
SAS/IML® 9.2
User’s Guide

TW11675ColorTitlePage.indd 1 8/12/09 10:18:21 AM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/IML® 9.2
User’s Guide. Cary, NC: SAS Institute Inc.

SAS/IML® 9.2 User’s Guide

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59047-940-7

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008
2nd electronic book, February 2009
3rd electronic book, September 2009

1st printing, March 2009
2nd printing, September 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

What’s New in SAS/IML 9.2 . 1

Chapter 1. Introduction to SAS/IML Software . 7

Chapter 2. Understanding the Interactive Matrix Language 13

Chapter 3. Tutorial: A Module for Linear Regression 29

Chapter 4. Working with Matrices . 43

Chapter 5. Programming Statements . 67

Chapter 6. Working with SAS Data Sets . 89

Chapter 7. File Access . 115

Chapter 8. General Statistics Examples . 133

Chapter 9. Robust Regression Examples . 185

Chapter 10. Time Series Analysis and Examples . 237

Chapter 11. Nonlinear Optimization Examples . 323

Chapter 12. Graphics Examples . 403

Chapter 13. Window and Display Features . 435

Chapter 14. Storage Features . 449

Chapter 15. Using SAS/IML Software to Generate IML Statements 455

Chapter 16. Wavelet Analysis . 471

Chapter 17. Genetic Algorithms . 497

Chapter 18. Sparse Matrix Algorithms . 529

Chapter 19. Further Notes . 539

Chapter 20. Language Reference . 547

Chapter 21. Module Library . 1021

Subject Index . 1041

Syntax Index . 1049

iv

What’s New in SAS/IML 9.2

Contents

NEW FEATURES . 3

MODULES FOR MULTIVARIATE RANDOM SAMPLING 3

PERFORMANCE IMPROVEMENTS . 3

ODS STATISTICAL GRAPHICS INTERFACE 4

BSPLINE FUNCTION . 4

VECTOR-MATRIX OPERATIONS . 4

GEOMEAN AND HARMEAN FUNCTIONS 4

NEW RELATED SOFTWARE . 4

2

What’s New in SAS/IML 9.2
New Features

New to SAS/IML are the following:

• a set of new modules for sampling from multivariate distributions

• a set of general performance improvements

• a new call to interface with ODS Statistical Graphics

• a new function to compute B-splines

• a new programming syntax to specify vector-matrix operations

• a set of new functions to compute the geometric and harmonic means

Modules for Multivariate Random Sampling
New modules have been added to the IMLMLIB library. These modules generate
random samples ofN observations from multivariate distributions in p variables. See
the Module Library documentation for details.

The modules and associated multivariate distributions are as follows:

RANDDIRICHLET
generates a random sample from a Dirichlet distribution (a multi-
variate generalization of the beta distribution).

RANDMULTINOMIAL
generates a random sample from a multinomial distribution (a mul-
tivariate generalization of the binomial distribution)

RANDMVT
generates a random sample from a multivariate Student’s t distri-
bution.

RANDNORMAL
generates a random sample from a multivariate normal distribution.

RANDWISHART
generates a random sample from a Wishart distribution (a multi-
variate generalization of the gamma distribution).

Performance Improvements
Several optimization methods have been implemented to speed up basic matrix opera-
tions and improve the efficiency of memory management in SAS/IML. These changes
result in faster-running SAS/IML programs.

4 � What’s New in SAS/IML 9.2

ODS Statistical Graphics Interface
A new ODSGRAPH call has been introduced that enables you to render graphs cre-
ated with the new graphics commands that have been added to PROC TEMPLATE.
This addition is designed to make it easier for you to create standard graphs and save
them in a format of your choice. See the Language Reference chapter for full details
about this new call.

BSPLINE Function
A new BSPLINE function has been introduced that computes a B-spline basis for
a given numeric input vector, degree, and knot specification. See the Language
Reference chapter for a full description of the function and its inputs.

Vector-Matrix Operations
SAS/IML elementwise operations now permit you to specify conforming vector-
matrix operations. For example, if v is a 1 by n row vector, and s is an m by n
matrix, then the expression v+s evaluates to the addition of v to each row of s. This
change was introduced to reduce the need for explicit loops and increase the effi-
ciency of this type of calculation. See the Language Reference chapter for full details
of this change.

GEOMEAN and HARMEAN Functions
Two new functions have been added to compute the geometric mean and the harmonic
mean of a matrix of positive numbers. See the Language Reference chapter for full
details.

New Related Software
SAS/STAT users will be interested in SAS/IML Studio, formerly known as SAS
Stat Studio, which is new software for data exploration and analysis. SAS/IML
Studio provides a highly flexible programming environment in which you can run
SAS/STAT or SAS/IML analyses and display the results with dynamically linked
graphics and data tables. SAS/IML Studio is intended for data analysts who write
SAS programs to solve statistical problems but need more versatility for data explo-
ration and model building. The programming language in SAS/IML Studio, which
is called IMLPlus, is an enhanced version of the SAS/IML programming language.
IMLPlus extends SAS/IML to provide new language features, including the ability to
create and manipulate statistical graphics, call SAS procedures as functions, and call
computational programs written in C, C++, Java, and Fortran. SAS/IML Studio runs
on a PC in the Microsoft Windows operating environment.

SAS/IML Studio also includes an experimental interface to the R language. The
IMLPlus language includes functions that transfer data between SAS data sets and R
data frames, and between SAS/IML matrices and R matrices.

New Related Software � 5

SAS/IML Studio also provides similar interactive functionality to the
SAS/INSIGHT product. It is distributed with the SAS/IML product.

6

Chapter 1
Introduction to SAS/IML Software

Chapter Contents

OVERVIEW . 9

SAS/IML SOFTWARE: HIGHLIGHTS . 9

AN INTRODUCTORY INTERACTIVE SESSION 11

PROC IML STATEMENT . 11

8

Chapter 1
Introduction to SAS/IML Software
Overview

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (Interactive Matrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are performed automatically.

SAS/IML software is powerful. You can access built-in operators and call routines
to perform complex tasks such as matrix inversion or eigenvector generation. You
can define your own functions and subroutines by using SAS/IML modules. You can
perform operations on a single value or take advantage of matrix operators to perform
operations on an entire data matrix. For example, the following statement can be used
to add 1 to a single value X, or to add 1 to all elements of a matrix X:

x=x+1;

You have access to a wide selection of data management commands. You can read,
create, and update SAS data sets from inside SAS/IML software without ever using
the DATA step. For example, as the following statement shows, it is easy to read a
SAS data set to get phone numbers for all individuals whose last name begins with
“Smith”:

read all var{phone} where(lastname=:"Smith");

The result is PHONE, a matrix of phone numbers.

SAS/IML Software: Highlights
SAS/IML software is a programming language.

You can program easily and efficiently with the many features for arithmetic and
character expressions in SAS/IML software. You have access to a wide range of
built-in subroutines designed to make your programming fast, easy, and efficient.
Because SAS/IML software is part of the SAS System, you can access SAS data sets
or external files with an extensive set of data processing commands for data input and
output, and you can edit existing SAS data sets or create new ones.

SAS/IML software has a complete set of control statements, such as DO/END,
START/FINISH, iterative DO, IF-THEN/ELSE, GOTO, LINK, PAUSE, and STOP,
giving you all of the commands necessary for execution control and program modu-
larization. See the “Control Statements” section on page 561 for details.

10 � Chapter 1. Introduction to SAS/IML Software

SAS/IML software operates on matrices.

While most programming languages deal with single data elements, the fundamental
data element in SAS/IML software is the matrix, a two-dimensional (row × column)
array of numeric or character values.

SAS/IML software possesses a powerful vocabulary of operators.

You can access built-in matrix operations that require calls to math-library subrou-
tines in other languages. You have access to many operators, functions, and CALL
subroutines.

SAS/IML software uses operators that apply to entire matrices.

You can add elements of the matrices A and B with the expression A + B. You can
perform matrix multiplication with the expression A ∗ B and perform elementwise
multiplication with the expression A#B.

SAS/IML software is interactive.

You can execute a command as soon as you enter it, or you can collect commands in a
module to execute later. When you execute a command, you see the results immedi-
ately. You can interact with an executing module by programming SAS/IML software
to pause, enabling you to enter additional statements before continuing execution.

SAS/IML software is dynamic.

You do not need to declare, dimension, and allocate storage for a data matrix.
SAS/IML software does this automatically. You can change the dimension or type of
a matrix at any time. You can open multiple files or access many libraries. You can
reset options or replace modules at any time.

SAS/IML software processes data.

You can read all observations or read conditionally selected observations from a SAS
data set into a matrix, creating either multiple vectors (one for each variable in the
data set) or a matrix that contains a column for each data set variable. You can create
a new SAS data set, or you can edit or append observations to an existing SAS data
set.

SAS/IML software produces graphics.

You have access to a wide range of graphics commands, enabling you to visually
explore relationships in data.

PROC IML Statement � 11

An Introductory Interactive Session
Here is a simple introductory session that uses SAS/IML software to estimate the
square root of a number, accurate to three decimal places. In this session, you define
a function module named APPROX to perform the calculations and return the ap-
proximation. You then call APPROX to estimate the square root of several numbers
given in a matrix literal (enclosed in braces), and you print the results.

Throughout the session, the right angle brackets (>) indicate statements that you sub-
mit; responses from PROC IML follow.

> proc iml; /* begin IML session */

IML Ready

> start approx(x); /* begin module */
> y=1; /* initialize y */
> do until(w<1e-3); /* begin DO loop */
> z=y; /* set z=y */
> y=.5#(z+x/z); /* estimate square root */
> w=abs(y-z); /* compute change in estimate */
> end; /* end DO loop */
> return(y); /* return approximation */
> finish approx; /* end module */

NOTE: Module APPROX defined.

> t=approx({3,5,7,9}); /* call function APPROX */
> print t; /* print matrix */

T
1.7320508
2.236068
2.6457513

3

> quit;

Exiting IML

PROC IML Statement
PROC IML <SYMSIZE=n1 > <WORKSIZE=n2 >;

where n1 and n2 are specified in kilobytes.

The SYMSIZE= and WORKSIZE= options in the PROC IML statement give you
control over the size of memory allocated to the symbol space and the size of each
extent of workspace. If you do not specify these options, PROC IML uses host de-
pendent defaults.

12 � Chapter 1. Introduction to SAS/IML Software

Generally, you do not need to be concerned with the details of memory usage because
memory allocation is done automatically. For special situations, however, see the
section “Memory and Workspace” on page 541.

Chapter 2
Understanding the Interactive Matrix

Language

Chapter Contents

DEFINING A MATRIX . 15

MATRIX NAMES AND LITERALS . 15
Matrix Names . 15
Matrix Literals . 16

CREATING MATRICES FROM MATRIX LITERALS 16
Scalar Literals . 16
Numeric Literals . 17
Character Literals . 18
Repetition Factors . 18
Reassigning Values . 19
Assignment Statements . 19

TYPES OF STATEMENTS . 20
Control Statements . 21
Functions . 21
CALL Statements and Subroutines . 23
Commands . 24

MISSING VALUES . 26

SUMMARY . 27

14

Chapter 2
Understanding the Interactive Matrix

Language
Defining a Matrix

The fundamental data object on which all Interactive Matrix Language commands
operate is a two-dimensional (row × column) numeric or character matrix. By their
very nature, matrices are useful for representing data and efficient for working with
data. Matrices have the following properties:

• Matrices can be either numeric or character. Elements of a numeric matrix are
stored in double precision. Elements of a character matrix are character strings
of equal length. The length can range from 1 to 32676 characters.

• Matrices are referred to by valid SAS names. Names can be from 1 to 32
characters long, beginning with a letter or underscore, and continuing with
letters, numbers, and underscores.

• Matrices have dimension defined by the number of rows and columns.

• Matrices can contain elements that have missing values (see the section
“Missing Values” on page 26).

The dimension of a matrix is defined by the number of rows and columns it has. An
m × n matrix has mn elements arranged in m rows and n columns. The following
nomenclature is standard in this user’s guide:

• 1× n matrices are called row vectors.

• m× 1 matrices are called column vectors.

• 1× 1 matrices are called scalars.

Matrix Names and Literals

Matrix Names

A matrix is referred to by a valid SAS name. Names can be from 1 to 8 characters
long, beginning with a letter or underscore and continuing with letters, numbers,
and underscores. You associate a name with a matrix when you create or define
the matrix. A matrix name exists independently of values. This means that at any
time, you can change the values associated with a particular matrix name, change the
dimension of the matrix, or even change its type (numeric or character).

16 � Chapter 2. Understanding the Interactive Matrix Language

Matrix Literals
A matrix literal is a matrix represented by its values. When you represent a matrix
with a literal, you are simply specifying the values of each element of the matrix.
A matrix literal can have a single element (a scalar), or it can have many elements
arranged in a rectangular form (rows × columns). The matrix can be numeric (all
elements are numeric) or character (all elements are character). The dimension of the
matrix is automatically determined by the way you punctuate the values.

If there are multiple elements, you use braces ({ }) to enclose the values and commas
to separate the rows. Within the braces, values must be either all numeric or all
character. If you use commas to create multiple rows, all rows must have the same
number of elements (columns).

The values you input can be any of the following:

• a number, with or without decimal points, possibly in scientific notation (such
as 1E−5)

• a character string. Character strings can be enclosed in either single quotes (’)
or double quotes ("), but they do not need to have quotes. Quotes are required
when there are no enclosing braces or when you want to preserve case, special
characters, or blanks in the string. If the string has embedded quotes, you must
double them (for example, WORD=’Can”t’). Special characters can be any of
the following: ? = * : ().

• a period (.), representing a missing numeric value

• numbers in brackets ([]), representing repetition factors

Creating Matrices from Matrix Literals
Creating matrices by using matrix literals is easy. You simply input the element
values one at a time, usually inside braces. Representing a matrix as a matrix literal
is not the only way to create matrices. A matrix can also be created as a result of
a function, a CALL statement, or an assignment statement. The following sections
present some simple examples of matrix literals, some with a single element (scalars)
and some with multiple elements.

For more information about matrix literals, see Chapter 4.

Scalar Literals
The following example statements define scalars as literals. These are examples of
simple assignment statements, with the matrix name on the left-hand side of the equal
sign and the value on the right-hand side. Notice that you do not need to use braces
when there is only one element.

a=12;
a=. ;
a=’hi there’;
a="Hello";

Numeric Literals � 17

Numeric Literals

Matrix literals with multiple elements have the elements enclosed in braces. Use
commas to separate the rows of a matrix. For example, the following statement as-
signs a row vector to the matrix X:

x={1 2 3 4 5 6};

Here is the resulting matrix:

X
1 2 3 4 5 6

The following statement assigns a column vector to the matrix Y:

y={1,2,3,4,5};

Here is the resulting matrix:

Y
1
2
3
4
5

The following statement assigns a 3× 2 matrix literal to the matrix Z:

z={1 2, 3 4, 5 6};

Here is the resulting matrix:

Z
1 2
3 4
5 6

The following statement creates a matrix W that is three times the matrix Z:

w=3#z;

Here is the resulting matrix:

W
3 6
9 12

15 18

18 � Chapter 2. Understanding the Interactive Matrix Language

Character Literals

You input a character matrix literal by entering character strings. If you do not use
quotes, all characters are converted to uppercase. You must use either single or dou-
ble quotes to preserve case or when blanks or special characters are present in the
string. For character matrix literals, the length of the elements is determined from the
longest element. Shorter strings are padded on the right with blanks. For example,
the following assignment of the literal results in A being defined as a 1× 2 character
matrix with string length 4 (the length of the longer string):

a={abc defg};

Here is the resulting matrix:

A
ABC DEFG

The following assignment preserves the case of the elements:

a={’abc’ ’DEFG’};

Here is the resulting matrix:

A
abc DEFG

Note that the string length is still 4.

Repetition Factors

A repetition factor can be placed in brackets before a literal element to have the
element repeated. For example, the following two statements are equivalent:

answer={[2] ’Yes’, [2] ’No’};

answer={’Yes’ ’Yes’, ’No’ ’No’};

Here is the resulting matrix:

ANSWER
Yes Yes
No No

Assignment Statements � 19

Reassigning Values

You can assign new values to elements of a matrix at any time. The following state-
ment creates a 2× 3 numeric matrix named A:

a={1 2 3, 6 5 4};

The following statement redefines the matrix A as a 1× 3 character matrix:

a={’Sales’ ’Marketing’ ’Administration’};

Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
matrix multiplication) or functions (for example, matrix inversion) operating on ma-
trices. Because of the nature of linear algebraic expressions, the resulting matrices
automatically acquire appropriate characteristics and values. Assignment statements
have the following general form:

result = expression;

where result is the name of the new matrix and expression is an expression that is
evaluated, the results of which are assigned to the new matrix.

Functions as Expressions

Matrices can be created as a result of a function call. Scalar functions such as LOG
or SQRT operate on each element of a matrix, while matrix functions such as INV
or RANK operate on the entire matrix. For example, the following statement assigns
the square root of each element of B to the corresponding element of A:

a=sqrt(b);

The following statement calls the INV function to compute the inverse matrix of X
and assign the results to Y:

y=inv(x);

The following statement creates a matrix R with elements that are the ranks of the
corresponding elements of X:

r=rank(x);

20 � Chapter 2. Understanding the Interactive Matrix Language

Operators within Expressions

There are three types of operators that can be used in assignment statement expres-
sions. Be sure that the matrices on which an operator acts are conformable to the
operation. For example, matrix multiplication requires that the number of columns
of the left-hand matrix be equal to the number of rows of the right-hand matrix.

The three types of operators are as follows:

prefix operators are placed in front of an operand (−A).

infix operators are placed between operands (A ∗B).

postfix operators are placed after an operand (A′).

All operators can work in a one-to-many or many-to-one manner; that is, they enable
you to, for example, add a scalar to a matrix or divide a matrix by a scalar. The
following is an example of using operators in an assignment statement:

y=x#(x>0);

This assignment statement creates a matrix Y in which each negative element of the
matrix X is replaced with zero. The statement actually has two expressions evaluated.
The expression (X>0) is a many-to-one operation that compares each element of X
to zero and creates a temporary matrix of results; an element of the temporary matrix
is 1 when the corresponding element of X is positive, and 0 otherwise. The original
matrix X is then multiplied elementwise by the temporary matrix, resulting in the
matrix Y.

For a complete listing and explanation of operators, see Chapter 20.

Types of Statements
Statements in SAS/IML software can be classified into three general categories:

Control Statements
direct the flow of execution. For example, the IF-THEN/ELSE statement con-
ditionally controls statement execution.

Functions and CALL Statements
perform special tasks or user-defined operations. For example, the statement
CALL: GSTART activates the SAS/IML graphics system.

Commands
perform special processing, such as setting options, displaying, and handling
input/output. For example, the command RESET: PRINT turns on the automatic
displaying option so that matrix results are displayed as you submit statements.

Functions � 21

Control Statements

SAS/IML software has a set of statements for controlling program execution. Control
statements direct the flow of execution of statements in IML. With them, you can
define DO groups and modules (also known as subroutines) and route execution of
your program. Some control statements are described as follows.

Statements Action
DO, END group statements
iterative DO, END define an iteration loop
GOTO, LINK transfer control
IF-THEN/ELSE routes execution conditionally
PAUSE instructs a module to pause during execution
QUIT ends a SAS/IML session
RESUME instructs a module to resume execution
RETURN returns from a LINK statement or a CALL module
RUN executes a module
START, FINISH define a module
STOP, ABORT stop execution of an IML program

See Chapter 5 for more information about control statements.

Functions

The general form of a function is as follows:

result = FUNCTION(arguments);

where arguments can be matrix names, matrix literals, or expressions. Functions
always return a single result (whereas subroutines can return multiple results or no
result). If a function returns a character result, the matrix to hold the result is allocated
with a string length equal to the longest element, and all shorter elements are padded
with blanks.

Categories of Functions

Functions fall into the following six categories:

22 � Chapter 2. Understanding the Interactive Matrix Language

matrix inquiry functions
return information about a matrix. For example, the ANY function returns a
value of 1 if any of the elements of the argument matrix are nonzero.

scalar functions
operate on each element of the matrix argument. For example, the ABS function
returns a matrix with elements that are the absolute values of the corresponding
elements of the argument matrix.

summary functions
return summary statistics based on all elements of the matrix argument. For
example, the SSQ function returns the sum of squares of all elements of the
argument matrix.

matrix arithmetic functions
perform matrix algebraic operations on the argument. For example, the TRACE
function returns the trace of the argument matrix.

matrix reshaping functions
manipulate the matrix argument and return a reshaped matrix. For example,
the DIAG function returns a matrix with diagonal elements that are equal to the
diagonal elements of a square argument matrix. All off-diagonal elements are
zero.

linear algebra and statistical functions
perform linear algebraic functions on the matrix argument. For example, the
GINV function returns the matrix that is the generalized inverse of the argument
matrix.

Exceptions to the SAS DATA Step

SAS/IML software supports most functions supported in the SAS DATA step. These
functions all accept matrix arguments, and the result has the same dimension as the
argument. (See Appendix 1 for a list of these functions.) The following functions are
not supported by SAS/IML software:

DIFn HBOUND LAGn PUT
DIM INPUT LBOUND

The following functions are implemented differently in SAS/IML software. See
Chapter 20 for descriptions.

MAX RANK SOUND SUBSTR
MIN REPEAT SSQ SUM

CALL Statements and Subroutines � 23

The random number functions, UNIFORM and NORMAL, are built-in and produce
the same streams as the RANUNI and RANNOR functions, respectively, of the DATA
step. For example, to create a 10 × 1 vector of random numbers, use the following
statement:

x=uniform(repeat(0,10,1));

Also, SAS/IML software does not support the OF clause of the SAS DATA step. For
example, the following statement cannot be interpreted properly in IML:

a=mean(of x1-x10); /* invalid in IML */

The term X1-X10 would be interpreted as subtraction of the two matrix arguments
rather than its DATA step meaning, “X1 through X10.”

CALL Statements and Subroutines

CALL statements invoke a subroutine to perform calculations, operations, or a ser-
vice. CALL statements are often used in place of functions when the operation returns
multiple results or, in some cases, no result. The general form of the CALL statement
is as follows:

CALL SUBROUTINE arguments ;

where arguments can be matrix names, matrix literals, or expressions. If you specify
several arguments, use commas to separate them. Also, when using arguments for
output results, always use variable names rather than expressions or literals.

Creating Matrices with CALL Statements

Matrices are created whenever a CALL statement returns one or more result matrices.
For example, the following statement returns two matrices (vectors), VAL and VEC,
containing the eigenvalues and eigenvectors, respectively, of the symmetric matrix
T:

call eigen(val,vec,t);

You can program your own subroutine by using the START and FINISH statements
to define a module. You can then execute the module with a CALL or RUN statement.
For example, the following statements define a module named MYMOD that returns
matrices containing the square root and log of each element of the argument matrix:

start mymod(a,b,c);
a=sqrt(c);
b=log(c);

finish;
run mymod(s,l,x);

Execution of the module statements creates matrices S and L, containing the square
roots and logs, respectively, of the elements of X.

24 � Chapter 2. Understanding the Interactive Matrix Language

Performing Services

You can use CALL statements to perform special services, such as managing SAS
data sets or accessing the graphics system. For example, the following statement
deletes the SAS data set named MYDATA:

call delete(mydata);

The following statements activate the graphics system (CALL GSTART), open a
new graphics segment (CALL GOPEN), produce a scatter plot of points (CALL
GPOINT), and display the graph (CALL GSHOW):

call gstart;
call gopen;
call gpoint(x,y);
call gshow;

Commands

Commands are used to perform specific system actions, such as storing and loading
matrices and modules, or to perform special data processing requests. The following
table lists some commands and the actions they perform.

Command Action
FREE frees a matrix of its values and increases available space
LOAD loads a matrix or module from the storage library
MATTRIB associates printing attributes with matrices
PRINT prints a matrix or message
RESET sets various system options
REMOVE removes a matrix or module from library storage
SHOW requests that system information be displayed
STORE stores a matrix or module in the storage library

These commands play an important role in SAS/IML software. With them, for ex-
ample, you can control displayed output (with RESET PRINT, RESET NOPRINT,
or MATTRIB) or get system information (with SHOW SPACE, SHOW STORAGE,
or SHOW ALL).

If you are running short on available space, you can use commands to store matrices
in the storage library, free the matrices of their values, and reload them later when
you need them again, as shown in the following example.

Throughout this session, the right angle brackets (>) indicate statements that you
submit; responses from IML follow. First, invoke the procedure at the input prompt.
Then, create matrices A and B as matrix literals. Here are the statements:

Commands � 25

> proc iml;

IML Ready

> a={1 2 3, 4 5 6, 7 8 9};
> b={2 2 2};

List the names and attributes of all your matrices with the SHOW NAMES command:

> show names;

A 3 rows 3 cols num 8
B 1 row 3 cols num 8
Number of symbols = 2 (includes those without values)

Store these matrices in library storage with the STORE command, and release the
space with the FREE command. To list the matrices and modules in library storage,
use the SHOW STORAGE command. Here are the statements:

> store a b;
> free a b;
> show storage;

Contents of storage = SASUSER.IMLSTOR
Matrices:
A B

Modules:

The preceding output from the SHOW STORAGE statement indicates that you have
two matrices in storage. Because you have not stored any modules in this session,
there are no modules listed in storage. Return these matrices from the storage library
with the LOAD command, as follows. (See Chapter 14 for details about storage.)

> load a b;

End the session with the QUIT command:

> quit;

Exiting IML

Data Management Commands

SAS/IML software has many data management commands that enable you to manage
your SAS data sets from within the SAS/IML environment. These data management
commands operate on SAS data sets. There are also commands for accessing external
files. The following table lists some commands and the actions they perform:

26 � Chapter 2. Understanding the Interactive Matrix Language

Command Action
APPEND adds records to an output SAS data set
CLOSE closes a SAS data set
CREATE creates a new SAS data set
DELETE deletes records in an output SAS data set
EDIT reads from or writes to an existing SAS data set
FIND finds records that meet some condition
LIST lists records
PURGE purges records marked for deletion
READ reads records from a SAS data set into IML variables
SETIN makes a SAS data set the current input data set
SETOUT makes a SAS data set the current output data set
SORT sorts a SAS data set
USE opens an existing SAS data set for Read access

These commands can be used to perform any necessary data management functions.
For example, you can read observations from a SAS data set into a target matrix with
the USE or EDIT command. You can edit a SAS data set, appending or deleting
records. If you have generated data in a matrix, you can output the data to a SAS data
set with the APPEND or CREATE command. See Chapter 6 and Chapter 7 for more
information about these commands.

Missing Values
With SAS/IML software, a numeric element can have a special value called a missing
value, which indicates that the value is unknown or unspecified. Such missing values
are coded, for logical comparison purposes, in the bit pattern of very large negative
numbers. A numeric matrix can have any mixture of missing and nonmissing values.
A matrix with missing values should not be confused with an empty or unvalued
matrix—that is, a matrix with zero rows and zero columns.

In matrix literals, a numeric missing value is specified as a single period. In data
processing operations involving a SAS data set, you can append or delete missing
values. All operations that move values also move missing values properly.

SAS/IML software supports missing values in a limited way, however. Most matrix
operators and functions do not support missing values. For example, matrix multipli-
cation involving a matrix with missing values is not meaningful. Also, the inverse of
a matrix with missing values has no meaning. Performing matrix operations such as
these on matrices that have missing values can result in inconsistencies, depending
on the host environment.

See Chapter 4 and Chapter 19 for more details about missing values.

Summary � 27

Summary
In this chapter, you were introduced to the fundamentals of the SAS/IML language.
The basic data element, the matrix, was defined, and you learned several ways to
create matrices: the matrix literal, CALL statements that return matrix results, and
assignment statements.

You were introduced to the types of statements with which you can program: com-
mands, control statements for iterative programming and module definition, func-
tions, and CALL subroutines.

Chapter 3 offers an introductory tutorial that demonstrates how to build and execute
a module by using SAS/IML software.

28

Chapter 3
Tutorial: A Module for Linear

Regression

Chapter Contents

OVERVIEW . 31
Solving a System of Equations . 31

A MODULE FOR LINEAR REGRESSION 33

PLOTTING REGRESSION RESULTS . 39

SUMMARY . 42

30

Chapter 3
Tutorial: A Module for Linear

Regression
Overview

SAS/IML software makes it possible for you to solve mathematical problems or im-
plement new statistical techniques and algorithms. The language is patterned after
linear algebra notation. For example, the least-squares formula familiar to statisti-
cians,

B = (X ′X)−1X ′Y

can be easily translated into the following Interactive Matrix Language statement:

b=inv(x‘*x)*x‘*y;

This is an example of an assignment statement that uses a built-in function (INV) and
operators (transpose and matrix multiplication).

If a statistical method has not been implemented directly in a SAS procedure, you
might be able to program it by using IML. Because the operations in IML deal with
arrays of numbers rather than with one number at a time, and the most commonly
used mathematical and matrix operations are built directly into the language, pro-
grams that take hundreds of lines of code in other languages often take only a few
lines in IML.

Solving a System of Equations
Because IML is built around traditional matrix algebra notation, it is often possible
to directly translate mathematical methods from matrix algebraic expressions into
executable IML statements. For example, consider the problem of solving three si-
multaneous equations:

3x1 − x2 + 2x3 = 8
2x1 − 2x2 + 3x3 = 2
4x1 + x2 − 4x3 = 9

These equations can be written in matrix form as 3 −1 2
2 −2 3
4 1 −4

 x1

x2

x3

 =

 8
2
9

32 � Chapter 3. Tutorial: A Module for Linear Regression

and can be expressed symbolically as

Ax = c

Because A is nonsingular, the system has a solution given by

x = A−1c

In the following example, you solve this system of equations by using an interac-
tive session. Submit the PROC IML statement as follows to begin the procedure.
(Throughout this chapter, the right angle brackets (>) indicate statements you submit;
responses from IML follow.)

> proc iml;

IML Ready

Enter this statement:

> reset print;

The PRINT option of the RESET command causes automatic printing of results.
Notice that as you submit each statement, it is executed and the results are displayed.
While you are learning IML or developing modules, it is a good idea to have all
results printed automatically. When you are familiar with SAS/IML software, you
will not need to use automatic printing.

Next, set up the matrices A and c. Both of these matrices are input as matrix literals;
that is, input the row and column values as discussed in Chapter 2.

> a={3 -1 2,
> 2 -2 3,
> 4 1 -4};

A 3 rows 3 cols (numeric)

3 -1 2
2 -2 3
4 1 -4

> c={8, 2, 9};

C 3 rows 1 col (numeric)

8
2
9

A Module for Linear Regression � 33

Now write the solution equation, x = A−1c, as an IML statement, as follows. The
appropriate statement is an assignment statement that uses a built-in function and an
operator (INV is a built-in function that takes the inverse of a square matrix, and * is
the operator for matrix multiplication).

> x=inv(a)*c;

X 3 rows 1 col (numeric)

3
5
2

After IML executes the statement, the first row of matrix X contains the x1 value
for which you are solving, the second row contains the x2 value, and the third row
contains the x3 value.

Now end the session by entering the QUIT command:

> quit;

Exiting IML

A Module for Linear Regression
The previous method might be more familiar to statisticians when different notation
is used. A linear model is usually written as

y = Xb + e

where y is the vector of responses, X is the design matrix, and b is a vector of
unknown parameters estimated by minimizing the sum of squares of e, the error or
residual.

The following example illustrates the programming techniques involved in perform-
ing linear regression. It is not meant to replace regression procedures such as the
REG procedure, which are more efficient for regressions and offer a multitude of
diagnostic options.

Suppose you have response data y measured at five values of the independent variable
x and you want to perform a quadratic regression.

Submit the PROC IML statement to begin the procedure:

> proc iml;

IML Ready

Input the design matrix X and the data vector y as matrix literals:

34 � Chapter 3. Tutorial: A Module for Linear Regression

> x={1 1 1,
> 1 2 4,
> 1 3 9,
> 1 4 16,
> 1 5 25};

X 5 rows 3 cols (numeric)

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

> y={1,5,9,23,36};

Y 5 rows 1 col (numeric)

1
5
9
23
36

Compute the least-squares estimate of b by using the traditional formula:

> b=inv(x‘*x)*x‘*y;

B 3 rows 1 col (numeric)

2.4
-3.2

2

The predicted values are simply the X matrix multiplied by the parameter estimates,
and the residuals are the difference between actual and predicted y, as follows:

> yhat=x*b;

YHAT 5 rows 1 col (numeric)

1.2
4

10.8
21.6
36.4

A Module for Linear Regression � 35

> r=y-yhat;

R 5 rows 1 col (numeric)

-0.2
1

-1.8
1.4

-0.4

To calculate the estimate of the variance of the responses, calculate the sum of squared
errors (SSE), its degrees of freedom (DFE), and the mean squared error (MSE) as
follows. Note that in computing the degrees, you use the function NCOL to return
the number of columns of X.

> sse=ssq(r);

SSE 1 row 1 col (numeric)

6.4

> dfe=nrow(x)-ncol(x);

DFE 1 row 1 col (numeric)

2

> mse=sse/dfe;

MSE 1 row 1 col (numeric)

3.2

Notice that each calculation has required one simple line of code.

Now suppose you want to solve the problem repeatedly on new data sets without
reentering the code. To do this, define a module (or subroutine). Modules begin with
a START statement and end with a FINISH statement, with the program statements
in between. The following statements define a module named REGRESS to perform
linear regression:

> start regress; /* begin module */
> xpxi=inv(t(x)*x); /* inverse of X’X */
> beta=xpxi*(t(x)*y); /* parameter estimate */
> yhat=x*beta; /* predicted values */
> resid=y-yhat; /* residuals */
> sse=ssq(resid); /* SSE */
> n=nrow(x); /* sample size */
> dfe=nrow(x)-ncol(x); /* error DF */
> mse=sse/dfe; /* MSE */
> cssy=ssq(y-sum(y)/n); /* corrected total SS */

36 � Chapter 3. Tutorial: A Module for Linear Regression

> rsquare=(cssy-sse)/cssy; /* RSQUARE */
> print,"Regression Results",
> sse dfe mse rsquare;
> stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates */
> t=beta/stdb; /* parameter t tests */
> prob=1-probf(t#t,1,dfe); /* p-values */
> print,"Parameter Estimates",,
> beta stdb t prob;
> print,y yhat resid;
> finish regress; /* end module */

Submit the module REGRESS for execution as follows:

> reset noprint;
> run regress; /* execute module */

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
2.4 3.8366652 0.6255432 0.5954801
-3.2 2.9237940 -1.094468 0.3879690

2 0.4780914 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

At this point, you still have all of the matrices defined if you want to continue calcu-
lations. Suppose you want to correlate the estimates. First, calculate the covariance
estimate of the estimates; then, scale the covariance into a correlation matrix with
values of 1 on the diagonal. You can perform these operations by using the following
statements:

> reset print; /* turn on auto printing */
> covb=xpxi*mse; /* covariance of estimates */

COVB 3 rows 3 cols (numeric)

14.72 -10.56 1.6
-10.56 8.5485714 -1.371429

1.6 -1.371429 0.2285714

A Module for Linear Regression � 37

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

0.260643
0.3420214
2.0916501

> corrb=diag(s)*covb*diag(s); /* correlation of estimates */

CORRB 3 rows 3 cols (numeric)

1 -0.941376 0.8722784
-0.941376 1 -0.981105
0.8722784 -0.981105 1

Your module REGRESS remains available to do another regression—in this case, an
orthogonalized version of the last polynomial example. In general, the columns of
X will not be orthogonal. You can use the ORPOL function to generate orthogonal
polynomials for the regression. Using them provides greater computing accuracy and
reduced computing times. When using orthogonal polynomial regression, you expect
the statistics of fit to be the same and the estimates to be more stable and uncorrelated.

To perform an orthogonal regression on the data, you must first create a vector con-
taining the values of the independent variable x, which is the second column of the
design matrix X. Then, use the ORPOL function to generate orthogonal second
degree polynomials. You can perform these operations by using the following state-
ments:

> x1={1,2,3,4,5}; /* second column of X */

X1 5 rows 1 col (numeric)

1
2
3
4
5

> x=orpol(x1,2); /* generates orthogonal polynomials */

X 5 rows 3 cols (numeric)

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522

38 � Chapter 3. Tutorial: A Module for Linear Regression

0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

> reset noprint; /* turns off auto printing */
> run regress; /* run REGRESS */

Regression Results

SSE DFE MSE RSQUARE
6.4 2 3.2 0.9923518

Parameter Estimates

BETA STDB T PROB
33.093806 1.7888544 18.5 0.0029091
27.828043 1.7888544 15.556349 0.0041068
7.4833148 1.7888544 4.1833001 0.0526691

Y YHAT RESID
1 1.2 -0.2
5 4 1
9 10.8 -1.8

23 21.6 1.4
36 36.4 -0.4

> reset print;
> covb=xpxi*mse;

COVB 3 rows 3 cols (numeric)

3.2 -2.73E-17 4.693E-16
-2.73E-17 3.2 -2.18E-15
4.693E-16 -2.18E-15 3.2

> s=1/sqrt(vecdiag(covb));

S 3 rows 1 col (numeric)

0.559017
0.559017
0.559017

Plotting Regression Results � 39

> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 -8.54E-18 1.467E-16
-8.54E-18 1 -6.8E-16
1.467E-16 -6.8E-16 1

Note that the values on the off-diagonal are displayed in scientific notation; the values
are close to zero but not exactly zero because of the imprecision of floating-point
arithmetic. To clean up the appearance of the correlation matrix, use the FUZZ option
as follows:

> reset fuzz;
> corrb=diag(s)*covb*diag(s);

CORRB 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

Plotting Regression Results
You can create some simple plots by using the PGRAF subroutine. The PGRAF sub-
routine produces scatter plots suitable for printing on a line printer. If you want to
produce better-quality graphics that include color, you can use the graphics capabili-
ties of IML (see Chapter 12 for more information).

Here is how you can plot the residuals against x. First, create a matrix containing the
pairs of points by concatenating X1 with RESID, using the horizontal concatenation
operator (‖):

> xy=x1||resid;

XY 5 rows 2 cols (numeric)

1 -0.2
2 1
3 -1.8
4 1.4
5 -0.4

Next, use a CALL statement to call the PGRAF subroutine to produce the desired
plot. The arguments to PGRAF are as follows, in the order shown:

• the matrix containing the pairs of points

• a plotting symbol

40 � Chapter 3. Tutorial: A Module for Linear Regression

• a label for the X axis

• a label for the Y axis

• a title for the plot

> call pgraf(xy,’r’,’x’,’Residuals’,’Plot of Residuals’);

Plot of Residuals
2 +

|
| r

R |
e | r
s |
i |
d 0 +
u | r r
a |
l |
s |

|
| r

-2 +
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can also plot the predicted values ŷ against x. You must first create a ma-
trix—say, XYH—containing the points. Do this by concatenating X1 with YHAT.
Next, call the PGRAF subroutine to plot the points. You can perform these operations
by using the following statements:

> xyh=x1||yhat;

XYH 5 rows 2 cols (numeric)

1 1.2
2 4
3 10.8
4 21.6
5 36.4

> call pgraf(xyh,’*’,’x’,’Predicted’,’Plot of Predicted Values’);

Plotting Regression Results � 41

Plot of Predicted Values
40 +

| *
|

P |
r |
e |
d | *
i 20 +
c |
t |
e | *
d |

|
| *

0 + *
--------+------+------+------+------+------+------+------+------+--------

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

You can get a more detailed plot, denoting the observed values with a “y” and the pre-
dicted values with a “p” by using the following statements. Create a matrix NEWXY
containing the pairs of points to overlay. You need to use both the horizontal concate-
nation operator (‖) and the vertical concatenation operator (//). The NROW function
returns the number of observations—that is, the number of rows of X1. The matrix
LABEL contains the character label for each point, plotting a “y” for each observed
point and a “p” for each predicted point.

> newxy=(x1//x1)||(y//yhat);

NEWXY 10 rows 2 cols (numeric)

1 1
2 5
3 9
4 23
5 36
1 1.2
2 4
3 10.8
4 21.6
5 36.4

> n=nrow(x1);

N 1 row 1 col (numeric)

5

> label=repeat(’y’,n,1)//repeat(’p’,n,1);

42 � Chapter 3. Tutorial: A Module for Linear Regression

LABEL 10 rows 1 col (character, size 1)

y
y
y
y
y
p
p
p
p
p

> call pgraf(newxy,label,’x’,’y’,’Scatter Plot with Regression Line’);

Scatter Plot with Regression Line
y 40 +

| y
|
|
|
|
| y

20 +
|
|
| p
| y
| y
| p

0 + y
--------+------+------+------+------+------+------+------+------+----

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x

As you can see, the observed and predicted values are too close together to be distin-
guishable at all values of x.

Summary
In this chapter, you have seen the programming techniques necessary for solving
systems of equations. You have seen how to define a module for performing linear
regression and obtaining covariance and correlation matrices, and how to obtain some
simple diagnostic plots. Many of the ideas presented in Chapter 2 such as the use
of assignment statements, functions, CALL statements, and subscripting have been
demonstrated.

Chapter 4
Working with Matrices

Chapter Contents

OVERVIEW . 45

ENTERING DATA AS MATRIX LITERALS 45
Scalars . 45
Matrices with Multiple Elements . 46

USING ASSIGNMENT STATEMENTS . 47
Simple Assignment Statements . 47
Matrix-Generating Functions . 48
Index Vectors . 52

USING MATRIX EXPRESSIONS . 52
Operators . 52
Compound Expressions . 53
Elementwise Binary Operators . 54
Subscripts . 56
Subscript Reduction Operators . 62

DISPLAYING MATRICES WITH ROW AND COLUMN HEADINGS . . 63
Using the AUTONAME Option . 64
Using the ROWNAME= and COLNAME= Options 64
Using the MATTRIB Statement . 64

MORE ABOUT MISSING VALUES . 65

44

Chapter 4
Working with Matrices
Overview

SAS/IML software provides many ways to create matrices. You can create matrices
by doing any of the following:

• entering data yourself as a matrix literal

• using assignment statements

• using matrix-generating functions

• creating submatrices from existing matrices with subscripts

• using SAS data sets (see Chapter 6 for more information)

Once you have defined matrices, you have access to many operators and functions
for working on them in matrix expressions. These operators and functions facilitate
programming and make referring to submatrices efficient and simple.

Finally, you have several means available for tailoring your displayed output.

Entering Data as Matrix Literals
The most basic way to create a matrix is to define a matrix literal, either numeric or
character, by entering the matrix elements. A matrix literal can be a single element
(called a scalar), a single row of data (called a row vector), a single column of data
(called a column vector), or a rectangular array of data (called a matrix). The dimen-
sion of a matrix is given by its number of rows and columns. An n×m matrix has n
rows and m columns.

Scalars

Scalars are matrices that have only one element. You define a scalar with the matrix
name on the left side of an assignment statement and its value on the right side. You
can use the following statements to create and display several examples of scalar
literals. First, you must invoke the IML procedure.

> proc iml;

IML Ready

> x=12;
> y=12.34;
> z=.;

46 � Chapter 4. Working with Matrices

> a=’Hello’;
> b="Hi there";
> print x y z a b;

X Y Z A B
12 12.34 . Hello Hi there

Notice that, when defining a character literal, you need to use either single quotes (’)
or double quotes ("). Using quotes preserves uppercase and lowercase distinctions
and embedded blanks. It is also always correct to enclose the data values within
braces ({ }).

Matrices with Multiple Elements
To enter a matrix having multiple elements, use braces ({ }) to enclose the data values
and, if needed, use commas to separate rows. Inside the braces, all elements must be
either numeric or character. You cannot have a mixture of data types within a matrix.
Each row must have the same number of elements.

For example, suppose you have one week of data on daily coffee consumption (cups
per day) of the four people in your office. Create a matrix called COFFEE with each
person’s consumption represented by a row of the matrix and each day represented
by a column. First, use the PRINT option of the RESET command so that results are
displayed as you submit statements. Next, enter the data into the matrix COFFEE.
Here is the code:

> reset print;
> coffee={4 2 2 3 2,
> 3 3 1 2 1,
> 2 1 0 2 1,
> 5 4 4 3 4};

COFFEE 4 rows 5 cols (numeric)

4 2 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

Now create a character matrix called NAMES with rows containing the names of
the people in your office. Notice that when you do not use quotes, characters are
converted to uppercase. Here is the code:

> names={Jenny, Linda, Jim, Samuel};

NAMES 4 rows 1 col (character, size 6)

JENNY
LINDA
JIM
SAMUEL

Simple Assignment Statements � 47

Notice that the output with the RESET PRINT statement includes the dimension, the
type, and (when type is character) the element size of the matrix. The element size
represents the length of each string, and it is determined from the length of the longest
string.

Now display the COFFEE matrix with NAMES as row labels by specifying the
ROWNAME= option in the PRINT statement. Here is the code:

> print coffee [rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using Assignment Statements
Assignment statements create matrices by evaluating expressions and assigning the
results to a matrix. The expressions can be composed of operators (for example,
the matrix addition operator (+)), functions (for example, the INV function), and
subscripts. Assignment statements have the following general form:

result = expression;

where result is the name of the new matrix and expression is an expression that is
evaluated. The resulting matrix automatically acquires the appropriate dimension,
type, and value. Details about writing expressions are described in the section “Using
Matrix Expressions” on page 52.

Simple Assignment Statements

Simple assignment statements involve an equation having the matrix name on the left
side and either an expression involving other matrices or a matrix-generating function
on the right side.

Suppose you want to generate some statistics for the weekly coffee data. If a cup
of coffee costs 30 cents, then you can create a matrix with the daily expenses,
DAYCOST, by multiplying the per-cup cost with the matrix COFFEE, using the
elementwise multiplication operator (#). Turn off the automatic printing so that you
can tailor the output with the ROWNAME= and FORMAT= options in the PRINT
statement. The following code performs these tasks:

> reset noprint;
> daycost=0.30#coffee;
> print "Daily totals", daycost[rowname=names format=8.2];

48 � Chapter 4. Working with Matrices

Daily totals

DAYCOST
JENNY 1.20 0.60 0.60 0.90 0.60
LINDA 0.90 0.90 0.30 0.60 0.30
JIM 0.60 0.30 0.00 0.60 0.30
SAMUEL 1.50 1.20 1.20 0.90 1.20

You can calculate the weekly total cost for each person by using the matrix multipli-
cation operator (*). First create a 5× 1 vector of 1s. This vector sums the daily costs
for each person when multiplied with COFFEE. (You will see later that there is a
more efficient way to do this by using subscript reduction operators.) The following
code performs these tasks:

> ones={1,1,1,1,1};
> weektot=daycost*ones;
> print "Weekly totals", weektot[rowname=names format=8.2];

Weekly totals

WEEKTOT
JENNY 3.90
LINDA 3.00
JIM 1.80
SAMUEL 6.00

Finally, you can calculate the average number of cups consumed per day by dividing
the grand total of cups by days. To find the grand total, use the SUM function, which
returns the sum of all elements of a matrix. Next, divide the grand total by 5, the
number of days (which is the number of columns), by using the division operator (/)
and the NCOL function. These two matrices are created separately, but the entire
calculation could be done in one statement. Here is the code:

> grandtot=sum(coffee);
> average=grandtot/ncol(coffee);
> print "Total number of cups", grandtot,,"Daily average",average;

Total number of cups

GRANDTOT
49

Daily average

AVERAGE
9.8

Matrix-Generating Functions

SAS/IML software has many built-in functions that generate useful matri-
ces. For example, the J function creates a matrix with a given dimension

Matrix-Generating Functions � 49

and element value when you supply the number of rows and columns, and
an element value for the new matrix. This function is useful to initialize a
matrix to a predetermined size. Here are several matrix-generating functions:

BLOCK creates a block-diagonal matrix.

DESIGNF creates a full-rank design matrix.

I creates an identity matrix.

J creates a matrix of a given dimension.

SHAPE shapes a new matrix from the argument.

The sections that follow illustrate these matrix-generating functions. Again, they are
shown with automatic printing of results, activated by invoking the RESET statement
with the PRINT option.

reset print;

The BLOCK Function
The BLOCK function has the following general form:

BLOCK(matrix1,<matrix2,. . .,matrix15 >);

and creates a block-diagonal matrix from the argument matrices. For example, the
following statements form a block-diagonal matrix:

> a={1 1,1 1};

A 2 rows 2 cols (numeric)

1 1
1 1

> b={2 2, 2 2};

B 2 rows 2 cols (numeric)

2 2
2 2

> c=block(a,b);

Here is the resulting matrix:

C 4 rows 4 cols (numeric)

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

50 � Chapter 4. Working with Matrices

The J Function

The J function has the following general form:

J(nrow<,ncol<,value> >);

It creates a matrix having nrow rows, ncol columns, and all element values equal to
value. The ncol and value arguments are optional, but you should usually specify
them. In many statistical applications, it is helpful to be able to create a row (or
column) vector of 1s (you did so to calculate coffee totals in the last section). You
can do this with the J function. For example, the following statement creates a 1× 5
row vector of 1s:

> one=j(1,5,1);

ONE 1 row 5 cols (numeric)
1 1 1 1 1

The I Function

The I function creates an identity matrix of a given size. It has the following general
form:

I(dimension);

where dimension gives the number of rows. For example, the following statement
creates a 3× 3 identity matrix:

> I3=I(3);

I3 3 rows 3 cols (numeric)

1 0 0
0 1 0
0 0 1

The DESIGNF Function

The DESIGNF function generates a full-rank design matrix, useful in calculating
ANOVA tables. It has the following general form:

DESIGNF(column-vector);

For example, the following statement creates a full-rank design matrix for a one-way
ANOVA, where the treatment factor has three levels and there are n1 = 3, n2 = 2,
and n3 = 2 observations at the factor levels:

> d=designf({1,1,1,2,2,3,3});

Matrix-Generating Functions � 51

D 7 rows 2 cols (numeric)

1 0
1 0
1 0
0 1
0 1
-1 -1
-1 -1

The SHAPE Function

The SHAPE function shapes a new matrix from an argument matrix. It has the fol-
lowing general form:

SHAPE(matrix<,nrow<,ncol<,pad-value >>>);

Although the nrow, ncol, and pad-value arguments are optional, you should usually
specify them. The following statement uses the SHAPE function to create a 3 × 3
matrix containing the values 99 and 33. The function cycles back and repeats values
to fill in the matrix when no pad-value is given.

> aa=shape({99 33,99 33},3,3);

AA 3 rows 3 cols (numeric)

99 33 99
33 99 33
99 33 99

In the next example, a pad-value is specified for filling in the matrix:

> aa=shape({99 33,99 33},3,3,0);

AA 3 rows 3 cols (numeric)

99 33 99
33 0 0
0 0 0

The SHAPE function cycles through the argument matrix elements in row-major or-
der and then fills in the matrix with 0s after the first cycle through the argument
matrix.

52 � Chapter 4. Working with Matrices

Index Vectors

You can create a vector by using the index operator (:). Three examples of statements
involving index vectors follow:

> r=1:5;
R 1 row 5 cols (numeric)

1 2 3 4 5
> s=10:6;

S 1 row 5 cols (numeric)
10 9 8 7 6

> t=’abc1’:’abc5’;
T 1 row 5 cols (character, size 4)

abc1 abc2 abc3 abc4 abc5

If you want an increment other than 1, use the DO function. For example, if you want
a vector ranging from −1 to 1 by 0.5, use the following statement:

> r=do(-1,1,.5);

R 1 row 5 cols (numeric)
-1 -0.5 0 0.5 1

Using Matrix Expressions
Matrix expressions are a sequence of names, literals, operators, and functions that
perform some calculation, evaluate some condition, or manipulate values. These
expressions can appear on either side of an assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:

prefix operators are placed in front of operands. For example, −A uses the sign
reverse prefix operator (−) in front of the operand A to reverse
the sign of each element of A.

infix operators are placed between operands. For example, A + B uses the ad-
dition infix operator (+) between operands A and B to add cor-
responding elements of the matrices.

postfix operators are placed after an operand. For example, A` uses the transpose
postfix operator (̀) after the operand A to transpose A.

Matrix operators are listed in Appendix 1, “SAS/IML Quick Reference,” and de-
scribed in detail in Chapter 20.

Table 4.1 shows the precedence of matrix operators in Interactive Matrix Language.

Compound Expressions � 53

Table 4.1. Operator Precedence

Priority Group Operators
I (highest) ˆ ` subscripts −(prefix) ## **
II * # <> >< / @
III + −
IV ‖‖ // :
V < <= > >= = ˆ =
VI &
VII (lowest) |

Compound Expressions

With SAS/IML software, you can write compound expressions involving several ma-
trix operators and operands. For example, the following statements are valid matrix
assignment statements:

a=x+y+z;
a=x+y*z\prime ;
a=(-x)#(y-z);

The rules for evaluating compound expressions are as follows:

• Evaluation follows the order of operator precedence, as described in Table 4.1.
Group I has the highest priority; that is, group I operators are evaluated first.
Group II operators are evaluated after group I operators, and so forth. Consider
the following statement:

a=x+y*z;

This statement first multiplies matrices Y and Z since the * operator (group II)
has higher precedence than the + operator (group III). It then adds the result of
this multiplication to the matrix X and assigns the new matrix to A.

• If neighboring operators in an expression have equal precedence, the expres-
sion is evaluated from left to right, except for the group I operators. Consider
the following statement:

a=x/y/z;

This statement first divides each element of matrix X by the corresponding
element of matrix Y. Then, using the result of this division, it divides each
element of the resulting matrix by the corresponding element of matrix Z. The
operators in group I, described in Table 4.1, are evaluated from right to left.
For example, the following expression is evaluated as −(X2):

-x**2

54 � Chapter 4. Working with Matrices

When multiple prefix or postfix operators are juxtaposed, precedence is deter-
mined by their order from inside to outside.

For example, the following expression is evaluated as (A)̀[i, j]:

a‘[i,j]

• All expressions enclosed in parentheses are evaluated first, using the two pre-
ceding rules. Consider the following statement:

a=x/(y/z);

This statement is evaluated by first dividing elements of Y by the elements of
Z, then dividing this result into X.

Elementwise Binary Operators
Elementwise binary operators produce a result matrix from element-by-element op-
erations on two argument matrices.

Table 4.2 on page 54 lists the elementwise binary operators.

Table 4.2. Elementwise Binary Operators

Operator Action
+ addition, concatenation
− subtraction
elementwise multiplication

elementwise power
/ division
<> element maximum
>< element minimum
| logical OR
& logical AND
< less than
<= less than or equal to
> greater than
>= greater than or equal to
ˆ = not equal to
= equal to

MOD(m,n) modulo (remainder)

For example, consider the following two matrices A and B:

Let A =
[

2 2
3 4

]
and B =

[
4 5
1 0

]
The addition operator (+) adds corresponding matrix elements, as follows:

A + B yields
[

6 7
4 4

]

Elementwise Binary Operators � 55

The elementwise multiplication operator (#) multiplies corresponding elements, as
follows:

A#B yields
[

8 10
3 0

]

The elementwise power operator (##) raises elements to powers, as follows:

A##2 yields
[

4 4
9 16

]

The element maximum operator (<>) compares corresponding elements and
chooses the larger, as follows:

A <> B yields
[

4 5
3 4

]

The less than or equal to operator (<=) returns a 1 if an element of A is less than or
equal to the corresponding element of B, and returns a 0 otherwise:

A <= B yields
[

1 1
0 0

]
The modulo operator returns the remainder of each element divided by the argument,
as follows:

MOD(A, 3) yields
[

2 2
0 1

]
All operators can also work in a one-to-many or many-to-one manner, as well as in an
element-to-element manner; that is, they enable you to perform tasks such as adding
a scalar to a matrix or dividing a matrix by a scalar. For example, the following
statement replaces each negative element of the matrix X with 0:

x=x#(x>0);

The expression (X>0) is a many-to-one operation that compares each element of X to
0 and creates a temporary matrix of results; an element in the result matrix is 1 when
the expression is true and 0 when it is false. When the expression is true (the element
is positive), the element is multiplied by 1. When the expression is false (the element
is negative or 0), the element is multiplied by 0. To fully understand the intermediate
calculations, you can use the RESET statement with the PRINTALL option to have
the temporary result matrices displayed.

56 � Chapter 4. Working with Matrices

Subscripts

Subscripts are special postfix operators placed in square brackets ([]) after a matrix
operand. Subscript operations have the following general form:

operand[row , column]

where

operand is usually a matrix name, but it can also be an expression or literal.

row refers to an expression, either scalar or vector, for selecting one or
more rows from the operand.

column refers to an expression, either scalar or vector, for selecting one or
more columns from the operand.

You can use subscripts to do any of the following:

• refer to a single element of a matrix

• refer to an entire row or column of a matrix

• refer to any submatrix contained within a matrix

• perform a reduction across rows or columns of a matrix

In expressions, subscripts have the same (high) precedence as the transpose postfix
operator (̀). Note that when both row and column subscripts are used, they are sep-
arated by a comma. If a matrix has row or column labels associated with it from a
MATTRIB or READ statement, then the corresponding row or column subscript can
be a character matrix whose elements match the labels of the rows or columns to be
selected.

Selecting a Single Element

You can select a single element of a matrix in several ways. You can use two sub-
scripts (row, column) to refer to its location, or you can use one subscript to look for
the element down the rows. For instance, referring to the coffee example used earlier,
find the element corresponding to the number of cups that Linda drank on Monday.

First, you can refer to the element by row and column location. In this case, you want
the second row and first column. You can call this matrix c21. Here is the code:

> print coffee[rowname=names];

COFFEE
JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Subscripts � 57

> c21=coffee[2,1];
> print c21;

C21
3

You could also use row and column labels, which can be assigned with an MATTRIB
statement as follows:

> mattrib coffee rowname=names
> colname={’MON’ ’TUE’ ’WED’ ’THU’ ’FRI’};

> c21=coffee[’LINDA’,’MON’];
> print c21;

C21
3

You can also look for the element down the rows. In this case, you refer to this
element as the sixth element of COFFEE in row-major order. Here is the code:

> c6=coffee[6];
> print c6;

C6
3

Selecting a Row or Column

To refer to an entire row or column of a matrix, write the subscript with the row
or column number, omitting the other subscript but not the comma. For example,
to refer to the row of COFFEE that corresponds to Jim, you want the submatrix
consisting of the third row and all columns. The following statements isolate and
print this submatrix:

> jim=coffee[3,];
> print jim;

JIM
2 1 0 2 1

You could also use the row labels assigned previously with the MATTRIB statement
as follows:

> jim=coffee[’JIM’,];
> print jim;

58 � Chapter 4. Working with Matrices

JIM
2 1 0 2 1

If you want the data for Friday, you know that the fifth column corresponds to Friday,
so you want the submatrix consisting of the fifth column and all rows. The following
statements isolate and print this submatrix:

> friday=coffee[,5];
> print friday;

FRIDAY
2
1
1
4

You could also use the previously assigned column labels as follows:

> friday=coffee[,’FRI’];
> print friday;

FRIDAY
2
1
1
4

Submatrices

You refer to a submatrix by the specific rows and columns you want. Include within
the brackets the rows you want, a comma, and the columns you want. For example,
to create the submatrix of COFFEE consisting of the first and third rows and the
second, third, and fifth columns, use the following statements:

> submat1=coffee[{1 3},{2 3 5}];
> print submat1;

SUBMAT1
2 2 2
1 0 1

The first vector, {1 3}, selects the rows, and the second vector, {2 3 5}, selects the
columns. Alternately, you can create the vectors beforehand and supply their names
as arguments by using the following statements:

> rows={1 3};
> cols={2 3 5};
> submat1=coffee[rows,cols];

Similarly, you can use the previously assigned row and column labels as follows:

Subscripts � 59

> submat1=coffee[{’JENNY’ ’JIM’},{’TUE’ ’WED’ ’FRI’}];
> print submat1;

SUBMAT1
2 2 2
1 0 1

> rows={’JENNY’ ’JIM’};
> cols={’TUE’ ’WED’ ’FRI’};
> submat1=coffee[rows,cols];

You can use index vectors generated by the index creation operator (:) in subscripts
to refer to successive rows or columns. For example, to select the first three rows and
last three columns of COFFEE, use the following statements:

> submat2=coffee[1:3,3:5];
> print submat2;

SUBMAT2
2 3 2
1 2 1
0 2 1

Note that, in each example, the number in the first subscript defines the number of
rows in the new matrix; the number in the second subscript defines the number of
columns.

Selecting Multiple Elements

All matrices in IML are stored in row-major order, so you can select multiple ele-
ments of a matrix by listing the position of the elements in the matrix. The elements
in the first row have positions 1 throughm, the elements in the second row have posi-
tionsm+1 through 2m, and the elements in the last row have positions (n−1)m+1
through nm.

For example, in the coffee example discussed previously, you might be interested in
instances for which any person (on any day) drank more than two cups of coffee. The
LOC function is useful for creating an index vector for a matrix that satisfies some
condition. The following code uses the LOC function to find the desired instances:

> h=loc(coffee > 2);
> print h;

H

1 4 6 7 16 17 18 19

The variable H contains indices of the COFFEE matrix. If you want to find the
number of cups of coffee consumed on these occasions, you need to subscript the
COFFEE matrix as follows:

60 � Chapter 4. Working with Matrices

> cups = coffee[h];
> print cups;

CUPS

4
3
3
3
5
4
4
3
4

IML always returns a column vector when a matrix is subscripted by a single array
of positions. This might surprise you, but clearly the CUPS matrix cannot be the
same shape as the COFFEE matrix since it contains a different number of elements.
Therefore, the only reasonable alternatives are to return either a row vector or a col-
umn vector. Both would be valid choices, but IML returns a column vector.

Even if the original matrix is a row vector, the subscripted matrix will be a column
vector, as the following example shows:

> v = { -1 2 5 -2 7}; /* v is a row vector */
> v2 = v[{1 3 5}]; /* v2 is a column vector */
> print v2;

V2

-1
5
7

If you want to index into a row vector and want the resulting variable also to be a row
vector, then use the following technique:

> v = { -1 2 5 -2 7}; /* v is a row vector */
> v2 = v[,{1 3 5}]; /* Select columns. Note the comma. */
> print v2;

V2

-1 5 7

Subscripted Assignment

You can assign values into a matrix by using subscripts to refer to the element or sub-
matrix. In this type of assignment, the subscripts appear on the left side of the equal
sign. For example, to change the value in the first row, second column of COFFEE
from 2 to 4, use subscripts to refer to the appropriate element in an assignment state-
ment, as follows:

Subscripts � 61

> coffee[1,2]=4;
> print coffee;

COFFEE
4 4 2 3 2
3 3 1 2 1
2 1 0 2 1
5 4 4 3 4

To change the values in the last column of COFFEE to zeros, use the following
statements:

> coffee[,5]={0,0,0,0};
> print coffee;

COFFEE
4 4 2 3 0
3 3 1 2 0
2 1 0 2 0
5 4 4 3 0

As before, you could also use previously assigned row and column labels, as follows:

> coffee[,’FRI’]={0,0,0,0};

In the next example, you first locate the positions of negative elements of a matrix
and then set these elements equal to 0. This can be useful in situations where negative
elements might indicate errors or be impossible values. The LOC function is useful
for creating an index vector for a matrix that satisfies some condition.

In the following statements, the LOC function is used to find the positions of the
negative elements of the matrix T and then to set these elements equal to 0 by using
subscripted assignment:

> t={ 3 2 -1,
> 6 -4 3,
> 2 2 2 };
> print t;

T
3 2 -1
6 -4 3
2 2 2

> i=loc(t<0);
> print i;

I
3 5

62 � Chapter 4. Working with Matrices

> t[i]=0;
> print t;

T
3 2 0
6 0 3
2 2 2

Subscripts can also contain expressions with results that are either row or column
vectors. These statements can also be written as follows:

> t[loc(t<0)]=0;

If you use a noninteger value as a subscript, only the integer portion is used. Using a
subscript value less than one or greater than the dimension of the matrix results in an
error.

Subscript Reduction Operators

You can use reduction operators, which return a matrix of reduced dimension, in
place of values for subscripts to get reductions across all rows and columns. Table
4.3 lists the eight operators for subscript reduction in IML.

Table 4.3. Subscript Reduction Operators

Operator Action
+ addition
multiplication
<> maximum
>< minimum
<:> index of maximum
>:< index of minimum

: mean
sum of squares

For example, to get column sums of the matrix X (sum across the rows, which re-
duces the row dimension to 1), specify X[+,]. The first subscript (+) specifies that
summation reduction take place across the rows. Omitting the second subscript, cor-
responding to columns, leaves the column dimension unchanged. The elements in
each column are added, and the new matrix consists of one row containing the col-
umn sums.

You can use these operators to reduce either rows or columns or both. When both
rows and columns are reduced, row reduction is done first.

For example, the expression A[+, <>] results in the maximum (<>) of the column
sums (+).

Displaying Matrices with Row and Column Headings � 63

You can repeat reduction operators. To get the sum of the row maxima, use the
expression A[, <>][+,].

A subscript such as A[{23},+] first selects the second and third rows of A and then
finds the row sums of that matrix. The following examples demonstrate how to use
the operators for subscript reduction.

Consider the following matrix A:

Let A =

 0 1 2
5 4 3
7 6 8

The following statements are true:

A[23,+] yields
[

12
21

]
(row sums for rows 2 and 3)

A[+, <>] yields
[

13
]

(maximum of column sums)

A[<>,+] yields
[

21
]

(sum of column maxima)

A[, ><][+,] yields
[

9
]

(sum of row minima)

A[, <:>] yields

 3
1
3

 (indices of row maxima)

A[>:<,] yields
[

1 1 1
]

(indices of column minima)

A[:] yields
[

4
]

(mean of all elements)

Displaying Matrices with Row and Column
Headings
You can tailor the way your matrices are displayed with the AUTONAME option, the
ROWNAME= and COLNAME= options, or the MATTRIB statement.

64 � Chapter 4. Working with Matrices

Using the AUTONAME Option
You can use the RESET statement with the AUTONAME option to automatically
display row and column headings. If your matrix has n rows and m columns, the row
headings are ROW1 to ROWn and the column headings are COL1 to COLm. For
example, the following statements produce the subsequent matrix:

> reset autoname;
> print coffee;

COFFEE COL1 COL2 COL3 COL4 COL5

ROW1 4 2 2 3 2
ROW2 3 3 1 2 1
ROW3 2 1 0 2 1
ROW4 5 4 4 3 4

Using the ROWNAME= and COLNAME= Options
You can specify your own row and column headings. The easiest way is to create vec-
tors containing the headings and then display the matrix with the ROWNAME= and
COLNAME= options. For example, the following statements produce the subsequent
matrix:

> names={jenny linda jim samuel};
> days={mon tue wed thu fri};
> print coffee[rowname=names colname=days];

COFFEE MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

Using the MATTRIB Statement
The MATTRIB statement associates printing characteristics with matrices. You can
use the MATTRIB statement to display COFFEE with row and column headings.
In addition, you can format the displayed numeric output and assign a label to the
matrix name. The following example shows how to tailor your displayed output:

> mattrib coffee rowname=({jenny linda jim samuel})
> colname=({mon tue wed thu fri})
> label=’Weekly Coffee’
> format=2.0;
> print coffee;

Weekly Coffee MON TUE WED THU FRI

JENNY 4 2 2 3 2
LINDA 3 3 1 2 1
JIM 2 1 0 2 1
SAMUEL 5 4 4 3 4

More about Missing Values � 65

More about Missing Values
Missing values in matrices are discussed in Chapter 2. You should read that chapter
and Chapter 19 carefully so that you are aware of the way IML treats missing val-
ues. Following are several examples that show how IML handles missing values in a
matrix.

Consider the following two matrices X and Y:

Let X =

 1 2 .
. 5 6
7 . 9

 and Y =

 4 . 2
2 1 3
6 . 5

The following statements are true:

X + Y yields

 5 . .
. 6 9

13 . 14

 (matrix addition)

X#Y yields

 4 . .
. 5 18

42 . 45

 (element multiplication)

X[+,] yields
[

8 7 15
]

(column sums)

66

Chapter 5
Programming Statements

Chapter Contents

OVERVIEW . 69

IF-THEN/ELSE STATEMENTS . 69

DO GROUPS . 70

ITERATIVE EXECUTION . 71

JUMPING . 73

MODULE DEFINITION AND EXECUTION 74
Defining and Executing a Module . 75
Nesting Modules . 75
Understanding Symbol Tables . 76
Modules with No Arguments . 76
Modules with Arguments . 77
More about Argument Passing . 83
Module Storage . 84

STOPPING EXECUTION . 85
PAUSE Statement . 85
STOP Statement . 86
ABORT Statement . 87

SUMMARY . 87

68

Chapter 5
Programming Statements
Overview

As a programming language, the Interactive Matrix Language has many features that
enable you to control the path of execution through the statements. The control state-
ments in IML function in a way that is similar to the corresponding statements in the
SAS DATA step. This chapter presents the following control features:

• IF-THEN/ELSE statements

• DO groups

• iterative execution

• jumping (nonconsecutive execution)

• module definition and execution

• stopping execution

IF-THEN/ELSE Statements
To perform an operation conditionally, use an IF statement to test an expression.
Alternative actions appear in a THEN clause and, optionally, an ELSE statement.
The general form of the IF-THEN/ELSE statement is as follows:

IF expression THEN statement1 ;

ELSE statement2 ;

The IF expression is evaluated first. If the expression is true, execution flows through
the THEN alternative. If the expression is false, the ELSE statement, if present, is
executed. Otherwise, the next statement is executed.

The expression to be evaluated is often a comparison, as in the following example:

if max(a)<20 then p=0;
else p=1;

The IF statement results in the evaluation of the condition (MAX(A)<20). If the
largest value found in matrix A is less than 20, P is set to 0. Otherwise, P is set to 1.

You can nest IF statements within the clauses of other IF or ELSE statements. Any
number of nesting levels is allowed. The following is an example of nested IF state-
ments:

70 � Chapter 5. Programming Statements

if x=y then
if abs(y)=z then w=-1;
else w=0;

else w=1;

When the condition to be evaluated is a matrix expression, the result of the evaluation
is a temporary matrix of 0s, 1s, and possibly missing values. If all values of the result
matrix are nonzero and nonmissing, the condition is true; if any element in the result
matrix is 0, the condition is false. This evaluation is equivalent to using the ALL
function.

For example, the following two statements produce the same result:

if x<y then statement;

if all(x<y) then statement;

The following two expressions are valid, but the THEN clause in each case is exe-
cuted only when all corresponding elements of A and B are unequal:

if a^=b then statement;

if ^(a=b) then statement;

If you require that only one element in A not be equal to its corresponding element
in B, use the ANY function. For example, evaluation of the following expression
requires only one element of A and B to be unequal for the expression to be true:

if any(a^=b) then statement;

DO Groups
A set of statements can be treated as a unit by putting them into a DO group, which
starts with a DO statement and ends with an END statement. In this way, you can
submit the entire group of statements for execution as a single unit. For some pro-
gramming applications, you must use either a DO group or a module. For example,
LINK and GOTO statements must be programmed inside a DO group or a module.

DO groups have two principal uses:

• to group a set of statements so that they are executed as a unit

• to group a set of statements for a conditional (IF-THEN/ELSE) clause

DO groups have the following general form:

Iterative Execution � 71

DO ;

additional statements

END ;

As with IF-THEN/ELSE statements, with DO groups any number of nesting levels is
allowed. The following is an example of nested DO groups:

do;
statements;
do;

statements;
do;

statements;
end;

end;
end;

It is good practice to indent the statements in DO groups as shown here, so that their
position indicates the levels of nesting.

For IF-THEN/ELSE conditionals, DO groups can be used as units for either THEN
or ELSE clauses so that you can perform many statements as part of the conditional
action. An example follows:

if x<y then
do;

z1=abs(x+y);
z2=abs(x-y);

end;
else

do;
z1=abs(x-y);
z2=abs(x+y);

end;

Iterative Execution
The DO statement also serves the feature of iteration. With a DO statement, you can
repeatedly execute a set of statements until some condition stops the execution. A
DO statement is iterative if you specify it with any of the following iteration clauses.
The type of clause determines when the iterations stop.

Clause DO Statement
DATA DO DATA statement
variable = start TO stop < BY increment > iterative DO statement
WHILE(expression) DO WHILE statement
UNTIL(expression) DO UNTIL statement

72 � Chapter 5. Programming Statements

A DO statement can have any combination of these four iteration clauses, but a given
DO statement must be specified in the order listed in the preceding table.

DO DATA Statement

The general form of the DO DATA statement is as follows:

DO DATA ;

The DATA keyword specifies that iteration is to stop when an end-of-file condition
occurs. The group is exited immediately when the end-of-file condition is encoun-
tered. Other DO specifications exit after tests are performed at the top or bottom of
the loop.

See Chapter 6 and Chapter 7 for more information about processing data.

You can use the DO DATA statement to read data from an external file or to process
observations from a SAS data set. In the DATA step in Base SAS software, the
iteration is usually implied. The DO DATA statement simulates this iteration until
end of file is reached.

The following example reads data from an external file named MYDATA and inputs
the data values into a vector. The data values are read one at a time into the dummy
variable XX and collected into the vector X by using the vertical concatenation op-
erator (//) after each value is read.

infile ’mydata’; /* infile statement */
do data; /* begin read loop */

input xx; /* read a data value */
x=x//xx; /* concatenate values */

end; /* end loop */

Iterative DO Statement

The general form of the iterative DO statement is as follows:

DO variable=start TO stop < BY increment > ;

The variable sequence specification assigns the start value to the given variable. This
value is then incremented by the increment value (or by 1 if increment is not specified)
until it is greater than or equal to the stop value. (If increment is negative, then the
iterations stop when the value is less than or equal to stop.)

For example, the following statement specifies a DO loop that executes by multiples
of 10 until I is greater than 100:

do i=10 to 100 by 10;

DO WHILE Statement

The general form of the DO WHILE statement is as follows:

Jumping � 73

DO WHILE expression;

With a WHILE clause, the expression is evaluated at the beginning of each loop, with
iterations continuing until the expression is false (that is, until the value is a 0 or
missing value). Note that if the expression is false the first time it is evaluated, the
loop is not executed.

For example, if the variable COUNT has an initial value of 1, the following statements
print COUNT four times:

do while(count<5);
print count;
count=count+1;

end;

DO UNTIL Statement

The general form of the DO UNTIL statement is as follows:

DO UNTIL expression;

The UNTIL clause is like the WHILE clause except that the expression is evaluated
at the bottom of the loop. This means that the loop always executes at least once.

For example, if the variable COUNT has an initial value of 1, the following statements
print COUNT five times:

do until(count>5);
print count;
count=count+1;

end;

Jumping
During normal execution, statements are executed one after another. The GOTO and
LINK statements instruct IML to jump from one part of a program to another. The
place to which execution jumps is identified by a label, which is a name followed
by a colon placed before an executable statement. You can program a jump by using
either the GOTO statement or the LINK statement:

GOTO label;

LINK label;

Both the GOTO and LINK statements instruct IML to jump immediately to the la-
beled statement. The LINK statement, however, reminds IML where it jumped from
so that execution can be returned there if a RETURN statement is encountered. The
GOTO statement does not have this feature. Thus, the LINK statement provides a
way of calling sections of code as if they were subroutines. The LINK statement
calls the routine. The routine begins with the label and ends with a RETURN state-
ment. LINK statements can be nested within other LINK statements; any number of
nesting levels is allowed.

74 � Chapter 5. Programming Statements

CAUTION: The GOTO and LINK statements are limited to being inside a mod-
ule or DO group. These statements must be able to resolve the referenced label
within the current unit of statements. Although matrix symbols can be shared across
modules, statement labels cannot. Therefore, all GOTO statement labels and LINK
statement labels must be local to the DO group or module.

The GOTO and LINK statements are not often used because you can usually write
more understandable programs by using other features, such as DO groups for condi-
tionals, iterative DO groups for looping, and module invocations for subroutine calls.

Here are two DO groups that illustrate how the GOTO and LINK statements work:

do; do;
if x<0 then goto negative; if x<0 then link negative;
y=sqrt(x); y=sqrt(x);
print y; print y;
stop; stop;

negative: negative:
print "Sorry, X is negative"; print "Using abs. value of negative X";

end; x=abs(x);
return;

end;

The following is a comparable way to write the program on the left without using
GOTO or LINK statements:

if x<0 then print "Sorry, X is negative";
else

do;
y=sqrt(x);
print y;

end;

Module Definition and Execution
Modules are used for two purposes:

• to create groups of statements that can be invoked as a unit from anywhere in
the program—that is, to make a subroutine or function

• to create a separate (symbol-table) environment—that is, to define variables
that are local to the module rather than global

A module always begins with a START statement and ends with a FINISH statement.
Modules can be thought of as being either functions or subroutines. When a module
returns a single parameter, it is called a function and is executed as if it were a built-
in IML function; a function is invoked by its name in an assignment statement rather
than in a CALL or RUN statement. Otherwise, a module is called a subroutine, and
you execute the module in either the RUN statement or the CALL statement.

Nesting Modules � 75

Defining and Executing a Module

Modules begin with a START statement, which has the following general form:

START < name > < (arguments) > < GLOBAL(arguments) > ;

Modules end with a FINISH statement, which has the following general form:

FINISH < name > ;

If no name appears in the START statement, the name of the module defaults to
MAIN.

There are two ways you can execute a module: you can use either a RUN statement
or a CALL statement. The only difference is the order of resolution.

The general forms of these statements are as follows:

RUN name < (arguments) > ;

CALL name < (arguments) > ;

The RUN and CALL statements must have arguments to correspond to the ones de-
fined for the modules they invoke. A module can call other modules provided that it
never recursively calls itself.

The RUN and CALL statements have orders of resolution that need to be considered
only when you have given a module the same name as a built-in IML subroutine. In
such cases, use the CALL statement to execute the built-in subroutine and the RUN
statement to execute the user-defined module.

The RUN statement is resolved in the following order:

1. user-defined module

2. IML built-in function or subroutine

The CALL statement is resolved in the following order:

1. IML built-in subroutine

2. user-defined module

Nesting Modules

You can nest one module within another. You must make sure that each nested mod-
ule is completely contained inside the parent module. Each module is collected in-
dependently of the others. When you nest modules, it is a good idea to indent the
statements relative to the nesting level, as shown in the following example:

start a;
reset print;
start b;

a=a+1;

76 � Chapter 5. Programming Statements

finish b;
run b;

finish a;
run a;

In this example, IML starts collecting statements for a module called A. In the middle
of this module, it recognizes the start of a new module called B. It saves its current
work on A and collects B until encountering the first FINISH statement. It then
finishes collecting A. Thus, it behaves the same as if B were collected before A, as
follows:

start b;
a=a+1;

finish;
start a;

reset print;
run b;

finish;
run a;

Understanding Symbol Tables

Whenever a variable is defined outside the module environment, its name is stored in
the global symbol table. Whenever you are programming in immediate mode outside
a module, you are working with symbols (variables) from the global symbol table.
For each module you define with arguments given in a START statement, a separate
symbol table called a local symbol table is created for that module. All symbols
(variables) used inside the module are stored in its local symbol table. There can
be many local symbol tables, one for each module with arguments. A symbol can
exist in the global table, in one or more local tables, or in both the global table and
one or more local tables. Also, depending on how a module is defined, there can
be a one-to-one correspondence between variables across symbol tables (although
there does not need to be any connection between a variable, say X, in the global
table and a variable—say, X—in a local table). Values of symbols in a local table are
temporary; that is, they exist only while the module is executing and are lost when the
module has finished execution. Whether or not these temporary values are transferred
to corresponding global variables depends on how the module is defined.

Modules with No Arguments

When you define a module with no arguments, a local symbol table is not created.
All symbols (variables) are global—that is, equally accessible inside and outside the
module. The symbols referenced inside the module are the same as the symbols
referenced outside the module environment. This means that variables created inside
the module are also global, and any operations done on variables inside a module
affect the global variables as well.

The following example shows a module with no arguments:

Modules with Arguments � 77

> /* module without arguments, all symbols are global. */
> proc iml;
> a=10; /* A is global */
> b=20; /* B is global */
> c=30; /* C is global */
> start mod1; /* begin module */
> p=a+b; /* P is global */
> q=b-a; /* Q is global */
> c=40; /* C already global */
> finish; /* end module */

NOTE: Module MOD1 defined.

> run mod1;
> print a b c p q;

A B C P Q
10 20 40 30 10

Note that after the module is executed, the following conditions exist:

• A is still 10.

• B is still 20.

• C has been changed to 40.

• P and Q are created, added to the global symbol table, and set to 30 and 10,
respectively.

Modules with Arguments

In general, the following statements are true about modules with arguments:

• You can specify arguments as variable names.

• If you specify several arguments, you should use commas to separate them.

• If you have both output variables and input variables, it is good practice to list
the output variables first.

• When a module is invoked with either a RUN or a CALL statement, the argu-
ments can be any name, expression, or literal. However, when using arguments
for output results, you should use variable names rather than expressions or
literals.

When a module is executed with either a RUN or a CALL statement, the value for
each argument is transferred from the global symbol table to the local symbol table.
For example, consider the module MOD2 defined in the following statements. The
first four statements are submitted in the global environment, and they define vari-
ables (A, B, C, and D): the values of these variables are stored in the global symbol
table. The START statement begins definition of MOD2 and lists two variables (X
and Y) as arguments. This creates a local symbol table for MOD2. All symbols used

78 � Chapter 5. Programming Statements

inside the module (X, Y, P, Q, and C) are in the local symbol table. There is also a
one-to-one correspondence between the arguments in the RUN statement (A and B)
and the arguments in the START statement (X and Y). Also note that A, B, and D
exist only in the global symbol table, whereas X, Y, P, and Q exist only in the local
symbol table. The symbol C exists independently in both the local and global tables.
When MOD2 is executed with the statement run mod2(A,B);, the value of A is
transferred from the global symbol table to X in the local table. Similarly, the value
of B in the global table is transferred to Y in the local table. Because C is not an
argument, there is no correspondence between the value of C in the global table and
the value of C in the local table. When the module finishes execution, the final values
of X and Y in the local table are transferred back to A and B in the global table.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod2(x,y); /* begin module */
> p=x+y;
> q=y-x;
> y=100;
> c=25;
> finish mod2; /* end module */

NOTE: Module MOD2 defined.

> run mod2(a,b);
> print a b c d;

A B C D
10 100 30 90

The PRINT statement prints the values of variables in the global symbol table.

Notice that after the module is executed, the following conditions exist:

• A is still 10.

• B is changed to 100 since the corresponding argument Y was changed to 100
inside the module.

• C is still 30. Inside the module, the local symbol C was set equal to 25, but
there is no correspondence between the global symbol C and the local symbol
C.

• D is still 90.

Also note that, inside the module, the symbols A, B, and D do not exist. Outside the
module, the symbols P, Q, X, and Y do not exist.

Modules with Arguments � 79

Defining Function Modules

Functions are special modules that return a single value. They are a special type of
module because modules can, in general, return any number of values through their
argument list. To write a function module, include a RETURN statement that assigns
the returned value to a variable. The RETURN statement is necessary for a module
to be a function. You invoke a function module in an assignment statement, as you
would a standard function.

The symbol-table logic described in the preceding section also applies to function
modules. The following is an example of a function module. In this module, the
value of C in the local symbol table is transferred to the global symbol Z.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod3(x,y);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> return (c); /* return function value */
> finish mod3;

NOTE: Module MOD3 defined.

> z = mod3(a,b); /* call function */
> print a b c d z;

A B C D Z
10 100 30 90 40

Note the following about this example:

• A is still 10.

• B is changed to 100 because Y is set to 100 inside the module, and there is a
one-to-one correspondence between B and Y.

• C is still 30. The symbol C in the global table has no connection with the
symbol C in the local table.

• Z is set to 40, which is the value of C in the local table.

Again note that, inside the module, the symbols A, B, D, and Z do not exist. Outside
the module, the symbols P, Q, X, and Y do not exist.

In the next example, you define your own function ADD for adding two arguments:

> proc iml;
> reset print;

80 � Chapter 5. Programming Statements

> start add(x,y);
> sum=x+y;
> return(sum);
> finish;

NOTE: Module ADD defined.

> a={9 2,5 7};

A
9 2
5 7

> b={1 6,8 10};

B
1 6
8 10

> c=add(a,b);

C
10 8
13 17

Function modules can also be called inside each other. For example, in the following
statements, the ADD function is called twice from within the first ADD function:

> d=add(add(6,3),add(5,5));
> print d;

D
19

Functions are resolved in this order:

1. IML built-in function

2. user-defined function module

3. SAS DATA step function

This means that you should not use a name for a function that is already the name of
an IML built-in function.

Modules with Arguments � 81

Using the GLOBAL Clause

For modules with arguments, the variables used inside the module are local and have
no connection with any variables of the same name existing outside the module in the
global table. However, it is possible to specify that certain variables not be placed in
the local symbol table but rather be accessed from the global table. Use the GLOBAL
clause to specify variables you want shared between local and global symbol tables.
The following is an example of a module that uses a GLOBAL clause to define the
symbol C as global. This defines a one-to-one correspondence between the value of
C in the global table and the value of C in the local table.

> proc iml;
> a=10;
> b=20;
> c=30;
> d=90;
> start mod4(x,y) global (c);
> p=x+y;
> q=y-x;
> y=100;
> c=40;
> d=500;
> finish mod4;

NOTE: Module MOD4 defined.

> run mod4(a,b);
> print a b c d;

A B C D
10 100 40 90

Note the following about this example:

• A is still 10.

• B is changed to 100.

• C is changed to 40 because it was declared global. The C inside the module
and outside the module are the “same.”

• D is still 90 and not 500, since D independently exists in the global and local
symbol tables.

Also note that every module with arguments has its own local table; thus it is possible
to have a global and many local tables. A variable can independently exist in one or
more of these tables. However, a variable can be commonly shared between the
global and any number of local tables when the GLOBAL clause is used.

82 � Chapter 5. Programming Statements

Nesting Modules with Arguments

For nested module calls, the concept of global and local symbol tables is somewhat
different. Consider the following example:

> start mod1 (a,b);
> c=a+b;
> d=a-b;
> run mod2 (c,d);
> print c d;
> finish mod1;

NOTE: Module MOD1 defined.

> start mod2 (x,y);
> x=y-x;
> y=x+1;
> run mod3(x,y);
> finish mod2;

NOTE: Module MOD2 defined.

> start mod3(w,v);
> w=w#v;
> finish mod3;

NOTE: Module MOD3 defined.

The local symbol table of MOD1 in effect becomes the global table for MOD2. The
local symbol table of MOD2 is the global table for MOD3. The distinction between
the global and local environments is necessary only for modules with arguments. If a
module (say, A) calls another module (say, B) which has no arguments, B shares all
the symbols existing in A’s local symbol table.

For example, consider the following statements:

> x=457;
> start a;
> print ’from a’ x;
> finish;
> start b(p);
> print ’from b’ p;
> run a;
> finish;
> run b(x);

P
from b 457

ERROR: Matrix X has not been set to a value.

More about Argument Passing � 83

Error occurred in module A
called from module B
stmt: PRINT

Paused in module A.

In this example, module A is called from module B. Therefore, the local symbol table
of module B becomes the global symbol table for module A. Module A has access to
all symbols available in module B. No X exists in the local environment of module B;
thus no X is available in module A as well. This causes the error that X is unvalued.

More about Argument Passing

You can pass expressions and subscripted matrices as arguments to a module, but it
is important to understand the way IML evaluates the expressions and passes results
to the module. Expressions are evaluated, and the evaluated values are stored in
temporary variables. Similarly, submatrices are created from subscripted variables
and stored in temporary variables. The temporary variables are passed to the module
while the original matrix remains intact. Notice that, in the example that follows, the
matrix X remains intact. You might expect X to contain the squared values of Y.

> proc iml;
> reset printall;
> start square(a,b);
> a=b##2;
> finish;
> /* create two data matrices */
> x={5 9 };

X 1 row 2 cols (numeric)

5 9

> y={10 4};

Y 1 row 2 cols (numeric)

10 4
> /* pass matrices to module element-by-element */
> do i=1 to 2;
> run square(x[i],y[i]);
> end;
> /* RESET PRINTALL prints all intermediate results */

84 � Chapter 5. Programming Statements

I 1 row 1 col (numeric)

1

#TEM1002 1 row 1 col (numeric)

10

#TEM1001 1 row 1 col (numeric)

5

A 1 row 1 col (numeric)

100

#TEM1002 1 row 1 col (numeric)

4

#TEM1001 1 row 1 col (numeric)

9

A 1 row 1 col (numeric)

16

> /* show X and Y are unchanged */
> print x y;

X Y
5 9 10 4

The symbol X remains unchanged because the temporary variables that you generally
do not see are changed. Note that IML properly warns you of any such instances in
which your results might be lost to the temporary variables.

Module Storage

You can store and reload modules by using the forms of the STORE and LOAD
statements as they pertain to modules:

STORE MODULE= name;

PAUSE Statement � 85

LOAD MODULE= name;

You can view the names of the modules in storage with the SHOW statement, as
follows:

show storage;

See Chapter 14 for details about using the library storage facilities.

Stopping Execution
You can stop execution with a PAUSE, STOP, or ABORT statement. The QUIT
statement is also a stopping statement, but it immediately removes you from the IML
environment; the other stopping statements can be performed in the context of a pro-
gram. Following are descriptions of the PAUSE, STOP, and ABORT statements.

PAUSE Statement

The general form of the PAUSE statement is as follows:

PAUSE < message > < * > ;

The PAUSE statement does the following:

• stops execution of the module

• remembers where it stopped executing

• prints a pause message that you can specify

• puts you in immediate mode within the module environment. This mode uses
the module’s local symbol table. At this point you can enter more statements.

A RESUME statement enables you to continue execution at the place where the most
recent PAUSE statement was executed.

You can use a STOP statement as an alternative to the RESUME statement to remove
the paused states and return to the immediate environment outside the module.

You can specify a message in the PAUSE statement to display a message as the pause
prompt. If no message is specified, IML displays the following default message:

paused in module \ob XXX\obe

where XXX is the name of the module containing the pause. To suppress the display
of any messages, use the * option, as follows:

pause *;

The following are examples of PAUSE statements with operands:

86 � Chapter 5. Programming Statements

pause "Please enter an assignment for X, then enter RESUME;";

msg ="Please enter an assignment for X, then enter RESUME;";
pause msg;

When you use the PAUSE, RESUME, STOP, or ABORT statement, you should be
aware of the following details:

• The PAUSE statement can be issued only from within a module.

• IML diagnoses an error if you execute a RESUME statement without any out-
standing pauses.

• You can define and execute modules while paused from other modules.

• A PAUSE statement is automatically issued if an error occurs while statements
are being executed inside a module. This gives you an opportunity to cor-
rect the error and resume execution of the module with a RESUME statement.
Alternately, you can submit a STOP or ABORT statement to exit from the
module environment.

• You cannot reenter or redefine an active (paused) module; you will get an error
for recursive module execution.

• In paused mode, you can run another module that, in turn, pauses; the paused
environments are stacked.

• You can put a RESUME statement inside a module. For example, suppose you
are paused in module A and then run module B, which executes a RESUME
statement. Execution is resumed in module A and does not return to module B.

• IML supports stopping execution while in a paused state in both subroutine and
function modules.

• If you pause in a subroutine module that has its own symbol table, then the
immediate mode during the pause uses this symbol table rather than the global
one. You must use a RESUME or a STOP statement to return to the global
symbol table environment.

• You can use the PAUSE and RESUME statements, in conjunction with the
PUSH, QUEUE, and EXECUTE subroutines described in Chapter 15, to exe-
cute IML statements that you generate within a module.

STOP Statement

The general form of the STOP statement is as follows:

STOP ;

The STOP statement stops execution and returns you to immediate mode, where new
statements that you enter are executed. If execution is interrupted by a PAUSE state-
ment, the STOP statement clears all pauses and returns to immediate mode of execu-
tion.

Summary � 87

ABORT Statement

The general form of the ABORT statement is as follows:

ABORT ;

The ABORT statement stops execution and exits from IML much like a QUIT state-
ment, except that the ABORT statement is executable and programmable. For exam-
ple, you might want to exit IML if a certain error occurs. You can check for the error
in a module and program an ABORT statement to execute if the error occurs. The
ABORT statement does not execute until the module is executed, while the QUIT
statement executes immediately and ends the IML session.

Summary
In this chapter you learned the basics of programming with SAS/IML software. You
learned about conditional execution (IF-THEN/ELSE statements), grouping state-
ments as a unit (DO groups), iterative execution, nonconsecutive execution, defining
subroutines and functions (modules), and stopping execution. With these program-
ming capabilities, you are able to write your own sophisticated programs and store
the code as a module. You can then execute the program later with a RUN or CALL
statement.

88

Chapter 6
Working with SAS Data Sets

Chapter Contents

OVERVIEW . 91

OPENING A SAS DATA SET . 92

MAKING A SAS DATA SET CURRENT 93

DISPLAYING SAS DATA SET INFORMATION 93

REFERRING TO A SAS DATA SET . 94

LISTING OBSERVATIONS . 94
Specifying a Range of Observations . 95
Selecting a Set of Variables . 97
Selecting Observations . 98

READING OBSERVATIONS FROM A SAS DATA SET 101
Using the READ Statement with the VAR Clause 101
Using the READ Statement with the VAR and INTO Clauses 102
Using the READ Statement with the WHERE Clause 102

EDITING A SAS DATA SET . 103
Updating Observations . 104
Deleting Observations . 105

CREATING A SAS DATA SET FROM A MATRIX 106
Using the CREATE Statement with the FROM Option 106
Using the CREATE Statement with the VAR Clause 108

UNDERSTANDING THE END-OF-FILE CONDITION 108

PRODUCING SUMMARY STATISTICS 108

SORTING A SAS DATA SET . 109

INDEXING A SAS DATA SET . 110

DATA SET MAINTENANCE FUNCTIONS 111

SUMMARY OF COMMANDS . 111

COMPARISON WITH THE SAS DATA STEP 112

SUMMARY . 113

90

Chapter 6
Working with SAS Data Sets
Overview

SAS/IML software has many statements for passing data from SAS data sets to ma-
trices and from matrices to SAS data sets. You can create matrices from the variables
and observations of a SAS data set in several ways. You can create a column vector
for each data set variable, or you can create a matrix where columns correspond to
data set variables. You can use all the observations in a data set or use a subset of
them.

