVEC function
computing right eigenvectors, 629
ELEMENT MAXIMUM operator
selects the larger of two elements, 568
ELEMENT MINIMUM operator
selects the smaller of two elements, 568
END statement
ending a DO loop or DO statement, 630
EXECUTE call
executing SAS statements immediately, 630
EXP function
calculating the exponential, 630
Exponential of a matrix, 1025

## F

FARMACOV call generating an $\operatorname{ARFIMA}(p, d, q)$ process, 631
FARMAFIT call
estimation of an $\operatorname{ARFIMA}(p, d, q)$ model, 633
FARMALIK call generating an $\operatorname{ARFIMA}(p, d, q)$ model, 634
FARMASIM call generating an $\operatorname{ARFIMA}(p, d, q)$ process, 636
FDIF call obtaining a fractionally differenced process, 637
FFT function performing the finite Fourier transform, 638
FILE statement opening or pointing to an external file, 640
FIND statement finding observations, 641
FINISH statement denoting the end of a module, 643
Forward rates, 643
Fractionally integrated time series analysis ARFIMA modeling, 316
autocovariance function, 316
example, 313
fractional differencing, 316
generating a fractional time series, 316
log-likelihood function, 316 overview, 313
FREE statement freeing matrix storage space, 644

## G

GAEND call
ending a genetic algorithm optimization, 644
GAGETMEM call
getting current members of the solution population for a genetic algorithm optimization, 645
GAGETVAL call
getting current solution objective function values for a genetic algorithm optimization, 646
GAINIT call
creating an initial solution population for a genetic algorithm optimization, 646
GAREEVAL call
reevaluating the objective function values for a solution population of a genetic algorithm optimization, 647
GAREGEN call
regenerating a solution population by application of selection and genetic operators, 648

## GASETCRO call

setting the crossover operator for a genetic algorithm optimization, 648

## GASETMUT call

setting the mutation operator for a genetic algorithm optimization, 653
GASETOBJ call
setting the objective function for a genetic algorithm optimization, 655
GASETSEL call
setting the selection parameters for a genetic algorithm optimization, 656
GASETUP function
setting up a genetic algorithm optimization problem, 657
GBLKVP call
defining a blanking viewport, 659
GBLKVPD call
deleting the blanking viewport, 660
GCLOSE call
closing the graphics segment, 660
GDELETE call
deleting a graphics segment, 660
GDRAW call
drawing a polyline, 661
GDRAWL call
drawing individual lines, 662
GENEIG call
generalized eigenproblems, 662
Genetic Algorithm Functionality, 561
GEOMEAN function
calculates geometric means, 664
GGRID call
drawing a grid, 664
GINCLUDE call
including graphics segments, 665
GINV function
computing generalized inverses, 666
GOPEN call
opening graphics segments, 668
GOTO statement
jumping to a new statement, 668
GPIE call
drawing pie slices, 669
GPIEXY call
converting coordinates, 670
GPOINT call
plotting points, 671
GPOLY call
drawing and filling a polygon, 672
GPORT call
defining a viewport, 674
GPORTPOP call
popping viewports, 674
GPORTSTK call
stacking viewports, 674
Graphics and Window Functions, 560
GSCALE call
calculating round numbers for labeling axes, 675
GSCRIPT call
writing multiple text strings, 676
GSET call
setting attributes for graphics segments, 677
GSHOW call
showing a graph, 678
GSORTH call
computing the Gram-Schmidt orthonormalization, 678
GSTART call
initializing the graphics system, 679
GSTOP call
deactivating the graphics system, 680
GSTRLEN call
finding the string length, 680
GTEXT and GVTEXT calls placing text on a graph, 681
GWINDOW call
defining the data window, 682
GXAXIS and GYAXIS calls
drawing an axis, 683

## H

HADAMARD function, 684
HALF function
computing Cholesky decomposition, 685
HANKEL function
generating a Hankel matrix, 686
HARMEAN function
calculates harmonic means, 687
HDIR function
performing a horizontal direct product, 688
HERMITE function
reducing a matrix to Hermite normal form, 689
HOMOGEN function
solving homogeneous linear systems, 689