You can also create a SAS data set from a matrix. The columns correspond to data
set variables and the rows correspond to observations. Data management commands
enable you to edit, append, rename, or delete SAS data sets from within the SAS/IML
environment.

When reading a SAS data set, you can read any number of observations into a matrix
either sequentially, directly by record number, or conditionally according to condi-
tions in a WHERE clause. You can also index a SAS data set. The indexing capability
facilitates retrievals by the indexed variable.

Operations on SAS data sets are performed with straightforward, consistent, and pow-
erful statements. For example, the LIST statement can perform the following tasks:

• list the next record

• list a specified record

• list any number of specified records

• list the whole file

• list records satisfying one or more conditions

• list specified variables or all variables

If you want to read values into a matrix, use the READ statement instead of the LIST
statement with the same operands and features as the LIST statement. You can specify
operands that control which records and variables are used indirectly, as matrices, so
that you can dynamically program the records, variables, and conditional values you
want.

In this chapter, you use the SAS data set CLASS, which contains the variables
NAME, SEX, AGE, HEIGHT, and WEIGHT, to learn about the following:

• opening a SAS data set

• examining the contents of a SAS data set

92 � Chapter 6. Working with SAS Data Sets

• displaying data values with the LIST statement

• reading observations from a SAS data set into matrices

• editing a SAS data set

• creating a SAS data set from a matrix

• displaying matrices with row and column headings

• producing summary statistics

• sorting a SAS data set

• indexing a SAS data set

• similarities and differences between the data set and the SAS DATA step

Throughout this chapter, the right angle brackets (>) indicate statements that you
submit; responses from Interactive Matrix Language follow.

First, invoke the IML procedure by using the following statement:

> proc iml;

IML Ready

Opening a SAS Data Set
Before you can access a SAS data set, you must first submit a command to open it.
There are three ways to open a SAS data set:

• To simply read from an existing data set, submit a USE statement to open it for
Read access. The general form of the USE statement is as follows:

USE SAS-data-set < VAR operand > < WHERE(expression) > ;

With Read access, you can use the FIND, INDEX, LIST, and READ statements
with the data set.

• To read and write to an existing data set, use the EDIT statement. The general
form of the EDIT statement is as follows:

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

This statement enables you to use both the reading statements (LIST, READ,
INDEX, and FIND) and the writing statements (REPLACE, APPEND,
DELETE, and PURGE).

• To create a new data set, use the CREATE statement to open a new data set
for both output and input. The general form of the CREATE statement is as
follows:

Displaying SAS Data Set Information � 93

CREATE SAS-data-set < VAR operand > ;

CREATE SAS-data-set FROM from-name

< [COLNAME=column-name ROWNAME=row-name] > ;

Use the APPEND statement to place the matrix data into the newly created
data set. If you do not use the APPEND statement, the new data set has no
observations.

If you want to list observations and create matrices from the data in the SAS data
set named CLASS, you must first submit a statement to open the CLASS data set.
Because CLASS already exists, specify the USE statement.

Making a SAS Data Set Current
IML data processing commands work on the current data set. This feature makes
it unnecessary for you to specify the data set as an operand each time. There are
two current data sets, one for input and one for output. IML makes a data set the
current one as it is opened. You can also make a data set current by using two setting
statements, SETIN and SETOUT:

• The USE and SETIN statements make a data set current for input.

• The SETOUT statement makes a data set current for output.

• The CREATE and EDIT statements make a data set current for both input and
output.

If you issue a USE, EDIT, or CREATE statement for a data set that is already open,
the data set is made the current data set. To find out which data sets are open and
which are current input and current output data sets, use the SHOW DATASETS
statement.

The current observation is set by the last operation that performed input/output (I/O).
If you want to set the current observation without doing any I/O, use the SETIN (or
SETOUT) statement with the POINT option. After a data set is opened, the current
observation is set to 0. If you attempt to list or read the current observation, the
current observation is converted to 1. You can make the CLASS data set current for
input and position the pointer at the 10th observation with the following statement:

> setin class point 10;

Displaying SAS Data Set Information
You can use SHOW statements to display information about your SAS data sets.
The SHOW DATASETS statement lists all open SAS data sets and their status. The
SHOW CONTENTS statement displays the variable names and types, the size, and
the number of observations in the current input data set. For example, to get informa-
tion for the CLASS data set, issue the following statements:

94 � Chapter 6. Working with SAS Data Sets

> use class;
> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Input Current Input

> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
SEX CHAR 8
AGE NUM 8
HEIGHT NUM 8
WEIGHT NUM 8
Number of Variables: 5
Number of Observations: 19

As you can see, CLASS is the only data set open. The USE statement opens it for in-
put, and it is the current input data set. The full name for CLASS is WORK.CLASS.
The libref is the default, WORK. The next section tells you how to change the libref
to another name.

Referring to a SAS Data Set
The USE, EDIT, and CREATE statements take as their first operand the data set name.
This name can have either one or two levels. If it is a two-level name, the first level
refers to the name of the SAS data library; the second name is the data set name. If
the libref is WORK, the data set is stored in a directory for temporary data sets; these
are automatically deleted at the end of the session. Other librefs are associated with
SAS data libraries by using the LIBNAME statement.

If you specify only a single name, then IML supplies a default libref. At the beginning
of an IML session, the default libref is SASUSER if SASUSER is defined as a libref
or WORK otherwise. You can reset the default libref by using the RESET DEFLIB
statement. If you want to create a permanent SAS data set, you must specify a two-
level name by using the RESET DEFLIB statement (see the chapter on SAS files in
SAS Language Reference: Concepts for more information about permanent SAS data
sets):

> reset deflib=name;

Listing Observations
You can list variables and observations in a SAS data set with the LIST statement.
The general form of the LIST statement is as follows:

Specifying a Range of Observations � 95

LIST < range > < VAR operand > < WHERE(expression) > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

The next three sections discuss how to use each of these clauses with the CLASS
data set.

Specifying a Range of Observations

You can specify a range of observations with a keyword or by record number by
using the POINT option. You can use the range operand with the data management
statements DELETE, FIND, LIST, READ, and REPLACE.

You can specify range with any of the following keywords:

ALL specifies all observations.

CURRENT specifies the current observation.

NEXT < number > specifies the next observation or next number of observations.

AFTER specifies all observations after the current one.

POINT operand specifies observations by number, where operand can be one
of the following:

Operand Example
a single record number point 5
a literal giving several record numbers point {2 5 10}
the name of a matrix containing record numbers point p
an expression in parentheses point (p+1)

If you want to list all observations in the CLASS data set, use the keyword ALL to
indicate that the range is all observations. The following example demonstrates the
use of this keyword:

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
5 JOHN M 12.0000 59.0000 99.5000

96 � Chapter 6. Working with SAS Data Sets

6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 14.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Without a range specification, the LIST statement lists only the current observation,
which in this example is now the last observation because of the previous LIST state-
ment. Here is the result of using the LIST statement:

> list;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

19 PHILIP M 16.0000 72.0000 150.0000

Use the POINT keyword with record numbers to list specific observations. You can
follow the keyword POINT with a single record number or with a literal giving several
record numbers. Here are two examples:

> list point 5;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

5 JOHN M 12.0000 59.0000 99.5000

> list point {2 4 9};

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

You can also indicate the range indirectly by creating a matrix containing the records
you want to list, as in the following example:

> p={2 4 9};
> list point p;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

Selecting a Set of Variables � 97

2 THOMAS M 11.0000 57.5000 85.0000
4 JANE F 12.0000 59.8000 84.5000
9 BARBARA F 13.0000 65.3000 98.0000

The range operand is usually listed first when you are using the access statements
DELETE, FIND, LIST, READ, and REPLACE. The following table shows access
statements and their default ranges:

Statement Default Range
LIST current
READ current
FIND all
REPLACE current
APPEND always at end
DELETE current

Selecting a Set of Variables

You can use the VAR clause to select a set of variables. The general form of the VAR
clause is as follows:

VAR operand

where operand can be specified by using one of the following items:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the following keywords:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples show all possible ways you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

For example, to list students’ names from the CLASS data set, use the VAR clause
with a literal, as in the following statement:

98 � Chapter 6. Working with SAS Data Sets

> list point p var{name};

OBS NAME
------ --------

2 THOMAS
4 JANE
9 BARBARA

To list AGE, HEIGHT, and WEIGHT, you can use the VAR clause with a matrix
giving the variables, as in the following statements:

> v={age height weight};
> list point p var v;

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

2 11.0000 57.5000 85.0000
4 12.0000 59.8000 84.5000
9 13.0000 65.3000 98.0000

The VAR clause can be used with the following statements for the tasks described:

Statement VAR Clause Function
APPEND specifies which IML variables contain data to append to the data set
CREATE specifies the variables to go in the data set
EDIT limits which variables are accessed
LIST specifies which variables to list
READ specifies which variables to read
REPLACE specifies which data set variable’s data values to replace with corre-

sponding IML variable data values
USE limits which variables are accessed

Selecting Observations

The WHERE clause conditionally selects observations, within the range specifi-
cation, according to conditions given in the expression. The general form of the
WHERE clause is as follows:

WHERE variable comparison-op operand ;

where

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to

Selecting Observations � 99

= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is as follows:

clause&clause (for an AND clause)
clause | clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

For example, to list the names of all males in the data set CLASS, use the following
statement:

> list all var{name} where(sex=’M’);

OBS NAME
------ ----------------------

2 THOMAS
3 JAMES
5 JOHN

100 � Chapter 6. Working with SAS Data Sets

7 ROBERT
10 JEFFREY
12 HENRY
13 ALFRED
17 RONALD
18 WILLIAM
19 PHILIP

The WHERE comparison arguments can be matrices. In the following cases that use
the =* operator, the comparison is made to each name to find a string that sounds like
or is spelled like the given string or strings:

> n={name sex age};
> list all var n where(name=*{"ALFRED","CAROL","JUDY"});

OBS NAME SEX AGE
----- ---------------- -------- ---------
11 CAROL F 14.0000
13 ALFRED M 14.0000
14 JUDY F 14.0000

> list all var n where(name=*{"JON","JAN"});

OBS NAME SEX AGE
------ -------- -------- ---------

4 JANE F 12.0000
5 JOHN M 12.0000

To list AGE, HEIGHT, and WEIGHT for all students in their teens, use the following
statement:

> list all var v where(age>12);

OBS AGE HEIGHT WEIGHT
------ --------- --------- ---------

8 13.0000 56.5000 84.0000
9 13.0000 65.3000 98.0000
10 13.0000 62.5000 84.0000
11 14.0000 62.8000 102.5000
12 14.0000 63.5000 102.5000
13 14.0000 69.0000 112.5000
14 14.0000 64.3000 90.0000
15 15.0000 62.5000 112.5000
16 15.0000 66.5000 112.0000
17 15.0000 67.0000 133.0000
18 15.0000 66.5000 112.0000
19 16.0000 72.0000 150.0000

Note: In the WHERE clause, the expression on the left side refers to values of the data
set variables, and the expression on the right side refers to matrix values. You cannot
use comparisons involving more than one data set variable in a single comparison;
for example, you cannot use either of the following expressions:

Using the READ Statement with the VAR Clause � 101

list all where(height>weight);
list all where(weight-height>0);

You could use the first statement if WEIGHT were a matrix name already defined
rather than a variable in the SAS data set.

Reading Observations from a SAS Data Set
Transferring data from a SAS data set to a matrix is done by using the READ state-
ment. The SAS data set you want to read data from must already be open. You can
open a SAS data set with either the USE or the EDIT statement. If you already have
several data sets open, you can point to the one you want with the SETIN statement,
making it the current input data set. The general form of the READ statement is as
follows:

READ < range > < VAR operand > < WHERE(expression) >

< INTO name > ;

where

range specifies a range of observations.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

name names a target matrix for the data.

Using the READ Statement with the VAR Clause
Use the READ statement with the VAR clause to read variables from the current SAS
data set into column vectors of the VAR clause. Each variable in the VAR clause
becomes a column vector with the same name as the variable in the SAS data set.
The number of rows is equal to the number of observations processed, depending on
the range specification and the WHERE clause. For example, to read the numeric
variables AGE, HEIGHT, and WEIGHT for all observations in the CLASS data set,
use the following statements:

> read all var {age height weight};

Now use the SHOW NAMES statement to display all the matrices you have created
so far in this chapter:

> show names;

AGE 19 rows 1 col num 8
HEIGHT 19 rows 1 col num 8
N 1 row 3 cols char 4
P 1 row 3 cols num 8
V 1 row 3 cols char 6
WEIGHT 19 rows 1 col num 8
Number of symbols = 8 (includes those without values)

102 � Chapter 6. Working with SAS Data Sets

You see that, with the READ statement, you have created the three numeric vectors
AGE, HEIGHT, and WEIGHT. (Notice that the matrices you created earlier, N, P,
and V, are also listed.) You can select the variables that you want to access with a
VAR clause in the USE statement. The two previous statements can also be written
as follows:

use class var{age height weight};
read all;

Using the READ Statement with the VAR and INTO Clauses
Sometimes you want to have all of the numeric variables in the same matrix so that
you can determine correlations. Use the READ statement with the INTO clause and
the VAR clause to read the variables listed in the VAR clause into the single matrix
named in the INTO clause. Each variable in the VAR clause becomes a column of
the target matrix. If there are p variables in the VAR clause and n observations are
processed, the target matrix in the INTO clause is an n× p matrix.

The following statement creates a matrix X containing the numeric variables of the
CLASS data set. Notice the use of the keyword –NUM– in the VAR clause to specify
that all numeric variables be read.

> read all var _num_ into x;
> print x;

X
11 51.3 50.5
11 57.5 85
12 57.3 83
12 59.8 84.5
12 59 99.5
12 56.3 77
12 64.8 128
13 56.5 84
13 65.3 98
13 62.5 84
14 62.8 102.5
14 63.5 102.5
14 69 112.5
14 64.3 90
15 62.5 112.5
15 66.5 112
15 67 133
15 66.5 112
16 72 150

Using the READ Statement with the WHERE Clause
Use the WHERE clause as you did with the LIST statement, to conditionally se-
lect observations from within the specified range. If you want to create a matrix
FEMALE containing the variables AGE, HEIGHT, and WEIGHT for females only,
use the following statements:

Editing a SAS Data Set � 103

> read all var _num_ into female where(sex="F");
> print female;

FEMALE
11 51.3 50.5
12 59.8 84.5
12 56.3 77
13 56.5 84
13 65.3 98
14 62.8 102.5
14 64.3 90
15 62.5 112.5
15 66.5 112

Now try some special features of the WHERE clause to find values that begin with
certain characters (the =: operator) or that contain certain strings (the ? operator). To
create a matrix J containing the students whose names begin with the letter “J,” use
the following statements:

> read all var{name} into j where(name=:"J");
> print j;

J
JOYCE
JAMES
JANE
JOHN
JEFFREY
JUDY
JANET

To create a matrix AL of children with names containing the string “AL,” use the
following statement:

> read all var{name} into al where(name?"AL");
> print al;

AL
ALICE
ALFRED
RONALD

Editing a SAS Data Set
You can edit a SAS data set by using the EDIT statement. You can update values of
variables, mark observations for deletion, delete the marked observations, and save
the changes you make. The general form of the EDIT statement is as follows:

104 � Chapter 6. Working with SAS Data Sets

EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;

where

SAS-data-set names an existing SAS data set.

operand selects a set of variables.

expression is an expression that is evaluated as being true or false.

Updating Observations

Suppose you have updated data and want to change some values in the CLASS data
set. For instance, suppose the student named Henry has had a birthday since the data
were added to the CLASS data set. You can do the following:

• make the CLASS data set current for input and output

• read the data

• change the appropriate data value

• replace the changed data in the data set

First, submit an EDIT statement to make the CLASS data set current for input and
output. Then use the FIND statement, which finds observation numbers and stores
them in a matrix, to find the observation number of the data for Henry and store it in
the matrix d. Here are the statements:

> edit class;
> find all where(name={’HENRY’}) into d;
> print d;

D
12

The following statement lists the observation containing the data for Henry:

> list point d;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 14.0000 63.5000 102.5000

As you see, the observation number is 12. Now read the value for AGE into a matrix
and update its value. Finally, replace the value in the CLASS data set and list the
observation containing the data for Henry again. Here are the statements:

> age=15;
> replace;

1 observations replaced.

Deleting Observations � 105

> list point 12;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

12 HENRY M 15.0000 63.5000 102.5000

Deleting Observations

Use the DELETE statement to mark an observation to be deleted. The general form
of the DELETE statement is as follows:

DELETE < range > < WHERE(expression) > ;

where

range specifies a range of observations.

expression is an expression that is evaluated as being true or false.

The following are examples of valid uses of the DELETE statement:

Statement Action
delete; deletes the current observation
delete point 10; deletes observation 10
delete all where (age>12); deletes all observations where

AGE is greater than 12

If a file accumulates a number of observations marked as deleted, you can clean out
these observations and renumber the remaining observations by using the PURGE
statement.

Suppose the student named John has moved and you want to update the CLASS data
set. You can remove the observation by using the EDIT and DELETE statements.
First, find the observation number of the data for John and store it in the matrix
d by using the FIND statement. Then submit a DELETE statement to mark the
record for deletion. A deleted observation is still physically in the file and still has
an observation number, but it is excluded from processing. The deleted observations
appear as gaps when you list the file by observation number, as in the following
example:

> find all where(name={’JOHN’}) into d;
> print d;

D
5

> delete point d;

106 � Chapter 6. Working with SAS Data Sets

1 observation deleted.
> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000
7 ROBERT M 12.0000 64.8000 128.0000
8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

10 JEFFREY M 13.0000 62.5000 84.0000
11 CAROL F 14.0000 62.8000 102.5000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Notice that there is a gap in the data where the deleted observation was (observation
5). To renumber the observations and close the gaps, submit the PURGE statement.
Note that the PURGE statement deletes any indexes associated with a data set. Here
is the statement:

> purge;

Creating a SAS Data Set from a Matrix
SAS/IML software provides the capability to create a new SAS data set from a matrix.
You can use the CREATE and APPEND statements to create a SAS data set from a
matrix, where the columns of the matrix become the data set variables and the rows
of the matrix become the observations. Thus, an n×m matrix produces a SAS data
set withm variables and n observations. The CREATE statement opens the new SAS
data set for both input and output, and the APPEND statement writes to (outputs to)
the data set.

Using the CREATE Statement with the FROM Option

You can create a SAS data set from a matrix by using the CREATE statement with
the FROM option. This form of the CREATE statement is as follows:

Using the CREATE Statement with the FROM Option � 107

CREATE SAS-data-set FROM matrix

< [COLNAME=column-name ROWNAME=row-name] > ;

where

SAS-data-set names the new data set.

matrix names the matrix containing the data.

column-name names the variables in the data set.

row-name adds a variable containing row titles to the data set.

Suppose you want to create a SAS data set named RATIO containing a variable with
the height-to-weight ratios for each student. You first create a matrix containing the
ratios from the matrices HEIGHT and WEIGHT that you have already defined.
Next, use the CREATE and APPEND statements to open a new SAS data set called
RATIO and append the observations, naming the data set variable HTWT instead of
COL1.

htwt=height/weight;
create ratio from htwt[colname=’htwt’];
append from htwt;

Now submit the SHOW DATASETS and SHOW CONTENTS statements:

> show datasets;

LIBNAME MEMNAME OPEN MODE STATUS
------- ------- --------- ------
WORK .CLASS Update
WORK .RATIO Update Current Input Current Output

> show contents;

VAR NAME TYPE SIZE
HTWT NUM 8
Number of Variables: 1
Number of Observations: 18

> close ratio;

As you can see, the new SAS data set RATIO has been created. It has 18 observations
and 1 variable (recall that you deleted 1 observation earlier).

108 � Chapter 6. Working with SAS Data Sets

Using the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables you
want to include in the new data set. In the previous example, the new data set RATIO
had one variable. If you want to create a similar data set but include the second
variable NAME, you use the VAR clause. You could not do this with the FROM
option because the variable HTWT is numeric and the variable NAME is character.
The following statements create a new data set RATIO2 having the variables NAME
and HTWT:

> create ratio2 var{name htwt};
> append;
> show contents;

VAR NAME TYPE SIZE
NAME CHAR 8
HTWT NUM 8
Number of Variables: 2
Number of Observations: 18

> close ratio2;

Notice that now the variable NAME is in the data set.

Understanding the End-of-File Condition
If you try to read past the end of a data set or point to an observation greater than
the number of observations in the data set, you create an end-of-file condition. If an
end-of-file condition occurs inside a DO DATA iteration group, IML transfers control
to the next statement outside the current DO DATA group.

The following example uses a DO DATA loop while reading the CLASS data set. It
reads the variable WEIGHT in one observation at a time and accumulates the weights
of the students in the IML matrix SUM. When the data are read, the total class weight
is stored in the matrix SUM.

setin class point 0;
sum=0;
do data;

read next var{weight};
sum=sum+weight;

end;
print sum;

Producing Summary Statistics
Summary statistics on the numeric variables of a SAS data set can be obtained with
the SUMMARY statement. These statistics can be based on subgroups of the data by
using the CLASS clause in the SUMMARY statement. The SAVE option in the OPT

Sorting a SAS Data Set � 109

clause enables you to save the computed statistics in matrices for later perusal. For
example, consider the following statement.

> summary var {height weight} class {sex} stat{mean std} opt{save};

SEX Nobs Variable MEAN STD
--
F 9 HEIGHT 60.58889 5.01833

WEIGHT 90.11111 19.38391

M 9 HEIGHT 64.45556 4.90742
WEIGHT 110.00000 23.84717

All 18 HEIGHT 62.52222 5.20978
WEIGHT 100.05556 23.43382

--

This summary statement gives the mean and standard deviation of the variables
HEIGHT and WEIGHT for the two subgroups (male and female) of the data set
CLASS. Since the SAVE option is set, the statistics of the variables are stored in
matrices under the name of the corresponding variables, with each column corre-
sponding to a statistic requested and each row corresponding to a subgroup. Two
other vectors, SEX and –NOBS–, are created. The vector SEX contains the two dis-
tinct values of the CLASS variable SEX used in forming the two subgroups. The
vector –NOBS– has the number of observations in each subgroup.

Note that the combined means and standard deviations of the two subgroups are dis-
played but not saved.

More than one CLASS variable can be used, in which case a subgroup is defined by
the combination of the values of the CLASS variables.

Sorting a SAS Data Set
The observations in a SAS data set can be ordered (sorted) by specific key variables.
To sort a SAS data set, close the data set if it is currently open, and issue a SORT
statement for the variables by which you want the observations to be ordered. Specify
an output data set name if you want to keep the original data set. For example, the
following statement creates a new SAS data set named SORTED:

> sort class out=sorted by name;

The new data set has the observations from the data set CLASS, ordered by the
variable NAME.

The following statement sorts in place the data set CLASS by the variable NAME:

> sort class by name;

110 � Chapter 6. Working with SAS Data Sets

However, when the SORT statement is finished executing, the original data set is
replaced by the sorted data set.

You can specify as many key variables as needed, and, optionally, each variable can
be preceded by the keyword DESCENDING, which denotes that the variable that
follows is to be sorted in descending order.

Indexing a SAS Data Set
Searching through a large data set for information about one or more specific ob-
servations can take a long time because the procedure must read each record. You
can reduce this search time by first indexing the data set by a variable. The INDEX
statement builds a special companion file containing the values and record numbers
of the indexed variables. Once the index is built, IML can use the index for queries
with WHERE clauses if it decides that indexed retrieval is more efficient. Any num-
ber of variables can be indexed, but only one index is in use at a given time. Note
that purging a data set with the PURGE statement results in the loss of all associated
indexes.

Once you have indexed a data set, IML can use this index whenever a search is con-
ducted with respect to the indexed variables. The indexes are updated automatically
whenever you change values in indexed variables. When an index is in use, observa-
tions cannot be randomly accessed by their physical location numbers. This means
that the POINT range cannot be used when an index is in effect. However, if you
purge the observations marked for deletion, or sort the data set in place, the indexes
become invalid and IML automatically deletes them.

For example, if you want a list of all female students in the CLASS data set, you
can first index CLASS by the variable SEX. Then use the LIST statement with a
WHERE clause. Of course, the CLASS data set is small, and indexing does little if
anything to speed queries with the WHERE clause. If the data set had thousands of
students, though, indexing could save search time.

To index the data set by the variable SEX, submit the following statement:

> index sex;

NOTE: Variable SEX indexed.
NOTE: Retrieval by SEX.

Now list all students by using the following statement. Notice the ordering of the
special file built by indexing by the variable SEX. Retrievals by SEX will be quick.

> list all;

OBS NAME SEX AGE HEIGHT WEIGHT
------ -------- -------- --------- --------- ---------

1 JOYCE F 11.0000 51.3000 50.5000
4 JANE F 12.0000 59.8000 84.5000
6 LOUISE F 12.0000 56.3000 77.0000

Summary of Commands � 111

8 ALICE F 13.0000 56.5000 84.0000
9 BARBARA F 13.0000 65.3000 98.0000

11 CAROL F 14.0000 62.8000 102.5000
14 JUDY F 14.0000 64.3000 90.0000
15 JANET F 15.0000 62.5000 112.5000
16 MARY F 15.0000 66.5000 112.0000
2 THOMAS M 11.0000 57.5000 85.0000
3 JAMES M 12.0000 57.3000 83.0000
7 ROBERT M 12.0000 64.8000 128.0000

10 JEFFREY M 13.0000 62.5000 84.0000
12 HENRY M 15.0000 63.5000 102.5000
13 ALFRED M 14.0000 69.0000 112.5000
17 RONALD M 15.0000 67.0000 133.0000
18 WILLIAM M 15.0000 66.5000 112.0000
19 PHILIP M 16.0000 72.0000 150.0000

Data Set Maintenance Functions
Two functions and two subroutines are provided to perform data set mainte-
nance:

DATASETS function obtains members in a data library. This function returns a
character matrix containing the names of the SAS data sets
in a library.

CONTENTS function obtains variables in a member. This function returns a
character matrix containing the variable names for the SAS
data set specified by libname and memname. The variable
list is returned in alphabetical order.

RENAME subroutine renames a SAS data set member in a specified library.

DELETE subroutine deletes a SAS data set member in a specified library.

See Chapter 20 for details and examples of these functions and routines.

Summary of Commands
You have seen that IML has an extensive set of commands that operate on SAS data
sets. Table 6.1 summarizes the data management commands you can use to perform
management tasks for which you might normally use the SAS DATA step.

Table 6.1. Data Management Commands

Command Action
APPEND adds observations to the end of a SAS data set
CLOSE closes a SAS data set
CREATE creates and opens a new SAS data set for input and output
DELETE marks observations for deletion in a SAS data set
EDIT opens an existing SAS data set for input and output
FIND finds observations

112 � Chapter 6. Working with SAS Data Sets

INDEX indexes variables in a SAS data set
LIST lists observations
PURGE purges all deleted observations from a SAS data set
READ reads observations into IML variables
REPLACE writes observations back into a SAS data set
RESET DEFLIB names default libname
SAVE saves changes and reopens a SAS data set
SETIN selects an open SAS data set for input
SETOUT selects an open SAS data set for output
SHOW CONTENTS shows contents of the current input SAS data set
SHOW DATASETS shows SAS data sets currently open
SORT sorts a SAS data set
SUMMARY produces summary statistics for numeric variables
USE opens an existing SAS data set for input

Comparison with the SAS DATA Step
If you want to remain in the IML environment and mimic DATA step processing, you
need to learn the basic differences between IML and the SAS DATA step:

• With SAS/IML software, you start with a CREATE statement instead of a
DATA statement. You must explicitly set up all your variables with the cor-
rect attributes before you create a data set. This means that you must define
character variables to have the desired string length beforehand. Numeric vari-
ables are the default, so any variable not defined as character is assumed to be
numeric. In the DATA step, the variable attributes are determined from context
across the whole step.

• With SAS/IML software, you must use an APPEND statement to output an
observation; in the DATA step, you either use an OUTPUT statement or let the
DATA step output it automatically.

• With SAS/IML software, you iterate with a DO DATA loop. In the DATA step,
the iterations are implied.

• With SAS/IML software, you have to close the data set with a CLOSE state-
ment unless you plan to exit the IML environment with a QUIT statement. The
DATA step closes the data set automatically at the end of the step.

• The DATA step usually executes faster than IML.

In short, the DATA step treats the problem with greater simplicity, allowing shorter
programs. However, IML has more flexibility because it is interactive and has a
powerful matrix-handling capability.

Summary � 113

Summary
In this chapter, you have learned many ways to interact with SAS data sets from
within the IML environment. You learned how to open and close a SAS data set, how
to make it current for input and output, how to list observations by specifying a range
of observations to process, a set of variables to use, and a condition for subsetting
observations. You also learned summary statistics. You also know how to read obser-
vations and variables from a SAS data set into matrices as well as create a SAS data
set from a matrix of values.

114

Chapter 7
File Access

Chapter Contents

OVERVIEW . 117

REFERRING TO AN EXTERNAL FILE 117
Types of External Files . 118

READING FROM AN EXTERNAL FILE 119
Using the INFILE Statement . 119
Using the INPUT Statement . 120

WRITING TO AN EXTERNAL FILE . 127
Using the FILE Statement . 128
Using the PUT Statement . 128
Examples . 129

LISTING YOUR EXTERNAL FILES . 131

CLOSING AN EXTERNAL FILE . 131

SUMMARY . 131

116

Chapter 7
File Access
Overview

In this chapter you learn about external files and how to refer to an external file,
whether it is a text file or a binary file. You learn how to read data from a file by using
the INFILE and INPUT statements and how to write data to an external file by using
the FILE and PUT statements.

With external files, you must know the format in which the data are stored or to
be written. This is in contrast to SAS data sets, which are specialized files with a
structure that is already known to the SAS System.

The Interactive Matrix Language statements used to access files are very similar to
the corresponding statements in the SAS DATA step. The following table summarizes
the IML statements and their functions.

Statement Function
CLOSEFILE closes an external file
FILE opens an external file for output
INFILE opens an external file for input
INPUT reads from the current input file
PUT writes to the current output file
SHOW: FILES shows all open files, their attributes, and their status

(current input and output files)

Referring to an External File
Suppose that you have data for students in a class. You have recorded the values
for the variables NAME, SEX, AGE, HEIGHT, and WEIGHT for each student and
have stored the data in an external text file named USER.TEXT.CLASS. If you want
to read these data into IML variables, you need to indicate where the data are stored.
In other words, you need to name the input file. If you want to write data from
matrices to a file, you also need to name an output file.

There are two ways to refer to an input or output file: a pathname and a filename. A
pathname is the name of the file as it is known to the operating system. A filename is
an indirect SAS reference to the file made by using the FILENAME statement. You
can identify a file in either way by using the FILE and INFILE statements.

For example, you can refer to the input file where the class data are stored by using
a literal pathname—that is, a quoted string. The following statement opens the file
USER.TEXT.CLASS for input:

118 � Chapter 7. File Access

infile ’user.text.class’;

Similarly, if you want to output data to the file USER.TEXT.NEWCLASS, you need
to reference the output file with the following statement:

file ’user.text.newclass’;

You can also refer to external files by using a filename. When using a filename as
the operand, simply give the name. The name must be one already associated with a
pathname by a previously issued FILENAME statement.

For example, suppose you want to reference the file with the class data by using a
FILENAME statement. First, you must associate the pathname with an alias (called
a fileref), such as INCLASS. Then you can refer to USER.TEXT.CLASS with the
fileref INCLASS.

The following statements achieve the same result as the previous INFILE statement
with the quoted pathname:

filename inclass ’user.text.class’;
infile inclass;

You can use the same technique for output files. The following statements have the
same effect as the previous FILE statement:

filename outclass ’user.text.newclass’;
file outclass;

Three filenames have special meaning to IML: CARDS, LOG, and PRINT. These
refer to the standard input and output streams for all SAS sessions, as follows:

CARDS is a special filename for instream input data.

LOG is a special filename for log output.

PRINT is a special filename for standard print output.

When the pathname is specified, there is a limit of 64 characters to the operand.

Types of External Files

Most files that you work with are text files, which means that they can be edited
and displayed without any special program. Text files under most host environments
have special characters, called carriage-control characters or end-of-line characters,
to separate one record from the next.

If your file does not adhere to these conventions, it is called a binary file. Typically,
binary files do not have the usual record separators, and they can use any binary
codes, including unprintable control characters. If you want to read a binary file, you

Using the INFILE Statement � 119

must specify RECFM=N in the INFILE statement and use the byte operand (<) in the
INPUT statement to specify the length of each item you want read. Treating a file as
binary enables you to have direct access to a file position by byte address by using
the byte operand (>) in the INPUT or PUT statement.

You write data to an external file by using the FILE and PUT statements. The output
file can be text or binary. If your output file is binary, you must specify RECFM=N
in the FILE statement. One difference between binary files and text files in output is
that with binary files, the PUT statement does not put the record-separator characters
at the end of each record written.

Reading from an External File
After you have chosen a method to refer to the external file you want to read, you
need an INFILE statement to open it for input and an INPUT statement to tell IML
how to read the data.

The next several sections cover how to use an INFILE statement and how to specify
an INPUT statement so that you can input data from an external file.

Using the INFILE Statement
An INFILE statement identifies an external file containing data that you want to read.
It opens the file for input or, if the file is already open, makes it the current input file.
This means that subsequent INPUT statements are read from this file until another
file is made the current input file.

The following options can be used with the INFILE statement:

FLOWOVER
enables the INPUT statement to go to the next record to obtain values for the vari-
ables.

LENGTH=variable
names a variable containing the length of the current record, where the value is set to
the number of bytes used after each INPUT statement.

MISSOVER
prevents reading from the next input record when an INPUT statement reaches the
end of the current record without finding values for all variables. It assigns missing
values to all values that are expected but not found.

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record-separator characters. You must use the byte operands (< and >) to get new
records rather than separate INPUT statements or the new line operator (/).

STOPOVER
stops reading when an INPUT statement reaches the end of the current record without
finding values for all variables in the statement. It treats going past the end of a record
as an error condition, triggering an end-of-file condition. The STOPOVER option is
the default.

120 � Chapter 7. File Access

The FLOWOVER, MISSOVER, and STOPOVER options control how the INPUT
statement works when you try to read past the end of a record. You can specify
only one of these options. Read these options carefully so that you understand them
completely.

The following example uses the INFILE statement with a FILENAME statement to
read the class data file. The MISSOVER option is used to prevent reading from the
next record if values for all variables in the INPUT statement are not found.

filename inclass ’user.text.class’;
infile inclass missover;

You can specify the pathname with a quoted literal also. The preceding statements
could be written as follows:

infile ’user.text.class’ missover;

Using the INPUT Statement

Once you have referenced the data file containing your data with an INFILE state-
ment, you need to tell IML the following information about how the data are arranged:

• the number of variables and their names

• each variable’s type, either numeric or character

• the format of each variable’s values

• the columns that correspond to each variable

In other words, you must tell IML how to read the data.

The INPUT statement describes the arrangement of values in an input record. The
INPUT statement reads records from a file specified in the previously executed
INFILE statement, reading the values into IML variables.

There are two ways to describe a record’s values in an IML INPUT statement:

• list (or scanning) input

• formatted input

Following are several examples of valid INPUT statements for the class data file,
depending, of course, on how the data are stored.

If the data are stored with a blank or a comma between fields, then list input can be
used. For example, the INPUT statement for the class data file might look as follows:

infile inclass;
input name $ sex $ age height weight;

These statements tell IML the following:

Using the INPUT Statement � 121

• There are five variables: NAME, SEX, AGE, HEIGHT and WEIGHT.

• Data fields are separated by commas or blanks.

• NAME and SEX are character variables, as indicated by the dollar sign ($).

• AGE, HEIGHT, and WEIGHT are numeric variables, the default.

The data must be stored in the same order in which the variables are listed in the
INPUT statement. Otherwise, you can use formatted input, which is column spe-
cific. Formatted input is the most flexible and can handle any data file. Your INPUT
statement for the class data file might look as follows:

infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0

@20 height 4.1 @25 weight 5.1;

These statements tell IML the following:

• NAME is a character variable; its value begins in column 1 (indicated by @1)
and occupies eight columns ($CHAR8.).

• SEX is a character variable; its value is found in column 10 ($CHAR1.).

• AGE is a numeric variable; its value is found in columns 15 and 16 and has no
decimal places (2.0).

• HEIGHT is a numeric variable found in columns 20 through 23 with one dec-
imal place implied (4.1).

• WEIGHT is a numeric variable found in columns 25 through 29 with one dec-
imal place implied (5.1).

The next sections discuss these two modes of input.

List Input

If your data are recorded with a comma or one or more blanks between data fields,
you can use list input to read your data. If you have missing values—that is, unknown
values—they must be represented by a period (.) rather than a blank field.

When IML looks for a value, it skips past blanks and tab characters. Then it scans
for a delimiter to the value. The delimiter is a blank, a comma, or the end of the
record. When the ampersand (&) format modifier is used, IML looks for two blanks,
a comma, or the end of the record.

The general form of the INPUT statement for list input is as follows:

INPUT variable < $ > < & > < . . .variable < $ > < & > > ;

where

variable names the variable to be read by the INPUT statement.

$ indicates that the preceding variable is character.

122 � Chapter 7. File Access

& indicates that a character value can have a single embedded blank.
Because a blank normally indicates the end of a data value, use the am-
persand format modifier to indicate the end of the value with at least two
blanks or a comma.

With list input, IML scans the input lines for values. Consider using list input in the
following cases:

• when blanks or commas separate input values

• when periods rather than blanks represent missing values

List input is the default in several situations. Descriptions of these situations and the
behavior of IML follow:

• If no input format is specified for a variable, IML scans for a number.

• If a single dollar sign or ampersand format modifier is specified, IML scans for
a character value. The ampersand format modifier enables single embedded
blanks to occur.

• If a format is given with width unspecified or zero, IML scans for the first blank
or comma.

If the end of a record is encountered before IML finds a value, then the behavior is
as described by the record overflow options in the INFILE statement discussed in the
section “Using the INFILE Statement” on page 119.

When you read with list input, the order of the variables listed in the INPUT statement
must agree with the order of the values in the data file. For example, consider the
following data:

Alice f 10 61 97
Beth f 11 64 105
Bill m 12 63 110

You can use list input to read these data by specifying the following INPUT statement:

input name $ sex $ age height weight;

Note: This statement implies that the variables are stored in the order given. That is,
each line of data contains a student’s name, sex, age, height, and weight in that order
and separated by at least one blank or by a comma.

Formatted Input

The alternative to list input is formatted input. An INPUT statement reading format-
ted input must have a SAS informat after each variable. An informat gives the data
type and field width of an input value. Formatted input can be used with pointer con-
trols and format modifiers. Note, however, that neither pointer controls nor format
modifiers are necessary for formatted input.

Using the INPUT Statement � 123

Pointer Control Features

Pointer controls reset the pointer’s column and line positions and tell the INPUT
statement where to go to read the data value. You use pointer controls to specify the
columns and lines from which you want to read:

• Column pointer controls move the pointer to the column you specify.

• Line pointer controls move the pointer to the next line.

• Line hold controls keep the pointer on the current input line.

• Binary file indicator controls indicate that the input line is from a binary file.

Column Pointer Controls

Column pointer controls indicate in which column an input value starts. Column
pointer controls begin with either an at sign (@) or a plus sign (+). A complete list
follows:

@n moves the pointer to column n.

@point-variable moves the pointer to the column given by the current value of
point-variable.

@(expression) moves the pointer to the column given by the value of the expres-
sion. The expression must evaluate to a positive integer.

+n moves the pointer n columns.

+point-variable moves the pointer the number of columns given by the value of
point-variable.

+(expression) moves the pointer the number of columns given by the value of
expression. The value of expression can be positive or negative.

Here are some examples of using column pointer controls:

Example Meaning
@12 go to column 12
@N go to the column given by the value of N
@(N−1) go to the column given by the value of N−1
+5 skip 5 spaces
+N skip N spaces
+(N+1) skip N+1 spaces

In the earlier example that used formatted input, you used several pointer controls.
Here are the statements:

infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0

@20 height 4.1 @25 weight 5.1;

124 � Chapter 7. File Access

The @1 moves the pointer to column 1, the @10 moves it to column 10, and so on.
You move the pointer to the column where the data field begins and then supply an
informat specifying how many columns the variable occupies. The INPUT statement
could also be written as follows:

input @1 name $char8. +1 sex $char1. +4 age 2. +3 height 4.1
+1 weight 5.1;

In this form, you move the pointer to column 1 (@1) and read eight columns. The
pointer is now at column 9. Now, move the pointer +1 columns to column 10 to read
SEX. The $char1. informat says to read a character variable occupying one column.
After you read the value for SEX, the pointer is at column 11, so move it to column
15 with +4 and read AGE in columns 15 and 16 (the 2. informat). The pointer is
now at column 17, so move +3 columns and read HEIGHT. The same idea applies
for reading WEIGHT.

Line Pointer Control

The line pointer control (/) directs IML to skip to the next line of input. You need
a line pointer control when a record of data takes more than one line. You use the
new line pointer control (/) to skip to the next line and continue reading data. In the
example reading the class data, you do not need to skip a line because each line of
data contains all the variables for a student.

Line Hold Control

The trailing at sign (@), when at the end of an INPUT statement, directs IML to
hold the pointer on the current record so that you can read more data with subsequent
INPUT statements. You can use it to read several records from a single line of data.
Sometimes, when a record is very short—say, 10 columns or so—you can save space
in your external file by coding several records on the same line.

Binary File Indicator Controls

When the external file you want to read is a binary file (RECFM=N is specified in the
INFILE statement), you must tell IML how to read the values by using the following
binary file indicator controls:

>n start reading the next record at the byte position n in the file.

>point-variable start reading the next record at the byte position in the file given by
point-variable.

>(expression) start reading the next record at the byte position in the file given by
expression.

<n read the number of bytes indicated by the value of n.

<point-variable read the number of bytes indicated by the value of point-variable.

<(expression) read the number of bytes indicated by the value of expression.

Using the INPUT Statement � 125

Pattern Searching

You can have the input mechanism search for patterns of text by using the at sign
(@) with a character operand. IML starts searching at the current position, advances
until it finds the pattern, and leaves the pointer at the position immediately after the
found pattern in the input record. For example, the following statement searches for
the pattern NAME= and then uses list input to read the value after the found pattern:

input @ ’NAME=’ name $;

If the pattern is not found, then the pointer is left past the end of the record,
and the rest of the INPUT statement follows the conventions based on the options
MISSOVER, STOPOVER, and FLOWOVER described in the section “Using the
INFILE Statement” on page 119. If you use pattern searching, you usually specify
the MISSOVER option so that you can control for the occurrences of the pattern not
being found.

Notice that the MISSOVER feature enables you to search for a variety of items in
the same record, even if some of them are not found. For example, the following
statements are able to read in the ADDR variable even if NAME= is not found (in
which case, NAME is unvalued):

infile in1 missover;
input @1 @ "NAME=" name $

@1 @ "ADDR=" addr &
@1 @ "PHONE=" phone $;

The pattern operand can use any characters except for the following:

% $ [] { } < > − ? * # @ ˆ ` (backquote)

Record Directives

Each INPUT statement goes to a new record except in the following special cases:

• An at sign (@) at the end of an INPUT statement specifies that the record is to
be held for future INPUT statements.

• Binary files (RECFM=N) always hold their records until the > directive.

As discussed in the syntax of the INPUT statement, the line pointer operator (/)
instructs the input mechanism to go immediately to the next record. For binary
(RECFM=N) files, the > directive is used instead of the /.

126 � Chapter 7. File Access

Blanks

For character values, the informat determines the way blanks are interpreted. For
example, the $CHARw. format reads blanks as part of the whole value, while the
BZw. format turns blanks into 0s. See SAS Language Reference: Dictionary for
more information about informats.

Missing Values

Missing values in formatted input are represented by blanks or a single period for a
numeric value and by blanks for a character value.

Matrix Use

Data values are either character or numeric. Input variables always result in scalar
(one row by one column) values with type (character or numeric) and length deter-
mined by the input format.

End-of-File Condition

End of file is the condition of trying to read a record when there are no more records
to read from the file. The consequences of an end-of-file condition are described as
follows.

• All the variables in the INPUT statement that encountered end of file are freed
of their values. You can use the NROW or NCOL function to test if this has
happened.

• If end of file occurs inside a DO DATA loop, execution is passed to the state-
ment after the END statement in the loop.

For text files, end of file is encountered first as the end of the last record. The next
time input is attempted, the end-of-file condition is raised.

For binary files, end of file can result in the input mechanism returning a record that is
shorter than the requested length. In this case IML still attempts to process the record,
using the rules described in the section “Using the INFILE Statement” on page 119.

The DO DATA mechanism provides a convenient mechanism for handling end of file.

For example, to read the class data from the external file USER.TEXT.CLASS into a
SAS data set, you need to perform the following steps:

1. Establish a fileref referencing the data file.

2. Use an INFILE statement to open the file for input.

3. Initialize any character variables by setting the length.

4. Create a new SAS data set with a CREATE statement. You want to list the
variables you plan to input in a VAR clause.

5. Use a DO DATA loop to read the data one line at a time.

6. Write an INPUT statement telling IML how to read the data.

Writing to an External File � 127

7. Use an APPEND statement to add the new data line to the end of the new SAS
data set.

8. End the DO DATA loop.

9. Close the new data set.

10. Close the external file with a CLOSEFILE statement.

Your statements should look as follows:

filename inclass ’user.text.class’;
infile inclass missover;
name="12345678";
sex="1";
create class var{name sex age height weight};
do data;

input name $ sex $ age height weight;
append;

end;
close class;
closefile inclass;

Note that the APPEND statement is not executed if the INPUT statement reads past
the end of file since IML escapes the loop immediately when the condition is encoun-
tered.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported in IML:

• The pound sign (#) directive supporting multiple current records is not sup-
ported.

• Grouping parentheses are not supported.

• The colon (:) format modifier is not supported.

• The byte operands (< and >) are new features supporting binary files.

• The ampersand (&) format modifier causes IML to stop reading data if a
comma is encountered. Use of the ampersand format modifier is valid with
list input only.

• The RECFM=F option is not supported.

Writing to an External File
If you have data in matrices and you want to write these data to an external file, you
need to reference, or point to, the file (as discussed in the section “Referring to an
External File” on page 117. The FILE statement opens the file for output so that you
can write data to it. You need to specify a PUT statement to direct how the data are
output. These two statements are discussed in the following sections.

128 � Chapter 7. File Access

Using the FILE Statement

The FILE statement is used to refer to an external file. If you have values stored in
matrices, you can write these values to a file. Just as with the INFILE statement, you
need a fileref to point to the file you want to write to. You use a FILE statement to
indicate that you want to write to rather than read from a file.

For example, if you want to output to the file USER.TEXT.NEWCLASS, you can
specify the file with a quoted literal pathname. Here is the statement:

> file ’user.text.newclass’;

Otherwise, you can first establish a fileref and then refer to the file by its fileref, as
follows:

> filename outclass ’user.text.class’;
> file outclass;

There are two options you can use in the FILE statement:

RECFM=N specifies that the file is to be written as a pure binary file with-
out record-separator characters.

LRECL=operand specifies the size of the buffer to hold the records.

The FILE statement opens a file for output or, if the file is already open, makes it
the current output file so that subsequent PUT statements write to the file. The FILE
statement is similar in syntax and operation to the INFILE statement.

Using the PUT Statement

The PUT statement writes lines to the SAS log, to the SAS output file, or to any
external file specified in a FILE statement. The file associated with the most recently
executed FILE statement is the current output file.

You can use the following arguments with the PUT statement:

variable names the IML variable with a value that is put to the current
pointer position in the record. The variable must be scalar valued.
The put variable can be followed immediately by an output format.

literal gives a literal to be put to the current pointer position in the record.
The literal can be followed immediately by an output format.

(expression) must produce a scalar-valued result. The expression can be imme-
diately followed by an output format.

format names the output formats for the values.

pointer-control moves the output pointer to a line or column.

Examples � 129

Pointer Control Features
Most PUT statements need the added flexibility obtained with pointer controls. IML
keeps track of its position on each output line with a pointer. With specifications in
the PUT statement, you can control pointer movement from column to column and
line to line. The pointer controls available are discussed in the section “Using the
INPUT Statement” on page 120.

Differences with the SAS DATA Step
If you are familiar with the SAS DATA step, you will notice that the following fea-
tures are supported differently or are not supported:

• The pound sign (#) directive supporting multiple current records is not sup-
ported.

• Grouping parentheses are not supported.

• The byte operands (< and >) are a new feature supporting binary files.

Examples
Writing a Matrix to an External File

If you have data stored in an n ×m matrix and you want to output the values to an
external file, you need to write out the matrix element by element.

For example, suppose you have a matrix X containing data that you want written to
the file USER.MATRIX. Suppose also that X contains 1s and 0s so that the format
for output can be one column. You need to do the following:

1. Establish a fileref, such as OUT.

2. Use a FILE statement to open the file for output.

3. Specify a DO loop for the rows of the matrix.

4. Specify a DO loop for the columns of the matrix.

5. Use a PUT statement to specify how to write the element value.

6. End the inner DO loop.

7. Skip a line.

8. End the outer DO loop.

9. Close the file.

Your statements should look as follows:

filename out ’user.matrix’;
file out;

do i=1 to nrow(x);
do j=1 to ncol(x);

put (x[i,j]) 1.0 +2 @;
end;
put;

end;
closefile out;

130 � Chapter 7. File Access

The output file contains a record for each row of the matrix. For example, if your
matrix is 4× 4, then the file might look as follows:

1 1 0 1
1 0 0 1
1 1 1 0
0 1 0 1

Quick Printing to the PRINT File

You can use the FILE PRINT statement to route output to the standard print file. The
following statements generate data that are output to the PRINT file:

> file print;
> do a=0 to 6.28 by .2;
> x=sin(a);
> p=(x+1)#30;
> put @1 a 6.4 +p x 8.4;
> end;

Here is the resulting output:

0.0000 0.0000
0.2000 0.1987
0.4000 0.3894
0.6000 0.5646
0.8000 0.7174
1.0000 0.8415
1.2000 0.9320
1.4000 0.9854
1.6000 0.9996
1.8000 0.9738
2.0000 0.9093
2.2000 0.8085
2.4000 0.6755
2.6000 0.5155
2.8000 0.3350
3.0000 0.1411
3.2000 -0.0584
3.4000 -0.2555
3.6000 -0.4425
3.8000 -0.6119
4.0000 -0.7568
4.2000 -0.8716
4.4000 -0.9516
4.6000 -0.9937
4.8000 -0.9962
5.0000 -0.9589
5.2000 -0.8835
5.4000 -0.7728
5.6000 -0.6313
5.8000 -0.4646
6.0000 -0.2794
6.2000 -0.0831

Summary � 131

Listing Your External Files
To list all open files and their current input or current output status, use the SHOW
FILES statement.

Closing an External File
The CLOSEFILE statement closes files opened by an INFILE or FILE statement. You
specify the CLOSEFILE statement just as you do the INFILE or FILE statement. For
example, the following statements open the external file USER.TEXT.CLASS for
input and then close it:

filename in ’user.text.class’;
infile in;
closefile in;

Summary
In this chapter, you learned how to refer to, or point to, an external file by using a
FILENAME statement. You can use the FILENAME statement whether you want to
read from or write to an external file. The file can also be referenced by a quoted
literal pathname. You also learned about the difference between a text file and a
binary file.

You learned how to read data from an external file with the INFILE and INPUT state-
ments, using either list or formatted input. You learned how to write your matrices to
an external file by using the FILE and PUT statements. Finally, you learned how to
close your files.

132

Chapter 8
General Statistics Examples

Chapter Contents

OVERVIEW . 135

GENERAL STATISTICS EXAMPLES . 135
Example 8.1. Correlation . 135
Example 8.2. Newton’s Method for Solving Nonlinear Systems of Equations 136
Example 8.3. Regression . 138
Example 8.4. Alpha Factor Analysis . 140
Example 8.5. Categorical Linear Models 142
Example 8.6. Regression of Subsets of Variables 145
Example 8.7. Response Surface Methodology 153
Example 8.8. Logistic and Probit Regression for Binary Response Models . 155
Example 8.9. Linear Programming . 159
Example 8.10. Quadratic Programming . 163
Example 8.11. Regression Quantiles . 165
Example 8.12. Simulations of a Univariate ARMA Process 169
Example 8.13. Parameter Estimation for a Regression Model with ARMA

Errors . 171
Example 8.14. Iterative Proportional Fitting 177
Example 8.15. Full-Screen Nonlinear Regression 179

REFERENCES . 184

134

Chapter 8
General Statistics Examples
Overview

SAS/IML software has many linear operators that perform high-level operations com-
monly needed in applying linear algebra techniques to data analysis. The similarity
of the Interactive Matrix Language notation and matrix algebra notation makes trans-
lation from algorithm to program a straightforward task. The examples in this chapter
show a variety of matrix operators at work.

You can use these examples to gain insight into the more complex problems you
might need to solve. Some of the examples perform the same analyses as performed
by procedures in SAS/STAT software and are not meant to replace them. The exam-
ples are included as learning tools.

General Statistics Examples

Example 8.1. Correlation

The following statements define modules to compute correlation coefficients between
numeric variables and standardized values for a set of data:

/* Module to compute correlations */
start corr;

n=nrow(x); /* number of observations */
sum=x[+,] ; /* compute column sums */
xpx=t(x)*x-t(sum)*sum/n; /* compute sscp matrix */
s=diag(1/sqrt(vecdiag(xpx))); /* scaling matrix */
corr=s*xpx*s; /* correlation matrix */
print "Correlation Matrix",,corr[rowname=nm colname=nm] ;

finish corr;

/* Module to standardize data */
start std;

mean=x[+,] /n; /* means for columns */
x=x-repeat(mean,n,1); /* center x to mean zero */
ss=x[##,] ; /* sum of squares for columns */
std=sqrt(ss/(n-1)); /* standard deviation estimate*/
x=x*diag(1/std); /* scaling to std dev 1 */
print ,"Standardized Data",,X[colname=nm] ;

finish std;

136 � Chapter 8. General Statistics Examples

/* Sample run */
x = { 1 2 3,

3 2 1,
4 2 1,
0 4 1,
24 1 0,
1 3 8};

nm={age weight height};
run corr;
run std;

The results are shown in Output 8.1.1.

Output 8.1.1. Correlation Coefficients and Standardized Values

Correlation Matrix

CORR
AGE WEIGHT HEIGHT

AGE 1 -0.717102 -0.436558
WEIGHT -0.717102 1 0.3508232
HEIGHT -0.436558 0.3508232 1

Standardized Data

X
AGE WEIGHT HEIGHT

-0.490116 -0.322749 0.2264554
-0.272287 -0.322749 -0.452911
-0.163372 -0.322749 -0.452911
-0.59903 1.6137431 -0.452911
2.0149206 -1.290994 -0.792594
-0.490116 0.6454972 1.924871

Example 8.2. Newton’s Method for Solving Nonlinear Systems
of Equations

This example solves a nonlinear system of equations by Newton’s method. Let the
nonlinear system be represented by

F (x) = 0

where x is a vector and F is a vector-valued, possibly nonlinear function.

In order to find x such that F goes to 0, an initial estimate x0 is chosen, and Newton’s
iterative method for converging to the solution is used:

xn+1 = xn − J−1(xn)F (xn)

Example 8.2. Newton’s Method for Solving Nonlinear Systems of Equations � 137

where J(x) is the Jacobian matrix of partial derivatives of F with respect to x.

For optimization problems, the same method is used, where F (x) is the gradient of
the objective function and J(x) becomes the Hessian (Newton-Raphson).

In this example, the system to be solved is

x1 + x2 − x1x2 + 2 = 0
x1 exp(−x2)− 1 = 0

The following statements are organized into three modules: NEWTON, FUN, and
DERIV.

/* Newton’s Method to Solve a Nonlinear Function */
/* The user must supply initial values, */
/* and the FUN and DERIV functions. */
/* On entry: FUN evaluates the function f in terms of x */
/* initial values are given to x */
/* DERIV evaluates jacobian j */
/* tuning variables: CONVERGE, MAXITER. */
/* On exit: solution in x, function value in f close to 0 */
/* ITER has number of iterations. */

start newton;
run fun; /* evaluate function at starting values */
do iter=1 to maxiter /* iterate until maxiter iterations */
while(max(abs(f))>converge); /* or convergence */

run deriv; /* evaluate derivatives in j */
delta=-solve(j,f); /* solve for correction vector */
x=x+delta; /* the new approximation */
run fun; /* evaluate the function */

end;
finish newton;

maxiter=15; /* default maximum iterations */
converge=.000001; /* default convergence criterion */

/* User-supplied function evaluation */
start fun;

x1=x[1] ;
x2=x[2] ; /* extract the values */
f= (x1+x2-x1*x2+2)//
(x1*exp(-x2)-1); /* evaluate the function */

finish fun;

/* User-supplied derivatives of the function */
start deriv;

/* evaluate jacobian */
j=((1-x2)||(1-x1))//(exp(-x2)||(-x1*exp(-x2)));

finish deriv;

do;

138 � Chapter 8. General Statistics Examples

print "Solving the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0" ,;
x={.1, -2}; /* starting values */
run newton;
print x f;

end;

The results are shown in Output 8.2.1.

Output 8.2.1. Newton’s Method: Results

The SAS System

Solving the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0

X F

0.0977731 5.3523E-9
-2.325106 6.1501E-8

Example 8.3. Regression
This example shows a regression module that calculates statistics not calculated by
the two previous examples. Here is the program.

/* Regression Routine */
/* Given X and Y, this fits Y = X B + E */
/* by least squares. */

start reg;
n=nrow(x); /* number of observations */
k=ncol(x); /* number of variables */
xpx=x‘*x; /* crossproducts */
xpy=x‘*y;
xpxi=inv(xpx); /* inverse crossproducts */
b=xpxi*xpy; /* parameter estimates */
yhat=x*b; /* predicted values */
resid=y-yhat; /* residuals */
sse=resid‘*resid; /* sum of squared errors */
dfe=n-k; /* degrees of freedom error */
mse=sse/dfe; /* mean squared error */
rmse=sqrt(mse); /* root mean squared error */
covb=xpxi#mse; /* covariance of estimates */
stdb=sqrt(vecdiag(covb)); /* standard errors */
t=b/stdb; /* ttest for estimates=0 */
probt=1-probf(t#t,1,dfe); /* significance probability */
print name b stdb t probt;
s=diag(1/stdb);
corrb=s*covb*s; /* correlation of estimates */
print ,"Covariance of Estimates", covb[r=name c=name] ,

"Correlation of Estimates",corrb[r=name c=name] ;

Example 8.3. Regression � 139

if nrow(tval)=0 then return; /* is a t value specified? */
projx=x*xpxi*x‘; /* hat matrix */
vresid=(i(n)-projx)*mse; /* covariance of residuals */
vpred=projx#mse; /* covariance of predicted values */
h=vecdiag(projx); /* hat leverage values */
lowerm=yhat-tval#sqrt(h*mse); /* low. conf. lim. for mean */
upperm=yhat+tval#sqrt(h*mse); /* upper limit for mean */
lower=yhat-tval#sqrt(h*mse+mse); /* lower limit for indiv */
upper=yhat+tval#sqrt(h*mse+mse); /* upper limit for indiv */
print ,,"Predicted Values, Residuals, and Limits" ,,
y yhat resid h lowerm upperm lower upper;

finish reg;

/* Routine to test a linear combination of the estimates */
/* given L, this routine tests hypothesis that LB = 0. */

start test;
dfn=nrow(L);
Lb=L*b;
vLb=L*xpxi*L‘;
q=Lb‘*inv(vLb)*Lb /dfn;
f=q/mse;
prob=1-probf(f,dfn,dfe);
print ,f dfn dfe prob;

finish test;

/* Run it on population of U.S. for decades beginning 1790 */

x= { 1 1 1,
1 2 4,
1 3 9,
1 4 16,
1 5 25,
1 6 36,
1 7 49,
1 8 64 };

y= {3.929,5.308,7.239,9.638,12.866,17.069,23.191,31.443};
name={"Intercept", "Decade", "Decade**2" };
tval=2.57; /* for 5 df at 0.025 level to get 95% conf. int. */
reset fw=7;
run reg;
do;

print ,"TEST Coef for Linear";
L={0 1 0 };
run test;
print ,"TEST Coef for Linear,Quad";
L={0 1 0,0 0 1};
run test;
print ,"TEST Linear+Quad = 0";
L={0 1 1 };
run test;

end;

140 � Chapter 8. General Statistics Examples

The results are shown in Output 8.3.1.

Output 8.3.1. Regression Results

NAME B STDB T PROBT

Intercept 5.06934 0.96559 5.24997 0.00333
Decade -1.1099 0.4923 -2.2546 0.07385
Decade**2 0.53964 0.0534 10.106 0.00016

COVB
Intercept Decade Decade**2

Intercept 0.93237 -0.4362 0.04277
Decade -0.4362 0.24236 -0.0257
Decade**2 0.04277 -0.0257 0.00285

CORRB
Intercept Decade Decade**2

Intercept 1 -0.9177 0.8295
Decade -0.9177 1 -0.9762
Decade**2 0.8295 -0.9762 1

Y YHAT RESID H LOWERM UPPERM LOWER UPPER

3.929 4.49904 -0.57 0.70833 3.00202 5.99606 2.17419 6.82389
5.308 5.00802 0.29998 0.27976 4.06721 5.94883 2.99581 7.02023
7.239 6.59627 0.64273 0.23214 5.73926 7.45328 4.62185 8.57069
9.638 9.26379 0.37421 0.27976 8.32298 10.2046 7.25158 11.276
12.866 13.0106 -0.1446 0.27976 12.0698 13.9514 10.9984 15.0228
17.069 17.8367 -0.7677 0.23214 16.9797 18.6937 15.8622 19.8111
23.191 23.742 -0.551 0.27976 22.8012 24.6828 21.7298 25.7542
31.443 30.7266 0.71638 0.70833 29.2296 32.2236 28.4018 33.0515

F DFN DFE PROB

5.08317 1 5 0.07385

F DFN DFE PROB

666.511 2 5 8.54E-7

F DFN DFE PROB

1.67746 1 5 0.25184

Example 8.4. Alpha Factor Analysis

This example shows how an algorithm for computing alpha factor patterns (Kaiser
and Caffrey 1965) is transcribed into IML code.

You can store the following ALPHA subroutine in an IML catalog and load it when
needed.

Example 8.4. Alpha Factor Analysis � 141

/* Alpha Factor Analysis */
/* Ref: Kaiser et al., 1965 Psychometrika, pp. 12-13 */
/* r correlation matrix (n.s.) already set up */
/* p number of variables */
/* q number of factors */
/* h communalities */
/* m eigenvalues */
/* e eigenvectors */
/* f factor pattern */
/* (IQ,H2,HI,G,MM) temporary use. freed up */
/* */

start alpha;
p=ncol(r);
q=0;
h=0; /* initialize */
h2=i(p)-diag(1/vecdiag(inv(r))); /* smcs */
do while(max(abs(h-h2))>.001); /* iterate until converges */

h=h2;
hi=diag(sqrt(1/vecdiag(h)));
g=hi*(r-i(p))*hi+i(p);
call eigen(m,e,g); /* get eigenvalues and vecs */
if q=0 then
do;

q=sum(m>1); /* number of factors */
iq=1:q;

end; /* index vector */
mm=diag(sqrt(m[iq,])); /* collapse eigvals */
e=e[,iq] ; /* collapse eigvecs */
h2=h*diag((e*mm) [,##]); /* new communalities */

end;
hi=sqrt(h);
h=vecdiag(h2);
f=hi*e*mm; /* resulting pattern */
free iq h2 hi g mm; /* free temporaries */

finish;

/* Correlation Matrix from Harmon, Modern Factor Analysis, */
/* Second edition, page 124, "Eight Physical Variables" */

r={1.000 .846 .805 .859 .473 .398 .301 .382 ,
.846 1.000 .881 .826 .376 .326 .277 .415 ,
.805 .881 1.000 .801 .380 .319 .237 .345 ,
.859 .826 .801 1.000 .436 .329 .327 .365 ,
.473 .376 .380 .436 1.000 .762 .730 .629 ,
.398 .326 .319 .329 .762 1.000 .583 .577 ,
.301 .277 .237 .327 .730 .583 1.000 .539 ,
.382 .415 .345 .365 .629 .577 .539 1.000};

nm = {Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8};
run alpha;
print ,"EIGENVALUES" , m;
print ,"COMMUNALITIES" , h[rowname=nm];
print ,"FACTOR PATTERN", f[rowname=nm];

142 � Chapter 8. General Statistics Examples

The results are shown in Output 8.4.1.

Output 8.4.1. Alpha Factor Analysis: Results

M

5.937855
2.0621956
0.1390178
0.0821054
0.018097

-0.047487
-0.09148

-0.100304

H

VAR1 0.8381205
VAR2 0.8905717
VAR3 0.81893
VAR4 0.8067292
VAR5 0.8802149
VAR6 0.6391977
VAR7 0.5821583
VAR8 0.4998126

F

VAR1 0.813386 -0.420147
VAR2 0.8028363 -0.49601
VAR3 0.7579087 -0.494474
VAR4 0.7874461 -0.432039
VAR5 0.8051439 0.4816205
VAR6 0.6804127 0.4198051
VAR7 0.620623 0.4438303
VAR8 0.6449419 0.2895902

Example 8.5. Categorical Linear Models

This example fits a linear model to a function of the response probabilities

K log π = Xβ + e

where K is a matrix that compares each response category to the last. Data are
from Kastenbaum and Lamphiear (1959). First, the Grizzle-Starmer-Koch (1969)
approach is used to obtain generalized least squares estimates of β. These form the
initial values for the Newton-Raphson solution for the maximum likelihood estimates.
The CATMOD procedure can also be used to analyze these binary data (see Cox
1970). Here is the program.

/* Categorical Linear Models */
/* by Least Squares and Maximum Likelihood */
/* CATLIN */
/* Input: */

Example 8.5. Categorical Linear Models � 143

/* n the s by p matrix of response counts */
/* x the s by r design matrix */

start catlin;

/*---find dimensions---*/
s=nrow(n); /* number of populations */
r=ncol(n); /* number of responses */
q=r-1; /* number of function values */
d=ncol(x); /* number of design parameters */
qd=q*d; /* total number of parameters */

/*---get probability estimates---*/
rown=n[,+]; /* row totals */
pr=n/(rown*repeat(1,1,r)); /* probability estimates */
p=shape(pr[,1:q] ,0,1); /* cut and shaped to vector */
print "INITIAL PROBABILITY ESTIMATES" ,pr;

/* estimate by the GSK method */

/* function of probabilities */
f=log(p)-log(pr[,r])@repeat(1,q,1);

/* inverse covariance of f */
si=(diag(p)-p*p‘)#(diag(rown)@repeat(1,q,q));
z=x@i(q); /* expanded design matrix */
h=z‘*si*z; /* crossproducts matrix */
g=z‘*si*f; /* cross with f */
beta=solve(h,g); /* least squares solution */
stderr=sqrt(vecdiag(inv(h))); /* standard errors */
run prob;
print ,"GSK ESTIMATES" , beta stderr ,pi;

/* iterations for ML solution */
crit=1;
do it=1 to 8 while(crit>.0005); /* iterate until converge */

/* block diagonal weighting */
si=(diag(pi)-pi*pi‘)#(diag(rown)@repeat(1,q,q));
g=z‘*(rown@repeat(1,q,1)#(p-pi)); /* gradient */
h=z‘*si*z; /* hessian */
delta=solve(h,g); /* solve for correction */
beta=beta+delta; /* apply the correction */
run prob; /* compute prob estimates */
crit=max(abs(delta)); /* convergence criterion */

end;
stderr=sqrt(vecdiag(inv(h))); /* standard errors */
print , "ML Estimates", beta stderr, pi;
print , "Iterations" it "Criterion" crit;

finish catlin;

/* subroutine to compute new prob estimates @ parameters */
start prob;

la=exp(x*shape(beta,0,q));

144 � Chapter 8. General Statistics Examples

pi=la/((1+la[,+])*repeat(1,1,q));
pi=shape(pi,0,1);

finish prob;

/*---prepare frequency data and design matrix---*/
n= { 58 11 05,

75 19 07,
49 14 10,
58 17 08,
33 18 15,
45 22 10,
15 13 15,
39 22 18,
04 12 17,
05 15 08}; /* frequency counts*/

x= { 1 1 1 0 0 0,
1 -1 1 0 0 0,
1 1 0 1 0 0,
1 -1 0 1 0 0,
1 1 0 0 1 0,
1 -1 0 0 1 0,
1 1 0 0 0 1,
1 -1 0 0 0 1,
1 1 -1 -1 -1 -1,
1 -1 -1 -1 -1 -1}; /* design matrix*/

run catlin;

The maximum likelihood estimates are shown in Output 8.5.1.

Example 8.6. Regression of Subsets of Variables � 145

Output 8.5.1. Maximum Likelihood Estimates

ML Estimates
BETA STDERR

0.9533597 0.1286179
0.4069338 0.1284592
-0.279081 0.1156222
-0.280699 0.1252816
1.4423195 0.2669357
0.4993123 0.2943437
0.8411595 0.2363089
0.1485875 0.2635159
0.1883383 0.2202755
0.0667313 0.236031
-0.527163 0.216581
-0.414965 0.2299618

PI

0.7431759
0.1673155
0.7723266
0.1744421
0.6627266
0.1916645
0.7062766
0.2049216
0.5170782
0.2646857
0.5697771
0.292607

0.3984205
0.2576653
0.4666825
0.3027898
0.1323243
0.3963114
0.165475

0.4972044

IT CRIT

Iterations 3 Criterion 0.0004092

Example 8.6. Regression of Subsets of Variables

This example performs regression with variable selection. Some of the methods used
in this example are also used in the REG procedure. Here is the program.

/* Initialization */
/* C,CSAVE the crossproducts matrix */
/* N number of observations */
/* K total number of variables to consider */
/* L number of variables currently in model */
/* IN a 0-1 vector of whether variable is in */
/* B print collects results (L MSE RSQ BETAS) */

146 � Chapter 8. General Statistics Examples

start initial;
n=nrow(x);
k=ncol(x);
k1=k+1;
ik=1:k;
bnames={nparm mse rsquare} ||varnames;

/* Correct by mean, adjust out intercept parameter */
y=y-y[+,]/n; /* correct y by mean */
x=x-repeat(x[+,]/n,n,1); /* correct x by mean */
xpy=x‘*y; /* crossproducts */
ypy=y‘*y;
xpx=x‘*x;
free x y; /* no longer need the data */

/* Save a copy of crossproducts matrix */
csave=(xpx || xpy) // (xpy‘|| ypy);

finish initial;

/* Forward method */
start forward;
print / "FORWARD SELECTION METHOD";
free bprint;
c=csave;
in=repeat(0,k,1);
l=0; /* No variables are in */
dfe=n-1;
mse=ypy/dfe;
sprob=0;
do while(sprob<.15 & l<k);

indx=loc(^in); /* where are the variables not in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* adjusted xpy */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt(sqrt(tsqr[imax,]),dfe))*2;
if sprob<.15 then

do; /* if t test significant */
ii=indx[,imax]; /* pick most significant */
run swp; /* routine to sweep */
run bpr; /* routine to collect results */

end;
end;
print bprint[colname=bnames] ;

finish forward;

/* Backward method */
start backward;

print / "BACKWARD ELIMINATION ";
free bprint;
c=csave;
in=repeat(0,k,1);

Example 8.6. Regression of Subsets of Variables � 147

ii=1:k;
run swp;
run bpr; /* start with all variables in */
sprob=1;
do while(sprob>.15 & l>0);

indx=loc(in); /* where are the variables in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* bvalues */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imin=tsqr[>:<,]; /* location of minimum in indx */
sprob=(1-probt(sqrt(tsqr[imin,]),dfe))*2;
if sprob>.15 then
do; /* if t test nonsignificant */

ii=indx[,imin]; /* pick least significant */
run swp; /* routine to sweep in variable */
run bpr; /* routine to collect results */

end;
end;
print bprint[colname=bnames] ;

finish backward;

/* Stepwise method */
start stepwise;

print /"STEPWISE METHOD";
free bprint;
c=csave;
in=repeat(0,k,1);
l=0;
dfe=n-1;
mse=ypy/dfe;
sprob=0;

do while(sprob<.15 & l<k);
indx=loc(^in); /* where are the variables not in? */
nindx=loc(in); /* where are the variables in? */
cd=vecdiag(c)[indx,]; /* xpx diagonals */
cb=c[indx,k1]; /* adjusted xpy */
tsqr=cb#cb/cd/mse; /* squares of t tests */
imax=tsqr[<:>,]; /* location of maximum in indx */
sprob=(1-probt(sqrt(tsqr[imax,]),dfe))*2;
if sprob<.15 then
do; /* if t test significant */

ii=indx[,imax]; /* find index into c */
run swp; /* routine to sweep */
run backstep; /* check if remove any terms */
run bpr; /* routine to collect results */
end;

end;
print bprint[colname=bnames] ;

finish stepwise;

/* Routine to backwards-eliminate for stepwise */
start backstep;

if nrow(nindx)=0 then return;

148 � Chapter 8. General Statistics Examples

bprob=1;
do while(bprob>.15 & l<k);

cd=vecdiag(c)[nindx,]; /* xpx diagonals */
cb=c[nindx,k1]; /* bvalues */
tsqr=cb#cb/(cd#mse); /* squares of t tests */
imin=tsqr[>:<,]; /* location of minimum in nindx */
bprob=(1-probt(sqrt(tsqr[imin,]),dfe))*2;
if bprob>.15 then
do;

ii=nindx[,imin];
run swp;
run bpr;

end;
end;

finish backstep;

/* Search all possible models */
start all;

/* Use method of Schatzoff et al. for search technique */
betak=repeat(0,k,k); /* rec. ests. for best l-param model */
msek=repeat(1e50,k,1); /* record best mse per # parms */
rsqk=repeat(0,k,1); /* record best rsquare */
ink=repeat(0,k,k); /* record best set per # parms */
limit=2##k-1; /* number of models to examine */
c=csave;
in=repeat(0,k,1); /* start out with no variables in model */

do kk=1 to limit;
run ztrail; /* find which one to sweep */
run swp; /* sweep it in */
bb=bb//(l||mse||rsq||(c[ik,k1]#in)‘);
if mse<msek[l,] then
do; /* was this best for l parms? */

msek[l,]=mse; /* record mse */
rsqk[l,]=rsq; /* record rsquare */
ink[,l]=in; /* record which parms in model */
betak[l,]=(c[ik,k1]#in)‘; /* record estimates */

end;
end;
print / "ALL POSSIBLE MODELS" " IN SEARCH ORDER";
print bb[colname=bnames]; free bb;
bprint=ik‘||msek||rsqk||betak;
print ,"THE BEST MODEL FOR EACH NUMBER OF PARAMETERS";
print bprint[colname=bnames];

/* Mallows CP plot */
cp=msek#(n-ik‘-1)/min(msek)-(n-2#ik‘);
cp=ik‘||cp;
cpname={"nparm" "cp"};

/* output cp out=cp colname=cpname; */
finish all;

/* Subroutine to find number of */
/* trailing zeros in binary number */

Example 8.6. Regression of Subsets of Variables � 149

/* on entry: kk is the number to examine */
/* on exit: ii has the result */

start ztrail;
ii=1;
zz=kk;
do while(mod(zz,2)=0);

ii=ii+1;
zz=zz/2;

end;
finish ztrail;

/* Subroutine to sweep in a pivot */
/* on entry: ii has the position(s) to pivot */
/* on exit: in, l, dfe, mse, rsq recalculated */

start swp;
if abs(c[ii,ii])<1e-9 then
do;

print , "FAILURE", c;
stop;

end;
c=sweep(c,ii);
in[ii,]=^in[ii,];
l=sum(in);
dfe=n-1-l;
sse=c[k1,k1];
mse=sse/dfe;
rsq=1-sse/ypy;

finish swp;

/* Subroutine to collect bprint results */
/* on entry: l,mse,rsq, and c set up to collect */
/* on exit: bprint has another row */

start bpr;
bprint=bprint//(l||mse||rsq||(c [ik,k1]#in)‘);

finish bpr;

/* Stepwise Methods */
/* After a run to the initial routine, which sets up */
/* the data, four different routines can be called */
/* to do four different model-selection methods. */

start seq;
run initial; /* initialization */
run all; /* all possible models */
run forward; /* foreward selection method */
run backward; /* backward elimination method */
run stepwise; /* stepwise method */

finish seq;

/* Data on physical fitness */

150 � Chapter 8. General Statistics Examples

/* These measurements were made on men involved in a physical*/
/* fitness course at N.C. State Univ. The variables are */
/* age (years), weight (kg), oxygen uptake rate (ml per kg */
/* body weight per minute), time to run 1.5 miles (minutes), */
/* heart rate while resting, heart rate while running (same */
/* time oxygen rate measured), and maximum heart rate record-*/
/* ed while running. Certain values of maxpulse were modified*/
/* for consistency. Data courtesy Dr. A. C. Linnerud */

data=
{ 44 89.47 44.609 11.37 62 178 182 ,
40 75.07 45.313 10.07 62 185 185 ,
44 85.84 54.297 8.65 45 156 168 ,
42 68.15 59.571 8.17 40 166 172 ,
38 89.02 49.874 9.22 55 178 180 ,
47 77.45 44.811 11.63 58 176 176 ,
40 75.98 45.681 11.95 70 176 180 ,
43 81.19 49.091 10.85 64 162 170 ,
44 81.42 39.442 13.08 63 174 176 ,
38 81.87 60.055 8.63 48 170 186 ,
44 73.03 50.541 10.13 45 168 168 ,
45 87.66 37.388 14.03 56 186 192 ,
45 66.45 44.754 11.12 51 176 176 ,
47 79.15 47.273 10.60 47 162 164 ,
54 83.12 51.855 10.33 50 166 170 ,
49 81.42 49.156 8.95 44 180 185 ,
51 69.63 40.836 10.95 57 168 172 ,
51 77.91 46.672 10.00 48 162 168 ,
48 91.63 46.774 10.25 48 162 164 ,
49 73.37 50.388 10.08 67 168 168 ,
57 73.37 39.407 12.63 58 174 176 ,
54 79.38 46.080 11.17 62 156 165 ,
52 76.32 45.441 9.63 48 164 166 ,
50 70.87 54.625 8.92 48 146 155 ,
51 67.25 45.118 11.08 48 172 172 ,
54 91.63 39.203 12.88 44 168 172 ,
51 73.71 45.790 10.47 59 186 188 ,
57 59.08 50.545 9.93 49 148 155 ,
49 76.32 48.673 9.40 56 186 188 ,
48 61.24 47.920 11.50 52 170 176 ,
52 82.78 47.467 10.50 53 170 172

};

x=data[,{1 2 4 5 6 7 }];
y=data[,3];
free data;
varnames={age weight runtime rstpulse runpulse maxpulse};
reset fw=8 linesize=90;
run seq;

The results are shown in Output 8.6.1.

Example 8.6. Regression of Subsets of Variables � 151

Output 8.6.1. Model Selection: Results
BB

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 26.63425 0.092777 -0.31136 0 0 0 0 0
2 25.82619 0.150635 -0.37042 -0.15823 0 0 0 0
1 28.58034 0.026488 0 -0.1041 0 0 0 0
2 7.755636 0.744935 0 -0.02548 -3.2886 0 0 0
3 7.226318 0.770831 -0.17388 -0.05444 -3.14039 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.798261 0.743533 0 0 -3.28661 -0.00968 0 0
3 7.336089 0.767349 -0.16755 0 -3.07925 -0.04549 0 0
4 7.366649 0.775033 -0.19603 -0.05915 -2.9889 -0.05326 0 0
3 8.037314 0.745111 0 -0.02569 -3.26268 -0.01041 0 0
2 24.91487 0.180607 0 -0.09305 0 -0.27474 0 0
3 20.28031 0.356847 -0.44698 -0.15647 0 -0.32186 0 0
2 21.27632 0.30027 -0.38882 0 0 -0.32286 0 0
1 24.67582 0.159485 0 0 0 -0.27921 0 0
2 23.26003 0.235031 0 0 0 -0.20684 -0.15262 0
3 16.81799 0.466648 -0.52338 0 0 -0.22524 -0.23769 0
4 16.26146 0.503398 -0.56317 -0.12697 0 -0.22981 -0.2246 0
3 23.81815 0.244651 0 -0.06381 0 -0.20843 -0.14279 0
4 7.785151 0.762252 0 -0.01231 -3.16759 0.016669 -0.0749 0
5 6.213174 0.817556 -0.28528 -0.05184 -2.70392 -0.02711 -0.12628 0
4 6.166944 0.81167 -0.26213 0 -2.77733 -0.01981 -0.12874 0
3 7.507972 0.761898 0 0 -3.17665 0.017616 -0.07658 0
2 7.254263 0.761424 0 0 -3.14019 0 -0.07351 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 6.009033 0.816493 -0.27642 -0.04932 -2.77237 0 -0.12932 0
3 7.510162 0.761829 0 -0.01315 -3.13261 0 -0.07189 0
2 25.333 0.166855 0 -0.05987 0 0 -0.19797 0
3 18.63184 0.409126 -0.54408 -0.12049 0 0 -0.28248 0
2 18.97378 0.375995 -0.50665 0 0 0 -0.29382 0
1 24.70817 0.158383 0 0 0 0 -0.2068 0
2 21.60626 0.289419 0 0 0 0 -0.6818 0.571538
3 18.21725 0.422273 -0.4214 0 0 0 -0.57966 0.361557
4 17.29877 0.47172 -0.45243 -0.14944 0 0 -0.61723 0.426862
3 21.41763 0.320779 0 -0.11815 0 0 -0.71745 0.635395
4 6.030105 0.815849 0 -0.05159 -2.9255 0 -0.39529 0.38537
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
3 5.991568 0.809988 0 0 -2.97019 0 -0.37511 0.354219
4 6.208523 0.8104 0 0 -3.00426 0.016412 -0.37778 0.353998
5 5.549941 0.837031 -0.20154 0 -2.7386 -0.01208 -0.34562 0.269064
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 6.263348 0.816083 0 -0.05091 -2.95182 0.01239 -0.39704 0.384793
4 20.11235 0.385797 0 -0.1194 0 -0.19092 -0.64584 0.609632
5 15.1864 0.554066 -0.47923 -0.1527 0 -0.21555 -0.53045 0.385424
4 16.29247 0.502451 -0.44717 0 0 -0.21266 -0.49323 0.319267
3 20.37729 0.353772 0 0 0 -0.18993 -0.61019 0.545236
2 25.11456 0.174039 0 0 0 -0.25219 0 -0.07364
3 19.2347 0.390007 -0.52736 0 0 -0.26492 0 -0.20024
4 18.80875 0.425607 -0.55881 -0.12604 0 -0.27056 0 -0.17799
3 25.59719 0.188232 0 -0.07874 0 -0.25524 0 -0.05502
4 8.311496 0.746179 0 -0.02053 -3.25232 -0.00393 0 -0.02064
5 7.19584 0.788701 -0.25795 -0.04936 -2.86147 -0.04121 0 -0.08153
4 7.091611 0.783432 -0.23928 0 -2.92597 -0.0339 0 -0.08777
3 8.033673 0.745227 0 0 -3.26805 -0.00193 0 -0.02526
2 7.746932 0.745221 0 0 -3.27232 0 0 -0.02561
3 6.882626 0.78173 -0.22923 0 -3.01222 0 0 -0.09094
4 7.00018 0.786224 -0.24436 -0.04525 -2.97011 0 0 -0.08585
3 8.00441 0.746155 0 -0.02027 -3.26114 0 0 -0.02139
2 28.35356 0.067516 0 -0.07074 0 0 0 -0.12159
3 22.38148 0.290212 -0.54076 -0.11605 0 0 0 -0.24445
2 22.50135 0.259982 -0.5121 0 0 0 0 -0.2637
1 27.71259 0.056046 0 0 0 0 0 -0.13762

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217

152 � Chapter 8. General Statistics Examples

Output 8.6.1. (continued)
BPRINT

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BPRINT
NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

THE BEST MODEL FOR EACH NUMBER OF PARAMETERS

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217

FORWARD SELECTION METHOD

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

BACKWARD ELIMINATION

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

6 5.368247 0.848672 -0.22697 -0.07418 -2.62865 -0.02153 -0.36963 0.303217
5 5.176338 0.848002 -0.21962 -0.0723 -2.68252 0 -0.3734 0.304908
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

STEPWISE METHOD

NPARM MSE RSQUARE AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE

1 7.533843 0.74338 0 0 -3.31056 0 0 0
2 7.168422 0.764247 -0.15037 0 -3.20395 0 0 0
3 5.956692 0.811094 -0.2564 0 -2.82538 0 -0.13091 0
4 5.343462 0.836818 -0.19773 0 -2.76758 0 -0.34811 0.270513

Example 8.7. Response Surface Methodology � 153

Example 8.7. Response Surface Methodology

A regression model with a complete quadratic set of regressions across several factors
can be processed to yield the estimated critical values that can optimize a response.
First, the regression is performed for two variables according to the model

y = c+ b1x1 + b2x2 + a11x
2
1 + a12x1x2 + a22x

2
2 + e

The estimates are then divided into a vector of linear coefficients (estimates) b and a
matrix of quadratic coefficients A. The solution for critical values is

x = −1
2
A−1b

The following program creates a module to perform quadratic response surface re-
gression.

/* Quadratic Response Surface Regression */
/* This matrix routine reads in the factor variables and */
/* the response, forms the quadratic regression model and */
/* estimates the parameters, and then solves for the optimal */
/* response, prints the optimal factors and response, and */
/* displays the eigenvalues and eigenvectors of the */
/* matrix of quadratic parameter estimates to determine if */
/* the solution is a maximum or minimum, or saddlepoint, and */
/* which direction has the steepest and gentlest slopes. */
/* */
/* Given that d contains the factor variables, */
/* and y contains the response. */
/* */
start rsm;

n=nrow(d);
k=ncol(d); /* dimensions */
x=j(n,1,1)||d; /* set up design matrix */
do i=1 to k;

do j=1 to i;
x=x||d[,i] #d[,j];

end;
end;
beta=solve(x‘*x,x‘*y); /* solve parameter estimates */
print "Parameter Estimates" , beta;
c=beta[1]; /* intercept estimate */
b=beta[2:(k+1)]; /* linear estimates */
a=j(k,k,0);
L=k+1; /* form quadratics into matrix */
do i=1 to k;

do j=1 to i;
L=L+1;
a[i,j]=beta [L,];

end;
end;
a=(a+a‘)*.5; /* symmetrize */

154 � Chapter 8. General Statistics Examples

xx=-.5*solve(a,b); /* solve for critical value */
print , "Critical Factor Values" , xx;

/* Compute response at critical value */
yopt=c + b‘*xx + xx‘*a*xx;
print , "Response at Critical Value" yopt;
call eigen(eval,evec,a);
print , "Eigenvalues and Eigenvectors", eval, evec;
if min(eval)>0 then print , "Solution Was a Minimum";
if max(eval)<0 then print , "Solution Was a Maximum";

finish rsm;

Running the module with the following sample data produces the following results
and Output 8.7.1:

/* Sample Problem with Two Factors */
d={-1 -1, -1 0, -1 1,

0 -1, 0 0, 0 1,
1 -1, 1 0, 1 1};

y={ 71.7, 75.2, 76.3, 79.2, 81.5, 80.2, 80.1, 79.1, 75.8};
run rsm;

Output 8.7.1. Response Surface Regression: Results

BETA

81.222222
1.9666667
0.2166667
-3.933333

-2.225
-1.383333

XX

0.2949376
-0.158881

YOPT

Response at Critical Value 81.495032

EVAL

-0.96621
-4.350457

EVEC

-0.351076 0.9363469
0.9363469 0.3510761

Example 8.8. Logistic and Probit Regression for Binary Response Models � 155

Example 8.8. Logistic and Probit Regression for Binary
Response Models

A binary response Y is fit to a linear model according to

Pr(Y = 1) = F (Xβ)
Pr(Y = 0) = 1− F (Xβ)

where F is some smooth probability distribution function. The normal and logistic
distribution functions are supported. The method is maximum likelihood via itera-
tively reweighted least squares (described by Charnes, Frome, and Yu 1976; Jenrich
and Moore 1975; and Nelder and Wedderburn 1972). The row scaling is done by the
derivative of the distribution (density). The weighting is done by w/p(1− p), where
w has the counts or other weights. The following program calculates logistic and
probit regression for binary response models.

/* routine for estimating binary response models */
/* y is the binary response, x are regressors, */
/* wgt are count weights, */
/* model is choice of logit probit, */
/* parm has the names of the parameters */

proc iml ;

start binest;
b=repeat(0,ncol(x),1);
oldb=b+1; /* starting values */
do iter=1 to 20 while(max(abs(b-oldb))>1e-8);

oldb=b;
z=x*b;
run f;
loglik=sum(((y=1)#log(p) + (y=0)#log(1-p))#wgt);
btransp=b‘;
print iter loglik btransp;
w=wgt/(p#(1-p));
xx=f#x;
xpxi=inv(xx‘*(w#xx));
b=b + xpxi*(xx‘*(w#(y-p)));

end;
p0=sum((y=1)#wgt)/sum(wgt); /* average response */
loglik0=sum(((y=1)#log(p0) + (y=0)#log(1-p0))#wgt);
chisq=(2#(loglik-loglik0));
df=ncol(x)-1;
prob=1-probchi(chisq,df);
print ,

’Likelihood Ratio with Intercept-only Model’ chisq df prob,;
stderr=sqrt(vecdiag(xpxi));
tratio=b/stderr;
print parm b stderr tratio,,;

finish;

156 � Chapter 8. General Statistics Examples

/*---routine to yield distribution function and density---*/
start f;

if model=’LOGIT’ then
do;

p=1/(1+exp(-z));
f=p#p#exp(-z);

end;
if model=’PROBIT’ then
do;

p=probnorm(z);
f=exp(-z#z/2)/sqrt(8*atan(1));

end;
finish;

/* Ingot data from COX (1970, pp. 67-68)*/
data={ 7 1.0 0 10, 14 1.0 0 31, 27 1.0 1 56, 51 1.0 3 13,

7 1.7 0 17, 14 1.7 0 43, 27 1.7 4 44, 51 1.7 0 1,
7 2.2 0 7, 14 2.2 2 33, 27 2.2 0 21, 51 2.2 0 1,
7 2.8 0 12, 14 2.8 0 31, 27 2.8 1 22,
7 4.0 0 9, 14 4.0 0 19, 27 4.0 1 16, 51 4.0 0 1};

nready=data[,3];
ntotal=data[,4];
n=nrow(data);
x=repeat(1,n,1)||(data[,{1 2}]); /* intercept, heat, soak */
x=x//x; /* regressors */
y=repeat(1,n,1)//repeat(0,n,1); /* binary response */
wgt=nready//(ntotal-nready); /* row weights */
parm={intercept, heat, soak}; /* names of regressors */

model={logit};
run binest; /* run logit model */

model={probit};
run binest; /* run probit model */

The results are shown in Output 8.8.1.

Example 8.8. Logistic and Probit Regression for Binary Response Models � 157

Output 8.8.1. Logistic and Probit Regression: Results
ITER LOGLIK

1 -268.248

BTRANSP

0 0 0

ITER LOGLIK

2 -76.29481

BTRANSP

-2.159406 0.0138784 0.0037327

ITER LOGLIK

3 -53.38033

BTRANSP

-3.53344 0.0363154 0.0119734

ITER LOGLIK

4 -48.34609

BTRANSP

-4.748899 0.0640013 0.0299201

ITER LOGLIK

5 -47.69191

BTRANSP

-5.413817 0.0790272 0.04982

ITER LOGLIK

6 -47.67283

BTRANSP

-5.553931 0.0819276 0.0564395

ITER LOGLIK

7 -47.67281

BTRANSP

-5.55916 0.0820307 0.0567708

158 � Chapter 8. General Statistics Examples

Output 8.8.1. (continued)
ITER LOGLIK

8 -47.67281

BTRANSP

-5.559166 0.0820308 0.0567713

CHISQ DF PROB

11.64282 2 0.0029634

PARM B STDERR TRATIO

INTERCEPT -5.559166 1.1196947 -4.964895
HEAT 0.0820308 0.0237345 3.4561866
SOAK 0.0567713 0.3312131 0.1714042

ITER LOGLIK

1 -268.248

BTRANSP

0 0 0

ITER LOGLIK

2 -71.71043

BTRANSP

-1.353207 0.008697 0.0023391

ITER LOGLIK

3 -51.64122

BTRANSP

-2.053504 0.0202739 0.0073888

ITER LOGLIK

4 -47.88947

BTRANSP

-2.581302 0.032626 0.018503

ITER LOGLIK

5 -47.48924

BTRANSP

-2.838938 0.0387625 0.0309099

Example 8.9. Linear Programming � 159

Example 8.9. Linear Programming
The two-phase method for linear programming can be used to solve the problem

max c′x

st. Ax ≤,=,≥ b

x ≥ 0

A routine written in IML to solve this problem follows. The approach appends slack,
surplus, and artificial variables to the model where needed. It then solves phase 1 to
find a primal feasible solution. If a primal feasible solution exists and is found, the
routine then goes on to phase 2 to find an optimal solution, if one exists. The routine
is general enough to handle minimizations as well as maximizations.