## I

I function
creating an identity matrix, 690
IF-THEN/ELSE statement
conditionally executing statements, 691
IFFT function
computing the inverse finite Fourier transform, 692
IMLMLIB Module Library
modules reference, 1025, 1027-1029, 1031, 1033, 1034, 1036, 1037
overview, 1021-1023
INDEX CREATION operator
creates an index vector, 569
INDEX statement
indexing a variable in a SAS data set, 694
INFILE statement
opening a file for input, 694
INPUT statement
inputting data, 695
INSERT function
inserting one matrix inside another, 697
INT function
truncating a value, 698
INV function
computing a matrix inverse, 699
Inverses
Moore-Penrose inverse, 599, 897, 903-905
INVUPDT function
updating a matrix inverse, 700
IPF call
performing an iterative proportional fit, 702
ISM TIMSAC packages, 288-290
Iterative Algorithm, 715
ITSOLVER call
solving a sparse linear system by using iterative methods, 715

## J

J function
creating a matrix of identical values, 719

## K

Kalman filter subroutines
covariance filtering and prediction, 298
diffuse covariance filtering and prediction, 298
diffuse fixed-interval smoothing, 298
examples, 298
fixed-interval smoothing, 298
one-step forecast for SSM, 727-730
one-step predictions, 721, 722, 724
overview, 296
smoothed estimate, 724-727
smoothed state vectors, 730, 731
syntax, 721
KRONECKER product
takes the direct product of two matrices, 566

## L

LABEL
quadratic form maximization, 770
LCP call
solving the linear complementarity problem, 737
Least absolute value regression, 733-736
LENGTH function
finding the lengths of character matrix elements, 740
Linear Algebra Functionality, 557
Linear least squares
full-rank example, 857, 858
QR decomposition, 880
rank deficient solutions, 897, 899-903
LINK and RETURN statements jumping to another statement, 740
LIST statement
displaying observations of a data set, 741
LMS call
performing robust regression, 744
LOAD statement
loading modules and matrices, 752
LOC function
finding nonzero elements of a matrix, 752
LOG function
taking the natural logarithm, 754
LOGICAL operator
perform elementwise logical comparisons, 570
LP call
solving the linear programming problem, 754

LTS call
performs robust regression, 756
LUPDT call, 763

## M

MAD function
univariate median absolute deviation, 764
MARG call
evaluating marginal totals, 765
Matrix decomposition
Cholesky decomposition, 897-899
complete orthogonal decomposition, 578, 579, 597-599
downdating and updating, 879-882, 897
QR decomposition, 841, 842, 844, 854-858
Matrix Inquiry Functions, 553
Matrix Reshaping Functions, 554
Matrix Sorting And By-Group Processing Calls, 554
MATTRIB statement
associating printing attributes with matrices, 768
MAX function
finding the maximum value of matrix, 770
MCD call, 772
Median computation, 1027
MIN function
finding the smallest element of a matrix, 778
Minimum Residual Algorithm, 529, 533
MOD function
computing the modulo (remainder), 778
MODULEI call, 779
MODULEIC function
calling an external function, 780
MODULEIN function
calling an external function, 780
MULTIPLICATION operator, elementwise performs elementwise multiplication, 571
MULTIPLICATION operator, matrix
performs matrix multiplication, 572
Multivariate sampling, 1028, 1030, 1031, 1033, 1034
MVE call, 781

## N

NAME function
listing the names of arguments, 787
NCOL function
finding the number of columns of a matrix, 788
NLENG function
finding the size of an element, 788
Nonlinear optimization subroutines
advanced examples, 361
conjugate gradient optimization, 791
control parameters vector, 357-359
double dogleg optimization, 792-794
feasible point computation, 798
finite difference approximations, 794-796, 798
finite-difference approximations, 340-342
global vs. local optima, 332, 333
hybrid quasi-Newton optimization, 799, 800, 802

Kuhn-Tucker conditions, 334
least squares methods, 799, 800, 802, 803
Levenberg-Marquardt optimization, 802, 803
Nelder-Mead simplex optimization, 803, 804, 807
Newton-Raphson optimization, 807, 808, 810
Newton-Raphson ridge optimization, 810,813
objective function and derivatives, 335-340
options vector, 345-350
parameter constraints, 343-345
printing optimization history, 360,361
quadratic optimization, $819,820,822$
quasi-Newton optimization, 813, 814, 817-819
return codes, 335
termination criteria, 350-355, 357
trust-region optimization, 822, 824
NORMAL function
generating a pseudo-random normal deviate, 824
NROW function
finding the number of rows of a matrix, 824
NUM function
producing a numeric representation of a character matrix, 825
Numerical Analysis Functionality, 556
Numerical integration, 859-864
adaptive Romberg method, 860
of differential equations, $825,826,828-831$
specifying subintervals, 859
two-dimensional integration, 862