/* Subroutine to solve Linear Programs */
/* names: names of the decision variables */
/* obj: coefficients of the objective function */
/* maxormin: the value ’MAX’ or ’MIN’, upper or lowercase */
/* coef: coefficients of the constraints */
/* rel: character array of values: ’<=’ or ’>=’ or ’=’ */
/* rhs: right-hand side of constraints */
/* activity: returns the optimal value of decision variables*/
/* */

start linprog(names, obj, maxormin, coef, rel, rhs, activity);

bound=1.0e10;
m=nrow(coef);
n=ncol(coef);

/* Convert to maximization */
if upcase(maxormin)=’MIN’ then o=-1;
else o=1;

/* Build logical variables */
rev=(rhs<0);
adj=(-1*rev)+^ rev;
ge =((rel = ’>=’) & ^rev) | ((rel = ’<=’) & rev);
eq=(rel=’=’);
if max(ge)=1 then
do;

sr=I(m);
logicals=-sr[,loc(ge)]||I(m);
artobj=repeat(0,1,ncol(logicals)-m)|(eq+ge)‘;

end;
else do;

logicals=I(m);
artobj=eq‘;

end;
nl=ncol(logicals);
nv=n+nl+2;

160 � Chapter 8. General Statistics Examples

/* Build coef matrix */
a=((o*obj)||repeat(0,1,nl)||{ -1 0 })//

(repeat(0,1,n)||-artobj||{ 0 -1 })//
((adj#coef)||logicals||repeat(0,m,2));

/* rhs, lower bounds, and basis */
b={0,0}//(adj#rhs);
L=repeat(0,1,nv-2)||-bound||-bound;
basis=nv-(0:nv-1);

/* Phase 1 - primal feasibility */
call lp(rc,x,y,a,b,nv,,l,basis);
print ({ ’ ’,

’**********Primal infeasible problem************’,
’ ’,
’*********Numerically unstable problem**********’,
’*********Singular basis encountered************’,
’*******Solution is numerically unstable********’,
’***Subroutine could not obtain enough memory***’,
’**********Number of iterations exceeded********’
}[rc+1]);

if x[nv] ^=0 then
do;

print ’**********Primal infeasible problem************’;
stop;

end;
if rc>0 then stop;

/* phase 2 - dual feasibility */
u=repeat(.,1,nv-2)||{ . 0 };
L=repeat(0,1,nv-2)||-bound||0;
call lp(rc,x,y,a,b,nv-1,u,l,basis);

/* Report the solution */
print ({ ’*************Solution is optimal***************’,

’*********Numerically unstable problem**********’,
’**************Unbounded problem****************’,
’*******Solution is numerically unstable********’,
’*********Singular basis encountered************’,
’*******Solution is numerically unstable********’,
’***Subroutine could not obtain enough memory***’,
’**********Number of iterations exceeded********’
}[rc+1]);

value=o*x [nv-1];
print ,’Objective Value ’ value;
activity= x [1:n] ;
print ,’Decision Variables ’ activity[r=names];
lhs=coef*x[1:n];
dual=y[3:m+2];
print ,’Constraints ’ lhs rel rhs dual,

’***’;

finish;

Example 8.9. Linear Programming � 161

Consider the following product mix example (Hadley 1963). A shop with three ma-
chines, A, B, and C, turns out products 1, 2, 3, and 4. Each product must be processed
on each of the three machines (for example, lathes, drills, and milling machines). The
following table shows the number of hours required by each product on each machine:

Product
Machine 1 2 3 4

A 1.5 1 2.4 1
B 1 5 1 3.5
C 1.5 3 3.5 1

The weekly time available on each of the machines is 2000, 8000, and 5000 hours,
respectively. The products contribute 5.24, 7.30, 8.34, and 4.18 to profit, respectively.
What mixture of products can be manufactured that maximizes profit? You can solve
the problem as follows:

names={’product 1’ ’product 2’ ’product 3’ ’product 4’};
profit={ 5.24 7.30 8.34 4.18};
tech={ 1.5 1 2.4 1 ,

1 5 1 3.5 ,
1.5 3 3.5 1 };

time={ 2000, 8000, 5000};
rel={ ’<=’, ’<=’, ’<=’ };
run linprog(names,profit,’max’,tech,rel,time,products);

The results from this example are shown in Output 8.9.1.

Output 8.9.1. Product Mix: Optimal Solution

VALUE

Objective Value 12737.059

ACTIVITY

Decision Variables product 1 294.11765
product 2 1500
product 3 0
product 4 58.823529

LHS REL RHS DUAL

Constraints 2000 <= 2000 1.9535294
8000 <= 8000 0.2423529
5000 <= 5000 1.3782353

The following example shows how to find the minimum cost flow through a network
by using linear programming. The arcs are defined by an array of tuples; each tuple

162 � Chapter 8. General Statistics Examples

names a new arc. The elements in the arc tuples give the names of the tail and head
nodes defining the arc. The following data are needed: arcs, cost for a unit of flow
across the arcs, nodes, and supply and demand at each node.

The following program generates the node-arc incidence matrix and calls the linear
program routine for solution:

arcs={ ’ab’ ’bd’ ’ad’ ’bc’ ’ce’ ’de’ ’ae’ };
cost={ 1 2 4 3 3 2 9 };
nodes={ ’a’, ’b’, ’c’, ’d’, ’e’};
supdem={ 2, 0, 0, -1, -1 };
rel=repeat(’=’,nrow(nodes),1);
inode=substr(arcs,1,1);
onode=substr(arcs,2,1);
free n_a_i n_a_o;
do i=1 to ncol(arcs);

n_a_i=n_a_i || (inode[i]=nodes);
n_a_o=n_a_o || (onode[i]=nodes);

end;
n_a=n_a_i - n_a_o;
run linprog(arcs,cost,’min’,n_a,rel,supdem,x);

The solution is shown in Output 8.9.2.

Output 8.9.2. Minimum Cost Flow: Optimal Solution

VALUE

Objective Value 8

ACTIVITY

Decision Variables ab 2
bd 2
ad 0
bc 0
ce 0
de 1
ae 0

LHS REL RHS DUAL

Constraints 2 = 2 -2.5
0 = 0 -1.5
0 = 0 -0.5

-1 = -1 -0.5
-1 = -1 -2.5

Example 8.10. Quadratic Programming � 163

Example 8.10. Quadratic Programming
The quadratic program

min c′x + x′Hx/2
st. Gx ≤,=,≥ b

x ≥ 0

can be solved by solving an equivalent linear complementarity problem when H is
positive semidefinite. The approach is outlined in the discussion of the LCP subrou-
tine in Chapter 20.

The following routine solves the quadratic problem.

/* Routine to solve quadratic programs */
/* names: the names of the decision variables */
/* c: vector of linear coefficients of the objective function */
/* H: matrix of quadratic terms in the objective function */
/* G: matrix of constraint coefficients */
/* rel: character array of values: ’<=’ or ’>=’ or ’=’ */
/* b: right-hand side of constraints */
/* activity: returns the optimal value of decision variables */

start qp(names, c, H, G, rel, b, activity);
if min(eigval(h))<0 then
do;

print
’ERROR: The minimum eigenvalue of the H matrix is negative. ’;

print ’ Thus it is not positive semidefinite. ’;
print ’ QP is terminating with this error. ’;
stop;

end;
nr=nrow(G);
nc=ncol(G);

/* Put in canonical form */
rev=(rel=’<=’);
adj=(-1 * rev) + ^rev;
g=adj# G; b = adj # b;
eq=(rel = ’=’);
if max(eq)=1 then
do;

g=g // -(diag(eq)*G)[loc(eq),];
b=b // -(diag(eq)*b)[loc(eq)];

end;
m=(h || -g‘) //(g || j(nrow(g),nrow(g),0));
q=c // -b;

/* Solve the problem */
call lcp(rc,w,z,M,q);

/* Report the solution */
reset noname;
print ({ ’*************Solution is optimal***************’,

’*********No solution possible******************’,
’ ’,

164 � Chapter 8. General Statistics Examples

’ ’,
’ ’,
’**********Solution is numerically unstable*****’,
’***********Not enough memory*******************’,
’**********Number of iterations exceeded********’}[rc+1]);

reset name;
activity=z[1:nc];
objval=c‘*activity + activity‘*H*activity/2;
print ,’Objective Value ’ objval,

’Decision Variables ’ activity[r=names],
’***’;

finish qp;

As an example, consider the following problem in portfolio selection. Models used
in selecting investment portfolios include assessment of the proposed portfolio’s ex-
pected gain and its associated risk. One such model seeks to minimize the variance of
the portfolio subject to a minimum expected gain. This can be modeled as a quadratic
program in which the decision variables are the proportions to invest in each of the
possible securities. The quadratic component of the objective function is the covari-
ance of gain between the securities; the first constraint is a proportionality constraint;
and the second constraint gives the minimum acceptable expected gain.

The following data are used to illustrate the model and its solution:

c = { 0, 0, 0, 0 };
h = { 1003.1 4.3 6.3 5.9 ,

4.3 2.2 2.1 3.9 ,
6.3 2.1 3.5 4.8 ,
5.9 3.9 4.8 10 };

g = { 1 1 1 1 ,
.17 .11 .10 .18 };

b = { 1 , .10 };
rel = { ’=’, ’>=’};
names = {’ibm’, ’dec’, ’dg’, ’prime’ };
run qp(names,c,h,g,rel,b,activity);

The results in Output 8.10.1 show that the minimum variance portfolio achieving the
0.10 expected gain is composed of DEC and DG stock in proportions of 0.933 and
0.067.

Example 8.11. Regression Quantiles � 165

Output 8.10.1. Portfolio Selection: Optimal Solution

OBJVAL

Objective Value 1.0966667

ACTIVITY

Decision Variables ibm 0
dec 0.9333333
dg 0.0666667
prime 0

Example 8.11. Regression Quantiles

The technique of estimating parameters in linear models by using the notion of regres-
sion quantiles is a generalization of the LAE or LAV least absolute value estimation
technique. For a given quantile q, the estimate b∗ of β in the model

Y = Xβ + ε

is the value of b that minimizes∑
t∈T

q|yt − xtb| −
∑
t∈S

(1− q)|yt − xtb|

where T = {t|yt ≥ xtb} and S = {t|yt ≤ xt}. For q = 0.5, the solution b∗

is identical to the estimates produced by the LAE. The following routine finds this
estimate by using linear programming.

/* Routine to find regression quantiles */
/* yname: name of dependent variable */
/* y: dependent variable */
/* xname: names of independent variables */
/* X: independent variables */
/* b: estimates */
/* predict: predicted values */
/* error: difference of y and predicted. */
/* q: quantile */
/* */
/* notes: This subroutine finds the estimates b */
/* that minimize */
/* */
/* q * (y - Xb) * e + (1-q) * (y - Xb) * ^e */
/* */
/* where e = (Xb <= y). */
/* */
/* This subroutine follows the approach given in: */
/* */
/* Koenker, R. and G. Bassett (1978). Regression */

166 � Chapter 8. General Statistics Examples

/* quantiles. Econometrica. Vol. 46. No. 1. 33-50. */
/* */
/* Basssett, G. and R. Koenker (1982). An empirical */
/* quantile function for linear models with iid errors. */
/* JASA. Vol. 77. No. 378. 407-415. */
/* */
/* When q = .5 this is equivalent to minimizing the sum */
/* of the absolute deviations, which is also known as */
/* L1 regression. Note that for L1 regression, a faster */
/* and more accurate algorithm is available in the SAS/IML */
/* routine LAV, which is based on the approach given in: */
/* */
/* Madsen, K. and Nielsen, H. B. (1993). A finite */
/* smoothing algorithm for linear L1 estimation. */
/* SIAM J. Optimization, Vol. 3. 223-235. */
/*---*/
start rq(yname, y, xname, X, b, predict, error, q);

bound=1.0e10;
coef = X‘;
m = nrow(coef);
n = ncol(coef);

/*-----------------build rhs and bounds--------------------*/
e = repeat(1,1,n)‘;
r = {0 0} || ((1-q)*coef*e)‘;
sign = repeat(1,1,m);

do i=1 to m;
if r[2+i] < 0 then do;

sign[i] = -1;
r[2+i] = -r[2+i];

coef[i,] = -coef[i,];
end;

end;

l = repeat(0,1,n) || repeat(0,1,m) || -bound || -bound ;
u = repeat(1,1,n) || repeat(.,1,m) || { . . } ;

/*-------------build coefficient matrix and basis----------*/
a = (y‘ || repeat(0,1,m) || { -1 0 }) //

(repeat(0,1,n) || repeat(-1,1,m) || { 0 -1 }) //
(coef || I(m) || repeat(0,m,2)) ;

basis = n+m+2 - (0:n+m+1);

/*----------------find a feasible solution-----------------*/
call lp(rc,p,d,a,r,,u,l,basis);

/*----------------find the optimal solution----------------*/
l = repeat(0,1,n) || repeat(0,1,m) || -bound || {0} ;
u = repeat(1,1,n) || repeat(0,1,m) || { . 0 } ;
call lp(rc,p,d,a,r,n+m+1,u,l,basis);

/*---------------- report the solution-----------------------*/
variable = xname‘; b=d[3:m+2];

Example 8.11. Regression Quantiles � 167

do i=1 to m;
b[i] = b[i] * sign[i];

end;
predict = X*b;
error = y - predict;
wsum = sum (choose(error<0 , (q-1)*error , q*error));

print ,,’Regression Quantile Estimation’ ,
’Dependent Variable: ’ yname ,
’Regression Quantile: ’ q ,
’Number of Observations: ’ n ,
’Sum of Weighted Absolute Errors: ’ wsum ,
variable b,
X y predict error;

finish rq;

The following example uses data on the United States population from 1790 to 1970:

z = { 3.929 1790 ,
5.308 1800 ,
7.239 1810 ,
9.638 1820 ,
12.866 1830 ,
17.069 1840 ,
23.191 1850 ,
31.443 1860 ,
39.818 1870 ,
50.155 1880 ,
62.947 1890 ,
75.994 1900 ,
91.972 1910 ,

105.710 1920 ,
122.775 1930 ,
131.669 1940 ,
151.325 1950 ,
179.323 1960 ,
203.211 1970 };

y=z[,1];
x=repeat(1,19,1)||z[,2]||z[,2]##2;
run rq(’pop’,y,{’intercpt’ ’year’ ’yearsq’},x,b1,pred,resid,.5);

The results are shown in Output 8.11.1.

168 � Chapter 8. General Statistics Examples

Output 8.11.1. Regression Quantiles: Results

Dependent Variable: pop

Q

Regression Quantile: 0.5

N

Number of Observations: 19

WSUM

Sum of Weighted Absolute Errors: 14.826429

VARIABLE B

intercpt 21132.758
year -23.52574
yearsq 0.006549

X Y PREDICT ERROR

1 1790 3204100 3.929 5.4549176 -1.525918
1 1800 3240000 5.308 5.308 -4.54E-12
1 1810 3276100 7.239 6.4708902 0.7681098
1 1820 3312400 9.638 8.9435882 0.6944118
1 1830 3348900 12.866 12.726094 0.1399059
1 1840 3385600 17.069 17.818408 -0.749408
1 1850 3422500 23.191 24.220529 -1.029529
1 1860 3459600 31.443 31.932459 -0.489459
1 1870 3496900 39.818 40.954196 -1.136196
1 1880 3534400 50.155 51.285741 -1.130741
1 1890 3572100 62.947 62.927094 0.0199059
1 1900 3610000 75.994 75.878255 0.1157451
1 1910 3648100 91.972 90.139224 1.8327765
1 1920 3686400 105.71 105.71 8.669E-13
1 1930 3724900 122.775 122.59058 0.1844157
1 1940 3763600 131.669 140.78098 -9.111976
1 1950 3802500 151.325 160.28118 -8.956176
1 1960 3841600 179.323 181.09118 -1.768184
1 1970 3880900 203.211 203.211 -2.96E-12

The L1 norm (when q = 0.5) tends to cause the fit to be better at more points at
the expense of causing some points to fit worse. Consider the following plot of the
residuals against the least squares residuals:

/* Compare L1 residuals with least squares residuals */
/* Compute the least squares residuals */

resid2=y-x*inv(x‘*x)*x‘*y;

/* x axis of plot */
xx=repeat(x[,2] ,3,1);

Example 8.12. Simulations of a Univariate ARMA Process � 169

/* y axis of plot */
yy=resid//resid2//repeat(0,19,1);

/* plot character*/
id=repeat(’1’,19,1)//repeat(’2’,19,1)//repeat(’-’,19,1);
call pgraf(xx||yy,id,’Year’,’Residual’,

’1=L(1) residuals, 2=least squares residual’);

The results are shown in Output 8.11.2.

Output 8.11.2. Graph: L1 Residuals vs. Least Squares Residuals

1=l(1) residuals, 2=least squares residual

|
5 +
| 2 2

R | 2
e | 1 1 2 2 1 2 2
s 0 + - 1 - - 1 - - 1 - 2 1 1 - 1 1 - - - 1
i | 1 1 1 1 1 1
d |
u |
a -5 + 2 2
l |

|
| 1 1

-10 +
|
-+------+------+------+------+------+------+------+------+------+------+-
1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980

Year

When q = 0.5, the results of this module can be compared with the results of the
LAV routine, as follows:

b0 = {1 1 1}; /* initial value */
optn = j(4,1,.); /* options vector */

optn[1]= .; /* gamma default */
optn[2]= 5; /* print all */
optn[3]= 0; /* McKean-Schradar variance */
optn[4]= 1; /* convergence test */

call LAV(rc, xr, x, y, b0, optn);

Example 8.12. Simulations of a Univariate ARMA Process

Simulations of time series with known ARMA structure are often needed as part
of other simulations or as learning data sets for developing time series analysis
skills. The following program generates a time series by using the IML functions
NORMAL, ARMACOV, HANKEL, PRODUCT, RATIO, TOEPLITZ, and ROOT.

170 � Chapter 8. General Statistics Examples

reset noname;
start armasim(y,n,phi,theta,seed);
/*---*/
/* IML Module: armasim */
/* Purpose: Simulate n data points from ARMA process */
/* exact covariance method */
/* Arguments: */
/* */
/* Input: n : series length */
/* phi : AR coefficients */
/* theta: MA coefficients */
/* seed : integer seed for normal deviate generator */
/* Output: y: realization of ARMA process */
/* --*/

p=ncol(phi)-1;
q=ncol(theta)-1;
y=normal(j(1,n+q,seed));

/* Pure MA or white noise */
if p=0 then y=product(theta,y)[,(q+1):(n+q)];
else do; /* Pure AR or ARMA */

/* Get the autocovariance function */
call armacov(gamma,cov,ma,phi,theta,p);
if gamma[1]<0 then
do;

print ’ARMA parameters not stable.’;
print ’Execution terminating.’;
stop;

end;

/* Form covariance matrix */
gamma=toeplitz(gamma);

/* Generate covariance between initial y and */
/* initial innovations */

if q>0 then
do;

psi=ratio(phi,theta,q);
psi=hankel(psi[,-((-q):(-1))]);
m=max(1,(q-p+1));
psi=psi[-((-q):(-m)),];
if p>q then psi=j(p-q,q,0)//psi;
gamma=(gamma||psi)//(psi‘||i(q));

end;

/* Use Cholesky root to get startup values */
gamma=root(gamma);
startup=y[,1:(p+q)]*gamma;
e=y[,(p+q+1):(n+q)];

/* Generate MA part */
if q>0 then

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

171

do;
e=startup[,(p+1):(p+q)]||e;
e=product(theta,e)[,(q+1):(n+q-p)];

end;

y=startup[,1:p];
phi1=phi[,-(-(p+1):(-2))]‘;

/* Use difference equation to generate */
/* remaining values */

do ii=1 to n-p;
y=y||(e[,ii]-y[,ii:(ii+p-1)]*phi1);

end;
end;
y=y‘;

finish armasim; /* ARMASIM */

run armasim(y,10,{1 -0.8},{1 0.5},1234321);
print ,’Simulated Series:’, y;

The results are shown in Output 8.12.1.

Output 8.12.1. Simulated Series

3.0764594
1.8931735
0.9527984
0.0892395
-1.811471
-2.8063

-2.52739
-2.865251
-1.332334
0.1049046

Example 8.13. Parameter Estimation for a Regression Model
with ARMA Errors

Nonlinear estimation algorithms are required for obtaining estimates of the parame-
ters of a regression model with innovations having an ARMA structure. The three
estimation methods employed by the ARIMA procedure in SAS/ETS software are
written in IML in the following program. The algorithms employed are slightly dif-
ferent from those used by PROC ARIMA, but the results obtained should be similar.
This example combines the IML functions ARMALIK, PRODUCT, and RATIO to
perform the estimation. Note the interactive nature of this example, illustrating how
you can adjust the estimates when they venture outside the stationary or invertible
regions.

/*---*/
/*---- Grunfeld’s Investment Models Fit with ARMA Errors ----*/
/*---*/

172 � Chapter 8. General Statistics Examples

data grunfeld;
input year gei gef gec wi wf wc;
label gei=’gross investment ge’

gec=’capital stock lagged ge’
gef=’value of outstanding shares ge lagged’
wi =’gross investment w’
wc =’capital stock lagged w’
wf =’value of outstanding shares lagged w’;

/*--- GE STANDS FOR GENERAL ELECTRIC AND W FOR WESTINGHOUSE ---*/
datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4
1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;

proc iml;
reset noname;
/*---*/
/* name: ARMAREG Modules */
/* purpose: Perform Estimation for regression model with */
/* ARMA errors */
/* usage: Before invoking the command */
/* */
/* run armareg; */
/* */
/* define the global parameters */
/* */
/* x - matrix of predictors. */
/* y - response vector. */
/* iphi - defines indices of nonzero AR parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* itheta - defines indices of nonzero MA parameters, */
/* omitting index 0 corresponding to the zero */
/* order constant one. */
/* ml - estimation option: -1 if Conditional Least */
/* Squares, 1 if Maximum Likelihood, otherwise */

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

173

/* Unconditional Least Squares. */
/* delta - step change in parameters (default 0.005). */
/* par - initial values of parms. First ncol(iphi) */
/* values correspond to AR parms, next ncol(itheta)*/
/* values correspond to MA parms, and remaining */
/* are regression coefficients. */
/* init - undefined or zero for first call to ARMAREG. */
/* maxit - maximum number of iterations. No other */
/* convergence criterion is used. You can invoke */
/* ARMAREG without changing parameter values to */
/* continue iterations. */
/* nopr - undefined or zero implies no printing of */
/* intermediate results. */
/* */
/* notes: Optimization using Gauss-Newton iterations */
/* */
/* No checking for invertibility or stationarity during */
/* estimation process. The parameter array par can be */
/* modified after running armareg to place estimates */
/* in the stationary and invertible regions, and then */
/* armareg can be run again. If a nonstationary AR operator */
/* is employed, a PAUSE will occur after calling ARMALIK */
/* because of a detected singularity. Using STOP will */
/* permit termination of ARMAREG so that the AR */
/* coefficients can be modified. */
/* */
/* T-ratios are only approximate and can be undependable, */
/* especially for small series. */
/* */
/* The notation follows that of the IML function ARMALIK; */
/* the autoregressive and moving average coefficients have */
/* signs opposite those given by PROC ARIMA. */

/* Begin ARMA estimation modules */

/* Generate residuals */
start gres;

noise=y-x*beta;
previous=noise[:];
if ml=-1 then do; /* Conditional LS */

noise=j(nrow(y),1,previous)||noise;
resid=product(phi,noise‘) [, 1: nrow(noise)];
resid=ratio(theta,resid,ncol(resid));
resid=resid[,1:ncol(resid)]‘;

end;
else do; /* Maximum likelihood */

free l;
call armalik(l,resid,std,noise,phi,theta);

/* Nonstationary condition produces PAUSE */
if nrow(l)=0 then
do;

print ,
’In GRES: Parameter estimates outside stationary region.’;

174 � Chapter 8. General Statistics Examples

end;
else do;

temp=l[3,]/(2#nrow(resid));
if ml=1 then resid=resid#exp(temp);

end;
end;

finish gres; /* finish module GRES */

start getpar; /* get parameters */
if np=0 then phi=1;
else do;

temp=parm[,1:np];
phi=1||j(1,p,0);
phi[,iphi] =temp;

end;
if nq=0 then theta=1;
else do;

temp=parm[,np+1:np+nq];
theta=1||j(1,q,0);
theta[,itheta] =temp;

end;
beta=parm[,(np+nq+1):ncol(parm)]‘;

finish getpar; /* finish module GETPAR */

/* Get SS Matrix - First Derivatives */
start getss;

parm=par;
run getpar;
run gres;
s=resid;
oldsse=ssq(resid);
do k=1 to ncol(par);

parm=par;
parm[,k]=parm[,k]+delta;
run getpar;
run gres;
s=s||((resid-s[,1])/delta); /* append derivatives */

end;
ss=s‘*s;
if nopr^=0 then print ,’Gradient Matrix’, ss;
sssave=ss;
do k=1 to 20; /* Iterate if no reduction in SSE */

do ii=2 to ncol(ss);
ss[ii,ii]=(1+lambda)*ss[ii,ii];

end;
ss=sweep(ss,2:ncol(ss)); /* Gaussian elimination */
delpar=ss[1,2:ncol(ss)]; /* update parm increments */
parm=par+delpar;
run getpar;
run gres;
sse=ssq(resid);
if sse<oldsse then
do; /* reduction, no iteration */

Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors �

175

lambda=lambda/10;
k=21;

end;

else do; /* no reduction */
/* increase lambda and iterate */

if nopr^=0 then print ,
’Lambda=’ lambda ’SSE=’ sse ’OLDSSE=’ oldsse,
’Gradient Matrix’, ss ;

lambda=10*lambda;
ss=sssave;
if k=20 then
do;

print ’In module GETSS:
No improvement in SSE after twenty iterations.’;

print ’ Possible Ridge Problem. ’;
return;

end;
end;

end;
if nopr^=0 then print ,’Gradient Matrix’, ss;
finish getss; /* Finish module GETSS */

start armareg; /* ARMAREG main module */

/* Initialize options and parameters */
if nrow(delta)=0 then delta=0.005;
if nrow(maxiter)=0 then maxiter=5;
if nrow(nopr)=0 then nopr=0;
if nrow(ml)=0 then ml=1;
if nrow(init)=0 then init=0;
if init=0 then
do;

p=max(iphi);
q=max(itheta);
np=ncol(iphi);
nq=ncol(itheta);

/* Make indices one-based */
do k=1 to np;

iphi[,k]=iphi[,k]+1;
end;
do k=1 to nq;

itheta[,k]=itheta[,k]+1;
end;

/* Create row labels for Parameter estimates */
if p>0 then parmname = concat("AR",char(1:p,2));
if q>0 then parmname = parmname||concat("MA",char(1:p,2));
parmname = parmname||concat("B",char(1:ncol(x),2));

/* Create column labels for Parameter estimates */
pname = {"Estimate" "Std. Error" "T-Ratio"};
init=1;

176 � Chapter 8. General Statistics Examples

end;

/* Generate starting values */
if nrow(par)=0 then
do;

beta=inv(x‘*x)*x‘*y;
if np+nq>0 then par=j(1,np+nq,0)||beta‘;
else par=beta‘;

end;
print ,’Parameter Starting Values’,;
print par [colname=parmname]; /* stderr tratio */
lambda=1e-6; /* Controls step size */
do iter=1 to maxiter; /* Do maxiter iterations */

run getss;
par=par+delpar;
if nopr^=0 then
do;

print ,’Parameter Update’,;
print par [colname=parmname]; /* stderr tratio */
print ,’Lambda=’ lambda,;

end;
if abs(par[,1])>1 then par[,1] =-.8;

end;

sighat=sqrt(sse/(nrow(y)-ncol(par)));
print ,’Innovation Standard Deviation:’ sighat;
estm=par‘||(sqrt(diag(ss[2:ncol(ss),2:ncol(ss)]))

*j(ncol(par),1,sighat));
estm=estm||(estm[,1] /estm[,2]);
if ml=1 then print ,’Maximum Likelihood Estimation Results’,;
else if ml=-1 then print ,

’Conditional Least Squares Estimation Results’,;
else print ,’Unconditional Least Squares Estimation Results’,;
print estm [rowname=parmname colname=pname] ;

finish armareg;
/* End of ARMA Estimation modules */

/* Begin estimation for Grunfeld’s investment models */
use grunfeld;
read all var {gei} into y;
read all var {gef gec} into x;
x=j(nrow(x),1,1)||x;
iphi=1;
itheta=1;
maxiter=10;
delta=0.0005;
ml=-1;
/*---- To prevent overflow, specify starting values ----*/
par={-0.5 0.5 -9.956306 0.0265512 0.1516939};
run armareg; /*---- Perform CLS estimation ----*/

The results are shown in Output 8.13.1.

Example 8.14. Iterative Proportional Fitting � 177

Output 8.13.1. Conditional Least Squares Results

AR 1 MA 1 B 1 B 2 B 3

0 0 -9.956306 0.0265512 0.1516939

Innovation Standard Deviation: 18.639064

Estimate Std. Error T-Ratio

AR 1 -0.071148 0.3248431 -0.219022
MA 1 1.2737455 0.2319205 5.4921656
B 1 -7.530983 20.447977 -0.3683
B 2 0.0402554 0.0170277 2.3641054
B 3 0.0992474 0.0354776 2.7974682

ml=1;
maxiter=10;
/*---- With CLS estimates as starting values, ----*/
/*---- perform ML estimation. ----*/
run armareg;

The results are shown in Output 8.13.2.

Output 8.13.2. Maximum Likelihood Results

AR 1 MA 1 B 1 B 2 B 3

-0.071148 0.7850862 -7.530983 0.0402554 0.0992474

Innovation Standard Deviation: 22.667286

Estimate Std. Error T-Ratio

AR 1 -0.191675 0.3360688 -0.570345
MA 1 0.7367182 0.2101849 3.5050966
B 1 -19.45436 31.327362 -0.621002
B 2 0.038099 0.0168731 2.2579666
B 3 0.121766 0.0433174 2.8110191

Example 8.14. Iterative Proportional Fitting

The classical use of iterative proportional fitting is to adjust frequencies to conform
to new marginal totals. Use the IPF subroutine to perform this kind of analysis. You
supply a table that contains new margins and a table that contains old frequencies.
The IPF subroutine returns a table of adjusted frequencies that preserves any higher-
order interactions appearing in the initial table.

178 � Chapter 8. General Statistics Examples

The following example is a census study that estimates a population distribution ac-
cording to age and marital status (Bishop, Fienberg, and Holland 1975, pp. 97–98).
Estimates of the distribution are known for the previous year, but only estimates of
marginal totals are known for the current year. You want to adjust the distribution of
the previous year to fit the estimated marginal totals of the current year. Here is the
program:

proc iml;

/* Stopping criteria */
mod={0.01 15};

/* Marital status has 3 levels. age has 8 levels. */
dim={3 8};

/* New marginal totals for age by marital status */
table={1412 0 0 ,

1402 0 0 ,
1174 276 0 ,
0 1541 0 ,
0 1681 0 ,
0 1532 0 ,
0 1662 0 ,
0 5010 2634};

/* Marginal totals are known for both */
/* marital status and age */

config={1 2};

/* Use known distribution for start-up values */
initab={1306 83 0 ,

619 765 3 ,
263 1194 9 ,
173 1372 28 ,
171 1393 51 ,
159 1372 81 ,
208 1350 108 ,
1116 4100 2329};

call ipf(fit,status,dim,table,config,initab,mod);

c={’ SINGLE’ ’ MARRIED’ ’WIDOWED/DIVORCED’};
r={’15 - 19’ ’20 - 24’ ’25 - 29’ ’30 - 34’ ’35 - 39’ ’40 - 44’

’45 - 49’ ’50 OR OVER’};
print

’POPULATION DISTRIBUTION ACCORDING TO AGE AND MARITAL STATUS’,,
’KNOWN DISTRIBUTION (PREVIOUS YEAR)’,,
initab [colname=c rowname=r format=8.0] ,,
’ADJUSTED ESTIMATES OF DISTRIBUTION (CURRENT YEAR)’,,
fit [colname=c rowname=r format=8.2] ;

Example 8.15. Full-Screen Nonlinear Regression � 179

The results are shown in Output 8.14.1.

Output 8.14.1. Iterative Proportional Fitting: Results

INITAB
SINGLE MARRIED WIDOWED/DIVORCED

15 - 19 1306 83 0
20 - 24 619 765 3
25 - 29 263 1194 9
30 - 34 173 1372 28
35 - 39 171 1393 51
40 - 44 159 1372 81
45 - 49 208 1350 108
50 OR OVER 1116 4100 2329

FIT
SINGLE MARRIED WIDOWED/DIVORCED

15 - 19 1325.27 86.73 0.00
20 - 24 615.56 783.39 3.05
25 - 29 253.94 1187.18 8.88
30 - 34 165.13 1348.55 27.32
35 - 39 173.41 1454.71 52.87
40 - 44 147.21 1308.12 76.67
45 - 49 202.33 1352.28 107.40
50 OR OVER 1105.16 4181.04 2357.81

Example 8.15. Full-Screen Nonlinear Regression

This example shows how to build a menu system that enables you to perform nonlin-
ear regression from a menu. Six modules are stored on an IML storage disk. After
you have stored them, use this example to try out the system. First, invoke IML and
set up some sample data in memory, in this case the population of the U.S. from 1790
to 1970. Then invoke the module NLIN, as follows:

reset storage=’nlin’;
load module=_all_;
uspop = {3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443,

39818, 50155, 62947, 75994, 91972, 105710, 122775, 131669,
151325, 179323, 203211}/1000;

year=do(1790,1970,10)‘;
time=year-1790;
print year time uspop;
run nlin;

A menu similar to the following menu appears. The entry fields are shown by under-
scores here, but the underscores become blanks in the real session.

Nonlinear Regression
Response function: __
Predictor function: ___

180 � Chapter 8. General Statistics Examples

Parameter Value Derivative
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __
: ________ ___________ __

Enter an exponential model and fill in the response and predictor expression fields.
For each parameter, enter the name, initial value, and derivative of the predictor with
respect to the parameter. Here are the populated fields:

Nonlinear Regression
Response function: uspop___
Predictor function: a0*exp(a1*time)______________________________

Parameter Value Derivative
: a0______ ________3.9 exp(a1*time)_______________________________
: a1______ __________0 time*a0*exp(a1*time)_______________________
: ________ ___________ ___
: ________ ___________ ___
: ________ ___________ ___
: ________ ___________ ___

Now press the SUBMIT key. The model compiles, the iterations start blinking on the
screen, and when the model has converged, the estimates are displayed along with
their standard errors, t test, and significance probability.

To modify and rerun the model, submit the following command:

run nlrun;

Here is the program that defines and stores the modules of the system.

/* Full-Screen Nonlinear Regression */
/* Six modules are defined, which constitute a system for */
/* nonlinear regression. The interesting feature of this */
/* system is that the problem is entered in a menu, and both */
/* iterations and final results are displayed on the same */
/* menu. */
/* */
/* Run this source to get the modules stored. Examples */
/* of use are separate. */
/* */
/* Caution: this is a demonstration system only. It does not */
/* have all the necessary safeguards in it yet to */
/* recover from user errors or rough models. */
/* Algorithm: */
/* Gauss-Newton nonlinear regression with step-halving. */
/* Notes: program variables all start with nd or _ to */
/* minimize the problems that would occur if user variables */
/* interfered with the program variables. */

Example 8.15. Full-Screen Nonlinear Regression � 181

/* Gauss-Newton nonlinear regression with Hartley step-halving */

/*---Routine to set up display values for new problem---*/
start nlinit;

window nlin rows=15 columns=80 color=’green’
msgline=_msg cmndline=_cmnd
group=title +30 ’Nonlinear Regression’ color=’white’
group=model / @5 ’Response function:’ color=’white’
+1 nddep $55. color=’blue’
/ @5 ’Predictor function:’ color=’white’
+1 ndfun $55. color=’blue’
group=parm0 // @5 ’Parameter’ color=’white’ @15 ’Value’
@30 ’Derivative’
group=parm1 // @5 ’Parameter’ color=’white’ @15 ’Value’
group=parm2 // @5 ’Parameter’ color=’white’ @19 ’Estimate’
@33 ’Std Error’
@48 ’T Ratio’
@62 ’Prob>|T|’
group=parminit /@3 ’:’ color=’white’
@5 ndparm $8. color=’blue’
@15 ndbeta best12. @30 ndder $45.
group=parmiter / @5 _parm color=’white’
@15 _beta best12. color=’blue’
group=parmest / @5 _parm color=’white’
@15 _beta best12. color=’blue’
@30 _std best12.
@45 _t 10.4
@60 _prob 10.4
group=sse // @5 ’Iteration =’ color=’white’ _iter 5. color=’blue’
’ Stephalvings = ’ color=’white’ _subit 3. color=’blue’
/ @5 ’Sum of Squares Error =’ color=’white’ _sse best12.
color=’blue’;

nddep=cshape(’ ’,1,1,55,’ ’);
ndfun=nddep;
nd0=6;
ndparm=repeat(’ ’,nd0,1);
ndbeta=repeat(0,nd0,1);
ndder=cshape(’ ’,nd0,1,55,’ ’);
_msg=’Enter New Nonlinear Problem’;

finish nlinit; /* Finish module NLINIT */

/* Main routine */
start nlin;

run nlinit; /* initialization routine */
run nlrun; /* run routine */

finish nlin;

/* Routine to show each iteration */
start nliter;

display nlin.title noinput,
nlin.model noinput,
nlin.parm1 noinput,
nlin.parmiter repeat noinput,
nlin.sse noinput;

finish nliter;

182 � Chapter 8. General Statistics Examples

/* Routine for one run */
start nlrun;

run nlgen; /* generate the model */
run nlest; /* estimate the model */

finish nlrun;

/* Routine to generate the model */
start nlgen;

/* Model definition menu */
display nlin.title, nlin.model, nlin.parm0, nlin.parminit repeat;

/* Get number of parameters */
t=loc(ndparm=’ ’);
if nrow(t)=0 then
do;

print ’no parameters’;
stop;

end;
_k=t[1] -1;

/* Trim extra rows, and edit ’*’ to ’#’ */
_dep=nddep; call change(_dep,’*’,’#’,0);
_fun=ndfun; call change(_fun,’*’,’#’,0);
_parm=ndparm[1:_k,];
_beta=ndbeta[1:_k,];
_der=ndder [1:_k,];
call change(_der,’*’,’#’,0);

/* Construct nlresid module to split up parameters and */
/* compute model */
call queue(’start nlresid;’);
do i=1 to _k;

call queue(_parm[i] ,"=_beta[",char(i,2),"] ;");
end;
call queue("_y = ",_dep,";",

"_p = ",_fun,";",
"_r = _y-_p;",
"_sse = ssq(_r);",
"finish;");

/* Construct nlderiv function */
call queue(’start nlderiv; _x = ’);
do i=1 to _k;

call queue("(",_der[i] ,")#repeat(1,nobs,1)||");
end;
call queue(" nlnothin; finish;");

/* Pause to compile the functions */
call queue("resume;");
pause *;

finish nlgen; /* Finish module NLGEN */

/* Routine to do estimation */
start nlest;

/* Modified Gauss-Newton Nonlinear Regression */

Example 8.15. Full-Screen Nonlinear Regression � 183

/* _parm has parm names */
/* _beta has initial values for parameters */
/* _k is the number of parameters */
/* after nlresid: */
/* _y has response, */
/* _p has predictor after call */
/* _r has residuals */
/* _sse has sse */
/* after nlderiv */
/* _x has jacobian */
/* */

eps=1;
_iter = 0;
_subit = 0;
_error = 0;
run nlresid; /* f, r, and sse for initial beta */
run nliter; /* print iteration zero */
nobs = nrow(_y);
_msg = ’Iterating’;

/* Gauss-Newton iterations */
do _iter=1 to 30 while(eps>1e-8);

run nlderiv; /* subroutine for derivatives */
_lastsse=_sse;
_xpxi=sweep(_x‘*_x);
_delta=_xpxi*_x‘*_r; /* correction vector */
_old = _beta; /* save previous parameters */
_beta=_beta+_delta; /* apply the correction */
run nlresid; /* compute residual */
run nliter; /* print iteration in window */
eps=abs((_lastsse-_sse))/(_sse+1e-6);

/* convergence criterion */

/* Hartley subiterations */
do _subit=1 to 10 while(_sse>_lastsse);

_delta=_delta*.5; /* halve the correction vector */
_beta=_old+_delta; /* apply the halved correction */
run nlresid; /* find sse et al */
run nliter; /* print subiteration in window */

end;
if _subit>10 then
do;

_msg = "did not improve after 10 halvings";
eps=0; /* make it fall through iter loop */

end;
end;

/* print out results */
_msg = ’ ’;
if _iter>30 then
do;

_error=1;
_msg = ’convergence failed’;

end;
_iter=_iter-1;
_dfe = nobs-_k;
_mse = _sse/_dfe;

184 � Chapter 8. General Statistics Examples

_std = sqrt(vecdiag(_xpxi)#_mse);
_t = _beta/_std;
_prob= 1-probf(_t#_t,1,_dfe);
display nlin.title noinput,
nlin.model noinput,
nlin.parm2 noinput,
nlin.parmest repeat noinput,
nlin.sse noinput;

finish nlest; /* Finish module NLEST */

/* Store the modules to run later */
reset storage=’nlin’;
store module=_all_;

References
Bishop, Y. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate

Analysis: Theory and Practice, Cambridge, MA: MIT Press.

Charnes, A., Frome, E. L., and Yu, P. L. (1976), “The Equivalence of Generalized
Least Squares and Maximum Likelihood Estimation in the Exponential Family,”
Journal of the American Statistical Association, 71, 169–172.

Cox, D. R. (1970), The Analysis of Binary Data, London: Methuen.

Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969), “Analysis of Categorical Data
by Linear Models,” Biometrics, 25, 489–504.

Hadley, G. (1963), Linear Programming, Reading, MA: Addison-Wesley.

Jennrich, R. I. and Moore, R. H. (1975), “Maximum Likelihood Estimation by Means
of Nonlinear Least Squares,” American Statistical Association 1975 Proceedings
of the Statistical Computing Section, 57–65.

Kaiser, H. F. and Caffrey, J. (1965), “Alpha Factor Analysis,” Psychometrika, 30,
1–14.

Kastenbaum, M. A. and Lamphiear, D. E. (1959), “Calculation of Chi-Square to Test
the No Three-Factor Interaction Hypothesis,” Biometrics, 15, 107–122.

Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,”
Journal of the Royal Statistical Society, A.3, 370.

Chapter 9
Robust Regression Examples

Chapter Contents

OVERVIEW . 187
Flow Chart for LMS, LTS, MCD, and MVE 190

USING LMS AND LTS . 191
Example 9.1. Substantial Leverage Points 191
Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS 195
Example 9.3. Univariate (Location) Problem 205

USING MVE AND MCD . 208
Example 9.4. Brainlog Data . 208
Example 9.5. Stackloss Data . 216

COMBINING ROBUST RESIDUAL AND ROBUST DISTANCE 226
Example 9.6. Hawkins-Bradu-Kass Data 227
Example 9.7. Stackloss Data . 233

REFERENCES . 235

186

Chapter 9
Robust Regression Examples
Overview

SAS/IML has four subroutines that can be used for outlier detection and robust re-
gression. The Least Median of Squares (LMS) and Least Trimmed Squares (LTS)
subroutines perform robust regression (sometimes called resistant regression). These
subroutines are able to detect outliers and perform a least-squares regression on the
remaining observations. The Minimum Volume Ellipsoid Estimation (MVE) and
Minimum Covariance Determinant Estimation (MCD) subroutines can be used to
find a robust location and a robust covariance matrix that can be used for constructing
confidence regions, detecting multivariate outliers and leverage points, and conduct-
ing robust canonical correlation and principal component analysis.

The LMS, LTS, MVE, and MCD methods were developed by Rousseeuw (1984) and
Rousseeuw and Leroy (1987). All of these methods have the high breakdown value
property. Roughly speaking, the breakdown value is a measure of the proportion of
contamination that a procedure can withstand and still maintain its robustness.

The algorithm used in the LMS subroutine is based on the PROGRESS program of
Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy
(1987). In the special case of regression through the origin with a single regressor,
Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in gen-
eral, find the slope that yields the least median of squares. Starting with release 9.2,
the LMS subroutine uses the algorithm of Barreto and Maharry (2006) to obtain the
correct LMS slope in the case of regression through the origin with a single regressor.
In this case, inputs to the LMS subroutine specific to the PROGRESS algorithm are
ignored and output specific to the PROGRESS algorithm is suppressed.

The algorithm used in the LTS subroutine is based on the algorithm FAST-LTS of
Rousseeuw and Van Driessen (2000). The MCD algorithm is based on the FAST-
MCD algorithm given by Rousseeuw and Van Driessen (1999), which is similar to
the FAST-LTS algorithm. The MVE algorithm is based on the algorithm used in
the MINVOL program by Rousseeuw (1984). LTS estimation has higher statistical
efficiency than LMS estimation. With the FAST-LTS algorithm, LTS is also faster
than LMS for large data sets. Similarly, MCD is faster than MVE for large data sets.

Besides LTS estimation and LMS estimation, there are other methods for robust re-
gression and outlier detection. You can refer to a comprehensive procedure, PROC
ROBUSTREG, in SAS/STAT. A summary of these robust tools in SAS can be found
in Chen (2002).

The four SAS/IML subroutines are designed for the following:

• LMS: minimizing the hth ordered squared residual

188 � Chapter 9. Robust Regression Examples

• LTS: minimizing the sum of the h smallest squared residuals

• MCD: minimizing the determinant of the covariance of h points

• MVE: minimizing the volume of an ellipsoid containing h points

where h is defined in the range

N

2
+ 1 ≤ h ≤ 3N

4
+
n+ 1

4

In the preceding equation, N is the number of observations and n is the number of
regressors.∗ The value of h determines the breakdown value, which is “the smallest
fraction of contamination that can cause the estimator T to take on values arbitrarily
far from T (Z)” (Rousseeuw and Leroy 1987, p.10). Here, T denotes an estimator
and T (Z) applies T to a sample Z.

For each parameter vector b = (b1, . . . , bn), the residual of observation i is ri =
yi − xib. You then denote the ordered, squared residuals as

(r2)1:N ≤ . . . ≤ (r2)N :N

The objective functions for the LMS, LTS, MCD, and MVE optimization problems
are defined as follows:

• LMS, the objective function for the LMS optimization problem is the hth or-
dered squared residual,

FLMS = (r2)h:N −→ min

Note that, for h = N/2 + 1, the hth quantile is the median of the squared
residuals. The default h in PROGRESS is h =

[
N+n+1

2

]
, which yields the

breakdown value (where [k] denotes the integer part of k).

• LTS, the objective function for the LTS optimization problem is the sum of the
h smallest ordered squared residuals,

FLTS =

√√√√1
h

h∑
i=1

(r2)i:N −→ min

• MCD, the objective function for the MCD optimization problem is based on
the determinant of the covariance of the selected h points,

FMCD = det(Ch) −→ min

where Ch is the covariance matrix of the selected h points.

∗The value of h can be specified, but in most applications the default value works just fine and the
results seem to be quite stable with different choices of h.

Overview � 189

• MVE, the objective function for the MVE optimization problem is based on
the hth quantile dh:N of the Mahalanobis-type distances d = (d1, . . . , dN),

FMVE =
√
dh:N det(C) −→ min

subject to dh:N =
√
χ2

n,0.5, where C is the scatter matrix estimate, and the
Mahalanobis-type distances are computed as

d = diag(
√

(X− T)TC−1(X− T))

where T is the location estimate.

Because of the nonsmooth form of these objective functions, the estimates cannot be
obtained with traditional optimization algorithms. For LMS and LTS, the algorithm,
as in the PROGRESS program, selects a number of subsets of n observations out of
the N given observations, evaluates the objective function, and saves the subset with
the lowest objective function. As long as the problem size enables you to evaluate all
such subsets, the result is a global optimum. If computing time does not permit you
to evaluate all the different subsets, a random collection of subsets is evaluated. In
such a case, you might not obtain the global optimum.

Note that the LMS, LTS, MCD, and MVE subroutines are executed only when the
number N of observations is more than twice the number n of explanatory variables
xj (including the intercept)—that is, if N > 2n.

190 � Chapter 9. Robust Regression Examples

Flow Chart for LMS, LTS, MCD, and MVE

Figure 9.1 illustrates the logic for the LMS, LTS, MCD, and MVE subroutines.

Start w/o Initial Point Start w/ Initial Point

?

?

?

LS Estimation

?

LMS or LTS Estimation by:

Enumeration vs. Random Sampling?

?? ?

Enumeration Random Subsamp. Obj. Function

?

?

Improve: Pairwise Exchange?

?

WLS Estimation: Weights from LMS or LTS

Flow Chart Indicating: LS −→ [LMS or LTS] −→ WLS

Separate LMS or LTS Part Inside Dashbox Corresponds to MCD, MVE

Figure 9.1. Flow Chart for LMS, LTS, MCD, and MVE

Example 9.1. Substantial Leverage Points � 191

Using LMS and LTS
Because of space considerations, the output of the tables containing residuals and
resistant diagnostics are not included in this document. The subroutines PRILMTS,
SCATLMTS, and LMSDIAP are used in these examples for printing and plotting the
results. These routines are in the robustmc.sas file that is contained in the sample
library.

Example 9.1. LMS and LTS with Substantial Leverage Points:
Hertzsprung-Russell Star Data

The following data are reported in Rousseeuw and Leroy (1987, p. 27) and are based
on Humphreys (1978) and Vansina and De Greve (1982). The 47 observations cor-
respond to the 47 stars of the CYG OB1 cluster in the direction of the constellation
Cygnus. The regressor variable (column 2) x is the logarithm of the effective tem-
perature at the surface of the star (Te), and the response variable (column 3) y is the
logarithm of its light intensity (L/L0). The results for LS and LMS on page 28 of
Rousseeuw and Leroy (1987) are based on a more precise (five decimal places) ver-
sion of the data set. This data set is remarkable in that it contains four substantial
leverage points (representing giant stars) corresponding to observations 11, 20, 30,
and 34 that greatly affect the results of L2 and even L1 regression.

ab = { 1 4.37 5.23, 2 4.56 5.74, 3 4.26 4.93,
4 4.56 5.74, 5 4.30 5.19, 6 4.46 5.46,
7 3.84 4.65, 8 4.57 5.27, 9 4.26 5.57,
10 4.37 5.12, 11 3.49 5.73, 12 4.43 5.45,
13 4.48 5.42, 14 4.01 4.05, 15 4.29 4.26,
16 4.42 4.58, 17 4.23 3.94, 18 4.42 4.18,
19 4.23 4.18, 20 3.49 5.89, 21 4.29 4.38,
22 4.29 4.22, 23 4.42 4.42, 24 4.49 4.85,
25 4.38 5.02, 26 4.42 4.66, 27 4.29 4.66,
28 4.38 4.90, 29 4.22 4.39, 30 3.48 6.05,
31 4.38 4.42, 32 4.56 5.10, 33 4.45 5.22,
34 3.49 6.29, 35 4.23 4.34, 36 4.62 5.62,
37 4.53 5.10, 38 4.45 5.22, 39 4.53 5.18,
40 4.43 5.57, 41 4.38 4.62, 42 4.45 5.06,
43 4.50 5.34, 44 4.45 5.34, 45 4.55 5.54,
46 4.45 4.98, 47 4.42 4.50 } ;

a = ab[,2]; b = ab[,3];

The following statements specify that most of the output be printed:

print "*** Hertzsprung-Russell Star Data: Do LMS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

192 � Chapter 9. Robust Regression Examples

Some simple statistics for the independent and response variables are shown in
Output 9.1.1.

Output 9.1.1. Some Simple Statistics
Median and Mean

Median Mean
VAR1 4.420000000 4.310000000
Intercep 1.000000000 1.000000000
Response 5.100000000 5.012127660

Dispersion and Standard Deviation

Dispersion StdDev
VAR1 0.1630862440 0.2908234187
Intercep 0.0000000000 0.0000000000
Response 0.6671709983 0.5712493409

Partial output for LS regression is shown in Output 9.1.2.

Output 9.1.2. Table of Unweighted LS Regression

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 -0.4133 0.28626 -1.4438 0.156 -0.9744 0.1478
Intercep 6.7935 1.23652 5.4940 175E-8 4.3699 9.2170

Sum of Squares = 14.346394626
Degrees of Freedom = 45

LS Scale Estimate = 0.5646315343

COV Matrix of Parameter Estimates

VAR1 Intercep
VAR1 0.081943343 -0.353175807
Intercep -0.353175807 1.528970895

R-squared = 0.0442737441
F(1,45) Statistic = 2.0846120667

Probability = 0.1557164396

Output 9.1.3 displays the iteration history. Looking at the column Best Crit in the
iteration history table, you see that, with complete enumeration, the optimal solution
is quickly found.

Example 9.1. Substantial Leverage Points � 193

Output 9.1.3. History of the Iteration Process

*** Complete Enumeration for LMS ***

Subset Singular Best Crit Pct
271 5 0.39279108982007 25%
541 8 0.39279108982007 50%
811 27 0.39279108982007 75%

1081 45 0.39279108982007 100%
Minimum Criterion=0.3927910898

**
Least Median of Squares (LMS) Regression
**

Minimizing the 25th Ordered Squared Residual.
Highest Possible Breakdown Value = 48.94 %

Selection of All 1081 Subsets of 2 Cases Out of 47
Among 1081 subsets 45 are singular.

The results of the optimization for LMS estimation are displayed in Output 9.1.4.

Output 9.1.4. Results of Optimization
Observations of Best Subset

2 29

Estimated Coefficients

VAR1 Intercep
3.97058824 -12.62794118

LMS Objective Function = 0.2620588235
Preliminary LMS Scale = 0.3987301586
Robust R Squared = 0.5813148789

Final LMS Scale Estimate = 0.3645644492

Output 9.1.5 displays the results for WLS regression. Due to the size of the scaled
residuals, six observations (with numbers 7, 9, 11, 20, 30, 34) were assigned zero
weights in the following WLS analysis.

The LTS regression implements the FAST-LTS algorithm, which improves the algo-
rithm (used in SAS/IML Version 7 and earlier versions, denoted as V7 LTS in this
chapter) in Rousseeuw and Leroy (1987) by using techniques called “selective itera-
tion” and “nested extensions.” These techniques are used in the C-steps of the algo-
rithm. See Rousseeuw and Van Driessen (2000) for details. The FAST-LTS algorithm
significantly improves the speed of computation.

194 � Chapter 9. Robust Regression Examples

Output 9.1.5. Table of Weighted LS Regression Based on LMS

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 3.0462 0.43734 6.9652 24E-9 2.1890 3.9033
Intercep -8.5001 1.92631 -4.4126 0.0001 -12.2755 -4.7246

Weighted Sum of Squares = 4.52819451
Degrees of Freedom = 39

RLS Scale Estimate = 0.3407455818

COV Matrix of Parameter Estimates

VAR1 Intercep
VAR1 0.191265604 -0.842128459
Intercep -0.842128459 3.710661875

Weighted R-squared = 0.5543573521
F(1,39) Statistic = 48.514065776

Probability = 2.3923178E-8
There are 41 points with nonzero weight.

Average Weight = 0.8723404255

The following statements implement the LTS regression on the Hertzsprung-Russell
star data:

print "*** Hertzsprung-Russell Star Data: Do LTS ***";
optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lts(sc,coef,wgt,optn,b,a);

Output 9.1.6 summarizes the information for the LTS optimization.

Output 9.1.6. Summary of Optimization
Least Trimmed Squares (LTS) Method

Minimizing Sum of 25 Smallest Squared Residuals.
Highest Possible Breakdown Value = 48.94 %

Selection of All 1081 Subsets of 2 Cases Out of 47
Among 1081 subsets 45 is/are singular.

The best half of the entire data set obtained after full iteration consists
of the cases:

2 4 6 10 13 15 17 19 21 22 25 27 28

29 33 35 36 38 39 41 42 43 44 45 46

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 195

Output 9.1.7 displays the optimization results and Output 9.1.8 displays the weighted
LS regression based on LTS estimates.

Output 9.1.7. Results of Optimization
Estimated Coefficients

VAR1 Intercep

4.219182102 -13.6239903

LTS Objective Function = 0.1829636959

Preliminary LTS Scale = 0.4524915298

Robust R Squared = 0.4210129994

Final LTS Scale = 0.3731970408

Output 9.1.8. Table of Weighted LS Regression Based on LTS

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LTS

Approx Pr >
Variable Estimate Std Err t Value |t| Lower WCI Upper WCI

VAR1 3.04615694 0.43733923 6.97 <.0001 2.18898779 3.90332608
Intercep -8.5000549 1.92630783 -4.41 <.0001 -12.275549 -4.7245609

Weighted Sum of Squares = 4.52819451

Degrees of Freedom = 39
RLS Scale Estimate = 0.3407455818

Cov Matrix of Parameter Estimates

VAR1 Intercep

VAR1 0.1912656038 -0.842128459
Intercep -0.842128459 3.7106618752

Weighted R-squared = 0.5543573521
F(1,39) Statistic = 48.514065776

Probability = 2.3923178E-8
There are 41 points with nonzero weight.

Average Weight = 0.8723404255

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS

The following example presents comparisons of LMS, V7 LTS, and FAST-LTS. The
data analyzed are the stackloss data of Brownlee (1965), which are also used for
documenting the L1 regression module. The three explanatory variables correspond
to measurements for a plant oxidizing ammonia to nitric acid on 21 consecutive days:

196 � Chapter 9. Robust Regression Examples

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

The response variable yi gives the permillage of ammonia lost (stackloss). The fol-
lowing data are also given in Rousseeuw and Leroy (1987, p. 76) and Osborne (1985,
p. 267):

print "Stackloss Data";
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers in which the pre-
ceding data set was analyzed. They state that most researchers “concluded that obser-
vations 1, 3, 4, and 21 were outliers” and that some people also reported observation
2 as an outlier.

Consider 2,000 Random Subsets for LMS
For N = 21 and n = 4 (three explanatory variables including intercept), you obtain
a total of 5985 different subsets of 4 observations out of 21. If you do not specify
OPTN[5], the LMS algorithms draw Nrep = 2000 random sample subsets. Since
there is a large number of subsets with singular linear systems that you do not want
to print, you can choose OPTN[2]=2 for reduced printed output, as in the following:

title2 "***Use 2000 Random Subsets for LMS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 197

Summary statistics are shown in Output 9.2.1.

Output 9.2.1. Some Simple Statistics
Median and Mean

Median Mean
VAR1 58.00000000 60.42857143
VAR2 20.00000000 21.09523810
VAR3 87.00000000 86.28571429
Intercep 1.00000000 1.00000000
Response 15.00000000 17.52380952

Dispersion and Standard Deviation

Dispersion StdDev
VAR1 5.93040887 9.16826826
VAR2 2.96520444 3.16077145
VAR3 4.44780666 5.35857124
Intercep 0.00000000 0.00000000
Response 5.93040887 10.17162252

Output 9.2.2 displays the results of LS regression.

Output 9.2.2. Table of Unweighted LS Regression

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7156 0.13486 5.3066 58E-6 0.4513 0.9800
VAR2 1.2953 0.36802 3.5196 0.0026 0.5740 2.0166
VAR3 -0.1521 0.15629 -0.9733 0.344 -0.4585 0.1542
Intercep -39.9197 11.89600 -3.3557 0.0038 -63.2354 -16.6039

Sum of Squares = 178.8299616
Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.0181867 -0.0365107 -0.0071435 0.2875871
VAR2 -0.0365107 0.1354419 0.0000105 -0.6517944
VAR3 -0.0071435 0.0000105 0.0244278 -1.6763208
Intercep 0.2875871 -0.6517944 -1.6763208 141.5147411

R-squared = 0.9135769045
F(3,17) Statistic = 59.9022259

Probability = 3.0163272E-9

Output 9.2.3 displays the LMS results for the 2000 random subsets.

198 � Chapter 9. Robust Regression Examples

Output 9.2.3. Iteration History and Optimization Results

*** Random Subsampling for LMS ***

Subset Singular Best Crit Pct
500 23 0.1632616086096 25%
1000 55 0.14051869795752 50%
1500 79 0.14051869795752 75%
2000 103 0.12646682816177 100%
Minimum Criterion=0.1264668282

**
Least Median of Squares (LMS) Regression
**

Minimizing the 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

15 11 19 10

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.75000000 0.50000000 0.00000000 -39.25000000

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale Estimate = 1.2076147288

For LMS, observations 1, 3, 4, and 21 have scaled residuals larger than 2.5 (output
not shown), and they are considered outliers. Output 9.2.4 displays the corresponding
WLS results.

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 199

Output 9.2.4. Table of Weighted LS Regression

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7977 0.06744 11.8282 25E-9 0.6655 0.9299
VAR2 0.5773 0.16597 3.4786 0.0041 0.2520 0.9026
VAR3 -0.0671 0.06160 -1.0886 0.296 -0.1878 0.0537
Intercep -37.6525 4.73205 -7.9569 237E-8 -46.9271 -28.3778

Weighted Sum of Squares = 20.400800254
Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.00454803 -0.00792141 -0.00119869 0.00156817
VAR2 -0.00792141 0.02754569 -0.00046339 -0.06501751
VAR3 -0.00119869 -0.00046339 0.00379495 -0.24610225
Intercep 0.00156817 -0.06501751 -0.24610225 22.39230535

Weighted R-squared = 0.9750062263
F(3,13) Statistic = 169.04317954

Probability = 1.158521E-10
There are 17 points with nonzero weight.

Average Weight = 0.8095238095

The subroutine PRILMTS(), which is in the robustmc.sas file that is contained in
the sample library, can be called to print the output summary. Here is the statement:

call prilmts(3,sc,coef,wgt);

Output 9.2.5, Output 9.2.6, and Output 9.2.7 are the three parts of the output.

Output 9.2.5. First Part of Output Generated by PRILMTS()
Results of Least Median Squares Estimation

Quantile. 13
Number of Subsets. 2103
Number of Singular Subsets . 103
Number of Nonzero Weights. . 17
Objective Function. 0.75
Preliminary Scale Estimate. . 1.0478511
Final Scale Estimate. 1.2076147
Robust R Squared. 0.9648438
Asymptotic Consistency Factor 1.1413664
RLS Scale Estimate. 1.252714
Weighted Sum of Squares . . 20.4008
Weighted R-squared. 0.9750062
F Statistic 169.04318

200 � Chapter 9. Robust Regression Examples

Output 9.2.6. Second Part of Output Generated by PRILMTS()
Estimated LMS Coefficients

0.75 0.5 0 -39.25

Indices of Best Sample
15 11 19 10

Estimated WLS Coefficients
0.7976856 0.5773405 -0.06706 -37.65246

Standard Errors
0.0674391 0.1659689 0.0616031 4.7320509

T Values
11.828242 3.4786054 -1.088584 -7.956901

Probabilities
2.4838E-8 0.004078 0.2961071 2.3723E-6

Lower Wald CI
0.6655074 0.2520473 -0.1878 -46.92711

Upper Wald CI
0.9298637 0.9026336 0.0536798 -28.37781

Output 9.2.7. Third Part of Output Generated by PRILMTS()
LMS Residuals

6.4176097 2.2772163 6.21059 7.2456884 -0.20702 -0.621059
: -0.20702 0.621059 -0.621059 0.621059 0.621059 0.2070197
: -1.863177 -1.449138 0.621059 -0.20702 0.2070197 0.2070197
: 0.621059 1.863177 -6.831649

Diagnostics
10.448052 7.9317507 10 11.666667 2.7297297 3.4864865

: 4.7297297 4.2432432 3.6486486 3.7598351 4.6057675 4.9251688
: 3.8888889 4.5864209 5.2970297 4.009901 6.679576 4.3053404
: 4.0199755 3 11

WLS Residuals
4.9634454 0.9185794 5.1312163 6.5250478 -0.535877 -0.996749

: -0.338162 0.4601047 -0.844485 0.286883 0.7686702 0.3777432
: -2.000854 -1.074607 1.0731966 0.1143341 -0.297718 0.0770058
: 0.4679328 1.544002 -6.888934

Consider 2,000 Random Subsets for V7 LTS

The V7 LTS algorithm is similar to the LMS algorithm. Here is the code:

title2 "***Use 2000 Random Subsets for LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */

call lts(sc,coef,wgt,optn,b,a);

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 201

Output 9.2.8 displays the iteration history and optimization results of V7 LTS.

Output 9.2.8. Iteration History and Optimization Results

*** Random Subsampling for V7 LTS ***

Subset Singular Best Crit Pct
500 23 0.09950690229748 25%
1000 55 0.08781379221356 50%
1500 79 0.08406140720682 75%
2000 103 0.08406140720682 100%
Minimum Criterion=0.0840614072

Least Trimmed Squares (V7 LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

10 11 7 15

Estimated Coefficients
VAR1 VAR2 VAR3 Intercep

0.75000000 0.33333333 0.00000000 -35.70512821

LTS Objective Function = 0.4985185153
Preliminary LTS Scale = 1.0379336739

Robust R Squared = 0.9719626168
Final LTS Scale Estimate = 1.0407755737

In addition to observations 1, 3, 4, and 21, which were considered outliers in LMS,
observations 2 and 13 for LTS have absolute scaled residuals that are larger (but not as
significantly as observations 1, 3, 4, and 21) than 2.5 (output not shown). Therefore,
the WLS results based on LTS are different from those based on LMS.

Output 9.2.9 displays the results for the weighted LS regression.

202 � Chapter 9. Robust Regression Examples

Output 9.2.9. Table of Weighted LS Regression

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LTS

Approx Lower Upper
Estimate Std Error T Value Prob Wald CI Wald CI

VAR1 0.7569 0.07861 9.6293 108E-8 0.6029 0.9110
VAR2 0.4535 0.13605 3.3335 0.0067 0.1869 0.7202
VAR3 -0.0521 0.05464 -0.9537 0.361 -0.1592 0.0550
Intercep -34.0575 3.82882 -8.8950 235E-8 -41.5619 -26.5532

Weighted Sum of Squares = 10.273044977
Degrees of Freedom = 11

RLS Scale Estimate = 0.9663918355

COV Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep
VAR1 0.00617916 -0.00577686 -0.00230059 -0.03429007
VAR2 -0.00577686 0.01850969 0.00025825 -0.06974088
VAR3 -0.00230059 0.00025825 0.00298523 -0.13148741
Intercep -0.03429007 -0.06974088 -0.13148741 14.65985290

Weighted R-squared = 0.9622869127
F(3,11) Statistic = 93.558645037

Probability = 4.1136826E-8
There are 15 points with nonzero weight.

Average Weight = 0.7142857143

Consider 500 Random Subsets for FAST-LTS

The FAST-LTS algorithm uses only 500 random subsets and gets better optimization
results. Here is the code:

title2 "***Use 500 Random Subsets for FAST-LTS***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */
optn[9]= 0; /* FAST-LTS */

call lts(sc,coef,wgt,optn,b,a);

For this example, the two LTS algorithms identify the same outliers; however, the
FAST-LTS algorithm uses only 500 random subsets and gets a smaller objective func-
tion, as seen in Output 9.2.10. For large data sets, the advantages of the FAST-LTS
algorithm are more obvious.

Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS � 203

Output 9.2.10. Optimization Results for FAST-LTS

Least Trimmed Squares (FAST-LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 523 Subsets
Among 523 subsets 23 is/are singular.

The best half of the entire data set obtained after full iteration consists
of the cases:

5 6 7 8 9 10 11 12 15 16 17 18 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.7409210642 0.3915267228 0.0111345398 -37.32332647

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.9745520119
Final LTS Scale = 1.0360272594

Consider All 5,985 Subsets

You now report the results of LMS for all different subsets. Here is the code:

title2 "*** Use All 5985 Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all 5985 subsets */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b,a);

Output 9.2.11 displays the results for LMS.

204 � Chapter 9. Robust Regression Examples

Output 9.2.11. Iteration History and Optimization Results for LMS

*** Complete Enumeration for LMS ***

Subset Singular Best Crit Pct
1497 36 0.18589932664216 25%
2993 87 0.15826842822584 50%
4489 149 0.14051869795752 75%
5985 266 0.12646682816177 100%
Minimum Criterion=0.1264668282

**
Least Median of Squares (LMS) Regression
**

Minimizing the 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Selection of All 5985 Subsets of 4 Cases Out of 21
Among 5985 subsets 266 are singular.

Observations of Best Subset

8 10 15 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.75000000 0.50000000 0.00000000 -39.25000000

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375
Final LMS Scale Estimate = 1.2076147288

Next, report the results of LTS for all different subsets, as follows:

title2 "*** Use All 5985 Subsets***";
a = aa[,2:4]; b = aa[,5];
optn = j(9,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[5]= -1; /* nrep: all 5985 subsets */
optn[8]= 3; /* icov */
optn[9]= 1; /* V7 LTS */

call lts(sc,coef,wgt,optn,b,a);

Output 9.2.12 displays the results for LTS.

Example 9.3. Univariate (Location) Problem � 205

Output 9.2.12. Iteration History and Optimization Results for LTS

*** Complete Enumeration for LTS ***

Subset Singular Best Crit Pct
1497 36 0.13544860556893 25%
2993 87 0.10708384510403 50%
4489 149 0.08153552986986 75%
5985 266 0.08153552986986 100%
Minimum Criterion=0.0815355299

Least Trimmed Squares (LTS) Regression

Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %

Selection of All 5985 Subsets of 4 Cases Out of 21
Among 5985 subsets 266 are singular.

Observations of Best Subset

5 12 17 18

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep
0.72916667 0.41666667 0.00000000 -36.22115385

LTS Objective Function = 0.4835390299
Preliminary LTS Scale = 1.0067458407

Robust R Squared = 0.9736222371
Final LTS Scale Estimate = 1.009470149

Example 9.3. LMS and LTS Univariate (Location) Problem:
Barnett and Lewis Data

If you do not specify matrix X of the last input argument, the regression problem
is reduced to the estimation problem of the location parameter a. The following
example is described in Rousseeuw and Leroy (1987, p. 175):

print "*** Barnett and Lewis (1978) ***";
b = { 3, 4, 7, 8, 10, 949, 951 };

optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lms(sc,coef,wgt,optn,b);

Output 9.3.1 shows the results of the unweighted LS regression.

206 � Chapter 9. Robust Regression Examples

Output 9.3.1. Table of Unweighted LS Regression
Robust Estimation of Location and Scale

Unweighted Least-Squares Estimation

Median = 8 MAD (* 1.4826) = 5.930408874
Mean = 276 Standard Deviation = 460.43602523

LS Residuals

Observed Residual Res / S

1 3.000000 -273.000000 -0.592916
2 4.000000 -272.000000 -0.590744
3 7.000000 -269.000000 -0.584229
4 8.000000 -268.000000 -0.582057
5 10.000000 -266.000000 -0.577713
6 949.000000 673.000000 1.461658
7 951.000000 675.000000 1.466002

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-273 -272 -268 0 -266 675

Output 9.3.2 shows the results for LMS regression.

Output 9.3.2. Table of LMS Results

Least Median of Squares (LMS) Method

Minimizing 4th Ordered Squared Residual.
Highest Possible Breakdown Value = 57.14 %

LMS Objective Function = 2.5
LMS Location = 5.5

Preliminary LMS Scale = 5.4137257125
Final LMS Scale = 3.0516389039

LMS Residuals

Observed Residual Res / S

1 3.000000 -2.500000 -0.819232
2 4.000000 -1.500000 -0.491539
3 7.000000 1.500000 0.491539
4 8.000000 2.500000 0.819232
5 10.000000 4.500000 1.474617
6 949.000000 943.500000 309.178127
7 951.000000 945.500000 309.833512

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-2.5 -1.5 2.5 270.5 4.5 945.5

You obtain the LMS location estimate 6.5 compared with the mean 276 (which is the
LS estimate of the location parameter) and the median 8. The scale estimate in the
univariate problem is a resistant (high breakdown) estimator for the dispersion of the
data (see Rousseeuw and Leroy 1987, p. 178).

Example 9.3. Univariate (Location) Problem � 207

For weighted LS regression, the last two observations are ignored (that is, given zero
weights), as shown in Output 9.3.3.

Output 9.3.3. Table of Weighted LS Regression

Weighted Least-Squares Estimation

Weighted Mean = 6.4
Weighted Standard Deviation = 2.8809720582
There are 5 points with nonzero weight.

Average Weight = 0.7142857143

Weighted LS Residuals
--

Observed Residual Res / S Weight
--

1 3.000000 -3.400000 -1.180157 1.000000
2 4.000000 -2.400000 -0.833052 1.000000
3 7.000000 0.600000 0.208263 1.000000
4 8.000000 1.600000 0.555368 1.000000
5 10.000000 3.600000 1.249578 1.000000
6 949.000000 942.600000 327.181236 0
7 951.000000 944.600000 327.875447 0

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes
-3.4 -2.4 1.6 269.6 3.6 944.6

Use the following code to obtain results from LTS:

optn = j(9,1,.);
optn[2]= 3; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

call lts(sc,coef,wgt,optn,b);

The results for LTS are similar to those reported for LMS in Rousseeuw and Leroy
(1987), as shown in Output 9.3.4.

208 � Chapter 9. Robust Regression Examples

Output 9.3.4. Table of LTS Results

Least Trimmed Squares (LTS) Method

Minimizing Sum of 4 Smallest Squared Residuals.
Highest Possible Breakdown Value = 57.14 %

LTS Objective Function = 2.0615528128
LTS Location = 5.5

Preliminary LTS Scale = 4.7050421234
Final LTS Scale = 3.0516389039

LTS Residuals

Observed Residual Res / S

1 3.000000 -2.500000 -0.819232
2 4.000000 -1.500000 -0.491539
3 7.000000 1.500000 0.491539
4 8.000000 2.500000 0.819232
5 10.000000 4.500000 1.474617
6 949.000000 943.500000 309.178127
7 951.000000 945.500000 309.833512

Distribution of Residuals
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

-2.5 -1.5 2.5 270.5 4.5 945.5

Since nonzero weights are chosen for the same observations as with LMS, the WLS
results based on LTS agree with those based on LMS (shown previously in Output
9.3.3).

In summary, you obtain the following estimates for the location parameter:

• LS estimate (unweighted mean) = 276

• Median = 8

• LMS estimate = 5.5

• LTS estimate = 5.5

• WLS estimate (weighted mean based on LMS or LTS) = 6.4

Using MVE and MCD
The routines PRIMVE, SCATMVE, and SCATMCD are used in these examples for
printing and plotting the results. These routines are in the robustmc.sas file that is
contained in the sample library.

Example 9.4. Brainlog Data

The following data, consisting of the body weights (in kilograms) and brain weights
(in grams) of N = 28 animals, are reported by Jerison (1973) and can be found also
in Rousseeuw and Leroy (1987, p. 57). Instead of the original data, the following
example uses the logarithms of the measurements of the two variables.

Example 9.4. Brainlog Data � 209

title "*** Brainlog Data: Do MCD, MVE ***";
aa={ 1.303338E-001 9.084851E-001 ,

2.6674530 2.6263400 ,
1.5602650 2.0773680 ,
1.4418520 2.0606980 ,

1.703332E-002 7.403627E-001 ,
4.0681860 1.6989700 ,
3.4060290 3.6630410 ,
2.2720740 2.6222140 ,
2.7168380 2.8162410 ,
1.0000000 2.0606980 ,

5.185139E-001 1.4082400 ,
2.7234560 2.8325090 ,
2.3159700 2.6085260 ,
1.7923920 3.1205740 ,
3.8230830 3.7567880 ,
3.9731280 1.8450980 ,

8.325089E-001 2.2528530 ,
1.5440680 1.7481880 ,

-9.208187E-001 .0000000 ,
-1.6382720 -3.979400E-001 ,

3.979400E-001 1.0827850 ,
1.7442930 2.2430380 ,
2.0000000 2.1959000 ,
1.7173380 2.6434530 ,
4.9395190 2.1889280 ,

-5.528420E-001 2.787536E-001 ,
-9.136401E-001 4.771213E-001 ,

2.2833010 2.2552720 };

By default, the MVE subroutine uses only 1500 randomly selected subsets rather than
all subsets. The following specification of the options vector requires that all 3276
subsets of 3 cases out of 28 cases are generated and evaluated:

title2 "***MVE for BrainLog Data***";
title3 "*** Use All Subsets***";

optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: all subsets */

call mve(sc,xmve,dist,optn,aa);

Specifying OPTN[1]=3, OPTN[2]=1, and OPTN[3]=1 requests that all output be
printed. Output 9.4.1 shows the classical scatter and correlation matrix.

210 � Chapter 9. Robust Regression Examples

Output 9.4.1. Some Simple Statistics

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 15 Cases.

Classical Covariance Matrix

VAR1 VAR2
VAR1 2.681651236 1.330084693
VAR2 1.330084693 1.085753755

Classical Correlation Matrix

VAR1 VAR2
VAR1 1.000000000 0.779493464
VAR2 0.779493464 1.000000000

Classical Mean

VAR1 1.637857
VAR2 1.921947

Output 9.4.2 shows the results of the combinatoric optimization (complete subset
sampling).

Output 9.4.2. Iteration History for MVE

MVE for BrainLog Data

Best
Subset Singular Criterion Percent

819 0 0.439709 25
1638 0 0.439709 50
2457 0 0.439709 75
3276 0 0.439709 100

Observations of Best Subset

1 22 28

Initial MVE Location
Estimates

VAR1 1.3859759333
VAR2 1.8022650333

Initial MVE Scatter Matrix

VAR1 VAR2

VAR1 4.9018525125 3.2937139101
VAR2 3.2937139101 2.3400650932

Output 9.4.3 shows the optimization results after local improvement.

Example 9.4. Brainlog Data � 211

Output 9.4.3. Table of MVE Results

MVE for BrainLog Data

Robust MVE Location
Estimates

VAR1 1.29528238
VAR2 1.8733722792

Robust MVE Scatter Matrix

VAR1 VAR2

VAR1 2.0566592937 1.5290250167
VAR2 1.5290250167 1.2041353589

Eigenvalues of Robust
Scatter Matrix

VAR1 3.2177274012
VAR2 0.0430672514

Robust Correlation Matrix

VAR1 VAR2

VAR1 1 0.9716184659
VAR2 0.9716184659 1

Output 9.4.4 presents a table containing the classical Mahalanobis distances, the ro-
bust distances, and the weights identifying the outlier observations.

212 � Chapter 9. Robust Regression Examples

Output 9.4.4. Mahalanobis and Robust Distances

MVE for BrainLog Data

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 1.006591 0.897076 1.000000
2 0.695261 1.405302 1.000000
3 0.300831 0.186726 1.000000
4 0.380817 0.318701 1.000000
5 1.146485 1.135697 1.000000
6 2.644176 8.828036 0
7 1.708334 1.699233 1.000000
8 0.706522 0.686680 1.000000
9 0.858404 1.084163 1.000000

10 0.798698 1.580835 1.000000
11 0.686485 0.693346 1.000000
12 0.874349 1.071492 1.000000
13 0.677791 0.717545 1.000000
14 1.721526 3.398698 0
15 1.761947 1.762703 1.000000
16 2.369473 7.999472 0
17 1.222253 2.805954 0
18 0.203178 1.207332 1.000000
19 1.855201 1.773317 1.000000
20 2.266268 2.074971 1.000000
21 0.831416 0.785954 1.000000
22 0.416158 0.342200 1.000000
23 0.264182 0.918383 1.000000
24 1.046120 1.782334 1.000000
25 2.911101 9.565443 0
26 1.586458 1.543748 1.000000
27 1.582124 1.808423 1.000000
28 0.394664 1.523235 1.000000

Again, you can call the subroutine SCATMVE(), which is included in the sample
library in the file robustmc.sas, to plot the classical and robust confidence ellip-
soids, as follows:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Log Body Wgt","Log Brain Wgt" };
filn = "brlmve";
titl = "BrainLog Data: MVE Use All Subsets";

call scatmve(2,optn,.9,aa,vnam,titl,1,filn);

The plot is shown in Output 9.4.5.

Example 9.4. Brainlog Data � 213

Output 9.4.5. BrainLog Data: Classical and Robust Ellipsoid(MVE)

MCD is another subroutine that can be used to compute the robust location and the
robust covariance of multivariate data sets. Here is the code:

title2 "***MCD for BrainLog Data***";
title3 "*** Use 500 Random Subsets***";

optn = j(9,1,.);
optn[1]= 3; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */

call mcd(sc,xmve,dist,optn,aa);

Similarly, specifying OPTN[1]=3, OPTN[2]=1, and OPTN[3]=1 requests that all out-
put be printed.

Output 9.4.6 shows the results of the optimization.

214 � Chapter 9. Robust Regression Examples

Output 9.4.6. Results of the Optimization
1 2 3 4 5 8 9 11 12 13 18 21 22 23 28

MCD Location Estimate

VAR1 VAR2

1.622226068 2.0150777867

MCD Scatter Matrix Estimate

VAR1 VAR2

VAR1 0.8973945995 0.6424456706
VAR2 0.6424456706 0.4793505736

Output 9.4.7 shows the reweighted results after removing outliers.

Output 9.4.7. Final Reweighted MCD Results
Reweighted Location Estimate

VAR1 VAR2

1.3154029661 1.8568731174

Reweighted Scatter Matrix

VAR1 VAR2

VAR1 2.139986054 1.6068556533
VAR2 1.6068556533 1.2520384784

Eigenvalues

VAR1 VAR2

3.363074897 0.0289496354

Reweighted Correlation Matrix

VAR1 VAR2

VAR1 1 0.9816633012
VAR2 0.9816633012 1

Output 9.4.8 presents a table containing the classical Mahalanobis distances, the ro-
bust distances, and the weights identifying the outlier observations.

Example 9.5. Brainlog Data � 215

Output 9.4.8. Mahalanobis and Robust Distances (MCD)
Classical Distances and Robust (Rousseeuw) Distances

Unsquared Mahalanobis Distance and
Unsquared Rousseeuw Distance of Each Observation

Mahalanobis Robust
N Distances Distances Weight

1 1.006591 0.855347 1.000000
2 0.695261 1.477050 1.000000
3 0.300831 0.239828 1.000000
4 0.380817 0.517719 1.000000
5 1.146485 1.108362 1.000000
6 2.644176 10.599341 0
7 1.708334 1.808455 1.000000
8 0.706522 0.690099 1.000000
9 0.858404 1.052423 1.000000
10 0.798698 2.077131 1.000000
11 0.686485 0.888545 1.000000
12 0.874349 1.035824 1.000000
13 0.677791 0.683978 1.000000
14 1.721526 4.257963 0
15 1.761947 1.716065 1.000000
16 2.369473 9.584992 0
17 1.222253 3.571700 0
18 0.203178 1.323783 1.000000
19 1.855201 1.741064 1.000000
20 2.266268 2.026528 1.000000
21 0.831416 0.743545 1.000000
22 0.416158 0.419923 1.000000
23 0.264182 0.944610 1.000000
24 1.046120 2.289334 1.000000
25 2.911101 11.471953 0
26 1.586458 1.518721 1.000000
27 1.582124 2.054593 1.000000
28 0.394664 1.675651 1.000000

You can call the subroutine SCATMCD(), which is included in the sample library in
file robustmc.sas, to plot the classical and robust confidence ellipsoids. Here is
the code:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Log Body Wgt","Log Brain Wgt" };
filn = "brlmcd";
titl = "BrainLog Data: MCD";

call scatmcd(2,optn,.9,aa,vnam,titl,1,filn);

The plot is shown in Output 9.4.9.

216 � Chapter 9. Robust Regression Examples

Output 9.4.9. BrainLog Data: Classical and Robust Ellipsoid (MCD)

Example 9.5. Stackloss Data

The following example analyzes the three regressors of Brownlee (1965) stackloss
data. By default, the MVE subroutine tries only 2000 randomly selected subsets in
its search. There are, in total, 5985 subsets of 4 cases out of 21 cases. Here is the
code:

title2 "***MVE for Stackloss Data***";
title3 "*** Use All Subsets***";

a = aa[,2:4];
optn = j(9,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */

call mve(sc,xmve,dist,optn,a);

Output 9.5.1 of the output shows the classical scatter and correlation matrix.

Example 9.5. Stackloss Data � 217

Output 9.5.1. Some Simple Statistics

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 12 Cases.

Classical Covariance Matrix

VAR1 VAR2 VAR3
VAR1 84.05714286 22.65714286 24.57142857
VAR2 22.65714286 9.99047619 6.62142857
VAR3 24.57142857 6.62142857 28.71428571

Classical Correlation Matrix

VAR1 VAR2 VAR3
VAR1 1.000000000 0.781852333 0.500142875
VAR2 0.781852333 1.000000000 0.390939538
VAR3 0.500142875 0.390939538 1.000000000

Classical Mean

VAR1 60.42857
VAR2 21.09524
VAR3 86.28571

Output 9.5.2 shows the results of the optimization (complete subset sampling).

Output 9.5.2. Iteration History

MVE for Stackloss Data

Best
Subset Singular Criterion Percent

1497 22 253.312431 25
2993 46 224.084073 50
4489 77 165.830053 75
5985 156 165.634363 100

Observations of Best Subset

7 10 14 20

Initial MVE Location
Estimates

VAR1 58.5
VAR2 20.25
VAR3 87

Initial MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 34.829014749 28.413143611 62.32560534
VAR2 28.413143611 38.036950318 58.659393261
VAR3 62.32560534 58.659393261 267.63348175

218 � Chapter 9. Robust Regression Examples

Output 9.5.3 shows the optimization results after local improvement.

Output 9.5.3. Table of MVE Results

MVE for Stackloss Data

Robust MVE Location
Estimates

VAR1 56.705882353
VAR2 20.235294118
VAR3 85.529411765

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 23.470588235 7.5735294118 16.102941176
VAR2 7.5735294118 6.3161764706 5.3676470588
VAR3 16.102941176 5.3676470588 32.389705882

Eigenvalues of Robust
Scatter Matrix

VAR1 46.597431018
VAR2 12.155938483
VAR3 3.423101087

Robust Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.6220269501 0.5840361335
VAR2 0.6220269501 1 0.375278187
VAR3 0.5840361335 0.375278187 1

Output 9.5.4 presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is, the
leverage points when explaining y with these three regressor variables).

Example 9.5. Stackloss Data � 219

Output 9.5.4. Mahalanobis and Robust Distances

MVE for Stackloss Data

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 5.528395 0
2 2.324745 5.637357 0
3 1.593712 4.197235 0
4 1.271898 1.588734 1.000000
5 0.303357 1.189335 1.000000
6 0.772895 1.308038 1.000000
7 1.852661 1.715924 1.000000
8 1.852661 1.715924 1.000000
9 1.360622 1.226680 1.000000

10 1.745997 1.936256 1.000000
11 1.465702 1.493509 1.000000
12 1.841504 1.913079 1.000000
13 1.482649 1.659943 1.000000
14 1.778785 1.689210 1.000000
15 1.690241 2.230109 1.000000
16 1.291934 1.767582 1.000000
17 2.700016 2.431021 1.000000
18 1.503155 1.523316 1.000000
19 1.593221 1.710165 1.000000
20 0.807054 0.675124 1.000000
21 2.176761 3.657281 0

The following specification generates three bivariate plots of the classical and robust
tolerance ellipsoids. They are shown in Output 9.5.5, Output 9.5.6, and Output 9.5.7,
one plot for each pair of variables.

optn = j(9,1,.); optn[5]= -1;
vnam = { "Rate", "Temperature", "AcidConcent" };
filn = "stlmve";
titl = "Stackloss Data: Use All Subsets";

call scatmve(2,optn,.9,a,vnam,titl,1,filn);

220 � Chapter 9. Robust Regression Examples

Output 9.5.5. Stackloss Data: Rate vs. Temperature (MVE)

Output 9.5.6. Stackloss Data: Rate vs. Acid Concentration (MVE)

Example 9.5. Stackloss Data � 221

Output 9.5.7. Stackloss Data: Temperature vs. Acid Concentration (MVE)

You can also use the MCD method for the stackloss data as follows:

title2 "***MCD for Stackloss Data***";
title3 "*** Use 500 Random Subsets***";
a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1 ; /* nrep: use all subsets */
CALL MCD(sc,xmcd,dist,optn,a);

The optimization results are displayed in Output 9.5.8. The reweighted results are
displayed in Output 9.5.9.

222 � Chapter 9. Robust Regression Examples

Output 9.5.8. MCD Results of Optimization
MCD for Stackloss Data
*** Use 500 Random Subsets***

4 5 6 7 8 9 10 11 12 13 14 20

MCD Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333

MCD Scatter Matrix Estimate

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

MCD Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

Consistent Scatter Matrix

VAR1 VAR2 VAR3

VAR1 8.6578437815 8.0502757968 7.8983838007
VAR2 8.0502757968 12.708297013 8.4553211199
VAR3 7.8983838007 8.4553211199 31.998580526

Example 9.5. Stackloss Data � 223

Output 9.5.9. Final Reweighted MCD Results
MCD for Stackloss Data
*** Use 500 Random Subsets***

Reweighted Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333

Reweighted Scatter Matrix

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

Eigenvalues

VAR1 VAR2 VAR3

23.191069268 7.3520037086 1.3963209628

Reweighted Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

The MCD robust distances and outlying diagnostic are displayed in Output 9.5.10.
MCD identifies more leverage points than MVE.

224 � Chapter 9. Robust Regression Examples

Output 9.5.10. MCD Robust Distances
MCD for Stackloss Data
*** Use 500 Random Subsets***

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 12.173282 0
2 2.324745 12.255677 0
3 1.593712 9.263990 0
4 1.271898 1.401368 1.000000
5 0.303357 1.420020 1.000000
6 0.772895 1.291188 1.000000
7 1.852661 1.460370 1.000000
8 1.852661 1.460370 1.000000
9 1.360622 2.120590 1.000000
10 1.745997 1.809708 1.000000
11 1.465702 1.362278 1.000000
12 1.841504 1.667437 1.000000
13 1.482649 1.416724 1.000000
14 1.778785 1.988240 1.000000
15 1.690241 5.874858 0
16 1.291934 5.606157 0
17 2.700016 6.133319 0
18 1.503155 5.760432 0
19 1.593221 6.156248 0
20 0.807054 2.172300 1.000000
21 2.176761 7.622769 0

Similarly, you can use the SCATMCD routine to generate three bivariate plots of the
classical and robust tolerance ellipsoids, one plot for each pair of variables. Here is
the code:

optn = j(9,1,.); optn[5]= -1;
vnam = { "Rate", "Temperature", "AcidConcent" };
filn = "stlmcd";
titl = "Stackloss Data: Use All Subsets";

call scatmcd(2,optn,.9,a,vnam,titl,1,filn);

Output 9.5.11, Output 9.5.12, and Output 9.5.13 display these plots.

Example 9.5. Stackloss Data � 225

Output 9.5.11. Stackloss Data: Rate vs. Temperature (MCD)

Output 9.5.12. Stackloss Data: Rate vs. Acid Concentration (MCD)

226 � Chapter 9. Robust Regression Examples

Output 9.5.13. Stackloss Data: Temperature vs. Acid Concentration (MCD)

Combining Robust Residual and Robust
Distance
This section is based entirely on Rousseeuw and Van Zomeren (1990). Observations
xi, which are far away from most of the other observations, are called leverage points.
One classical method inspects the Mahalanobis distances MDi to find outliers xi:

MDi =
√

(xi − µ)C−1(xi − µ)T

where C is the classical sample covariance matrix.

Note that the MVE subroutine prints the classical Mahalanobis distances MDi to-
gether with the robust distances RDi. In classical linear regression, the diagonal
elements hii of the hat matrix

H = X(XTX)−1XT

are used to identify leverage points. Rousseeuw and Van Zomeren (1990) report the
following monotone relationship between the hii and MDi:

hii =
(MDi)2

N − 1
+

1
n

They point out that neither theMDi nor the hii are entirely safe for detecting leverage
points reliably. Multiple outliers do not necessarily have large MDi values because
of the masking effect.

Example 9.6. Hawkins-Bradu-Kass Data � 227

The definition of a leverage point is, therefore, based entirely on the outlyingness
of xi and is not related to the response value yi. By including the yi value in the
definition, Rousseeuw and Van Zomeren (1990) distinguish between the following:

• Good leverage points are points (xi, yi) that are close to the regression plane;
that is, good leverage points improve the precision of the regression coeffi-
cients.

• Bad leverage points are points (xi, yi) that are far from the regression plane;
that is, bad leverage points reduce the precision of the regression coefficients.

Rousseeuw and Van Zomeren (1990) propose to plot the standardized residuals of
robust regression (LMS or LTS) versus the robust distancesRDi obtained from MVE.
Two horizontal lines corresponding to residual values of +2.5 and −2.5 are useful to
distinguish between small and large residuals, and one vertical line corresponding to

the
√
χ2

n,.975 is used to distinguish between small and large distances.

Example 9.6. Hawkins-Bradu-Kass Data
The first 14 observations of the following data set (see Hawkins, Bradu, and Kass
1984) are leverage points; however, only observations 12, 13, and 14 have large hii,
and only observations 12 and 14 have large MDi values.

title "Hawkins, Bradu, Kass (1984) Data";
aa = { 1 10.1 19.6 28.3 9.7,

2 9.5 20.5 28.9 10.1,
3 10.7 20.2 31.0 10.3,
4 9.9 21.5 31.7 9.5,
5 10.3 21.1 31.1 10.0,
6 10.8 20.4 29.2 10.0,
7 10.5 20.9 29.1 10.8,
8 9.9 19.6 28.8 10.3,
9 9.7 20.7 31.0 9.6,

10 9.3 19.7 30.3 9.9,
11 11.0 24.0 35.0 -0.2,
12 12.0 23.0 37.0 -0.4,
13 12.0 26.0 34.0 0.7,
14 11.0 34.0 34.0 0.1,
15 3.4 2.9 2.1 -0.4,
16 3.1 2.2 0.3 0.6,
17 0.0 1.6 0.2 -0.2,
18 2.3 1.6 2.0 0.0,
19 0.8 2.9 1.6 0.1,
20 3.1 3.4 2.2 0.4,
21 2.6 2.2 1.9 0.9,
22 0.4 3.2 1.9 0.3,
23 2.0 2.3 0.8 -0.8,
24 1.3 2.3 0.5 0.7,
25 1.0 0.0 0.4 -0.3,
26 0.9 3.3 2.5 -0.8,
27 3.3 2.5 2.9 -0.7,

228 � Chapter 9. Robust Regression Examples

28 1.8 0.8 2.0 0.3,
29 1.2 0.9 0.8 0.3,
30 1.2 0.7 3.4 -0.3,
31 3.1 1.4 1.0 0.0,
32 0.5 2.4 0.3 -0.4,
33 1.5 3.1 1.5 -0.6,
34 0.4 0.0 0.7 -0.7,
35 3.1 2.4 3.0 0.3,
36 1.1 2.2 2.7 -1.0,
37 0.1 3.0 2.6 -0.6,
38 1.5 1.2 0.2 0.9,
39 2.1 0.0 1.2 -0.7,
40 0.5 2.0 1.2 -0.5,
41 3.4 1.6 2.9 -0.1,
42 0.3 1.0 2.7 -0.7,
43 0.1 3.3 0.9 0.6,
44 1.8 0.5 3.2 -0.7,
45 1.9 0.1 0.6 -0.5,
46 1.8 0.5 3.0 -0.4,
47 3.0 0.1 0.8 -0.9,
48 3.1 1.6 3.0 0.1,
49 3.1 2.5 1.9 0.9,
50 2.1 2.8 2.9 -0.4,
51 2.3 1.5 0.4 0.7,
52 3.3 0.6 1.2 -0.5,
53 0.3 0.4 3.3 0.7,
54 1.1 3.0 0.3 0.7,
55 0.5 2.4 0.9 0.0,
56 1.8 3.2 0.9 0.1,
57 1.8 0.7 0.7 0.7,
58 2.4 3.4 1.5 -0.1,
59 1.6 2.1 3.0 -0.3,
60 0.3 1.5 3.3 -0.9,
61 0.4 3.4 3.0 -0.3,
62 0.9 0.1 0.3 0.6,
63 1.1 2.7 0.2 -0.3,
64 2.8 3.0 2.9 -0.5,
65 2.0 0.7 2.7 0.6,
66 0.2 1.8 0.8 -0.9,
67 1.6 2.0 1.2 -0.7,
68 0.1 0.0 1.1 0.6,
69 2.0 0.6 0.3 0.2,
70 1.0 2.2 2.9 0.7,
71 2.2 2.5 2.3 0.2,
72 0.6 2.0 1.5 -0.2,
73 0.3 1.7 2.2 0.4,
74 0.0 2.2 1.6 -0.9,
75 0.3 0.4 2.6 0.2 };

a = aa[,2:4]; b = aa[,5];

The data are also listed in Rousseeuw and Leroy (1987, p. 94).

The complete enumeration must inspect 1,215,450 subsets.

Example 9.6. Hawkins-Bradu-Kass Data � 229

Output 9.6.1 displays the iteration history for MVE.

Output 9.6.1. Iteration History for MVE

*** Complete Enumeration for MVE ***

Subset Singular Best Crit Pct
121545 0 51.1042755960104 10%
243090 2 51.1042755960104 20%
364635 4 51.1042755960104 30%
486180 7 51.1042755960104 40%
607725 9 51.1042755960104 50%
729270 22 6.27172477029496 60%
850815 67 6.27172477029496 70%
972360 104 5.91230765636768 80%
1093905 135 5.91230765636768 90%
1215450 185 5.91230765636768 100%

Minimum Criterion=5.9123076564
Among 1215450 subsets 185 are singular.

Output 9.6.2 reports the robust parameter estimates for MVE.

Output 9.6.2. Robust Location Estimates
Robust MVE Location Estimates

VAR1 1.513333333
VAR2 1.808333333
VAR3 1.701666667

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3
VAR1 1.114395480 0.093954802 0.141672316
VAR2 0.093954802 1.123149718 0.117443503
VAR3 0.141672316 0.117443503 1.074742938

Output 9.6.3 reports the eigenvalues of the robust scatter matrix and the robust corre-
lation matrix.
Output 9.6.3. MVE Scatter Matrix

Eigenvalues of Robust Scatter Matrix

VAR1 1.339637154
VAR2 1.028124757
VAR3 0.944526224

Robust Correlation Matrix

VAR1 VAR2 VAR3
VAR1 1.000000000 0.083980892 0.129453270
VAR2 0.083980892 1.000000000 0.106895118
VAR3 0.129453270 0.106895118 1.000000000

Output 9.6.4 shows the classical Mahalanobis and robust distances obtained by com-
plete enumeration. The first 14 observations are recognized as outliers (leverage
points).

230 � Chapter 9. Robust Regression Examples

Output 9.6.4. Mahalanobis and Robust Distances
Classical and Robust Distances

Mahalanobis Robust

Distance Distance Weight

1 1.916821 29.541649 0
2 1.855757 30.344481 0
3 2.313658 31.985694 0
4 2.229655 33.011768 0
5 2.100114 32.404938 0
6 2.146169 30.683153 0
7 2.010511 30.794838 0
8 1.919277 29.905756 0
9 2.221249 32.092048 0
10 2.333543 31.072200 0
11 2.446542 36.808021 0
12 3.108335 38.071382 0
13 2.662380 37.094539 0
14 6.381624 41.472255 0
15 1.815487 1.994672 1.000000
16 2.151357 2.202278 1.000000
17 1.384915 1.918208 1.000000
18 0.848155 0.819163 1.000000
19 1.148941 1.288387 1.000000
20 1.591431 2.046703 1.000000
21 1.089981 1.068327 1.000000
22 1.548776 1.768905 1.000000
23 1.085421 1.166951 1.000000
24 0.971195 1.304648 1.000000
25 0.799268 2.030417 1.000000
26 1.168373 1.727131 1.000000
27 1.449625 1.983831 1.000000
28 0.867789 1.073856 1.000000
29 0.576399 1.168060 1.000000

Example 9.6. Hawkins-Bradu-Kass Data � 231

Output 9.6.4. (continued)
Classical and Robust Distances

Mahalanobis Robust

Distance Distance Weight

30 1.568868 2.091386 1.000000
31 1.838496 1.793386 1.000000
32 1.307230 1.743558 1.000000
33 0.981988 1.264121 1.000000
34 1.175014 2.052641 1.000000
35 1.243636 1.872695 1.000000
36 0.850804 1.136658 1.000000
37 1.832378 2.050041 1.000000
38 0.752061 1.522734 1.000000
39 1.265041 1.885970 1.000000
40 1.112038 1.068841 1.000000
41 1.699757 2.063398 1.000000
42 1.765040 1.785637 1.000000
43 1.870090 2.166100 1.000000
44 1.420448 2.018610 1.000000
45 1.075973 1.944449 1.000000
46 1.344171 1.872483 1.000000
47 1.966328 2.408721 1.000000
48 1.424238 1.892539 1.000000
49 1.569756 1.594109 1.000000
50 0.423972 1.458595 1.000000
51 1.302651 1.569843 1.000000
51 1.302651 1.569843 1.000000
52 2.076055 2.205601 1.000000
53 2.210443 2.492631 1.000000
54 1.414288 1.884937 1.000000
55 1.230455 1.360622 1.000000
56 1.331101 1.626276 1.000000
57 0.832744 1.432408 1.000000
58 1.404401 1.723091 1.000000
59 0.591235 1.263700 1.000000
60 1.889737 2.087849 1.000000
61 1.674945 2.286045 1.000000
62 0.759533 2.024702 1.000000
63 1.292259 1.783035 1.000000
64 0.973868 1.835207 1.000000
65 1.148208 1.562278 1.000000
66 1.296746 1.444491 1.000000
67 0.629827 0.552899 1.000000
68 1.549548 2.101580 1.000000
69 1.070511 1.827919 1.000000
70 0.997761 1.354151 1.000000
71 0.642927 0.988770 1.000000
72 1.053395 0.908316 1.000000
73 1.472178 1.314779 1.000000
74 1.646461 1.516083 1.000000
75 1.899178 2.042560 1.000000

Distribution of Robust Distances
MinRes 1st Qu. Median Mean 3rd Qu. MaxRes

0.55289874 1.44449066 1.88493749 7.56960939 2.16610046 41.4722551

Cutoff Value = 3.0575159206
The cutoff value is the square root of the 0.975 quantile of the

chi square distribution with 3 degrees of freedom
There are 14 points with larger distances receiving zero weights.

These may include boundary cases.
Only points whose robust distances are substantially larger than

the cutoff value should be considered outliers.

232 � Chapter 9. Robust Regression Examples

The graphs in Output 9.6.5 and Output 9.6.6 show the following:

• the plot of standardized LMS residuals vs. robust distances RDi

• the plot of standardized LS residuals vs. Mahalanobis distances MDi

The graph identifies the four good leverage points 11, 12, 13, and 14, which have
small standardized LMS residuals but large robust distances, and the 10 bad lever-
age points 1, . . . , 10, which have large standardized LMS residuals and large robust
distances.
Output 9.6.5. Hawkins-Bradu-Kass Data: LMS Residuals vs. Robust Distances

Example 9.7. Stackloss Data � 233

Output 9.6.6. Hawkins-Bradu-Kass Data: LS Residuals vs. Mahalanobis
Distances

Example 9.7. Stackloss Data

The graphs in Output 9.7.1 and Output 9.7.2 show the following:

• the plot of standardized LMS residuals vs. robust distances RDi

• the plot of standardized LS residuals vs. Mahalanobis distances MDi

In the first plot, you see that case 4 is a regression outlier but not a leverage point, so
it is a vertical outlier. Cases 1, 3, and 21 are bad leverage points, whereas case 2 is
a good leverage point. Note that case 21 lies near the boundary line between vertical
outliers and bad leverage points and that case 2 is very close to the boundary between
good and bad leverage points.

234 � Chapter 9. Robust Regression Examples

Output 9.7.1. Stackloss Data: LMS Residuals vs. Robust Distances

Output 9.7.2. Stackloss Data: LS Residuals vs. Mahalanobis Distances

References � 235

References
Afifi, A. A. and Azen, S. P. (1979), Statistical Analysis: A Computer Oriented

Approach, New York: Academic Press.

Barnett, V. and Lewis, T. (1978), Outliers in Statistical Data, New York: John Wiley
& Sons, Inc.

Barreto, H. and Maharry, D. (2006), “Least Median of Squares and Regression
Through the Origin,” Computatitional Statistics and Data Analysis, 50,
1391–1397.

Brownlee, K. A. (1965), Statistical Theory and Methodology in Science and
Engineering, New York: John Wiley & Sons, Inc.

Chen, C. (2002), “Robust Tools in SAS,” in Developments in Robust Statistics:
International Conference on Robust Statistics 2001, (ed. by R. Dutter, P.
Filzmoser, U. Gather, and P. J. Rousseeuw), Heidelberg: Springer-Verlag.

Ezekiel, M. and Fox, K. A. (1959), Methods of Correlation and Regression Analysis,
New York: John Wiley & Sons, Inc.

Hawkins, D. M., Bradu, D., and Kass, G. V. (1984), “Location of Several Outliers in
Multiple Regression Data Using Elemental Sets,” Technometrics, 26, 197–208.

Humphreys, R. M. (1978), “Studies of Luminous Stars in Nearby Galaxies, I.
Supergiants and O Stars in the Milky Way,” Astrophys. J. Suppl. Ser., 38, 309-
350.

Jerison, H. J. (1973), Evolution of the Brain and Intelligence, New York: Academic
Press.

Osborne, M. R. (1985), Finite Algorithms in Optimization and Data Analysis, New
York: John Wiley & Sons, Inc.

Prescott, P. (1975), “An Approximate Test for Outliers in Linear Models,”
Technometrics, 17, 129–132.

Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the
American Statistical Association, 79, 871–880.

Rousseeuw, P. J. (1985), “Multivariate Estimation with High Breakdown Point,” in
Mathematical Statistics and Applications, (ed. by W. Grossmann, G. Pflug, I.
Vincze, and W. Wertz), Dordrecht, Netherlands: Reidel Publishing Company,
283–297.

Rousseeuw, P. J. and Hubert, M. (1996), “Recent Developments in PROGRESS,”
Technical Report, University of Antwerp.

Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection,
New York: John Wiley & Sons, Inc.

Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum
Covariance Determinant Estimator,” Technometrics, 41, 212–223.

236 � Chapter 9. Robust Regression Examples

Rousseeuw, P. J. and Van Driessen, K. (2000), “An Algorithm for Positive-
Breakdown Regression Based on Concentration Steps,” Data Analysis: Scientific
Modeling and Practical Application, (ed. by W. Gaul, O. Opitz, and M. Schader),
New York: Springer Verlag, 335–346.

Rousseeuw, P. J. and Van Zomeren, B. C. (1990), “Unmasking Multivariate Outliers
and Leverage Points,” Journal of the American Statistical Association, 85, 633
–639.

Vansina, F., and De Greve, J. P. (1982), “Close Binary Systems Before and After
Mass Transfer,” Astrophys. Space Sci., 87, 377-401.

Chapter 10
Time Series Analysis and Examples

Chapter Contents

OVERVIEW . 239

BASIC TIME SERIES SUBROUTINES . 240
Getting Started . 240
Syntax . 242

TIME SERIES ANALYSIS AND CONTROL SUBROUTINES 242
Getting Started . 244
Syntax . 269
Details . 269

Minimum AIC Procedure . 269
Smoothness Priors Modeling . 272
Bayesian Seasonal Adjustment . 273
Nonstationary Time Series . 276
Multivariate Time Series Analysis . 279
Spectral Analysis . 281
Computational Details . 284
Missing Values . 290
ISM TIMSAC Packages . 290

Example 10.1. VAR Estimation and Variance Decomposition 293

KALMAN FILTER SUBROUTINES . 298
Getting Started . 298
Syntax . 300
Example 10.2. Kalman Filtering: Likelihood Function Evaluation 300
Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm . 303
Example 10.4. Diffuse Kalman Filtering 308

VECTOR TIME SERIES ANALYSIS SUBROUTINES 310
Getting Started . 311

Stationary VAR Process . 311
Nonstationary VAR Process . 313

Syntax . 314

FRACTIONALLY INTEGRATED TIME SERIES ANALYSIS 315
Getting Started . 315
Syntax . 318

238 � Chapter 10. Time Series Analysis and Examples

REFERENCES . 318

Chapter 10
Time Series Analysis and Examples
Overview

This chapter describes SAS/IML subroutines related to univariate, multivariate, and
fractional time series analysis, and subroutines for Kalman filtering and smoothing.
These subroutines can be used in analyzing economic and financial time series. You
can develop a model of univariate time series and a model of the relationships be-
tween vector time series. The Kalman filter subroutines provide analysis of various
time series and are presented as a tool for dealing with state space models.

The subroutines offer the following functions:

• generating univariate, multivariate, and fractional time series

• computing likelihood function of ARMA, VARMA, and ARFIMA models

• computing an autocovariance function of ARMA, VARMA, and ARFIMA
models

• checking the stationarity of ARMA and VARMA models

• filtering and smoothing of time series models by using Kalman method

• fitting AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA
models

• handling Bayesian seasonal adjustment model

In addition, decomposition analysis, forecast of an ARMA model, and fractionally
differencing of the series are provided.

This chapter consists of five sections. The first section includes the ARMACOV
and ARMALIK subroutines and ARMASIM function. The second section includes
the TSBAYSEA, TSDECOMP, TSMLOCAR, TSMLOMAR, TSMULMAR,
TSPERARS, TSPRED, TSROOT, TSTVCAR, and TSUNIMAR subroutines.
The third section includes the KALCVF, KALCVS, KALDFF, and KALDFS
subroutines. The fourth section includes the VARMACOV, VARMALIK,
VARMASIM, VNORMAL, and VTSROOT subroutines. The last section includes
the FARMACOV, FARMAFIT, FARMALIK, FARMASIM, and FDIF subroutines.

240 � Chapter 10. Time Series Analysis and Examples

Basic Time Series Subroutines
In classical linear regression analysis, the underlying process often can be represented
simply by an intercept and slope parameters. A time series can be modeled by a type
of regression analysis.

The ARMASIM function generates various time series from the underlying AR, MA,
and ARMA models. Simulations of time series with known ARMA structure are
often needed as part of other simulations or as learning data sets for developing time
series analysis skills.

The ARMACOV subroutine provides the pattern of the autocovariance function of
AR, MA, and ARMA models and helps to identify and fit a proper model.

The ARMALIK subroutine provides the log likelihood of an ARMA model and helps
to obtain estimates of the parameters of a regression model with innovations having
an ARMA structure.

The following subroutines are supported:

ARMACOV computes an autocovariance sequence for an ARMA model.

ARMALIK computes the log likelihood and residuals for an ARMA model.

ARMASIM simulates an ARMA series.

See the examples of the use of ARMACOV and ARMALIK subroutines in Chapter
8.

Getting Started

Consider a time series of length 100 from the ARMA(2,1) model

yt = 0.5yt−1 − 0.04yt−2 + et + 0.25et−1

where the error series follows a normal with mean 10 and standard deviation 2.

The following statements generate the ARMA(2,1) model, compute 10 lags of its
autocovariance functions, and calculate its log-likelihood function and residuals:

proc iml;
/* ARMA(2,1) model */
phi = {1 -0.5 0.04};
theta = {1 0.25};
mu = 10;
sigma = 2;
nobs = 100;
seed = 3456;
lag = 10;
yt = armasim(phi, theta, mu, sigma, nobs, seed);
print yt;
call armacov(autocov, cross, convol, phi, theta, lag);

Getting Started � 241

autocov = autocov‘;
cross = cross‘;
convol = convol‘;
lag = (0:lag-1)‘;
print autocov cross convol;
call armalik(lnl, resid, std, yt, phi, theta);
print lnl resid std;

Figure 10.1. Plot of Generated ARMA(2,1) Process (ARMASIM)

The ARMASIM function generates the data shown in Figure 10.1.

LAG AUTOCOV CROSS CONVOL

0 1.6972803 1.1875 1.0625
1 1.0563848 0.25 0.25
2 0.4603012
3 0.1878952
4 0.0755356
5 0.030252
6 0.0121046
7 0.0048422
8 0.0019369
9 0.0007748

Figure 10.2. Autocovariance functions of ARMA(2,1) Model (ARMACOV)

In Figure 10.2, the ARMACOV subroutine prints the autocovariance functions of the
ARMA(2,1) model and the covariance functions of the moving-average term with
lagged values of the process and the autocovariance functions of the moving-average
term.

242 � Chapter 10. Time Series Analysis and Examples

LNL RESID STD

-154.9148 5.2779797 1.3027971
22.034073 2.3491607 1.0197
0.5705918 2.3893996 1.0011951

8.4086892 1.0000746
2.200401 1.0000047

5.4127254 1.0000003
6.2756004 1
1.1944693 1
4.9425372 1

. .

. .

Figure 10.3. Log-Likelihood Function of ARMA(2,1) Model (ARMALIK)

The first column in Figure 10.3 shows the log-likelihood function, the estimate of the
innovation variance, and the log of the determinant of the variance matrix. The next
two columns are part of the results in the standardized residuals and the scale factors
used to standardize the residuals.

Syntax

CALL ARMACOV(auto, cross, convol, phi, theta, num);

CALL ARMALIK(lnl, resid, std, x, phi, theta);

CALL ARMASIM(phi, theta, mu, sigma, n, <seed>);

Time Series Analysis and Control Subroutines
This section describes an adaptation of parts of the Time Series Analysis and Control
(TIMSAC) package developed by the Institute of Statistical Mathematics (ISM) in
Japan.

Selected routines from the TIMSAC package from ISM were converted by SAS
Institute staff into SAS/IML routines under an agreement between SAS Institute and
ISM. Credit for authorship of these TIMSAC SAS/IML routines goes to ISM, which
has agreed to make them available to SAS users without charge.

There are four packages of TIMSAC programs. See the section “ISM TIMSAC
Packages” on page 290 for more information about the TIMSAC package produced
by ISM. Since these SAS/IML time series analysis subroutines are adapted from the
corresponding FORTRAN subroutines in the TIMSAC package produced by ISM,
they are collectively referred to as “the TIMSAC subroutines” in this chapter.

The subroutines analyze and forecast univariate and multivariate time series data. The
nonstationary time series and seasonal adjustment models can also be analyzed by us-
ing the Interactive Matrix Language TIMSAC subroutines. These subroutines contain
the Bayesian modeling of seasonal adjustment and changing spectrum estimation.

Discrete time series modeling has been widely used to analyze dynamic systems in
economics, engineering, and statistics. The Box-Jenkins and Box-Tiao approaches

Time Series Analysis and Control Subroutines � 243

are classical examples of unified time series analysis through identification, estima-
tion, and forecasting (or control). The ARIMA procedure in the SAS/ETS product
uses these approaches. Bayesian methods are being increasingly applied despite the
controversial issues involved in choosing a prior distribution.

The fundamental idea of the Bayesian method is that uncertainties can be explained
by probabilities. If there is a class model (Ω) consisting of sets of member models
(ω), you can describe the uncertainty of Ω by using a prior distribution of ω. The
member model ω is directly related to model parameters. Let the prior probability
density function be p(ω). When you observe the data y that is generated from the
model Ω, the data distribution is described as p(Y |ω) given the unknown ω with
a prior probability density p(ω), where the function p(Y |ω) is the usual likelihood
function. Then the posterior distribution is the updated prior distribution given the
sample information. The posterior probability density function is proportional to
observed likelihood function × prior density function.

The TIMSAC subroutines contain various time series analysis and Bayesian mod-
els. Most of the subroutines are based on the minimum Akaike information criterion
(AIC) or on the minimum Akaike Bayesian information criterion (ABIC) method
to determine the best model among alternative models. The TSBAYSEA subrou-
tine is a typical example of Bayesian modeling. The following subroutines are sup-
ported:

TSBAYSEA Bayesian seasonal adjustment modeling

TSDECOMP time series decomposition analysis

TSMLOCAR locally stationary univariate AR model fitting

TSMLOMAR locally stationary multivariate AR model fitting

TSMULMAR multivariate AR model fitting

TSPERARS periodic AR model fitting

TSPRED ARMA model forecasting and forecast error variance

TSROOT polynomial roots or ARMA coefficients computation

TSTVCAR time-varying coefficient AR model estimation

TSUNIMAR univariate AR model fitting

For univariate and multivariate autoregressive model estimation, the least squares
method is used. The least squares estimate is an approximate maximum likelihood
estimate if error disturbances are assumed to be Gaussian. The least squares method
is performed by using the Householder transformation method. See the section “Least
Squares and Householder Transformation” on page 284 for details.

The TSUNIMAR and TSMULMAR subroutines estimate the autoregressive mod-
els and select the appropriate AR order automatically by using the minimum AIC
method. The TSMLOCAR and TSMLOMAR subroutines analyze the nonstationary
time series data. The Bayesian time-varying AR coefficient model (TSTVCAR) of-
fers another nonstationary time series analysis method. The state space and Kalman
filter method is systematically applied to the smoothness priors models (TSDECOMP

244 � Chapter 10. Time Series Analysis and Examples

and TSTVCAR), which have stochastically perturbed difference equation constraints.
The TSBAYSEA subroutine provides a way of handling Bayesian seasonal adjust-
ment, and it can be an alternative to the SAS/ETS X-11 procedure. The TSBAYSEA
subroutine employs the smoothness priors idea through constrained least squares esti-
mation, while the TSDECOMP and TSTVCAR subroutines estimate the smoothness
tradeoff parameters by using the state space model and Kalman filter recursive com-
putation. The TSPRED subroutine computes the one-step or multistep predicted val-
ues of the ARMA time series model. In addition, the TSPRED subroutine computes
forecast error variances and impulse response functions. The TSROOT subroutine
computes the AR and MA coefficients given the characteristic roots of the polyno-
mial equation and the characteristic roots for the AR or MA model.

Getting Started

Minimum AIC Model Selection

The time series model is automatically selected by using the AIC. The TSUNIMAR
call estimates the univariate autoregressive model and computes the AIC. You need
to specify the maximum lag or order of the AR process with the MAXLAG= option
or put the maximum lag as the sixth argument of the TSUNIMAR call. Here is an
example:

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(arcoef,ev,nar,aic) data=y opt={-1 1} print=1
maxlag=20;

You can also invoke the TSUNIMAR subroutine as follows:

call tsunimar(arcoef,ev,nar,aic,y,20,{-1 1},,1);

The optional arguments can be omitted. In this example, the argument MISSING is
omitted, and thus the default option (MISSING=0) is used. The summary table of
the minimum AIC method is displayed in Figure 10.4 and Figure 10.5. The final
estimates are given in Figure 10.6.

Minimum AIC Model Selection � 245

ORDER INNOVATION VARIANCE
M V(M) AIC(M)
0 0.31607294 -108.26753229
1 0.11481982 -201.45277331
2 0.04847420 -280.51201122
3 0.04828185 -278.88576251
4 0.04656506 -280.28905616
5 0.04615922 -279.11190502
6 0.04511943 -279.25356641
7 0.04312403 -281.50543541
8 0.04201118 -281.96304075
9 0.04128036 -281.61262868
10 0.03829179 -286.67686828
11 0.03318558 -298.13013264
12 0.03255171 -297.94298716
13 0.03247784 -296.15655602
14 0.03237083 -294.46677874
15 0.03234790 -292.53337704
16 0.03187416 -291.92021487
17 0.03183282 -290.04220196
18 0.03126946 -289.72064823
19 0.03087893 -288.90203735
20 0.02998019 -289.67854830

Figure 10.4. Minimum AIC Table - I

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 189.862600 | .
1 96.677359 | .
2 17.618121 | * |
3 19.244370 | * |
4 17.841076 | * |
5 19.018228 | * |
6 18.876566 | * |
7 16.624697 | * |
8 16.167092 | * |
9 16.517504 | * |

10 11.453264 | * |
11 0 * |
12 0.187145 * |
13 1.973577 | * |
14 3.663354 | * |
15 5.596756 | * |
16 6.209918 | * |
17 8.087931 | * |
18 8.409484 | * |
19 9.228095 | * |
20 8.451584 | * |

+---------+---------+---------+---------+

Figure 10.5. Minimum AIC Table - II

The minimum AIC order is selected as 11. Then the coefficients are estimated as in
Figure 10.6. Note that the first 20 observations are used as presample values.

246 � Chapter 10. Time Series Analysis and Examples

..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181322 .

. 2 -0.551571 .

. 3 0.231372 .

. 4 -0.178040 .

. 5 0.019874 .

. 6 -0.062573 .

. 7 0.028569 .

. 8 -0.050710 .

. 9 0.199896 .

. 10 0.161819 .

. 11 -0.339086 .

. .

. .

. AIC = -298.1301326 .

. Innovation Variance = 0.033186 .

. .

. .

. INPUT DATA START = 21 FINISH = 114 .

..

Figure 10.6. Minimum AIC Estimation

You can estimate the AR(11) model directly by specifying OPT={−1 0} and using
the first 11 observations as presample values. The AR(11) estimates shown in Figure
10.7 are different from the minimum AIC estimates in Figure 10.6 because the sam-
ples are slightly different. Here is the code:

call tsunimar(arcoef,ev,nar,aic,y,11,{-1 0},,1);

Minimum AIC Model Selection � 247

..........................M A I C E.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.149416 .

. 2 -0.533719 .

. 3 0.276312 .

. 4 -0.326420 .

. 5 0.169336 .

. 6 -0.164108 .

. 7 0.073123 .

. 8 -0.030428 .

. 9 0.151227 .

. 10 0.192808 .

. 11 -0.340200 .

. .

. .

. AIC = -318.7984105 .

. Innovation Variance = 0.036563 .

. .

. .

. INPUT DATA START = 12 FINISH = 114 .

..

Figure 10.7. AR(11) Estimation

The minimum AIC procedure can also be applied to the vector autoregressive (VAR)
model by using the TSMULMAR subroutine. See the section “Multivariate Time
Series Analysis” on page 279 for details. Three variables are used as input. The
maximum lag is specified as 10. Here is the code:

data one;
input invest income consum @@;

datalines;
. . . data lines omitted . . .
;

proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 2;
misw = 0; /* instantaneous modeling ? */
opt = mdel || maice || misw;
maxlag = 10;
miss = 0;
print = 1;
call tsmulmar(arcoef,ev,nar,aic,y,maxlag,opt,miss,print);

The VAR(3) model minimizes the AIC and was selected as an appropriate model
(see Figure 10.8). However, AICs of the VAR(4) and VAR(5) models show little
difference from VAR(3). You can also choose VAR(4) or VAR(5) as an appropriate
model in the context of minimum AIC since this AIC difference is much less than 1.

248 � Chapter 10. Time Series Analysis and Examples

ORDER INNOVATION VARIANCE
M LOG(|V(M)|) AIC(M)
0 25.98001095 2136.36089828
1 15.70406486 1311.73331883
2 15.48896746 1312.09533158
3 15.18567834 1305.22562428
4 14.96865183 1305.42944974
5 14.74838535 1305.36759889
6 14.60269347 1311.42086432
7 14.54981887 1325.08514729
8 14.38596333 1329.64899297
9 14.16383772 1329.43469312

10 13.85377849 1322.00983656

AIC(M)-AICMIN (truncated at 40.0)
0 10 20 30 40

M AIC(M)-AICMIN +---------+---------+---------+---------+
0 831.135274 | .
1 6.507695 | * |
2 6.869707 | * |
3 0 * |
4 0.203825 * |
5 0.141975 * |
6 6.195240 | * |
7 19.859523 | * |
8 24.423369 | * |
9 24.209069 | * |

10 16.784212 | * |
+---------+---------+---------+---------+

Figure 10.8. VAR Model Selection

The TSMULMAR subroutine estimates the instantaneous response model with diag-
onal error variance. See the section “Multivariate Time Series Analysis” on page 279
for details on the instantaneous response model. Therefore, it is possible to select the
minimum AIC model independently for each equation. The best model is selected by
specifying MAXLAG=5, as in the following code:

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=5
opt={1 1 0} print=1;

Minimum AIC Model Selection � 249

VARIANCE

256.64375 29.803549 76.846777
29.803549 228.97341 119.60387
76.846777 119.60387 134.21764

AR_COEFFICIENT

13.312109 1.5459098 15.963897
0.8257397 0.2514803 0
0.0958916 1.0057088 0
0.0320985 0.3544346 0.4698934
0.044719 -0.201035 0

0.0051931 -0.023346 0
0.1169858 -0.060196 0.0483318
0.1867829 0 0
0.0216907 0 0
-0.117786 0 0.3500366
0.1541108 0 0
0.0178966 0 0
0.0461454 0 -0.191437
-0.389644 0 0
-0.045249 0 0
-0.116671 0 0

AIC

1347.6198

Figure 10.9. Model Selection via Instantaneous Response Model

You can print the intermediate results of the minimum AIC procedure by using the
PRINT=2 option.

Note that the AIC value depends on the MAXLAG=lag option and the number of
parameters estimated. The minimum AIC VAR estimation procedure (MAICE=2)
uses the following AIC formula:

(T − lag) log(|Σ̂|) + 2(p× n2 + n× intercept)

In this formula, p is the order of the n-variate VAR process, and intercept=1 if
the intercept is specified; otherwise, intercept=0. When you use the MAICE=1 or
MAICE=0 option, AIC is computed as the sum of AIC for each response equation.
Therefore, there is an AIC difference of n(n − 1) since the instantaneous response
model contains the additional n(n− 1)/2 response variables as regressors.

The following code estimates the instantaneous response model. The results are
shown in Figure 10.10.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 0};

print aic nar;
print arcoef;

250 � Chapter 10. Time Series Analysis and Examples

AIC NAR

1403.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.10. AIC from Instantaneous Response Model

The following code estimates the VAR model. The results are shown in Figure 10.11.

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 2 0};

print aic nar;
print arcoef;

AIC NAR

1397.0762 3

ARCOEF

4.8245814 5.3559216 17.066894
0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Figure 10.11. AIC from VAR Model

The AIC computed from the instantaneous response model is greater than that ob-
tained from the VAR model estimation by 6. There is a discrepancy between Figure
10.11 and Figure 10.8 because different observations are used for estimation.

Nonstationary Data Analysis � 251

Nonstationary Data Analysis

The following example shows how to manage nonstationary data by using TIMSAC
calls. In practice, time series are considered to be stationary when the expected values
of first and second moments of the series do not change over time. This weak or
covariance stationarity can be modeled by using the TSMLOCAR, TSMLOMAR,
TSDECOMP, and TSTVCAR subroutines.

First, the locally stationary model is estimated. The whole series (1000 observations)
is divided into three blocks of size 300 and one block of size 90, and the minimum
AIC procedure is applied to each block of the data set. See the section “Nonstationary
Time Series” on page 276 for more details. Here is the code:

data one;
input y @@;

datalines;
. . . data lines omitted . . .
;

proc iml;
use one;
read all var{y};

mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
opt = mdel || lspan || maice;
call tsmlocar(arcoef,ev,nar,aic,first,last)

data=y maxlag=10 opt=opt print=2;

Estimation results are displayed with the graphs of power spectrum
(log 10(fY Y (g))), where fY Y (g) is a rational spectral density function. See
the section “Spectral Analysis” on page 281. The estimates for the first block and
third block are shown in Figure 10.12 and Figure 10.15, respectively. As the first
block and the second block do not have any sizable difference, the pooled model
(AIC=45.892) is selected instead of the moving model (AIC=46.957) in Figure
10.13. However, you can notice a slight change in the shape of the spectrum of the
third block of the data (observations 611 through 910). See Figure 10.14 on page 254
and Figure 10.16 on page 256 for comparison. The moving model is selected since
the AIC (106.830) of the moving model is smaller than that of the pooled model
(108.867).

252 � Chapter 10. Time Series Analysis and Examples

INITIAL LOCAL MODEL: N_CURR = 300
NAR_CURR = 8

AIC = 37.583203

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.605717 .

. 2 -1.245350 .

. 3 1.014847 .

. 4 -0.931554 .

. 5 0.394230 .

. 6 -0.004344 .

. 7 0.111608 .

. 8 -0.124992 .

. .

. .

. AIC = 37.5832030 .

. Innovation Variance = 1.067455 .

. .

. .

. INPUT DATA START = 11 FINISH = 310 .

..

Figure 10.12. Locally Stationary Model for First Block

Nonstationary Data Analysis � 253

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 300)
NAR_CURR = 7

AIC = 46.957398
CONSTANT MODEL: N_POOLED = 600

NAR_POOLED = 8
AIC = 45.892350

***** CONSTANT MODEL ADOPTED *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.593890 .

. 2 -1.262379 .

. 3 1.013733 .

. 4 -0.926052 .

. 5 0.314480 .

. 6 0.193973 .

. 7 -0.058043 .

. 8 -0.078508 .

. .

. .

. AIC = 45.8923501 .

. Innovation Variance = 1.047585 .

. .

. .

. INPUT DATA START = 11 FINISH = 610 .

..

Figure 10.13. Locally Stationary Model Comparison

254 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
20.00+

|
|
|
|
| XXXX
XXX XX XXX
| XXXX
| X
|

10.00+
| X
|
| X
|
| X XX
| X
| X X
|
| X X X
0+ X
| X X X
| XX XX
| XXXX X
|
| X
| X
|
| X
| X

-10.0+ X
| XX
| XX
| XX
| XXX
| XXXXXX
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.14. Power Spectrum for First and Second Blocks

Nonstationary Data Analysis � 255

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 300)
NAR_CURR = 7

AIC = 106.829869
CONSTANT MODEL: N_POOLED = 900

NAR_POOLED = 8
AIC = 108.867091

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.648544 .

. 2 -1.201812 .

. 3 0.674933 .

. 4 -0.567576 .

. 5 -0.018924 .

. 6 0.516627 .

. 7 -0.283410 .

. .

. .

. AIC = 60.9375188 .

. Innovation Variance = 1.161592 .

. .

. .

. INPUT DATA START = 611 FINISH = 910 .

..

Figure 10.15. Locally Stationary Model for Third Block

256 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
20.00+ X

| X
| X
| X
| XXX
| XXXXX
| XX
XX X
|
|

10.00+ X
|
|
| X
|
| X
| X
| X X
| X
| X X
0+ X X X
| X
| X XX X
| XXXXXX
| X
|
| X
|
| X
| X

-10.0+ X
| XX
| XX XXXXX
| XXXXXXX
|
|
|
|
|
|

-20.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.16. Power Spectrum for Third Block

Finally, the moving model is selected since there is a structural change in the last
block of data (observations 911 through 1000). The final estimates are stored in vari-
ables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum
are given in Figure 10.17 and Figure 10.18, respectively. The power spectrum of the
final model (Figure 10.18) is significantly different from that of the first and second
blocks (see Figure 10.14).

Nonstationary Data Analysis � 257

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 90)
NAR_CURR = 6

AIC = 139.579012
CONSTANT MODEL: N_POOLED = 390

NAR_POOLED = 9
AIC = 167.783711

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients: AR(M) .

. .

. 1 1.181022 .

. 2 -0.321178 .

. 3 -0.113001 .

. 4 -0.137846 .

. 5 -0.141799 .

. 6 0.260728 .

. .

. .

. AIC = 78.6414932 .

. Innovation Variance = 2.050818 .

. .

. .

. INPUT DATA START = 911 FINISH = 1000 .

..

Figure 10.17. Locally Stationary Model for Last Block

258 � Chapter 10. Time Series Analysis and Examples

POWER SPECTRAL DENSITY
30.00+

|
|
|
|
| X
|
| X
|
|

20.00+ X
|
|
| X X
|
| X
XXX X
| XXXXX X
|
|

10.00+ X
|
| X
|
| X
|
| X
| X
| X
| XX
0+ XX XXXXXX
| XXXXXX XX
| XX
| XX XX
| XX XXXX
| XXXXXXXXX
|
|
|
|

-10.0+-----------+-----------+-----------+-----------+-----------+
0.0 0.1 0.2 0.3 0.4 0.5

FREQUENCY

Figure 10.18. Power Spectrum for Last Block

The multivariate analysis for locally stationary data is a straightforward extension of
the univariate analysis. The bivariate locally stationary VAR models are estimated.
The selected model is the VAR(7) process with some zero coefficients over the last
block of data. There seems to be a structural difference between observations from
11 to 610 and those from 611 to 896. Here is the code:

proc iml;
rudder = {. . . data lines omitted . . .};
yawing = {. . . data lines omitted . . .};

y = rudder‘ || yawing‘;

Nonstationary Data Analysis � 259

c = {0.01795 0.02419};
/*-- calibration of data --*/
y = y # (c @ j(n,1,1));
mdel = -1;
lspan = 300; /* local span of data */
maice = 1;
call tsmlomar(arcoef,ev,nar,aic,first,last) data=y maxlag=10

opt = (mdel || lspan || maice) print=1;

The results of the analysis are shown in Figure 10.19.

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 286)
NAR_CURR = 7

AIC = -823.845234
CONSTANT MODEL: N_POOLED = 886

NAR_POOLED = 10
AIC = -716.818588

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .

. .

. .

. M AR Coefficients .

. .

. 1 0.932904 -0.130964 .

. -0.024401 0.599483 .

. 2 0.163141 0.266876 .

. -0.135605 0.377923 .

. 3 -0.322283 0.178194 .

. 0.188603 -0.081245 .

. 4 0.166094 -0.304755 .

. -0.084626 -0.180638 .

. 5 0 0 .

. 0 -0.036958 .

. 6 0 0 .

. 0 0.034578 .

. 7 0 0 .

. 0 0.268414 .

. .

. .

. AIC = -114.6911872 .

. .

. Innovation Variance .

. .

. 1.069929 0.145558 .

. 0.145558 0.563985 .

. .

. .

. INPUT DATA START = 611 FINISH = 896 .

..

Figure 10.19. Locally Stationary VAR Model Analysis

260 � Chapter 10. Time Series Analysis and Examples

Consider the time series decomposition

yt = Tt + St + ut + εt

where Tt and St are trend and seasonal components, respectively, and ut is a station-
ary AR(p) process. The annual real GNP series is analyzed under second difference
stochastic constraints on the trend component and the stationary AR(2) process.

Tt = 2Tt−1 − Tt−2 + w1t

ut = α1ut−1 + α2ut−2 + w2t

The seasonal component is ignored if you specify SORDER=0. Therefore, the fol-
lowing state space model is estimated:

yt = Hzt + εt

zt = Fzt−1 + wt

where

H =
[

1 0 1 0
]

F =

2 −1 0 0
1 0 0 0
0 0 α1 α2

0 0 1 0

zt = (Tt, Tt−1, ut, ut−1)′

wt = (w1t, 0, w2t, 0)′ ∼

0,

σ2

1 0 0 0
0 0 0 0
0 0 σ2

2 0
0 0 0 0

The parameters of this state space model are σ2
1 , σ2

2 , α1, and α2. Here is the code:

proc iml;
y = { 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3

135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7 };

y = y‘; /*-- convert to column vector --*/
mdel = 0;
trade = 0;
tvreg = 0;
year = 0;

Nonstationary Data Analysis � 261

period= 0;
log = 0;
maxit = 100;
update = .; /* use default update method */
line = .; /* use default line search method */
sigmax = 0; /* no upper bound for variances */
back = 100;
opt = mdel || trade || year || period || log || maxit ||

update || line || sigmax || back;
call tsdecomp(cmp,coef,aic) data=y order=2 sorder=0 nar=2

npred=5 opt=opt icmp={1 3} print=1;
y = y[52:61];
cmp = cmp[52:66,];
print y cmp;

The estimated parameters are printed when you specify the PRINT= option. In Figure
10.20, the estimated variances are printed under the title of TAU2(I), showing that
σ̂2

1 = 2.915 and σ̂2
2 = 113.9577. The AR coefficient estimates are α̂1 = 1.397 and

α̂2 = −0.595. These estimates are also stored in the output matrix COEF.

<<< Final Estimates >>>

--- PARAMETER VECTOR ---

1.607426E-01 6.283837E+00 8.761628E-01 -5.94879E-01

--- GRADIENT ---

3.385021E-04 5.760929E-06 3.029534E-04 -1.18396E-04

LIKELIHOOD = -249.937193 SIG2 = 18.135052
AIC = 509.874385

I TAU2(I) AR(I) PARCOR(I)
1 2.915075 1.397374 0.876163
2 113.957712 -0.594879 -0.594879

Figure 10.20. Nonstationary Time Series and State Space Modeling

The trend and stationary AR components are estimated by using the smoothing
method, and out-of-sample forecasts are computed by using a Kalman filter predic-
tion algorithm. The trend and AR components are stored in the matrix CMP since
the ICMP={1 3} option is specified. The last 10 observations of the original series Y
and the last 15 observations of two components are shown in Figure 10.21. Note that
the first column of CMP is the trend component and the second column is the AR
component. The last 5 observations of the CMP matrix are out-of-sample forecasts.

262 � Chapter 10. Time Series Analysis and Examples

Y CMP

487.7 514.01142 -26.94343
497.2 532.62744 -32.48674
529.8 552.02403 -24.46593
551 571.90122 -20.15113

581.1 592.31944 -10.58647
617.8 613.21855 5.2504378
658.1 634.43665 20.799213
675.2 655.70431 22.161602
706.6 677.21249 27.927985
724.7 698.72363 25.95797

720.23477 19.659209
741.74591 12.029407
763.25705 5.1147239
784.76819 -0.008863
806.27933 -3.055027

Figure 10.21. Smoothed and Predicted Values of Two Components

Seasonal Adjustment

Consider the simple time series decomposition

yt = Tt + St + εt

The TSBAYSEA subroutine computes seasonally adjusted series by estimating the
seasonal component. The seasonally adjusted series is computed as y∗t = yt − Ŝt.
The details of the adjustment procedure are given in the section “Bayesian Seasonal
Adjustment” on page 273.

The monthly labor force series (1972–1978) are analyzed. You do not need to spec-
ify the options vector if you want to use the default options. However, you should
change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED=
option produces the multistep forecasts for the trend and seasonal components. The
stochastic constraints are specified as ORDER=2 and SORDER=1.

Tt = 2Tt−1 − Tt−2 + w1t

St = −St−1 − · · · − St−11 + w2t

In Figure 10.22, the first column shows the trend components; the second column
shows the seasonal components; the third column shows the forecasts; the fourth col-
umn shows the seasonally adjusted series; the last column shows the value of ABIC.
The last 12 rows are the forecasts. The figure is generated by using the following
statements:

proc iml;
y = { 5447 5412 5215 4697 4344 5426

5173 4857 4658 4470 4268 4116
4675 4845 4512 4174 3799 4847

Seasonal Adjustment � 263

4550 4208 4165 3763 4056 4058
5008 5140 4755 4301 4144 5380
5260 4885 5202 5044 5685 6106
8180 8309 8359 7820 7623 8569
8209 7696 7522 7244 7231 7195
8174 8033 7525 6890 6304 7655
7577 7322 7026 6833 7095 7022
7848 8109 7556 6568 6151 7453
6941 6757 6437 6221 6346 5880 };

y = y‘;

call tsbaysea(trend,season,series,adj,abic)
data=y order=2 sorder=1 npred=12 print=2;

print trend season series adj abic;

OBS TREND SEASON SERIES ADJ ABIC

1 4843.2502 576.86675 5420.1169 4870.1332 874.04585
2 4848.6664 612.79607 5461.4624 4799.2039
3 4871.2876 324.02004 5195.3077 4890.98
4 4896.6633 -198.7601 4697.9032 4895.7601
5 4922.9458 -572.5562 4350.3896 4916.5562
.
71 6551.6017 -266.2162 6285.3855 6612.2162
72 6388.9012 -440.3472 5948.5539 6320.3472
73 6226.2006 650.7707 6876.9713
74 6063.5001 800.93733 6864.4374
75 5900.7995 396.19866 6296.9982
76 5738.099 -340.2852 5397.8137
77 5575.3984 -719.1146 4856.2838
78 5412.6979 553.19764 5965.8955
79 5249.9973 202.06582 5452.0631
80 5087.2968 -54.44768 5032.8491
81 4924.5962 -295.2747 4629.3215
82 4761.8957 -487.6621 4274.2336
83 4599.1951 -266.1917 4333.0034
84 4436.4946 -440.3354 3996.1591

Figure 10.22. Trend and Seasonal Component Estimates and Forecasts

The estimated spectral density function of the irregular series ε̂t is shown in Figure
10.23.

264 � Chapter 10. Time Series Analysis and Examples

I Rational 0.0 10.0 20.0 30.0 40.0 50.0 60.0
Spectrum +---------+---------+---------+---------+---------+---------+

0 1.366798E+00 |* ===>X
1 1.571261E+00 |*
2 2.414836E+00 | *
3 5.151906E+00 | *
4 1.634887E+01 | *
5 8.085674E+01 | *
6 3.805530E+02 | *
7 8.082536E+02 | *
8 6.366350E+02 | *
9 3.479435E+02 | *
10 3.872650E+02 | * ===>X
11 1.264805E+03 | *
12 1.726138E+04 | *
13 1.559041E+03 | *
14 1.276516E+03 | *
15 3.861089E+03 | *
16 9.593184E+03 | *
17 3.662145E+03 | *
18 5.499783E+03 | *
19 4.443303E+03 | *
20 1.238135E+03 | * ===>X
21 8.392131E+02 | *
22 1.258933E+03 | *
23 2.932003E+03 | *
24 1.857923E+03 | *
25 1.171437E+03 | *
26 1.611958E+03 | *
27 4.822498E+03 | *
28 4.464961E+03 | *
29 1.951547E+03 | *
30 1.653182E+03 | * ===>X
31 2.308152E+03 | *
32 5.475758E+03 | *
33 2.349584E+04 | *
34 5.266969E+03 | *
35 2.058667E+03 | *
36 2.215595E+03 | *
37 8.181540E+03 | *
38 3.077329E+03 | *
39 7.577961E+02 | *
40 5.057636E+02 | * ===>X
41 7.312090E+02 | *
42 3.131377E+03 | * ===>T
43 8.173276E+03 | *
44 1.958359E+03 | *
45 2.216458E+03 | *
46 4.215465E+03 | *
47 9.659340E+02 | *
48 3.758466E+02 | *
49 2.849326E+02 | *
50 3.617848E+02 | * ===>X
51 7.659839E+02 | *
52 3.191969E+03 | *
53 1.768107E+04 | *
54 5.281385E+03 | *
55 2.959704E+03 | *
56 3.783522E+03 | *
57 1.896625E+04 | *
58 1.041753E+04 | *
59 2.038940E+03 | *
60 1.347568E+03 | * ===>X

X: If peaks (troughs) appear at these frequencies, try lower (higher) values
of rigid and watch ABIC

T: If a peaks appears here try trading-day adjustment

Figure 10.23. Spectrum of Irregular Component

Miscellaneous Time Series Analysis Tools � 265

Miscellaneous Time Series Analysis Tools

The forecast values of multivariate time series are computed by using the TSPRED
call. In the following example, the multistep-ahead forecasts are produced from the
VARMA(2,1) estimates. Since the VARMA model is estimated by using the mean
deleted series, you should specify the CONSTANT=−1 option. You need to provide
the original series instead of the mean deleted series to get the correct predictions.
The forecast variance MSE and the impulse response function IMPULSE are also
produced.

The VARMA(p, q) model is written

yt +
p∑

i=1

Aiyt−i = εt +
q∑

i=1

Miεt−i

Then the COEF matrix is constructed by stacking matrices A1, . . . ,Ap,
M1, . . . ,Mq. Here is the code:

proc iml;
c = { 264 235 239 239 275 277 274 334 334 306

308 309 295 271 277 221 223 227 215 223
241 250 270 303 311 307 322 335 335 334
309 262 228 191 188 215 215 249 291 296 };

f = { 690 690 688 690 694 702 702 702 700 702
702 694 708 702 702 708 700 700 702 694
698 694 700 702 700 702 708 708 710 704
704 700 700 694 702 694 710 710 710 708 };

t = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464
1560 1376 1336 1336 1296 1296 1280 1264 1280 1272
1344 1328 1352 1480 1472 1600 1512 1456 1368 1280
1224 1112 1112 1048 1176 1064 1168 1280 1336 1248 };

p = { 254.14 253.12 251.85 250.41 249.09 249.19 249.52 250.19
248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33
251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19
249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80
254.92 254.96 254.96 254.96 254.96 254.54 253.21 252.08 };

y = c‘ || f‘ || t‘ || p‘;
ar = { .82028 -.97167 .079386 -5.4382,

-.39983 .94448 .027938 -1.7477,
-.42278 -2.3314 1.4682 -70.996,
.031038 -.019231 -.0004904 1.3677,
-.029811 .89262 -.047579 4.7873,
.31476 .0061959 -.012221 1.4921,
.3813 2.7182 -.52993 67.711,
-.020818 .01764 .00037981 -.38154 };

ma = { .083035 -1.0509 .055898 -3.9778,
-.40452 .36876 .026369 -.81146,
.062379 -2.6506 .80784 -76.952,
.03273 -.031555 -.00019776 -.025205 };

coef = ar // ma;
ev = { 188.55 6.8082 42.385 .042942,

266 � Chapter 10. Time Series Analysis and Examples

6.8082 32.169 37.995 -.062341,
42.385 37.995 5138.8 -.10757,
.042942 -.062341 -.10757 .34313 };

nar = 2; nma = 1;
call tspred(forecast,impulse,mse,y,coef,nar,nma,ev,

5,nrow(y),-1);

OBSERVED PREDICTED
Y1 Y2 P1 P2

264 690 269.950 700.750
235 690 256.764 691.925
239 688 239.996 693.467
239 690 242.320 690.951
275 694 247.169 693.214
277 702 279.024 696.157
274 702 284.041 700.449
334 702 286.890 701.580
334 700 321.798 699.851
306 702 330.355 702.383
308 702 297.239 700.421
309 694 302.651 701.928
295 708 294.570 696.261
271 702 283.254 703.936
277 702 269.600 703.110
221 708 270.349 701.557
223 700 231.523 705.438
227 700 233.856 701.785
215 702 234.883 700.185
223 694 229.156 701.837
241 698 235.054 697.060
250 694 249.288 698.181
270 700 257.644 696.665
303 702 272.549 699.281
311 700 301.947 701.667
307 702 306.422 700.708
322 708 304.120 701.204
335 708 311.590 704.654
335 710 320.570 706.389
334 704 315.127 706.439
309 704 311.083 703.735
262 700 288.159 702.801
228 700 251.352 700.805
191 694 226.749 700.247
188 702 199.775 696.570
215 694 202.305 700.242
215 710 222.951 696.451
249 710 226.553 704.483
291 710 259.927 707.610
296 708 291.446 707.861

293.899 707.430
293.477 706.933
292.564 706.190
290.313 705.384
286.559 704.618

Figure 10.24. Multivariate ARMA Prediction

The first 40 forecasts in Figure 10.24 are one-step predictions. The last observation
is the five-step forecast values of variables C and F. You can construct the confidence

Miscellaneous Time Series Analysis Tools � 267

interval for these forecasts by using the mean square error matrix, MSE. See the sec-
tion “Multivariate Time Series Analysis” on page 279 for more details about impulse
response functions and the mean square error matrix.

The TSROOT call computes the polynomial roots of the AR and MA equations.
When the AR(p) process is written

yt =
p∑

i=1

αiyt−i + εt

you can specify the following polynomial equation:

zp −
p∑

i=1

αiz
p−i = 0

When all p roots of the preceding equation are inside the unit circle, the AR(p) pro-
cess is stationary. The MA(q) process is invertible if the following polynomial equa-
tion has all roots inside the unit circle:

zq +
q∑

i=1

θiz
q−i = 0

where θi are the MA coefficients. For example, the best AR model is selected and
estimated by the TSUNIMAR subroutine (see Figure 10.25). You can obtain the roots
of the preceding equation by calling the TSROOT subroutine. Since the TSROOT
subroutine can handle the complex AR or MA coefficients, note that you should
add zero imaginary coefficients for the second column of the MATIN matrix for real
coefficients. Here is the code:

proc iml;
y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411

2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476
2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675
2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907
3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033
2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821
3.000 3.201 3.424 3.531 };

call tsunimar(ar,v,nar,aic) data=y maxlag=5
opt=({-1 1}) print=1;

/*-- set up complex coefficient matrix --*/
ar_cx = ar || j(nrow(ar),1,0);
call tsroot(root) matin=ar_cx nar=nar nma=0 print=1;

268 � Chapter 10. Time Series Analysis and Examples

In Figure 10.26, the roots and their lengths from the origin are shown. The roots are
also stored in the matrix ROOT. All roots are within the unit circle, while the MOD
values of the fourth and fifth roots appear to be sizable (0.9194).

LAG AR_COEF

1 1.3003068
2 -0.72328
3 0.2421928
4 -0.378757
5 0.1377273

AIC INNOVATION_VARINACE

-318.6138 0.0490554

Figure 10.25. Minimum AIC AR Estimation

Roots of AR Characteristic Polynomial

I Real Imaginary MOD(Z) ATAN(I/R) Degree

1 -0.29755 0.55991 0.6341 2.0593 117.9869
2 -0.29755 -0.55991 0.6341 -2.0593 -117.9869
3 0.40529 0 0.4053 0 0
4 0.74505 0.53866 0.9194 0.6260 35.8660
5 0.74505 -0.53866 0.9194 -0.6260 -35.8660

Z**5-AR(1)*Z**4-AR(2)*Z**3-AR(3)*Z**2-AR(4)*Z**1-AR(5)=0

Figure 10.26. Roots of AR Characteristic Polynomial Equation

The TSROOT subroutine can also recover the polynomial coefficients if the roots
are given as an input. You should specify the QCOEF=1 option when you want to
compute the polynomial coefficients instead of polynomial roots. You can compare
the result with the preceding output of the TSUNIMAR call. Here is the code:

call tsroot(ar_cx) matin=root nar=nar qcoef=1
nma=0 print=1;

The results are shown in Figure 10.27.

Polynomial Coefficents

I AR(real) AR(imag)

1 1.30031 0
2 -0.72328 5.55112E-17
3 0.24219 1.61885E-16
4 -0.37876 0
5 0.13773 -4.1674E-18

Figure 10.27. Polynomial Coefficients

Minimum AIC Procedure � 269

Syntax

TIMSAC routines are controlled by the following statements:

CALL TSBAYSEA(trend, season, series, adjust, abic, data

<,order, sorder, rigid, npred, opt, cntl, print>);

CALL TSDECOMP(comp, est, aic, data <,xdata, order, sorder,

nar, npred, init, opt, icmp, print>);

CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

CALL TSMLOMAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

CALL TSMULMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

CALL TSPEARS(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

CALL TSPRED(forecast, impulse, mse, data, coef, nar, nma

<,ev, npred, start, constant>);

CALL TSROOT(matout, matin, nar, nma <,qcoef, print>);

CALL TSTVCAR(arcoef, variance, est, aic, data

<,nar, init, opt, outlier, print>);

CALL TSUNIMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

Details

This section presents an introductory description of the important topics that are di-
rectly related to TIMSAC IML subroutines. The computational details, including
algorithms, are described in the section “Computational Details” on page 284. A de-
tailed explanation of each subroutine is not given; instead, basic ideas and common
methodologies for all subroutines are described first and are followed by more tech-
nical details. Finally, missing values are discussed in the section “Missing Values”
on page 290.

Minimum AIC Procedure

The AIC statistic is widely used to select the best model among alternative parametric
models. The minimum AIC model selection procedure can be interpreted as a max-

270 � Chapter 10. Time Series Analysis and Examples

imization of the expected entropy (Akaike 1981). The entropy of a true probability
density function (PDF) ϕ with respect to the fitted PDF f is written as

B(ϕ, f) = −I(ϕ, f)

where I(ϕ, f) is a Kullback-Leibler information measure, which is defined as

I(ϕ, f) =
∫ [

log
[
ϕ(z)
f(z)

]]
ϕ(z)dz

where the random variable Z is assumed to be continuous. Therefore,

B(ϕ, f) = EZ log f(Z)− EZ logϕ(Z)

where B(ϕ, f) ≤ 0 and EZ denotes the expectation concerning the random variable
Z. B(ϕ, f) = 0 if and only if ϕ = f (a.s.). The larger the quantity EZ log f(Z),
the closer the function f is to the true PDF ϕ. Given the data y = (y1, . . . , yT)′ that
has the same distribution as the random variable Z, let the likelihood function of the
parameter vector θ be

∏T
t=1 f(yt|θ). Then the average of the log-likelihood function

1
T

∑T
t=1 log f(yt|θ) is an estimate of the expected value of log f(Z). Akaike (1981)

derived the alternative estimate of EZ log f(Z) by using the Bayesian predictive like-
lihood. The AIC is the bias-corrected estimate of −2TEZ log f(Z|θ̂), where θ̂ is the
maximum likelihood estimate.

AIC = −2(maximum log-likelihood) + 2(number of free parameters)

Let θ = (θ1, . . . , θK)′ be a K × 1 parameter vector that is contained in the parameter
space ΘK . Given the data y, the log-likelihood function is

`(θ) =
T∑

t=1

log f(yt|θ)

Suppose the probability density function f(y|θ) has the true PDF ϕ(y) = f(y|θ0),
where the true parameter vector θ0 is contained in ΘK . Let θ̂K be a maximum
likelihood estimate. The maximum of the log-likelihood function is denoted as
`(θ̂K) = maxθ∈ΘK

`(θ). The expected log-likelihood function is defined by

`∗(θ) = TEZ log f(Z|θ)

The Taylor series expansion of the expected log-likelihood function around the true
parameter θ0 gives the following asymptotic relationship:

`∗(θ) A= `∗(θ0) + T (θ − θ0)′EZ
∂ log f(Z|θ0)

∂θ
− T

2
(θ − θ0)′I(θ0)(θ − θ0)

Minimum AIC Procedure � 271

where I(θ0) is the information matrix and A= stands for asymptotic equality. Note
that ∂ log f(z|θ0)

∂θ = 0 since log f(z|θ) is maximized at θ0. By substituting θ̂K , the
expected log-likelihood function can be written as

`∗(θ̂K) A= `∗(θ0)− T

2
(θ̂K − θ0)′I(θ0)(θ̂K − θ0)

The maximum likelihood estimator is asymptotically normally distributed under the
regularity conditions

√
TI(θ0)1/2(θ̂K − θ0) d→ N(0, IK)

Therefore,

T (θ̂K − θ0)′I(θ0)(θ̂K − θ0) a∼ χ2
K

The mean expected log-likelihood function, `∗(K) = EY `
∗(θ̂K), becomes

`∗(K) A= `∗(θ0)− K

2

When the Taylor series expansion of the log-likelihood function around θ̂K is used,
the log-likelihood function `(θ) is written

`(θ) A= `(θ̂K) + (θ − θ̂K)′
∂`(θ)
∂θ

∣∣∣∣
θ̂K

+
1
2
(θ − θ̂K)′

∂2`(θ)
∂θ∂θ′

∣∣∣∣
θ̂K

(θ − θ̂K)

Since `(θ̂K) is the maximum log-likelihood function, ∂`(θ)
∂θ

∣∣∣
θ̂K

= 0. Note that

plim
[
− 1

T
∂2`(θ)
∂θ∂θ′

∣∣∣
θ̂K

]
= I(θ0) if the maximum likelihood estimator θ̂K is a con-

sistent estimator of θ. Replacing θ with the true parameter θ0 and taking expectations
with respect to the random variable Y ,

EY `(θ0) A= EY `(θ̂K)− K

2

Consider the following relationship:

`∗(θ0) = TEZ log f(Z|θ0)

= EY

T∑
t=1

log f(Yt|θ0)

= EY `(θ0)

272 � Chapter 10. Time Series Analysis and Examples

From the previous derivation,

`∗(K) A= `∗(θ0)− K

2

Therefore,

`∗(K) A= EY `(θ̂K)−K

The natural estimator for EY `(θ̂K) is `(θ̂K). Using this estimator, you can write the
mean expected log-likelihood function as

`∗(K) A= `(θ̂K)−K

Consequently, the AIC is defined as an asymptotically unbiased estimator of
−2(mean expected log-likelihood)

AIC(K) = −2`(θ̂K) + 2K

In practice, the previous asymptotic result is expected to be valid in finite samples
if the number of free parameters does not exceed 2

√
T and the upper bound of the

number of free parameters is T
2 . It is worth noting that the amount of AIC is not

meaningful in itself, since this value is not the Kullback-Leibler information measure.
The difference of AIC values can be used to select the model. The difference of the
two AIC values is considered insignificant if it is far less than 1. It is possible to find
a better model when the minimum AIC model contains many free parameters.

Smoothness Priors Modeling

Consider the time series yt:

yt = f(t) + εt

where f(t) is an unknown smooth function and εt is an iid random variable with zero
mean and positive variance σ2. Whittaker (1923) provides the solution, which bal-
ances a tradeoff between closeness to the data and the kth-order difference equation.
For a fixed value of λ and k, the solution f̂ satisfies

min
f

T∑
t=1

{
[yt − f(t)]2 + λ2[∇kf(t)]2

}

where ∇k denotes the kth-order difference operator. The value of λ can be viewed as
the smoothness tradeoff measure. Akaike (1980a) proposed the Bayesian posterior
PDF to solve this problem.

`(f) = exp

{
− 1

2σ2

T∑
t=1

[yt − f(t)]2
}

exp

{
− λ2

2σ2

T∑
t=1

[∇kf(t)]2
}

Bayesian Seasonal Adjustment � 273

Therefore, the solution can be obtained when the function `(f) is maximized.

Assume that time series is decomposed as follows:

yt = Tt + St + εt

where Tt denotes the trend component and St is the seasonal component. The trend
component follows the kth-order stochastically perturbed difference equation.

∇kTt = w1t, w1t ∼ N(0, τ2
1)

For example, the polynomial trend component for k = 2 is written as

Tt = 2Tt−1 − Tt−2 + w1t

To accommodate regular seasonal effects, the stochastic seasonal relationship is used.

L−1∑
i=0

St−i = w2t w2t ∼ N(0, τ2
2)

where L is the number of seasons within a period. In the context of Whittaker and
Akaike, the smoothness priors problem can be solved by the maximization of

`(f) = exp

[
− 1

2σ2

T∑
t=1

(yt − Tt − St)2
]

exp

[
− τ2

1

2σ2

T∑
t=1

(∇kTt)2
]

× exp

− τ2
2

2σ2

T∑
t=1

(
L−1∑
i=0

St−i

)2

The values of hyperparameters τ2
1 and τ2

2 refer to a measure of uncertainty of prior
information. For example, the large value of τ2

1 implies a relatively smooth trend

component. The ratio τ2
i

σ2 (i = 1, 2) can be considered as a signal-to-noise ratio.

Kitagawa and Gersch (1984) use the Kalman filter recursive computation for the like-
lihood of the tradeoff parameters. The hyperparameters are estimated by combining
the grid search and optimization method. The state space model and Kalman filter
recursive computation are discussed in the section “State Space and Kalman Filter
Method” on page 287.

Bayesian Seasonal Adjustment
Seasonal phenomena are frequently observed in many economic and business time
series. For example, consumption expenditure might have strong seasonal variations
because of Christmas spending. The seasonal phenomena are repeatedly observed
after a regular period of time. The number of seasons within a period is defined as the
smallest time span for this repetitive observation. Monthly consumption expenditure
shows a strong increase during the Christmas season, with 12 seasons per period.

There are three major approaches to seasonal time series: the regression model, the
moving average model, and the seasonal ARIMA model.

274 � Chapter 10. Time Series Analysis and Examples

Regression Model

Let the trend component be Tt =
∑mα

i=1 αiUit and the seasonal component be
St =

∑mβ

j=1 βjVjt. Then the additive time series can be written as the regression
model

yt =
mα∑
i=1

αiUit +
mβ∑
j=1

βjVjt + εt

In practice, the trend component can be written as the mαth-order polynomial, such
as

Tt =
mα∑
i=0

αit
i

The seasonal component can be approximated by the seasonal dummies (Djt)

St =
L−1∑
j=1

βjDjt

whereL is the number of seasons within a period. The least squares method is applied
to estimate parameters αi and βj .

The seasonally adjusted series is obtained by subtracting the estimated seasonal com-
ponent from the original series. Usually, the error term εt is assumed to be white
noise, while sometimes the autocorrelation of the regression residuals needs to be al-
lowed. However, the regression method is not robust to the regression function type,
especially at the beginning and end of the series.

Moving Average Model

If you assume that the annual sum of a seasonal time series has small seasonal fluc-
tuations, the nonseasonal component Nt = Tt + εt can be estimated by using the
moving average method.

N̂t =
m∑

i=−m

λiyt−i

where m is the positive integer and λi is the symmetric constant such that λi = λ−i

and
∑m

i=−m λi = 1.

When the data are not available, either an asymmetric moving average is used, or the
forecast data are augmented to use the symmetric weight. The X-11 procedure is a
complex modification of this moving-average method.

Bayesian Seasonal Adjustment � 275

Seasonal ARIMA Model

The regression and moving-average approaches assume that the seasonal component
is deterministic and independent of other nonseasonal components. The time series
approach is used to handle the stochastic trend and seasonal components.

The general ARIMA model can be written

m∏
j=1

φj(B)
k∏

i=1

(1−Bsi)di ỹt = θ0 +
q∏

i=1

θi(B)εt

where B is the backshift operator and

φj(B) = 1− φ1B − · · · − φjB
pj

θi(B) = 1− θ1B − · · · − θiB
qi

and ỹt = yt − E(Yt) if di = 0; otherwise, ỹt = yt. The power of B, si, can be
considered as a seasonal factor. Specifically, the Box-Jenkins multiplicative seasonal
ARIMA(p, d, q)(P,D,Q)s model is written as

φp(B)ΦP (Bs)(1−B)d(1−Bs)Dỹt = θq(B)ΘQ(Bs)εt

ARIMA modeling is appropriate for particular time series and requires burdensome
computation.

The TSBAYSEA subroutine combines the simple characteristics of the regression
approach and time series modeling. The TSBAYSEA and X-11 procedures use the
model-based seasonal adjustment. The symmetric weights of the standard X-11 op-
tion can be approximated by using the integrated MA form

(1−B)(1−B12)yt = θ(B)εt

With a fixed value φ, the TSBAYSEA subroutine is approximated as

(1− φB)(1−B)(1−B12)yt = θ(B)εt

The subroutine is flexible enough to handle trading-day or leap-year effects, the shift
of the base observation, and missing values. The TSBAYSEA-type modeling ap-
proach has some advantages: it clearly defines the statistical model of the time series;
modification of the basic model can be an efficient method of choosing a particu-
lar procedure for the seasonal adjustment of a given time series; and the use of the
concept of the likelihood provides a minimum AIC model selection approach.

276 � Chapter 10. Time Series Analysis and Examples

Nonstationary Time Series

The subroutines TSMLOCAR, TSMLOMAR, and TSTVCAR are used to analyze
nonstationary time series models. The AIC statistic is extensively used to analyze the
locally stationary model.

Locally Stationary AR Model

When the time series is nonstationary, the TSMLOCAR (univariate) and
TSMLOMAR (multivariate) subroutines can be employed. The whole span of
the series is divided into locally stationary blocks of data, and then the TSMLOCAR
and TSMLOMAR subroutines estimate a stationary AR model by using the least
squares method on this stationary block. The homogeneity of two different blocks of
data is tested by using the AIC.

Given a set of data {y1, . . . , yT }, the data can be divided into k blocks of sizes
t1, . . . , tk, where t1 + · · · + tk = T , and k and ti are unknown. The locally sta-
tionary model is fitted to the data

yt = αi
0 +

pi∑
j=1

αi
jyt−j + εit

where

Ti−1 =
i−1∑
j=1

tj < t ≤ Ti =
i∑

j=1

tj for i = 1, . . . , k

where εit is a Gaussian white noise with Eεit = 0 and E(εit)
2 = σ2

i . Therefore, the
log-likelihood function of the locally stationary series is

` = −1
2

k∑
i=1

ti log(2πσ2
i) +

1
σ2

i

Ti∑
t=Ti−1+1

yt − αi
0 −

pi∑
j=1

αi
jyt−j

2
Given αi

j , j = 0, . . . , pi, the maximum of the log-likelihood function is attained at

σ̂2
i =

1
ti

Ti∑
t=Ti−1+1

yt − α̂i
0 −

pi∑
j=1

α̂i
jyt−j

2

The concentrated log-likelihood function is given by

`∗ = −T
2

[1 + log(2π)]− 1
2

k∑
i=1

ti log(σ̂2
i)

Nonstationary Time Series � 277

Therefore, the maximum likelihood estimates, α̂i
j and σ̂2

i , are obtained by minimizing
the following local SSE:

SSE =
Ti∑

t=Ti−1+1

yt − α̂i
0 −

pi∑
j=1

α̂i
jyt−j

2

The least squares estimation of the stationary model is explained in the section “Least
Squares and Householder Transformation” on page 284.

The AIC for the locally stationary model over the pooled data is written as

k∑
i=1

ti log(σ̂2
i) + 2

k∑
i=1

(pi + intercept + 1)

where intercept = 1 if the intercept term (αi
0) is estimated; otherwise, intercept =

0. The number of stationary blocks (k), the size of each block (ti), and the order of
the locally stationary model is determined by the AIC. Consider the autoregressive
model fitted over the block of data, {y1, . . . , yT }, and let this modelM1 be an AR(p1)
process. When additional data, {yT+1, . . . , yT+T1}, are available, a new model M2,
an AR(p2) process, is fitted over this new data set, assuming that these data are inde-
pendent of the previous data. Then AICs for models M1 and M2 are defined as

AIC1 = T log(σ2
1) + 2(p1 + intercept + 1)

AIC2 = T1 log(σ2
2) + 2(p2 + intercept + 1)

The joint model AIC for M1 and M2 is obtained by summation

AICJ = AIC1 + AIC2

When the two data sets are pooled and estimated over the pooled data set,
{y1, . . . , yT+T1}, the AIC of the pooled model is

AICA = (T + T1) log(σ̂2
A) + 2(pA + intercept + 1)

where σ2
A is the pooled error variance and pA is the order chosen to fit the pooled data

set.

Decision

• If AICJ < AICA, switch to the new model, since there is a change in the
structure of the time series.

• If AICJ ≥ AICA, pool the two data sets, since two data sets are considered to
be homogeneous.

If new observations are available, repeat the preceding steps to determine the homo-
geneity of the data. The basic idea of locally stationary AR modeling is that, if the
structure of the time series is not changed, you should use the additional information
to improve the model fitting, but you need to follow the new structure of the time
series if there is any change.

278 � Chapter 10. Time Series Analysis and Examples

Time-Varying AR Coefficient Model

Another approach to nonstationary time series, especially those that are nonstationary
in the covariance, is time-varying AR coefficient modeling. When the time series
is nonstationary in the covariance, the problem in modeling this series is related to
an efficient parameterization. It is possible for a Bayesian approach to estimate the
model with a large number of implicit parameters of the complex structure by using
a relatively small number of hyperparameters.

The TSTVCAR subroutine uses smoothness priors by imposing stochastically per-
turbed difference equation constraints on each AR coefficient and frequency response
function. The variance of each AR coefficient distribution constitutes a hyperparam-
eter included in the state space model. The likelihood of these hyperparameters is
computed by the Kalman filter recursive algorithm.

The time-varying AR coefficient model is written

yt =
m∑

i=1

αityt−i + εt

where time-varying coefficients αit are assumed to change gradually with time. The
following simple stochastic difference equation constraint is imposed on each coeffi-
cient:

∇kαit = wit, wit ∼ N(0, τ2), i = 1, . . . ,m

The frequency response function of the AR process is written

A(f) = 1−
m∑

j=1

αjt exp(−2πjif)

The smoothness of this function can be measured by the kth derivative smoothness
constraint,

Rk =
∫ 1/2

−1/2

∣∣∣∣dkA(f)
dfk

∣∣∣∣2 df = (2π)2k
m∑

j=1

j2kα2
jt

Then the TSTVCAR call imposes zero and second derivative smoothness constraints.
The time-varying AR coefficients are the solution of the following constrained least
squares:

T∑
t=1

(
yt −

m∑
i=1

αityt−i

)2

+ τ2
T∑

t=1

m∑
i=1

(
∇kαit

)2
+ λ2

T∑
t=1

m∑
i=1

i2α2
it + ν2

T∑
t=1

m∑
i=1

α2
it

where τ2, λ2, and ν2 are hyperparameters of the prior distribution.

Multivariate Time Series Analysis � 279

Using a state space representation, the model is

xt = Fxt−1 + Gwt

yt = Htxt + εt

where

xt = (α1t, . . . , αmt, . . . , α1,t−k+1, . . . , αm,t−k+1)′

Ht = (yt−1, . . . , yt−m, . . . , 0, . . . , 0)
wt = (w1t, . . . , wmt)′

k = 1 : F = Im G = Im

k = 2 : F =
[

2Im −Im

Im 0

]
G =

[
Im

0

]

k = 3 : F =

 3Im −3Im Im

Im 0 0
0 Im 0

 G =

 Im

0
0

[

wt

εt

]
∼ N

(
0,
[
τ2I 0
0 σ2

])
The computation of the likelihood function is straightforward. See the section “State
Space and Kalman Filter Method” on page 287 for the computation method.

Multivariate Time Series Analysis

The subroutines TSMULMAR, TSMLOMAR, and TSPRED analyze multivariate
time series. The periodic AR model, TSPEARS, can also be estimated by using a vec-
tor AR procedure, since the periodic AR series can be represented as the covariance-
stationary vector autoregressive model.

The stationary vector AR model is estimated and the order of the model (or each
variable) is automatically determined by the minimum AIC procedure. The stationary
vector AR model is written

yt = A0 + A1yt−1 + · · ·+ Apyt−p + εt

εt ∼ N(0,Σ)

Using the LDL′ factorization method, the error covariance is decomposed as

Σ = LDL′

where L is a unit lower triangular matrix and D is a diagonal matrix. Then the
instantaneous response model is defined as

Cyt = A∗
0 + A∗

1yt−1 + · · ·+ A∗
pyt−p + ε∗t

where C = L−1, A∗
i = L−1Ai for i = 0, 1, . . . , p, and ε∗t = L−1εt. Each equa-

tion of the instantaneous response model can be estimated independently, since its

280 � Chapter 10. Time Series Analysis and Examples

error covariance matrix has a diagonal covariance matrix D. Maximum likelihood
estimates are obtained through the least squares method when the disturbances are
normally distributed and the presample values are fixed.

The TSMULMAR subroutine estimates the instantaneous response model. The VAR
coefficients are computed by using the relationship between the VAR and instanta-
neous models.

The general VARMA model can be transformed as an infinite-order MA process un-
der certain conditions.

yt = µ+ εt +
∞∑

m=1

Ψmεt−m

In the context of the VAR(p) model, the coefficient Ψm can be interpreted as the
m-lagged response of a unit increase in the disturbances at time t.

Ψm =
∂yt+m

∂ε′t

The lagged response on the one-unit increase in the orthogonalized disturbances ε∗t is
denoted

∂yt+m

∂ε∗jt
=
∂E(yt+m|yjt, yj−1,t, . . . ,Xt)

∂yjt
= ΨmLj

where Lj is the jth column of the unit triangular matrix L and Xt = [yt−1, . . . ,yt−p].
When you estimate the VAR model by using the TSMULMAR call, it is easy to
compute this impulse response function.

The MSE of the m-step prediction is computed as

E(yt+m − yt+m|t)(yt+m − yt+m|t)
′ = Σ + Ψ1ΣΨ′

1 + · · ·+ Ψm−1ΣΨ′
m−1

Note that εt = Lε∗t . Then the covariance matrix of εt is decomposed

Σ =
n∑

i=1

LiL′idii

where dii is the ith diagonal element of the matrix D and n is the number of variables.
The MSE matrix can be written

n∑
i=1

dii

[
LiL′i + Ψ1LiL′iΨ

′
1 + · · ·+ Ψm−1LiL′iΨ

′
m−1

]
Therefore, the contribution of the ith orthogonalized innovation to the MSE is

Vi = dii

[
LiL′i + Ψ1LiL′iΨ

′
1 + · · ·+ Ψm−1LiL′iΨ

′
m−1

]

Spectral Analysis � 281

The ith forecast error variance decomposition is obtained from diagonal elements of
the matrix Vi.

The nonstationary multivariate series can be analyzed by the TSMLOMAR subrou-
tine. The estimation and model identification procedure is analogous to the univari-
ate nonstationary procedure, which is explained in the section “Nonstationary Time
Series” on page 276.

A time series yt is periodically correlated with period d if Eyt = Eyt+d and Eysyt =
Eys+dyt+d. Let yt be autoregressive of period d with AR orders (p1, . . . , pd)—that
is,

yt =
pt∑

j=1

αjtyt−j + εt

where εt is uncorrelated with mean zero and Eε2t = σ2
t , pt = pt+d, σ2

t = σ2
t+d, and

αjt = αj,t+d(j = 1, . . . , pt). Define the new variable such that xjt = yj+d(t−1).
The vector series, xt = (x1t, . . . , xdt)′, is autoregressive of order p, where p =
maxj int((pj − j)/d) + 1. The TSPEARS subroutine estimates the periodic autore-
gressive model by using minimum AIC vector AR modeling.

The TSPRED subroutine computes the one-step or multistep forecast of the mul-
tivariate ARMA model if the ARMA parameter estimates are provided. In addi-
tion, the subroutine TSPRED produces the (intermediate and permanent) impulse
response function and performs forecast error variance decomposition for the vector
AR model.

Spectral Analysis

The autocovariance function of the random variable Yt is defined as

CY Y (k) = E(Yt+kYt)

where EYt = 0. When the real valued process Yt is stationary and its autocovariance
is absolutely summable, the population spectral density function is obtained by using
the Fourier transform of the autocovariance function

f(g) =
1
2π

∞∑
k=−∞

CY Y (k) exp(−igk) − π ≤ g ≤ π

where i =
√
−1 and CY Y (k) is the autocovariance function such that∑∞

k=−∞ |CY Y (k)| <∞.

Consider the autocovariance generating function

γ(z) =
∞∑

k=−∞
CY Y (k)zk

282 � Chapter 10. Time Series Analysis and Examples

where CY Y (k) = CY Y (−k) and z is a complex scalar. The spectral density function
can be represented as

f(g) =
1
2π
γ(exp(−ig))

The stationary ARMA(p, q) process is denoted

φ(B)yt = θ(B)εt εt ∼ (0, σ2)

where φ(B) and θ(B) do not have common roots. Note that the autocovariance
generating function of the linear process yt = ψ(B)εt is given by

γ(B) = σ2ψ(B)ψ(B−1)

For the ARMA(p, q) process, ψ(B) = θ(B)
φ(B) . Therefore, the spectral density function

of the stationary ARMA(p, q) process becomes

f(g) =
σ2

2π

∣∣∣∣ θ(exp(−ig))θ(exp(ig))
φ(exp(−ig))φ(exp(ig))

∣∣∣∣2
The spectral density function of a white noise is a constant.

f(g) =
σ2

2π

The spectral density function of the AR(1) process (φ(B) = 1− φ1B) is given by

f(g) =
σ2

2π(1− φ1 cos(g) + φ2
1)

The spectrum of the AR(1) process has its minimum at g = 0 and its maximum at
g = ±π if φ1 < 0, while the spectral density function attains its maximum at g = 0
and its minimum at g = ±π, if φ1 > 0. When the series is positively autocorrelated,
its spectral density function is dominated by low frequencies. It is interesting to
observe that the spectrum approaches σ2

4π
1

1−cos(g) as φ1 → 1. This relationship shows
that the series is difference-stationary if its spectral density function has a remarkable
peak near 0.

The spectrum of AR(2) process (φ(B) = 1− φ1B − φ2B
2) equals

f(g) =
σ2

2π
1{

−4φ2

[
cos(g) + φ1(1−φ2)

4φ2

]2
+ (1+φ2)2(4φ2+φ2

1)
4φ2

}
Refer to Anderson (1971) for details of the characteristics of this spectral density
function of the AR(2) process.

Spectral Analysis � 283

In practice, the population spectral density function cannot be computed. There are
many ways of computing the sample spectral density function. The TSBAYSEA and
TSMLOCAR subroutines compute the power spectrum by using AR coefficients and
the white noise variance.

The power spectral density function of Yt is derived by using the Fourier transforma-
tion of CY Y (k).

fY Y (g) =
∞∑

k=−∞
exp(−2πigk)CY Y (k), −1

2
≤ g ≤ 1

2

where i =
√
−1 and g denotes frequency. The autocovariance function can also be

written as

CY Y (k) =
∫ 1/2

−1/2
exp(2πigk)fY Y (g)dg

Consider the following stationary AR(p) process:

yt −
p∑

i=1

φiyt−i = εt

where εt is a white noise with mean zero and constant variance σ2.

The autocovariance function of white noise εt equals

Cεε(k) = δk0σ
2

where δk0 = 1 if k = 0; otherwise, δk0 = 0. Therefore, the power spectral density of
the white noise is fεε(g) = σ2, −1

2 ≤ g ≤ 1
2 . Note that, with φ0 = −1,

Cεε(k) =
p∑

m=0

p∑
n=0

φmφnCY Y (k −m+ n)

Using the following autocovariance function of Yt,

CY Y (k) =
∫ 1/2

−1/2
exp(2πigk)fY Y (g)dg

the autocovariance function of the white noise is denoted as

Cεε(k) =
p∑

m=0

p∑
n=0

φmφn

∫ 1/2

−1/2
exp(2πig(k −m+ n))fY Y (g)dg

=
∫ 1/2

−1/2
exp(2πigk)

∣∣∣∣∣1−
p∑

m=1

φm exp(−2πigm)

∣∣∣∣∣
2

fY Y (g)dg

284 � Chapter 10. Time Series Analysis and Examples

On the other hand, another formula of the Cεε(k) gives

Cεε(k) =
∫ 1/2

−1/2
exp(2πigk)fεε(g)dg

Therefore,

fεε(g) =

∣∣∣∣∣1−
p∑

m=1

φm exp(−2πigm)

∣∣∣∣∣
2

fY Y (g)

Since fεε(g) = σ2, the rational spectrum of Yt is

fY Y (g) =
σ2

|1−
∑p

m=1 φm exp(−2πigm)|2

To compute the power spectrum, estimated values of white noise variance σ̂2 and AR
coefficients φ̂m are used. The order of the AR process can be determined by using
the minimum AIC procedure.

Computational Details

Least Squares and Householder Transformation

Consider the univariate AR(p) process

yt = α0 +
p∑

i=1

αiyt−i + εt

Define the design matrix X.

X =

 1 yp · · · y1
...

...
. . .

...
1 yT−1 · · · yT−p

Let y = (yp+1, . . . , yn)′. The least squares estimate, â = (X′X)−1X′y, is the
approximation to the maximum likelihood estimate of a = (α0, α1, . . . , αp) if εt is
assumed to be Gaussian error disturbances. Combining X and y as

Z = [X
... y]

the Z matrix can be decomposed as

Z = QU = Q
[

R w1

0 w2

]

Computational Details � 285

where Q is an orthogonal matrix and R is an upper triangular matrix, w1 =
(w1, . . . , wp+1)′, and w2 = (wp+2, 0, . . . , 0)′.

Q′y =

w1

w2
...

wT−p

The least squares estimate that uses Householder transformation is computed by solv-
ing the linear system

Ra = w1

The unbiased residual variance estimate is

σ̂2 =
1

T − p

T−p∑
i=p+2

w2
i =

w2
p+2

T − p

and

AIC = (T − p) log(σ̂2) + 2(p+ 1)

In practice, least squares estimation does not require the orthogonal matrix Q. The
TIMSAC subroutines compute the upper triangular matrix without computing the
matrix Q.

Bayesian Constrained Least Squares

Consider the additive time series model

yt = Tt + St + εt, εt ∼ N(0, σ2)

Practically, it is not possible to estimate parameters a = (T1, . . . , TT , S1, . . . , ST)′,
since the number of parameters exceeds the number of available observations. Let
∇m

L denote the seasonal difference operator with L seasons and degree of m; that is,
∇m

L = (1−BL)m. Suppose that T = L ∗ n. Some constraints on the trend and sea-
sonal components need to be imposed such that the sum of squares of ∇kTt, ∇m

L St,
and (

∑L−1
i=0 St−i) is small. The constrained least squares estimates are obtained by

minimizing

T∑
t=1

{
(yt − Tt − St)2 + d2

[
s2(∇kTt)2 + (∇m

L St)2 + z2(St + · · ·+ St−L+1)2
]}

Using matrix notation,

(y −Ma)′(y −Ma) + (a− a0)′D′D(a− a0)

286 � Chapter 10. Time Series Analysis and Examples

where M = [IT
... IT], y = (y1, . . . , yT)′, and a0 is the initial guess of a. The matrix

D is a 3T × 2T control matrix in which structure varies according to the order of
differencing in trend and season.

D = d

 Em 0
zF 0
0 sGk

where

Em = Cm ⊗ IL, m = 1, 2, 3

F =

1 0 · · · 0

1 1
. . .

...
...

. 0
1 · · · 1 1

T×T

G1 =

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . .

...
...

. 0
0 · · · 0 −1 1

T×T

G2 =

1 0 0 0 · · · 0
−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. 0
0 · · · 0 1 −2 1

T×T

G3 =

1 0 0 0 0 · · · 0
−3 1 0 0 0 · · · 0

3 −3 1 0 0 · · · 0
−1 3 −3 1 0 · · · 0

0 −1 3 −3 1
. . .

...
...

. 0
0 · · · 0 −1 3 −3 1

T×T

The n× n matrix Cm has the same structure as the matrix Gm, and IL is the L× L
identity matrix. The solution of the constrained least squares method is equivalent to
that of maximizing the function

L(a) = exp
{
− 1

2σ2
(y −Ma)′(y −Ma)

}
exp

{
− 1

2σ2
(a− a0)′D′D(a− a0)

}

Computational Details � 287

Therefore, the PDF of the data y is

f(y|σ2,a) =
(

1
2π

)T/2(1
σ

)T

exp
{
− 1

2σ2
(y −Ma)′(y −Ma)

}
The prior PDF of the parameter vector a is

π(a|D, σ2,a0) =
(

1
2π

)T (1
σ

)2T

|D′D| exp
{
− 1

2σ2
(a− a0)′D′D(a− a0)

}
When the constant d is known, the estimate â of a is the mean of the posterior dis-
tribution, where the posterior PDF of the parameter a is proportional to the function
L(a). It is obvious that â is the minimizer of ‖g(a|d)‖2 = (ỹ − D̃a)′(ỹ − D̃a),
where

ỹ =
[

y
Da0

]

D̃ =
[

M
D

]

The value of d is determined by the minimum ABIC procedure. The ABIC is defined
as

ABIC = T log
[

1
T
‖g(a|d)‖2

]
+ 2{log[det(D′D + M′M)]− log[det(D′D)]}

State Space and Kalman Filter Method

In this section, the mathematical formulas for state space modeling are introduced.
The Kalman filter algorithms are derived from the state space model. As an example,
the state space model of the TSDECOMP subroutine is formulated.

Define the following state space model:

xt = Fxt−1 + Gwt

yt = Htxt + εt

where εt ∼ N(0, σ2) and wt ∼ N(0,Q). If the observations, (y1, . . . , yT), and the
initial conditions, x0|0 and P0|0, are available, the one-step predictor (xt|t−1) of the
state vector xt and its mean square error (MSE) matrix Pt|t−1 are written as

xt|t−1 = Fxt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + GQG′

288 � Chapter 10. Time Series Analysis and Examples

Using the current observation, the filtered value of xt and its variance Pt|t are up-
dated.

xt|t = xt|t−1 + Ktet

Pt|t = (I−KtHt)Pt|t−1

where et = yt − Htxt|t−1 and Kt = Pt|t−1H′
t[HtPt|t−1H′

t + σ2I]−1. The log-
likelihood function is computed as

` = −1
2

T∑
t=1

log(2πvt|t−1)−
T∑

t=1

e2t
2vt|t−1

where vt|t−1 is the conditional variance of the one-step prediction error et.

Consider the additive time series decomposition

yt = Tt + St + TDt + ut + x′tβt + εt

where xt is a (K × 1) regressor vector and βt is a (K × 1) time-varying coefficient
vector. Each component has the following constraints:

∇kTt = w1t, w1t ∼ N(0, τ2
1)

∇m
L St = w2t, w2t ∼ N(0, τ2

2)

ut =
p∑

i=1

αiut−i + w3t, w3t ∼ N(0, τ2
3)

βjt = βj,t−1 + w3+j,t, w3+j,t ∼ N(0, τ2
3+j), j = 1, · · · ,K

7∑
i=1

γitTDt(i) =
6∑

i=1

γit(TDt(i)− TDt(7))

γit = γi,t−1

where ∇k = (1 − B)k and ∇m
L = (1 − BL)m. The AR component ut is assumed

to be stationary. The trading-day component TDt(i) represents the number of the ith
day of the week in time t. If k = 3, p = 3,m = 1, and L = 12 (monthly data),

Tt = 3Tt−1 − 3Tt−2 + Tt−3 + w1t

11∑
i=0

St−i = w2t

ut =
3∑

i=1

αiut−i + w3t

The state vector is defined as

xt = (Tt, Tt−1, Tt−2, St, . . . , St−11, ut, ut−1, ut−2, γ1t, . . . , γ6t)′

Computational Details � 289

The matrix F is

F =

F1 0 0 0
0 F2 0 0
0 0 F3 0
0 0 0 F4

where

F1 =

 3 −3 1
1 0 0
0 1 0

F2 =
[
−1′ −1
I10 0

]

F3 =

 α1 α2 α3

1 0 0
0 1 0

F4 = I6

1′ = (1, 1, . . . , 1)

The matrix G can be denoted as

G =

g1 0 0
0 g2 0
0 0 g3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

where

g1 = g3 =
[

1 0 0
]′

g2 =
[

1 0 0 0 0 0
]′

Finally, the matrix Ht is time-varying,

Ht =
[

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 h′t
]

where

ht =
[
Dt(1) Dt(2) Dt(3) Dt(4) Dt(5) Dt(6)

]′
Dt(i) = TDt(i)− TDt(7), i = 1, . . . , 6

290 � Chapter 10. Time Series Analysis and Examples

Missing Values

The TIMSAC subroutines skip any missing values at the beginning of the data set.
When the univariate and multivariate AR models are estimated via least squares
(TSMLOCAR, TSMLOMAR, TSUNIMAR, TSMULMAR, and TSPEARS), there
are three options available; that is, MISSING=0, MISSING=1, or MISSING=2.
When the MISSING=0 (default) option is specified, the first contiguous observa-
tions with no missing values are used. The MISSING=1 option specifies that only
nonmissing observations should be used by ignoring the observations with missing
values. If the MISSING=2 option is specified, the missing values are filled with the
sample mean. The least squares estimator with the MISSING=2 option is biased in
general.