## 0

ODSGRAPH call, 831
OPSCAL Function, 832
Optimization Subroutines, 558
ORPOL function
generating orthogonal polynomials, 834
Orthogonal factorization, 897-899
Orthogonalization
by ORTVEC call, 841, 842, 844

## P

PAUSE statement
interrupting module execution, 844
PGRAF call
producing scatter plots, 845
POLYROOT function
finding zeros of a real polynomial, 846
POWER operator, elementwise raises each element to a power, 573
POWER operator, matrix
raises a matrix to a power, 573
PRINT statement
printing matrix values, 847
Printing matrices, 1037
Probability contour plot, 1026
PRODUCT function
multiplying matrices of polynomials, 849
PURGE statement
removing observations marked for deletion, 849

PUSH call, 850
PUT statement writing data to an external file, 851
PV function
calculating present value, 852

## Q

Quadratic form maximization, 771, 772
Quartile computation, 1028
QUEUE call
queuing SAS statements, 865
QUIT statement
exiting from IML, 866

## R

RANDGEN call
generating random numbers, 866
Random multivariate sampling, 1028, 1030, 1031, 1033, 1034
Random Number Generation Functionality, 554
RANDSEED call
generating random numbers, 873
RANK function
ranking elements of a matrix, 874
RANKTIE function
ranking matrix elements by using tie averaging, 875
RATES function
converting interest rates, 876
RATIO function
dividing matrix polynomials, 877
READ statement reading observations from a data set, 882
Reduction Functions, 553
Regression, 1035
best subsets, 772
least absolute value, 733-736
response surface, 1027
REMOVE function
discarding elements from a matrix, 886
REMOVE statement
removing matrices from storage, 886
RENAME call
renaming SAS data sets, 887
REPEAT function
creating a new matrix of repeated values, 888
REPLACE statement
replacing values, 888
RESET statement
setting processing options, 891
Reshaping matrices, 1025, 1036
Response surface regression, 1027
RESUME statement
resuming execution, 893
RETURN statement
returning to caller, 893
ROOT function
performing the Cholesky decomposition of a matrix, 893

## ROWCAT function

concatenating rows without blank compression, 895
ROWCATC function
concatenating rows with blank compression, 896
RUN statement
executing statements in a module, 896

## S

SAVE statement
saving data, 905
Scalar Functions, 553
Scatter plots, 1027
Sequential tests, 906-916, 918, 919
group sequential methods, 912, 913
minimizing average sample number (ASN), 916, 918
randomized clinical trials, 916, 918
scaling, 908
shifting, 908
Set Functions, 559
SETDIF function
comparing elements of two matrices, 919
SETIN statement
making a data set current for input, 919
SETOUT statement
making a data set current for output, 920
SHAPE function
reshaping and repeating values, 921
SHOW statement
printing system information, 922
SIGN REVERSE operator
reverses the signs of elements, 574
SOLVE function
solving a system of linear equations, 923
SOLVELIN call
solving a sparse symmetric linear system by direct decomposition, 924
SORT call
sorting a matrix, 925
SORT statement
sorting a SAS data set, 926
SORTNDX call
creating a sorted index for a matrix, 927
SOUND call
producing a tone, 928
Sparse Matrix Algorithms, 529, 715
preconditioners, 529, 924
Splines, 929, 931, 934, 936
integration of splines, 934
SPOT function
calculating spot rates, 937
SQRSYM function
converting to a square matrix, 937
SQRT function
calculating the square root, 938
SSQ function
calculating the sum of squares, 938
Standardizing numeric data, 1037

START and FINISH statements
defining a module, 938
Statistical Functionality, 554
STOP statement
stopping execution of statements, 939
STORAGE function
listing names of matrices and modules, 940
STORE statement
storing matrices and modules, 940
SUBSCRIPTS
select submatrices, 574
SUBSTR function
taking substrings of matrix elements, 941
Substring replacement, 1036
SUBTRACTION operator
subtracts corresponding matrix elements, 576
SUM function
summing all elements, 941
SUMMARY statement
computing summary statistics, 942
SVD call
computing the singular value decomposition, 945
SWEEP function
sweeping a matrix, 947
SYMSQR function
converting to a symmetric matrix, 949