The BAYSEA subroutine assumes the same prior distribution of the trend and sea-
sonal components that correspond to the missing observations. A modification is
made to skip the components of the vector g(a|d) that correspond to the missing ob-
servations. The vector g(a|d) is defined in the section “Bayesian Constrained Least
Squares” on page 285. In addition, the TSBAYSEA subroutine considers outliers as
missing values. The TSDECOMP and TSTVCAR subroutines skip the Kalman filter
updating equation when the current observation is missing.

ISM TIMSAC Packages

A description of each TIMSAC package follows. Each description includes a list of
the programs provided in the TIMSAC version.

TIMSAC-72
The TIMSAC-72 package analyzes and controls feedback systems (for example, a
cement kiln process). Univariate- and multivariate-AR models are employed in this
original TIMSAC package. The final prediction error (FPE) criterion is used for
model selection.

• AUSPEC estimates the power spectrum by the Blackman-Tukey procedure.

• AUTCOR computes autocovariance and autocorrelation.

• DECONV computes the impulse response function.

• FFTCOR computes autocorrelation and crosscorrelation via the fast Fourier
transform.

• FPEAUT computes AR coefficients and FPE for the univariate AR model.

• FPEC computes AR coefficients and FPE for the control system or multivariate
AR model.

• MULCOR computes multiple covariance and correlation.

• MULNOS computes relative power contribution.

• MULRSP estimates the rational spectrum for multivariate data.

• MULSPE estimates the cross spectrum by Blackman-Tukey procedure.

• OPTDES performs optimal controller design.

• OPTSIM performs optimal controller simulation.

ISM TIMSAC Packages � 291

• RASPEC estimates the rational spectrum for univariate data.

• SGLFRE computes the frequency response function.

• WNOISE performs white noise simulation.

TIMSAC-74
The TIMSAC-74 package estimates and forecasts univariate and multivariate ARMA
models by fitting the canonical Markovian model. A locally stationary autoregres-
sive model is also analyzed. Akaike’s information criterion (AIC) is used for model
selection.

• AUTARM performs automatic univariate ARMA model fitting.

• BISPEC computes bispectrum.

• CANARM performs univariate canonical correlation analysis.

• CANOCA performs multivariate canonical correlation analysis.

• COVGEN computes the covariance from gain function.

• FRDPLY plots the frequency response function.

• MARKOV performs automatic multivariate ARMA model fitting.

• NONST estimates the locally stationary AR model.

• PRDCTR performs ARMA model prediction.

• PWDPLY plots the power spectrum.

• SIMCON performs optimal controller design and simulation.

• THIRMO computes the third-order moment.

TIMSAC-78
The TIMSAC-78 package uses the Householder transformation to estimate time se-
ries models. This package also contains Bayesian modeling and the exact maximum
likelihood estimation of the ARMA model. Minimum AIC or Akaike Bayesian in-
formation criterion (ABIC) modeling is extensively used.

• BLOCAR estimates the locally stationary univariate AR model by using the
Bayesian method.

• BLOMAR estimates the locally stationary multivariate AR model by using the
Bayesian method.

• BSUBST estimates the univariate subset regression model by using the
Bayesian method.

• EXSAR estimates the univariate AR model by using the exact maximum like-
lihood method.

• MLOCAR estimates the locally stationary univariate AR model by using the
minimum AIC method.

• MLOMAR estimates the locally stationary multivariate AR model by using the
minimum AIC method.

292 � Chapter 10. Time Series Analysis and Examples

• MULBAR estimates the multivariate AR model by using the Bayesian method.

• MULMAR estimates the multivariate AR model by using the minimum AIC
method.

• NADCON performs noise adaptive control.

• PERARS estimates the periodic AR model by using the minimum AIC method.

• UNIBAR estimates the univariate AR model by using the Bayesian method.

• UNIMAR estimates the univariate AR model by using the minimum AIC
method.

• XSARMA estimates the univariate ARMA model by using the exact maximum
likelihood method.

In addition, the following test subroutines are available: TSSBST, TSWIND,
TSROOT, TSTIMS, and TSCANC.

TIMSAC-84
The TIMSAC-84 package contains the Bayesian time series modeling procedure, the
point process data analysis, and the seasonal adjustment procedure.

• ADAR estimates the amplitude dependent AR model.

• BAYSEA performs Bayesian seasonal adjustments.

• BAYTAP performs Bayesian tidal analysis.

• DECOMP performs time series decomposition analysis by using state space
modeling.

• EPTREN estimates intensity rates of either the exponential polynomial or ex-
ponential Fourier series of the nonstationary Poisson process model.

• LINLIN estimates linear intensity models of the self-exciting point process
with another process input and with cyclic and trend components.

• LINSIM performs simulation of the point process estimated by the subroutine
LINLIN.

• LOCCAR estimates the locally constant AR model.

• MULCON performs simulation, control, and prediction of the multivariate AR
model.

• NONSPA performs nonstationary spectrum analysis by using the minimum
Bayesian AIC procedure.

• PGRAPH performs graphical analysis for point process data.

• PTSPEC computes periodograms of point process data with significant bands.

• SIMBVH performs simulation of bivariate Hawkes’ mutually exciting point
process.

• SNDE estimates the stochastic nonlinear differential equation model.

• TVCAR estimates the time-varying AR coefficient model by using state space
modeling.

Example 10.1. VAR Estimation and Variance Decomposition � 293

Refer to Kitagawa and Akaike (1981) and Ishiguro (1987) for more information about
TIMSAC programs.

Example 10.1. VAR Estimation and Variance Decomposition

In this example, a VAR model is estimated and forecast. The VAR(3) model is es-
timated by using investment, durable consumption, and consumption expenditures.
The data are found in the appendix to Lütkepohl (1993). The stationary VAR(3)
process is specified as

yt = A0 + A1yt−1 + A2yt−2 + A3yt−3 + εt

The matrix ARCOEF contains the AR coefficients (A1,A2, and A3), and the matrix
EV contains error covariance estimates. An intercept vector A0 is included in the
first row of the matrix ARCOEF if OPT[1]=1 is specified. Here is the code:

data one;
input invest income consum @@;

datalines;
180 451 415 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487
231 548 497 229 558 510 234 574 516 237 583 525
206 591 529 250 599 538 259 610 546 263 627 555
264 642 574 280 653 574 282 660 586 292 694 602
286 709 617 302 734 639 304 751 653 307 763 668
317 766 679 314 779 686 306 808 697 304 785 688
292 794 704 275 799 699 273 799 709 301 812 715
280 837 724 289 853 746 303 876 758 322 897 779
315 922 798 339 949 816 364 979 837 371 988 858
375 1025 881 432 1063 905 453 1104 934 460 1131 968
475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064
526 1290 1101 519 1314 1102 516 1346 1145 531 1385 1173
573 1416 1216 551 1436 1229 538 1462 1242 532 1493 1267
558 1516 1295 524 1557 1317 525 1613 1355 519 1642 1371
526 1690 1402 510 1759 1452 519 1756 1485 538 1780 1516
549 1807 1549 570 1831 1567 559 1873 1588 584 1897 1631
611 1910 1650 597 1943 1685 603 1976 1722 619 2018 1752
635 2040 1774 658 2070 1807 675 2121 1831 700 2132 1842
692 2199 1890 759 2253 1958 782 2276 1948 816 2318 1994
844 2369 2061 830 2423 2056 853 2457 2102 852 2470 2121
833 2521 2145 860 2545 2164 870 2580 2206 830 2620 2225
801 2639 2235 824 2618 2237 831 2628 2250 830 2651 2271
;

proc iml;
use one;
read all into y var{invest income consum};
mdel = 1;
maice = 0;
misw = 0; /*-- instantaneous modeling ? --*/
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;

294 � Chapter 10. Time Series Analysis and Examples

To obtain the unit triangular matrix L−1 and diagonal matrix Dt, you need to estimate
the instantaneous response model. When you specify the OPT[3]=1 option, the first
row of the output matrix EV contains error variances of the instantaneous response
model, while the unit triangular matrix is in the second through the fifth rows. See
Output 10.1.1 on page 294. Here is the code:

misw = 1;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw) print=1;
print ev;

Output 10.1.1. Error Variance and Unit Triangular Matrix
VAR Estimation and Variance Decomposition

EV

295.21042 190.94664 59.361516
1 0 0

-0.02239 1 0
-0.256341 -0.500803 1

In Output 10.1.2 on page 294 and Output 10.1.3 on page 294, you can see the rela-
tionship between the instantaneous response model and the VAR model. The VAR
coefficients are computed as Ai = LA∗

i (i = 0, 1, 2, 3), where A∗
i is a coefficient

matrix of the instantaneous model. For example, you can verify this result by using
the first lag coefficient matrix (A1).

 0.886 0.340 −0.014
0.168 1.050 0.107
0.089 0.459 0.447

 =

 1.000 0 0
−0.022 1.000 0
−0.256 −0.501 1.000

−1 0.886 0.340 −0.014
0.149 1.043 0.107

−0.222 −0.154 0.397

Output 10.1.2. VAR Estimates

ARCOEF

0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
-0.059195 -0.298777 0.1629818
0.1128625 -0.044039 -0.088186
0.1684932 -0.025847 -0.025671
0.0637227 -0.196504 0.0695746
-0.226559 0.0532467 -0.099808
-0.303697 -0.139022 0.2576405

Example 10.1. VAR Estimation and Variance Decomposition � 295

Output 10.1.3. Instantaneous Response Model Estimates
ARCOEF

0.885593 0.340174 -0.014398
0.148624 1.042645 0.107386
-0.222272 -0.154018 0.39744
-0.059195 -0.298777 0.162982
0.114188 -0.037349 -0.091835
0.127145 0.072796 -0.023287
0.063723 -0.196504 0.069575
-0.227986 0.057646 -0.101366
-0.20657 -0.115316 0.28979

When the VAR estimates are available, you can forecast the future values by using the
TSPRED call. As a default, the one-step predictions are produced until the START=
point is reached. The NPRED=h option specifies how far you want to predict. The
prediction error covariance matrix MSE contains h mean square error matrices. The
output matrix IMPULSE contains the estimate of the coefficients (Ψi) of the infinite
MA process. The following IML code estimates the VAR(3) model and performs
10-step-ahead prediction.

mdel = 1;
maice = 0;
misw = 0;
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3

opt=(mdel || maice || misw);
call tspred(forecast,impulse,mse,y,arcoef,nar,0,ev)

npred=10 start=nrow(y) constant=mdel;
print impulse;

The lagged effects of a unit increase in the error disturbances are included in the
matrix IMPULSE. For example:

∂yt+2

∂ε′t
=

 0.781100 0.353140 0.180211
0.448501 1.165474 0.069731
0.364611 0.692111 0.222342

Output 10.1.4 on page 295 displays the first 15 rows of the matrix IMPULSE.

296 � Chapter 10. Time Series Analysis and Examples

Output 10.1.4. Moving-Average Coefficients: MA(0)−MA(4)
IMPULSE

1 0 0
0 1 0
0 0 1

0.8855926 0.3401741 -0.014398
0.1684523 1.0502619 0.107064
0.0891034 0.4591573 0.4473672
0.7810999 0.3531397 0.1802109
0.4485013 1.1654737 0.0697311
0.3646106 0.6921108 0.2223425
0.8145483 0.243637 0.2914643
0.4997732 1.3625363 -0.018202
0.2775237 0.7555914 0.3885065
0.7960884 0.2593068 0.260239
0.5275069 1.4134792 0.0335483
0.267452 0.8659426 0.3190203

In addition, you can compute the lagged response on the one-unit increase in the
orthogonalized disturbances ε∗t .

∂yt+m

∂ε∗jt
=
∂E(yt+m|yjt, yj−1,t, . . . ,Xt)

∂yjt
= ΨmLj

When the error matrix EV is obtained from the instantaneous response model, you
need to convert the matrix IMPULSE. The first 15 rows of the matrix ORTH–IMP
are shown in Output 10.1.5 on page 296. Note that the matrix constructed from the
last three rows of EV become the matrix L−1. Here is the code:

call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3
opt={1 0 1};

lmtx = inv(ev[2:nrow(ev),]);
orth_imp = impulse * lmtx;
print orth_imp;

Output 10.1.5. Transformed Moving-Average Coefficients
ORTH_IMP

1 0 0
0.0223902 1 0
0.267554 0.5008031 1
0.889357 0.3329638 -0.014398
0.2206132 1.1038799 0.107064
0.219079 0.6832001 0.4473672
0.8372229 0.4433899 0.1802109
0.4932533 1.2003953 0.0697311
0.4395957 0.8034606 0.2223425
0.8979858 0.3896033 0.2914643
0.5254106 1.3534206 -0.018202
0.398388 0.9501566 0.3885065
0.8715223 0.3896353 0.260239
0.5681309 1.4302804 0.0335483
0.3721958 1.025709 0.3190203

Example 10.1. VAR Estimation and Variance Decomposition � 297

You can verify the result for the case of

∂yt+2

∂ε∗2t

=
∂E(yt+2|y2t, y1t, . . . ,Xt)

∂y2t
= Ψ2L2

using the simple computation 0.443390
1.200395
0.803461

 =

 0.781100 0.353140 0.180211
0.448501 1.165474 0.069731
0.364611 0.692111 0.222342

 0.000000
1.000000
0.500803

The contribution of the ith orthogonalized innovation to the mean square error matrix
of the 10-step forecast is computed by using the formula

dii[LiL′i + Ψ1LiL′iΨ
′
1 + · · ·+ Ψ9LiL′iΨ

′
9]

In Output 10.1.6 on page 297, diagonal elements of each decomposed MSE matrix
are displayed as the matrix CONTRIB as well as those of the MSE matrix (VAR).
Here is the code:

mse1 = j(3,3,0);
mse2 = j(3,3,0);
mse3 = j(3,3,0);
do i = 1 to 10;

psi = impulse[(i-1)*3+1:3*i,];
mse1 = mse1 + psi*lmtx[,1]*lmtx[,1]‘*psi‘;
mse2 = mse2 + psi*lmtx[,2]*lmtx[,2]‘*psi‘;
mse3 = mse3 + psi*lmtx[,3]*lmtx[,3]‘*psi‘;

end;
mse1 = ev[1,1]#mse1;
mse2 = ev[1,2]#mse2;
mse3 = ev[1,3]#mse3;
contrib = vecdiag(mse1) || vecdiag(mse2) || vecdiag(mse3);
var = vecdiag(mse[28:30,]);
print contrib var;

Output 10.1.6. Orthogonal Innovation Contribution
CONTRIB VAR

1197.9131 116.68096 11.003194 2163.7104
263.12088 1439.1551 1.0555626 4573.9809
180.09836 633.55931 89.177905 2466.506

The investment innovation contribution to its own variable is 1879.3774, and the
income innovation contribution to the consumption expenditure is 1916.1676. It is
easy to understand the contribution of innovations in the ith variable to MSE when
you compute the innovation account. In Output 10.1.7 on page 298, innovations in
the first variable (investment) explain 20.45% of the error variance of the second

298 � Chapter 10. Time Series Analysis and Examples

variable (income), while the innovations in the second variable explain 79.5% of its
own error variance. It is straightforward to construct the general multistep forecast
error variance decomposition. Here is the code:

account = contrib * 100 / (var@j(1,3,1));
print account;

Output 10.1.7. Innovation Account
ACCOUNT

55.363835 5.3926331 0.5085336
5.7525574 31.463951 0.0230775
7.3017604 25.68651 3.615556

Kalman Filter Subroutines
This section describes a collection of Kalman filtering and smoothing subroutines for
time series analysis; immediately following are three examples using Kalman filtering
subroutines. The state space model is a method for analyzing a wide range of time
series models. When the time series is represented by the state space model (SSM),
the Kalman filter is used for filtering, prediction, and smoothing of the state vector.
The state space model is composed of the measurement and transition equations.

The following Kalman filtering and smoothing subroutines are supported:

KALCVF performs covariance filtering and prediction.

KALCVS performs fixed-interval smoothing.

KALDFF performs diffuse covariance filtering and prediction.

KALDFS performs diffuse fixed-interval smoothing.

Getting Started

The measurement (or observation) equation can be written

yt = bt + Htzt + εt

where bt is an Ny × 1 vector, Ht is an Ny ×Nz matrix, the sequence of observation
noise εt is independent, zt is an Nz × 1 state vector, and yt is an Ny × 1 observed
vector.

The transition (or state) equation is denoted as a first-order Markov process of the
state vector.

zt+1 = at + Ftzt + ηt

Getting Started � 299

where at is an Nz × 1 vector, Ft is an Nz ×Nz transition matrix, and the sequence
of transition noise ηt is independent. This equation is often called a shifted transition
equation because the state vector is shifted forward one time period. The transition
equation can also be denoted by using an alternative specification

zt = at + Ftzt−1 + ηt

There is no real difference between the shifted transition equation and this alternative
equation if the observation noise and transition equation noise are uncorrelated—that
is, E(ηtε

′
t) = 0. It is assumed that

E(ηtη
′
s) = Vtδts

E(εtε′s) = Rtδts

E(ηtε
′
s) = Gtδts

where

δts =
{

1 if t = s
0 if t 6= s

De Jong (1991a) proposed a diffuse Kalman filter that can handle an arbitrarily large
initial state covariance matrix. The diffuse initial state assumption is reasonable if
you encounter the case of parameter uncertainty or SSM nonstationarity. The SSM
of the diffuse Kalman filter is written

yt = Xtβ + Htzt + εt

zt+1 = Wtβ + Ftzt + ηt

z0 = a + Aδ

β = b + Bδ

where δ is a random variable with a mean of µ and a variance of σ2Σ. When Σ →∞,
the SSM is said to be diffuse.

The KALCVF call computes the one-step prediction zt+1|t and the filtered estimate
zt|t, together with their covariance matrices Pt+1|t and Pt|t, using forward recur-
sions. You can obtain the k-step prediction zt+k|t and its covariance matrix Pt+k|t
with the KALCVF call. The KALCVS call uses backward recursions to compute the
smoothed estimate zt|T and its covariance matrix Pt|T when there are T observations
in the complete data.

The KALDFF call produces one-step prediction of the state and the unobserved ran-
dom vector δ as well as their covariance matrices. The KALDFS call computes the
smoothed estimate zt|T and its covariance matrix Pt|T .

300 � Chapter 10. Time Series Analysis and Examples

Syntax
CALL KALCVF(pred, vpred, filt, vfilt, data, lead, a, f , b, h,

var <, z0, vz0>);

CALL KALCVS(sm, vsm, data, a, f , b, h, var, pred, vpred <,un, vun>);

CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var,

intd, coefd <, n0, at, mt, qt>);

CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at,

mt, s2 <, un, vun>);

Example 10.2. Kalman Filtering: Likelihood Function
Evaluation

In the following example, the log-likelihood function of the SSM is computed by
using prediction error decomposition. The annual real GNP series, yt, can be decom-
posed as

yt = µt + εt

where µt is a trend component and εt is a white noise error with εt ∼ (0, σ2
ε). Refer

to Nelson and Plosser (1982) for more details about these data. The trend component
is assumed to be generated from the following stochastic equations:

µt = µt−1 + βt−1 + η1t

βt = βt−1 + η2t

where η1t and η2t are independent white noise disturbances with η1t ∼ (0, σ2
η1

) and
η2t ∼ (0, σ2

η2
).

It is straightforward to construct the SSM of the real GNP series.

yt = Hzt + εt

zt = Fzt−1 + ηt

where

H = (1, 0)

F =
[

1 1
0 1

]
zt = (µt, βt)′

ηt = (η1t, η2t)′

Var
([

ηt

εt

])
=

 σ2
η1 0 0
0 σ2

η2 0
0 0 σ2

ε

Example 10.2. Kalman Filtering: Likelihood Function Evaluation � 301

When the observation noise εt is normally distributed, the average log-likelihood
function of the SSM is

` =
1
T

T∑
t=1

`t

`t = −Ny

2
log(2π)− 1

2
log(|Ct|)−

1
2
ε̂′tC

−1
t ε̂t

where Ct is the mean square error matrix of the prediction error ε̂t, such that Ct =
HPt|t−1H′ + Rt.

The LIK module computes the average log-likelihood function. First, the average
log-likelihood function is computed by using the default initial values: Z0=0 and
VZ0=106I. The second call of module LIK produces the average log-likelihood func-
tion with the given initial conditions: Z0=0 and VZ0=10−3I. You can notice a sizable
difference between the uncertain initial condition (VZ0=106I) and the almost deter-
ministic initial condition (VZ0=10−3I) in Output 10.2.1.

Finally, the first 15 observations of one-step predictions, filtered values, and real GNP
series are produced under the moderate initial condition (VZ0=10I). The data are the
annual real GNP for the years 1909 to 1969. Here is the code:

title ’Likelihood Evaluation of SSM’;
title2 ’DATA: Annual Real GNP 1909-1969’;
data gnp;

input y @@;
datalines;

116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3
135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5
179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2
141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2
263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7
324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1
452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1
617.8 658.1 675.2 706.6 724.7
;

proc iml;
start lik(y,a,b,f,h,var,z0,vz0);

nz = nrow(f);
n = nrow(y);
k = ncol(y);
const = k*log(8*atan(1));
if (sum(z0 = .) | sum(vz0 = .)) then

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
else

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

302 � Chapter 10. Time Series Analysis and Examples

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + var[nz+1:nz+k,nz+1:nz+k];
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(-.5*const-.5*(sum1+sum2)/n);

finish;

start main;
use gnp;
read all var {y};

f = {1 1, 0 1};
h = {1 0};
a = j(nrow(f),1,0);
b = j(nrow(h),1,0);
var = diag(j(1,nrow(f)+ncol(y),1e-3));
/*-- initial values are computed --*/
z0 = j(1,nrow(f),.);
vz0 = j(nrow(f),nrow(f),.);
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’No initial values are given’, logl;
/*-- initial values are given --*/
z0 = j(1,nrow(f),0);
vz0 = 1e-3#i(nrow(f));
logl = lik(y,a,b,f,h,var,z0,vz0);
print ’Initial values are given’, logl;
z0 = j(1,nrow(f),0);
vz0 = 10#i(nrow(f));
call kalcvf(pred,vpred,filt,vfilt,y,1,a,f,b,h,var,z0,vz0);
print y pred filt;

finish;
run;

Output 10.2.1. Average Log Likelihood of SSM
Likelihood Evaluation of SSM

DATA: Annual Real GNP 1909-1969

No initial values are given
LOGL

-26314.66

Initial values are given
LOGL

-91884.41

Output 10.2.2 shows the observed data, the predicted state vectors, and the filtered
state vectors for the first 16 observations.

Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm � 303

Output 10.2.2. Filtering and One-Step Prediction
Y PRED FILT

116.8 0 0 116.78832 0
120.1 116.78832 0 120.09967 3.3106857
123.2 123.41035 3.3106857 123.22338 3.1938303
130.2 126.41721 3.1938303 129.59203 4.8825531
131.4 134.47459 4.8825531 131.93806 3.5758561
125.6 135.51391 3.5758561 127.36247 -0.610017
124.5 126.75246 -0.610017 124.90123 -1.560708
134.3 123.34052 -1.560708 132.34754 3.0651076
135.2 135.41265 3.0651076 135.23788 2.9753526
151.8 138.21324 2.9753526 149.37947 8.7100967
146.4 158.08957 8.7100967 148.48254 3.7761324
139 152.25867 3.7761324 141.36208 -1.82012

127.8 139.54196 -1.82012 129.89187 -6.776195
147 123.11568 -6.776195 142.74492 3.3049584

165.9 146.04988 3.3049584 162.36363 11.683345
165.5 174.04698 11.683345 167.02267 8.075817

Example 10.3. Kalman Filtering: SSM Estimation With the EM
Algorithm

The following example estimates the normal SSM of the mink-muskrat data by using
the EM algorithm. The mink-muskrat series are detrended. Refer to Harvey (1989)
for details of this data set. Since this EM algorithm uses filtering and smoothing, you
can learn how to use the KALCVF and KALCVS calls to analyze the data. Consider
the bivariate SSM:

yt = Hzt + εt

zt = Fzt−1 + ηt

where H is a 2× 2 identity matrix, the observation noise has a time-invariant covari-
ance matrix R, and the covariance matrix of the transition equation is also assumed
to be time invariant. The initial state z0 has mean µ and covariance Σ. For estimation,
the Σ matrix is fixed as[

0.1 0.0
0.0 0.1

]
while the mean vector µ is updated by the smoothing procedure such that µ̂ = z0|T .
Note that this estimation requires an extra smoothing step since the usual smoothing
procedure does not produce zT |0.

The EM algorithm maximizes the expected log-likelihood function given the current
parameter estimates. In practice, the log-likelihood function of the normal SSM is
evaluated while the parameters are updated by using the M-step of the EM maxi-
mization

Fi+1 = St(1)[St−1(0)]−1

Vi+1 =
1
T

(
St(0)− St(0)[St−1(0)]−1S′t(1)

)

304 � Chapter 10. Time Series Analysis and Examples

Ri+1 =
1
T

T∑
t=1

[
(yt −Hzt|T)(yt −Hzt|T)′ + HPt|TH′]

µi+1 = z0|T

where the index i represents the current iteration number, and

St(0) =
T∑

t=1

(Pt|T + zt|Tz′t|T),

St(1) =
T∑

t=1

(Pt,t−1|T + zt|Tz′t−1|T)

It is necessary to compute the value of Pt,t−1|T recursively such that

Pt−1,t−2|T = Pt−1|t−1P
∗′
t−2 + P∗

t−1(Pt,t−1|T − FPt−1|t−1)P
∗′
t−2

where P∗
t = Pt|tF′P−

t+1|t and the initial value PT,T−1|T is derived by using the
formula

PT,T−1|T =
[
I−Pt|t−1H

′(HPt|t−1H
′ + R)H

]
FPT−1|T−1

Note that the initial value of the state vector is updated for each iteration

z1|0 = Fµi

P1|0 = FiΣFi′ + Vi

The objective function value is computed as −2` in the IML module LIK. The log-
likelihood function is written

` = −1
2

T∑
t=1

log(|Ct|)−
1
2

T∑
t=1

(yt −Hzt|t−1)C
−1
t (yt −Hzt|t−1)

′

where Ct = HPt|t−1H′ + R.

The iteration history is shown in Output 10.3.1. As shown in Output 10.3.2, the
eigenvalues of F are within the unit circle, which indicates that the SSM is station-
ary. However, the muskrat series (Y1) is reported to be difference stationary. The
estimated parameters are almost identical to those of the VAR(1) estimates. Refer to
Harvey (1989, p. 469). Finally, multistep forecasts of yt are computed by using the
KALCVF call. Here is the code:

call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);

The predicted values of the state vector zt and their standard errors are shown in
Output 10.3.3. Here is the code:

Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm � 305

title ’SSM Estimation using EM Algorithm’;
data one;

input y1 y2 @@;
datalines;

. . . data lines omitted . . .
;

proc iml;
start lik(y,pred,vpred,h,rt);

n = nrow(y);
nz = ncol(h);
et = y - pred*h‘;
sum1 = 0;
sum2 = 0;
do i = 1 to n;

vpred_i = vpred[(i-1)*nz+1:i*nz,];
et_i = et[i,];
ft = h*vpred_i*h‘ + rt;
sum1 = sum1 + log(det(ft));
sum2 = sum2 + et_i*inv(ft)*et_i‘;

end;
return(sum1+sum2);

finish;

start main;
use one;
read all into y var {y1 y2};
/*-- mean adjust series --*/
t = nrow(y);
ny = ncol(y);
nz = ny;
f = i(nz);
h = i(ny);

/*-- observation noise variance is diagonal --*/
rt = 1e-5#i(ny);

/*-- transition noise variance --*/
vt = .1#i(nz);
a = j(nz,1,0);
b = j(ny,1,0);
myu = j(nz,1,0);
sigma = .1#i(nz);
converge = 0;
logl0 = 0.0;
do iter = 1 to 100 while(converge = 0);

/*--- construct big cov matrix --*/
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;

/*-- filtering to get one-step prediction and filtered value --*/
call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);

306 � Chapter 10. Time Series Analysis and Examples

/*-- smoothing using one-step prediction values --*/
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

/*-- compute likelihood values --*/
logl = lik(y,pred,vpred,h,rt);

/*-- store old parameters and function values --*/
myu0 = myu;
f0 = f;
vt0 = vt;
rt0 = rt;
diflog = logl - logl0;
logl0 = logl;
itermat = itermat // (iter || logl0 || shape(f0,1) || myu0‘);

/*-- obtain P*(t) to get P_T_0 and Z_T_0 --*/
/*-- these values are not usually needed --*/
/*-- See Harvey (1989 p154) or Shumway (1988, p177) --*/
jt1 = sigma * f‘ * inv(vpred[1:nz,]);
p_t_0 = sigma + jt1*(vsm[1:nz,] - vpred[1:nz,])*jt1‘;
z_t_0 = myu + jt1*(sm[1,]‘ - pred[1,]‘);
p_t1_t = vpred[(t-1)*nz+1:t*nz,];
p_t1_t1 = vfilt[(t-2)*nz+1:(t-1)*nz,];
kt = p_t1_t*h‘*inv(h*p_t1_t*h‘+rt);

/*-- obtain P_T_TT1. See Shumway (1988, p180) --*/
p_t_ii1 = (i(nz)-kt*h)*f*p_t1_t1;
st0 = vsm[(t-1)*nz+1:t*nz,] + sm[t,]‘*sm[t,];
st1 = p_t_ii1 + sm[t,]‘*sm[t-1,];
st00 = p_t_0 + z_t_0 * z_t_0‘;
cov = (y[t,]‘ - h*sm[t,]‘) * (y[t,]‘ - h*sm[t,]‘)‘ +

h*vsm[(t-1)*nz+1:t*nz,]*h‘;
do i = t to 2 by -1;

p_i1_i1 = vfilt[(i-2)*nz+1:(i-1)*nz,];
p_i1_i = vpred[(i-1)*nz+1:i*nz,];
jt1 = p_i1_i1 * f‘ * inv(p_i1_i);
p_i1_i = vpred[(i-2)*nz+1:(i-1)*nz,];
if (i > 2) then

p_i2_i2 = vfilt[(i-3)*nz+1:(i-2)*nz,];
else

p_i2_i2 = sigma;
jt2 = p_i2_i2 * f‘ * inv(p_i1_i);
p_t_i1i2 = p_i1_i1*jt2‘ + jt1*(p_t_ii1 - f*p_i1_i1)*jt2‘;
p_t_ii1 = p_t_i1i2;
temp = vsm[(i-2)*nz+1:(i-1)*nz,];
sm1 = sm[i-1,]‘;
st0 = st0 + (temp + sm1 * sm1‘);
if (i > 2) then

st1 = st1 + (p_t_ii1 + sm1 * sm[i-2,]);
else st1 = st1 + (p_t_ii1 + sm1 * z_t_0‘);
st00 = st00 + (temp + sm1 * sm1‘);
cov = cov + (h * temp * h‘ +

(y[i-1,]‘ - h * sm1)*(y[i-1,]‘ - h * sm1)‘);
end;

/*-- M-step: update the parameters --*/
myu = z_t_0;
f = st1 * inv(st00);

Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm � 307

vt = (st0 - st1 * inv(st00) * st1‘)/t;
rt = cov / t;

/*-- check convergence --*/
if (max(abs((myu - myu0)/(myu0+1e-6))) < 1e-2 &

max(abs((f - f0)/(f0+1e-6))) < 1e-2 &
max(abs((vt - vt0)/(vt0+1e-6))) < 1e-2 &
max(abs((rt - rt0)/(rt0+1e-6))) < 1e-2 &
abs((diflog)/(logl0+1e-6)) < 1e-3) then

converge = 1;
end;

reset noname;
colnm = {’Iter’ ’-2*log L’ ’F11’ ’F12’ ’F21’ ’F22’

’MYU11’ ’MYU22’};
print itermat[colname=colnm format=8.4];
eval = teigval(f0);
colnm = {’Real’ ’Imag’ ’MOD’};
eval = eval || sqrt((eval#eval)[,+]);
print eval[colname=colnm];
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);

/*-- initial values are changed --*/
z0 = myu‘ * f‘;
vz0 = f * sigma * f‘ + vt;
free itermat;

/*-- multistep prediction --*/
call kalcvf(pred,vpred,filt,vfilt,y,15,a,f,b,h,var,z0,vz0);
do i = 1 to 15;

itermat = itermat // (i || pred[t+i,] ||
sqrt(vecdiag(vpred[(t+i-1)*nz+1:(t+i)*nz,]))‘);

end;
colnm = {’n-Step’ ’Z1_T_n’ ’Z2_T_n’ ’SE_Z1’ ’SE_Z2’};
print itermat[colname=colnm];

finish;
run;

Output 10.3.1. Iteration History

SSM Estimation using EM Algorithm

Iter -2*log L F11 F12 F21 F22 MYU11 MYU22

1.0000 -154.010 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
2.0000 -237.962 0.7952 -0.6473 0.3263 0.5143 0.0530 0.0840
3.0000 -238.083 0.7967 -0.6514 0.3259 0.5142 0.1372 0.0977
4.0000 -238.126 0.7966 -0.6517 0.3259 0.5139 0.1853 0.1159
5.0000 -238.143 0.7964 -0.6519 0.3257 0.5138 0.2143 0.1304
6.0000 -238.151 0.7963 -0.6520 0.3255 0.5136 0.2324 0.1405
7.0000 -238.153 0.7962 -0.6520 0.3254 0.5135 0.2438 0.1473
8.0000 -238.155 0.7962 -0.6521 0.3253 0.5135 0.2511 0.1518
9.0000 -238.155 0.7962 -0.6521 0.3253 0.5134 0.2558 0.1546
10.0000 -238.155 0.7961 -0.6521 0.3253 0.5134 0.2588 0.1565

308 � Chapter 10. Time Series Analysis and Examples

Output 10.3.2. Eigenvalues of F Matrix
Real Imag MOD

0.6547534 0.438317 0.7879237
0.6547534 -0.438317 0.7879237

Output 10.3.3. Multistep Prediction
n-Step Z1_T_n Z2_T_n SE_Z1 SE_Z2

1 -0.055792 -0.587049 0.2437666 0.237074
2 0.3384325 -0.319505 0.3140478 0.290662
3 0.4778022 -0.053949 0.3669731 0.3104052
4 0.4155731 0.1276996 0.4021048 0.3218256
5 0.2475671 0.2007098 0.419699 0.3319293
6 0.0661993 0.1835492 0.4268943 0.3396153
7 -0.067001 0.1157541 0.430752 0.3438409
8 -0.128831 0.0376316 0.4341532 0.3456312
9 -0.127107 -0.022581 0.4369411 0.3465325
10 -0.086466 -0.052931 0.4385978 0.3473038
11 -0.034319 -0.055293 0.4393282 0.3479612
12 0.0087379 -0.039546 0.4396666 0.3483717
13 0.0327466 -0.017459 0.439936 0.3485586
14 0.0374564 0.0016876 0.4401753 0.3486415
15 0.0287193 0.0130482 0.440335 0.3487034

Example 10.4. Diffuse Kalman Filtering

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call
KALDFF. The transition equation is generated by using the following formula:

[
z1t

z2t

]
=
[

1.5 −0.5
1.0 0.0

] [
z1t−1

z2t−1

]
+
[
η1t

0

]

where η1t ∼ N(0, 1). The transition equation is nonstationary since the transition
matrix F has one unit root. Here is the code:

proc iml;
z_1 = 0; z_2 = 0;
do i = 1 to 30;

z = 1.5*z_1 - .5*z_2 + rannor(1234567);
z_2 = z_1;
z_1 = z;
x = z + .8*rannor(1234578);
if (i > 10) then y = y // x;

end;

The KALDFF and KALCVF calls produce one-step prediction, and the result shows
that two predictions coincide after the fifth observation (Output 10.4.1). Here is the
code:

Example 10.4. Diffuse Kalman Filtering � 309

t = nrow(y);
h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
nb = nz;
nd = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = (vt || j(nz,ny,0)) //

(j(ny,nz,0) || rt);
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,

coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;

Output 10.4.1. Diffuse Kalman Filtering
Diffuse Kalman Filtering

KALCVF_P KALDFF_P

0 0 0 0
1.441911 0.961274 1.1214871 0.9612746

-0.882128 -0.267663 -0.882138 -0.267667
-0.723156 -0.527704 -0.723158 -0.527706
1.2964969 0.871659 1.2964968 0.8716585
-0.035692 0.1379633 -0.035692 0.1379633
-2.698135 -1.967344 -2.698135 -1.967344
-5.010039 -4.158022 -5.010039 -4.158022
-9.048134 -7.719107 -9.048134 -7.719107
-8.993153 -8.508513 -8.993153 -8.508513
-11.16619 -10.44119 -11.16619 -10.44119
-10.42932 -10.34166 -10.42932 -10.34166
-8.331091 -8.822777 -8.331091 -8.822777
-9.578258 -9.450848 -9.578258 -9.450848
-6.526855 -7.241927 -6.526855 -7.241927
-5.218651 -5.813854 -5.218651 -5.813854
-5.01855 -5.291777 -5.01855 -5.291777
-6.5699 -6.284522 -6.5699 -6.284522

-4.613301 -4.995434 -4.613301 -4.995434
-5.057926 -5.09007 -5.057926 -5.09007

310 � Chapter 10. Time Series Analysis and Examples

The likelihood function for the diffuse Kalman filter under the finite initial covariance
matrix Σδ is written

λ(y) = −1
2
[y# log(σ̂2) +

T∑
t=1

log(|Dt|)]

where y(#) is the dimension of the matrix (y′1, · · · ,y′T)′. The likelihood function
for the diffuse Kalman filter under the diffuse initial covariance matrix (Σδ → ∞)
is computed as λ(y) − 1

2 log(|S|), where the S matrix is the upper Nδ × Nδ matrix
of Qt. Output 10.4.2 on page 310 displays the log likelihood and the diffuse log
likelihood. Here is the code:

d = 0;
do i = 1 to t;

dt = h*mt[(i-1)*nz+1:i*nz,]*h‘ + rt;
d = d + log(det(dt));

end;
s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
log_l = -(t*log(s2) + d)/2;
dff_logl = log_l - log(det(s))/2;
print log_l dff_logl;

Output 10.4.2. Diffuse Likelihood Function
Diffuse Kalman Filtering

LOG_L

Log L -11.42547
DFF_LOGL

Diffuse Log L -9.457596

Vector Time Series Analysis Subroutines
Vector time series analysis involves more than one dependent time series variable,
with possible interrelations or feedback between the dependent variables.

The VARMASIM function generates various time series from the underlying
VARMA models. Simulations of time series with known VARMA structure offer
learning and developing vector time series analysis skills.

The VARMACOV subroutine provides the pattern of the autocovariance function of
VARMA models and helps to identify and fit a proper model.

The VARMALIK subroutine provides the log-likelihood of a VARMA model and
helps to obtain estimates of the parameters of a regression model.

The following subroutines are supported:

Stationary VAR Process � 311

VARMACOV computes the theoretical cross covariances for a multivariate
ARMA model

VARMALIK evaluates the log-likelihood function for a multivariate ARMA
model

VARMASIM generates a multivariate ARMA time series

VNORMAL generates a multivariate normal random series

VTSROOT computes the characteristic roots of a multivariate ARMA model

Getting Started

Stationary VAR Process

Generate the process following the first-order stationary vector autoregressive model
with zero mean

yt =
(

1.2 −0.5
0.6 0.3

)
yt−1 + εt with Σ =

(
1.0 0.5
0.5 1.25

)

The following statements compute the roots of characteristic function, compute the
five lags of cross-covariance matrices, generate 100 observations simulated data, and
evaluate the log-likelihood function of the VAR(1) model:

proc iml;
/* Stationary VAR(1) model */
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
call varmasim(yt,phi) sigma = sig n = 100 seed=3243; print yt;
call vtsroot(root,phi); print root;
call varmacov(crosscov,phi) sigma = sig lag = 5;
lag = {’0’,’’,’1’,’’,’2’,’’,’3’,’’,’4’,’’,’5’,’’};
print lag crosscov;
call varmalik(lnl,yt,phi) sigma = sig; print lnl;

312 � Chapter 10. Time Series Analysis and Examples

Figure 10.28. Plot of Generated VAR(1) Process (VARMASIM)

The stationary VAR(1) processes show in Figure 10.28.

ROOT

0.75 0.3122499 0.8124038 0.3945069 22.603583
0.75 -0.31225 0.8124038 -0.394507 -22.60358

Figure 10.29. Roots of VAR(1) Model (VTSROOT)

In Figure 10.29, the first column is the real part (R) of the root of the characteristic
function and the second one is the imaginary part (I). The third column is the mod-
ulus, the squared root of R2 + I2. The fourth column is Tan−1(I/R) and the last
one is the degree. Since moduli are less than one from the third column, the series is
obviously stationary.

LAG CROSSCOV

0 5.3934173 3.8597124
3.8597124 5.0342051

1 4.5422445 4.3939641
2.1145523 3.826089

2 3.2537114 4.0435359
0.6244183 2.4165581

3 1.8826857 3.1652876
-0.458977 1.0996184

4 0.676579 2.0791977
-1.100582 0.0544993

5 -0.227704 1.0297067
-1.347948 -0.643999

Figure 10.30. Cross-covariance Matrices of VAR(1) Model (VARMACOV)

Nonstationary VAR Process � 313

In each matrix in Figure 10.30, the diagonal elements are corresponding to the autoco-
variance functions of each time series. The off-diagonal elements are corresponding
to the cross-covariance functions of between two series.

LNL

-113.4708
2.5058678
224.43567

Figure 10.31. Log-Likelihood function of VAR(1) Model (VARMALIK)

In Figure 10.31, the first row is the value of log-likelihood function; the second row
is the sum of log determinant of the innovation variance; the last row is the weighted
sum of squares of residuals.

Nonstationary VAR Process

Generate the process following the error correction model with a cointegrated rank
of 1:

(1−B)yt =
(
−0.4

0.1

)
(1− 2)yt−1 + εt

with

Σ =
(

100 0
0 100

)
and y0 = 0

The following statements compute the roots of characteristic function and generate
simulated data.

proc iml;
/* Nonstationary model */
sig = 100*i(2);
phi = {0.6 0.8, 0.1 0.8};
call varmasim(yt,phi) sigma = sig n = 100 seed=1324;
call vtsroot(root,phi); print root;
print yt;

314 � Chapter 10. Time Series Analysis and Examples

Figure 10.32. Plot of Generated Nonstationary Vector Process (VARMASIM)

The nonstationary processes are shown in Figure 10.32 and have a comovement.

ROOT

1 0 1 0 0
0.4 0 0.4 0 0

Figure 10.33. Roots of Nonstationary VAR(1) Model (VTSROOT)

In Figure 10.33, the first column is the real part (R) of the root of the characteristic
function and the second one is the imaginary part (I). The third column is the modu-
lus, the squared root of R2 + I2. The fourth column is Tan−1(I/R) and the last one
is the degree. Since the moduli are greater than equal to one from the third column,
the series is obviously nonstationary.

Syntax

CALL VARMACOV(cov, phi, theta, sigma <, p, q, lag>);

CALL VARMALIK(lnl, series, phi, theta, sigma <, p, q, opt>);

CALL VARMASIM(series, phi, theta, mu, sigma, n <, p, q, initial, seed>);

CALL VNORMAL(series, mu, sigma, n <, seed>);

CALL VTSROOT(root, phi, theta<, p, q>);

Getting Started � 315

Fractionally Integrated Time Series Analysis
This section describes subroutines related to fractionally integrated time series anal-
ysis. The phenomenon of long memory can be observed in hydrology, finance, eco-
nomics, and so on. Unlike with a stationary process, the correlations between obser-
vations of a long memory series are slowly decaying to zero.

The following subroutines are supported:

FARMACOV computes the autocovariance function for a fractionally integrated
ARMA model.

FARMAFIT estimates the parameters for a fractionally integrated ARMA
model.

FARMALIK computes the log-likelihood function for a fractionally integrated
ARMA model.

FARMASIM generates a fractionally integrated ARMA process.

FDIF computes a fractionally differenced process.

Getting Started

The fractional differencing enables the degree of differencing d to take any real value
rather than being restricted to integer values. The fractionally differenced processes
are capable of modeling long-term persistence. The process

(1−B)dyt = εt

is known as a fractional Gaussian noise process or an ARFIMA(0, d, 0) process,
where d ∈ (−1, 1)\{0}, εt is a white noise process with mean zero and variance
σ2

ε , and B is the backshift operator such that Bjyt = yt−j . The extension of
an ARFIMA(0, d, 0) model combines fractional differencing with an ARMA(p, q)
model, known as an ARFIMA(p, d, q) model.

Consider an ARFIMA(0, 0.4, 0) represented as (1 − B)0.4yt = εt where εt ∼
iid N(0, 2). With the following statements you can

• generate the simulated 300 observations data

• obtain the fractionally differenced data

• compute the autocovariance function

• compute the log-likelihood function

• fit a fractionally integrated time series model to the data

proc iml;
/* ARFIMA(0,0.4,0) */
lag = (0:12)‘;

316 � Chapter 10. Time Series Analysis and Examples

call farmacov(autocov_D_IS_04, 0.4);
call farmacov(D_IS_005, 0.05);
print lag autocov_D_IS_04 D_IS_005;
d = 0.4;
call farmasim(yt, d) n = 300 sigma = 2 seed=5345; print yt;
call fdif(zt, yt, d); print zt;
call farmalik(lnl, yt, d); print lnl;
call farmafit(d, ar, ma, sigma, yt); print d sigma;

Figure 10.34. Plot of Generated ARFIMA(0,0.4,0) Process (FARMASIM)

The FARMASIM function generates the data shown in Figure 10.34.

Getting Started � 317

Figure 10.35. Plot of Fractionally Differenced Process (FDIF)

The FDIF function creates the fractionally differenced process. Figure 10.35 shows
a white noise series.

LAG AUTOCOV_D_IS_04 D_IS_005

0 2.0700983 1.0044485
1 1.3800656 0.0528657
2 1.2075574 0.0284662
3 1.1146683 0.0197816
4 1.0527423 0.0152744
5 1.0069709 0.0124972
6 0.9710077 0.0106069
7 0.9415832 0.0092333
8 0.9168047 0.008188
9 0.8954836 0.0073647
10 0.8768277 0.0066985
11 0.8602838 0.006148
12 0.8454513 0.0056849

Figure 10.36. Autocovariance Functions of ARFIMA(0,0.4,0) and
ARFIMA(0,0.05,0) Models (FARMACOV)

The first column is the autocovariance function of the ARFIMA(0,0.4,0) model, and
the second column is the autocovariance function of the ARFIMA(0,0.05,0) model.
The first column decays to zero more slowly than the second column.

318 � Chapter 10. Time Series Analysis and Examples

LNL

-101.2222
.
.

Figure 10.37. Log-Likelihood Function of ARFIMA(0,0.4,0) Model (FARMALIK)

The first row value is the log-likelihood function of the ARFIMA(0,0.4,0) model.
Since the default option of the estimates method is the conditional sum of squares,
the last two rows of Figure 10.37 do not have the values since the default estimation
method is used.

D SIGMA

0.386507 1.9631754

Figure 10.38. Parameter Estimation of ARFIMA(0,0.4,0) Model (FARMAFIT)

The final estimates of the parameters are d = 0.387 and σ2 = 1.96, while the true
values of the data generating process are d = 0.4 and σ2 = 2.

Syntax

CALL FARMACOV(cov, d <, phi, theta, sigma, p, q, lag>);

CALL FARMAFIT(d, phi, theta, sigma, series <, p, q, opt>);

CALL FARMALIK(lnl, series, d <, phi, theta, sigma, p, q, opt>);

CALL FARMASIM(series, d <, phi, theta, mu, sigma, n, p, q, initial,
seed>);

CALL FDIF(out, series, d);

References
Afifi, A. A. and Elashoff, R. M. (1967), “Missing Observations in Multivariate

Statistics II. Point Estimation in Simple Linear Regression,” Journal of the
American Statistical Association, 62, 10–29.

Akaike, H. (1974), “A New Look at Statistical Model Identification,” IEEE
Transactions on Automatic Control, 19, 716–723.

Akaike, H. (1977), “On Entropy Maximization Principle,” in Applications of
Statistics, ed. P. R. Krishnaiah, Amsterdam: North-Holland Publishing Co.,
27–41.

Akaike, H. (1978a), “A Bayesian Analysis of the Minimum AIC Procedure,” Ann.
Inst. Statist. Math., 30, 9–14.

References � 319

Akaike, H. (1978b), “Time Series Analysis and Control through Parametric Models,”
in Applied Time Series Analysis, ed. D.F. Findley, New York: Academic Press,
1–23.

Akaike, H. (1979), “A Bayesian Extension of the Minimum AIC Procedure of
Autoregressive Model Fitting,” Biometrika, 66, 237–242.

Akaike, H. (1980a), “Likelihood and the Bayes Procedure,” Bay Statistics, eds. J.
M. Bernardo, M. H. DeGroot, D. V. Lindley, and M. Smith, Valencia, Spain:
University Press.

Akaike, H. (1980b), “Seasonal Adjustment by a Bayesian Modeling,” Journal of Time
Series Analysis, 1, 1–13.

Akaike, H. (1981), “Likelihood of a Model and Information Criteria,” Journal of
Econometrics, 16, 3–14.

Akaike, H. (1986), “The Selection of Smoothness Priors for Distributed Lag
Estimation,” in Bayesian Inference and Decision Techniques, ed. P. Goel and
A. Zellner, Elsevier Science Publishers, 109–118.

Akaike, H. and Ishiguro, M. (1980), “Trend Estimation with Missing Observations,”
Ann. Inst. Statist. Math., 32, 481–488.

Akaike, H. and Nakagawa, T. (1988), Statistical Analysis and Control of Dynamic
Systems, Tokyo: KTK Scientific Publishers.

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New York: John
Wiley & Sons, Inc.

Ansley, C. F. (1980), “Computation of the Theoretical Autocovariance Function for
a Vector ARMA Process,” Journal Statistical Computation and Simulation, 12,
15–24.

Ansley, C. F. and Kohn, R. (1986), “A Note on Reparameterizing a Vector
Autoregressive Moving Average Model to Enforce Stationary,” Journal of
Statistical Computation and Simulation, 24, 99–106.

Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second
Edition, New York: Springer-Verlag.

Chung, C. F. (1996), “A Generalized Fractionally Integrated ARMA Process,”
Journal of Time Series Analysis, 2, 111–140.

De Jong, P. (1991a), “The Diffuse Kalman Filter,” Annals of Statistics, 19,
1073–1083.

Doan, T., Litterman, R., and Sims, C. (1984), “Forecasting and Conditional
Projection using Realistic Prior Distributions,” Econometric Review, 3, 1–100.

Gersch, W. and Kitagawa, G. (1983), “The Prediction of Time Series with Trends and
Seasonalities,” Journal of Business and Economic Statistics, 1, 253–264.

Geweke, J. and Porter-Hudak, S. (1983), “The Estimation and Application of Long
Memory Time Series Models,” Journal of Time Series Analysis, 4, 221–238.

320 � Chapter 10. Time Series Analysis and Examples

Granger, C. W. J. and Joyeux, R. (1980), “An Introduction to Long Memory Time
Series Models and Fractional Differencing,” Journal of Time Series Analysis, 1,
15–39.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge: Cambridge University Press.

Hosking, J. R. M. (1981), “Fractional Differencing,” Biometrika, 68, 165–176.

Ishiguro, M. (1984), “Computationally Efficient Implementation of a Bayesian
Seasonal Adjustment Procedure,” Journal of Time Series Analysis, 5, 245–253.

Ishiguro, M. (1987), “TIMSAC-84: A New Time Series Analysis and Control
Package,” Proceedings of American Statistical Association: Business and
Economic Section, 33–42.

Jones, R. H. and Brelsford, W. M. (1967), “Time Series with Periodic Structure,”
Biometrika, 54, 403–408.

Kitagawa, G. (1981), “A Nonstationary Time Series Model and Its Fitting by a
Recursive Filter,” Journal of Time Series Analysis, 2, 103–116.

Kitagawa, G. (1983), “Changing Spectrum Estimation,” Journal of Sound and
Vibration, 89, 433–445.

Kitagawa, G. and Akaike, H. (1978), “A Procedure for the Modeling of Nonstationary
Time Series,” Ann. Inst. Statist. Math., 30, 351–363.

Kitagawa, G. and Akaike, H. (1981), “On TIMSAC-78,” in Applied Time Series
Analysis II, ed. D. F. Findley, New York: Academic Press, 499–547.

Kitagawa, G. and Akaike, H. (1982), “A Quasi Bayesian Approach to Outlier
Detection,” Ann. Inst. Statist. Math., 34, 389–398.

Kitagawa, G. and Gersch, W. (1984), “A Smoothness Priors-State Space Modeling
of Time Series with Trend and Seasonality,” Journal of the American Statistical
Association, 79, 378–389.

Kitagawa, G. and Gersch, W. (1985a), “A Smoothness Priors Time-Varying
AR Coefficient Modeling of Nonstationary Covariance Time Series,” IEEE
Transactions on Automatic Control, 30, 48–56.

Kitagawa, G. and Gersch, W. (1985b), “A Smoothness Priors Long AR Model
Method for Spectral Estimation,” IEEE Transactions on Automatic Control, 30,
57–65.

Kohn, R. and Ansley, C. F. (1982), “A Note on Obtaining the Theoretical
Autocovariances of an ARMA Process,” Journal Statistical Computation and
Simulation, 15, 273–283.

Li, W. K. and McLeod, A. I. (1986), “Fractional Time Series Modeling,” Biometrika,
73, 217–221.

Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis, Berlin:
Springer-Verlag.

References � 321

Mittnik, S. (1990), “Computation of Theoretical Autocovariance Matrices of
Multivariate Autoregressive Moving Average Time Series,” Journal of Royal
Statistical Society, B, 52, 151–155.

Nelson, C. P. and Plosser, C. I. (1982), “Trends and Random Walks in
Macroeconomic Time Series: Some Evidence and Implications,” Journal
of Monetary Economics, 10, 139–162.

Pagano, M. (1978), “On Periodic and Multiple Autoregressions,” The Annals of
Statistics, 6, 1310–1317.

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, Second Edition,
New York: Springer-Verlag.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986), Akaike Information Criterion
Statistics, Tokyo: KTK Scientific Publishers.

Shiller, R. J. (1973), “A Distributed Lag Estimator Derived from Smoothness Priors,”
Econometrica, 41, 775–788.

Sowell, F. (1992), “Maximum Likelihood Estimation of Stationary Univariate
Fractionally Integrated Time Series Models,” Journal of Econometrics, 53,
165–88.

Shumway, R. H. (1988), Applied Statistical Time Series Analysis, Englewood Cliffs,
NJ: Prentice-Hall.

Tamura, Y. H. (1986), “An Approach to the Nonstationary Process Analysis,” Ann.
Inst. Statist. Math., 39, 227–241.

Wei, W. W. S. (1990), Time Series Analysis: Univariate and Multivariate Methods,
Redwood: Addison-Wesley.

Whittaker, E. T. (1923), “On a New Method of Graduation,” Proceedings of the
Edinborough Mathematical Society, 41, 63–75.

Whittaker, E. T. and Robinson, G. (1944), Calculus of Observation, Fourth Edition,
London: Blackie & Son Limited.

Zellner, A. (1971), An Introduction to Bayesian Inference in Econometrics, New
York: John Wiley & Sons, Inc.

322

Chapter 11
Nonlinear Optimization Examples

Chapter Contents

OVERVIEW . 325

GETTING STARTED . 327

DETAILS . 334
Global versus Local Optima . 334
Kuhn-Tucker Conditions . 336
Definition of Return Codes . 337
Objective Function and Derivatives . 337
Finite-Difference Approximations of Derivatives 342
Parameter Constraints . 345
Options Vector . 347
Termination Criteria . 352
Control Parameters Vector . 359
Printing the Optimization History . 362

NONLINEAR OPTIMIZATION EXAMPLES 363
Example 11.1. Chemical Equilibrium . 363
Example 11.2. Network Flow and Delay 367
Example 11.3. Compartmental Analysis 371
Example 11.4. MLEs for Two-Parameter Weibull Distribution 380
Example 11.5. Profile-Likelihood-Based Confidence Intervals 382
Example 11.6. Survival Curve for Interval Censored Data 384
Example 11.7. A Two-Equation Maximum Likelihood Problem 391
Example 11.8. Time-Optimal Heat Conduction 394

REFERENCES . 399

324

Chapter 11
Nonlinear Optimization Examples
Overview

The IML procedure offers a set of optimization subroutines for minimizing or max-
imizing a continuous nonlinear function f = f(x) of n parameters, where x =
(x1, . . . , xn)T . The parameters can be subject to boundary constraints and linear
or nonlinear equality and inequality constraints. The following set of optimization
subroutines is available:

NLPCG Conjugate Gradient Method
NLPDD Double Dogleg Method
NLPNMS Nelder-Mead Simplex Method
NLPNRA Newton-Raphson Method
NLPNRR Newton-Raphson Ridge Method
NLPQN (Dual) Quasi-Newton Method
NLPQUA Quadratic Optimization Method
NLPTR Trust-Region Method

The following subroutines are provided for solving nonlinear least squares problems:

NLPLM Levenberg-Marquardt Least Squares Method
NLPHQN Hybrid Quasi-Newton Least Squares Methods

A least squares problem is a special form of minimization problem where the objec-
tive function is defined as a sum of squares of other (nonlinear) functions.

f(x) =
1
2
{f2

1 (x) + · · ·+ f2
m(x)}

Least squares problems can usually be solved more efficiently by the least squares
subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite
difference approximations for first- and second-order derivatives and of determining
a feasible point subject to boundary and linear constraints:

NLPFDD Approximate Derivatives by Finite Differences
NLPFEA Feasible Point Subject to Constraints

Each optimization subroutine works iteratively. If the parameters are subject only
to linear constraints, all optimization and least squares techniques are feasible-point

326 � Chapter 11. Nonlinear Optimization Examples

methods; that is, they move from feasible point x(k) to a better feasible point x(k+1)

by a step in the search direction s(k), k = 1, 2, 3, If you do not provide a feasible
starting point x(0), the optimization methods call the algorithm used in the NLPFEA
subroutine, which tries to compute a starting point that is feasible with respect to the
boundary and linear constraints.

The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters.
For problems with nonlinear constraints, these subroutines do not use a feasible-
point method; instead, the algorithms begin with whatever starting point you specify,
whether feasible or infeasible.

Each optimization technique requires a continuous objective function f = f(x), and
all optimization subroutines except the NLPNMS subroutine require continuous first-
order derivatives of the objective function f . If you do not provide the derivatives of
f , they are approximated by finite-difference formulas. You can use the NLPFDD
subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least squares
subroutines can also be obtained by using the OPTMODEL procedure or the NLP
procedure in SAS/OR software.

The advantages of the IML procedure are as follows:

• You can use matrix algebra to specify the objective function, nonlinear con-
straints, and their derivatives in IML modules.

• The IML procedure offers several subroutines that can be used to specify the
objective function or nonlinear constraints, many of which would be very dif-
ficult to write for the NLP procedure.

• You can formulate your own termination criteria by using the “ptit” module
argument.

The advantages of the NLP procedure are as follows:

• Although identical optimization algorithms are used, the NLP procedure can
be much faster because of the interactive and more general nature of the IML
product.

• Analytic first- and second-order derivatives can be computed with a special
compiler.

• Additional optimization methods are available in the NLP procedure that do
not fit into the framework of this package.

• Data set processing is much easier than in the IML procedure. You can save
results in output data sets and use them in subsequent runs.

• The printed output contains more information.

Getting Started � 327

Getting Started
Unconstrained Rosenbrock Function

The Rosenbrock function is defined as

f(x) =
1
2
{100(x2 − x2

1)
2 + (1− x1)2}

=
1
2
{f2

1 (x) + f2
2 (x)}, x = (x1, x2)

The minimum function value f∗ = f(x∗) = 0 is at the point x∗ = (1, 1).

The following code calls the NLPTR subroutine to solve the optimization problem:

proc iml;
title ’Test of NLPTR subroutine: Gradient Specified’;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

x = {-1.2 1.};
optn = {0 2};
call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
quit;

The NLPTR is a trust-region optimization method. The F–ROSEN module repre-
sents the Rosenbrock function, and the G–ROSEN module represents its gradient.
Specifying the gradient can reduce the number of function calls by the optimization
subroutine. The optimization begins at the initial point x = (−1.2, 1). For more
information about the NLPTR subroutine and its arguments, see the section “NLPTR
Call” on page 824. For details about the options vector, which is given by the OPTN
vector in the preceding code, see the section “Options Vector” on page 347.

A portion of the output produced by the NLPTR subroutine is shown in Figure 11.1
on page 328.

328 � Chapter 11. Nonlinear Optimization Examples

Trust Region Optimization

Without Parameter Scaling
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient 107.8 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 0 2.36594 9.7341 2.3189 0 1.000
2 0 5 0 2.05926 0.3067 5.2875 0.385 1.526
3 0 8 0 1.74390 0.3154 5.9934 0 1.086
.
.
.

22 0 31 0 1.3128E-16 6.96E-10 1.977E-7 0 0.00314

Optimization Results

Iterations 22 Function Calls 32
Hessian Calls 23 Active Constraints 0
Objective Function 1.312814E-16 Max Abs Gradient 1.9773384E-7

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.003140192

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 0.000000198
2 X2 1.000000 -0.000000105

Value of Objective Function = 1.312814E-16

Figure 11.1. NLPTR Solution to the Rosenbrock Problem

Since f(x) = 1
2{f

2
1 (x) + f2

2 (x)}, you can also use least squares techniques in this
situation. The following code calls the NLPLM subroutine to solve the problem. The
output is shown in Figure 11.2 on page 329.

proc iml;
title ’Test of NLPLM subroutine: No Derivatives’;
start F_ROSEN(x);
y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];

Getting Started � 329

return(y);
finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlplm(rc,xres,"F_ROSEN",x,optn);
quit;

Figure 11.2. NLPLM Solution Using the Least Squares Technique

The Levenberg-Marquardt least squares method, which is the method used by the
NLPLM subroutine, is a modification of the trust-region method for nonlinear least
squares problems. The F–ROSEN module represents the Rosenbrock function. Note
that for least squares problems, the m functions f1(x), . . . , fm(x) are specified as
elements of a vector; this is different from the manner in which f(x) is specified for
the other optimization techniques. No derivatives are specified in the preceding code,
so the NLPLM subroutine computes finite-difference approximations. For more in-
formation about the NLPLM subroutine, see the section “NLPLM Call” on page 804.

Constrained Betts Function

The linearly constrained Betts function (Hock & Schittkowski 1981) is defined as

f(x) = 0.01x2
1 + x2

2 − 100

The boundary constraints are

2 ≤ x1 ≤ 50
−50 ≤ x2 ≤ 50

The linear constraint is

10x1 − x2 ≥ 10

The following code calls the NLPCG subroutine to solve the optimization problem.
The infeasible initial point x0 = (−1,−1) is specified, and a portion of the output is
shown in Figure 11.3.

proc iml;
title ’Test of NLPCG subroutine: No Derivatives’;
start F_BETTS(x);

f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpcg(rc,xres,"F_BETTS",x,optn,con);
quit;

330 � Chapter 11. Nonlinear Optimization Examples

The NLPCG subroutine performs conjugate gradient optimization. It requires only
function and gradient calls. The F–BETTS module represents the Betts function, and
since no module is defined to specify the gradient, first-order derivatives are com-
puted by finite-difference approximations. For more information about the NLPCG
subroutine, see the section “NLPCG Call” on page 793. For details about the con-
straint matrix, which is represented by the CON matrix in the preceding code, see the
section “Parameter Constraints” on page 345.

NOTE: Initial point was changed to be feasible for boundary and
linear constraints.

Optimization Start
Parameter Estimates

Gradient Lower
Objective Bound

N Parameter Estimate Function Constraint

1 X1 6.800000 0.136000 2.000000
2 X2 -1.000000 -2.000000 -50.000000

Optimization Start
Parameter Estimates

Upper
Bound

Constraint

50.000000
50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Conjugate-Gradient Optimization

Automatic Restart Update (Powell, 1977; Beale, 1972)
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Figure 11.3. NLPCG Solution to Betts Problem

Getting Started � 331

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient 2
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Step Search

Iter arts Calls Con Function Change Element Size Direc

1 0 3 0 -99.54682 1.0092 0.1346 0.502 -4.018
2 1 7 1 -99.96000 0.4132 0.00272 34.985 -0.0182
3 2 9 1 -99.96000 1.851E-6 0 0.500 -74E-7

Optimization Results

Iterations 3 Function Calls 10
Gradient Calls 9 Active Constraints 1
Objective Function -99.96 Max Abs Gradient 0

Element
Slope of Search -7.398365E-6
Direction

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -1.24028E-10 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

[1] 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

Figure 11.3. (continued)

Since the initial point (−1,−1) is infeasible, the subroutine first computes a feasible
starting point. Convergence is achieved after three iterations, and the optimal point is
given to be x∗ = (2, 0) with an optimal function value of f∗ = f(x∗) = −99.96. For
more information about the printed output, see the section “Printing the Optimization
History” on page 362.

Rosen-Suzuki Problem
The Rosen-Suzuki problem is a function of four variables with three nonlinear con-
straints on the variables. It is taken from problem 43 of Hock and Schittkowski
(1981). The objective function is

f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

332 � Chapter 11. Nonlinear Optimization Examples

The nonlinear constraints are

0 ≤ 8− x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4

0 ≤ 10− x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4

0 ≤ 5− 2x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4

Since this problem has nonlinear constraints, only the NLPQN and NLPNMS sub-
routines are available to perform the optimization. The following code solves the
problem with the NLPQN subroutine:

proc iml;
start F_HS43(x);

f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;
start C_HS43(x);

c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";

The F–HS43 module specifies the objective function, and the C–HS43 module spec-
ifies the nonlinear constraints. The OPTN vector is passed to the subroutine as the
OPT input argument. See the section “Options Vector” on page 347 for more infor-
mation. The value of OPTN[10] represents the total number of nonlinear constraints,
and the value of OPTN[11] represents the number of equality constraints. In the
preceding code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three
constraints, all of which are inequality constraints. In the subroutine calls, instead
of separating missing input arguments with commas, you can specify optional argu-
ments with keywords, as in the CALL NLPQN statement in the preceding code. For
details about the CALL NLPQN statement, see the section “NLPQN Call” on page
815.

The initial point for the optimization procedure is x = (1, 1, 1, 1), and the optimal
point is x∗ = (0, 1, 2,−1), with an optimal function value of f(x∗) = −44. Part of
the output produced is shown in Figure 11.4 on page 333.

Getting Started � 333

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)
Gradient Computed by Finite Differences

Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -19 Maximum Constraint 0
Violation

Maximum Gradient of 17
the Lagran Func

Maximum
Maximum Grad

Con- Element
straint Predicted of the

Rest Func Objective Viola- Function Step Lagran
Iter arts Calls Function tion Reduction Size Func

1 0 2 -41.88007 1.8988 13.6803 1.000 5.647
2 0 3 -48.83264 3.0280 9.5464 1.000 5.041
3 0 4 -45.33515 0.5452 2.6179 1.000 1.061
4 0 5 -44.08667 0.0427 0.1732 1.000 0.0297
5 0 6 -44.00011 0.000099 0.000218 1.000 0.00906
6 0 7 -44.00001 2.573E-6 0.000014 1.000 0.00219
7 0 8 -44.00000 9.118E-8 5.097E-7 1.000 0.00022

Figure 11.4. Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine

334 � Chapter 11. Nonlinear Optimization Examples

Optimization Results

Iterations 7 Function Calls 9
Gradient Calls 9 Active Constraints 2
Objective Function -44.00000026 Maximum Constraint 9.1176306E-8

Violation
Maximum Projected 0.0002265341 Value Lagrange -44
Gradient Function
Maximum Gradient of 0.00022158 Slope of Search -5.097332E-7
the Lagran Func Direction

FCONV2 convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 -0.000001248 -5.000002 -0.000012804
2 X2 1.000027 -2.999945 0.000222
3 X3 1.999993 -13.000027 -0.000054166
4 X4 -1.000003 4.999995 -0.000020681

Value of Objective Function = -44.00000026

Value of Lagrange Function = -44

Figure 11.4. (continued)

In addition to the standard iteration history, the NLPQN subroutine includes the fol-
lowing information for problems with nonlinear constraints:

• CONMAX is the maximum value of all constraint violations.

• PRED is the value of the predicted function reduction used with the GTOL and
FTOL2 termination criteria.

• ALFA is the step size α of the quasi-Newton step.

• LFGMAX is the maximum element of the gradient of the Lagrange function.

Details

Global versus Local Optima

All the IML optimization algorithms converge toward local rather than global optima.
The smallest local minimum of an objective function is called the global minimum,
and the largest local maximum of an objective function is called the global maximum.
Hence, the subroutines can occasionally fail to find the global optimum. Suppose you
have the function f(x) = 1

27(3x4
1 − 28x3

1 + 84x2
1 − 96x1 + 64) + x2

2, which has a
local minimum at f(1, 0) = 1 and a global minimum at the point f(4, 0) = 0.

Global versus Local Optima � 335

The following statements use two calls of the NLPTR subroutine to minimize the
preceding function. The first call specifies the initial point xa = (0.5, 1.5), and
the second call specifies the initial point xb = (3, 1). The first call finds the local
optimum x∗ = (1, 0), and the second call finds the global optimum x∗ = (4, 0).

proc iml;
start F_GLOBAL(x);

f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
return(f);

finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra xrb;

One way to find out whether the objective function has more than one local optimum
is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to the Kuhn-Tucker theorem
in standard optimization literature. Using rather nonmathematical language, a local
minimizer x∗ satisfies the following conditions:

• There exists a small, feasible neighborhood of x∗ that does not contain any
point x with a smaller function value f(x) < f(x∗).

• The vector of first derivatives (gradient) g(x∗) = ∇f(x∗) of the objective
function f (projected toward the feasible region) at the point x∗ is zero.

• The matrix of second derivatives G(x∗) = ∇2f(x∗) (Hessian matrix) of the
objective function f (projected toward the feasible region) at the point x∗ is
positive definite.

A local maximizer has the largest value in a feasible neighborhood and a negative
definite Hessian.

The iterative optimization algorithm terminates at the point xt, which should be in
a small neighborhood (in terms of a user-specified termination criterion) of a local
optimizer x∗. If the point xt is located on one or more active boundary or general
linear constraints, the local optimization conditions are valid only for the feasible
region. That is,

• the projected gradient, ZT g(xt), must be sufficiently small

• the projected Hessian, ZTG(xt)Z, must be positive definite for minimization
problems or negative definite for maximization problems

If there are n active constraints at the point xt, the nullspace Z has zero columns
and the projected Hessian has zero rows and columns. A matrix with zero rows and
columns is considered positive as well as negative definite.

336 � Chapter 11. Nonlinear Optimization Examples

Kuhn-Tucker Conditions

The nonlinear programming (NLP) problem with one objective function f and m
constraint functions ci, which are continuously differentiable, is defined as follows:

minimizef(x), x ∈ Rn, subject to

ci(x) = 0, i = 1, . . . ,me

ci(x) ≥ 0, i = me + 1, . . . ,m

In the preceding notation, n is the dimension of the function f(x), and me is the
number of equality constraints. The linear combination of objective and constraint
functions

L(x, λ) = f(x)−
m∑

i=1

λici(x)

is the Lagrange function, and the coefficients λi are the Lagrange multipliers.

If the functions f and ci are twice differentiable, the point x∗ is an isolated local
minimizer of the NLP problem, if there exists a vector λ∗ = (λ∗1, . . . , λ

∗
m) that meets

the following conditions:

• Kuhn-Tucker conditions

ci(x∗) = 0, i = 1, . . . ,me

ci(x∗) ≥ 0, λ∗i ≥ 0, λ∗i ci(x
∗) = 0, i = me + 1, . . . ,m

∇xL(x∗, λ∗) = 0

• second-order condition

Each nonzero vector y ∈ Rn with

yT∇xci(x∗) = 0i = 1, . . . ,me, and ∀i ∈ me + 1, . . . ,m;λ∗i > 0

satisfies

yT∇2
xL(x∗, λ∗)y > 0

In practice, you cannot expect the constraint functions ci(x∗) to vanish within ma-
chine precision, and determining the set of active constraints at the solution x∗ might
not be simple.

Objective Function and Derivatives � 337

Definition of Return Codes

The return code, which is represented by the output parameter rc in the optimiza-
tion subroutines, indicates the reason for optimization termination. A positive value
indicates successful termination, while a negative value indicates unsuccessful ter-
mination. Table 11.1 gives the reason for termination associated with each return
code.

Table 11.1. Summary of Return Codes
Code Reason for Optimization Termination

1 ABSTOL criterion satisfied (absolute F convergence)
2 ABSFTOL criterion satisfied (absolute F convergence)
3 ABSGTOL criterion satisfied (absolute G convergence)
4 ABSXTOL criterion satisfied (absolute X convergence)
5 FTOL criterion satisfied (relative F convergence)
6 GTOL criterion satisfied (relative G convergence)
7 XTOL criterion satisfied (relative X convergence)
8 FTOL2 criterion satisfied (relative F convergence)
9 GTOL2 criterion satisfied (relative G convergence)
10 n linear independent constraints are active at xr and none of them could be

released to improve the function value
-1 objective function cannot be evaluated at starting point
-2 derivatives cannot be evaluated at starting point
-3 objective function cannot be evaluated during iteration
-4 derivatives cannot be evaluated during iteration
-5 optimization subroutine cannot improve the function value (this is a very

general formulation and is used for various circumstances)
-6 there are problems in dealing with linearly dependent active constraints

(changing the LCSING value in the par vector can be helpful)
-7 optimization process stepped outside the feasible region and the algorithm

to return inside the feasible region was not successful (changing the LCEPS
value in the par vector can be helpful)

-8 either the number of iterations or the number of function calls is larger than
the prespecified values in the tc vector (MAXIT and MAXFU)

-9 this return code is temporarily not used (it is used in PROC NLP indicating
that more CPU than a prespecified value was used)

-10 a feasible starting point cannot be computed

Objective Function and Derivatives

The input argument fun refers to an IML module that specifies a function that returns
f , a vector of lengthm for least squares subroutines or a scalar for other optimization
subroutines. The returned f contains the values of the objective function (or the least
squares functions) at the point x. Note that for least squares problems, you must
specify the number of function values, m, with the first element of the opt argument
to allocate memory for the return vector. All the modules that you can specify as
input arguments (“fun,” “grd,” “hes,” “jac,” “nlc,” “jacnlc,” and “ptit”) accept
only a single input argument, x, which is the parameter vector. Using the GLOBAL

338 � Chapter 11. Nonlinear Optimization Examples

clause, you can provide more input arguments for these modules. Refer to the section
“Numerical Considerations” on page 371 for an example.

All the optimization algorithms assume that f is continuous inside the feasible region.
For nonlinearly constrained optimization, this is also required for points outside the
feasible region. Sometimes the objective function cannot be computed for all points
of the specified feasible region; for example, the function specification might contain
the SQRT or LOG function, which cannot be evaluated for negative arguments. You
must make sure that the function and derivatives of the starting point can be evaluated.
There are two ways to prevent large steps into infeasible regions of the parameter
space during the optimization process:

• The preferred way is to restrict the parameter space by introducing more
boundary and linear constraints. For example, the boundary constraint
xj >= 1E−10 prevents infeasible evaluations of log(xj). If the function mod-
ule takes the square root or the log of an intermediate result, you can use non-
linear constraints to try to avoid infeasible function evaluations. However, this
might not ensure feasibility.

• Sometimes the preferred way is difficult to practice, in which case the function
module can return a missing value. This can force the optimization algorithm
to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continu-
ous first-order derivatives of the objective function f . The NLPTR, NLPNRA, and
NLPNRR techniques also require continuous second-order derivatives. If you do not
provide the derivatives with the IML modules “grd,” “hes,” or “jac,” they are au-
tomatically approximated by finite-difference formulas. Approximating first-order
derivatives by finite differences usually requires n additional calls of the function
module. Approximating second-order derivatives by finite differences using only
function calls can be extremely computationally expensive. Hence, if you decide
to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least
analytical first-order derivatives. Then, approximating second-order derivatives by
finite differences requires only n or 2n additional calls of the function and gradient
modules.

For all input and output arguments, the subroutines assume that

• the number of parameters n corresponds to the number of columns. For exam-
ple, x, the input argument to the modules, and g, the output argument returned
by the “grd” module, are row vectors with n entries, andG, the Hessian matrix
returned by the “hes” module, must be a symmetric n× n matrix.

• the number of functions, m, corresponds to the number of rows. For example,
the vector f returned by the “fun” module must be a column vector with m
entries, and in least squares problems, the Jacobian matrix J returned by the
“jac” module must be an m× n matrix.

You can verify your analytical derivative specifications by computing finite-
difference approximations of the derivatives of f with the NLPFDD subroutine. For

Objective Function and Derivatives � 339

most applications, the finite-difference approximations of the derivatives are very
precise. Occasionally, difficult objective functions and zero x coordinates cause
problems. You can use the par argument to specify the number of accurate digits
in the evaluation of the objective function; this defines the step size h of the first-
and second-order finite-difference formulas. See the section “Finite-Difference
Approximations of Derivatives” on page 342.

Note: For some difficult applications, the finite-difference approximations of deriva-
tives that are generated by default might not be precise enough to solve the optimiza-
tion or least squares problem. In such cases, you might be able to specify better
derivative approximations by using a better approximation formula. You can submit
your own finite-difference approximations by using the IML module “grd,” “hes,”
“jac,” or “jacnlc.” See Example 11.3 on page 371 for an illustration.

In many applications, calculations used in the computation of f can help compute
derivatives at the same point efficiently. You can save and reuse such calculations with
the GLOBAL clause. As with many other optimization packages, the subroutines call
the “grd,” “hes,” or “jac” modules only after a call of the “fun” module.

The following statements specify modules for the function, gradient, and Hessian
matrix of the Rosenbrock problem:

proc iml;
start F_ROSEN(x);

y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);

finish G_ROSEN;

start H_ROSEN(x);
h = j(2,2,0.);
h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
h[2,2] = 100.;
h[1,2] = -200. * x[1];
h[2,1] = h[1,2];
return(h);

finish H_ROSEN;

The following statements specify a module for the Rosenbrock function when con-
sidered as a least squares problem. They also specify the Jacobian matrix of the least
squares functions.

proc iml;
start F_ROSEN(x);

340 � Chapter 11. Nonlinear Optimization Examples

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;

start J_ROSEN(x);
jac = j(2,2,0.);
jac[1,1] = -20. * x[1]; jac[1,2] = 10.;
jac[2,1] = -1.; jac[2,2] = 0.;
return(jac);

finish J_ROSEN;

Diagonal or Sparse Hessian Matrices

In the unconstrained or only boundary constrained case, the NLPNRA algorithm can
take advantage of diagonal or sparse Hessian matrices submitted by the “hes” mod-
ule. If the Hessian matrix G of the objective function f has a large proportion of
zeros, you can save computer time and memory by specifying a sparse Hessian of
dimension nn × 3 rather than a dense n × n Hessian. Each of the nn rows (i, j, g)
of the matrix returned by the sparse Hessian module defines a nonzero element gij of
the Hessian matrix. The row and column location is given by i and j, and g gives the
nonzero value. During the optimization process, only the values g can be changed in
each call of the Hessian module “hes;” the sparsity structure (i, j) must be kept the
same. That means that some of the values g can be zero for particular values of x.
To allocate sufficient memory before the first call of the Hessian module, you must
specify the number of rows, nn, by setting the ninth element of the opt argument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian
module input. The objective function, which is the Extended Powell’s Singular
Function, for n = 40 is a least squares problem:

f(x) =
1
2
{f2

1 (x) + · · ·+ f2
m(x)}

with

f4i−3(x) = x4i−3 + 10x4i−2

f4i−2(x) =
√

5(x4i−1 − x4i)
f4i−1(x) = (x4i−2 − 2x4i−1)2

f4i(x) =
√

10(x4i−3 − x4i)2

The function and gradient modules are as follows:

start f_nlp22(x);
n=ncol(x);
f = 0.;
do i=1 to n-3 by 4;

f1 = x[i] + 10. * x[i+1];

Objective Function and Derivatives � 341

r2 = x[i+2] - x[i+3];
f2 = 5. * r2;
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
f = f + f1 * f1 + r2 * f2 + f3 * f3 + r4 * r4 * f4;

end;
f = .5 * f;
return(f);

finish f_nlp22;

start g_nlp22(x);
n=ncol(x);
g = j(1,n,0.);

do i=1 to n-3 by 4;
f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
g[i] = f1 + 2. * r4 * f4;
g[i+1] = 10. * f1 + 2. * r3 * f3;
g[i+2] = f2 - 4. * r3 * f3;
g[i+3] = -f2 - 2. * r4 * f4;

end;
return(g);

finish g_nlp22;

You can specify the sparse Hessian with the following module:

start hs_nlp22(x);
n=ncol(x);
nnz = 8 * (n / 4);
h = j(nnz,3,0.);
j = 0;
do i=1 to n-3 by 4;

f1 = x[i] + 10. * x[i+1];
f2 = 5. * (x[i+2] - x[i+3]);
r3 = x[i+1] - 2. * x[i+2];
f3 = r3 * r3;
r4 = x[i] - x[i+3];
f4 = 10. * r4 * r4;
j= j + 1; h[j,1] = i; h[j,2] = i;
h[j,3] = 1. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;
j= j+1; h[j,1] = i; h[j,2] = i+1;
h[j,3] = 10.;
j= j+1; h[j,1] = i; h[j,2] = i+3;
h[j,3] = -4. * f4;
h[j,3] = h[j,3] - 2. * f4;
j= j+1; h[j,1] = i+1; h[j,2] = i+1;

342 � Chapter 11. Nonlinear Optimization Examples

h[j,3] = 100. + 4. * f3;
h[j,3] = h[j,3] + 2. * f3;
j= j+1; h[j,1] = i+1; h[j,2] = i+2;
h[j,3] = -8. * f3;
h[j,3] = h[j,3] - 4. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+2;
h[j,3] = 5. + 16. * f3;
h[j,3] = h[j,3] + 8. * f3;
j= j+1; h[j,1] = i+2; h[j,2] = i+3;
h[j,3] = -5.;
j= j+1; h[j,1] = i+3; h[j,2] = i+3;
h[j,3] = 5. + 4. * f4;
h[j,3] = h[j,3] + 2. * f4;

end;
return(h);

finish hs_nlp22;

n = 40;
x = j(1,n,0.);
do i=1 to n-3 by 4;

x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;
opt = j(1,11,.); opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

Note: If the sparse form of Hessian defines a diagonal matrix (that is, i = j in all nn
rows), the NLPNRA algorithm stores and processes a diagonal matrix G. If you do
not specify any general linear constraints, the NLPNRA subroutine uses only order n
memory.

Finite-Difference Approximations of Derivatives
If the optimization technique needs first- or second-order derivatives and you do not
specify the corresponding IML module “grd,” “hes,” “jac,” or “jacnlc,” the deriva-
tives are approximated by finite-difference formulas using only calls of the module
“fun.” If the optimization technique needs second-order derivatives and you specify
the “grd” module but not the “hes” module, the subroutine approximates the second-
order derivatives by finite differences using n or 2n calls of the “grd” module.

The eighth element of the opt argument specifies the type of finite-difference approx-
imation used to compute first- or second-order derivatives and whether the finite-
difference intervals, h, should be computed by an algorithm of Gill et al. (1983). The
value of opt[8] is a two-digit integer, ij.

• If opt[8] is missing or j = 0, the fast but not very precise forward-difference
formulas are used; if j 6= 0, the numerically more expensive central-difference
formulas are used.

• If opt[8] is missing or i 6= 1, 2, or 3, the finite-difference intervals h are based
only on the information of par[8] or par[9], which specifies the number of
accurate digits to use in evaluating the objective function and nonlinear con-
straints, respectively. If i = 1, 2, or 3, the intervals are computed with an

Finite-Difference Approximations of Derivatives � 343

algorithm by Gill et al. (1983). For i = 1, the interval is based on the behavior
of the objective function; for i = 2, the interval is based on the behavior of
the nonlinear constraint functions; and for i = 3, the interval is based on the
behavior of both the objective function and the nonlinear constraint functions.

Forward-Difference Approximations

• First-order derivatives: n additional function calls are needed.

gi =
∂f

∂xi
=
f(x+ hiei)− f(x)

hi

• Second-order derivatives based on function calls only, when the “grd” module
is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix, n +
n2/2 additional function calls are needed.

∂2f

∂xi∂xj
=
f(x+ hiei + hjej)− f(x+ hiei)− f(x+ hjej) + f(x)

hihj

• Second-order derivatives based on gradient calls, when the “grd” module is
specified (Dennis and Schnabel 1983): n additional gradient calls are needed.

∂2f

∂xi∂xj
=
gi(x+ hjej)− gi(x)

2hj
+
gj(x+ hiei)− gj(x)

2hi

Central-Difference Approximations

• First-order derivatives: 2n additional function calls are needed.

gi =
∂f

∂xi
=
f(x+ hiei)− f(x− hiei)

2hi

• Second-order derivatives based on function calls only, when the “grd” module
is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix,
2n+ 2n2 additional function calls are needed.

∂2f

∂x2
i

=
−f(x+ 2hiei) + 16f(x+ hiei)− 30f(x) + 16f(x− hiei)− f(x− 2hiei)

12h2
i

∂2f

∂xi∂xj
=

f(x+ hiei + hjej)− f(x+ hiei − hjej)− f(x− hiei + hjej) + f(x− hiei − hjej)
4hihj

• Second-order derivatives based on gradient calls, when the “grd” module is
specified: 2n additional gradient calls are needed.

∂2f

∂xi∂xj
=
gi(x+ hjej)− gi(x− hjej)

4hj
+
gj(x+ hiei)− gj(x− hiei)

4hi

The step sizes hj , j = 1, . . . , n, are defined as follows:

344 � Chapter 11. Nonlinear Optimization Examples

• For the forward-difference approximation of first-order derivatives using only
function calls and for second-order derivatives using only gradient calls,
hj = 2

√
ηj(1 + |xj |).

• For the forward-difference approximation of second-order derivatives using
only function calls and for central-difference formulas, hj = 3

√
ηj(1 + |xj |).

If the algorithm of Gill et al. (1983) is not used to compute ηj , a constant value
η = ηj is used depending on the value of par[8].

• If the number of accurate digits is specified by par[8] = k1, then η is set to
10−k1 .

• If par[8] is not specified, η is set to the machine precision, ε.

If central-difference formulas are not specified, the optimization algorithm switches
automatically from the forward-difference formula to a corresponding central-
difference formula during the iteration process if one of the following two criteria
is satisfied:

• The absolute maximum gradient element is less than or equal to 100 times the
ABSGTOL threshold.

• The term on the left of the GTOL criterion is less than or equal to
max(1E−6, 100×GTOL threshold). The 1E−6 ensures that the switch is
performed even if you set the GTOL threshold to zero.

The algorithm of Gill et al. (1983) that computes the finite-difference intervals hj can
be very expensive in the number of function calls it uses. If this algorithm is required,
it is performed twice, once before the optimization process starts and once after the
optimization terminates.

Many applications need considerably more time for computing second-order deriva-
tives than for computing first-order derivatives. In such cases, you should use a quasi-
Newton or conjugate gradient technique.

If you specify a vector, c, of nc nonlinear constraints with the “nlc” module but you
do not specify the “jacnlc” module, the first-order formulas can be used to compute
finite-difference approximations of the nc× n Jacobian matrix of the nonlinear con-
straints.

(∇ci) =
(
∂ci
∂xj

)
, i = 1, . . . , nc, j = 1, . . . , n

You can specify the number of accurate digits in the constraint evaluations with
par[9]. This specification also defines the step sizes hj , j = 1, . . . , n.

Note: If you are not able to specify analytic derivatives and if the finite-difference
approximations provided by the subroutines are not good enough to solve your op-
timization problem, you might be able to implement better finite-difference approxi-
mations with the “grd,” “hes,” “jac,” and “jacnlc” module arguments.

Parameter Constraints � 345

Parameter Constraints

You can specify constraints in the following ways:

• The matrix input argument “blc” enables you to specify boundary and general
linear constraints.

• The IML module input argument “nlc” enables you to specify general con-
straints, particularly nonlinear constraints.

Specifying the BLC Matrix

The input argument “blc” specifies an n1 × n2 constraint matrix, where n1 is two
more than the number of linear constraints, and n2 is given by

n2 =
{
n if 1 ≤ n1 ≤ 2
n+ 2 if n1 > 2

The first two rows define lower and upper bounds for the n parameters, and the re-
maining c = n1 − 2 rows define general linear equality and inequality constraints.
Missing values in the first row (lower bounds) substitute for the largest negative float-
ing point value, and missing values in the second row (upper bounds) substitute for
the largest positive floating point value. Columns n + 1 and n + 2 of the first two
rows are not used.

The following c rows of the “blc” argument specify c linear equality or inequality
constraints:

n∑
j=1

aijxj (≤ | = | ≥) bi, i = 1, . . . , c

Each of these c rows contains the coefficients aij in the first n columns. Column n+1
specifies the kind of constraint, as follows:

• blc[n+ 1] = 0 indicates an equality constraint.

• blc[n+ 1] = 1 indicates a ≥ inequality constraint.

• blc[n+ 1] = −1 indicates a ≤ inequality constraint.

Column n+ 2 specifies the right-hand side, bi. A missing value in any of these rows
corresponds to a value of zero.

For example, suppose you have a problem with the following constraints on x1,x2,
x3, x4:

2 ≤ x1 ≤ 100
x2 ≤ 40

0 ≤ x4

346 � Chapter 11. Nonlinear Optimization Examples

4x1 + 3x2 − x3 ≤ 30
x2 + 6x4 ≥ 17

x1 − x2 = 8

The following statements specify the matrix CON, which can be used as the “blc”
argument to specify the preceding constraints:

proc iml;
con = { 2 . . 0 . . ,

100 40 ,
4 3 -1 . -1 30 ,
. 1 . 6 1 17 ,
1 -1 . . 0 8 };

Specifying the NLC and JACNLC Modules

The input argument “nlc” specifies an IML module that returns a vector, c, of length
nc, with the values, ci, of the nc linear or nonlinear constraints

ci(x) = 0, i = 1, . . . , nec
ci(x) ≥ 0, i = nec+ 1, . . . , nc

for a given input parameter point x.

Note: You must specify the number of equality constraints, nec, and the total number
of constraints, nc, returned by the “nlc” module to allocate memory for the return
vector. You can do this with the opt[11] and opt[10] arguments, respectively.

For example, consider the problem of minimizing the objective function
f(x1, x2) = x1x2 in the interior of the unit circle, x2

1 + x2
2 ≤ 1. The con-

straint can also be written as c1(x) = 1 − x2
1 − x2

2 ≥ 0. The following statements
specify modules for the objective and constraint functions and call the NLPNMS
subroutine to solve the minimization problem:

proc iml;
start F_UC2D(x);

f = x[1] * x[2];
return(f);

finish F_UC2D;

start C_UC2D(x);
c = 1. - x * x‘;
return(c);

finish C_UC2D;

x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS(rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";

Options Vector � 347

To avoid typing multiple commas, you can specify the “nlc” input argument with a
keyword, as in the preceding code. The number of elements of the return vector is
specified by OPTN[10] = 1. There is a missing value in OPTN[11], so the subroutine
assumes there are zero equality constraints.

The NLPQN algorithm uses the nc× n Jacobian matrix of first-order derivatives

(∇xci(x)) =
(
∂ci
∂xj

)
, i = 1, . . . , nc, j = 1, . . . , n

of the nc equality and inequality constraints, ci, for each point passed during the it-
eration. You can use the “jacnlc” argument to specify an IML module that returns
the Jacobian matrix JC. If you specify the “nlc” module without using the “jac-
nlc” argument, the subroutine uses finite-difference approximations of the first-order
derivatives of the constraints.

Note: The COBYLA algorithm in the NLPNMS subroutine and the NLPQN sub-
routine are the only optimization techniques that enable you to specify nonlinear
constraints with the “nlc” input argument.

Options Vector

The options vector, represented by the “opt” argument, enables you to specify a
variety of options, such as the amount of printed output or particular update or line-
search techniques. Table 11.2 gives a summary of the available options.

Table 11.2. Summary of the Elements of the Options Vector
Index Description

1 specifies minimization, maximization, or the number of least squares
functions

2 specifies the amount of printed output
3 NLPDD, NLPLM, NLPNRA, NLPNRR, NLPTR: specifies the scaling

of the Hessian matrix (HESCAL)
4 NLPCG, NLPDD, NLPHQN, NLPQN: specifies the update technique

(UPDATE)
5 NLPCG, NLPHQN, NLPNRA, NLPQN (with no nonlinear constraints):

specifies the line-search technique (LIS)
6 NLPHQN: specifies version of hybrid algorithm (VERSION)

NLPQN with nonlinear constraints: specifies version of µ update
7 NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix

(INHESSIAN)
8 Finite-Difference Derivatives: specifies type of differences and how to

compute the difference interval
9 NLPNRA: specifies the number of rows returned by the sparse Hessian

module
10 NLPNMS, NLPQN: specifies the total number of constraints returned by

the “nlc” module
11 NLPNMS, NLPQN: specifies the number of equality constraints returned

by the “nlc” module

348 � Chapter 11. Nonlinear Optimization Examples

The following list contains detailed explanations of the elements of the options vec-
tor:

• opt[1]
indicates whether the problem is minimization or maximization. The default,
opt[1] = 0, specifies a minimization problem, and opt[1] = 1 specifies a max-
imization problem. For least squares problems, opt[1] = m specifies the num-
ber of functions or observations, which is the number of values returned by the
“fun” module. This information is necessary to allocate memory for the return
vector of the “fun” module.

• opt[2]
specifies the amount of output printed by the subroutine. The higher the value
of opt[2], the more printed output is produced. The following table indicates
the specific items printed for each value.

Value of opt[2] Printed Output
0 No printed output is produced. This is the default.
1 The summaries for optimization start and termination are

produced, as well as the iteration history.
2 The initial and final parameter estimates are also printed.
3 The values of the termination criteria and other control pa-

rameters are also printed.
4 The parameter vector, x, is also printed after each iteration.
5 The gradient vector, g, is also printed after each iteration.

• opt[3]
selects a scaling for the Hessian matrix, G. This option is relevant only for the
NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. If opt[3] 6=
0, the first iteration and each restart iteration set the diagonal scaling matrix
D(0) = diag(d(0)

i), where

d
(0)
i =

√
max(|G(0)

i,i |, ε)

and G(0)
i,i are the diagonal elements of the Hessian matrix, and ε is the ma-

chine precision. The diagonal scaling matrix D(0) = diag(d(0)
i) is updated as

indicated in the following table.

Options Vector � 349

Value of opt[3] Scaling Update
0 No scaling is done.
1 Moré (1978) scaling update:

d
(k+1)
i = max

(
d

(k)
i ,

√
max(|G(k)

i,i |, ε)
)

2 Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max

(
0.6 ∗ d(k)

i ,

√
max(|G(k)

i,i |, ε)
)

3 di is reset in each iteration: d(k+1)
i =

√
max(|G(k)

i,i |, ε)

For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is
opt[3] = 0; for the NLPLM subroutine, the default is opt[3] = 1.

• opt[4]
defines the update technique for (dual) quasi-Newton and conjugate gradi-
ent techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and
NLPQN subroutines. For the NLPCG subroutine, the following update tech-
niques are available.

Value of opt[4] Update Method for NLPCG
1 automatic restart method of Powell (1977) and Beale

(1972). This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 conjugate-descent update of Fletcher (1987)

For the unconstrained or linearly constrained NLPQN subroutine, the following
update techniques are available.

Value of opt[4] Update Method for NLPQN
1 dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS)

update of the Cholesky factor of the Hessian matrix. This is
the default.

2 dual Davidon, Fletcher, and Powell (DDFP) update of the
Cholesky factor of the Hessian matrix

3 original Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update of the inverse Hessian matrix

4 original Davidon, Fletcher, and Powell (DFP) update of the
inverse Hessian matrix

For the NLPQN subroutine used with the “nlc” module and for the NLPDD
and NLPHQN subroutines, only the first two update techniques in the second
table are available.

350 � Chapter 11. Nonlinear Optimization Examples

• opt[5]
defines the line-search technique for the unconstrained or linearly constrained
NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subrou-
tines. Refer to Fletcher (1987) for an introduction to line-search techniques.
The following table describes the available techniques.

Value of opt[5] Line-Search Method
1 This method needs the same number of function and gradient calls

for cubic interpolation and cubic extrapolation; it is similar to a
method used by the Harwell subroutine library.

2 This method needs more function than gradient calls for quadratic
and cubic interpolation and cubic extrapolation; it is imple-
mented as shown in Fletcher (1987) and can be modified to ex-
act line search with the par[6] argument (see the section “Control
Parameters Vector” on page 359). This is the default for the
NLPCG, NLPNRA, and NLPQN subroutines.

3 This method needs the same number of function and gradient calls
for cubic interpolation and cubic extrapolation; it is implemented
as shown in Fletcher (1987) and can be modified to exact line
search with the par[6] argument.

4 This method needs the same number of function and gradient calls
for stepwise extrapolation and cubic interpolation.

5 This method is a modified version of the opt[5]=4 method.
6 This method is the golden section line search of Polak (1971),

which uses only function values for linear approximation.
7 This method is the bisection line search of Polak (1971), which

uses only function values for linear approximation.
8 This method is the Armijo line-search technique of Polak (1971),

which uses only function values for linear approximation.

For the NLPHQN least squares subroutine, the default is a special line-search
method that is based on an algorithm developed by Lindström and Wedin
(1984). Although it needs more memory, this method sometimes works bet-
ter with large least squares problems.

• opt[6]
is used only for the NLPHQN subroutine and the NLPQN subroutine with
nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hy-
brid algorithm to step in a Gauss-Newton or a quasi-Newton search direction.
You can specify one of the three criteria that correspond to the methods of
Fletcher and Xu (1987). The methods are HY1 (opt[6]=1), HY2 (opt[6]=2),
and HY3 (opt[6]=2), and the default is HY2.

In the NLPQN subroutine with nonlinear constraints, it defines the version of
the algorithm used to update the vector µ of the Lagrange multipliers. The

Options Vector � 351

default is opt[6]=2, which specifies the approach of Powell (1982a,b). You can
specify the approach of Powell (1978b) with opt[6]=1.

• opt[7]
defines the type of start matrix, G(0), used for the Hessian approximation. This
option applies only to the NLPDD, NLPHQN, and NLPQN subroutines. If
opt[7]=0, which is the default, the quasi-Newton algorithm starts with a multi-
ple of the identity matrix where the scalar factor depends on par[10]; otherwise,
it starts with the Hessian matrix computed at the starting point x(0).

• opt[8]
defines the type of finite-difference approximation used to compute first- or
second-order derivatives and whether the finite-difference intervals, h, should
be computed by using an algorithm of Gill et al. (1983). The value of opt[8] is
a two-digit integer, ij.

If opt[8] is missing or j = 0, the fast but not very precise for-
ward difference formulas are used; if j 6= 0, the numerically
more expensive central-difference formulas are used.
If opt[8] is missing or i 6= 1, 2, or 3, the finite-difference
intervals h are based only on the information of par[8] or
par[9], which specifies the number of accurate digits to
use in evaluating the objective function and nonlinear con-
straints, respectively. If i = 1, 2, or 3, the intervals are com-
puted with an algorithm by Gill et al. (1983). For i = 1,
the interval is based on the behavior of the objective func-
tion; for i = 2, the interval is based on the behavior of the
nonlinear constraint functions; and for i = 3, the interval is
based on the behavior of both the objective function and the
nonlinear constraint functions.

The algorithm of Gill et al. (1983) that computes the finite-difference inter-
vals hj can be very expensive in the number of function calls it uses. If this
algorithm is required, it is performed twice, once before the optimization pro-
cess starts and once after the optimization terminates. See the section “Finite-
Difference Approximations of Derivatives” on page 342 for details.

• opt[9]
indicates that the Hessian module “hes” returns a sparse definition of the
Hessian, in the form of an nn × 3 matrix instead of the default dense n × n
matrix. If opt[9] is zero or missing, the Hessian module must return a dense
n × n matrix. If you specify opt[9] = nn, the module must return a sparse
nn × 3 table. See the section “Objective Function and Derivatives” on page
337 for more details. This option applies only to the NLPNRA algorithm. If
the dense specification contains a large proportion of analytical zero deriva-
tives, the sparse specification can save memory and computer time.

352 � Chapter 11. Nonlinear Optimization Examples

• opt[10]
specifies the total number of nonlinear constraints returned by the “nlc” mod-
ule. If you specify nc nonlinear constraints with the “nlc” argument module,
you must specify opt[10] = nc to allocate memory for the return vector.

• opt[11]
specifies the number of nonlinear equality constraints returned by the “nlc”
module. If the first nec constraints are equality constraints, you must specify
opt[11] = nec. The default value is opt[11] = 0.

Termination Criteria

The input argument tc specifies a vector of bounds corresponding to a set of termina-
tion criteria that are tested in each iteration. If you do not specify an IML module with
the “ptit” argument, these bounds determine when the optimization process stops.

If you specify the “ptit” argument, the “tc” argument is ignored. The module speci-
fied by the “ptit” argument replaces the subroutine that is used by default to test the
termination criteria. The module is called in each iteration with the current location,
x, and the value, f , of the objective function at x. The module must give a return
code, rc, that decides whether the optimization process is to be continued or termi-
nated. As long as the module returns rc = 0, the optimization process continues.
When the module returns rc 6= 0, the optimization process stops.

If you use the tc vector, the optimization techniques stop the iteration process when at
least one of the corresponding set of termination criteria are satisfied. Table 11.3 and
Table 11.4 indicate the criterion associated with each element of the tc vector. There
is a default for each criterion, and if you specify a missing value for the corresponding
element of the tc vector, the default value is used. You can avoid termination with
respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2,
and XTOL criteria by specifying a value of zero for the corresponding element of the
tc vector.

Table 11.3. Termination Criteria for the NLPNMS Subroutine
Index Description

1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative function criterion (FTOL)
5 relative function criterion (FTOL2)
6 absolute function criterion (ABSFTOL)
7 FSIZE value used in FTOL criterion
8 relative parameter criterion (XTOL)
9 absolute parameter criterion (ABSXTOL)
9 size of final trust-region radius ρ (COBYLA algorithm)
10 XSIZE value used in XTOL criterion

Termination Criteria � 353

Table 11.4. Termination Criteria for Other Subroutines
Index Description

1 maximum number of iterations (MAXIT)
2 maximum number of function calls (MAXFU)
3 absolute function criterion (ABSTOL)
4 relative gradient criterion (GTOL)
5 relative gradient criterion (GTOL2)
6 absolute gradient criterion (ABSGTOL)
7 relative function criterion (FTOL)
8 predicted function reduction criterion (FTOL2)
9 absolute function criterion (ABSFTOL)
10 FSIZE value used in GTOL and FTOL criterion
11 relative parameter criterion (XTOL)
12 absolute parameter criterion (ABSXTOL)
13 XSIZE value used in XTOL criterion

Criteria Used by All Techniques

The following list indicates the termination criteria that are used with all the opti-
mization techniques:

• tc[1]
specifies the maximum number of iterations in the optimization process
(MAXIT). The default values are

NLPNMS: MAXIT=1000
NLPCG: MAXIT=400
Others: MAXIT=200

• tc[2]
specifies the maximum number of function calls in the optimization process
(MAXFU). The default values are

NLPNMS: MAXFU=3000
NLPCG: MAXFU=1000
Others: MAXFU=500

• tc[3]
specifies the absolute function convergence criterion (ABSTOL). For mini-
mization, termination requires f (k) = f(x(k)) ≤ ABSTOL, while for maxi-
mization, termination requires f (k) = f(x(k)) ≥ ABSTOL. The default values
are the negative and positive square roots of the largest double precision value,
for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization
problem into a series of smaller problems.

354 � Chapter 11. Nonlinear Optimization Examples

Termination Criteria for NLPNMS

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination
criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell’s COBYLA algorithm, it uses
only one criterion other than the three used by all the optimization techniques. The
COBYLA algorithm is a trust-region method that sequentially reduces the radius, ρ,
of a spheric trust region from the start radius, ρbeg, which is controlled with the par[2]
argument, to the final radius, ρend, which is controlled with the tc[9] argument. The
default value for tc[9] is ρend =1E−4. Convergence to small values of ρend can
take many calls of the function and constraint modules and might result in numerical
problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex
algorithm uses several other termination criteria, which are described in the following
list:

• tc[4]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative difference between the function values of the vertices in
the simplex with the largest and smallest function values.

|f (k)
hi − f

(k)
lo |

max(|f (k)
hi)|,FSIZE)

≤ FTOL

where FSIZE is defined by tc[7]. The default value is tc[4] = 10−FDIGITS,
where FDIGITS is controlled by the par[8] argument. The par[8] argument
has a default value of log10(ε), where ε is the machine precision. Hence, the
default value for FTOL is ε.

• tc[5]
specifies another relative function convergence criterion (FTOL2). Termination
requires a small standard deviation of the function values of the n+ 1 simplex
vertices x(k)

0 , . . . , x
(k)
n .√

1
n+ 1

∑
l

(f(x(k)
l)− f(x(k)))2 ≤ FTOL2

where f(x(k)) = 1
n+1

∑
l f(x(k)

l). If there are a active boundary constraints
at x(k), the mean and standard deviation are computed only for the n + 1 − a
unconstrained vertices. The default is tc[5] =1E−6.

• tc[6]
specifies the absolute function convergence criterion (ABSFTOL). Termination

Termination Criteria � 355

requires a small absolute difference between the function values of the vertices
in the simplex with the largest and smallest function values.

|f (k)
hi − f

(k)
lo | ≤ ABSFTOL

The default is tc[6] = 0.

• tc[7]
specifies the FSIZE value used in the FTOL termination criterion. The default
is tc[7] = 0.

• tc[8]
specifies the relative parameter convergence criterion (XTOL). Termination
requires a small relative parameter difference between the vertices with the
largest and smallest function values.

maxj |xlo
j − xhi

j |
max(|xlo

j |, |xhi
j |,XSIZE)

≤ XTOL

The default is tc[8] =1E−8.

• tc[9]
specifies the absolute parameter convergence criterion (ABSXTOL).
Termination requires either a small length, α(k), of the vertices of a restart
simplex or a small simplex size, δ(k).

α(k) ≤ ABSXTOL

δ(k) ≤ ABSXTOL

where δ(k) is defined as the L1 distance of the simplex vertex with the smallest
function value, y(k), to the other n simplex points, x(k)

l 6= y.

δ(k) =
∑
xl 6=y

‖ x(k)
l − y(k) ‖1

The default is tc[9] =1E−8.

• tc[10]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[10] = 0.

356 � Chapter 11. Nonlinear Optimization Examples

Termination Criteria for Unconstrained and Linearly Constrained Techniques

• tc[4]
specifies the relative gradient convergence criterion (GTOL). For all techniques
except the NLPCG subroutine, termination requires that the normalized pre-
dicted function reduction is small.

g(x(k))T [G(k)]−1g(x(k))
max(|f(x(k))|,FSIZE)

≤ GTOL

where FSIZE is defined by tc[10]. For the NLPCG technique (where a reliable
Hessian estimate is not available),

‖ g(x(k)) ‖2
2 ‖ s(x(k)) ‖2

‖ g(x(k))− g(x(k−1)) ‖2 max(|f(x(k))|,FSIZE)
≤ GTOL

is used. The default is tc[4] =1E−8.

• tc[5]
specifies another relative gradient convergence criterion (GTOL2). This crite-
rion is used only by the NLPLM subroutine.

max
j

|gj(x(k))|√
f(x(k))G(k)

j,j

≤ GTOL2

The default is tc[5]=0.

• tc[6]
specifies the absolute gradient convergence criterion (ABSGTOL).
Termination requires that the maximum absolute gradient element be
small.

max
j
|gj(x(k))| ≤ ABSGTOL

The default is tc[6] =1E−5.

• tc[7]
specifies the relative function convergence criterion (FTOL). Termination re-
quires a small relative change of the function value in consecutive iterations.

|f(x(k))− f(x(k−1))|
max(|f(x(k−1))|, FSIZE)

≤ FTOL

where FSIZE is defined by tc[10]. The default is tc[7] = 10−FDIGITS, where
FDIGITS is controlled by the par[8] argument. The par[8] argument has a
default value of log10(ε), where ε is the machine precision. Hence, the default
for FTOL is ε.

Termination Criteria � 357

• tc[8]
specifies another function convergence criterion (FTOL2). For least squares
problems, termination requires a small predicted reduction of the objective
function, df (k) ≈ f(x(k))−f(x(k)+s(k)). The predicted reduction is computed
by approximating the objective function by the first two terms of the Taylor se-
ries and substituting the Newton step, s(k) = −G(k)−1g(k), as follows:

df (k) = −g(k)T s(k) − 1
2
s(k)TG(k)s(k)

= −1
2
s(k)T g(k)

≤ FTOL2

The FTOL2 criterion is the unscaled version of the GTOL criterion. The default
is tc[8]=0.

• tc[9]
specifies the absolute function convergence criterion (ABSFTOL). Termination
requires a small change of the function value in consecutive iterations.

|f(x(k−1))− f(x(k))| ≤ ABSFTOL

The default is tc[9]=0.

• tc[10]
specifies the FSIZE value used in the GTOL and FTOL termination criteria.
The default is tc[10]=0.

• tc[11]
specifies the relative parameter convergence criterion (XTOL). Termination re-
quires a small relative parameter change in consecutive iterations.

maxj |x(k)
j − x

(k−1)
j |

max(|x(k)
j |, |x(k−1)

j |,XSIZE)
≤ XTOL

The default is tc[11]=0.

• tc[12]
specifies the absolute parameter convergence criterion (ABSXTOL).
Termination requires a small Euclidean distance between parameter vectors in
consecutive iterations.

‖ x(k) − x(k−1) ‖2≤ ABSXTOL

The default is tc[12]=0.

• tc[13]
specifies the XSIZE value used in the XTOL termination criterion. The default
is tc[13]=0.

358 � Chapter 11. Nonlinear Optimization Examples

Termination Criteria for Nonlinearly Constrained Techniques

The only algorithm available for nonlinearly constrained optimization other than the
NLPNMS subroutine is the NLPQN subroutine, when you specify the “nlc” module
argument. This method, unlike the other optimization methods, does not monotoni-
cally reduce the value of the objective function or some kind of merit function that
combines objective and constraint functions. Instead, the algorithm uses the watch-
dog technique with backtracking of Chamberlain et al. (1982). Therefore, no ter-
mination criteria are implemented that are based on the values x or f in consecutive
iterations. In addition to the criteria used by all optimization techniques, there are
three other termination criteria available; these are based on the Lagrange function

L(x, λ) = f(x)−
m∑

i=1

λici(x)

and its gradient

∇xL(x, λ) = g(x)−
m∑

i=1

λi∇xci(x)

where m denotes the total number of constraints, g = g(x) is the gradient of the
objective function, and λ is the vector of Lagrange multipliers. The Kuhn-Tucker
conditions require that the gradient of the Lagrange function is zero at the optimal
point (x∗, λ∗), as follows:

∇xL(x∗, λ∗) = 0

• tc[4]
specifies the GTOL criterion, which requires that the normalized predicted
function reduction be small.

|g(x(k))s(x(k))|+
∑m

i=1 |λici(x(k))|
max(|f(x(k))|,FSIZE)

≤ GTOL

where FSIZE is defined by the tc[10] argument. The default is tc[4] =1E−8.

• tc[6]
specifies the ABSGTOL criterion, which requires that the maximum absolute
gradient element of the Lagrange function be small.

max
j
|{∇xL(x(k), λ(k))}j | ≤ ABSGTOL

The default is tc[6] =1E−5.

Control Parameters Vector � 359

• tc[8]
specifies the FTOL2 criterion, which requires that the predicted function re-
duction be small.

|g(x(k))s(x(k))|+
m∑

i=1

|λici| ≤ FTOL2

The default is tc[8] =1E−6. This is the criterion used by the programs
VMCWD and VF02AD of Powell (1982b).

Control Parameters Vector

For all optimization and least squares subroutines, the input argument par specifies
a vector of parameters that control the optimization process. For the NLPFDD and
NLPFEA subroutines, the par argument is defined differently. For each element of the
par vector there exists a default value, and if you specify a missing value, the default
is used. Table 11.5 summarizes the uses of the par argument for the optimization and
least squares subroutines.

Table 11.5. Summary of the Control Parameters Vector
Index Description

1 specifies the singularity criterion (SINGULAR)
2 specifies the initial step length or trust-region radius
3 specifies the range for active (violated) constraints (LCEPS)
4 specifies the Lagrange multiplier threshold for constraints (LCDEACT)
5 specifies a criterion to determine linear dependence of constraints

(LCSING)
6 specifies the required accuracy of the line-search algorithms

(LSPRECISION)
7 reduces the line-search step size in successive iterations (DAMPSTEP)
8 specifies the number of accurate digits used in evaluating the objective

function (FDIGITS)
9 specifies the number of accurate digits used in evaluating the nonlinear

constraints (CDIGITS)
10 specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)

• par[1]
specifies the singularity criterion for the decomposition of the Hessian matrix
(SINGULAR). The value must be between zero and one, and the default is
par[1] =1E−8.

• par[2]
specifies different features depending on the subroutine in which it is used.
In the NLPNMS subroutine, it defines the size of the start simplex. For the
original Nelder-Mead simplex algorithm, the default value is par[2] = 1; for

360 � Chapter 11. Nonlinear Optimization Examples

the COBYLA algorithm, the default is par[2] = 0.5. In the NLPCG, NLPQN,
and NLPHQN subroutines, the par[2] argument specifies an upper bound for
the initial step length for the line search during the first five iterations. The
default initial step length is par[2] = 1. In the NLPTR, NLPDD, and NLPLM
subroutines, the par[2] argument specifies a factor for the initial trust-region
radius, ∆. For highly nonlinear functions, the default step length or trust-
region radius can result in arithmetic overflows. In that case, you can specify
stepwise decreasing values of par[2], such as par[2]=1E−1, par[2]=1E−2,
par[2]=1E−4, until the subroutine starts to iterate successfully.

• par[3]
specifies the range (LCEPS) for active and violated linear constraints. The
ith constraint is considered an active constraint if the point x(k) satisfies the
condition∣∣∣∣∣∣

n∑
j=1

aijx
(k)
j − bi

∣∣∣∣∣∣ ≤ LCEPS(|bi|+ 1)

where LCEPS is the value of par[3] and aij and bi are defined as in the section
“Parameter Constraints” on page 345. Otherwise, the constraint i is either an
inactive inequality or a violated inequality or equality constraint. The default is
par[3] =1E−8. During the optimization process, the introduction of rounding
errors can force the subroutine to increase the value of par[3] by a power of 10,
but the value never becomes larger than 1E−3.

• par[4]
specifies a threshold (LCDEACT) for the Lagrange multiplier that decides
whether an active inequality constraint must remain active or can be deac-
tivated. For maximization, par[4] must be positive, and for minimization,
par[4] must be negative. The default is

par[4] = ±min
(
0.01,max

(
0.1× ABSGTOL, 0.001× gmax(k)

))
where the positive value is for maximization and the negative value is for mini-
mization. ABSGTOL is the value of the absolute gradient criterion, and gmax(k)

is the maximum absolute element of the gradient, g(k), or the projected gradi-
ent, ZT g(k).

• par[5]
specifies a criterion (LCSING) used in the update of the QR decomposition
that decides whether an active constraint is linearly dependent on a set of other
active constraints. The default is par[5] =1E−8. As the value of par[5] in-
creases, more active constraints are recognized as being linearly dependent. If
the value of par[5] is larger than 0.1, it is reset to 0.1, and if it is negative, it is
reset to zero.

Control Parameters Vector � 361

• par[6]
specifies the degree of accuracy (LSPRECISION) that should be obtained by
the second or third line-search algorithm. This argument can be used with the
NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm
if the “nlc” argument is specified. Usually, an imprecise line search is compu-
tationally inexpensive and successful, but for more difficult optimization prob-
lems, a more precise and time consuming line search can be necessary. Refer
to Fletcher (1987) for details. If you have numerical problems, you should de-
crease the value of the par[6] argument to obtain a more precise line search.
The default values are given in the following table.

Subroutine Update Method Default value
NLPCG All par[6] = 0.1
NLPHQN DBFGS par[6] = 0.1
NLPHQN DDFP par[6] = 0.06
NLPNRA No update par[6] = 0.9
NLPQN BFGS, DBFGS par[6] = 0.4
NLPQN DFP, DDFP par[6] = 0.06

• par[7]
specifies a scalar factor (DAMPSTEP) that can be used to reduce the step size
in each of the first five iterations. In each of these iterations, the starting step
size, α(0), can be no larger than the value of par[7] times the step size obtained
by the line-search algorithm in the previous iteration. If par[7] is missing or
ifpar[7]=0, which is the default, the starting step size in iteration t is computed
as a function of the function change from the former iteration, f (t−1) − f (t).
If the computed value is outside the interval [0.1, 10.0], it is moved to the next
endpoint. You can further restrict the starting step size in the first five iterations
with the par[2] argument.

• par[8]
specifies the number of accurate digits (FDIGITS) used to evaluate the objec-
tive function. The default is − log10(ε), where ε is the machine precision, and
fractional values are permitted. This value is used to compute the step size h
for finite-difference derivatives and the default value for the FTOL termination
criterion.

• par[9]
specifies the number of accurate digits (CDIGITS) used to evaluate the nonlin-
ear constraint functions of the “nlc” module. The default is − log10(ε), where
ε is the machine precision, and fractional values are permitted. The value is
used to compute the step size h for finite-difference derivatives. If first-order
derivatives are specified by the “jacnlc” module, the par[9] argument is ig-
nored.

362 � Chapter 11. Nonlinear Optimization Examples

• par[10]
specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian
approximation. This argument is available in the NLPDD, NLPHQN, and
NLPQN subroutines. If the opt[7] argument is not specified, the initial Hessian
approximation is a multiple of the identity matrix determined by the magni-
tude of the initial gradient g(x(0)). The value of the par[10] argument is used
to specify par[10]× I for the initial Hessian in the quasi-Newton algorithm.

Printing the Optimization History

Each optimization and least squares subroutine prints the optimization history, as
long as opt[2] ≥ 1 and you do not specify the “ptit” module argument. You can
use this output to check for possible convergence problems. If you specify the “ptit”
argument, you can enter a print command inside the module, which is called at each
iteration.

The amount of information printed depends on the opt[2] argument. See the section
“Options Vector” on page 347.

The output consists of three main parts:

• Optimization Start Output
The following information about the initial state of the optimization can be
printed:

– the number of constraints that are active at the starting point, or, more
precisely, the number of constraints that are currently members of the
working set. If this number is followed by a plus sign (+), there are more
active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the starting point
– the value of the largest absolute (projected) gradient element
– the initial trust-region radius for the NLPTR and NLPLM subroutines

• General Iteration History
In general, the iteration history consists of one line of printed output for each it-
eration, with the exception of the Nelder-Mead simplex method. The NLPNMS
subroutine prints a line only after several internal iterations because some of the
termination tests are time-consuming compared to the simplex operations and
because the subroutine typically uses many iterations.

The iteration history always includes the following columns:

– iter is the iteration number.
– nrest is the number of iteration restarts.
– nfun is the number of function calls.
– act is the number of active constraints.
– optcrit is the value of the optimization criterion.
– difcrit is the difference between adjacent function values.

Example 11.1. Chemical Equilibrium � 363

– maxgrad is the maximum of the absolute (projected) gradient compo-
nents.

An apostrophe trailing the number of active constraints indicates that at least
one of the active constraints was released from the active set due to a significant
Lagrange multiplier.

Some subroutines print additional information at each iteration; for details
see the entry corresponding to each subroutine in the section “Nonlinear
Optimization and Related Subroutines” on page 791.

• Optimization Result Output
The output ends with the following information about the optimization result:

– the number of constraints that are active at the final point, or more pre-
cisely, the number of constraints that are currently members of the work-
ing set. When this number is followed by a plus sign (+), there are more
active constraints, at least one of which is temporarily released from the
working set due to negative Lagrange multipliers.

– the value of the objective function at the final point
– the value of the largest absolute (projected) gradient element

Nonlinear Optimization Examples

Example 11.1. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming. It
appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that
satisfy the mixture’s chemical equilibrium state. The second law of thermodynamics
implies that at a constant temperature and pressure, a mixture of chemicals satisfies
its chemical equilibrium state when the free energy of the mixture is reduced to a
minimum. Therefore, the composition of the chemicals satisfying its chemical equi-
librium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:

m number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compound j, j = 1, . . . , n
s total number of moles in the mixture, s =

∑n
i=1 xj

aij number of atoms of element i in a molecule of compound j
bi atomic weight of element i in the mixture i = 1, . . . , n

The constraints for the mixture are as follows. Each of the compounds must have a
nonnegative number of moles.

xj ≥ 0, j = 1, . . . , n

364 � Chapter 11. Nonlinear Optimization Examples

There is a mass balance relationship for each element. Each relation is given by a
linear equality constraint.

n∑
j=1

aijxj = bi, i = 1, . . . ,m

The objective function is the total free energy of the mixture.

f(x) =
n∑

j=1

xj

[
cj + ln

(xj

s

)]

where

cj =
(
F 0

RT

)
j

+ ln(P)

and
(
F 0/RT

)
j

is the model standard free energy function for the jth compound. The
value of

(
F 0/RT

)
j

is found in existing tables. P is the total pressure in atmospheres.

The problem is to determine the parameters xj that minimize the objective function
f(x) subject to the nonnegativity and linear balance constraints. To illustrate this,
consider the following situation. Determine the equilibrium composition of com-
pound 1

2N2H4 + 1
2O2 at temperature T = 3500◦K and pressure P = 750 psi. The

following table gives a summary of the information necessary to solve the problem.

aij

i=1 i=2 i=3
j Compound (F 0/RT)j cj H N O
1 H −10.021 −6.089 1
2 H2 −21.096 −17.164 2
3 H2O −37.986 −34.054 2 1
4 N −9.846 −5.914 1
5 N2 −28.653 −24.721 2
6 NH −18.918 −14.986 1 1
7 NO −28.032 −24.100 1 1
8 O −14.640 −10.708 1
9 O2 −30.594 −26.662 2

10 OH −26.111 −22.179 1 1

The following statements solve the minimization problem:

proc iml;
c = { -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179 };
start F_BRACK(x) global(c);

s = x[+];

Example 11.1. Chemical Equilibrium � 365

f = sum(x # (c + log(x / s)));
return(f);

finish F_BRACK;

con = { ,
. ,
1. 2. 2. . . 1. . . . 1. 0. 2. ,
. . . 1. 2. 1. 1. . . . 0. 1. ,
. . 1. . . . 1. 1. 2. 1. 0. 1. };

con[1,1:10] = 1.e-6;

x0 = j(1,10, .1);
optn = {0 3};

title ’NLPTR subroutine: No Derivatives’;
call nlptr(xres,rc,"F_BRACK",x0,optn,con);

The F-BRACK module specifies the objective function, f(x). The matrix CON spec-
ifies the constraints. The first row gives the lower bound for each parameter, and to
prevent the evaluation of the log(x) function for values of x that are too small, the
lower bounds are set here to 1E−6. The following three rows contain the three linear
equality constraints.

The starting point, which must be given to specify the number of parameters, is rep-
resented by X0. The first element of the OPTN vector specifies a minimization prob-
lem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no
analytic derivatives are specified, the F-BRACK module is used to generate finite-
difference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any
problems.

366 � Chapter 11. Nonlinear Optimization Examples

Optimization Start

Active Constraints 3 Objective Function -45.05516448
Max Abs Gradient 4.4710303342 Radius 1
Element

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33413 2.2790 4.3613 2.456 1.000
2 0 3 3’ -47.70051 0.3664 7.0044 0.908 0.418
3 0 4 3 -47.73117 0.0307 5.3051 0 0.359
4 0 5 3 -47.73426 0.00310 3.7015 0 0.118
5 0 6 3 -47.73982 0.00555 2.3054 0 0.0169
6 0 7 3 -47.74846 0.00864 1.3029 90.184 0.00476
7 0 9 3 -47.75796 0.00950 0.5073 0 0.0134
8 0 10 3 -47.76094 0.00297 0.0988 0 0.0124
9 0 11 3 -47.76109 0.000155 0.00447 0 0.0111
10 0 12 3 -47.76109 3.385E-7 0.000011 0 0.00332

Optimization Results

Iterations 10 Function Calls 13
Hessian Calls 11 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient 7.3901293E-6

Element
Lambda 0 Actual Over Pred 0

Change
Radius 0.0033214552

The output lists the optimal parameters with the gradient.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.040668 -9.785055
2 X2 0.147730 -19.570111
3 X3 0.783154 -34.792170
4 X4 0.001414 -12.968920
5 X5 0.485247 -25.937841
6 X6 0.000693 -22.753976
7 X7 0.027399 -28.190992
8 X8 0.017947 -15.222060
9 X9 0.037314 -30.444119

10 X10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution.

Example 11.2. Network Flow and Delay � 367

Linear Constraints Evaluated at Solution

[1] ACT -3.053E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2
+ 2.0000 * X3 + 1.0000 * X6 + 1.0000 * X10

[2] ACT -1.735E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5
+ 1.0000 * X6 + 1.0000 * X7

[3] ACT -1.527E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7
+ 1.0000 * X8 + 2.0000 * X9 + 1.0000 * X10

The Lagrange multipliers and the projected gradient are also printed. The elements
of the projected gradient must be small to satisfy a first-order optimality condition.

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] -9.785055
Linear EC [2] -12.968922
Linear EC [3] -15.222061

Projected Gradient

Free Projected
Dimension Gradient

1 0.000000328
2 -9.703359E-8
3 3.2183113E-8
4 -0.000007390
5 -0.000005172
6 -0.000005669
7 -0.000000937

Example 11.2. Network Flow and Delay

The following example is taken from the user’s guide of the GINO program (Liebman
et al. 1986). A simple network of five roads (arcs) can be illustrated by a path
diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute,
F vehicles enter and leave the network. The parameter xij refers to the flow from
node i to node j. The requirement that traffic that flows into each intersection j must
also flow out is described by the linear equality constraint

∑
i

xij =
∑

i

xji , j = 1, . . . , n

368 � Chapter 11. Nonlinear Optimization Examples

In general, roads also have an upper limit on the number of vehicles that can be han-
dled per minute. These limits, denoted cij , can be enforced by boundary constraints:

0 ≤ xij ≤ cij

The goal in this problem is to maximize the flow, which is equivalent to maximizing
the objective function f(x), where f(x) is

f(x) = x24 + x34

The boundary constraints are

0 ≤ x12, x32, x34 ≤ 10
0 ≤ x13, x24 ≤ 30

and the flow constraints are

x13 = x32 + x34

x24 = x12 + x32

x12 + x13 = x24 + x34

The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the optimization subroutine. The following notation is used in this
example:

X1 = x12, X2 = x13, X3 = x32, X4 = x24, X5 = x34

Even though the NLPCG subroutine is used, any other optimization subroutine would
also solve this small problem. The following code finds the maximum flow:

proc iml;
title ’Maximum Flow Through a Network’;
start MAXFLOW(x);

f = x[4] + x[5];
return(f);

finish MAXFLOW;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
1. 1. 0. -1. -1. 0. 0. };

x = j(1,5, 1.);
optn = {1 3};
call nlpcg(xres,rc,"MAXFLOW",x,optn,con);

Example 11.2. Network Flow and Delay � 369

The optimal solution is shown in the following output.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 10.000000 0 Upper BC
2 X2 10.000000 0
3 X3 10.000000 1.000000 Upper BC
4 X4 20.000000 1.000000
5 X5 -1.11022E-16 0 Lower BC

Value of Objective Function = 30

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, the LP procedure or the NETFLOW
procedure of the SAS/OR product can be used. On the other hand, finding a traffic
pattern that minimizes the total delay to move F vehicles per minute from node 1 to
node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic
volume increases, speed decreases. Let tij be the travel time on arc (i, j) and assume
that the following formulas describe the travel time as decreasing functions of the
amount of traffic:

t12 = 5 + 0.1x12/(1− x12/10)
t13 = x13/(1− x13/30)
t32 = 1 + x32/(1− x32/10)
t24 = x24/(1− x24/30)
t34 = 5 + x34/(1− x34/10)

These formulas use the road capacities (upper bounds), and you can assume that
F = 5 vehicles per minute have to be moved through the network. The objective is
now to minimize

f = f(x) = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

The constraints are

0 ≤ x12, x32, x34 ≤ 10
0 ≤ x13, x24 ≤ 30

x13 = x32 + x34

x24 = x12 + x32

x24 + x34 = F = 5

370 � Chapter 11. Nonlinear Optimization Examples

In the following code, the NLPNRR subroutine is used to solve the minimization
problem:

proc iml;
title ’Minimize Total Delay in Network’;
start MINDEL(x);

t12 = 5. + .1 * x[1] / (1. - x[1] / 10.);
t13 = x[2] / (1. - x[2] / 30.);
t32 = 1. + x[3] / (1. - x[3] / 10.);
t24 = x[4] / (1. - x[4] / 30.);
t34 = 5. + .1 * x[5] / (1. - x[5] / 10.);
f = t12*x[1] + t13*x[2] + t32*x[3] + t24*x[4] + t34*x[5];
return(f);

finish MINDEL;

con = { 0. 0. 0. 0. 0. . . ,
10. 30. 10. 30. 10. . . ,
0. 1. -1. 0. -1. 0. 0. ,
1. 0. 1. -1. 0. 0. 0. ,
0. 0. 0. 1. 1. 0. 5. };

x = j(1,5, 1.);
optn = {0 3};
call nlpnrr(xres,rc,"MINDEL",x,optn,con);

The optimal solution is shown in the following output.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.500001 5.777778
2 X2 2.499999 5.702478
3 X3 5.551115E-17 1.000000 Lower BC
4 X4 2.500001 5.702481
5 X5 2.499999 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are
shown in the following output.

Example 11.3. Compartmental Analysis � 371

Linear Constraints Evaluated at Solution

[1] ACT 0 = 0 + 1.0000 * X2 - 1.0000 * X3 - 1.0000 * X5

[2] ACT 4.4409E-16 = 0 + 1.0000 * X1 + 1.0000 * X3 - 1.0000 * X4

[3] ACT 0 = -5.0000 + 1.0000 * X4 + 1.0000 * X5

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC X3 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777777
Linear EC [3] 11.480257

Example 11.3. Compartmental Analysis
Numerical Considerations

An important class of nonlinear models involves a dynamic description of the re-
sponse rather than an explicit description. These models arise often in chemical ki-
netics, pharmacokinetics, and ecological compartmental modeling. Two examples
are presented in this section. Refer to Bates and Watts (1988) for a more general
introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are
not done in full precision. Evaluating a function involves the numerical solution of
a differential equation with some prescribed precision. Therefore, two choices exist
for evaluating first- and second-order derivatives:

• differential equation approach

• finite-difference approach

In the differential equation approach, the components of the Hessian and the gradient
are written as a solution of a system of differential equations that can be solved si-
multaneously with the original system. However, the size of a system of differential
equations, n, would suddenly increase to n2+2n. This huge increase makes the finite
difference approach an easier one.

With the finite-difference approach, a very delicate balance of all the precision re-
quirements of every routine must exist. In the examples that follow, notice the rela-
tive levels of precision that are imposed on different modules. Since finite differences
are used to compute the first- and second-order derivatives, it is incorrect to set the
precision of the ODE solver at a coarse level because that would render the numerical
estimation of the finite differences worthless.

A coarse computation of the solution of the differential equation cannot be accom-
panied by very fine computation of the finite-difference estimates of the gradient and

372 � Chapter 11. Nonlinear Optimization Examples

the Hessian. That is, you cannot set the precision of the differential equation solver
to be 1E−4 and perform the finite difference estimation with a precision of 1E−10.
In addition, this precision must be well-balanced with the termination criteria im-
posed on the optimization process.

In general, if the precision of the function evaluation is O(ε), the gradient should
be computed by finite differences O(

√
ε), and the Hessian should be computed with

finite differences O(ε
1
3). ∗

Diffusion of Tetracycline

Consider the concentration of tetracycline hydrochloride in blood serum. The tetra-
cycline is administered to a subject orally, and the concentration of the tetracycline in
the serum is measured. The biological system to be modeled consists of two compart-
ments: a gut compartment in which tetracycline is injected and a blood compartment
that absorbs the tetracycline from the gut compartment for delivery to the body. Let
γ1(t) and γ2(t) be the concentrations at time t in the gut and the serum, respectively.
Let θ1 and θ2 be the transfer parameters. The model is depicted as follows.

Gut Compartment (Source)
Chemical is introduced

Concentration γ1(t)
-

Blood Compartment (Sink)
Chemical is absorbed
Concentration γ2(t)

?

θ1

θ2

The rates of flow of the drug are described by the following pair of ordinary differen-
tial equations:

dγ1(t)
dt

= −θ1γ1(t)

dγ2(t)
dt

= θ1γ1(t)− θ2γ2(t)

The initial concentration of the tetracycline in the gut is unknown, and while the
concentration in the blood can be measured at all times, initially it is assumed to be
zero. Therefore, for the differential equation, the initial conditions are given by

γ1(0) = θ3

γ2(0) = 0

Also, a nonnegativity constraint is imposed on the parameters θ1, θ2, and θ3, although
for numerical purposes, you might need to use a small value instead of zero for these
bounds (such as 1E−7).

∗In Release 6.09 and in later releases, you can specify the step size h in the finite-difference formu-
las.

Example 11.3. Compartmental Analysis � 373

Suppose yi is the observed serum concentration at time ti. The parameters are esti-
mated by minimizing the sum of squares of the differences between the observed and
predicted serum concentrations:∑

i

(yi − γ2(ti))
2

The following IML program illustrates how to combine the NLPDD subroutine and
the ODE subroutine to estimate the parameters (θ1, θ2, θ3) of this model. The input
data are the measurement time and the concentration of the tetracycline in the blood.
For more information about the ODE call, see the section “ODE Call” on page 827.

data tetra;
input t c @@;
datalines;

1 0.7 2 1.2 3 1.4 4 1.4 6 1.1
8 0.8 10 0.6 12 0.5 16 0.3
;

proc iml;
use tetra;
read all into tetra;
start f(theta) global(thmtrx,t,h,tetra,eps);

thmtrx = (-theta[1] || 0) //
(theta[1] || -theta[2]);

c = theta[3]//0 ;
t = 0 // tetra[,1];
call ode(r1, "der",c , t, h) j="jac" eps=eps;
f = ssq((r1[2,])‘-tetra[,2]);
return(f);

finish;

start der(t,x) global(thmtrx);
y = thmtrx*x;
return(y);

finish;

start jac(t,x) global(thmtrx);
y = thmtrx;
return(y);

finish;

h = {1.e-14 1. 1.e-5};
opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = { 1.e-13 . 1.e-10 };
con = j(1,3,0.);
itheta = { .1 .3 10};
eps = 1.e-11;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

374 � Chapter 11. Nonlinear Optimization Examples

The output from the optimization process is shown in Output 11.3.1.

Output 11.3.1. Printed Output for Tetracycline Diffusion Problem
Optimization Start

Parameter Estimates
Gradient Lower Upper

Objective Bound Bound
N Parameter Estimate Function Constraint Constraint

1 X1 0.100000 76.48208 0 .
2 X2 0.300000 -48.32095 0 .
3 X3 10.000000 1.66610 0 .

Value of Objective Function = 4.1469872335

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 3
Lower Bounds 3
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 4.1469872326
Max Abs Gradient 76.543381 Radius 1
Element

Max Abs Slope
Rest Func Act Objective Obj Fun Gradient Search

Iter arts Calls Con Function Change Element Lambda Direc

1 0 5 0 3.12117 1.0258 124.3 67.129 -8.023
2 0 6 0 0.89524 2.2259 14.1471 1.885 -5.021
3 0 7 0 0.32333 0.5719 3.7144 1.186 -0.786
.
.
.
31 0 38 0 0.03565 4.24E-11 3.196E-6 0 -18E-12

Example 11.3. Compartmental Analysis � 375

Output 11.3.1. (continued)
Optimization Results

Iterations 31 Function Calls 39
Gradient Calls 33 Active Constraints 0
Objective Function 0.035648021 Max Abs Gradient 3.195746E-6

Element

Optimization Results

Slope of Search -1.76538E-11 Radius 1
Direction

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.182440 -0.00251
2 X2 0.436010 0.00122
3 X3 6.020476 -0.0001875

Value of Objective Function = 0.0356480211

The differential equation model is linear, and in fact, it can be solved by using an
eigenvalue decomposition (this is not always feasible without complex arithmetic).
Alternately, the availability and the simplicity of the closed form representation of
the solution enable you to replace the solution produced by the ODE routine with
the simpler and faster analytical solution. Closed forms are not expected to be easily
available for nonlinear systems of differential equations, which is why the preceding
solution was introduced.

The closed form of the solution requires a change to the function f(·). The functions
needed as arguments of the ODE routine, namely the der and jac modules, can be
removed. Here is the revised code:

start f(th) global(theta,tetra);
theta = th;
vv = v(tetra[,1]);
error = ssq(vv-tetra[,2]);
return(error);

finish;

start v(t) global(theta);
v = theta[3]*theta[1]/(theta[2]-theta[1])*

(exp(-theta[1]*t)-exp(-theta[2]*t));
return(v);

finish;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

376 � Chapter 11. Nonlinear Optimization Examples

The parameter estimates, which are shown in Output 11.3.2, are close to those ob-
tained by the first solution.

Output 11.3.2. Second Set of Parameter Estimates for Tetracycline Diffusion
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.183025 -0.000003196
2 X2 0.434482 0.000002274
3 X3 5.995241 -0.000001035

Value of Objective Function = 0.0356467763

Because of the nature of the closed form of the solution, you might want to add an
additional constraint to guarantee that θ2 6= θ1 at any time during the optimization.
This prevents a possible division by 0 or a value near 0 in the execution of the v(·)
function. For example, you might add the constraint

θ2 − θ1 ≥ 10−7

Chemical Kinetics of Pyrolysis of Oil Shale
Pyrolysis is a chemical change effected by the action of heat, and this example con-
siders the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale
contains organic material that is bonded to the rock. To extract oil from the rock,
heat is applied, and the organic material is decomposed into oil, bitumen, and other
byproducts. The model is given by

dγ1(t)
dt

= −(θ1 + θ4)γ1(t)ι(t, θ5)

dγ2(t)
dt

= [θ1γ1(t)− (θ2 + θ3)γ2(t)]ι(t, θ5)

dγ3(t)
dt

= [θ4γ1(t) + θ2γ2(t)]ι(t, θ5)

with the initial conditions

γ1(t) = 100, γ2(t) = 0, γ3(t) = 0

A dead time is assumed to exist in the process. That is, no change occurs up to time
θ5. This is controlled by the indicator function ι(t, θ5), which is given by

ι(t, θ5) =
{

0 if t < θ5
1 if t ≥ θ5

where θ5 ≥ 0. Only one of the cases in Ziegel and Gorman (1980) is analyzed in
this report, but the others can be handled in a similar manner. The following IML
program illustrates how to combine the NLPQN subroutine and the ODE subroutine
to estimate the parameters θi in this model:

Example 11.3. Compartmental Analysis � 377

data oil (drop=temp);
input temp time bitumen oil;
datalines;

673 5 0. 0.
673 7 2.2 0.
673 10 11.5 0.7
673 15 13.7 7.2
673 20 15.1 11.5
673 25 17.3 15.8
673 30 17.3 20.9
673 40 20.1 26.6
673 50 20.1 32.4
673 60 22.3 38.1
673 80 20.9 43.2
673 100 11.5 49.6
673 120 6.5 51.8
673 150 3.6 54.7
;

proc iml;
use oil;
read all into a;

/**/
/* The INS function inserts a value given by FROM into a vector */
/* given by INTO, sorts the result, and posts the global matrix */
/* that can be used to delete the effects of the point FROM. */
/**/

start ins(from,into) global(permm);
in = into // from;
x = i(nrow(in));
permm = inv(x[rank(in),]);
return(permm*in);

finish;

start der(t,x) global(thmtrx,thet);
y = thmtrx*x;
if (t <= thet[5]) then y = 0*y;
return(y);

finish;

start jac(t,x) global(thmtrx,thet);
y = thmtrx;
if (t <= thet[5]) then y = 0*y;
return(y);

finish;

start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
thet = theta;
thmtrx = (-(theta[1]+theta[4]) || 0 || 0)//

(theta[1] || -(theta[2]+theta[3]) || 0)//
(theta[4] || theta[2] || 0);

t = ins(theta[5],time);
c = { 100, 0, 0};

378 � Chapter 11. Nonlinear Optimization Examples

call ode(r1, "der",c , t , h) j="jac" eps=eps;

/* send the intermediate value to the last column */
r = (c ||r1) * permm;
m = r[2:3,(2:nrow(time))];
mm = m‘- a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

opt = {0 2 0 1 };
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-7;
par = { 1.e-13 . 1.e-10};
con = j(1,5,0.);
h = {1.e-14 1. 1.e-5};
time = (0 // a[,1]);
eps = 1.e-5;
itheta = { 1.e-3 1.e-3 1.e-3 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown in Output 11.3.3.

Output 11.3.3. Parameter Estimates for Oil Shale Pyrolysis
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.013692 150.14987
2 X2 0.012939 248.78071
3 X3 0.016303 -144.46645
4 X4 0.006638 -318.57862
5 X5 1.044177 -3.16737

Value of Objective Function = 85.597262124

Again, compare the solution using the approximation produced by the ODE subrou-
tine to the solution obtained through the closed form of the given differential equa-
tion. Impose the following additional constraint to avoid a possible division by 0
when evaluating the function:

θ2 + θ3 − θ1 − θ4 ≥ 10−7

The closed form of the solution requires a change in the function f(·). The functions
needed as arguments of the ODE routine, namely the der and jac modules, can be
removed. Here is the revised code:

start f(thet) global(time,a);
do i = 1 to nrow(time);

Example 11.3. Compartmental Analysis � 379

t = time[i];
v1 = 100;
if (t >= thet[5]) then

v1 = 100*ev(t,thet[1],thet[4],thet[5]);
v2 = 0;
if (t >= thet[5]) then

v2 = 100*thet[1]/(thet[2]+thet[3]-thet[1]-thet[4])*
(ev(t,thet[1],thet[4],thet[5])-
ev(t,thet[2],thet[3],thet[5]));

v3 = 0;
if (t >= thet[5]) then

v3 = 100*thet[4]/(thet[1]+thet[4])*
(1. - ev(t,thet[1],thet[4],thet[5])) +
100*thet[1]*thet[2]/(thet[2]+thet[3]-thet[1]-thet[4])*(
(1.-ev(t,thet[1],thet[4],thet[5]))/(thet[1]+thet[4]) -
(1.-ev(t,thet[2],thet[3],thet[5]))/(thet[2]+thet[3]));

y = y // (v1 || v2 || v3);
end;
mm = y[,2:3]-a[,2:3];
call qr(q,r,piv,lindep,mm);
v = det(r);
return(abs(v));

finish;

start ev(t,a,b,c);
return(exp(-(a+b)*(t-c)));

finish;

con = { 0. 0. 0. 0. . . . ,
. ,
-1 1 1 -1 . 1 1.e-7 };

time = a[,1];
par = { 1.e-13 . 1.e-10};
itheta = { 1.e-3 1.e-3 1.e-2 1.e-3 1.};

call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;

The parameter estimates are shown in Output 11.3.4.

Output 11.3.4. Second Set of Parameter Estimates for Oil Shale Pyrolysis
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.017178 -0.005291
2 X2 0.008912 0.002413
3 X3 0.020007 -0.000520
4 X4 0.010494 -0.002890
5 X5 7.771534 0.000003217

Value of Objective Function = 20.689350642

380 � Chapter 11. Nonlinear Optimization Examples

Example 11.4. MLEs for Two-Parameter Weibull Distribution

This example considers a data set given in Lawless (1982). The data are the number
of days it took rats painted with a carcinogen to develop carcinoma. The last two
observations are censored. Maximum likelihood estimates (MLEs) and confidence
intervals for the parameters of the Weibull distribution are computed. In the following
code, the data set is given in the vector CARCIN, and the variables P and M give the
total number of observations and the number of uncensored observations. The set D
represents the indices of the observations.

proc iml;
carcin = { 143 164 188 188 190 192 206

209 213 216 220 227 230 234
246 265 304 216 244 };

p = ncol(carcin); m = p - 2;

The three-parameter Weibull distribution uses three parameters: a scale parameter,
a shape parameter, and a location parameter. This example computes MLEs and
corresponding 95% confidence intervals for the scale parameter, σ, and the shape
parameter, c, for a constant value of the location parameter, θ = 0. The program can
be generalized to estimate all three parameters. Note that Lawless (1982) denotes σ,
c, and θ by α, β, and µ, respectively.

The observed likelihood function of the three-parameter Weibull distribution is

L(θ, σ, c) =
cm

σm

∏
i∈D

(
ti − θ

σ

)c−1 p∏
i=1

exp
{
−
(
ti − θ

σ

)c}

The log likelihood, `(θ, σ, c) = logL(θ, σ, c), is

`(θ, σ, c) = m log c−mc log σ + (c− 1)
∑
i∈D

log(ti − θ)−
p∑

i=1

(
ti − θ

σ

)c

The log-likelihood function, `(θ, σ, c), for θ = 0 is the objective function to be max-
imized to obtain the MLEs (σ̂, ĉ). The following statements define the function:

start f_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
sum1 = 0.; sum2 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];

end;
f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
return(f);

finish f_weib2;

Example 11.4. MLEs for Two-Parameter Weibull Distribution � 381

The derivatives of ` with respect to the parameters θ, σ, and c are given in Lawless
(1982). The following code specifies a gradient module, which computes ∂`/∂σ and
∂`/∂c:

start g_weib2(x) global(carcin,thet);
/* x[1]=sigma and x[2]=c */
p = ncol(carcin); m = p - 2;
g = j(1,2,0.);
sum1 = 0.; sum2 = 0.; sum3 = 0.;
do i = 1 to p;

temp = carcin[i] - thet;
if i <= m then sum1 = sum1 + log(temp);
sum2 = sum2 + (temp / x[1])##x[2];
sum3 = sum3 + ((temp / x[1])##x[2]) * (log(temp / x[1]));

end;
g[1] = -m * x[2] / x[1] + sum2 * x[2] / x[1];
g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
return(g);

finish g_weib2;

The MLEs are computed by maximizing the objective function with the trust-region
algorithm in the NLPTR subroutine. The following code specifies starting values for
the two parameters, c = σ = 0.5, and to avoid infeasible values during the opti-
mization process, it imposes lower bounds of c, σ >= 10−6. The optimal parameter
values are saved in the variable XOPT, and the optimal objective function value is
saved in the variable FOPT.

n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 ,

. . };
call nlptr(rc,xres,"f_weib2",x0,optn,con,,,,"g_weib2");
/*--- Save result in xopt, fopt ---*/
xopt = xres‘; fopt = f_weib2(xopt);

The results shown in Output 11.4.1 are the same as those given in Lawless (1982).

Output 11.4.1. Parameter Estimates for Carcinogen Data
Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 234.318611 1.3363283E-9
2 X2 6.083147 -7.850915E-9

Value of Objective Function = -88.23273515

The following code computes confidence intervals based on the asymptotic normal
distribution. These are compared with the profile-likelihood-based confidence inter-

382 � Chapter 11. Nonlinear Optimization Examples

vals computed in the next example. The diagonal of the inverse Hessian (as calculated
by the NLPFDD subroutine) is used to calculate the standard error.

call nlpfdd(f,g,hes2,"f_weib2",xopt,,"g_weib2");
hin2 = inv(hes2);
/* quantile of normal distribution */
prob = .05;
noqua = probit(1. - prob/2);
stderr = sqrt(abs(vecdiag(hin2)));
xlb = xopt - noqua * stderr;
xub = xopt + noqua * stderr;
print "Normal Distribution Confidence Interval";
print xlb xopt xub;

Output 11.4.2. Confidence Interval Based on Normal Distribution
Normal Distribution Confidence Interval

XLB XOP2 XUB

215.41298 234.31861 253.22425
3.9894574 6.0831471 8.1768368

Example 11.5. Profile-Likelihood-Based Confidence Intervals

This example calculates confidence intervals based on the profile likelihood for the
parameters estimated in the previous example. The following introduction on profile-
likelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let θ̂ be the maximum likelihood estimate (MLE) of a parameter vector θ0 ∈ Rn and
let `(θ) be the log-likelihood function defined for parameter values θ ∈ Θ ⊂ Rn.

The profile-likelihood method reduces `(θ) to a function of a single parameter of
interest, β = θj , where θ = (θ1, . . . , θj , . . . , θn)′, by treating the others as nuisance
parameters and maximizing over them. The profile likelihood for β is defined as

˜̀
j(β) = max

θ∈Θj(β)
`(θ)

where Θj(β) = {θ ∈ Θ : θj = β}. Define the complementary parameter set
ω = (θ1, . . . , θj−1, θj+1, . . . , θn)′ and ω̂(β) as the optimizer of ˜̀

j(β) for each value
of β. Of course, the maximum of function ˜̀

j(β) is located at β = θ̂j . The profile-
likelihood-based confidence interval for parameter θj is defined as

{β : `(θ̂)− ˜̀
j(β) ≤ 1

2
q1(1− α)}

where q1(1 − α) is the (1 − α)th quantile of the χ2 distribution with one degree
of freedom. The points (βl, βu) are the endpoints of the profile-likelihood-based
confidence interval for parameter β = θj . The points βl and βu can be computed

Example 11.5. Profile-Likelihood-Based Confidence Intervals � 383

as the solutions of a system of n nonlinear equations fi(x) in n parameters, where
x = (β, ω):

[
`(θ)− `∗

∂`
∂ω (θ)

]
= 0

where `∗ is the constant threshold `∗ = `(θ̂) − 1
2q1(1 − α). The first of these n

equations defines the locations βl and βu where the function `(θ) cuts `∗, and the
remaining n−1 equations define the optimality of the n−1 parameters in ω. Jointly,
the n equations define the locations βl and βu where the function ˜̀

j(β) cuts the
constant threshold `∗, which is given by the roots of ˜̀

j(β) − `∗. Assuming that the
two solutions {βl, βu} exist (they do not if the quantile q1(1 − α) is too large), this
system of n nonlinear equations can be solved by minimizing the sum of squares of
the n functions fi(β, ω):

F =
1
2

n∑
i=1

f2
i (β, ω)

For a solution of the system of n nonlinear equations to exist, the minimum value of
the convex function F must be zero.

The following code defines the module for the system of n = 2 nonlinear equations
to be solved:

start f_plwei2(x) global(carcin,ipar,lstar);
/* x[1]=sigma, x[2]=c */
like = f_weib2(x);
grad = g_weib2(x);
grad[ipar] = like - lstar;
return(grad‘);

finish f_plwei2;

The following code implements the Levenberg-Marquardt algorithm with the
NLPLM subroutine to solve the system of two equations for the left and right
endpoints of the interval. The starting point is the optimizer (σ̂, ĉ), as computed in
the previous example, moved toward the left or right endpoint of the interval by an
initial step (refer to Venzon and Moolgavkar 1988). This forces the algorithm to
approach the specified endpoint.

/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
optn = {2 0};
do ipar = 1 to 2;
/* Compute initial step: */
/* Choose (alfa,delt) to go in right direction */
/* Venzon & Moolgavkar (1988), p.89 */

if ipar=1 then ind = 2; else ind = 1;
delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];

384 � Chapter 11. Nonlinear Optimization Examples

alfa = - (hes2[ipar,ipar] - delt‘ * hes2[ind,ipar]);
if alfa > 0 then alfa = .5 * sqrt(chqua / alfa);
else do;

print "Bad alpha";
alfa = .1 * xopt[ipar];

end;
if ipar=1 then delt = 1 || delt;

else delt = delt || 1;

/* Get upper end of interval */
x0 = xopt + (alfa * delt)‘;

/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];

else xub[ipar] = .;

/* Get lower end of interval */
x0 = xopt - (alfa * delt)‘;

/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
call nlplm(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];

else xlb[ipar] = .;
end;
print "Profile-Likelihood Confidence Interval";
print xlb xopt xub;

The results, shown in Output 11.5.1, are close to the results shown in Output 11.4.2.

Output 11.5.1. Confidence Interval Based on Profile Likelihood
Profile-Likelihood Confidence Interval

XLB XOP2 XUB

215.1963 234.31861 255.2157
4.1344126 6.0831471 8.3063797

Example 11.6. Survival Curve for Interval Censored Data

In some studies, subjects are assessed only periodically for outcomes or responses
of interest. In such situations, the occurrence times of these events are not observed
directly; instead they are known to have occurred within some time interval. The
times of occurrence of these events are said to be interval censored. A first step in
the analysis of these interval censored data is the estimation of the distribution of the
event occurrence times.

In a study with n subjects, denote the raw interval censored observations by
{(Li, Ri] : 1 ≤ i ≤ n}. For the ith subject, the event occurrence time Ti lies in

Example 11.6. Survival Curve for Interval Censored Data � 385

(Li, Ri], where Li is the last assessment time at which there was no evidence of the
event, and Ri is the earliest time when a positive assessment was noted (if it was
observed at all). If the event does not occur before the end of the study, Ri is given a
value larger than any assessment time recorded in the data.

A set of nonoverlapping time intervals Ij = (qj , pj], 1 ≤ j ≤ m, is generated over
which the survival curve S(t) = Pr[T > t] is estimated. Refer to Peto (1973) and
Turnbull (1976) for details. Assuming the independence of Ti and (Li, Ri], and also
independence across subjects, the likelihood of the data {Ti ∈ (Li, Ri], 1 ≤ i ≤ n}
can be constructed in terms of the pseudo-parameters θj = Pr[Ti ∈ Ij], 1 ≤ i ≤ m.
The conditional likelihood of θ = (θ1, . . . , θm) is

L(θ) =
n∏

i=1

 m∑
j=1

xijθj

where xij is 1 or 0 according to whether Ij is a subset of (Li, Ri]. The maximum
likelihood estimates, θ̂j , 1 ≤ j ≤ m, yield an estimator Ŝ(t) of the survival function
S(t), which is given by

Ŝ(t) =

1 t ≤ q1∑m

i=j+1 θ̂i pj ≤ t ≤ qj+1, 1 ≤ j ≤ m− 1
0 t ≥ pm

Ŝ(t) remains undefined in the intervals (qj , pj) where the function can decrease in an
arbitrary way. The asymptotic covariance matrix of θ̂ is obtained by inverting the es-
timated matrix of second partial derivatives of the negative log likelihood (Peto 1973,
Turnbull 1976). You can then compute the standard errors of the survival function
estimators by the delta method and approximate the confidence intervals for survival
function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an
illustration, consider an experiment to study the onset of a special kind of palpable
tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every
two weeks. The times to the onset of the tumor are interval censored data. These
data are contained in the data set CARCIN. The variable L represents the last time
the tumor was not yet detected, and the variable R represents the first time the tumor
was palpated. Three mice died tumor free, and one mouse was tumor free by the end
of the 48-week experiment. The times to tumor for these four mice were considered
right censored, and they were given an R value of 50 weeks.

data carcin;
input id l r @@;
datalines;
1 20 22 11 30 32 21 22 24 31 34 36
2 22 24 12 32 34 22 22 24 32 34 36
3 26 28 13 32 34 23 28 30 33 36 38
4 26 28 14 32 34 24 28 30 34 38 40

386 � Chapter 11. Nonlinear Optimization Examples

5 26 28 15 34 36 25 32 34 35 38 40
6 26 28 16 36 38 26 32 34 36 42 44
7 28 30 17 42 44 27 32 34 37 42 44
8 28 30 18 30 50 28 32 34 38 46 48
9 30 32 19 34 50 29 32 34 39 28 50
10 30 32 20 20 22 30 32 34 40 48 50
;

proc iml;
use carcin;
read all var{l r};
nobs= nrow(l);
/***

construct the nonoverlapping intervals (Q,P) and
determine the number of pseudo-parameters (NPARM)

***/
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
q= j(1,npp, .);
do;

do i= 1 to npp;
do j= 1 to nqq;

if (qq[j] < pp[i]) then q[i]= qq[j];
end;
if q[i] = qq[nqq] then goto lab1;

end;
lab1:
end;

if i > npp then nq= npp;
else nq= i;
q= unique(q[1:nq]);
nparm= ncol(q);
p= j(1,nparm, .);
do i= 1 to nparm;

do j= npp to 1 by -1;
if (pp[j] > q[i]) then p[i]= pp[j];

end;
end;

/**
generate the X-matrix for the likelihood

**/
_x= j(nobs, nparm, 0);
do j= 1 to nparm;

_x[,j]= choose(l <= q[j] & p[j] <= r, 1, 0);
end;

/**
log-likelihood function (LL)

**/
start LL(theta) global(_x,nparm);

xlt= log(_x * theta‘);
f= xlt[+];

Example 11.6. Survival Curve for Interval Censored Data � 387

return(f);
finish LL;

/**
gradient vector (GRAD)

***/
start GRAD(theta) global(_x,nparm);

g= j(1,nparm,0);
tmp= _x # (1 / (_x * theta‘));
g= tmp[+,];
return(g);

finish GRAD;

/***
estimate the pseudo-parameters using quasi-newton technique

***/
/* options */
optn= {1 2};

/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm]= 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;

/* initial estimates */
x0= j(1, nparm, 1/nparm);

/* call the optimization routine */
call nlpqn(rc,rx,"LL",x0,optn,con,,,,"GRAD");

/***
survival function estimate (SDF)

**/
tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

/***
covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)

***/
mm= nparm - 1;
_x= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h= j(mm, mm, 0);
ixtheta= 1 / (_x * ((rx[,1:mm]) || {1})‘);
if _zfreq then

do i= 1 to nobs;
rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (_freq[i] # (rowtmp‘ * rowtmp));

end;
else do i= 1 to nobs;

rowtmp= ixtheta[i] # _x[i,1:mm];
h= h + (rowtmp‘ * rowtmp);

388 � Chapter 11. Nonlinear Optimization Examples

end;
sigma2= inv(h);

/***
standard errors of the estimated survival curve (SIGMA3)

***/
sigma3= j(mm, 1, 0);
tmp1= sigma3;
do i= 1 to mm;

tmp1[i]= 1;
sigma3[i]= sqrt(tmp1‘ * sigma2 * tmp1);

end;

/***
95% confidence limits for the survival curve (LCL,UCL)

***/
/* confidence limits */
tmp1= probit(.975);
*print tmp1;
tmp1= tmp1 * sigma3;
lcl= choose(sdf > tmp1, sdf - tmp1, 0);
ucl= sdf + tmp1;
ucl= choose(ucl > 1., 1., ucl);

/***
print estimates of pseudo-parameters

***/
reset center noname;
q= q‘;
p= p‘;
theta= rx‘;
print ,"Parameter Estimates", ,q[colname={q}] p[colname={p}]

theta[colname={theta} format=12.7],;

/***
print survival curve estimates and confidence limits

***/
left= {0} // p;
right= q // p[nparm];
sdf= {1} // sdf // {0};
lcl= {.} // lcl //{.};
ucl= {.} // ucl //{.};
print , "Survival Curve Estimates and 95% Confidence Intervals", ,

left[colname={left}] right[colname={right}]
sdf[colname={estimate} format=12.4]
lcl[colname={lower} format=12.4]
ucl[colname={upper} format=12.4];

The iteration history produced by the NLPQN subroutine is shown in Output 11.6.1.

Example 11.6. Survival Curve for Interval Censored Data � 389

Output 11.6.1. Iteration History for the NLPQN Subroutine
Dual Quasi-Newton Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Parameter Estimates 12
Lower Bounds 12
Upper Bounds 12
Linear Constraints 1

Optimization Start

Active Constraints 1 Objective Function -93.3278404
Max Abs Gradient Element 65.361558529

Objective Max Abs
Func. Active Objective Function Gradient Step

Iter Rest Calls Constr. Function Change Element Size Slope

1 0 3 1 -88.51201 4.8158 16.6594 0.0256 -305.2
2 0 4 1 -87.42665 1.0854 10.8769 1.000 -2.157
3 0 5 1 -87.27408 0.1526 5.4965 1.000 -0.366
4 0 7 1 -87.17314 0.1009 2.2856 2.000 -0.113
5 0 8 1 -87.16611 0.00703 0.3444 1.000 -0.0149
6 0 10 1 -87.16582 0.000287 0.0522 1.001 -0.0006
7 0 12 1 -87.16581 9.128E-6 0.00691 1.133 -161E-7
8 0 14 1 -87.16581 1.712E-7 0.00101 1.128 -303E-9

Optimization Results

Iterations 8 Function Calls 15
Gradient Calls 11 Active Constraints 1
Objective Function -87.16581343 Max Abs Gradient Element 0.0010060788
Slope of Search Direction -3.033154E-7

NOTE:GCONV convergence criterion satisfied.
NOTE: At least one element of the (projected) gradient is greater than 1e-3.

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in
Output 11.6.2.

Output 11.6.2. Estimates for the Probability of Event Occurrence
Parameter Estimates

Q P THETA

20 22 0.0499997
22 24 0.0749988
26 28 0.0999978
28 30 0.1033349
30 32 0.0806014
32 34 0.2418023
34 36 0.0873152
36 38 0.0582119
38 40 0.0582119
42 44 0.0873152
46 48 0.0291055
48 50 0.0291055

390 � Chapter 11. Nonlinear Optimization Examples

The survival curve estimates and confidence intervals are displayed in Output 11.6.3.

Output 11.6.3. Survival Estimates and Confidence Intervals
Survival Curve Estimates and 95% Confidence Intervals

LEFT RIGHT ESTIMATE LOWER UPPER

0 20 1.0000 . .
22 22 0.9500 0.8825 1.0000
24 26 0.8750 0.7725 0.9775
28 28 0.7750 0.6456 0.9044
30 30 0.6717 0.5252 0.8182
32 32 0.5911 0.4363 0.7458
34 34 0.3493 0.1973 0.5013
36 36 0.2619 0.1194 0.4045
38 38 0.2037 0.0720 0.3355
40 42 0.1455 0.0293 0.2617
44 46 0.0582 0.0000 0.1361
48 48 0.0291 0.0000 0.0852
50 50 0.0000 . .

In this program, the quasi-Newton technique is used to maximize the likelihood func-
tion. You can replace the quasi-Newton routine by other optimization routines, such
as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or
the NLPCG subroutine, which performs conjugate gradient optimization. Depending
on the number of parameters and the number of observations, these optimization rou-
tines do not perform equally well. For survival curve estimation, the quasi-Newton
technique seems to work fairly well since the number of parameters to be estimated
is usually not too large.

Example 11.7. A Two-Equation Maximum Likelihood Problem � 391

Example 11.7. A Two-Equation Maximum Likelihood Problem

The following example and notation are taken from Bard (1974). A two-equation
model is used to fit U.S. production data for the years 1909–1949, where z1 is capital
input, z2 is labor input, z3 is real output, z4 is time in years (with 1929 as the origin),
and z5 is the ratio of price of capital services to wage scale. The data can be entered
by using the following statements:

proc iml;
z={ 1.33135 0.64629 0.4026 -20 0.24447,

1.39235 0.66302 0.4084 -19 0.23454,
1.41640 0.65272 0.4223 -18 0.23206,
1.48773 0.67318 0.4389 -17 0.22291,
1.51015 0.67720 0.4605 -16 0.22487,
1.43385 0.65175 0.4445 -15 0.21879,
1.48188 0.65570 0.4387 -14 0.23203,
1.67115 0.71417 0.4999 -13 0.23828,
1.71327 0.77524 0.5264 -12 0.26571,
1.76412 0.79465 0.5793 -11 0.23410,
1.76869 0.71607 0.5492 -10 0.22181,
1.80776 0.70068 0.5052 -9 0.18157,
1.54947 0.60764 0.4679 -8 0.22931,
1.66933 0.67041 0.5283 -7 0.20595,
1.93377 0.74091 0.5994 -6 0.19472,
1.95460 0.71336 0.5964 -5 0.17981,
2.11198 0.75159 0.6554 -4 0.18010,
2.26266 0.78838 0.6851 -3 0.16933,
2.33228 0.79600 0.6933 -2 0.16279,
2.43980 0.80788 0.7061 -1 0.16906,
2.58714 0.84547 0.7567 0 0.16239,
2.54865 0.77232 0.6796 1 0.16103,
2.26042 0.67880 0.6136 2 0.14456,
1.91974 0.58529 0.5145 3 0.20079,
1.80000 0.58065 0.5046 4 0.18307,
1.86020 0.62007 0.5711 5 0.18352,
1.88201 0.65575 0.6184 6 0.18847,
1.97018 0.72433 0.7113 7 0.20415,
2.08232 0.76838 0.7461 8 0.18847,
1.94062 0.69806 0.6981 9 0.17800,
1.98646 0.74679 0.7722 10 0.19979,
2.07987 0.79083 0.8557 11 0.21115,
2.28232 0.88462 0.9925 12 0.23453,
2.52779 0.95750 1.0877 13 0.20937,
2.62747 1.00285 1.1834 14 0.19843,
2.61235 0.99329 1.2565 15 0.18898,
2.52320 0.94857 1.2293 16 0.17203,
2.44632 0.97853 1.1889 17 0.18140,
2.56478 1.02591 1.2249 18 0.19431,
2.64588 1.03760 1.2669 19 0.19492,
2.69105 0.99669 1.2708 20 0.17912 };

The two-equation model in five parameters c1, . . . , c5 is

392 � Chapter 11. Nonlinear Optimization Examples

g1 = c110c2z4 [c5z−c4
1 + (1− c5)z−c4

2]−c3/c4 − z3 = 0

g2 = [
c5

1− c5
]
(
z1
z2

)−1−c4

− z5 = 0

where the variables z1 and z2 are considered dependent (endogenous) and the vari-
ables z3, z4, and z5 are considered independent (exogenous).

Differentiation of the two equations g1 and g2 with respect to the endogenous vari-
ables z1 and z2 yields the Jacobian matrix ∂gi/∂zj for i = 1, 2 and j = 1, 2, where i
corresponds to rows (equations) and j corresponds to endogenous variables (refer to
Bard 1974). You must consider parameter sets for which the elements of the Jacobian
and the logarithm of the determinant cannot be computed. In such cases, the function
module must return a missing value. Here is the code:

start fiml(pr) global(z);
c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];
/* 1. Compute Jacobian */
lndet = 0 ;
do t= 1 to 41;

j11 = (-c3/c4) * c1 * 10 ##(c2 * z[t,4]) * (-c4) * c5 *
z[t,1]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j12 = (-c3/c4) * (-c4) * c1 * 10 ##(c2 * z[t,4]) * (1-c5) *
z[t,2]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);

j21 = (-1-c4)*(c5/(1-c5))*z[t,1]##(-2-c4)/ (z[t,2]##(-1-c4));
j22 = (1+c4)*(c5/(1-c5))*z[t,1]##(-1-c4)/ (z[t,2]##(-c4));

j = (j11 || j12) // (j21 || j22) ;
if any(j = .) then detj = 0.;

else detj = det(j);
if abs(detj) < 1.e-30 then do;

print t detj j;
return(.);

end;
lndet = lndet + log(abs(detj));

end;

Assuming that the residuals of the two equations are normally distributed, the likeli-
hood is then computed as in Bard (1974). The following code computes the logarithm
of the likelihood function:

/* 2. Compute Sigma */
sb = j(2,2,0.);
do t= 1 to 41;

eq_g1 = c1 * 10##(c2 * z[t,4]) * (c5*z[t,1]##(-c4)
+ (1-c5)*z[t,2]##(-c4))##(-c3/c4) - z[t,3];

Example 11.7. A Two-Equation Maximum Likelihood Problem � 393

eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])##(-1-c4) - z[t,5];
resid = eq_g1 // eq_g2;
sb = sb + resid * resid‘;

end;
sb = sb / 41;
/* 3. Compute log L */
const = 41. * (log(2 * 3.1415) + 1.);
lnds = 0.5 * 41 * log(det(sb));
logl = const - lndet + lnds;
return(logl);

finish fiml;

There are potential problems in computing the power and log functions for an unre-
stricted parameter set. As a result, optimization algorithms that use line search fail
more often than algorithms that restrict the search area. For that reason, the NLPDD
subroutine is used in the following code to maximize the log-likelihood function:

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,,tc);
print "Start" pr, "RC=" rc, "Opt Par" xr;

Part of the iteration history is shown in Output 11.7.1.

394 � Chapter 11. Nonlinear Optimization Examples

Output 11.7.1. Iteration History for Two-Equation ML Problem
Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 5

Optimization Start

Active Constraints 0 Objective Function 909.72691311
Max Abs Gradient Element 41115.729089 Radius 1

Objective Max Abs
Func. Active Obj. Function Gradient

Iter Rest Calls Constr. Func. Change Element Lambda Slope

1 0 2 0 85.24836 824.5 3676.4 711.8 -71032
2 0 7 0 45.14682 40.1015 3382.0 2881.2 -29.683
3 0 10 0 43.46797 1.6788 208.4 95.020 -3.348
35 0 64 0 -110.77858 5.68E-14 0.000111 41.795 -34E-17
36 1 101 0 -110.77858 5.68E-14 0.000119 4E12 -32E-20
36 2 145 0 -110.77858 0 0.000119 3.2E16 -46E-24

Optimization Results

Iterations 36 Function Calls 146
Gradient Calls 41 Active Constraints 0
Objective Function -110.7785811 Max Abs Gradient Element 0.0001186267
Slope of Search Direction -4.55096E-23 Radius 3.771173E-19

The results are very close to those reported by Bard (1974). Bard also reports different
approaches to the same problem that can lead to very different MLEs.

Output 11.7.2. Parameter Estimates
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 0.583884 -0.000004817
2 X2 0.005882 0.000011377
3 X3 1.362817 -0.000003229
4 X4 0.475091 -0.000018103
5 X5 0.447072 0.000119

Value of Objective Function = -110.7785811

Example 11.8. Time-Optimal Heat Conduction

The following example illustrates a nontrivial application of the NLPQN algorithm
that requires nonlinear constraints, which are specified by the nlc module. The exam-
ple is listed as problem 91 in Hock and Schittkowski (1981). The problem describes

Example 11.8. Time-Optimal Heat Conduction � 395

a time-optimal heating process minimizing the simple objective function

f(x) =
n∑

j=1

x2
j

subjected to a rather difficult inequality constraint:

c(x) = 10−4 − h(x) ≥ 0

where h(x) is defined as

h(x) =
∫ 1

0

(
30∑
i=1

αi(s)ρi(x)− k0(s)

)2

ds

αi(s) = µ2
iAi cos(µis)

ρi(x) = −µ2
i

exp

−µ2
i

n∑
j=1

x2
j

− 2 exp

−µ2
i

n∑
j=2

x2
j

+ · · ·

+ (−1)n−12 exp
(
−µ2

ix
2
n

)
+ (−1)n

k0(s) = 0.5(1− s2)

Ai =
2 sinµi

µi + sinµi cosµi
,

µ = (µ1, . . . , µ30)′ , where µi tan(µi) = 1

The gradient of the objective function f , g(x) = 2x, is easily supplied to the NLPQN
subroutine. However, the analytical derivatives of the constraint are not used; instead,
finite-difference derivatives are computed.

In the following code, the vector MU represents the first 30 positive values µi that
satisfy µi tan(µi) = 1:

proc iml;
mu = { 8.6033358901938E-01 , 3.4256184594817E+00 ,

6.4372981791719E+00 , 9.5293344053619E+00 ,
1.2645287223856E+01 , 1.5771284874815E+01 ,
1.8902409956860E+01 , 2.2036496727938E+01 ,
2.5172446326646E+01 , 2.8309642854452E+01 ,
3.1447714637546E+01 , 3.4586424215288E+01 ,
3.7725612827776E+01 , 4.0865170330488E+01 ,
4.4005017920830E+01 , 4.7145097736761E+01 ,
5.0285366337773E+01 , 5.3425790477394E+01 ,
5.6566344279821E+01 , 5.9707007305335E+01 ,
6.2847763194454E+01 , 6.5988598698490E+01 ,
6.9129502973895E+01 , 7.2270467060309E+01 ,
7.5411483488848E+01 , 7.8552545984243E+01 ,
8.1693649235601E+01 , 8.4834788718042E+01 ,
8.7975960552493E+01 , 9.1117161394464E+01 };

396 � Chapter 11. Nonlinear Optimization Examples

The vectorA = (A1, . . . , A30)′ depends only on µ and is computed only once, before
the optimization starts, as follows:

nmu = nrow(mu);
a = j(1,nmu,0.);
do i = 1 to nmu;

a[i] = 2*sin(mu[i]) / (mu[i] + sin(mu[i])*cos(mu[i]));
end;

The constraint is implemented with the QUAD subroutine, which performs numerical
integration of scalar functions in one dimension. The subroutine calls the module
fquad that supplies the integrand for h(x). For details about the QUAD call, see the
section “QUAD Call” on page 861. Here is the code:

/* This is the integrand used in h(x) */
start fquad(s) global(mu,rho);

z = (rho * cos(s*mu) - 0.5*(1. - s##2))##2;
return(z);

finish;

/* Obtain nonlinear constraint h(x) */
start h(x) global(n,nmu,mu,a,rho);

xx = x##2;
do i= n-1 to 1 by -1;

xx[i] = xx[i+1] + xx[i];
end;
rho = j(1,nmu,0.);
do i=1 to nmu;

mu2 = mu[i]##2;
sum = 0; t1n = -1.;
do j=2 to n;

t1n = -t1n;
sum = sum + t1n * exp(-mu2*xx[j]);

end;
sum = -2*sum + exp(-mu2*xx[1]) + t1n;
rho[i] = -a[i] * sum;

end;
aint = do(0,1,.5);
call quad(z,"fquad",aint) eps=1.e-10;
v = sum(z);
return(v);

finish;

The modules for the objective function, its gradient, and the constraint c(x) ≥ 0 are
given in the following code:

/* Define modules for NLPQN call: f, g, and c */
start F_HS88(x);

f = x * x‘;
return(f);

finish F_HS88;

Example 11.8. Time-Optimal Heat Conduction � 397

start G_HS88(x);
g = 2 * x;
return(g);

finish G_HS88;

start C_HS88(x);
c = 1.e-4 - h(x);
return(c);

finish C_HS88;

The number of constraints returned by the “nlc” module is defined by opt[10] = 1.
The ABSGTOL termination criterion (maximum absolute value of the gradient of the
Lagrange function) is set by tc[6] = 1E−4. Here is the code:

print ’Hock & Schittkowski Problem #91 (1981) n=5, INSTEP=1’;
opt = j(1,10,.);
opt[2]=3;
opt[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);
call nlpqn(rc,rx,"F_HS88",x0,opt,,tc) grd="G_HS88" nlc="C_HS88";

Part of the iteration history and the parameter estimates are shown in Output 11.8.1.

398 � Chapter 11. Nonlinear Optimization Examples

Output 11.8.1. Iteration History and Parameter Estimates
Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Jacobian Nonlinear Constraints Computed by Finite Differences

Parameter Estimates 5
Nonlinear Constraints 1

Optimization Start

Objective Function 1.25 Max Constr. Violation 0.0952775105
Max Grad of the Lagran Func 1.1433393372

Maximum
Gradient
Element

Max. Pred. of the
Func. Obj. Constr. Func. Step Lagrange

Iter Rest Calls Func. Viol. Red. Size Function

1 0 3 0.81165 0.0869 1.7562 0.100 1.325
2 0 4 0.18232 0.1175 0.6220 1.000 1.207
3* 0 5 0.34567 0.0690 0.9321 1.000 0.639
4 0 6 0.77700 0.0132 0.3498 1.000 1.329
.
.
.
21 0 30 1.36266 8.02E-12 1.079E-6 1.000 0.00009

Optimization Results

Iterations 21 Function Calls 31
Grad. Calls 23 Active Constraints 1
Obj. Func. 1.3626568064 Max. Constr. Viol. 8.017286E-12
Max. Proj. Grad. 0.000096451 Value Lagrange Function 1.3626568149
Max. Grad. of the Lagran Func 0.0000887635 Slope -1.079452E-6

NOTE: ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 X1 0.860296 1.720593 0.000030988
2 X2 -0.000002262 -0.000004524 -0.000015387
3 X3 0.643468 1.286936 0.000021570
4 X4 -0.456614 -0.913227 0.000088763
5 X5 0.000000904 0.000001807 0.000077409

Value of Objective Function = 1.3626568064
Value of Lagrange Function = 1.3626568149

Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization
problem for n = 2 to n = 6. You can solve any of these problems with the preceding
code by submitting a vector of length n as the initial estimate, x0.

References � 399

References
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions,

New York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,” J. Oper. Res. Soc., 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,” Journal of Optimization Theory and Applications, 48, 359–377.

Anderson, B. D. O. and Moore, J. B. (1979), Optimal Filtering, Englewood Cliffs,
NJ: Prentice-Hall.

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its
Applications, New York: John Wiley & Sons, Inc.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” Numerical Methods
for Nonlinear Optimization, ed. F. A. Lootsma, London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,”
Journal of Optimization Theory and Applications, 21, 137–174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear
Programming, New York: John Wiley & Sons, Inc.

Chamberlain, R. M.; Powell, M. J. D.; Lemarechal, C.; and Pedersen, H. C.
(1982), “The Watchdog Technique for Forcing Convergence in Algorithms for
Constrained Optimization,” Mathematical Programming, 16, 1–17.

De Jong, P. (1988), “The Likelihood for a State Space Model,” Biometrika, 75,
165–169.

Dennis, J. E.; Gay, D. M.; and Welsch, R. E. (1981), “An Adaptive Nonlinear Least
Squares Algorithm,” ACM Trans. Math. Software, 7, 348–368.

Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization
Algorithms which Use Function and Gradient Values,” J. Optim. Theory Appl.,
28, 453–482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,” ACM Trans. Math. Software, 17, 306–312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Ed., Chichester: John
Wiley & Sons, Inc.

Fletcher, R. and Powell, M. J. D. (1963), “A Rapidly Convergent Descent Method for
Minimization,” Computer Journal, 6, 163–168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Trans.
Math. Software, 9, 503–524.

400 � Chapter 11. Nonlinear Optimization Examples

George, J. A. and Liu, J. W. (1981), Computer Solution of Large Sparse Positive
Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Gill, E. P.; Murray, W.; and Wright, M. H. (1981), Practical Optimization, London:
Academic Press.

Gill, E. P.; Murray, W.; Saunders, M. A.; and Wright, M. H. (1983), “Computing
Forward-Difference Intervals for Numerical Optimization,” SIAM J. Sci. Stat.
Comput., 4, 310–321.

Gill, E. P.; Murray, W.; Saunders, M. A.; and Wright, M. H. (1984), “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints,” ACM Trans. Math. Software, 10, 282–298.

Goldfeld, S. M.; Quandt, R. E.; and Trotter, H. F. (1966), “Maximisation by Quadratic
Hill-Climbing,” Econometrica, 34, 541–551.

Hartmann, W. (1991), The NLP Procedure: Extended User’s Guide, Releases 6.08
and 6.10, Cary, NC: SAS Institute Inc.

Hock, W. and Schittkowski, K. (1981), “Test Examples for Nonlinear Programming
Codes,” Lecture Notes in Economics and Mathematical Systems 187, New York:
Springer-Verlag.

Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to
Nonlinear Estimation,” Technometrics, 10, 63–72.

Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, New York:
John Wiley & Sons, Inc.

Liebman, J.; Lasdon, L.; Schrage, L.; and Waren, A. (1986), Modeling and
Optimization with GINO, San Francisco: The Scientific Press.

Lindström, P. and Wedin, P. A. (1984), “A New Linesearch Algorithm for Nonlinear
Least Squares Problems,” Mathematical Programming, 29, 268–296.

Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis,
Berlin: Springer-Verlag.

Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Lecture Notes in Mathematics 630, ed. G.A. Watson, New York:
Springer-Verlag, 105–116.

Moré, J. J.; Garbow, B. S.; and Hillstrom, K. E. (1981), “Testing Unconstrained
Optimization Software,” ACM Trans. Math. Software, 7, 17–41.

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM J.
Sci. Stat. Comput., 4, 553–572.

Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia:
SIAM.

Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User’s Guide; Technical
Report SOL 83-20, Stanford University.

Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function Minimization,”
Computer Journal, 7, 308–313.

Peto, R. (1973), “Experimental Survival Curves for Interval-Censored Data,” Appl.
Statist, 22, 86–91.

References � 401

Polak, E. (1971), Computational Methods in Optimization, New York: Academic
Press, Inc.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, M. J. D. (1978a), “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, Dundee 1977, Lecture Notes in
Mathematics 630, ed. G. A. Watson, Berlin: Springer-Verlag, 144–175.

Powell, M. J. D. (1978b), “Algorithms for Nonlinear Constraints That Use
Lagrangian Functions,” Mathematical Programming, 14, 224–248.

Powell, M. J. D. (1982a), “Extensions to Subroutine VF02AD,” Systems Modeling
and Optimization, Lecture Notes in Control and Information Sciences 38, eds. R.
F. Drenick and F. Kozin, Berlin: Springer-Verlag, 529–538.

Powell, M. J. D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,” DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), “A Direct Search Optimization Method that Models
the Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5,
Cambridge, England.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

Schittkowski, K. (1978), “An Adaptive Precision Method for the Numerical
Solution of Constrained Optimization Problems Applied to a Time-Optimal
Heating Process,” Proceedings of the Eighth IFIP Conference on Optimization
Techniques, Heidelberg: Springer-Verlag.

Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes,
Lecture Notes in Economics and Mathematical Systems 282, Berlin: Springer-
Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution
of Constrained Linear Least Squares Problems Allowing Subsequent Data
Changes,” Numer. Math., 31, 431–463.

Turnbull, B. W. (1976), “The Empirical Distribution Function from Arbitrarily
Grouped, Censored and Truncated Data,” J. Royal Statist. Soc. Ser. B, 38,
290–295.

Venzon, D. J. and Moolgavkar, S. H. (1988), “A Method for Computing Profile-
Likelihood-Based Confidence Intervals,” Applied Statistics, 37, 87–94.

Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least
Squares Problems, University of Umea, Report No. UMINF 133.87.

Ziegel, E. R. and J. W. Gorman (1980), “Kinetic Modelling with Multipurpose Data,”
Technometrics, 27, 352–357.

402

Chapter 12
Graphics Examples

Chapter Contents

OVERVIEW . 405

AN INTRODUCTORY GRAPH . 405

DETAILS . 407
Graphics Segments . 407
Segment Attributes . 408
Coordinate Systems . 408
Windows and Viewports . 410
Clipping Your Graphs . 419
Common Arguments . 420

GRAPHICS EXAMPLES . 422
Example 12.1. Scatter Plot Matrix . 422
Example 12.2. Train Schedule . 429
Example 12.3. Fisher’s Iris Data . 430

404

Chapter 12
Graphics Examples
Overview

SAS/IML software provides you with a powerful set of graphics commands, called
graphics primitives, from which to create customized displays. Several basic com-
mands are GDRAW (for drawing a line), GPOINT (for plotting points), and GPOLY
(for drawing a polygon). With each primitive, you can associate a set of attributes
such as color or line style.

In this chapter you learn about

• plotting simple two-dimensional plots

• naming and saving a graph

• changing attributes such as color and line style

• specifying the location and scale of your graph

• adding axes and text

SAS/IML graphics commands depend on the libraries and device drivers distributed
with SAS/GRAPH software, and they do not work unless you have SAS/GRAPH
software.

An Introductory Graph
Suppose that you have data for ACME Corporation’s stock price and you want a
simple PRICE × DAY graph to see the overall trend of the stock’s price. The data
are as follows.

406 � Chapter 12. Graphics Examples

Day Price
0 43.75
5 48.00

10 59.75
15 75.5
20 59.75
25 71.50
30 70.575
35 61.125
40 79.50
45 72.375
50 67.00
55 54.125
60 58.750
65 43.625
70 47.125
75 45.50

To graph a scatter plot of these points, enter the following statements. These state-
ments generate Figure 12.1.

proc iml; /* invoke IML */
call gstart; /* start graphics */
xbox={0 100 100 0};
ybox={0 0 100 100};
day=do(0,75,5); /* initialize day */
price={43.75,48,59.75,75.5, /* initialize price */

59.75,71.5,70.575,
61.125,79.5,72.375,67,
54.125,58.75,43.625,
47.125,45.50};

call gopen; /* start new graph */
call gpoly(xbox,ybox); /* draw a box around plot */
call gpoint(day,price); /* plot the points */
call gshow; /* display the graph */

Graphics Segments � 407

Figure 12.1. Scatter plot

Note that the GSTART statement initializes the graphics session. It usually needs to
be called only once. Next, you enter the data matrices. Then you open a graphics
segment (that is, begin a new graph) with the GOPEN command. The GPOINT com-
mand draws the scatter plot of points of DAY versus PRICE. The GSHOW command
displays the graph.

Notice also that, for this example, the x coordinate of the data is DAY and that 0 ≤
DAY ≤ 100. The y coordinate is PRICE, which ranges from 0 ≤ PRICE ≤ 100. For
this example, the ranges are this way because the IML default ranges are from 0 to
100 on both the x and y axes. Later on you learn how to change the default ranges for
the axes with the GWINDOW statement so that you can handle data with any range
of values.

Of course, this graph is quite simple. By the end of this chapter, you will know how
to add axes and titles, scale axes, and connect the points with lines.

Details

Graphics Segments

A graph is saved in what is called a graphics segment. A graphics segment is simply
a collection of primitives and their associated attributes that creates a graph.

Each time you create a new segment, it is named and stored in a SAS graphics catalog
called WORK.GSEG. If you want to store your graphics segments in a permanent
SAS catalog, do this with options to the GSTART call. You can name the segments
yourself in the GOPEN statement, or you can let the IML procedure automatically

408 � Chapter 12. Graphics Examples

generate a segment name. In this way, graphics segments that are used several times
can be included in subsequent graphs by using the GINCLUDE command with the
segment name. You can also manage and replay a segment by using the GREPLAY
procedure as well as replay it in another IML session by using the GSHOW command.

To name a segment, include the name as an argument to the GOPEN statement. For
example, to begin a new segment and name it STOCK1, use the following statement:

call gopen("stock1");

For more information about SAS catalogs and graphics, refer to the chapter on graph-
ics in SAS/GRAPH Software: Reference.

Segment Attributes

A set of attributes is initialized for each graphics segment. These attributes are color,
line style, line thickness, fill pattern, font, character height, and aspect ratio. You can
change any of these attributes for a graphics segment by using the GSET command.
Some IML graphics commands take optional attribute arguments. The values of these
arguments affect only the graphics output associated with the call.