## T

T function
transposing a matrix, 950
TEIGEN call
computing eigenvalues and eigenvectors, 950
TEIGVAL functions
computing eigenvalues, 950
TEIGVEC functions
computing eigenvectors, 950
Time series analysis and control
AR model selection, 242, 972
ARMA model prediction, 263, 264, 970
Bayesian constrained least squares, 283-285
Bayesian seasonal adjustment, 260, 271, 273, 959, 960
instantaneous response model, 246, 247, 292294
ISM TIMSAC packages, 288-290
least squares and Householder transformation, 282, 283
locally stationary multivariate time series, 966 , 967
locally stationary time series, 965, 966
minimum AIC method, 242, 245-247, 267, 269, 270
missing values, 288
multivariate time series, 263, 264, 277-279, 970
nonstationary covariance function analysis, 971
nonstationary data analysis, 249, 250, 252-255, 257-260
nonstationary time series, 274-277, 962, 963, 965
overview, 240
periodic AR model, 968, 969
roots of AR and MA equations, 265, 266, 970
smoothness priors modeling, 270, 271, 962, 963, 965
spectral analysis, 279-282
state space and Kalman filter method, 285-287
VAR model, 245-247, 292, 293, 967, 968
Time Series Functionality, 555
TOEPLITZ function
generating a Toeplitz matrix, 950
TPSPLINE call
computing thin-plate smoothing splines, 952
TPSPLNEV call
evaluating thin-plate smoothing splines, 955
TRACE function
summing diagonal elements, 958
TRANSPOSE operator
transposes a matrix, 576
Triangular linear systems, 958
TYPE function
determining matrix types, 973

## U

UNIFORM function
generating pseudo-random uniform deviates, 974
UNION function
performing unions of sets, 974
UNIQUE function
sorting and removing duplicates, 975
UNIQUEBY function
processing BY groups in a matrix, 975
USE statement
opening SAS data sets, 976

## V

VALSET call
performing indirect assignments, 978
VALUE function
assigning values, 979
VARMACOV Call
computing cross-covariance matrices, 979
VARMALIK Call
computing log-likelihood function, 981
VARMASIM Call
generating VARMA $(p, q)$ time series, 982
VECDIAG function
creating vectors, 983
Vector time series analysis
cross-covariance matrix, 312
example, 309, 311
generating a multivariate normal, 312
generating a multivariate time series, 312
log-likelihood function, 312
overview, 308
roots of VARMA characteristic function, 312

VNORMAL Call
generating multivariate normal random series, 984
VTSROOT Call
calculating characteristic roots, 985

## W

Wavelet Analysis Calls, 561
WAVFT call
computing fast wavelet transform, 986
WAVGET call
extracting wavelet information, 989
WAVIFT call
computing inverse fast wavelet transform, 991
WAVPRINT call
printing wavelet information, 993
WAVTHRSH call
thresholding wavelet detail coefficients, 994
WINDOW statement
opening a display window, 995

## X

XMULT function
performing accurate matrix multiplication, 997
XSECT function
intersecting sets, 997
Y
YIELD function
calculating yield-to-maturity of a cash-flow stream, 998

## Syntax Index

## A

ABORT statement, 577
ABS statement, 577
ADDITION operator, 562
ALL statement, 577
ANY function, 578
APPCORT call, 578, 579
APPEND statement, 580
APPLY function, 582
ARMACOV call, 583
ARMALIK call, 585
ARMASIM function, 586

## B

Basic time series subroutines
ARMACOV subroutine, 240
ARMALIK subroutine, 240
ARMASIM function, 240
example, 238
overview, 238
syntax, 240
BLOCK function, 588
BRANKS function, 589
BSPLINE function, 589
BTRAN function, 592
BYTE function, 592

## C

CALL statement, 593
CHANGE call, 594
CHAR function, 594
CHOOSE function, 595
CLOSE statement, 596
CLOSEFILE statement, 597
COLVEC function, 1025
COMPARISON operator, 563
COMPORT call, 597-599
CONCAT function, 600
CONCATENATION operator, horizontal, 564
CONCATENATION operator, vertical, 565
CONTENTS function, 601
CONVEXIT function, 602
CORR function, 1025
COVLAG function, 602
CREATE statement, 603
CSHAPE function, 605
CUSUM function, 607
CVEXHULL function, 608

## D

DATASETS function, 608
DELETE call, 609
DELETE statement, 610
DESIGN function, 612
DESIGNF function, 612
DET function, 613
DIAG function, 614
DIRECT PRODUCT operator, 566
DISPLAY statement, 614
DIVISION operator, 567
DO and END statements, 616
DO DATA statement, 618
DO function, 615
DO statement, iterative, 617
DO UNTIL statement, 619
DO WHILE statement, 619
DURATION function, 620