The IML graphics subsystem uses the same conventions that SAS/GRAPH software
uses in setting the default attributes. It also uses the options set in the GOPTIONS
statement when applicable. The SAS/IML default values for the GSET command are
given by their corresponding GOPTIONS default values. To change the default, you
need to issue a GOPTIONS statement. The GOPTIONS statement can also be used
to set graphics options not available through the GSET command (for example, the
ROTATE option).

For more information about GOPTIONS, refer to the chapter on the GOPTIONS
statement in SAS/GRAPH Software: Reference.

Coordinate Systems

Each IML graph is associated with two independent cartesian coordinate systems, a
world coordinate system and a normalized coordinate system.

Understanding World Coordinates

The world coordinate system is the coordinate system defined by your data. Because
these coordinates help define objects in the data’s two-dimensional world, these are
referred to as world coordinates. For example, suppose that you have a data set
containing heights and weights and that you are interested in plotting height versus
weight. Your data induces a world coordinate system in which each point (x, y)
represents a pair of data values (height,weight). The world could be defined by the
observed ranges of heights and weights, or it could be enlarged to include a range of
all reasonable values for heights and weights.

Now consider a more realistic example of the stock price data for ACME Corporation.
Suppose that the stock price data were actually the year-end prices of ACME stock
for the years 1971 through 1986, as follows:

Coordinate Systems � 409

YEAR PRICE
71 123.75
72 128.00
73 139.75
74 155.50
75 139.75
76 151.50
77 150.375
78 149.125
79 159.50
80 152.375
81 147.00
82 134.125
83 138.75
84 123.625
85 127.125
86 125.500

The actual range of YEAR is from 71 to 86, and the range of PRICE is from $123.625
to $159.50. These are the ranges in world coordinate space for the stock data. Of
course, you could say that the range for PRICE could start at $0 and range upwards
to, for example, $200. Or, if you were interested only in prices during the 80s, you
could say the range for PRICE is from $123.625 to $152.375. As you see, it all
depends on how you want to define your world.

Figure 12.2 shows a graph of the stock data with the world defined as the actual data
given. The corners of the rectangle give the actual boundaries for this data.

Figure 12.2. World Coordinates

410 � Chapter 12. Graphics Examples

Understanding Normalized Coordinates

The normalized coordinate system is defined relative to your display device, usu-
ally a monitor or plotter. It is always defined with points varying between (0,0)
and (100,100), where (0,0) refers to the lower-left corner and (100,100) refers to
the upper-right corner.

In summary,

• the world coordinate system is defined relative to your data

• the normalized coordinate system is defined relative to the display device

Figure 12.3 shows the ACME stock data in terms of normalized coordinates. There is
a natural mathematical relationship between each point in world and normalized co-
ordinates. The normalized device coordinate system is mapped to the device display
area so that (0,0), the lower-left corner, corresponds to (71, 123.625) in world co-
ordinates, and (100,100), the upper-right corner, corresponds to (86,159.5) in world
coordinates.

Figure 12.3. Normalized Coordinates

Windows and Viewports

A window defines a rectangular area in world coordinates. You define a window with
a GWINDOW statement. You can define the window to be larger than, the same size
as, or smaller than the actual range of data values, depending on whether you want to
show all of the data or only part of the data.

Windows and Viewports � 411

A viewport defines in normalized coordinates a rectangular area on the display device
where the image of the data appears. You define a viewport with the GPORT com-
mand. You can have your graph take up the entire display device or show it in only a
portion, say the upper-right part.

Mapping Windows to Viewports

A window and a viewport are related by the linear transformation that maps the win-
dow onto the viewport. A line segment in the window is mapped to a line segment in
the viewport such that the relative positions are preserved.

You do not have to display all of your data in a graph. In Figure 12.4, the graph on the
left displays all of the ACME stock data, and the graph on the right displays only a
part of the data. Suppose that you wanted to graph only the last 10 years of the stock
data—say, from 1977 to 1986. You would want to define a window where the YEAR
axis ranges from 77 to 86, while the PRICE axis could range from 120 to 160. Figure
12.4 shows stock prices in a window defined for data from 1977 to 1986 along the
horizontal direction and from 120 to 160 along the vertical direction. The window
is mapped to a viewport defined by the points (20,20) and (70,60). The appropriate
GPORT and GWINDOW specifications are as follows:

call gwindow({77 120, 86 160});
call gport({20 20, 70 60});

The window, in effect, defines the portion of the graph that is to be displayed in world
coordinates, and the viewport specifies the area on the device on which the image is
to appear.

Figure 12.4. Window to Viewport Mapping

412 � Chapter 12. Graphics Examples

Understanding Windows

Because the default world coordinate system ranges from (0,0) to (100,100), you
usually need to define a window in order to set the world coordinates corresponding
to your data. A window specifies which part of the data in world coordinate space
is to be shown. Sometimes you want all of the data shown; other times, you want to
show only part of the data.

A window is defined by an array of four numbers, which define a rectangular area.
You define this area by specifying the world coordinates of the lower-left and upper-
right corners in the GWINDOW statement, which has the following general form:

CALL GWINDOW(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. The order of the elements is impor-
tant. The array of coordinates can be a 2×2, 1×4, or 4×1 matrix. These coordinates
can be specified as matrix literals or as the name of a numeric matrix containing the
coordinates. If you do not define a window, the default is to assume both x and y
range between 0 and 100.

In summary, a window

• defines the portion of the graph that appears in the viewport

• is a rectangular area

• is defined by an array of four numbers

• is defined in world coordinates

• scales the data relative to world coordinates

In the previous example, the variable YEAR ranges from 1971 to 1986, while PRICE
ranges from 123.625 to 159.50. Because the data do not fit nicely into the default, you
want to define a window that reflects the ranges of the variables YEAR and PRICE.
To draw the graph of these data to scale, you can let the YEAR axis range from 70 to
87 and the PRICE axis range from 100 to 200. Use the following statements to draw
the graph, shown in Figure 12.5.

call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
call gopen("stocks1"); /* begin new graph STOCKS1 */
call gset("height", 2.0);
year=do(71,86,1); /* initialize YEAR */
price={123.75 128.00 139.75 /* initialize PRICE */

155.50 139.750 151.500
150.375 149.125 159.500
152.375 147.000 134.125
138.750 123.625 127.125
125.50};

call gwindow({70 100 87 200}); /* define window */
call gpoint(year,price,"diamond","green"); /* graph the points */
call gdraw(year,price,1,"green"); /* connect points */
call gshow; /* show the graph */

Windows and Viewports � 413

Figure 12.5. Stock Data

In the following example, you perform several steps that you did not do with the
previous graph:

• You associate the name STOCKS1 with this graphics segment in the GOPEN
command.

• You define a window that reflects the actual ranges of the data with a
GWINDOW command.

• You associate a plotting symbol, the diamond, and the color green with the
GPOINT command.

• You connect the points with line segments with the GDRAW command. The
GDRAW command requests that the line segments be drawn in style 1 and be
green.

Understanding Viewports

A viewport specifies a rectangular area on the display device where the graph appears.
You define this area by specifying the normalized coordinates, the lower-left corner
and the upper-right corner, in the GPORT statement, which has the following general
form:

CALL GPORT(minimum-x minimum-y maximum-x maximum-y);

The argument can be either a matrix or a literal. Note that both x and y must range
between 0 and 100. As with the GWINDOW specification, you can give the coordi-
nates either as a matrix literal enclosed in braces or as the name of a numeric matrix

414 � Chapter 12. Graphics Examples

containing the coordinates. The array can be a 2 × 2, 1 × 4, or 4 × 1 matrix. If you
do not define a viewport, the default is to span the entire display device.

In summary, a viewport

• specifies where the image appears on the display

• is a rectangular area

• is specified by an array of four numbers

• is defined in normalized coordinates

• scales the data relative to the shape of the viewport

To display the stock price data in a smaller area on the display device, you must define
a viewport. While you are at it, add some text to the graph. You can use the graph
that you created and named STOCKS1 in this new graph. The following statements
create the graph shown in Figure 12.6.

/* module centers text strings */
start gscenter(x,y,str);

call gstrlen(len,str); /* find string length */
call gscript(x-len/2,y,str); /* print text */

finish gscenter;

call gopen("stocks2"); /* open a new segment */
call gset("font","swiss"); /* set character font */
call gpoly(xbox,ybox); /* draw a border */
call gwindow({70 100,87 200}); /* define a window */
call gport({15 15,85 85}); /* define a viewport */
call ginclude("stocks1"); /* include segment STOCKS1 */
call gxaxis({70 100},17,18, , /* draw x-axis */

,"2.",1.5);
call gyaxis({70 100},100,11, , /* draw y-axis */

,"dollar5.",1.5);
call gset("height",2.0); /* set character height */
call gtext(77,89,"Year"); /* print horizontal text */
call gvtext(68,200,"Price"); /* print vertical text */
call gscenter(79,210,"ACME Stock Data"); /* print title */
call gshow;

Windows and Viewports � 415

Figure 12.6. Stock Data with Axes and Labels

The following list describes the statements that generated this graph:

• GOPEN begins a new graph and names it STOCKS2.

• GPOLY draws a box around the display area.

• GWINDOW defines the world coordinate space to be larger than the actual
range of stock data values.

• GPORT defines a viewport. It causes the graph to appear in the center of the
display, with a border around it for text. The lower-left corner has coordinates
(15,15) and the upper-right corner has coordinates (85,85).

• GINCLUDE includes the graphics segment STOCKS1. This saves you from
having to plot points you have already created.

• GXAXIS draws the x axis. It begins at the point (70,100) and is 17 units
(years) long, divided with 18 tick marks. The axis tick marks are printed with
the numeric 2.0 format, and they have a height of 1.5 units.

• GYAXIS draws the y axis. It also begins at (70,100) but is 100 units (dollars)
long, divided with 11 tick marks. The axis tick marks are printed with the
DOLLAR5.0 format and have a height of 1.5 units.

• GSET sets the text font to be Swiss and the height of the letters to be 2.0 units.
The height of the characters has been increased because the viewport definition
scales character sizes relative to the viewport.

• GTEXT prints horizontal text. It prints the text string Year beginning at the
world coordinate point (77,89).

416 � Chapter 12. Graphics Examples

• GVTEXT prints vertical text. It prints the text string Price beginning at the
world coordinate point (68,200).

• GSCENTER runs the module to print centered text strings.

• GSHOW displays the graph.

Changing Windows and Viewports

Windows and viewports can be changed for the graphics segment any time that the
segment is active. Using the stock price example, you can first define a window for
the data during the years 1971 to 1974 and map this to the viewport defined on the
upper half of the normalized device; then you can redefine the window to enclose
the data for 1983 to 1986 and map this to an area in the lower half of the normalized
device. Notice how the shape of the viewport affects the shape of the curve. Changing
the viewport can affect the height of any printed characters as well. In this case, you
can modify the HEIGHT parameter.

The following statements generate the graph in Figure 12.7:

/* figure 12.7 */
reset clip; /* clip outside viewport */
call gopen; /* open a new segment */
call gset("color","blue");
call gset("height",2.0);
call gwindow({71 120,74 175}); /* define a window */
call gport({20 55,80 90}); /* define a viewport */
call gpoly({71 74 74 71},{120 120 170 170}); /* draw a border */
call gscript(71.5,162,"Viewport #1 1971-74",, /* print text */

,3.0,"complex","red");
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gblkvpd;
call gwindow({83 120,86 170}); /* define new window */
call gport({20 10,80 45}); /* define new viewport */
call gpoly({83 86 86 83},{120 120 170 170}); /* draw border */
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gscript(83.5,162,"Viewport #2 1983-86",, /* print text */

,3.0,"complex","red");
call gshow;

Windows and Viewports � 417

Figure 12.7. Multiple Viewports

The RESET CLIP command is necessary because you are graphing only a part of the
data in the window. You want to clip the data that falls outside of the window. See the
section “Clipping Your Graphs” on page 419 for more about clipping. In this graph,
you

• open a new segment (GOPEN)

• define the first window for the first four years’ data (GWINDOW)

• define a viewport in the upper part of the display device (GPORT)

• draw a box around the viewport (GPOLY)

• add text (GSCRIPT)

• graph the points and connect them (GPOINT and GDRAW)

• define the second window for the last four years (GWINDOW)

• define a viewport in the lower part of the display device (GPORT)

• draw a box around the viewport (GPOLY)

• graph the points and connect them (GPOINT and GDRAW)

• add text (GSCRIPT)

• display the graph (GSHOW)

Stacking Viewports

Viewports can be stacked; that is, a viewport can be defined relative to another view-
port so that you have a viewport within a viewport.

418 � Chapter 12. Graphics Examples

A window or a viewport is changed globally through the IML graphics com-
mands: the GWINDOW command for windows, and the GPORT, GPORTSTK, and
GPORTPOP commands for viewports. When a window or viewport is defined, it
persists across IML graphics commands until another window- or viewport-altering
command is encountered. Stacking helps you define a viewport without losing the
effect of a previously defined viewport. When a stacked viewport is popped, you are
placed into the environment of the previous viewport.

Windows and viewports are associated with a particular segment; thus, they automat-
ically become undefined when the segment is closed. A segment is closed whenever
IML encounters a GCLOSE command or a GOPEN command. A window or a view-
port can also be changed for a single graphics command. Either one can be passed
as an argument to a graphics primitive, in which case any graphics output associated
with the call is defined in the specified window or viewport. When a viewport is
passed as an argument, it is stacked, or defined relative to the current viewport, and
popped when the graphics command is complete.

For example, suppose you want to create a legend that shows the low and peak points
of the data for the ACME stock graph. Use the following statements to create a
graphics segment showing this information:

call gopen("legend");
call gset(’height’,5); /* enlarged to accommodate viewport later */
call gset(’font’,’swiss’);
call gscript(5,75,"Stock Peak: 159.5 in 1979");
call gscript(5,65,"Stock Low: 123.6 in 1984");
call gclose;

Use the following statements to create a segment that highlights and labels the low
and peak points of the data:

/* Highlight and label the low and peak points of the stock */
call gopen("labels");
call gwindow({70 100 87 200}); /* define window */
call gpoint(84,123.625,"circle","red",4) ;
call gtext(84,120,"LOW","red");
call gpoint(79,159.5,"circle","red",4);
call gtext(79,162,"PEAK","red");
call gclose;

Next, open a new graphics segment and include the STOCK1 segment created earlier
in the chapter, placing the segment in the viewport {10 10 90 90}. Here is the code:

call gopen;
call gportstk ({10 10 90 90}); /* viewport for the plot itself */
call ginclude(’stocks2’);

To place the legend in the upper-right corner of this viewport, use the GPORTSTK
command instead of the GPORT command to define the legend’s viewport relative to
the one used for the plot of the stock data, as follows:

Clipping Your Graphs � 419

call gportstk ({70 70 100 100}); /* viewport for the legend */
call ginclude("legend");

Now pop the legend’s viewport to get back to the viewport of the plot itself and
include the segment that labels and highlights the low and peak stock points. Here is
the code:

call gportpop; /* viewport for the legend */
call ginclude ("labels");

Finally, display the graph, as follows:

call gshow;

Figure 12.8. Stacking Viewports

Clipping Your Graphs

The IML graphics subsystem does not automatically clip the output to the viewport.
Thus, it is possible that data are graphed outside the defined viewport. This happens
when there are data points lying outside the defined window. For instance, if you
specify a window to be a subset of the world, then there will be data lying outside
the window and these points will be graphed outside the viewport. This is usually not
what you want. To clean up such graphs, you either delete the points you do not want
to graph or clip the graph.

There are two ways to clip a graph. You can use the RESET CLIP command, which
clips outside a viewport. The CLIP option remains in effect until you submit a RESET

420 � Chapter 12. Graphics Examples

NOCLIP command. You can also use the GBLKVP command, which clips either
inside or outside a viewport. Use the GBLKVP command to define a blanking area in
which nothing can be drawn until the blanking area is released. Use the GBLKVPD
command to release the blanking area.

Common Arguments

IML graphics commands are available in the form of call subroutines. They generally
take a set of required arguments followed by a set of optional arguments. All graphics
primitives take window and viewport as optional arguments. Some IML graphics
commands, like GPOINT or GPIE, accept implicit repetition factors in the argument
lists. The GPOINT command places as many markers as there are well-defined (x, y)
pairs. The GPIE command draws as many slices as there are well-defined pies. In
those cases, some of the attribute matrices can have more than one element, which are
used in order. If an attribute list is exhausted before the repetition factor is completed,
the last element of the list is used as the attribute for the remaining primitives.

The arguments to the IML graphics commands are positional. Thus, to skip over
an optional argument from the middle of a list, you must specify a comma to hold
its place. For example, the following command omits the third argument from the
argument list:

call gpoint(x,y, ,"red");

The following list details the arguments commonly used in IML graphics com-
mands:

color is a character matrix or literal that names a valid color as specified
in the GOPTIONS statement. The default color is the first color
specified in the COLORS= list in the GOPTIONS statement. If no
such list is given, IML uses the first default color for the graphics
device. Note that color can be specified either as a quoted literal,
such as “RED,” a color number, such as 1, or the name of a matrix
containing a reference to a valid color. A color number n refers to
the nth color in the color list.

You can change the default color with the GSET command.

font is a character matrix or quoted literal that specifies a valid font
name. The default font is the hardware font, which can be changed
by the GSET command unless a viewport is in effect.

height is a numeric matrix or literal that specifies the character height.
The unit of height is the gunit of the GOPTIONS statement, when
specified; otherwise, the unit is a character cell. The default height
is 1 gunit, which you can change by using the GSET command.

pattern is a character matrix or quoted literal that specifies the pattern
to fill the interior of a closed curve. You specify a pattern by
a coded character string as documented in the V= option in the

Common Arguments � 421

PATTERN statement (refer to the chapter on the PATTERN state-
ment in SAS/GRAPH Software: Reference.

The default pattern set by the IML graphics subsystem is “E,” that
is, empty. The default pattern can be changed by using the GSET
command.

segment-name is a character matrix or quoted literal that specifies a valid SAS
name used to identify a graphics segment. The segment-name is
associated with the graphics segment opened with a GOPEN com-
mand. If you do not specify segment-name, IML generates default
names. For example, to create a graphics segment called PLOTA,
use the following statement:

call gopen("plota");

Graphics segments are not allowed to have the same name as an
existing segment. If you try to create a second segment named
PLOTA (that is, when the replace flag is turned off), then the sec-
ond segment is named PLOTA1. The replace flag is set by the
GOPEN command for the segment that is being created. To open a
new segment named PLOTA and replace an existing segment with
the same name, use the following statement:

call gopen("plota",1);

If you do not specify a replace argument to the GOPEN command,
the default is set by the GSTART command for all subsequent seg-
ments that are created. By default, the GSTART command sets the
replace flag to 0, so that new segments do not replace like-named
segments.

style is a numeric matrix or literal that specifies an index correspond-
ing to the line style documented for the SYMBOL statement in
the chapter on the SYMBOL statement in SAS/GRAPH Software:
Reference. The IML graphics subsystem sets the default line style
to be 1, a solid line. The default line style can be changed by using
the GSET command.

symbol is a character matrix or quoted literal that specifies either a charac-
ter string corresponding to a symbol as defined for the V= option
of the SYMBOL statement or specifies the corresponding identify-
ing symbol number. STAR is the default symbol used by the IML
graphics subsystem.

SAS/IML graphics commands are described in detail in Chapter 20.

Refer also to SAS/GRAPH Software: Reference for additional information.

422 � Chapter 12. Graphics Examples

Graphics Examples
This section provides the details and code for three examples involving SAS/IML
graphics. The first example shows a 2× 2 matrix of scatter plots and a 3× 3 matrix
of scatter plots. A matrix of scatter plots is useful when you have several variables
that you want to investigate simultaneously rather than in pairs. The second example
draws a grid for representing a train schedule, with arrival and departure dates on
the horizontal axis and destinations along the vertical axis. The final example plots
Fisher’s iris data. The following example shows how to plot several graphs on one
page.

Example 12.1. Scatter Plot Matrix

With the viewport capability of the IML graphics subroutine, you can arrange several
graphs on a page. In this example, multiple graphs are generated from three variables
and are displayed in a scatterplot matrix. For each variable, one contour plot is gen-
erated with each of the other variables as the dependent variable. For the graphs on
the main diagonal, a box-and-whiskers plot is generated for each variable.

This example takes advantage of user-defined IML modules:

BOXWHSKR computes median and quartiles.

GBXWHSKR draws box-and-whiskers plots.

CONTOUR generates confidence ellipses assuming bivariate normal data.

GCONTOUR draws the confidence ellipses for each pair of variables.

GSCATMAT produces the n × n scatter plot matrix, where n is the number of
variables.

The code for the five modules and a sample data set follow. The modules produce
Figure 12.9 on page 428 and Figure 12.10 on page 428.

/* This program generates a data set and uses iml graphics */
/* subsystem to draw a scatterplot matrix. */
/* */

data factory;
input recno prod temp a defect mon;
datalines;

1 1.82675 71.124 1.12404 1.79845 2
2 1.67179 70.9245 0.924523 1.05246 3
3 2.22397 71.507 1.50696 2.36035 4
4 2.39049 74.8912 4.89122 1.93917 5
5 2.45503 73.5338 3.53382 2.0664 6
6 1.68758 71.6764 1.67642 1.90495 7
7 1.98233 72.4222 2.42221 1.65469 8
8 1.17144 74.0884 4.08839 1.91366 9
9 1.32697 71.7609 1.76087 1.21824 10

10 1.86376 70.3978 0.397753 1.21775 11
11 1.25541 74.888 4.88795 1.87875 12
12 1.17617 73.3528 3.35277 1.15393 1
13 2.38103 77.1762 7.17619 2.26703 2

Example 12.1. Scatter Plot Matrix � 423

14 1.13669 73.0157 3.01566 1 3
15 1.01569 70.4645 0.464485 1 4
16 2.36641 74.1699 4.16991 1.73009 5
17 2.27131 73.1005 3.10048 1.79657 6
18 1.80597 72.6299 2.62986 1.8497 7
19 2.41142 81.1973 11.1973 2.137 8
20 1.69218 71.4521 1.45212 1.47894 9
21 1.95271 74.8427 4.8427 1.93493 10
22 1.28452 76.7901 6.79008 2.09208 11
23 1.51663 83.4782 13.4782 1.81162 12
24 1.34177 73.4237 3.42369 1.57054 1
25 1.4309 70.7504 0.750369 1.22444 2
26 1.84851 72.9226 2.92256 2.04468 3
27 2.08114 78.4248 8.42476 1.78175 4
28 1.99175 71.0635 1.06346 1.25951 5
29 2.01235 72.2634 2.2634 1.36943 6
30 2.38742 74.2037 4.20372 1.82846 7
31 1.28055 71.2495 1.24953 1.8286 8
32 2.05698 76.0557 6.05571 2.03548 9
33 1.05429 77.721 7.72096 1.57831 10
34 2.15398 70.8861 0.886068 2.1353 11
35 2.46624 70.9682 0.968163 2.26856 12
36 1.4406 73.5243 3.52429 1.72608 1
37 1.71475 71.527 1.52703 1.72932 2
38 1.51423 78.5824 8.5824 1.97685 3
39 2.41538 73.7909 3.79093 2.07129 4
40 2.28402 71.131 1.13101 2.25293 5
41 1.70251 72.3616 2.36156 2.04926 6
42 1.19747 72.3894 2.3894 1 7
43 1.08089 71.1729 1.17288 1 8
44 2.21695 72.5905 2.59049 1.50915 9
45 1.52717 71.1402 1.14023 1.88717 10
46 1.5463 74.6696 4.66958 1.25725 11
47 2.34151 90 20 3.57864 12
48 1.10737 71.1989 1.19893 1.62447 1
49 2.2491 76.6415 6.64147 2.50868 2
50 1.76659 71.7038 1.70377 1.231 3
51 1.25174 76.9657 6.96572 1.99521 4
52 1.81153 73.0722 3.07225 2.15915 5
53 1.72942 71.9639 1.96392 1.86142 6
54 2.17748 78.1207 8.12068 2.54388 7
55 1.29186 77.0589 7.05886 1.82777 8
56 1.92399 72.6126 2.61256 1.32816 9
57 1.38008 70.8872 0.887228 1.37826 10
58 1.96143 73.8529 3.85289 1.87809 11
59 1.61795 74.6957 4.69565 1.65806 12
60 2.02756 75.7877 5.78773 1.72684 1
61 2.41378 75.9826 5.98255 2.76309 2
62 1.41413 71.3419 1.34194 1.75285 3
63 2.31185 72.5469 2.54685 2.27947 4
64 1.94336 71.5592 1.55922 1.96157 5
65 2.094 74.7338 4.73385 2.07885 6
66 1.19458 72.233 2.23301 1 7
67 2.13118 79.1225 9.1225 1.84193 8
68 1.48076 87.0511 17.0511 2.94927 9
69 1.98502 79.0913 9.09131 2.47104 10
70 2.25937 73.8232 3.82322 2.49798 12
71 1.18744 70.6821 0.682067 1.2848 1
72 1.20189 70.7053 0.705311 1.33293 2

424 � Chapter 12. Graphics Examples

73 1.69115 73.9781 3.9781 1.87517 3
74 1.0556 73.2146 3.21459 1 4
75 1.59936 71.4165 1.41653 1.29695 5
76 1.66044 70.7151 0.715145 1.22362 6
77 1.79167 74.8072 4.80722 1.86081 7
78 2.30484 71.5028 1.50285 1.60626 8
79 2.49073 71.5908 1.59084 1.80815 9
80 1.32729 70.9077 0.907698 1.12889 10
81 2.48874 83.0079 13.0079 2.59237 11
82 2.46786 84.1806 14.1806 3.35518 12
83 2.12407 73.5826 3.58261 1.98482 1
84 2.46982 76.6556 6.65559 2.48936 2
85 1.00777 70.2504 0.250364 1 3
86 1.93118 73.9276 3.92763 1.84407 4
87 1.00017 72.6359 2.63594 1.3882 5
88 1.90622 71.047 1.047 1.7595 6
89 2.43744 72.321 2.32097 1.67244 7
90 1.25712 90 20 2.63949 8
91 1.10811 71.8299 1.82987 1 9
92 2.25545 71.8849 1.8849 1.94247 10
93 2.47971 73.4697 3.4697 1.87842 11
94 1.93378 74.2952 4.2952 1.52478 12
95 2.17525 73.0547 3.05466 2.23563 1
96 2.18723 70.8299 0.829929 1.75177 2
97 1.69984 72.0026 2.00263 1.45564 3
98 1.12504 70.4229 0.422904 1.06042 4
99 2.41723 73.7324 3.73238 2.18307 5

;

proc iml;

/*-- Load graphics --*/
call gstart;

/*--------------------*/
/*-- Define modules --*/
/*--------------------*/

/* Module : compute contours */
start contour(c,x,y,npoints,pvalues);

/* This routine computes contours for a scatter plot */
/* c returns the contours as consecutive pairs of columns */
/* x and y are the x and y coordinates of the points */
/* npoints is the number of points in a contour */
/* pvalues is a column vector of contour probabilities */
/* the number of contours is controlled by the ncol(pvalue) */

xx=x||y;
n=nrow(x);

/* Correct for the mean */
mean=xx[+,]/n;
xx=xx-mean@j(n,1,1);

/* Find principal axes of ellipses */
xx=xx‘ *xx/n;
call eigen(v,e,xx);

Example 12.1. Scatter Plot Matrix � 425

/* Set contour levels */
c=-2*log(1-pvalues);
a=sqrt(c*v[1]); b=sqrt(c*v[2]);

/* Parameterize the ellipse by angle */
t=((1:npoints)-{1})#atan(1)#8/(npoints-1);
s=sin(t);
t=cos(t);
s=s‘ *a;
t=t‘ *b;

/* Form contour points */
s=((e*(shape(s,1)//shape(t,1)))+mean‘@j(1,npoints*ncol(c),1))‘;
c=shape(s,npoints);

/* Returned as ncol pairs of columns for contours */
finish contour;
/*-- Module : draw contour curves --*/
start gcontour(t1, t2);

run contour(t12, t1, t2, 30, {.5 .8 .9});
window=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))//

(max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2));
call gwindow(window);
call gdraw(t12[,1],t12[,2],,’blue’);
call gdraw(t12[,3],t12[,4],,’blue’);
call gdraw(t12[,5],t12[,6],,’blue’);
call gpoint(t1,t2,,’red’);

finish gcontour;

/*-- Module : find median, quartiles for box and whisker plot --*/
start boxwhskr(x, u, q2, m, q1, l);

rx=rank(x);
s=x;
s[rx,]=x;
n=nrow(x);

/*-- Median --*/
m=floor(((n+1)/2)||((n+2)/2));
m=(s[m,])[+,]/2;

/*-- Compute quartiles --*/
q1=floor(((n+3)/4)||((n+6)/4));
q1=(s[q1,])[+,]/2;
q2=ceil(((3*n+1)/4)||((3*n-2)/4));
q2=(s[q2,])[+,]/2;
h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/
u=q2+h;
l=q1-h;
u=(u>s)[+,]; /*-- adjacent values -----------------*/
u=s[u,];
l=(l>s)[+,];
l=s[l+1,];

finish boxwhskr;

/*-- Box and Whisker plot --*/

426 � Chapter 12. Graphics Examples

start gbxwhskr(t, ht);
run boxwhskr(t, up, q2,med, q1, lo);

/*---Adjust screen viewport and data window */
y=min(t)//max(t);
call gwindow({0, 100} || y);
mid = 50;
wlen = 20;

/*-- Add whiskers */
wstart=mid-(wlen/2);
from=(wstart||up)//(wstart||lo);
to=((wstart//wstart)+wlen)||from[,2];

/*-- Add box */
len=50;
wstart=mid-(len/2);
wstop=wstart+len;
from=from//(wstart||q2)//(wstart||q1)//

(wstart||q2)//(wstop||q2);
to=to//(wstop||q2)//(wstop||q1)//

(wstart||q1)//(wstop||q1);

/*---Add median line */
from=from//(wstart||med);
to=to//(wstop||med);

/*---Attach whiskers to box */
from=from//(mid||up)//(mid||lo);
to=to//(mid||q2)//(mid||q1);

/*-- Draw box and whiskers */
call gdrawl(from, to,,’red’);

/*---Add minimum and maximum data points */
call gpoint(mid, y ,3,’red’);

/*---Label min, max, and mean */
y=med//y;
s={’med’ ’min’ ’max’};
call gset("font","swiss");
call gset(’height’,13);
call gscript(wstop+ht, y, char(y,5,2),,,,,’blue’);
call gstrlen(len, s);
call gscript(wstart-len-ht,y,s,,,,,’blue’);
call gset(’height’);

finish gbxwhskr;

/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);

call gopen(’scatter’);
nv=ncol(vname);
if (nv=1) then nv=nrow(vname);
cellwid=int(90/nv);
dist=0.1*cellwid;
width=cellwid-2*dist;
xstart=int((90 -cellwid * nv)/2) + 5;
xgrid=((0:nv)#cellwid + xstart)‘;

Example 12.1. Scatter Plot Matrix � 427

/*-- Delineate cells --*/
cell1=xgrid;
cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]);
cell2=j(nv+1, 1, xstart);
cell2=cell1[,1]||cell2;
call gdrawl(cell1, cell2);
call gdrawl(cell1[,{2 1}], cell2[,{2 1}]);
xstart = xstart + dist; ystart = xgrid[nv] + dist;

/*-- Label variables ---*/
call gset("height", 5);
call gset("font","swiss");
call gstrlen(len, vname);
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(where, 0, vname) ;
len=len[nv-(0:nv-1)];
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(4,where, vname[nv - (0:nv-1)],90);

/*-- First viewport --*/
vp=(xstart || ystart)//((xstart || ystart) + width) ;

/* Since the characters are scaled to the viewport */
/* (which is inversely porportional to the */
/* number of variables), */
/* enlarge it proportional to the number of variables */

ht=2*nv;
call gset("height", ht);
do i=1 to nv;

do j=1 to i;
call gportstk(vp);
if (i=j) then run gbxwhskr(data[,i], ht);
else run gcontour(data[,j], data[,i]);

/*-- onto the next viewport --*/
vp[,1] = vp[,1] + cellwid;
call gportpop;

end;
vp=(xstart // xstart + width) || (vp[,2] - cellwid);

end;
call gshow;

finish gscatmat;

/*-- Placement of text is based on the character height. */
/* The IML modules defined here assume percent as the unit of */
/* character height for device independent control. */

goptions gunit=pct;

use factory;
vname={prod, temp, defect};
read all var vname into xyz;
run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix --*/
run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix --*/
quit;

goptions gunit=cell; /*-- reset back to default --*/

428 � Chapter 12. Graphics Examples

Figure 12.9. 2× 2 Scatter Plot Matrix

Figure 12.10. 3× 3 Scatter Plot Matrix

Example 12.2. Train Schedule � 429

Example 12.2. Train Schedule

This example draws a grid on which the horizontal dimension gives the ar-
rival/departure data and the vertical dimension gives the destination. The first section
of the code defines the matrices used. The following section generates the graph.
The following example code shows some applications of the GGRID, GDRAWL,
GSTRLEN, and GSCRIPT subroutines. This code produces Figure 12.11 on page
430.

proc iml;
/* Placement of text is based on the character height. */
/* The graphics segment defined here assumes percent as the */
/* unit of character height for device independent control. */

goptions gunit=pct;

call gstart;
/* Define several necessary matrices */
cityloc={0 27 66 110 153 180}‘;
cityname={"Paris" "Montereau" "Tonnerre" "Dijon" "Macon" "Lyons"};
timeloc=0:30;
timename=char(timeloc,2,0);
/* Define a data matrix */
schedule=

/* origin dest start end comment */
{ 1 2 11.0 12.5, /* train 1 */

2 3 12.6 14.9,
3 4 15.5 18.1,
4 5 18.2 20.6,
5 6 20.7 22.3,
6 5 22.6 24.0,
5 4 0.1 2.3,
4 3 2.5 4.5,
3 2 4.6 6.8,
2 1 6.9 8.5,
1 2 19.2 20.5, /* train 2 */
2 3 20.6 22.7,
3 4 22.8 25.0,
4 5 1.0 3.3,
5 6 3.4 4.5,
6 5 6.9 8.5,
5 4 8.6 11.2,
4 3 11.6 13.9,
3 2 14.1 16.2,
2 1 16.3 18.0

};

xy1=schedule[,3]||cityloc[schedule[,1]];
xy2=schedule[,4]||cityloc[schedule[,2]];

call gopen;
call gwindow({-8 -35, 36 240});
call ggrid(timeloc,cityloc,1,"red");
call gdrawl(xy1,xy2,,"blue");

/*-- center title -- */
s = "Train Schedule: Paris to Lyons";
call gstrlen(m, s,5,"titalic");

430 � Chapter 12. Graphics Examples

call gscript(15-m/2,185,s,,,5,"titalic");

/*-- find max graphics text length of cityname --*/
call gset("height",3);
call gset("font","italic");
call gstrlen(len, cityname);
m = max(len) +1.0
call gscript(-m, cityloc,cityname);
call gscript(timeloc - .5,-12,timename,-90,90);
call gshow;

quit;
goptions gunit=cell; /*-- reset back to default --*/

Figure 12.11. Train Schedule

Example 12.3. Fisher’s Iris Data

This example generates four scatter plots and prints them on a single page. Scatter
plots of sepal length versus petal length, sepal width versus petal width, sepal length
versus sepal width, and petal length versus petal width are generated. The following
code produces Figure 12.12 on page 433.

data iris;
title ’Fisher (1936) Iris Data’;
input sepallen sepalwid petallen petalwid spec_no @@;
if spec_no=1 then species=’setosa ’;
if spec_no=2 then species=’versicolor’;
if spec_no=3 then species=’virginica ’;
label sepallen=’sepal length in mm.’

sepalwid=’sepal width in mm.’
petallen=’petal length in mm.’

Example 12.3. Fisher’s Iris Data � 431

petalwid=’petal width in mm.’;
datalines;

50 33 14 02 1 64 28 56 22 3 65 28 46 15 2
67 31 56 24 3 63 28 51 15 3 46 34 14 03 1
69 31 51 23 3 62 22 45 15 2 59 32 48 18 2
46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3
58 27 51 19 3 68 32 59 23 3 51 33 17 05 1
57 28 45 13 2 62 34 54 23 3 77 38 67 22 3
63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3
70 32 47 14 2 64 32 45 15 2 61 28 40 13 2
48 31 16 02 1 59 30 51 18 3 55 24 38 11 2
63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3
44 32 13 02 1 67 33 57 21 3 50 35 16 06 1
58 26 40 12 2 44 30 13 02 1 77 28 67 20 3
63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1
51 38 16 02 1 61 30 49 18 3 48 34 19 02 1
50 30 16 02 1 50 32 12 02 1 61 26 56 14 3
64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3
49 30 14 02 1 51 35 14 02 1 56 30 45 15 2
58 27 41 10 2 50 34 16 04 1 46 32 14 02 1
60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3
58 27 51 19 3 57 29 42 13 2 72 30 58 16 3
54 34 15 04 1 52 41 15 01 1 71 30 59 21 3
64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2
55 42 14 02 1 49 31 15 02 1 77 26 69 23 3
60 22 50 15 3 54 39 17 04 1 66 29 46 13 2
52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2
58 27 39 12 2 47 32 13 02 1 46 31 15 02 1
69 32 57 23 3 62 29 43 13 2 74 28 61 19 3
59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3
67 25 58 18 3 49 31 15 01 1 67 31 47 15 2
63 23 44 13 2 54 37 15 02 1 56 30 41 13 2
63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3
69 31 54 21 3 54 39 13 04 1 51 35 14 03 1
72 36 61 25 3 65 32 51 20 3 61 29 47 14 2
56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1
48 30 14 01 1 45 23 13 03 1 57 25 50 20 3
57 38 17 03 1 51 38 15 03 1 55 23 40 13 2
66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3
67 30 50 17 2 63 33 60 25 3 53 37 15 02 1

;

proc iml;

use iris; read all;

432 � Chapter 12. Graphics Examples

/*-- */
/* Create 5 graphs, PETAL, SEPAL, SPWID, SPLEN, and ALL4 */
/* After the graphs are created, to see any one, type */
/* CALL GSHOW("name"); */
/* where name is the name of any one of the 5 graphs */
/* --- */

call gstart; /*-- always start with GSTART --*/

/*-- Spec_no is used as marker index, change 3 to 4 */
/*-- 1 is + , 2 is x, 3 is *, 4 is a square -------------*/

do i=1 to 150;
if (spec_no[i] = 3) then spec_no[i] = 4;

end;

/*-- Creates 4 x-y plots stored in 4 different segments */

/*-- Creates a segment called petal, petallen by petalwid --*/
call gopen("petal");

wp = { -10 -5, 90 30};
call gwindow(wp);
call gxaxis({0 0}, 75, 6,,,’5.1’);
call gyaxis({0 0}, 25, 5,,,’5.1’);
call gpoint(petallen, petalwid, spec_no, ’blue’);
labs = "Petallen vs Petalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(40-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called sepal, sepallen by sepalwid --*/
call gopen("sepal");

ws = {35 15 85 55};
call gwindow(ws);
call gxaxis({40 20}, 40, 9, , ,’5.1’);
call gyaxis({40 20}, 28, 7, , ,’5.1’);
call gpoint(sepallen, sepalwid, spec_no, ’blue’);
labs = "Sepallen vs Sepalwid";
call gstrlen(len, labs,2, ’swiss’);
call gscript(60-len/2,16,labs,,,2,’swiss’);

/*-- Creates a segment called spwid, petalwid by sepalwid --*/
call gopen("spwid");

wspwid = { 15 -5 55 30};
call gwindow(wspwid);
call gxaxis({20 0}, 28, 7,,,’5.1’);
call gyaxis({20 0}, 25, 5,,,’5.1’);
call gpoint(sepalwid, petalwid, spec_no, ’green’);
labs = "Sepalwid vs Petalwid";
call gstrlen(len, labs,2,’swiss’);
call gscript(35-len/2,-4,labs,,,2,’swiss’);

/*-- Creates a segment called splen, petallen by sepallen --*/
call gopen("splen");

wsplen = {35 -15 85 90};
call gwindow(wsplen);
call gxaxis({40 0}, 40, 9,,,’5.1’);

Example 12.3. Fisher’s Iris Data � 433

call gyaxis({40 0}, 75, 6,,,’5.1’);
call gpoint(sepallen, petallen, spec_no, ’red’);
labs = "Sepallen vs Petallen";
call gstrlen(len, labs,2,’swiss’);
call gscript(60-len/2,-14,labs,,,2,’swiss’);

/*-- Create a new segment */
call gopen("all4");

call gport({50 0, 100 50}); /* change viewport, lower right ----*/
call ginclude("sepal"); /* include sepal in this graph -----*/
call gport({0 50, 50 100}); /* change the viewport, upper left */
call ginclude("petal"); /* include petal -------------------*/
call gport({0 0, 50 50}); /* change the viewport, lower left */
call ginclude("spwid"); /* include spwid -------------------*/
call gport({50 50, 100 100});/* change the viewport, upper right */
call ginclude("splen"); /* include splen -------------------*/

call gshow("all4");

Figure 12.12. Petal Length versus Petal Width

434

Chapter 13
Window and Display Features

Chapter Contents

OVERVIEW . 437

CREATING A DISPLAY WINDOW FOR DATA ENTRY 437

USING THE WINDOW STATEMENT . 439
Window Options . 440
Field Specifications . 440

USING THE DISPLAY STATEMENT . 441
Group Specifications . 442
Group Options . 442

DETAILS ABOUT WINDOWS . 442
Number and Position of Windows . 442
Windows and the Display Surface . 443
Deciding Where to Define Fields . 443
Groups of Fields . 443
Field Attributes . 444
Display Execution . 444
Field Formatting and Inputting . 445
Display-Only Windows . 445
Opening Windows . 445
Closing Windows . 445
Repeating Fields . 445
Example . 446

436

Chapter 13
Window and Display Features
Overview

The dynamic nature of IML gives you the ability to create windows on your display
for full-screen data entry or menuing. By using the WINDOW statement, you can
define a window, its fields, and its attributes. By using the DISPLAY statement, you
can display a window and await data entry.

These statements are similar in form and function to the corresponding statements
in the SAS DATA step. The specification of fields in the WINDOW or DISPLAY
statement is similar to the specifications used in the INPUT and PUT statements.
By using these statements you can write applications that behave similarly to other
full-screen facilities in the SAS System, such as the BUILD procedure in SAS/AF
software and the FSEDIT procedure in SAS/FSP software.

Creating a Display Window for Data Entry
Suppose that your application is a data entry system for a mailing list. You want to
create a data set called MAILLIST by prompting the user with a window that displays
all the entry fields. You want the data entry window to look as follows:

+--MAILLIST--+
| Command==> |
| |
| |
| NAME: |
| ADDRESS: |
| CITY: STATE: ZIP: |
| PHONE: |
| |
+--+

The process for creating a display window for this application consists of

• initializing the variables

• creating a SAS data set

• defining a module for collecting data that

1. defines a window
2. defines the data fields
3. defines a loop for collecting data
4. provides an exit from the loop

438 � Chapter 13. Window and Display Features

• executing the data-collecting routine

The whole system can be implemented with the following code to define modules
INITIAL and MAILGET:

/* module to initialize the variables */
/* */
start initial;

name=’ ’;
addr=’ ’;
city=’ ’;
state=’ ’;
zip=’ ’;
phone=’ ’;

finish initial;

This defines a module named INITIAL that initializes the variables you want to col-
lect. The initialization sets the string length for the character fields. You need to do
this prior to creating your data set.

Now define a module for collecting the data, as follows:

/* module to collect data */
/* */
start mailget;
/* define the window */

window maillist cmndline=cmnd msgline=msg
group=addr
#2 " NAME: " name
#3 " ADDRESS:" addr
#4 " CITY: " city +2 "STATE: " state +2 "ZIP: " zip
#5 " PHONE: " phone;

/* */
/* collect addresses until the user enters exit */
/* */

do until(cmnd="EXIT");
run initial;
msg="ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END";

/* */
/* loop until user types submit or exit */
/* */

do until(cmnd="SUBMIT"|cmnd="EXIT");
display maillist.addr;

end;
if cmnd="SUBMIT" then append;

end;
window close=maillist;

finish mailget;
/* initialize variables */
run initial;
/* create the new data set */
create maillist var{name addr city state zip phone};
/* collect data */

Using the WINDOW Statement � 439

run mailget;
/* close the new data set */
close maillist;

In the module MAILGET, the WINDOW statement creates a window named
MAILLIST with a group of fields (the group is named ADDR) presenting data fields
for data entry. The program sends messages to the window through the MSGLINE=
variable MSG. The program receives commands you enter through the CMNDLINE=
variable CMND.

You can enter data into the fields after each prompt field. After you are finished with
the entry, press a key defined as SUBMIT, or type SUBMIT in the command field.
The data are appended to the data set MAILLIST. When data entry is complete, type
EXIT in the command field. If you enter a command other than SUBMIT, EXIT, or
a valid SAS windowing environment command in the command field, you get the
following message on the message line:

ENTER SUBMIT TO APPEND OBSERVATION, EXIT TO END.

Using the WINDOW Statement
You use the WINDOW statement to define a window, its fields, and its attributes. The
general form of the WINDOW statement is as follows:

WINDOW <CLOSE=> window-name < window-options >

<GROUP=group-name-1 field-specs

< . . .GROUP=group-name-n field-specs >>;

The following options can be used with the WINDOW statement:

CLOSE=
is used only when you want to close the window.

window-name
is a valid SAS name for the window. This name is displayed in the upper-left border
of the window.

window-options
control the size, position, and other attributes of the window. You can change the at-
tributes interactively with window commands such as WGROW, WDEF, WSHRINK,
and COLOR. These options are described in the next section.

GROUP=group-name
starts a repeating sequence of groups of fields defined for the window. The group-
name is a valid SAS variable name used to identify a group of fields in a DISPLAY
statement that occurs later in the program.

field-specs
is a sequence of field specifications made up of positionals, field operands, formats,
and options. These are described in the section “Field Specifications” on page 440.

440 � Chapter 13. Window and Display Features

Window Options

Window options control the attributes of the window. The following options are valid
in the WINDOW statement:

CMNDLINE=name
names a character variable in which the command line entered by the user is stored.

COLOR=operand
specifies the background color for the window. The operand can be either a quoted
character literal or the name of a character variable containing the color. The valid
values are BLACK, GREEN, MAGENTA, RED, CYAN, GRAY, and BLUE. The
default is BLACK.

COLUMNS=operand
specifies the starting number of columns of the window. The operand can be either a
literal number, a variable name, or an expression in parentheses. The default is 78.

ICOLUMN=operand
specifies the initial column position of the window on the display screen. The
operand can be either a literal number or a variable name. The default is column
1.

IROW=operand
specifies the initial row position of the window on the display screen. The operand
can be either a literal number or a variable name. The default is row 1.

MSGLINE=operand
specifies the message to be displayed on the standard message line when the window
is made active. The operand is a quoted character literal or the name of a character
variable containing the message.

ROWS=operand
determines the starting number of rows of the window. The operand is either a literal
number, the name of a variable containing the number, or an expression in parentheses
yielding the number. The default is 23 rows.

Field Specifications

Both the WINDOW and DISPLAY statements accept field specifications. Field spec-
ifications have the following general form:

<positionals> field-operand <format> <field-options>

Positionals

The positionals are directives specifying the position on the screen in which to begin
the field. There are four kinds of positionals, any number of which are accepted for
each field operand. Positionals are the following:

operand specifies the row position; that is, it moves the current position to
column 1 of the specified line. The operand is either a number,

Using the DISPLAY Statement � 441

a variable name, or an expression in parentheses. The expression
must evaluate to a positive number.

/ instructs IML to go to column 1 of the next row.

@ operand specifies the column position. The operand is either a number, a
variable name, or an expression in parentheses. The @ directive
should come after the pound sign (#) positional, if it is specified.

+ operand instructs IML to skip columns. The operand is either a number, a
variable name, or an expression in parentheses.

Field Operands

The field-operand specifies what goes in the field. It is either a character literal in
quotes or the name of a character variable.

Formats

The format is the format used for display, for the value, and also as the informat
applied to entered values. If no format is specified, the standard numeric or character
format is used.

Field Options

The field-options specify the attributes of the field as follows:

PROTECT=YES
P=YES

specifies that the field is protected; that is, you cannot enter values in the field. If the
field operand is a literal, it is already protected.

COLOR=operand
specifies the color of the field. The operand can be either a literal character value
in quotes, a variable name, or an expression in parentheses. The colors available
are WHITE, BLACK, GREEN, MAGENTA, RED, YELLOW, CYAN, GRAY, and
BLUE. The default is BLUE. Note that the color specification is different from that
of the corresponding DATA step value because it is an operand rather than a name
without quotes.

Using the DISPLAY Statement
After you have opened a window with the WINDOW statement, you can use the
DISPLAY statement to display the fields in the window.

The DISPLAY statement specifies a list of groups to be displayed. Each group is
separated from the next by a comma.

442 � Chapter 13. Window and Display Features

The general form of the DISPLAY statement is as follows:

DISPLAY <group-spec-1 group-options,< . . ., group-spec-n group-options>>;

Group Specifications

The group specification names a group, either a compound name of the form win-
downame.groupname or a windowname followed by a group defined by fields and
enclosed in parentheses. For example, you can specify windowname.groupname or
windowname(field-specs), where field-specs are as defined earlier for the WINDOW
statement.

In the example, you used the following statement to display the window MAILLIST
and the group ADDR:

display maillist.addr;

Group Options

The group-options can be any of the following:

BELL
rings the bell, sounds the alarm, or causes the speaker at your workstation to beep
when the window is displayed.

NOINPUT
requests that the group be displayed with all the fields protected so that no data entry
can be done.

REPEAT
specifies that the group be repeated for each element of the matrices specified as
field-operands. See the section “Repeating Fields” on page 445.

Details about Windows
The following sections discuss some of the ideas behind windows.

Number and Position of Windows

You can have any number of windows. They can overlap each other or be disjoint.
Each window behaves independently from the others. You can specify the starting
size, position, and color of the window when you create it. Each window responds to
SAS windowing environment commands so that it can be moved, sized, or changed
in color dynamically by the user.

You can list all active windows in a session by using the SHOW WINDOWS com-
mand. This makes it easy to keep track of multiple windows.

Groups of Fields � 443

Windows and the Display Surface

A window is really a viewport into a display. The display can be larger or smaller than
the window. If the display is larger than the window, you can use scrolling commands
to move the surface under the window (or equivalently, move the window over the
display surface). The scrolling commands are as follows:

RIGHT < n > scrolls right.

LEFT < n > scrolls left.

FORWARD < n > scrolls forward (down).

BACKWARD < n > scrolls backward (up).

TOP scrolls to the top of the display surface.

BOTTOM scrolls to the bottom of the display surface.

The argument n is an optional numeric argument that indicates the number of posi-
tions to scroll. The default is 5.

Only one window is active at a time. You can move, zoom, enlarge, shrink, or recolor
inactive windows, but you cannot scroll or enter data.

Each display starts with the same standard lines: first a command line for entering
commands, then a message line for displaying messages (such as error messages).

The remainder of the display is up to you to design. You can put fields in any positive
row and column position of the display surface, even if it is off the displayed viewport.

Deciding Where to Define Fields

You have a choice of whether to define your fields in the WINDOW statement, the
DISPLAY statement, or both. Defining field groups in the WINDOW statement saves
work if you access the window from many different DISPLAY statements. Specifying
field groups in the DISPLAY statement provides more flexibility.

Groups of Fields

All fields must be part of field groups. The group is just a mechanism to treat multiple
fields together as a unit in the DISPLAY statement. There is only one rule about the
field positions of different groups: active fields must not overlap. Overlapping is
acceptable among fields as long as they are not simultaneously active. Active fields
are the ones that are specified together in the current DISPLAY statement.

You name groups specified in the WINDOW statement. You specify groups in the
DISPLAY statement just by putting them in parentheses; they are not named.

444 � Chapter 13. Window and Display Features

Field Attributes

There are two types of fields you can define:

• Protected fields are for constants on the screen.

• Unprotected fields accept data entry.

If the field consists of a character string in quotes, it is protected. If the field is
a variable name, it is not protected unless you specify PROTECT=YES as a field
option. If you want all fields protected, specify the NOINPUT group option in the
DISPLAY statement.

Display Execution

When you execute a DISPLAY statement, the SAS System displays the window with
all current values of the variables. You can then enter data into the unprotected fields.
All the basic editing keys (cursor controls, delete, end, insert, and so forth) work, as
well as SAS windowing environment commands to scroll or otherwise manage the
window. Control does not return to the IML code until you enter a command on the
command line that is not recognized as a SAS windowing environment command.
Typically, a SUBMIT command is used since most users define a function key for
this command. Before control is returned to you, IML moves all modified field val-
ues from the screen back into IML variables by using standard or specified informat
routines. If you have specified the CMNDLINE= option in the WINDOW statement,
the current command line is passed back to the specified variable.

The window remains visible with the last values entered until the next DISPLAY
statement or until the window is closed by a WINDOW statement with the CLOSE=
option.

Only one window is active at a time. Every window can be subject to SAS window-
ing environment commands, but only the window specified in the current DISPLAY
statement transfers data to IML.

Each window is composed dynamically every time it is displayed. If you position
fields by variables, you can make them move to different parts of the screen simply
by programming the values of the variables.

The DISPLAY statement even accepts general expressions in parentheses as posi-
tional or field operands. The WINDOW statement only accepts literal constants or
variable names as operands. If a field operand is an expression in parentheses, then it
is always a protected field. You cannot use the following statement and expect it to
return the log function of the data entered:

display w(log(X));

Instead you would need the following code:

lx=log(x);
display w(lx);

Repeating Fields � 445

Field Formatting and Inputting

The length of a field on the screen is specified in the format after the field operand, if
you give one. If a format is not given, IML uses standard character or numeric for-
mats and informats. Numeric informats allow scientific notation and missing values
(represented with periods). The default length for character variables is the size of the
variable element. The default size for numeric fields is given with the FW= option
(see the discussion of the RESET statement in Chapter 20).

If you specify a named format (such as DATE7.), IML attempts to use it for both the
output format and the input informat. If IML cannot find an input informat of that
name, it uses the standard informats.

Display-Only Windows

If a window consists only of protected fields, it is merely displayed; that is, it does
not wait for user input. These display-only windows can be displayed rapidly.

Opening Windows

The WINDOW statement is executable. When a WINDOW statement is executed,
IML checks to see if the specific window has already been opened. If it has not been
opened, then the WINDOW statement opens it; otherwise, the WINDOW statement
does nothing.

Closing Windows

To close a window, use the CLOSE= option in the WINDOW statement. In the
example given earlier, you closed MAILLIST with the following statement:

window close=maillist;

Repeating Fields

If you specify an operand for a field that is a multi-element matrix, the routines deal
with the first value of the matrix. However, there is a special group option, REPEAT,
that enables you to display and retrieve values from all the elements of a matrix. If
the REPEAT option is specified, IML determines the maximum number of elements
of any field-operand matrix, and then it repeats the group that number of times. If any
field operand has fewer elements, the last element is repeated the required number of
times (the last one becomes the data entered). Be sure to write your specifications so
that the fields do not overlap. If the fields overlap, an error message results. Although
the fields must be matrices, the positional operands are never treated as matrices.

The repeat feature can come in very handy in situations where you want to create a
menu for a list of items. For example, suppose you want to build a restaurant billing
system and you have stored the menu items and prices in the matrices ITEM and
PRICE. You want to obtain the quantity ordered in a matrix called AMOUNT. Enter
the following code:

446 � Chapter 13. Window and Display Features

item={ "Hamburger", "Hot Dog", "Salad Bar", "Milk" };
price={1.10 .90 1.95 .45};
amount= repeat(0,nrow(item),1);
window menu
group=top
#1 @2 "Item" @44 "Price" @54 "Amount"
group=list
/ @2 item $10. @44 price 6.2 @54 amount 4.
;
display menu.top, menu.list repeat;

This creates the following window:

+-----Menu---+
+ Command ---> +
+ +
+ Item Price Amount +
+ +
+ Hamburger 1.10 0 +
+ Hot Dog 0.90 0 +
+ Salad Bar 1.95 0 +
+ Milk 0.45 0 +
+ +
+--- +

Example

This example illustrates the following features:

• multiple windows

• the repeat feature

• command- and message-line usage

• a large display surface needing scrolling

• windows linked to data set transactions

This example uses two windows, FIND and ED. The FIND window instructs you to
enter a name. Then a data set is searched for all the names starting with the entered
value. If no observations are found, you receive the following message:

Not found, enter request

If any observations are found, they are displayed in the ED window. You can then
edit all the fields. If several observations are found, you need to use the scrolling
commands to view the entire display surface. If you enter the SUBMIT command,
the data are updated in place in the data set. Otherwise, you receive the following
message:

Not replaced, enter request

Example � 447

If you enter a blank field for the request, you are advised that EXIT is the keyword
needed to exit the system. Here is the code:

start findedit;
window ed rows=10 columns=40 icolumn=40 cmndline=c;
window find rows=5 columns=35 icolumn=1 msgline=msg;
edit user.class;
display ed ("Enter a name in the FIND window, and this"
/ "window will display the observations "
/ "starting with that name. Then you can"
/ "edit them and enter the submit command"
/ "to replace them in the data set. Enter cancel"
/ "to not replace the values in the data set."
/
/ "Enter exit as a name to exit the program.");
do while(1);

msg=’ ’;
again:
name=" ";
display find ("Search for name: " name);
if name=" " then

do;
msg=’Enter exit to end’;
goto again;

end;
if name="exit" then goto x;
if name="PAUSE" then

do;
pause;
msg=’Enter again’;
goto again;

end;
find all where(name=:name) into p;
if nrow(p)=0 then

do;
msg=’Not found, enter request’;
goto again;

end;
read point p;
display ed (//" name: " name

" sex: " sex
" age: " age
/" height: " height
" weight: " weight) repeat;

if c=’submit’ then
do;

msg="replaced, enter request";
replace point p;

end;
else

do;
msg=’Not replaced, enter request’;

end;
end;

448 � Chapter 13. Window and Display Features

x:
display find ("Closing Data Set and Exiting");
close user.class;
window close=ed;
window close=find;

finish findedit;
run findedit;

Chapter 14
Storage Features

Chapter Contents

OVERVIEW . 451

STORAGE CATALOGS . 451

CATALOG MANAGEMENT . 452
Restoring Matrices and Modules . 452
Removing Matrices and Modules . 453
Specifying the Storage Catalog . 453
Listing Storage Entries . 454
Storing Matrices and Modules . 454

450

Chapter 14
Storage Features
Overview

SAS/IML software can store user-defined modules and the values of matrices in spe-
cial library storage on disk for later retrieval. The library storage feature enables you
to perform the following tasks:

• store and reload IML modules and matrices

• save work for a later session

• keep records of work

• conserve space by saving large, intermediate results for later use

• communicate data to other applications through the library

• store and retrieve data in general

Storage Catalogs
SAS/IML storage catalogs are specially structured SAS files that are located in a
SAS data library. A SAS/IML catalog contains entries that are either matrices or
modules. Like other SAS files, SAS/IML catalogs have two-level names in the form
libref.catalog. The first-level name, libref, is a name assigned to the SAS data library
to which the catalog belongs. The second-level name, catalog, is the name of the
catalog file.

The default libref is initially SASUSER, and the default catalog is IMLSTOR. Thus,
the default storage catalog is called SASUSER.IMLSTOR. You can change the stor-
age catalog with the RESET STORAGE command (see the discussion of the RESET
statement in Chapter 20).

By using this command, you can change either the catalog or the libref.

When you store a matrix, IML automatically stores the matrix name, its type, its
dimension, and its current values. Modules are stored in the form of their compiled
code. Once modules are loaded, they do not need to be parsed again, making their
use very efficient.

452 � Chapter 14. Storage Features

Catalog Management
IML provides you with all the commands necessary to reference a particular storage
catalog, to list the modules and matrices in that catalog, to store and remove mod-
ules and matrices, and to load modules and matrices back to IML. The following
commands enable you to perform all necessary catalog management functions:

LOAD recalls entries from storage.

REMOVE removes entries from storage.

RESET STORAGE specifies the library name.

SHOW STORAGE lists all entries currently in storage.

STORE saves modules or matrices to storage.

Restoring Matrices and Modules

You can restore matrices and modules from storage back into the IML active
workspace by using the LOAD command. The LOAD command has the general
form

LOAD ;

LOAD matrices;

LOAD MODULE= module;

LOAD MODULE=(modules);

LOAD MODULE=(modules) matrices;

Some examples of valid LOAD commands are as follows:

load a b c; /* load matrices A, B, and C */
load module=mymod1; /* load module MYMOD1 */
load module=(mymod1 mymod2) a b; /* load modules and matrices */

The special operand –ALL– can be used to load all matrices or modules, or both. For
example, if you want to load all modules, use the following statement:

load module=_all_;

If you want to load all matrices and modules in storage, use the LOAD command by
itself, as follows:

load; /* loads all matrices and modules */

The LOAD command can be used with the STORE statement to save and restore an
IML environment between sessions.

Specifying the Storage Catalog � 453

Removing Matrices and Modules

You can remove modules or matrices from the catalog by using the REMOVE com-
mand. The REMOVE command has the same form as the LOAD command. Some
examples of valid REMOVE statements are as follows:

remove a b c; /* remove matrices A, B, and C */
remove module=mymod1; /* remove module MYMOD1 */
remove module=(mymod1 mymod2) a; /* remove modules and matrices */

The special operand –ALL– can be used to remove all matrices or modules, or both.
For example, if you want to remove all matrices, use the following statement:

remove _all_;

If you want to remove everything from storage, use the REMOVE command by itself,
as follows:

remove;

Specifying the Storage Catalog

To specify the name of the storage catalog, use one of the following general forms of
the STORAGE= option in the RESET statement:

RESET STORAGE= catalog;

RESET STORAGE= libref.catalog;

Each time you specify the STORAGE= option, the previously opened catalog is
closed before the new one is opened.

You can have any number of catalogs, but you can have only one open at a time. A
SAS data library can contain many IML storage catalogs, and an IML storage catalog
can contain many entries (that is, many matrices and modules).

For example, you can change the name of the storage catalog without changing the
libref by using the following statement:

reset storage=mystor;

To change the libref as well, use the following statement:

reset storage=mylib.mystor;

454 � Chapter 14. Storage Features

Listing Storage Entries

You can list all modules and matrices in the current storage catalog by using the
SHOW STORAGE command, which has the general form

SHOW STORAGE ;

Storing Matrices and Modules

You can save modules or matrices in the storage catalog by using the STORE com-
mand. The STORE command has the same general form as the LOAD command.
Several examples of valid STORE statements are as follows:

store a b c; /* store matrices A, B, and C */
store module=mymod1; /* store module MYMOD1 */
store module=(mymod1 mymod2) a; /* storing modules and matrices */

The special operand –ALL– can be used to store all matrices or modules. For exam-
ple, if you want to store everything, use the following statement:

store _all_ module=_all_;

Alternatively, to store everything, you can also enter the STORE command by itself,
as follows:

store;

This can help you to save your complete IML environment before exiting an IML
session. Then you can use the LOAD statement in a subsequent session to restore the
environment and resume your work.

Chapter 15
Using SAS/IML Software to Generate

IML Statements

Chapter Contents

OVERVIEW . 457

GENERATING AND EXECUTING STATEMENTS 457
Executing a String Immediately . 457
Feeding an Interactive Program . 458
Calling the Operating System . 459
Calling the SAS Windowing Environment 459
Executing Any Command in an EXECUTE Call 460
Making Operands More Flexible . 461
Interrupt Control . 461
Specific Error Control . 462
General Error Control . 463
Macro Interface . 465
IML Line Pushing Contrasted with Using the Macro Facility 466
Example 15.1. Full-Screen Editing . 466

SUMMARY . 470

456

Chapter 15
Using SAS/IML Software to Generate

IML Statements
Overview

This chapter describes ways of using SAS/IML software to generate and execute
statements from within the Interactive Matrix Language. You can execute statements
generated at run time, execute global SAS commands under program control, or cre-
ate statements dynamically to get more flexibility.

Generating and Executing Statements
You can push generated statements into the input command stream (queue) with the
PUSH, QUEUE, and EXECUTE subroutines. This can be very useful in situations
that require added flexibility, such as menu-driven applications or interrupt handling.

The PUSH command inserts program statements at the front of the input command
stream, whereas the QUEUE command inserts program statements at the back. In
either case, if they are not input to an interactive application, the statements remain
in the queue until IML enters a pause state, at which point they are executed. The
pause state is usually induced by a program error or an interrupt control sequence.
Any subsequent RESUME statement resumes execution of the module from the point
where the PAUSE command was issued. For this reason, the last statement put into
the command stream for PUSH or QUEUE is usually a RESUME command.

The EXECUTE statement also pushes program statements like PUSH and QUEUE,
but it executes them immediately and returns. It is not necessary to push a RESUME
statement when you use the CALL EXECUTE command.

Executing a String Immediately

The PUSH, QUEUE, and EXECUTE commands are especially useful when used in
conjunction with the pause and resume features because they enable you to generate
a pause-interrupt command to execute the code you push and return from it via a
pushed RESUME statement. In fact, this is precisely how the EXECUTE subroutine
is implemented generally.

CAUTION: Note that the push and resume features work this way only in the context
of being inside modules. You cannot resume an interrupted sequence of statements
in immediate mode—that is, not inside a module.

For example, suppose that you collect program statements in a matrix called CODE.
You push the code to the command input stream along with a RESUME statement
and then execute a PAUSE statement. The PAUSE statement interrupts the execution,

458 � Chapter 15. Using SAS/IML Software to Generate IML Statements

parses and executes the pushed code, and returns to the original execution via the
RESUME statement. Here is the code:

proc iml;
start testpush;

print ’*** ENTERING MODULE TESTPUSH ***’;
print ’*** I should be 1,2,3: ’;
/* constructed code * /
code = ’ do i = 1 to 3; print i; end; ’;
/* push code+resume */
call push (code, ’resume;’);
/* pause interrupt */
pause;
print ’*** EXITING MODULE TESTPUSH ***’;

finish;

When the PAUSE statement interrupts the program, the IML procedure then parses
and executes the following line:

do i=1 to 3; print i; end; resume;

The RESUME command then causes the IML procedure to resume the module that
issued the PAUSE.

Note: The EXECUTE routine is equivalent to a PUSH command, but it also adds the
push of a RESUME command, then issues a pause automatically.

A CALL EXECUTE command should be used only from inside a module because
pause and resume features do not support returning to a sequence of statements in
immediate mode.

Feeding an Interactive Program

Suppose that an interactive program gets responses from the statement INFILE
CARDS. If you want to feed it under program control, you can push lines to the
command stream that is read.

For example, suppose that a subroutine prompts a user to respond YES before per-
forming some action. If you want to run the subroutine and feed the YES response
without the user being bothered, you push the response as follows:

/* the function that prompts the user */
start delall;

file log;
put ’Do you really want to delete all records? (yes/no)’;
infile cards;
input answer $;
if upcase(answer)=’YES’ then

do;
delete all;
purge;
print "*** FROM DELALL:

Calling the SAS Windowing Environment � 459

should see End of File (no records to list)";
list all;

end;
finish;

The latter DO group is necessary so that the pushed YES is not read before the
RUN statement. The following example illustrates the use of the preceding module
DELALL:

/* Create a dummy data set for delall to delete records */
xnum = {1 2 3, 4 5 6, 7 8 0};
create dsnum1 from xnum;
append from xnum;

do;
call push (’yes’);
run delall;

end;

Calling the Operating System

Suppose that you want to construct and execute an operating system command. Just
push it to the token stream in the form of an X statement and have it executed under
a pause interrupt.

The following module executes any system command given as an argument:

start system(command);
call push(" x ’",command,"’; resume;");
pause;

finish;
run system(’listc’);

The call generates and executes a LISTC command under MVS as follows:

x ’listc’; resume;

Calling the SAS Windowing Environment

The same strategy used for calling the operating system works for SAS global state-
ments as well, including calling the SAS windowing environment by generating DM
statements.

The following subroutine executes a SAS windowing environment command:

start dm(command);
call push(" dm ’",command,"’; resume;");
pause;

finish;

run dm(’log; color source red’);

460 � Chapter 15. Using SAS/IML Software to Generate IML Statements

The call generates and executes the following statements:

dm ’log; color source red’; resume;

These statements take you to the Log window, where all source code is written in red.

Executing Any Command in an EXECUTE Call

The EXECUTE command executes the statements contained in the arguments by us-
ing the same facilities as a sequence of CALL PUSH, PAUSE, and RESUME state-
ments. The statements use the same symbol environment as that of the subroutine
that calls them. For example, consider the following subroutine:

proc iml;
start exectest;
/* IML STATEMENTS */

call execute ("xnum = {1 2 3, 4 5 6, 7 8 0};");
call execute ("create dsnum1 from xnum;");
call execute ("append from xnum;");
call execute ("print ’DSNUM should have 3 obs and 3 var:’;");
call execute ("list all;");

/* global (options) statement */
call execute ("options linesize=68;");
call execute ("print ’Linesize should be 68’;");

finish;
run exectest;

The following output generated from EXECTEST is exactly the same as if you had
entered the statements one at a time:

DSNUM should have 3 obs and 3 var:

OBS COL1 COL2 COL3
------ --------- --------- ---------

1 1.0000 2.0000 3.0000
2 4.0000 5.0000 6.0000
3 7.0000 8.0000 0

Linesize should be 68

CALL EXECUTE could almost be programmed in IML as shown here; the difference
between this and the built-in command is that the following subroutine would not
necessarily have access to the same symbols as the calling environment:

start execute(command1,...);
call push(command1,...," resume;");
pause;

finish;

Interrupt Control � 461

Making Operands More Flexible

Suppose that you want to write a program that prompts a user for the name of a data
set. Unfortunately the USE, EDIT, and CREATE commands expect the data set name
as a hardcoded operand rather than an indirect one. However, you can construct and
execute a function that prompts the user for the data set name for a USE statement.
Here is the code:

/* prompt the user to give dsname for use statement */
start flexible;

file log;
put ’What data set shall I use?’;
infile cards;
input dsname $;
call execute(’use’, dsname, ’;’);

finish;
run flexible;

If you enter USER.A, the program generates and executes the following line:

use user.a;

Interrupt Control

Whenever a program error or interrupt occurs, IML automatically issues a pause,
which places the module in a paused state. At this time, any statements pushed to the
input command queue get executed. Any subsequent RESUME statement (including
pushed RESUME statements) resume executing the module from the point where the
error or interrupt occurred.

If you have a long application such as reading a large data set and you want to be able
to find out where the data processing is just by entering a break-interrupt (sometimes
called an attention signal), you push the interrupt text. The pushed text can, in turn,
push its own text on each interrupt, followed by a RESUME statement to continue
execution.

For example, suppose you have a data set called TESTDATA that has 4096 observa-
tions. You want to print the current observation number if an attention signal is given.
The following code does this:

start obsnum;
use testdata;
brkcode={"print ’now on observation number’,i;"

"if (i<4096) then do;"
"call push(brkcode);"
"resume;"
"end;"
};

call push(brkcode);
do i=1 to 4096;

462 � Chapter 15. Using SAS/IML Software to Generate IML Statements

read point i;
end;

finish;
run obsnum;

After the module has been run, enter the interrupt control sequence for your operating
system. Type S to suspend execution. The IML procedure prints a message telling
which observation is being processed. Because the pushed code is executed at the
completion of the module, the message is also printed when OBSNUM ends.

Each time the attention signal is given, OBSNUM executes the code contained in
the variable BRKCODE. This code prints the current iteration number and pushes
commands for the next interrupt. Note that the PUSH and RESUME commands are
inside a DO group, making them conditional and ensuring that they are parsed before
the effect of the PUSH command is realized.

Specific Error Control

A PAUSE command is automatically issued whenever an execution error occurs,
putting the module in a holding state. If you have some way of checking for spe-
cific errors, you can write an interrupt routine to correct them during the pause state.

In the following example, if a singular matrix is passed to the INV function, the
IML procedure pauses and executes the pushed code to set the result for the inverse
to missing values. The code uses the variable SINGULAR to detect if the interrupt
occurred during the INV operation. This is particularly necessary because the pushed
code is executed on completion of the routine, as well as on interrupts.

proc iml;
a = {3 3, 3 3}; /* singular matrix */
/* If a singular matrix is sent to the INV function, */
/* IML normally sets the resulting matrix to be empty */
/* and prints an error message. */
b = inv(a);
print "*** A should be non-singular", a;
start singtest;

msg=" Matrix is singular - result set to missing ";
onerror=

"if singular then do; b=a#.; print msg; print b;
resume; end;";

call push(onerror);
singular = 1;
b = inv(a);
singular = 0;

finish ;
call singtest;

The resulting output is as follows:

ERROR: (execution) Matrix should be non-singular.

General Error Control � 463

Error occurred in module SINGTEST at line 67 column 9
operation : INV at line 67 column 16
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 67 column 9

Paused in module SINGTEST.

MSG
Matrix is singular - result set to missing

B
. .
. .

Resuming execution in module SINGTEST.

General Error Control
Sometimes, you might want to process or step over errors. To do this, put all the code
into modules and push a code to abort if the error count exceeds some maximum.
Often, you might submit a batch job and get a trivial mistake that causes an error, but
you do not want to cause the whole run to fail because of it. On the other hand, if you
have many errors, you do not want to let the routine run.

In the following example, up to three errors are tolerated. A singular matrix A is
passed to the INV function, which would, by itself, generate an error message and
issue a pause in the module. This module pushes three RESUME statements, so that
the first three errors are tolerated. Messages are printed and execution is resumed.
The DO loop in the module OOPS is executed four times, and on the fourth iteration,
an ABORT statement is issued and you exit IML.

proc iml;
a={3 3, 3 3}; /* singular matrix */

/* */
/* GENERAL ERROR CONTROL -- exit iml for 3 or more errors */
/* */

start; /* module will be named MAIN */
errcode = {" if errors >= 0 then do;",

" errors = errors + 1;",
" if errors > 2 then abort;",
" else do; call push(errcode); resume; end;",
" end;" } ;

call push (errcode);
errors = 0;
start oops; /* start module OOPS */

464 � Chapter 15. Using SAS/IML Software to Generate IML Statements

do i = 1 to 4;
b = inv(a);

end;
finish; /* finish OOPS */
run oops;

finish; /* finish MAIN */
errors=-1; /* disable */
run;

The output generated from this example is as follows:

ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.
Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

Macro Interface � 465

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.
Exiting IML.

Actually, in this particular case it would probably be simpler to put three RESUME
statements after the RUN statement to resume execution after each of the first three
errors.

Macro Interface

The pushed text is scanned by the macro processor; therefore, the text can contain
macro instructions. For example, here is an all-purpose routine that shows what the
expansion of any macro is, assuming that it does not have embedded double quotes:

/* function: y = macxpand(x); */
/* macro-processes the text in x */
/* and returns the expanded text in the result. */
/* Do not use double quotes in the argument. */
/* */

start macxpand(x);
call execute(’Y="’,x,’";’);
return(y);

finish;

Consider the following statements:

%macro verify(index);
data _null_;

infile junk&index;
file print;
input;
put _infile_;

run;
%mend;
y = macxpand(’%verify(1)’);
print y;

The output produced is as follows:

Y

DATA _NULL_; INFILE JUNK1; FILE PRINT; INPUT;
PUT _INFILE_; RUN;

466 � Chapter 15. Using SAS/IML Software to Generate IML Statements

IML Line Pushing Contrasted with Using the Macro Facility

The SAS macro language is a language embedded in and running on top of another
language; it generates text to feed the other language. Sometimes it is more con-
venient to generate the text by using the primary language directly rather than em-
bedding the text generation in macros. The preceding examples show that this can
even be done at execution time, whereas pure macro processing is done only at parse
time. The advantage of the macro language is its embedded, yet independent, nature:
it needs little quoting, and it works for all parts of the SAS language, not just IML.
The disadvantage is that it is a separate language that has its own learning burden,
and it uses extra reserved characters to mark its programming constructs and vari-
ables. Consider the quoting of IML versus the embedding characters of the macro
facility: IML makes you quote every text constant, whereas the macro facility makes
you use the special characters percent sign (%) and ampersand (&) on every macro
item. There are some languages, such as REXX, that give you the benefits of both
(no macro characters and no required quotes), but the cost is that the language forces
you to discipline your naming so that names are not expanded inadvertently.

Example 15.1. Full-Screen Editing

The ability to form and submit statements dynamically provides a very powerful
mechanism for making systems flexible. For example, consider the building of a data
entry system for a file. It is straightforward to write a system by using WINDOW and
DISPLAY statements for the data entry and data processing statements for the I/O,
but once you get the system built, it is good only for that one file. With the ability to
push statements dynamically, however, it is possible to make a system that dynami-
cally generates the components that are customized for each file. For example, you
can change your systems from static systems to dynamic systems.

To illustrate this point, consider an IML system to edit an arbitrary file, a system like
the FSEDIT procedure in SAS/FSP software but programmed in IML. You cannot
just write it with open code because the I/O statements hardcode the filenames and
the WINDOW and DISPLAY statements must hardcode the fields. However, if you
generate just these components dynamically, the problem is solved for any file, not
just one. Here is the code:

proc iml;
/* FSEDIT */
/* This program defines and stores the modules FSEINIT, */
/* FSEDT, FSEDIT, and FSETERM in a storage catalog called */
/* FSED. To use it, load the modules and issue the command */
/* RUN FSEDIT; The system prompts or menus the files and */
/* variables to edit, then runs a full screen editing */
/* routine that behaves similar to PROC FSEDIT */
/* */
/* These commands are currently supported: */
/* */
/* END gets out of the system. The user is prompted */
/* as to whether or not to close the files and */
/* window. */
/* SUBMIT forces current values to be written out, */

Example 15.1. Full-Screen Editing � 467

/* either to append a new record or replace */
/* existing ones */
/* ADD displays a screen variable with blank values */
/* for appending to the end of a file */
/* DUP takes the current values and appends them to */
/* the end of the file */
/* number goes to that line number */
/* DELETE deletes the current record after confirmation */
/* by a Y response */
/* FORWARD1 moves to the next record, unless at eof */
/* BACKWARD1 moves to the previous record, unless at eof */
/* EXEC executes any IML statement */
/* FIND finds records and displays them */
/* */
/* Use: proc iml; */
/* reset storage=’fsed’; */
/* load module=_all_; */
/* run fsedit; */
/* */
/*---routine to set up display values for new problem--- */
start fseinit;

window fsed0 rows=15 columns=60 icolumn=18 color=’GRAY’
cmndline=cmnd group=title +30 ’Editing a data set’ color=’BLUE’;
/*---get file name--- */
_file=" ";
msg =

’Please Enter Data Set Name or Nothing For Selection List’;
display fsed0.title,

fsed0 (/ @5 ’Enter Data Set:’
+1 _file
+4 ’(or nothing to get selection list)’);

if _file=’ ’ then
do;

loop:
_f=datasets(); _nf=nrow(_f); _sel=repeat("_",_nf,1);
display fsed0.title,

fsed0 (/ "Select? File Name"/) ,
fsed0 (/ @5 _sel +1 _f protect=yes) repeat ;

_l = loc(_sel^=’_’);
if nrow(_l)^=1 then

do;
msg=’Enter one S somewhere’;
goto loop;

end;
_file = _f[_l];

end;
/*---open file, get number of records--- */
call queue(" edit ",_file,";

setin ",_file," NOBS _nobs; resume;"); pause *;
/*---get variables--- */
_var = contents();
_nv = nrow(_var);
sel = repeat("",_nv,1);
display fsed0.title,

fsed0 (/ "File:" _file) noinput,
fsed0 (/ @10 ’Enter S to select each var, or select none

to get all.’
// @3 ’select? Variable ’),
fsed0 (/ @5 _sel +5 _var protect=yes) repeat;

468 � Chapter 15. Using SAS/IML Software to Generate IML Statements

/*---reopen if subset of variables--- */
if any(_sel^=’_’) then

do;
_var = _var[loc(_sel^=’_’)];
_nv = nrow(_var);
call push(’close ’,_file,’; edit ’,_file,’ var
_var;resume;’);pause *;

end;
/*---close old window--- */
window close=fsed0;
/*---make the window---*/
call queue(’window fsed columns=55 icolumn=25 cmndline=cmnd

msgline=msg ’, ’group=var/@20 "Record " _obs
protect=yes’);

call queue(concat(’/"’,_var,’: " color="YELLOW" ’,
_var,’ color="WHITE"’));

call queue(’;’);
/*---make a missing routine---*/
call queue(’start vmiss; ’);
do i=1 to _nv;

val = value(_var[i]);
if type(val)=’N’ then call queue(_var[i],’=.;’);
else call queue(_var[i],’="’,

cshape(’ ’,1,1,nleng(val)),’";’);
end;
call queue(’finish; resume;’);
pause *;
/*---initialize current observation---*/
_obs = 1;
msg = Concat(’Now Editing File ’,_file);

finish;
/* */
/*---The Editor Runtime Controller--- */

start fsedt;
_old = 0; go=1;
do while(go);
/*--get any needed data--*/

if any(_obs^=_old) then do; read point _obs; _old = _obs;
end;
/*---display the record---*/
display fsed.var repeat;
cmnd = upcase(left(cmnd));
msg=’ ’;
if cmnd=’END’ then go=0;
else if cmnd=’SUBMIT’ then

do;
if _obs<=_nobs then

do;
replace point _obs; msg=’replaced’;

end;
else do;

append;
_nobs=_nobs+nrow(_obs);
msg=’appended’;

end;
end;

else if cmnd="ADD" then
do;

run vmiss;

Example 15.1. Full-Screen Editing � 469

_obs = _nobs+1;
msg=’New Record’;

end;
else if cmnd=’DUP’ then

do;
append;
_nobs=_nobs+1;
_obs=_nobs;
msg=’As Duplicated’;

end;
else if cmnd>’0’ & cmnd<’999999’ then

do;
_obs = num(cmnd);
msg=concat(’record number ’,cmnd);

end;
else if cmnd=’FORWARD1’ then _obs=min(_obs+1,_nobs);
else if cmnd=’BACKWARD1’ then _obs=max(_obs-1,1);
else if cmnd=’DELETE’ then

do;
records=cshape(char(_obs,5),1,1);
msg=concat(’Enter command Y to Confirm delete of’

,records);
display fsed.var repeat;
if (upcase(cmnd)=’Y’) then

do;
delete point _obs;
_obs=1;
msg=concat(’Deleted Records’,records);

end;
else msg=’Not Confirmed, Not Deleted’;

end;
else if substr(cmnd,1,4)=’FIND’ then

do;
call execute("find all where(",

substr(cmnd,5),
") into _obs;");

_nfound=nrow(_obs);
if _nfound=0 then

do;
_obs=1;
msg=’Not Found’;

end;
else

do;
msg=concat("Found ",char(_nfound,5)," records");

end;
end;

else if substr(cmnd,1,4)=’EXEC’ then
do;

msg=substr(cmnd,5);
call execute(msg);

end;
else msg=’Unrecognized Command; Use END to exit.’;
end;

finish;
/*---routine to close files and windows, clean up---*/

start fseterm;
window close=fsed;
call execute(’close ’,_file,’;’);

470 � Chapter 15. Using SAS/IML Software to Generate IML Statements

free _q;
finish;

/*---main routine for FSEDIT---*/
start fsedit;

if (nrow(_q)=0) then
do;

run fseinit;
end;

else msg = concat(’Returning to Edit File ’,_file);
run fsedt;
q=’’;
display fsed ("Enter ’q’ if you want to close files and windows"

_q " (anything else if you want to return later"
pause ’paused before termination’;

run fseterm;
finish;
reset storage=’fsed’;
store module=_all_;

Summary
In this chapter you learned how to use SAS/IML software to generate IML statements.
You learned how to use the PUSH, QUEUE, EXECUTE, and RESUME commands
to interact with the operating system or with the SAS windowing environment. You
also saw how to add flexibility to programs by adding interrupt control features and
by modifying error control. Finally, you learned how IML compares to the SAS
macro language.

Chapter 16
Wavelet Analysis

Chapter Contents

OVERVIEW . 473
Some Brief Mathematical Preliminaries . 473

GETTING STARTED . 475
Creating the Wavelet Decomposition . 477
Wavelet Coefficient Plots . 480
Multiresolution Approximation Plots . 483
Multiresolution Decomposition Plots . 486
Wavelet Scalograms . 487
Reconstructing the Signal from the Wavelet Decomposition 490

DETAILS . 492
Using Symbolic Names . 492
Obtaining Help for the Wavelet Macros and Modules 494

REFERENCES . 495

472

Chapter 16
Wavelet Analysis
Overview

Wavelets are a versatile tool for understanding and analyzing data, with important
applications in nonparametric modeling, pattern recognition, feature identification,
data compression, and image analysis. Wavelets provide a description of your data
that localizes information at a range of scales and positions. Moreover, they can be
computed very efficiently, and there is an intuitive and elegant mathematical theory
to guide you in applying them.

Some Brief Mathematical Preliminaries

The discrete wavelet transform decomposes a function as a sum of basis functions
called wavelets. These basis functions have the property that they can be obtained
by dilating and translating two basic types of wavelets known as the scaling function,
or father wavelet φ, and the mother wavelet ψ. These translations and dilations are
defined as follows:

φj,k(x) = 2j/2φ(2jx− k)

ψj,k(x) = 2j/2ψ(2jx− k)

The index j defines the dilation or level while the index k defines the translate.
Loosely speaking, sums of the φj,k(x) capture low frequencies and sums of the
ψj,k(x) represent high frequencies in the data. More precisely, for any suitable func-
tion f(x) and for any j0,

f(x) =
∑

k

cj0k φj0,k(x) +
∑
j≥j0

∑
k

dj
kψj,k(x)

where the cjk and dj
k are known as the scaling coefficients and the detail coefficients,

respectively. For orthonormal wavelet families these coefficients can be computed by

cjk =
∫
f(x)φj,k(x) dx

dj
k =

∫
f(x)ψj,k(x) dx

The key to obtaining fast numerical algorithms for computing the detail and scaling
coefficients for a given function f(x) is that there are simple recurrence relationships

474 � Chapter 16. Wavelet Analysis

that enable you to compute the coefficients at level j−1 from the values of the scaling
coefficients at level j. These formulas are

cj−1
k =

∑
i

hi−2kc
j
i

dj−1
k =

∑
i

gi−2kc
j
i

The coefficients hk and gk that appear in these formulas are called filter coefficients.
The hk are determined by the father wavelet and they form a low-pass filter; gk =
(−1)kh1−k and form a high-pass filter. The preceding sums are formally over the
entire (infinite) range of integers. However, for wavelets that are zero except on a
finite interval, only finitely many of the filter coefficients are nonzero, and so in this
case the sums in the recurrence relationships for the detail and scaling coefficients
are finite.

Conversely, if you know the detail and scaling coefficients at level j − 1, then you
can obtain the scaling coefficients at level j by using the relationship

cjk =
∑

i

hk−2ic
j−1
i +

∑
i

gk−2id
j−1
i

Suppose that you have data values

yk = f(xk), k = 0, 1, 2, · · · , N − 1

at N = 2J equally spaced points xk. It turns out that the values 2−J/2yk are good
approximations of the scaling coefficients cJk . Then, by using the recurrence formula,
you can find cJ−1

k and dJ−1
k , k = 0, 1, 2, · · · , N/2−1. The discrete wavelet transform

of the yk at level J−1 consists of theN/2 scaling andN/2 detail coefficients at level
J − 1. A technical point that arises is that in applying the recurrence relationships to
finite data, a few values of the cJk for k < 0 or k ≥ N might be needed. One way
to cope with this difficulty is to extend the sequence cJk to the left and right by using
some specified boundary treatment.

Continuing by replacing the scaling coefficients at any level j by the scaling and
detail coefficients at level j − 1 yields a sequence of N coefficients

{c00, d0
0, d

1
0, d

1
1, d

2
0, d

2
1, d

2
2, d

2
3, d

3
1, . . . , d

3
7, . . . , d

J−1
0 , . . . , dJ−1

N/2−1}

This sequence is the finite discrete wavelet transform of the input data {yk}. At any
level j0 the finite dimensional approximation of the function f(x) is

f(x) ≈
∑

k

cj0k φj0,k(x) +
J−1∑
j=j0

∑
k

dj
kψj,k(x)

Getting Started � 475

Getting Started
Fourier Transform Infrared (FT-IR) spectroscopy is an important tool in analytic
chemistry. The following example demonstrates wavelet analysis applied to an FT-
IR spectrum of quartz (Sullivan 2000). The following DATA step creates a data set
containing the spectrum, expressed as an absorbance value for each of 850 wave
numbers.

data quartzInfraredSpectrum;
WaveNumber=4000.6167786 - _N_ *4.00084378;
input Absorbance @@;

datalines;
4783 4426 4419 4652 4764 4764 4621 4475 4430 4618
4735 4735 4655 4538 4431 4714 4738 4707 4627 4523
4512 4708 4802 4811 4769 4506 4642 4799 4811 4732
4583 4676 4856 4868 4796 4849 4829 4677 4962 4994
4924 4673 4737 5078 5094 4987 4632 4636 5010 5166
5166 4864 4547 4682 5161 5291 5143 4684 4662 5221
5640 5640 5244 4791 4832 5629 5766 5723 5121 4690
5513 6023 6023 5503 4675 5031 6071 6426 6426 5723
5198 5943 6961 7135 6729 5828 6511 7500 7960 7960
7299 6484 7257 8180 8542 8537 7154 7255 8262 8898
8898 8263 7319 7638 8645 8991 8991 8292 7309 8005
9024 9024 8565 7520 7858 8652 8966 8966 8323 7513
8130 8744 8879 8516 7722 8099 8602 8729 8726 8238
7885 8350 8600 8603 8487 7995 8194 8613 8613 8408
7953 8236 8696 8696 8552 8102 7852 8570 8818 8818
8339 7682 8535 9038 9038 8503 7669 7794 8864 9163
9115 8221 7275 8012 9317 9317 8512 7295 7623 9021
9409 9338 8116 6860 7873 9282 9490 9191 7012 7392
9001 9483 9457 8107 6642 7695 9269 9532 9246 7641
6547 8886 9457 9457 8089 6535 7537 9092 9406 9178
7591 6470 7838 9156 9222 7974 6506 7360 8746 9057
8877 7455 6504 7605 8698 8794 8439 7057 7202 8240
8505 8392 7287 6634 7418 8186 8229 7944 6920 6829
7499 7949 7831 7057 6866 7262 7626 7626 7403 6791
7062 7289 7397 7397 7063 6985 7221 7221 7199 6977
7088 7380 7380 7195 6957 6847 7426 7570 7508 6952
6833 7489 7721 7718 7254 6855 7132 7914 8040 7880
7198 6864 7575 8270 8229 7545 7036 7637 8470 8570
8364 7591 7413 8195 8878 8878 8115 7681 8313 9102
9185 8981 8283 8197 8932 9511 9511 9101 8510 8670
9686 9709 9504 8944 8926 9504 9964 9964 9627 9212
9366 9889 10100 9939 9540 9512 9860 10121 10121 9828
9567 9513 9782 9890 9851 9510 9385 9339 9451 9451
9181 9076 9015 8960 9014 8957 8760 8760 8602 8584
8584 8459 8469 8373 8279 8327 8282 8341 8341 8155
8260 8260 8250 8350 8245 8358 8403 8355 8490 8490
8439 8689 8689 8621 8680 8661 8897 9028 8900 8873
8873 9187 9377 9377 9078 9002 9147 9635 9687 9535
9127 9242 9824 9928 9775 9200 9047 9572 10102 10102
9631 9024 9209 10020 10271 9830 9062 9234 10154 10483
10453 9582 9011 9713 10643 10701 10372 9368 9857 10865

476 � Chapter 16. Wavelet Analysis

10936 10572 9574 9691 10820 11452 11452 10623 9903 10787
11931 12094 11302 10604 11458 12608 12808 12589 11629 11795
12863 13575 13575 12968 12498 13268 14469 14469 13971 13727
14441 15334 15515 15410 14986 15458 16208 16722 16722 16618
17061 17661 18089 18089 18184 18617 19015 19467 19633 19830
20334 20655 20947 21347 21756 22350 22584 22736 22986 23412
24126 24498 24501 24598 24986 25729 26356 26356 26271 26754
27624 28162 28162 28028 28305 29223 30073 30219 30185 30308
31831 32699 32819 32793 33320 34466 35600 36038 36086 36518
37517 38765 39462 39681 40209 41243 42274 42772 42876 43172
43929 44842 45351 45395 45551 46035 46774 47353 47353 47362
47908 48539 48936 48978 49057 49497 50101 50670 50914 51134
51603 52276 53007 53399 53769 54281 54815 54914 55365 55874
56180 56272 56669 57076 57422 57458 57525 57681 57679 57318
57318 57181 57417 57409 57144 57047 56377 56551 56483 56098
56034 55598 55364 55364 55146 54904 54990 55501 55533 55362
54387 55340 55240 54748 53710 55346 55795 55795 55060 55945
55945 55753 56759 56859 57509 56741 56273 56961 58566 58566
58104 59275 59275 59051 59090 59461 60362 60560 61103 61272
61380 61878 62067 62237 62214 61182 61532 62173 62253 60473
61346 63143 63378 61519 61753 63078 63841 63841 62115 61227
63237 63237 61338 63951 63951 63604 63633 64625 65135 64976
63630 63494 63834 63338 63218 62324 64131 64234 65122 64551
64127 64415 64621 64621 63142 65344 65585 65476 65074 64714
63803 65085 65085 65646 65646 64851 65390 65390 64997 65541
65587 65682 65952 65952 65390 65702 65846 65734 65734 65628
65509 65571 65636 65636 65620 65487 65544 65547 65738 65758
65711 65360 65362 65362 65231 65333 65453 65473 65435 65302
65412 65412 65351 65242 65242 65170 65221 65297 65297 65202
65177 65183 65184 65179 65209 65209 65144 65134 65113 65009
64919 64945 64988 64988 64856 64686 64529 64370 64282 64233
64169 63869 63685 63480 63373 63349 63307 63131 63017 62885
62736 62736 62706 62666 62622 62671 62781 62853 62950 63106
63135 63141 63220 63263 63489 63807 63966 64132 64294 64612
64841 64985 65159 65204 65259 65540 65707 65749 65732 65719
65820 65895 65925 65925 65888 65937 66059 66109 66109 66078
66007 65897 65897 65747 65490 64947 64598 64363 64140 63801
63571 63395 63333 63442 63442 63339 63196 62911 62118 61795
61454 61456 61607 62025 62190 62190 62023 61780 61502 61482
61458 61320 61015 60852 60708 60684 60522 60488 60506 60640
60797 60995 61141 61141 61036 60664 60522 60017 59681 59129
58605 58035 57192 56137 54995 53586 52037 50283 48565 45419
43341 41111 36131 35377 34431 31679 29237 26898 24655 22417
19876 17244 15176 12575 10532 8180 6040 4059 2210 575

;

The following statements produce the line plot of these data displayed in Figure 16.1.