## E

ECHELON function, 621
EDIT statement, 622
EIGEN call, 624
EIGVAL function, 628
EIGVEC function, 629
ELEMENT MAXIMUM operator, 568
ELEMENT MINIMUM operator, 568
END statement, 630
EXECUTE call, 630
EXP function, 630
EXPMATRIX function, 1025

## F

FARMACOV call, 631
FARMAFIT call, 633
FARMALIK call, 634
FARMASIM call, 636
FDIF call, 637
FFT function, 638
FILE statement, 640
FIND statement, 641
FINISH statement, 643
FORWARD function, 643
Fractional time series subroutines syntax, 316
Fractionally integrated time series subroutines example, 313
FARMACOV subroutine, 316

FARMAFIT subroutine, 316
FARMALIK subroutine, 316
FARMASIM subroutine, 316
FDIF subroutine, 316
overview, 313
FREE statement, 644

## G

GAEND call, 644
GAGETMEM call, 645
GAGETVAL call, 646
GAINIT call, 646
GAREEVAL call, 647
GAREGEN call, 648
GASETCRO call, 648
GASETMUT call, 653
GASETOBJ call, 655
GASETSEL call, 656
GASETUP function, 657
GBLKVP call, 659
GBLKVPD call, 660
GBXWHSKR call, 1026
GCLOSE call, 660
GDELETE call, 660
GDRAW call, 661
GDRAWL call, 662
GENEIG call, 662
GEOMEAN function, 664
GGRID call, 664
GINCLUDE call, 665
GINV function, 666
GOPEN call, 668
GOTO statement, 668
GPIE call, 669
GPIEXY call, 670
GPOINT call, 671
GPOLY call, 672
GPORT call, 674
GPORTPOP call, 674
GPORTSTK call, 674
GPROBCNT call, 1026
GSCALE call, 675
GSCRIPT call, 676
GSET call, 677
GSHOW call, 678
GSORTH call, 678
GSTART call, 679
GSTOP call, 680
GSTRLEN call, 680
GTEXT and GVTEXT calls, 681
GWINDOW call, 682
GXAXIS and GYAXIS calls, 683
GXYPLOT call, 1027

## H

HADAMARD function, 684
HALF function, 685
HANKEL function, 686
HARMEAN function, 687

HDIR function, 688
HERMITE function, 689
HOMOGEN function, 689

## I

I function, 690
IF-THEN/ELSE statement, 691
IFFT function, 692
IMLMLIB Module Library
modules reference, 1025, 1027-1029, 1031, 1033, 1034, 1036, 1037
overview, 1021-1023
INDEX CREATION operator, 569
INDEX statement, 694
INFILE statement, 694
INPUT statement, 695
INSERT function, 697
INT function, 698
INV function, 699
INVUPDT function, 700
IPF call, 702
ITSOLVER call, 715

## J

J function, 719
JROOT function, 720

## K

KALCVF call, 299, 303, 305, 306, 721, 722, 724
KALCVS call, 303, 724-727
KALDFF call, 306, 727-730
KALDFS call, 730, 731
Kalman filter subroutines
examples, 298
KALCVF subroutine, 298
KALCVS subroutine, 298
KALDFF subroutine, 298
KALDFS subroutine, 298
overview, 296
syntax, 298, 721
KRONECKER product, 566

## $L$

LAV call, 733-736
LCP call, 737
LENGTH function, 740
LINK and RETURN statements, 740
LIST statement, 741
LMS call, 744
LOAD statement, 752
LOC function, 752
LOG function, 754
LOGICAL operator, 570
LP call, 754
LTS call, 756
LUPDT call, 763

## M

MAD function, 764
MARG call, 765
MATTRIB statement, 768
MAX function, 770
MAXQFORM call, 770-772
MCD call, 772
MEDIAN function, 1027
MIN function, 778
MOD function, 778
MODULEI call, 779
MODULEIC function, 780
MODULEIN function, 780
MULTIPLICATION operator, elementwise, 571
MULTIPLICATION operator, matrix, 572
MVE call, 781

## N

NAME function, 787
NCOL function, 788
NLENG function, 788
Nonlinear optimization subroutines
advanced examples, 361
details, 332
introductory examples, 325
NLPCG Call, 367
NLPCG call, 791
NLPDD Call, 372, 374, 391, 793, 794
NLPDD call, 792
NLPFDD Call, 380, 795, 798
NLPFDD call, 794, 796
NLPFEA call, 798
NLPHQN Call, 800, 802
NLPHQN call, 799
NLPLM Call, 382, 802, 803
NLPLM call, 802
NLPNMS Call, 804, 807
NLPNMS call, 803, 804
NLPNRA Call, 808, 810
NLPNRA call, 807
NLPNRR Call, 368, 813
NLPNRR call, 810
NLPQN Call, 376, 377, 395, 814, 817-819
NLPQN call, 813
NLPQUA Call, 820, 822
NLPQUA call, 819
NLPTR Call, 363, 379, 824
NLPTR call, 822
overview, 323
syntax, 788
NORMAL function, 824
NROW function, 824
NUM function, 825

## 0

ODE call, 825, 826, 828-831
ODSGRAPH call, 831
OPSCAL function, 832
ORPOL function, 834

ORTVEC call, 841, 842, 844

## P

PAUSE statement, 844
PGRAF call, 845
POLYROOT function, 846
POWER operator, elementwise, 573
POWER operator, matrix, 573
PRINT statement, 847
PROC IML Statement, 9, 539
PRODUCT function, 849
PURGE statement, 849
PUSH call, 850
PUT statement, 851
PV function, 852

## Q

QR call, 854-858
QUAD call, 859-864
QUADREG call, 1027
QUARTILE function, 1028
QUEUE call, 865
QUIT statement, 866

## R

RANDDIRICHLET function, 1028
RANDGEN call, 866
RANDMULTINOMIAL function, 1030
RANDMVT function, 1031
RANDNORMAL function, 1033
RANDSEED call, 873
RANDWISHART function, 1034
RANK function, 874
RANKTIE function, 875
RATES function, 876
RATIO function, 877
RDODT call, 879-882
READ statement, 882
REGRESS call, 1035
REMOVE function, 886
REMOVE statement, 886
RENAME call, 887
REPEAT function, 888
REPLACE statement, 888
RESET statement, 891
RESUME statement, 893
RETURN statement, 893
ROOT function, 893
ROWCAT function, 895
ROWCATC function, 896
ROWVEC function, 1036
RSUBSTR function, 1036
RUN statement, 896
RUPDT call, 879-882, 897
RZLIND call, 897-905

## S

SAVE statement, 905
SEQ call, 906-916, 918

SEQSCALE call, 906-916, 918
SEQSHIFT call, 906-916, 918, 919
SETDIF function, 919
SETIN statement, 919
SETOUT statement, 920
SHAPE function, 921
SHOW statement, 922
SIGN REVERSE operator, 574
SOLVE function, 923
SOLVELIN call, 924
SORT call, 925
SORT statement, 926
SORTNDX call, 927
SOUND call, 928
SPLINE call, 929, 931, 934, 936
SPLINEC call, 929, 931, 934, 936
SPLINEV function, 931, 934, 936
SPOT function, 937
SQRSYM function, 937
SQRT function, 938
SSQ function, 938
STANDARD function, 1037
START and FINISH statements, 938
STOP statement, 939
STORAGE function, 940
STORE statement, 940
SUBSCRIPTS, 574
SUBSTR function, 941
SUBTRACTION operator, 576
SUM function, 941
SUMMARY statement, 942
SVD call, 945
SWEEP function, 947
SYMSIZE= option, 9, 539
SYMSQR function, 949

## T

T function, 950
TABPRT call, 1037
TEIGEN call, 950
TEIGVAL functions, 950
TEIGVEC functions, 950
TIMSAC subroutines
advanced examples, 291
details, 267
introductory examples, 242
overview, 240
syntax, 267
TSBAYSEA subroutine, 260, 959-961
TSDECOMP subroutine, 259, 962, 963, 965
TSMLOCAR subroutine, 249, 965, 966
TSMLOMAR subroutine, 257, 966, 967
TSMULMAR subroutine, 245-247, 292-294, 967, 968
TSPEARS subroutine, 968, 969
TSPRED subroutine, 263, 264, 293, 970
TSROOT subroutine, 265, 266, 970
TSTVCAR subroutine, 971
TSUNIMAR subroutine, 972

## Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturnesas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.


## SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

## SAS ${ }^{\circledR}$ Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

## SAS ${ }^{\circ}$ Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF - free on the Web.
- Hard-copy books.


# support.sas.com/publishing 

## SAS ${ }^{\circledR}$ Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.