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot Absorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1

Creating the Wavelet Decomposition � 477

hreverse frame;
axis1 label = (r=0 a=90);

run;

Figure 16.1. FT-IR Spectrum of Quartz

These data contain information at two distinct scales, namely a low-frequency un-
derlying curve superimposed with a high-frequency oscillation. Notice that the os-
cillation is not uniform but occurs in several distinct bands. Wavelet analysis is an
appropriate tool for providing insight into this type of data, as it enables you to iden-
tify the frequencies present in the absorbance data as the wave number changes. This
property of wavelets is known as “time frequency localization”; in this case the role of
time is played by WaveNumber. Also note that the dependent variable Absorbance
is measured at equally spaced values of the independent variable WaveNumber.
This condition is necessary for the direct use of the discrete wavelet transform that is
implemented in the SAS/IML wavelet functions.

Creating the Wavelet Decomposition

The following SAS code starts the wavelet analysis:

%wavginit;
proc iml;

%wavinit;

Notice that the previous code segment includes two SAS macro calls. You can use
the IML wavelet functions without using the WAVGINIT and WAVINIT macros. The

478 � Chapter 16. Wavelet Analysis

macros are called to initialize and load IML modules that you can use to produce sev-
eral standard wavelet diagnostic plots. These macros have been provided as autocall
macros that you can invoke directly in your SAS code.

The WAVGINIT macro must be called prior to invoking PROC IML. This macro de-
fines several macro variables that are used to adjust the size, aspect ratio, and font
size for the plots produced by the wavelet plot modules. This macro can also take
several optional arguments that control the positioning and size of the wavelet diag-
nostic plots. See the section “Obtaining Help for the Wavelet Macros and Modules”
on page 494 for details about getting help about this macro call.

The WAVINIT macro must be called from within PROC IML. It loads the IML mod-
ules that you can use to produce wavelet diagnostic plots. This macro also defines
symbolic macro variables that you can use to improve the readability of your code.

The following statements read the absorbance variable into an IML vector:

use quartzInfraredSpectrum;
read all var{Absorbance} into absorbance;

You are now in a position to begin the wavelet analysis. The first step is to set up the
options vector that specifies which wavelet and what boundary handling you want to
use. You do this as follows:

optn = &waveSpec; /* optn=j(1,4,.); */
optn[&family] = &daubechies; /* optn[3] = 1; */
optn[&member] = 3; /* optn[4] = 3; */
optn[&boundary] = &polynomial; /* optn[1] = 2; */
optn[°ree] = &linear; /* optn[2] = 1; */

These statements use macro variables that are defined in the WAVINIT macro. The
equivalent code without using these macro variables is given in the adjacent com-
ments. As indicated by the suggestive macro variable names, this options vector
specifies that the wavelet to be used is the third member of the Daubechies wavelet
family and that boundaries are to be handled by extending the signal as a linear poly-
nomial at each endpoint.

The next step is to create the wavelet decomposition with the following call:

call wavft(decomp,absorbance,optn);

This call computes the wavelet transform specified by the vector optn of the input
vector absorbance. The specified transform is encapsulated in the vector decomp.
This vector is not intended to be used directly. Rather you use this vector as an
argument to other IML wavelet subroutines and plot modules. For example, you
use the WAVPRINT subroutine to print the information encapsulated in a wavelet
decomposition. The following code produces the output in Figure 16.2.

Creating the Wavelet Decomposition � 479

call wavprint(decomp,&summary);
call wavprint(decomp,&detailCoeffs,1,4);

Decomposition Summary

Decomposition Name DECOMP
Wavelet Family Daubechies Extremal Phase
Family Member 3
Boundary Treatment Recursive Linear Extension
Number of Data Points 850
Start Level 0

Wavelet Detail Coefficients for DECOMP

Translate Level 1 Level 2 Level 3 Level 4

0 -1.71343E-9 1.36819E-10 -6.6097E-12 5.23868E-11
1 1340085.30 -128245.70 191.084707 4501.36
2 62636.70 6160.27 -1358.23
3 -238445.36 -54836.56 -797.724143
4 39866.95 676.034389
5 -28836.85 -5166.59
6 223421.00 -6088.99
7 -5794.67
8 30144.74
9 -3903.53
10 638.063264
11 -10803.45
12 33616.35
13 -50790.30

Figure 16.2. Output of WAVPRINT CALLS

Usually such displayed output is of limited use. More frequently you want to rep-
resent the transformed data graphically or use the results in further computational
routines. As an example, you can estimate the noise level of the data by using a
robust measure of the standard deviation of the highest-level detail coefficients, as
demonstrated in the following statements:

call wavget(tLevel,decomp,&topLevel);
call wavget(noiseCoeffs,decomp,&detailCoeffs,tLevel-1);

noiseScale=mad(noiseCoeffs,"nmad");
print "Noise scale = " noiseScale;

The result is shown in Figure 16.3.

NOISESCALE

Noise scale = 169.18717

Figure 16.3. Scale of Noise in the Absorbance Data

The first WAVGET call is used to obtain the top level number in the wavelet de-
composition decomp. The highest level of detail coefficients is defined at one level

480 � Chapter 16. Wavelet Analysis

below the top level in the decomposition. The second WAVGET call returns these
coefficients in the vector noiseCoeffs. Finally, the MAD function computes a robust
estimate of the standard deviation of these coefficients.

Wavelet Coefficient Plots

Diagnostic plots greatly facilitate the interpretation of a wavelet decomposition. One
standard plot is the detail coefficients arranged by level. By using a module included
by the WAVINIT macro call, you can produce the plot shown in Figure 16.5 as fol-
lows:

call coefficientPlot(decomp, , , , ,"Quartz Spectrum");

The first argument specifies the wavelet decomposition and is required. All other
arguments are optional and need not be specified. You can use the WAVHELP macro
to obtain a description of the arguments of this and other wavelet plot modules. The
WAVHELP macro is defined in the autocall WAVINIT macro. For example, invoking
the WAVHELP macro as follows writes the calling information shown in Figure 16.4
to the SAS log.

%wavhelp(coefficientPlot);

coefficientPlot Module

Function: Plots wavelet detail coefficients

Usage: call coefficientPlot(decomposition,
threshopt,
startLevel,
endLevel,
howScaled,
header);

Arguments:
decomposition - (required) valid wavelet decompostion produced

by the IML subroutine WAVFT
threshopt - (optional) numeric vector of 4 elements

specifying thresholding to be used
Default: no thresholding

startLevel - (optional) numeric scalar specifying the lowest
level to be displayed in the plot
Default: start level of decomposition

endLevel - (optional) numeric scalar specifying the highest
level to be displayed in the plot
Default: end level of decomposition

howScaled - (optional) character: ’absolute’ or ’uniform’
specifies coefficients are scaled uniformly
Default: independent level scaling

header - (optional) character string specifying a header
Default: no header

Figure 16.4. Log Output Produced by %wavhelp(coefficientPlot) Call

Wavelet Coefficient Plots � 481

Figure 16.5. Detail Coefficients Scaled by Level

In this plot the detail coefficients at each level are scaled independently. The oscilla-
tions present in the absorbance data are captured in the detail coefficients at levels 7,
8, and 9. The following statement produces a coefficient plot of just these higher-level
detail coefficients and shows them scaled uniformly.

call coefficientPlot(decomp, ,7, ,
’uniform’,"Quartz Spectrum");

The plot is shown in Figure 16.6.

482 � Chapter 16. Wavelet Analysis

Figure 16.6. Uniformly Scaled Detail Coefficients

As noted earlier, noise in the data is captured in the detail coefficients, particularly in
the small coefficients at higher levels in the decomposition. By zeroing or shrinking
these coefficients, you can get smoother reconstructions of the input data. This is
done by specifying a threshold value for each level of detail coefficients and then
zeroing or shrinking all the detail coefficients below this threshold value. The IML
wavelet functions and modules support several policies for how this thresholding is
performed as well as for selecting the thresholding value at each level. See the section
“WAVIFT Call” on page 993 for details.

An options vector is used to specify the desired thresholding; several standard choices
are predefined as macro variables in the WAVINIT module. The following statements
produce the detail coefficient plot with the “SureShrink” thresholding algorithm of
Donoho and Johnstone (1995).

call coefficientPlot(decomp,&SureShrink,6,, ,
"Quartz Spectrum");

The plot is shown in Figure 16.7.

Multiresolution Approximation Plots � 483

Figure 16.7. Thresholded Detail Coefficients

You can see that “SureShrink” thresholding has zeroed some of the detail coefficients
at the higher levels but the larger coefficients that capture the oscillation in the data are
still present. Consequently, reconstructions of the input signal using the thresholded
detail coefficients still capture the essential features of the data, but are smoother
because much of the very fine scale detail has been eliminated.

Multiresolution Approximation Plots

One way of presenting reconstructions is in a multiresolution approximation plot.
In this plot reconstructions of the input data are shown by level. At any level the
reconstruction at that level uses only the detail and scaling coefficients defined below
that level.

The following statement produces such a plot, starting at level 3:

call mraApprox(decomp, ,3, ,"Quartz Spectrum");

The results are shown in Figure 16.8.

484 � Chapter 16. Wavelet Analysis

Figure 16.8. Multiresolution Approximation

You can see that even at level 3, the basic form of the input signal has been captured.
As noted earlier, the oscillation present in the absorbance data is captured in the detail
coefficients higher than level 7. Thus, the reconstructions at level 7 and lower are
largely free of oscillation since they do not use any of the higher detail coefficients.
You can confirm this observation by plotting just this level in the multiresolution
analysis as follows:

call mraApprox(decomp, ,7,7,"Quartz Spectrum");

The results are shown in Figure 16.9.

Multiresolution Approximation Plots � 485

Figure 16.9. Level 7 of the Multiresolution Approximation

You can also plot the multiresolution approximations obtained with thresholded detail
coefficients. For example, the following statement plots the top-level reconstruction
obtained by using the “SureShrink” threshold:

call mraApprox(decomp,&SureShrink,10,10,
"Quartz Spectrum");

The results are shown in Figure 16.10.

486 � Chapter 16. Wavelet Analysis

Figure 16.10. Top Level of Multiresolution Approximation with SureShrink
Thresholding Applied

Note that the high-frequency oscillation is still present in the reconstruction even with
“SureShrink” thresholding applied.

Multiresolution Decomposition Plots

A related plot is the multiresolution decomposition plot, which shows the detail coef-
ficients at each level. For convenience, the starting-level reconstruction at the lowest
level of the plot and the reconstruction at the highest level of the plot are also in-
cluded. Adding suitably scaled versions of all the detail levels to the starting-level
reconstruction recovers the final reconstruction. The following statement produces
such a plot, yielding the results shown in Figure 16.11.

call mraDecomp(decomp, ,5, , ,"Quartz Spectrum");

Wavelet Scalograms � 487

Figure 16.11. Multiresolution Decomposition

Wavelet Scalograms

Wavelet scalograms communicate the time frequency localization property of the dis-
crete wavelet transform. In this plot each detail coefficient is plotted as a filled rect-
angle whose color corresponds to the magnitude of the coefficient. The location and
size of the rectangle are related to the time interval and the frequency range for this
coefficient. Coefficients at low levels are plotted as wide and short rectangles to in-
dicate that they localize a wide time interval but a narrow range of frequencies in the
data. In contrast, rectangles for coefficients at high levels are plotted thin and tall to
indicate that they localize small time ranges but large frequency ranges in the data.
The heights of the rectangles grow as a power of 2 as the level increases. If you in-
clude all levels of coefficients in such a plot, the heights of the rectangles at the lowest
levels are so small that they are not visible. You can use an option to plot the heights
of the rectangles on a logarithmic scale. This results in rectangles of uniform height
but requires that you interpret the frequency localization of the coefficients with care.

The following statement produces a scalogram plot of all levels with “SureShrink”
thresholding applied:

call scalogram(decomp,&SureShrink, , ,0.25,
’log’,"Quartz Spectrum");

The sixth argument specifies that the rectangle heights are to be plotted on a logarith-
mic scale. The role of the fifth argument (0.25) is to amplify the magnitude of the
small detail coefficients. This is necessary since the detail coefficients at the lower

488 � Chapter 16. Wavelet Analysis

levels are orders of magnitude larger than those at the higher levels. The amplifi-
cation is done by first scaling the magnitudes of all detail coefficients to lie in the
interval [0, 1] and then raising these scaled magnitudes to the power 0.25. Note that
smaller powers yield larger amplification of the small detail coefficient magnitudes.
The default amplification is 1/3.

The results are shown in Figure 16.12.

Figure 16.12. Scalogram Showing All Levels

The bar on the left-hand side of the scalogram plot indicates the overall energy of each
level. This energy is defined as the sum of the squares of the detail coefficients for
each level. These energies are amplified by using the same algorithm for amplifying
the detail coefficient magnitudes. The energy bar in Figure 16.12 shows that higher
energies occur at the lower levels whose coefficients capture the gross features of
the data. In order to interpret the finer-scale details of the data it is helpful to focus
on just the higher levels. The following statement produces a scalogram for levels 6
and higher without using a logarithmic scale for the rectangle heights, and using the
default coefficient amplification.

call scalogram(decomp,&SureShrink,6, , , ,
"Quartz Spectrum");

The result is shown in Figure 16.13.

Wavelet Scalograms � 489

Figure 16.13. Scalogram of Levels 6 and Higher Using “SureShrink” Thresholding

The scalogram in Figure 16.13 reveals that most of the energy of the oscillation in
the data is captured in the detail coefficients at level 8. Also note that many of the
coefficients at the higher levels are set to zero by “SureShrink” thresholding. You
can verify this by comparing Figure 16.13 with Figure 16.14, which shows the cor-
responding scalogram except that no thresholding is done. The following statement
produces Figure 16.14:

call scalogram(decomp, ,6, , , ,"Quartz Spectrum");

490 � Chapter 16. Wavelet Analysis

Figure 16.14. Scalogram of Levels 6 and Higher Using No Thresholding

Reconstructing the Signal from the Wavelet Decomposition

You can use the WAVIFT subroutine to invert a wavelet transformation computed
with the WAVFT subroutine. If no thresholding is specified, then up to numerical
rounding error this inversion is exact. The following statements provide an illustra-
tion of this:

call wavift(reconstructedAbsorbance,decomp);
errorSS=ssq(absorbance-reconstructedAbsorbance);
print "The reconstruction error sum of squares = " errorSS;

The output is shown in Figure 16.15.

ERRORSS

The reconstruction error sum of squares = 1.321E-16

Figure 16.15. Exact Reconstruction Property of WAVIFT

Usually you use the WAVIFT subroutine with thresholding specified. This yields a
smoothed reconstruction of the input data. You can use the following statements
to create a smoothed reconstruction of absorbance and add this variable to the
QuartzInfraredSpectrum data set.

call wavift(smoothedAbsorbance,decomp,&SureShrink);
create temp from smoothedAbsorbance[colname=’smoothedAbsorbance’];

Reconstructing the Signal from the Wavelet Decomposition � 491

append from smoothedAbsorbance;
close temp;

quit;

data quartzInfraredSpectrum;
set quartzInfraredSpectrum;
set temp;

run;

The following statements produce the line plot of the smoothed absorbance data
shown in Figure 16.16:

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot smoothedAbsorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;
axis1 label = (r=0 a=90);

run;

Figure 16.16. Smoothed FT-IR Spectrum of Quartz

You can see by comparing Figure 16.1 with Figure 16.16 that the wavelet smooth of
the absorbance data has preserved all the essential features of these data.

492 � Chapter 16. Wavelet Analysis

Details

Using Symbolic Names

Several of the wavelet subroutines take arguments that are options vectors that spec-
ify user input. For example, the third argument in a WAVFT subroutine call is an
options vector that specifies which wavelet and which boundary treatment are used
in computing the wavelet transform. Typical code that defines this options vector is
as follows:

optn = j(1, 4, .);
optn[1] = 0;
optn[3] = 1;
optn[4] = 3;

A problem with such code is that it is not easily readable. By using symbolic names
readability is greatly enhanced. SAS macro variables provide a convenient mecha-
nism for creating such symbolic names. For example, the previous code could be
replaced by the following code:

optn = &waveSpec;
optn[&family] = &daubechies;
optn[&member] = 3;
optn[&boundary] = &zeroExtension;

where the symbolic macro variables (names with a preceding ampersand) resolve to
the relevant quantities. Symbolic names also improve code readability when sub-
stituted for integer arguments that control what actions a multipurpose subroutine
performs. Consider the following code:

call wavget(n,decomposition,1);
call wavget(fWavelet,decompostion,8);

This code can be replaced by the following statements:

call wavget(n,decomposition,&numPoints);
call wavget(fWavelet,decompostion,&fatherWavelet);

A set of symbolic names is defined in the autocall WAVINIT macro. The following
tables list the symbolic names that are defined in this macro.

Using Symbolic Names � 493

Table 16.1. Macro Variables for Wavelet Specification

Position Admissible Values
Name Value Name Value
&boundary 1 &zeroExtension 0

&periodic 1
&polynomial 2
&reflection 3
&antisymmetricReflection 4

°ree 2 &constant 0
&linear 1
&quadratic 2

&family 3 &daubechies 1
&symmlet 2

&member 4 1 - 10

Table 16.2. Macro Variables for Threshold Specification

Position Admissible Values
Name Value Name Value
&policy 1 &none 0

&hard 1
&soft 2
&garrote 3

&method 2 &absolute 0
&minimax 1
&universal 2
&sure 3
&sureHybrid 4
&nhoodCoeffs 5

&value 3 positive real
&levels 4 &all -1

positive integer

Table 16.3. Symbolic Names for the Third Argument of WAVGET

Name Value
&numPoints 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdingStatus 4
&specification 5
&topLevel 6
&startLevel 7
&fatherWavelet 8

494 � Chapter 16. Wavelet Analysis

Table 16.4. Macro Variables for the Second Argument of WAVPRINT

Name Value
&summary 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdedDetailCoeffs 4

Table 16.5. Macro Variables for Predefined Wavelet Specifications

Name &boundary °ree &family &member
&waveSpec { }
&haar { &periodic . &daubechies 1 }
&daubechies3 { &periodic . &daubechies 3 }
&daubechies5 { &periodic . &daubechies 5 }
&symmlet5 { &periodic . &symmlet 5 }
&symmlet8 { &periodic . &symmlet 8 }

Table 16.6. Macro Variables for Predefined Threshold Specifications

Name &policy &method &value &levels
&threshSpec { }
&RiskShrink { &hard &minimax . &all }
&VisuShrink { &soft &universal . &all }
&SureShrink { &soft &sureHybrid . &all }

Obtaining Help for the Wavelet Macros and Modules

The WAVINIT macro that you call to define symbolic macro variables and wavelet
plot modules also defines a macro WAVHELP that you can call to obtain help for the
wavelet macros and plot modules. The syntax for calling the WAVHELP macro is as
follows:

%WAVHELP < (name)>; ;

In the macro call, name is either wavginit, wavinit, coefficientPlot, mraApprox,
mraDecomp, or scalogram. This macro displays usage and argument information
for the specified macro or module. If you call the WAVHELP macro with no argu-
ments, it lists the names of the macros and modules for which help is available. Note
that you can obtain help for the built-in IML wavelet subroutines by using the SAS
Online Help.

References � 495

References
Daubechies, I. (1992), Ten Lectures on Wavelets, Volume 61, CBMS-NSF Regional

Conference Series in Applied Mathematics, Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Donoho, D. L. and Johnstone, I. M. (1994), “Ideal Spatial Adaptation via Wavelet
Shrinkage,” Biometrika, 81, 425–455.

Donoho, D. L. and Johnstone, I. M. (1995), “Adapting to Unknown Smoothness
via Wavelet Shrinkage,” Journal of the American Statistical Association, 90,
1200–1224.

Mallat, S. (1989), “Multiresolution Approximation and Wavelets,” Transactions of
the American Mathematical Society, 315, 69–88.

Ogden, R. T. (1997), Essential Wavelets for Statistical Applications and Data
Analysis, Boston: Birkhäuser.

Sullivan, D. (2000), “FT-IR Library,” [http://www.che.utexas.edu/~dls/ir/ir–dir.html],
accessed 16 October 2000.

496

Chapter 17
Genetic Algorithms

Chapter Contents

OVERVIEW . 499

FORMULATING A GENETIC ALGORITHM OPTIMIZATION 501
Choosing the Problem Encoding . 501
Setting the Objective Function . 502
Controlling the Selection Process . 503
Using Crossover and Mutation Operators 504

EXECUTING A GENETIC ALGORITHM 509
Setting Up the IML Program . 509
Incorporating Local Optimization . 514
Handling Constraints . 515
Example 17.1. Genetic Algorithm with Local Optimization 515
Example 17.2. Real-Valued Objective Optimization with Constant Bounds . 518
Example 17.3. Integer Programming Knapsack Problem 522
Example 17.4. Optimization with Linear Constraints Using Repair Strategy . 524

REFERENCES . 527

498

Chapter 17
Genetic Algorithms
Overview

Genetic algorithms (referred to hereafter as GAs) are a family of search algorithms
that seek optimal solutions to problems using the principles of natural selection and
evolution. GAs can be applied to almost any optimization problem and are especially
useful for problems where other calculus-based techniques do not work, such as when
the objective function has many local optimums, it is not differentiable or continuous,
or solution elements are constrained to be integers or sequences. In most cases GAs
require more computation than specialized techniques that take advantage of specific
problem structure or characteristics. However, for optimization problems with no
such techniques available, GAs provide a robust general method of solution. The
current GA implementation in IML is experimental, and will be further developed
and tested in later SAS releases.

In general, GAs use the following procedure to search for an optimum solution:

initialization: An initial population of solutions is randomly generated, and an ob-
jective function value is evaluated for each member of the solution
population.

regeneration: A new solution population is generated from the current solution
population. First, individual members are chosen stochastically to
parent the next generation such that those who are the “fittest” (have
the best objective function values) are more likely to be picked. This
process is called selection. Those chosen solutions are either copied
directly to the next generation or passed to a crossover operator, with
a user-specified crossover probabilty. The crossover operator com-
bines two or more parents to produce new offspring solutions for the
next generation. A fraction of the next generation solutions, selected
according to a user-specified mutation probability, is passed to a mu-
tation operator that introduces random variations in the solutions.

The crossover and mutation operators are commonly called genetic
operators. The crossover operator passes characteristics from each
parent to the offspring, especially those characteristics shared in
common. It is selection and crossover that distinguish GAs from
a purely random search, and direct the algorithm toward finding an
optimum. Mutation is designed to ensure diversity in the search to
prevent premature convergence to a local optimum.

As the final step in regeneration, the current population is replaced
by the new solutions generated by selection, crossover, and mutation.
The objective function values are evaluated for the new generation.

500 � Chapter 17. Genetic Algorithms

A common variation on this approach that is supported in IML is to
pass one or more of the best solutions from the current population on
to the next population unchanged. This often leads to faster conver-
gence, and assures that the best solution generated at any time during
the optimization is never lost.

repeat: After regeneration, the process checks some stopping criteria, such
as the number of iterations or some other convergence criteria. If
the stopping criteria is not met, then the algorithm loops back to the
regeneration step.

Although GAs have been demonstrated to work well for a variety of problems, there
is no guarantee of convergence to a global optimum. Also, the convergence of GAs
can be sensitive to the choice of genetic operators, mutation probability, and selection
criteria, so that some initial experimentation and fine-tuning of these parameters is
often required.

In the traditional formulation of GAs, the parameter set to be searched is mapped
into finite-length bit strings, and the genetic operators applied to these strings, or
chromosomes, are based on biological processes. While there is a theoretical basis
for the effectiveness of GAs formulated in this way (Goldberg 1989), in practice most
problems don’t fit naturally into this paradigm. Modern research has shown that opti-
mizations can be set up using the natural solution domain (for example, a real vector
or integer sequence) and applying crossover and mutation operators analogous to the
traditional genetic operators, but more appropriate to the natural formulation of the
problem (Michalewicz 1996). This latter approach is sometimes called evolutionary
computing. IML implements the evolutionary computing approach because it makes
it much easier to formulate practical problems with realistic constraints. Throughout
this documentation, the term “genetic algorithm” is to be interpreted as evolutionary
computing.

IML provides a flexible framework for implementing GAs, enabling you to write
your own modules for the genetic operators and objective function, as well as pro-
viding some standard genetic operators that you can specify. This framework also
enables you to introduce some variations to the usual GA, such as adapting the opti-
mization parameters during the optimization, or incorporating some problem-specific
local optimizations into the process to enhance convergence.

An IML program to do GA optimization is structured differently from a program
doing nonlinear optimization with the nlp routines. With the nlp routines, generally
a single call is made in which the user specifies the objective and optimization pa-
rameters, and that call runs the optimization process to completion. In contrast, to
perform a GA optimization you use separate calls to the GA routines to specify the
problem encoding (GASETUP), genetic operators (GASETMUT and GASETCRO),
objective function (GASETOBJ), and selection criteria (GASETSEL). You then call
the GAINIT routine to initialize the problem population. After that, you advance the
optimization process by calling GAREGEN (for the regeneration step) within an IML
loop. Within the loop you can use GAGETMEM and GAGETVAL calls to retrieve
population members and objective function values for examination. This strategy al-
lows you to monitor the convergence of the GA, adjust optimization parameters with

Choosing the Problem Encoding � 501

GA routine calls within the loop, and exit the loop when the GA is not producing
furthur improvement in the objective function. The next section explains the opti-
mization parameters in more detail and gives guidance on how they should be set.

Formulating a Genetic Algorithm Optimization
To formulate a GA in IML you must decide on five basic optimization parame-
ters:

1. Encoding: The general structure and form of the solution.

2. Objective: The function to be optimized. IML also enables you to specify whether
the function is to be minimized or maximized.

3. Selection: How members of the current solution population will be chosen to be
parents to propagate the next generation.

4. Crossover: How the attributes of parent solutions will be combined to produce
new offspring solutions.

5. Mutation: How random variation will be introduced into the new offspring solu-
tions to maintain genetic diversity.

The following section discusses each of these items in more detail.

Choosing the Problem Encoding

Problem encoding refers to the structure or type of solution space that is to be op-
timized, such as real-valued fixed-length vectors or integer sequences. IML offers
encoding options appropriate to several types of optimization problems.

General Numeric Matrix: With this encoding, solutions can take the form of a nu-
meric matrix of any shape. Also, different solutions can have different dimensions.
This is the most flexible option. If you use this encoding, IML makes no assump-
tions about the form of the solution, so you are required to specify user modules for
crossover and mutation operators, and a user module for creating the initial solution
population.

Fixed-Length Real-Valued Row Vector: If you use this encoding, you must also spec-
ify the number of components in the solution vector. Using this option, you can use
some IML-supplied crossover and mutation operators later, or you can supply custom
modules. You can also specify upper and lower bounds for each component in the
vector, and IML will generate an initial population for the GA randomly distributed
between the bounds. If you don’t explicitly set crossover and mutation operators,
IML will provide default operators to be used in the optimization. This type of en-
coding is often used for general nonlinear optimization problems.

Fixed-Length Integer-Valued Row Vector: This option is similar to the fixed-length
real-valued encoding already described, except that the IML-supplied genetic opera-
tors and initialization process will preserve and generate integer solutions. This type
of encoding might be applicable, for example, in an assignment problem where the

502 � Chapter 17. Genetic Algorithms

positions within the vector represent different tasks, and the integer values represent
different machines or other resources that might be applied to each task.

Fixed-Length Integer Sequence: In this encoding, each solution is composed of a
sequence of integers ranging from 1 to the length of the sequence, with different
solutions distinguished by different ordering of the elements. For example, s1 and s2
are two integer sequences of length 6:

s1 = {1 2 3 4 5 6};
s2 = {2 6 5 3 4 1};

This type of encoding is often used for routing problems like the traveling salesman
problem, where each element represents a city in a circular route, or scheduling prob-
lems.

Setting the Objective Function

Before executing a GA, you must specify the objective function to be optimized.
There are currently two options available: a user function module and an IML-
supplied traveling salesman problem (TSP) objective function.

User Function Module: The module must take exactly one parameter, which will
be one solution, and return a numeric scalar objective function value. The module
can also have a global clause, which may be used to pass in any other information
required to determine the objective function value. If global parameters are used,
you must be careful about changing them after the optimization has been initialized.
If a change in a global parameter affects the objective function values, you must
reevaluate the entire solution population (see GAREEVAL call) to ensure that the
values are consistent with the changed global parameter.

The solution parameter passed into the routine is also written back out to the solution
population when the module exits, so you should take care not to modify the param-
eter and therefore the solution population unintentionally. However, it is permissible
and may prove very effective to add logic to the module to improve the solution
through some heuristic technique or local optimization, and deliberately pass that
improved solution back to the solution population by updating the parameter before
returning. Using this hybrid approach may significantly improve the convergence of
the GA, especially in later stages when solutions may be near an optimum.

TSP Objective Function: An objective function for the traveling salesman problem
can be specified with integer sequence encoding. For the TSP, a solution sequence
represents a circular route. For example, a solution s with the value

s = {2 4 3 1 5};

represents a route going from location 2 to location 4 to 3 to 1 to 5 and back to 2. You
must also specify a cost matrix c, where c[i,j] is the cost of going from location i to
location j. The objective function is just the cost of traversing the route determined
by s, and is equivalent to the IML code:

Controlling the Selection Process � 503

start TSPObjectiveFunction(s) global(c);
nc = ncol(s);
cost = c[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + c[s[i],s[i+1]];

end;
return (cost);
finish;

The IML-supplied order crossover operator and invert mutation operator are espe-
cially appropriate for the TSP and other routing problems.

Controlling the Selection Process

There are two competing factors that need to be balanced in the selection process,
the selective pressure and genetic diversity. Selective pressure, the tendency to select
only the best members of the current generation to propagate to the next, is required to
direct the GA to an optimum. Genetic diversity, the maintenance of a diverse solution
population, is also required to ensure that the solution space is adequately searched,
especially in the earlier stages of the optimization process. Too much selective pres-
sure can lower the genetic diversity so that the global optimum is overlooked and
the GA converges to a local optimum. Yet, with too little selective pressure the GA
may not converge to an optimum in a reasonable time. A proper balance between the
selective pressure and genetic diversity must be maintained for the GA to converge
in a reasonable time to a global optimum.

IML offers two variants of a standard technique for the selection process commonly
known as tournament selection (Miller and Goldberg 1995). In general, the tour-
nament selection process randomly chooses a group of members from the current
population, compares their objective values, and picks the one with the best objec-
tive value to be a parent for the next generation. Tournament selection was chosen
for IML because it is one of the fastest selection methods, and offers you good con-
trol over the selection pressure. Other selection methods such as roulette and rank
selection may be offered as options in the future.

In the first variant of tournament selection, you can control the selective pressure
by specifying the tournament size, the number of members chosen to compete for
parenthood in each tournament. This number should be two or greater, with two
implying the weakest selection pressure. Tournament sizes from two to ten have
been successfully applied to various GA optimizations, with sizes over four to five
considered to represent strong selective pressure.

The second variant of tournament selection provides weaker selective pressure than
the first variant just described. The tournament size is set at two, and the mem-
ber with the best objective value is chosen with a probability that you specify. This
best-player-wins probability can range from 0.5 to 1.0, with 1.0 implying that the
best member is always chosen (equivalent to a conventional tournament of size two)
and 0.5 implying an equal chance of either member being chosen (equivalent to pure
random selection). Using this option, you could set the best-player-wins probabil-
ity close to 0.5 in the initial stages of the optimization, and gradually increase it to

504 � Chapter 17. Genetic Algorithms

strengthen the selective pressure as the optimization progresses, in a similar manner
to the simulated annealing optimization technique.

Another important selection option supported in IML is the elite parameter. If an elite
value of n is specified, then the best n solutions will be carried over to the next gener-
ation unchanged, with the rest of the new population filled in by tournament selection,
crossover, and mutation. Setting the elite parameter to one or greater will therefore
guarantee that the best solution is never lost through selection and propagation, which
often improves the convergence of the algorithm.

Using Crossover and Mutation Operators

IML enables you to employ user modules for crossover and mutation operators, or
you may choose from the operators provided by IML. The IML operators are tied to
the problem encoding options, and IML will check to make sure a specified operator
is appropriate to the problem encoding. You can also turn off crossover, in which case
the current population will pass on to the next generation subject only to mutation.
Mutation can be turned off by setting the mutation probability to 0.

The IML-supplied genetic operators are described below, beginning with the
crossover operators:

simple: This operator is defined for fixed-length integer and real vector encod-
ing. To apply this operator, a position k within a vector of length n is
chosen at random, such that 1 ≤ k < n. Then for parents p1 and p2
the offspring are

c1= p1[1,1:k] || p2[1,k+1:n];

c2= p2[1,1:k] || p1[1,k+1:n];

For real fixed-length vector encoding, you can specify an additional
parameter, a, where a is a scalar and 0 < a ≤ 1. It modifies the
offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];

x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

Note that for a = 1, which is the default value, x2 and x1 are the same
as p2 and p1. Small values of a reduce the difference between the
offspring and parents. For integer encoding a is always 1.

two-point: This operator is defined for fixed-length integer and real vector encod-
ing with length n ≥ 3. To apply this operator, two positions k1 and k2
within the vector are chosen at random, such that 1 ≤ k1 < k2 < n.
Element values between those positions are swapped between parents.
For parents p1 and p2 the offspring are

Using Crossover and Mutation Operators � 505

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];

c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

For real vector encoding you can specify an additional parameter, a,
where 0 < a ≤ 1. It modifies the offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];

x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

Note that for a = 1, which is the default value, x2 and x1 are the same
as p2 and p1. Small values of a reduce the difference between the
offspring and parents. For integer encoding a is always 1.

arithmetic: This operator is defined for real and integer fixed-length vector encod-
ing. This operator computes offspring of parents p1 and p2 as

c1 = a * p1 + (1-a) * p2;

c2 = a * p2 + (1-a) * p1;

where a is a random number between 0 and 1. For integer encoding,
each component is rounded off to the nearest integer. It has the advan-
tage that it will always produce feasible offspring for a convex solution
space. A disadvantage of this operator is that it will tend to produce
offspring toward the interior of the search region, so that it may be less
effective if the optimum lies on or near the search region boundary.

heuristic: This operator is defined for real fixed-length vector encoding. It com-
putes the first offspring from the two parents p1 and p2 as

c1 = a * (p2 - p1) + p2;

where p2 is the parent with the better objective value, and a is a random
number between 0 and 1. The second offspring is computed as in the
arithmetic operator:

c2 = (1 - a) * p1 + a * p2;

This operator is unusual in that it uses the objective value. It has the ad-
vantage of directing the search in a promising direction, and automat-
ically fine-tuning the search in an area where solutions are clustered.
If the solution space has upper and lower bound constraints the off-
spring will be checked against the bounds, and any component outside
its bound will be set equal to that bound. The heuristic operator will
perform best when the objective function is smooth, and may not work
well if the objective function or its first derivative is discontinuous.

pmatch: The partial match operator is defined for sequence encoding. It pro-
duces offspring by transferring a subsequence from one parent, and
filling the remaining positions in a way consistent with the position

506 � Chapter 17. Genetic Algorithms

and ordering in the other parent. Start with two parents and randomly
chosen cutpoints as indicated:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

The first step is to cross the selected segments (. indicates positions
yet to be determined):

c1 = {. . 9 3 4 1 . . .};
c2 = {. . 3 4 5 6 . . .};

Next, define a mapping according to the two selected segments:

9-3, 3-4, 4-5, 1-6

Next, fill in the positions where there is no conflict from the corre-
sponding parent:

c1 = {. 2 9 3 4 1 7 8 .};
c2 = {8 7 3 4 5 6 2 . .};

Last, fill in the remaining positions from the subsequence mapping. In
this case, for the first child 1 → 6 and 9 → 3, and for the second child
5 → 4, 4 → 3, 3 → 9 and 6 → 1.

c1 = {6 2 9 3 4 1 7 8 5};
c2 = {8 7 3 4 5 6 2 9 1};

This operator will tend to maintain similarity of both the absolute po-
sition and relative ordering of the sequence elements, and is useful for
a wide range of sequencing problems.

order: This operator is defined for sequence encoding. It produces offspring
by transferring a subsequence of random length and position from one
parent, and filling the remaining positions according to the order from
the other parent. For parents p1 and p2, first choose a subsequence:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

c1 = {. . 3 4 5 6 . . .};
c2 = {. . 9 3 4 1 . . .};

Starting at the second cutpoint, the elements of p2 in order are (cycling
back to the beginning)

2 5 6 8 7 9 3 4 1

After removing 3, 4, 5 and 6, which have already been placed in c1, we
have

2 8 7 9 1

Placing these back in order starting at the second cutpoint yields

c1 = {9 1 3 4 5 6 2 8 7};

Using Crossover and Mutation Operators � 507

Applying this logic to c2 yields

c2 = {5 6 9 3 4 1 7 8 2};

This operator maintains the similarity of the relative order, or adja-
cency, of the sequence elements of the parents. It is especially effective
for circular path-oriented optimizations, such as the traveling salesman
problem.

cycle: This operator is defined for sequence encoding. It produces offspring
such that the position of each element value in the offspring comes
from one of the parents. For example, for parents p1 and p2,

p1 = {1 2 3 4 5 6 7 8 9};
p2 = {8 7 9 3 4 1 2 5 6};

For the first child, pick the first element from the first parent:

c1 = {1};

To maintain the condition that the position of each element value must
come from one of the parents, the position of the ’8’ value must come
from p1, because the ’8’ position in p2 is already taken by the ’1’ in c1:

c1 = {1 8 .};

Now the position of ’5’ must come from p1, and so on until the process
returns to the first position:

c1 = {1 . 3 4 5 6 . 8 9};

At this point, choose the remaining element positions from p2:

c1 = {1 7 3 4 5 6 2 8 9};

For the second child, starting with the first element from the second
parent, similar logic produces

c2 = {8 2 9 3 4 1 7 5 6};

This operator is most useful when the absolute position of the elements
is of most importance to the objective value.

The mutation operators supported by IML are as follows:

uniform: This operator is defined for fixed-length real or integer encoding with
specified upper and lower bounds. To apply this operator, a position k
is randomly chosen within the solution vector v, and v[k] is modified
to a random value between the upper and lower bounds for element
k. This operator may prove especially useful in early stages of the
optimization, since it will tend to distribute solutions widely across the
search space, and avoid premature convergence to a local optimum.
However, in later stages of an optimization with real vector encoding,
when the search needs to be fine-tuned to home in on an optimum, the
uniform operator may hinder the optimization.

508 � Chapter 17. Genetic Algorithms

delta: This operator is defined for integer and real fixed-length vector encod-
ing. It first chooses an element of the solution at random, and then
perturbs that element by a fixed amount, set by a delta input parameter.
delta has the same dimension as the solution vectors. To apply the mu-
tation, a randomly chosen element k of the solution vector v is modified
such that

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or

v[k] = v[k] - delta[k];

If upper and lower bounds are specified for the problem, then v[k] is ad-
justed as necessary to fit within the bounds. This operator gives you the
ability to control the scope of the search with the delta vector. One pos-
sible strategy is to start with a larger delta value, and then reduce it as
the search progresses and begins to converge to an optimum. This oper-
ator is also useful if the optimum is known to be on or near a boundary,
in which case delta can be set large enough to always perturb the solu-
tion element to a boundary.

swap: This operator is defined for sequence problem encoding. It picks two
random locations in the solution vector, and swaps their value. You can
also specify that multiple swaps be made for each mutation.

invert: This operator is defined for sequence encoding. It picks two locations
at random, and then reverses the order of elements between them. This
operator is most often applied to the traveling salesman problem.

The IML-supplied crossover and mutation operators that are allowed for each prob-
lem encoding are summarized in the following table.

Table 17.1. Valid Genetic Operators for Each Encoding

Encoding Crossover Mutation
general user module user module
fixed-length real vector user module user module

simple uniform
two-point delta
arithmetic
heuristic

fixed-length integer vector user module user module
simple uniform
two-point delta
arithmetic

fixed-length integer sequence user module user module
pmatch swap
order invert
cycle

A user module specified as a crossover operator must be a subroutine with four pa-

Setting Up the IML Program � 509

rameters. The module should compute and return two new offspring solutions in the
first two parameters, based on the two parent solutions, which will be passed into the
module in the last two parameters. The module should not modify the parent solu-
tions passed into it. A global clause can be used to pass in any additional information
that the module might use.

A user module specified as a mutation operator must be a subroutine with exactly one
parameter. When the module is called, the parameter will contain the solution that
is to be mutated. The module will be expected to update the parameter with the new
mutated value for the solution. As with crossover, a global clause can be used to pass
in any additional information that the module might use.

Executing a Genetic Algorithm

Setting Up the IML Program

After you formulate the GA optimization problem as described in the previous
section, executing the genetic algorithm in IML is simple and straightforward.
Remember that the current GA implementation in IML is experimental, and will be
furthur developed and tested in later SAS releases. The following table summarizes
the IML GA modules used to set each of the optimization parameters. IML will use
reasonable default values for some of the parameters if they are not specified by the
GA calls, and these default values are also listed. Parameters shown in italics are not
required in all cases.

Table 17.2. Establishing Optimization Parameters

Type Set By Parameter Value
encoding GASETUP encoding 0 →general

1 →fixed-length real
2 →fixed-length integer
3 →fixed-length sequence

size fixed-length size
seed initial random seed

objective GASETOBJ id returned from GASETUP
objtype 0 →minimize user module

1 →maximize user module
2 →traveling salesman problem

parm if objtype=0 or 1, user module
if objtype=2, cost coefficients

selection GASETSEL id returned from GASETUP
elite integer in [0, population size]
type 0 →conventional tournament

1 →dual tournament with BPW prob
parm if type = 0, tournament size

if type = 1, real number in [0.5,1]
default if elite 1
not set type conventional tournament

parm 2

510 � Chapter 17. Genetic Algorithms

Table 17.2. (continued)

Type Set By Parameter Value
crossover GASETCRO id returned from GASETUP

crossprob crossover probability
type 0 →user module

1 →simple
2 →two-point
3 →arithmetic
4 →heuristic
5 →pmatch
6 →cycle
7 →order

parm module name for type = 0
0 <val≤ 1 if encoding=1, 0<type<3

default if crossprob 1.0
not set type heuristic if encoding=1

simple if encoding=2
pmatch if encoding=3, objtype 0
order if objtype=2 (TSP)

mutation GASETMUT id returned from GASETUP
mutprob mutation probability
type 0 →user module

1 →uniform
2 →delta
3 →swap
4 →invert

parm delta value if type=2
number of swaps if type=3

default if mutprob 0.05
not set type uniform if encoding=1 or 2, bounded

delta if encoding=1 or 2, no bounds
swap if encoding=3, not TSP
invert if objtype=1 (TSP)

After setting the optimization parameters, you are ready to execute the GA. First, an
initial solution population must be generated with a GAINIT call. GAINIT imple-
ments the initialization phase of the GA, generating an initial population of solutions
and evaluating the objective value of each member solution. In the GAINIT call you
specify the population size and any constant bounds on the solution domain. Next
comes an IML loop containing a GAREGEN call. GAREGEN implements the re-
generation phase of the GA, which generates a new solution population based on
selection, crossover, and mutation of the current solution population, then replaces
the current population with the new population and computes the new objective func-
tion values.

After the GAREGEN call, you can monitor the convergence of the GA by retrieving
the objective function values for the current population with the GAGETVAL call.

Setting Up the IML Program � 511

You might check the average value of the objective population, or check only the best
value. If the elite parameter is 1 or more, then it is easy to check the best member of
the population, since it will always be the first member retrieved.

After your stopping criteria have been reached, you can retrieve the members of the
solution population with the GAGETMEM call. To end the optimization, you should
always use the GAEND call to free up memory resources allocated to the GA.

Below are some example programs to illustrate setting up and executing a genetic
algorithm. The first example illustrates a simple program, a 10-city TSP using all
IML defaults. The cost coefficients correspond to the cities being laid out on a two-
by-five grid. The optimal route has a total distance of 10.

proc iml;

/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,

1 0 1 2 3 4 5 4 3 2,
2 1 0 1 2 3 4 5 4 3,
3 2 1 0 1 2 3 4 5 4,
4 3 2 1 0 1 2 3 4 5,
5 4 3 2 1 0 1 2 3 4,
4 5 4 3 2 1 0 1 2 3,
3 4 5 4 3 2 1 0 1 2,
2 3 4 5 4 3 2 1 0 1,
1 2 3 4 5 4 3 2 1 0 };

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
1234 /* initial seed */

);
/* set objective function */
call gasetobj(id,

2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);

/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 20; /* number of iterations */
bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);

512 � Chapter 17. Genetic Algorithms

call gagetval(value, id, 1);
bestValue[i] = value;

end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

"final best value " value [l = ""];

call gaend(id);

For this test case, there is no call to GASETSEL. Therefore IML will use default se-
lection parameters: an elite value of 1 and a conventional tournament of size 2. Also,
since there is no GASETCRO or GASETMUT call, IML will use default genetic op-
erators: the order operator for crossover and the invert operator for mutation, and a
default mutation probability of 0.05. The output results are

iteration BESTVALUE

1 18
2 18
3 16
4 14
5 14
6 14
7 12
8 12
9 12

10 12
11 12
12 12
13 12
14 12
15 12
16 12
17 12
18 12
19 10
20 10

best member 10 1 2 3 4 5 6 7 8 9

final best value 10

The optimal value was reached after 19 iterations. Because the elite value was 1, the
best solution was retained and passed on to each successive generation, and therefore
never lost. Note that out of 3,628,800 possible solutions (representing 362,800 unique

Setting Up the IML Program � 513

paths), the GA found the optimum after only 1,900 function evaluations, without
using any problem-specific information to assist the optimization. You could also do
some experimentation, and specify different genetic operators with a GASETCRO
and GASETMUT call, and different selection parameters with a GASETSEL call:

/* alternate problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
1234 /* initial seed */

);
/* set objective function */
call gasetobj(id,

2, /* 2 -> Traveling Salesman Problem */
coeffs /* cost coefficient matrix */
);

call gasetcro(id,
1.0, /* crossover probabilty 1 */
5 /* 5 -> pmatch operator */
);

call gasetmut(id,
0.05, /* mutation probability */
3 /* 3 -> swap operator */
);

call gasetsel(id,
3, /* set elite to 3 */
1, /* dual tournament */
0.95 /* best-player-wins probability 0.95 */
);

/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 15; /* number of iterations */
bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;

end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

514 � Chapter 17. Genetic Algorithms

"final best value " value [l = ""];

call gaend(id);

The output of this test case is

iteration BESTVALUE

1 24
2 18
3 18
4 16
5 16
6 14
7 14
8 14
9 14

10 12
11 12
12 12
13 10
14 10
15 10

best member 3 4 5 6 7 8 9 10 1 2

final best value 10

Note that convergence was faster than for the previous case, reaching an optimum
after 13 iterations. This illustrates that the convergence of a GA may be very sensitive
to the choice of genetic operators and selection parameters, and for practical problems
some experimental fine-tuning of optimization parameters may be required to obtain
acceptable convergence.

Incorporating Local Optimization

One commonly used technique is to combine the GA with a local optimization tech-
nique specific to the problem being solved. This can be done within the IML GA
framework by incorporating a local optimization into the objective function evalua-
tion: return a locally optimized objective value, and optionally replace the original
solution passed into the module with the optimized solution.

Always replacing the original solution with the locally optimized one will cause faster
convergence, but it is also more likely to converge prematurely to a local optimum.
One way to reduce this possibility is to not replace the original solution in every case,
but replace it with some probability p. For some problems, values of p from 5 to
15 percent have been shown to significantly improve convergence, while avoiding
premature convergence to a local optimum (Michalewicz 1996) .

Example 17.1. Genetic Algorithm with Local Optimization � 515

Handling Constraints

Practical optimization problems often come with constraints, which may make the
problem difficult to solve. Constraints are handled in GAs in a variety of ways.

If it is possible, the most straightforward approach is to set the problem encoding,
genetic operators, and initialization such that the constraints are automatically met.
For example, a nonlinear optimization problem over n real variables with constant
upper and lower bounds is easily formulated in IML using real fixed-length encoding,
arithmetic crossover, and uniform mutation. The arithmetic crossover operator can
be used without modification in any optimization over a convex solution space, when
the optimum is expected to be an interior point of the domain.

Another approach to satisfying constraints is to repair solutions after genetic opera-
tors have been applied. This is what IML does when using the heuristic crossover
operator or delta mutation operator with fixed bounds: it adjusts any individual com-
ponent that violates an upper or lower bound. You can repair a solution inside a user
crossover or mutation module, or repairs can be made by modifying the solution in a
user objective function module, as was described in the previous section.

Another technique is to allow solutions to violate constraints, but to impose a penalty
in the objective function for unsatisfied constraints. If the penalty is severe enough,
the algorithm should converge to an optimum point within the constraints. This ap-
proach should be used carefully. If most of the points in the solution space violate
the constraints, then this technique may converge prematurely to the first feasible
solution found. Also, convergence may be poor to a solution that lies on or near a
constraint boundary.

Example 17.1. Genetic Algorithm with Local Optimization

For the symmetric traveling salesman problem, there is a simple local optimization
that can be incorporated into a user objective function module, which is to check
each pair of adjacent locations in the solution and swap their positions if that would
improve the objective function value. Here is the previous TSP example, modified to
use an objective function module that implements this strategy. In this initial example,
the optimized solution is not written back out to the solution population (except to get
the final solution at the end).

proc iml;

/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1,

1 0 1 2 3 4 5 4 3 2,
2 1 0 1 2 3 4 5 4 3,
3 2 1 0 1 2 3 4 5 4,
4 3 2 1 0 1 2 3 4 5,
5 4 3 2 1 0 1 2 3 4,
4 5 4 3 2 1 0 1 2 3,
3 4 5 4 3 2 1 0 1 2,
2 3 4 5 4 3 2 1 0 1,
1 2 3 4 5 4 3 2 1 0 };

516 � Chapter 17. Genetic Algorithms

start TSPObjectiveFunction(r) global(coeffs, p);
s = r;
nc = ncol(s);
/* local optimization, assumes symmetric cost *
* coefficients */

do i = 1 to nc;
city1 = s[i];
inext = 1 + mod(i,nc);
city2 = s[inext];
if i=1 then
before = s[nc];

else
before = s[i-1];

after = s[1 + mod(inext,nc)];
if (coeffs[before,city1] + coeffs[city2, after]) >
(coeffs[before,city2] + coeffs[city1, after])

then do;
s[i] = city2;
s[inext] = city1;

end;
end;
/* compute objective function */
cost = coeffs[s[nc],s[1]];
do i = 1 to nc-1;
cost = cost + coeffs[s[i],s[i+1]];

end;
if uniform(1234)<=p then

r = s;
return (cost);

finish;

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */

10, /* number of locations */
123 /* initial random seed */

);
/* set objective function */
call gasetobj(id,

0, /* 0 -> minimize a user-defined module */
"TSPObjectiveFunction"
);

call gasetcro(id, 1.0, 6);
call gasetmut(id, 0.05, 4);
call gasetsel(id, 1, 1, 0.95);
p = 0; /* probability of writing locally optimized

* solution back out to population */
/* initialization phase */
call gainit(id,

100 /* initial population size */
);

/* execute regeneration loop */

niter = 10; /* number of iterations */

Example 17.1. Genetic Algorithm with Local Optimization � 517

bestValue = j(niter,1); /* to store results */

call gagetval(value, id, 1); /* gets first (and best) value */
bestValue[1] = value;

do i = 2 to niter;
call garegen(id);
call gagetval(value, id, 1);
bestValue[i] = value;

end;

/* print solution history */
print (t(1:niter))[l = "iteration"] bestValue;

/* make sure local optimization is
* written back to all solutions */

p = 1.; /* set global probability to 1 */
call gareeval(id);

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print "best member " bestMember [f = 3.0 l = ""],,

"final best value " value [l = ""];
call gaend(id);

The results of running this program are

iteration BESTVALUE

1 12
2 12
3 12
4 12
5 10
6 10
7 10
8 10
9 10
10 10

best member 7 6 5 4 3 2 1 10 9 8

final best value 10

Convergence is much improved by the local optimization, reaching the optimum in
just 5 iterations compared to 13 with no local optimization. Writing some of the
optimized solutions back to the solution population, by setting the global probability
p to 0.05 or 0.15, will improve convergence even more.

518 � Chapter 17. Genetic Algorithms

Example 17.2. Real-Valued Objective Optimization with
Constant Bounds

The next example illustrates some of the strengths and weaknesses of the arithmetic
and heuristic crossover operators. The objective function to be minimized is

start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);

finish;

This function obviously has a minimum at x=xopt, and is not differentiable at all
points. The following program sets xopt= 0 and specifies constant boundary con-
straints such that the optimum is in the interior of the search space, and specifies the
heuristic crossover operator:

proc iml;

/* objective function, has minimum of 0 at x = xopt */
start sin_obj(x) global(xopt);
r = abs(sin(sum(abs(x-xopt))));
return(r);

finish;

xopt = { 0 0 0 };
optimum = xopt;
optval = sin_obj(optimum);

id = gasetup(1, /* 1-> fixed-length floating point vector encoding */
3, /* 3-> length of solution vectors */
1234 /* 0-> initial random seed */

);
call gasetobj(id,0,"sin_obj"); /* 0->minimize a user module,

* "sin_obj" is name of module */
call gasetcro(id, 0.9, 4); /* crossover probabilty 0.9,

* 4-> heuristic crossover operator */

call gasetmut(id,0.05,2,0.01); /* mutation probability 0.05,
* 2-> delta mutation operator
* 0.01 is delta value */

call gasetsel(id, 5, 1, 0.95); /* carry best 5 solutions over
* to the next generation, dual
* tournment with 0.95 best-player
* wins probability */

bounds = {-1 -1 -1, 1 1 1};
call gainit(id,200,bounds); /* initialize population with

* 200 members, "bounds" gives
* upper and lower bounds for
* components of randomly
* randomly generated vectors */

summary = j(20,2);

Example 17.2. Real-Valued Objective Optimization with Constant Bounds � 519

mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 2 to 20;

call garegen(id);

call gagetval(value, id); /* get all objective values of
* the population */

summary[i,1] = value[1];
summary[i,2] = value[:];

end;

iteration = t(1:20);
print iteration summary;
call gaend(id);

The output results are

SUMMARY
ITERATION bestValue avgValue

1 0.894517 0.8926763
2 0.894517 0.752227
3 0.1840732 0.6087493
4 0.14112 0.4848342
5 0.14112 0.3991614
6 0.14112 0.3539561
7 0.0481937 0.3680798
8 0.0481937 0.3243406
9 0.0481937 0.3027395

10 0.0481937 0.2679123
11 0.0481937 0.2550643
12 0.0481937 0.2582514
13 0.0481937 0.2652337
14 0.0481937 0.2799655
15 0.0383933 0.237546
16 0.0383933 0.3008743
17 0.0383933 0.2341022
18 0.0383933 0.1966969
19 0.0383933 0.2778152
20 0.0383933 0.2690036

To show the convergence of the overall population, the average value of the objec-
tive function for the whole population is printed out as well as the best value. The
optimum value for this formulation is 0, and the optimum solution is (0 0 0). The
output shows the convergence of the GA to be slow, especially as the solutions get
near the optimum. This is the result of applying the heuristic crossover operator to an

520 � Chapter 17. Genetic Algorithms

ill-behaved objective function. If you change the crossover to the arithmetic operator
by changing the GASETCRO call to

call gasetcro(id, 0.9, 3); /* 3-> arithmetic crossover operator */

you get the following output:

SUMMARY
ITERATION bestValue avgValue

1 0.894517 0.8926763
2 0.894517 0.8014329
3 0.1840732 0.6496871
4 0.1705931 0.4703868
5 0.0984926 0.2892114
6 0.076859 0.1832358
7 0.0287965 0.1123732
8 0.0273074 0.0720792
9 0.018713 0.0456323

10 0.0129708 0.0309648
11 0.0087931 0.0240822
12 0.0087931 0.0172102
13 0.0050753 0.0128258
14 0.0019603 0.0092872
15 0.0016225 0.0070575
16 0.0016225 0.0051149
17 0.0012465 0.0036445
18 0.0011895 0.002712
19 0.0007646 0.0023329
20 0.0007646 0.0020842

For this case, the arithmetic operator shows improved convergence. Suppose you
change the problem characteristics again by changing the constraints so that the opti-
mum lies on a boundary. The following statement moves the optimum to a boundary:

bounds = {0 0 0, 1 1 1};

The output using the arithmetic operator is

SUMMARY
ITERATION bestValue avgValue

1 0.8813497 0.8749132
2 0.8813497 0.860011
3 0.3721446 0.8339357
4 0.3721446 0.79106
5 0.3721446 0.743336
6 0.3721446 0.7061592
7 0.3721446 0.6797346
8 0.3721446 0.6302206
9 0.3721446 0.5818008

Example 17.2. Real-Valued Objective Optimization with Constant Bounds � 521

10 0.3721446 0.5327339
11 0.3721446 0.5149562
12 0.3721446 0.48525
13 0.3721446 0.4708617
14 0.3721446 0.4582203
15 0.3721446 0.433538
16 0.3721446 0.4256162
17 0.3721446 0.4236062
18 0.3721446 0.4149336
19 0.3721446 0.4135214
20 0.3721446 0.4078068

In this case, the algorithm fails to converge to the true optimum, given the character-
istic of the arithmetic operator to converge on interior points. However, if you switch
back to the heuristic crossover operator the results are

SUMMARY
ITERATION bestValue avgValue

1 0.8813497 0.8749132
2 0.8813497 0.7360591
3 0.3721446 0.5465098
4 0 0.3427185
5 0 0.2006271
6 0 0.0826017
7 0 0.0158228
8 0 0.0002602
9 0 0.00005
10 0 0.00065
11 0 0.0003
12 0 0.0002
13 0 0.0002
14 0 0.000285
15 0 0.0005
16 0 0.0002952
17 0 0.0002
18 0 0.0001761
19 0 0.00035
20 0 0.00035

These results show a rapid convergence to the optimum. This example illustrates
how the results of a GA are very operator-dependent. For complicated problems
with unknown solution, you might need to try a number of different combinations
of parameters in order to have confidence that you have converged to a true global
optimum.

522 � Chapter 17. Genetic Algorithms

Example 17.3. Integer Programming Knapsack Problem

The next example uses the integer encoding, along with user modules for crossover
and mutation. It formulates the knapsack problem using fixed-length integer encod-
ing. The integer vector solution s is a vector of ones and zeros, where s[i]=1 implies
that item i is packed in the knapsack. The weight constraints of the problem are not
handled explicitly, but are accounted for by including a penalty for overweight in
the objective function. The crossover operator randomly chooses a value for each
element of the solution vector from each parent. The mutation operator randomly
changes the values of a user-set number of elements in the solution vector. For this
problem the value of the global optimum is 18.

proc iml;
weight = {2 3 4 4 1 1 1 1 1 1 1 1 1 1 1};
limit = 9; /* weight limit */
reward = {6 6 6 5 1.3 1.2 1.1 1.0 1.1 1.3 1.0 1.0 0.9 0.8 0.6};

start knapsack(x) global(weight, reward, limit);
wsum = sum(weight # x);
rew = sum(reward # x);
/* subtract penalty for exceeding weight */
if wsum>limit then

rew = rew - 5 * (wsum - limit);
return(rew);

finish;

start switch_mut(s) global(nswitches);
n = ncol(s);
do i = 1 to nswitches;

k = int(uniform(1234) * n) + 1;
if s[k]=0 then

s[k] = 1;
else
s[k] = 0;

end;
finish;

start uniform_cross(child1, child2, parent1, parent2);
child1 = parent1;
child2 = parent2;
do i = 1 to ncol(parent1);

r = uniform(1234);
if r<=0.5 then do;
child1[i] = parent2[i];
child2[i] = parent1[i];

end;
end;

finish;

id = gasetup(2,15, 123);
call gasetobj(id, 1, "knapsack"); /* maximize objective module */
call gasetcro(id, 1.0, 0,"uniform_cross"); /* user crossover module */

Example 17.3. Integer Programming Knapsack Problem � 523

call gasetmut(id,
0.20, /* mutation probabilty */
0, "switch_mut" /* user mutation module */
);

nswitches = 3;
call gasetsel(id, 3, /* carry 3 over to next generation */

1, /* dual tournament */
0.95 /* best-player-wins probabilty */

);
call gainit(id,100,{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1});
niter = 20;
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];

end;
call gagetmem(mem, value, id, 1);
print "best member " mem[f = 1.0 l = ""],

"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

The output of the program is

best member 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
best value 18

SUMMARY
ITERATION bestValue avgValue

1 16 2.44
2 16 6.257
3 16 6.501
4 16.7 7.964
5 16.7 8.812
6 16.7 9.254
7 16.7 10.021
8 16.8 11.216
9 16.9 12.279
10 16.9 12.094
11 16.9 11.633
12 16.9 11.431
13 18 11.502

524 � Chapter 17. Genetic Algorithms

14 18 13.2
15 18 13.128
16 18 13.282
17 18 12.876
18 18 13.715
19 18 12.889
20 18 13.15

Note that for this problem, the mutation parameters are set higher than is often seen
for GAs. For this example, this is necessary to prevent premature convergence.

Example 17.4. Optimization with Linear Constraints Using
Repair Strategy

This problem seeks a minimum within a convex domain specified by a convex hull,
a set of points such that all points in the search space are normalized linear combi-
nations of those points. Each solution is represented by a set of weights w such that
there is one wi for each point in the convex hull, 0 ≤ wi ≤ 1, and Σwi = 1. In this
example the feasible region is the convex hull defined by the set of points (-3 -2), (3
-2), (-3 2), and (3 2). The objective function is a six-hump camel-back function (see
Michalewicz 1996, Appendix B), with a known global minimum value of -1.0316 at
two different points, (-0.0898,0.7126) and (0.0898,-0.7126). A user mutation module
is specified, and the simple crossover operator is used. Both the mutation opera-
tor and the crossover operator will produce solutions that violate the constraints, so
in the objective function each solution will be checked and renormalized to bring it
back within the convex hull.

proc iml;

/* Test case using user modules for the mutation operator and
* for initialization
*/

start sixhump(w) global(cvxhull);
/* Function has global minimum value of -1.0316
* at x = {-0.0898 0.7126} and
* x = { 0.0898 -0.7126}
*/
sum = w[1,+];

/* guard against the remote possibility of all-0 weights */
if sum=0 then do;

nc = ncol(w);
w = j(1, nc, 1/nc);

sum = 1;
end;

/* re-normalize weights */
w = w/sum;

/* convert to x-coordinate form */

Example 17.4. Optimization with Linear Constraints Using Repair Strategy � 525

x = (w * cvxhull)[+,];
x1 = x[1];
x2 = x[2];

/* compute objective value */
r = (4 - 2.1*x1##2 + x1##4/3)*x1##2 + x1*x2 +

(-4 + 4*x2*x2)*x2##2;
return(r);

finish;

/* each row is one point on the boundary of
* the convex hull */

cvxhull = {-3 -2,
3 -2,
-3 2,
3 2};

/* initialization module */
start cvxinit(w) global(cvxhull);
sum = 0;
a = j(1, nrow(cvxhull), 1234);
do while(sum = 0);
r = uniform(a);
sum = r[1,+];

end;
w = r / sum;
finish;

/* mutation module */
start cvxmut(w)global(cvxhull);
row = int(uniform(1234) * nrow(cvxhull)) + 1;
r = uniform(1234);
w[1,row] = r;

finish;

id = gasetup(1, /* real fixed-length vector encoding */
nrow(cvxhull), /* vector size = number of points

* specifying convex hull
*/

1234);
call gasetobj(id,

0, /* minimize a user-specified objective function */
"sixhump"
);

call gasetsel(id,
5, /* carry over the best 5 from each generation */
1, /* dual tournament */

0.95 /* best-player-wins probability */
);

call gasetcro(id,
0.8, /* crossover probability */
1 /* simple crossover operator */
);

call gasetmut(id,0.05,0,"cvxmut");

526 � Chapter 17. Genetic Algorithms

call gainit(id,
100, /* population size */

, /* not using constant bounds */
"cvxinit" /* initialization module */

);

niter = 35; /* number of iterations */
summary = j(niter,2);
mattrib summary [c = {"bestValue", "avgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];

end;
call gagetmem(mem, value, id, 1);
bestX = (mem * cvxhull)[+,];
print "best X " bestX[l = ""],

"best value " value[l = ""];
iteration = t(1:niter);
print iteration summary;
call gaend(id);

The output results are

best X 0.089842 -0.712658
best value -1.031628

SUMMARY
ITERATION bestValue avgValue

1 -0.082301 0.9235856
2 -0.948434 0.1262678
3 -0.956136 0.2745601
4 -1.017636 0.1367912
5 -1.028457 -0.241069
6 -1.028457 -0.353218
7 -1.028457 -0.56789
8 -1.028457 -0.73044
9 -1.028457 -0.854496

10 -1.028509 -0.941693
11 -1.031334 -0.936541
12 -1.031334 -0.90363
13 -1.031373 -0.774917
14 -1.031614 -0.873418
15 -1.031614 -0.886818
16 -1.031618 -0.95678
17 -1.031619 -0.933061

References � 527

18 -1.031626 -0.885132
19 -1.031628 -0.936944
20 -1.031628 -0.906637
21 -1.031628 -0.925809
22 -1.031628 -0.860156
23 -1.031628 -0.946146
24 -1.031628 -0.817196
25 -1.031628 -0.883284
26 -1.031628 -0.904361
27 -1.031628 -0.974893
28 -1.031628 -0.975647
29 -1.031628 -0.872004
30 -1.031628 -1.031628
31 -1.031628 -0.897558
32 -1.031628 -0.922121
33 -1.031628 -0.855045
34 -1.031628 -0.922061
35 -1.031628 -0.958257

Any problem with linear constraints could be formulated in this way, by determining
the convex hull corresponding to the constraints. The genetic operators and the repair
strategy are straightforward to apply, and as this case shows, can give reasonable
convergence to a global optimum.

References
Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine

Learning, Reading, MA: Addison-Wesley Longman.

Miller, B. L. and Goldberg, D. E. (1995), Genetic Algorithms, Tournament Selecton,
and the Effects of Noise, Technical Report 95006, Illinois Genetic Algorithm
Laboratory, University of Urbana-Champaign.

Michalewicz, Zbigniew (1996), Genetic Algorithms + Data Structures = Evolution
Programs, New York: Springer-Verlag.

528

Chapter 18
Sparse Matrix Algorithms

Chapter Contents

OVERVIEW . 531

ITERATIVE METHODS . 532
Input Data Description . 532
Example: Conjugate Gradient Algorithm 533
Example: Minimum Residual Algorithm 535
Example: Biconjugate Gradient Algorithm 536

SYMBOLIC LDL AND CHOLESKY FACTORIZATIONS 537

REFERENCES . 538

530

Chapter 18
Sparse Matrix Algorithms
Overview

This chapter documents direct and iterative algorithms for large sparse systems of
linear equations:

Ax = b, A ∈ Rn×n, x, b ∈ Rn

where A is a nonsingular square matrix.

The ITSOLVER call supports the following classes of iterative solvers:

• conjugate gradient for symmetric positive-definite systems

• conjugate gradient squared for general nonsingular systems

• minimum residual for symmetric indefinite systems

• biconjugate gradient for general nonsingular systems

Iterative algorithms incur zero or controlled amounts of fill-in, have relatively small
working memory requirements, and can converge as fast as O(n) or O(n2) versus
direct dense methods that are typicallyO(n3). Each iteration of an iterative algorithm
is very inexpensive and typically involves a single matrix-vector multiplication and a
pair of forward/backward substitutions.

Convergence of an iterative method depends upon the distribution of eigenvalues for
the matrix A, and can be rather slow for badly conditioned matrices. For such cases
SAS/IML offers hybrid algorithms, which combine an incomplete factorization (a
modified direct method) used in the preconditioning phase with an iterative refine-
ment procedure. The following preconditioners are supported:

• incomplete Cholesky factorization (“IC”)

• diagonal Jacobi preconditioner (“DIAG”)

• modified incomplete LU factorization (“MILU”)

For more information, see the description of the precond parameter in the section
“Input Data Description” on page 532.

The SOLVELIN call supports the following direct sparse solvers for symmetric
positive-definite systems:

• symbolic LDL

• Cholesky

532 � Chapter 18. Sparse Matrix Algorithms

Classical factorization-based algorithms share one common complication: the matrix
A usually suffers fill-in, which means additional operations and computer memory
are required to complete the algorithm. A symmetric permutation of matrix rows and
columns can lead to a dramatic reduction of fill-in. To compute such a permutation,
SAS/IML implements a minimum degree ordering algorithm, which is an automatic
step in the SOLVELIN function.

Iterative Methods
The conjugate gradient algorithm can be interpreted as the following optimization
problem: minimize φ(x) defined by

φ(x) = 1/2xTAx− xT b

where b ∈ Rn and A ∈ Rn×n are symmetric and positive definite.

At each iteration φ(x) is minimized along an A-conjugate direction, constructing
orthogonal residuals:

ri ⊥ Ki(A; r0), ri = Axi − b

where Ki is a Krylov subspace:

Ki (A; r) = span{r, Ar, A2r, . . . , Ai−1r}

Minimum residual algorithms work by minimizing the Euclidean norm ‖Ax − b‖2

over Ki. At each iteration, xi is the vector in Ki that gives the smallest residual.

The biconjugate gradient algorithm belongs to a more general class of Petrov-
Galerkin methods, where orthogonality is enforced in a different i-dimensional sub-
space (xi remains in Ki):

ri ⊥ {w, ATw, (AT)2w, . . . , (AT) i−1w}

Input Data Description

The ITSOLVER call has the following syntax and arguments:

call ITSOLVER (x, error, iter, method, A, b,
precond, tol, maxiter, start, history);

The conjugate gradient and minimum residual algorithms (method = ’CG’ or method
= ’MINRES’) require A to be symmetric; hence you must specify only the lower
triangular part of A, while the remaining algorithms require all nonzero coefficients
to be listed. The following table lists valid values for the precond parameter for each
class of algorithm.

Example: Conjugate Gradient Algorithm � 533

Table 18.1. Subroutine Definitions and Valid Preconditioners

Method Value Algorithm Preconditioners
“CG” conjugate gradient “NONE” “IC” “DIAG”
“MINRES” minimum residual “NONE” “IC” “DIAG”
“BICG” biconjugate gradient “NONE” “MILU”
“CGS” conjugate gradient squared “NONE”

x solution vector

error final solution error (optional)

iter resultant number of iterations (optional)

A three-column matrix of triplets, where the first column contains the
value, the next column contains the row indices, and the third column
contains the column indices of the nonzero matrix coefficients. The or-
der in which triplets are listed is insignificant. For symmetric matrices
specify only the lower triangular part, including the main diagonal (row
indices must be greater than or equal to the corresponding column in-
dices). Zero coefficients should not be included. No missing values or
duplicate entries are allowed.

b the right-hand-side vector

precond preconditioner, default value “NONE”

tol desired tolerance, default value 10−7

maxiter maximum number of iterations, default value 105

start initial guess

history the history of errors for each iteration

Example: Conjugate Gradient Algorithm

Consider the following small example: Ax = b, where

A =

3 1 0 0
1 4 1 3
0 1 10 0
0 3 0 3

and the vector of right-hand sides b = (1 1 1 1)T . Since the matrix is positive definite
and symmetric, you can apply the conjugate gradient algorithm to solve the system.
Remember that you must specify only the lower-triangular part of the matrix (so row
indices must be greater than or equal to the corresponding column indices.) The code

534 � Chapter 18. Sparse Matrix Algorithms

for this example is as follows:

/* value row col */
A = { 3 1 1,

1 2 1,
4 2 2,
1 3 2,
3 4 2,
10 3 3,
3 4 4 };

/* right-hand sides */
b = {1, 1, 1, 1};

/* desired solution tolerance (optional) */
tol = 1e-7;

/* maximum number of iterations (optional) */
maxit = 200;

/* allocate iteration progress (optional) */
hist = j(50, 1);

/* provide an initial guess (optional) */
start = {2, 3, 4, 5};

/* invoke conjugate gradient method */
call itsolver (

x, st, it, /* output parameters */
’cg’, A, b, ’ic’, /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist

);

print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

Notice that the example used an incomplete Cholesky preconditioner (which is rec-
ommended). Here is the program output:

X
0.5882353
-0.764706
0.1764706
1.0980392

ST
1.961E-16

IT
3

Example: Minimum Residual Algorithm � 535

The conjugate gradient method converged successfully within three iterations. You
can also print out the hist (iteration progress) array. Different starting points result
in different iterative histories.

Example: Minimum Residual Algorithm

For symmetric indefinite matrices it is best to use the minimum residual algorithm.
The following example is slightly modified from the previous example by negating
the first matrix element:

/* minimum residual algorithm */

/* value row col */
A = { -3 1 1,

1 2 1,
4 2 2,
1 3 2,
3 4 2,

10 3 3,
3 4 4 };

/* right-hand sides b = (1 1 1 1) */
b = {1, 1, 1, 1};

/* desired solution tolerance (optional) */
tol = 1e-7;

/* maximum number of iterations (optional) */
maxit = 200;

/* allocate iteration progress (optional) */
hist = j(50, 1);

/* initial guess (optional) */
start = {2, 3, 4, 5};

/* invoke minimum residual method */
call itsolver (
x, st, it, /* output parameters */
’minres’, a, b, ’ic’, /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist

);

print x; /* print solution */
print st; /* print solution tolerance */
print it; /* print resultant number of iterations */

X
-0.27027

536 � Chapter 18. Sparse Matrix Algorithms

0.1891892
0.0810811
0.1441441

ST
1.283E-15

IT
4

Example: Biconjugate Gradient Algorithm

The biconjugate gradient algorithm is meant for general sparse linear systems. Matrix
symmetry is no longer assumed, and a complete list of nonzero coefficients must be
provided. Consider the following matrix:

A =

 10 0 0.2
0.1 3 0
0 0 4

with b = (1 1 1)T .

The code for this example is as follows:

/* biconjugate gradient algorithm */

/* value row column */
A = { 10 1 1,

3 2 2,
4 3 3,
0.1 2 1,
0.2 1 3 };

/* vector of right-hand sides */
b = {1, 1, 1};

/* desired solution tolerance */
tol = 1e-9;

/* maximum number of iterations */
maxit = 10000;

/* allocate history/progress */
hist = j(50, 1);

/* initial guess (optional) */
start = {2, 3, 4};

/* call biconjugate gradient subroutine */
call itsolver (

x, st, it, /* output parameters */
’bicg’, a, b, ’milu’, /* input parameters */

Symbolic LDL and Cholesky Factorizations � 537

tol, /* optional control parameters */
maxit,
start,
hist);

/* Print results */
print x;
print st;
print it;

Here is the output:

X
0.095

0.3301667
0.25

ST
1.993E-16

IT
3

It is important to observe the resultant tolerance in order to know how effective the
solution is.

Symbolic LDL and Cholesky Factorizations
Symbolic LDL and Cholesky factorization algorithms are meant for symmetric posi-
tive definite systems; hence, again, only the lower-triangular part of the matrix must
be provided. The PROC IML function SOLVELIN provides an interface to both al-
gorithms; the minimum degree ordering heuristic is invoked automatically as follows:

SOLVELIN (x, status, A, b, method)

x solution vector

status status indicator 0 success, 1 matrix is not positive-definite, 2 out of
memory

A sparse matrix (lower-triangular part)

b vector of right-hand sides

method a character string, which specifies factorization type, possible values:
“LDL” for LDL factorization, and “CHOL” for Cholesky.

The code for this example is as follows:

538 � Chapter 18. Sparse Matrix Algorithms

/* value row col */
A = { 3 1 1,

1 2 1,
4 2 2,
1 3 2,
3 4 2,
10 3 3,
3 4 4 };

/* right-hand side */
b = {1, 1, 1, 1};

/* invoke LDL factorization */
call solvelin (x, status, a, b, "LDL");

print x; /* print solution */

Here is the program output:

X
0.5882353
-0.764706
0.1764706
1.0980392

References
Golub, G. H. and Van Loan, C. F. (1996), “Matrix Computations,” Third Edition,

Baltimore: Johns Hopkins University Press.

Greenbaum, A. (1997), “Iterative Methods for Solving Linear Systems,” Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Hestenes, M. R. and Stiefel, E. (1952), “Methods of Conjugate Gradients for Solving
Linear Systems,” J. Res. Natl. Bur. Standards, B49, 409–436.

Paige, C. C. and Saunders, M. A. (1975), “Solution of Sparse Indefinite Systems of
Linear Equations,” SIAM Journal on Numerical Analysis, 12:4, 617–629.

Chapter 19
Further Notes

Chapter Contents

MEMORY AND WORKSPACE . 541

ACCURACY . 543

ERROR DIAGNOSTICS . 543

EFFICIENCY . 544

MISSING VALUES . 544

PRINCIPLES OF OPERATION . 545

OPERATION-LEVEL EXECUTION . 546

540

Chapter 19
Further Notes
Memory and Workspace

You do not need to be concerned about the details of memory usage in IML, be-
cause memory allocation is done automatically. However, if you are interested, the
following sections explain how it works.

There are two logical areas of memory, symbol space and workspace. Symbol space
contains symbol table information and compiled statements. Workspace contains
matrix data values. Workspace itself is divided into one or more extents.

At the start of a session, the symbol space and the first extent of workspace are al-
located automatically. More workspace is allocated as the need to store data values
grows. The SYMSIZE= and WORKSIZE= options in the PROC IML statement give
you control over the size of symbol space and the size of each extent of workspace.
If you do not specify these options, PROC IML uses host-dependent defaults. For
example, you can begin an IML session and set the SYMSIZE= and WORKSIZE=
options with the statement

proc iml symsize=n1 worksize=n2;

where n1 and n2 are specified in kilobytes.

If the symbol space memory becomes exhausted, more memory is automatically ac-
quired. The symbol space is stable memory and is not compressible like workspace.
Symbol space is recycled whenever possible for reuse as the same type of object. For
example, temporary symbols can be deleted after they are used in evaluating an ex-
pression. The symbol space formerly used by these temporaries is added to a list of
free symbol-table nodes. When allocating temporary variables to evaluate another ex-
pression, IML looks for symbol-table nodes in this list first before consuming unused
symbol space.

Workspace is compressible memory. Workspace fills up as more matrices are defined
by operations. Holes in extents appear as you free matrices or as IML frees temporary
intermediate results. When an extent fills up, compression reclaims the holes that
have appeared in the extent. If compression does not reclaim enough memory for the
current allocation, IML allocates a new extent. This procedure results in the existence
of a list of extents, each of which contains a mixture of active memory and holes of
unused memory. There is always a current extent, the one in which the last allocation
was made.

For a new allocation, the search for free space begins in the current extent and pro-
ceeds around the extent list until finding enough memory or returning to the current
extent. If the search returns to the current extent, IML begins a second transversal

542 � Chapter 19. Further Notes

of the extent list, compressing each extent until either finding sufficient memory or
returning to the current extent. If the second search returns to the current extent, IML
opens a new extent and makes it the current one.

If the SAS System cannot provide enough memory to open a new extent with the full
extent size, IML repeatedly reduces its request by 2K. In this case, the successfully
opened extent is smaller than the standard size.

If a single allocation is larger than the standard extent size, IML requests an allocation
large enough to hold the matrix.

The WORKSIZE= and SYMSIZE= options offer tools for tuning memory usage. For
data-intensive applications involving a few large matrices, use a high WORKSIZE=
value and a low SYMSIZE= value. For symbol-intensive applications involving many
matrices, perhaps through the use of many IML modules, use a high SYMSIZE=
value.

You can use the SHOW SPACE command to display the current status of IML mem-
ory usage. This command also lists the total number of compressions done on all
extents.

Setting the DETAILS option in the RESET command prints messages in the output
file when IML compresses an extent, opens a new extent, allocates a large object,
or acquires more symbol space. These messages can be useful because these ac-
tions normally occur without the user’s knowledge. The information can be used to
tune WORKSIZE= and SYMSIZE= values for an application. However, the default
WORKSIZE= and SYMSIZE= values should be appropriate in most applications.

Do not specify a very large value in the WORKSIZE= and SYMSIZE= options unless
absolutely necessary. Many of the native functions and all of the DATA step functions
used are dynamically loaded at execution time. If you use a large amount of the
memory for symbol space and workspace, there might not be enough remaining to
load these functions, resulting in the error message

Unable to load module module-name.

Should you run into this problem, issue a SHOW SPACE command to examine cur-
rent usage. You might be able to adjust the SYMSIZE= or WORKSIZE= values.

The amount of memory your system can provide depends on the capacity of your
computer and on the products installed. The following techniques for efficient mem-
ory use are recommended when memory is at a premium:

• Free matrices as they are no longer needed by using the FREE command.

• Store matrices you will need later in external library storage by using the
STORE command, and then FREE their values. You can restore the matrices
later by using the LOAD command. See Chapter 14.

• Plan your work to use smaller matrices.

Error Diagnostics � 543

Accuracy
All numbers are stored and all arithmetic is done in double precision. The algorithms
used are generally very accurate numerically. However, when many operations are
performed or when the matrices are ill-conditioned, matrix operations should be used
in a numerically responsible way because numerical errors add up.

Error Diagnostics
When an error occurs, several lines of messages are printed. The error description, the
operation being performed, and the line and column of the source for that operation
are printed. The names of the operation’s arguments are also printed. Matrix names
beginning with a pound sign (#) or an asterisk (*) can appear; these are temporary
names assigned by the IML procedure.

If an error occurs while you are in immediate mode, the operation is not completed
and nothing is assigned to the result. If an error occurs while executing statements
inside a module, a PAUSE command is automatically issued. You can correct the
error and resume execution of module statements with a RESUME statement.

The most common errors are described in the following list:

• referencing a matrix that has not been set to a value—that is, referencing a
matrix that has no value associated with the matrix name

• making a subscripting error—that is, trying to refer to a row or column not
present in the matrix

• performing an operation with nonconformable matrix arguments—for exam-
ple, multiplying two matrices together that do not conform, or using a function
that requires a special scalar or vector argument

• referencing a matrix that is not square for operations that require a square ma-
trix (for example, INV, DET, or SOLVE)

• referencing a matrix that is not symmetric for operations that require a sym-
metric matrix (for example, GENEIG)

• referencing a matrix that is singular for operations that require a nonsingular
matrix (for example, INV and SOLVE)

• referencing a matrix that is not positive definite or positive semidefinite for
operations that require such matrices (for example, ROOT and SWEEP)

• not enough memory (see the section “Memory and Workspace” on page 541)
to perform the computations and produce the resulting matrices.

These errors result from the actual dimensions or values of matrices and are caught
only after a statement has begun to execute. Other errors, such as incorrect number
of arguments or unbalanced parentheses, are syntax errors and resolution errors and
are detected before the statement is executed.

544 � Chapter 19. Further Notes

Efficiency
The Interactive Matrix Language is an interpretive language executor that can be
characterized as follows:

• efficient and inexpensive to compile

• inefficient and expensive for the number of operations executed

• efficient and inexpensive within each operation

Therefore, you should try to substitute matrix operations for iterative loops. There is a
high overhead involved in executing each instruction; however, within the instruction
IML runs very efficiently.

Consider the following four methods of summing the elements of a matrix:

s=0; /* method 1 */
do i=1 to m;

do j=1 to n;
s=s+x[i,j];

end;
end;
s=j[1,m]*x*j[n,1]; /* method 2 */
s=x[+,+]; /* method 3 */
s=sum(x); /* method 4 */

Method 1 is the least efficient, method 2 is more efficient, method 3 is more efficient
yet, and method 4 is the most efficient. The greatest advantage of using IML is
reducing human programming labor.

Missing Values
An IML numeric element can have a special value called a missing value that indi-
cates that the value is unknown or unspecified. (A matrix with missing values should
not be confused with an empty or unvalued matrix—that is, a matrix with 0 rows
and 0 columns.) A numeric matrix can have any mixture of missing and nonmissing
values.

SAS/IML software supports missing values in a limited way. The operators in the
following list recognize missing values and propagate them. Most matrix operators
and functions do not support missing values. For example, matrix multiplication or
exponentiation involving a matrix with missing values is not meaningful. Also, the
inverse of a matrix with missing values has no meaning.

Missing values are coded in the bit pattern of very large negative numbers, as an
I.E.E.E. “NAN” code, or as a special string, depending on the host system.

In literals, a numeric missing value is specified as a single period. In data processing
operations, you can add or delete missing values. All operations that move values
around move missing values properly. The following arithmetic operators propagate
missing values.

Principles of Operation � 545

addition (+) subtraction (−)
multiplication (#) division (/)
maximum (<>) minimum (><)
modulo (MOD) exponentiation (##)

The comparison operators treat missing values as large negative numbers. The logical
operators treat missing values as zeros. The operators SUM, SSQ, MAX, and MIN
check for and exclude missing values.

The subscript reduction operators exclude missing values from calculations. If all of
a row or column that is being reduced is missing, then the operator returns the result
indicated in the following table.

Operator Result If All Missing
addition (+) 0
multiplication (#) 1
maximum (<>) large negative value
minimum (><) large positive value
sum squares (##) 0
index maximum (<:>) 1
index minimum (>:<) 1
mean (:) missing value

Also note that, unlike the SAS DATA step, IML does not distinguish between special
and generic missing values; it treats all missing values alike.

Principles of Operation
This section presents various technical details about the operation of SAS/IML soft-
ware. Statements in IML go through three phases:

• The parsing phase includes text acquisition, word scanning, recognition, syn-
tactical analysis, and enqueuing on the statement queue. This is performed
immediately as IML reads the statements.

• The resolution phase includes symbol resolution, label and transfer resolution,
and function and call resolution. Symbol resolution connects the symbolic
names in the statement with their descriptors in the symbol table. New sym-
bols can be added or old ones recognized. Label and transfer resolution con-
nects statements and references affecting the flow of control. This connects
LINK and GOTO statements with labels; it connects IF with THEN and ELSE
clauses; it connects DO with END. Function-call resolution identifies functions
and call routines and loads them if necessary. Each reference is checked with
respect to the number of arguments allowed. The resolution phase begins after

546 � Chapter 19. Further Notes

a module definition is finished or a DO group is ended. For all other statements
outside any module or DO group, resolution begins immediately after parsing.

• The execution phase occurs when the statements are interpreted and executed.
There are two levels of execution: statement and operation. Operation-level
execution involves the evaluation of expressions within a statement.

Operation-Level Execution
Operations are executed from a chain of operation elements created at parse time and
resolved later. For each operation, the interpreter performs the following steps:

1. Prints a record of the operation if the FLOW option is on.

2. Looks at the operands to make sure they have values. Only certain special
operators are allowed to tolerate operands that have not been set to a value.
The interpreter checks whether any argument has character values.

3. Inspects the operator and gives control to the appropriate execution routine. A
separate set of routines is invoked for character values.

4. Checks the operands to make sure they are valid for the operation. Then the
routine allocates the result matrix and any extra workspace needed for inter-
mediate calculations. Then the work is performed. Extra workspace is freed.
A return code notifies IML if the operation was successful. If unsuccessful, it
identifies the problem. Control is passed back to the interpreter.

5. Checks the return code. If the return code is nonzero, diagnostic routines are
called to explain the problem to the user.

6. Associates the results with the result arguments in the symbol table. By keeping
results out of the symbol table until this time, the operation does not destroy
the previous value of the symbol if an error has occurred.

7. Prints the result if RESET PRINT or RESET PRINTALL is specified. The
PRINTALL option prints intermediate results as well as end results.

8. Moves to the next operation.

Chapter 20
Language Reference

Chapter Contents

OVERVIEW . 555

OPERATORS . 564
Addition Operator: + . 564
Comparison Operators: < > = <= >= ˆ = 565
Concatenation Operator, Horizontal: || . 566
Concatenation Operator, Vertical: // . 567
Direct Product Operator: @ . 568
Division Operator: / . 569
Element Maximum Operator: <> . 570
Element Minimum Operator: >< . 570
Index Creation Operator: : . 571
Logical Operators: & | ˆ . 572
Multiplication Operator, Elementwise: # 573
Multiplication Operator, Matrix: * . 574
Power Operator, Elementwise: ## . 575
Power Operator, Matrix: ** . 575
Sign Reverse Operator: – . 576
Subscripts: [] . 576
Subtraction Operator: – . 578
Transpose Operator: ‘ . 578

STATEMENTS, FUNCTIONS, AND SUBROUTINES 579
ABORT Statement . 579
ABS Function . 579
ALL Function . 579
ANY Function . 580
APPCORT Call . 580
APPEND Statement . 582
APPLY Function . 584
ARMACOV Call . 585
ARMALIK Call . 587
ARMASIM Function . 588
BLOCK Function . 590
BRANKS Function . 591
BSPLINE Function . 591

548 � Chapter 20. Language Reference

BTRAN Function . 594
BYTE Function . 594
CALL Statement . 595
CHANGE Call . 596
CHAR Function . 596
CHOOSE Function . 597
CLOSE Statement . 598
CLOSEFILE Statement . 599
COMPORT Call . 599
CONCAT Function . 602
CONTENTS Function . 603
CONVEXIT Function . 604
COVLAG Function . 604
CREATE Statement . 605
CSHAPE Function . 607
CUSUM Function . 609
CVEXHULL Function . 610
DATASETS Function . 610
DELETE Call . 611
DELETE Statement . 612
DESIGN Function . 614
DESIGNF Function . 614
DET Function . 615
DIAG Function . 616
DISPLAY Statement . 616
DO Function . 617
DO and END Statements . 618
DO Statement, Iterative . 619
DO DATA Statement . 620
DO Statement with an UNTIL Clause . 621
DO Statement with a WHILE Clause . 621
DURATION Function . 622
ECHELON Function . 623
EDIT Statement . 624
EIGEN Call . 626
EIGVAL Function . 630
EIGVEC Function . 631
END Statement . 632
EXECUTE Call . 632
EXP Function . 632
FARMACOV Call . 633
FARMAFIT Call . 635
FARMALIK Call . 636
FARMASIM Call . 638
FDIF Call . 639
FFT Function . 640
FILE Statement . 642
FIND Statement . 643

� 549

FINISH Statement . 645
FORCE Statement . 645
FORWARD Function . 645
FREE Statement . 646
GAEND Call (Experimental) . 646
GAGETMEM Call (Experimental) . 647
GAGETVAL Call (Experimental) . 648
GAINIT Call (Experimental) . 648
GAREEVAL Call (Experimental) . 649
GAREGEN Call (Experimental) . 650
GASETCRO Call (Experimental) . 650
GASETMUT Call (Experimental) . 655
GASETOBJ Call (Experimental) . 657
GASETSEL Call (Experimental) . 658
GASETUP Function (Experimental) . 659
GBLKVP Call . 661
GBLKVPD Call . 662
GCLOSE Call . 662
GDELETE Call . 662
GDRAW Call . 663
GDRAWL Call . 664
GENEIG Call . 664
GEOMEAN Function . 666
GGRID Call . 666
GINCLUDE Call . 667
GINV Function . 668
GOPEN Call . 670
GOTO Statement . 670
GPIE Call . 671
GPIEXY Call . 672
GPOINT Call . 673
GPOLY Call . 674
GPORT Call . 676
GPORTPOP Call . 676
GPORTSTK Call . 676
GSCALE Call . 677
GSCRIPT Call . 678
GSET Call . 679
GSHOW Call . 680
GSORTH Call . 680
GSTART Call . 681
GSTOP Call . 682
GSTRLEN Call . 682
GTEXT and GVTEXT Calls . 683
GWINDOW Call . 684
GXAXIS and GYAXIS Calls . 685
HADAMARD Function . 686
HALF Function . 687

550 � Chapter 20. Language Reference

HANKEL Function . 688
HARMEAN Function . 689
HDIR Function . 690
HERMITE Function . 691
HOMOGEN Function . 691
I Function . 692
IF-THEN/ELSE Statement . 693
IFFT Function . 694
INDEX Statement . 696
INFILE Statement . 696
INPUT Statement . 697
INSERT Function . 699
INT Function . 700
INV Function . 701
INVUPDT Function . 702
IPF Call . 704
ITSOLVER Call . 717
J Function . 721
JROOT Function . 722
KALCVF Call . 723
KALCVS Call . 726
KALDFF Call . 729
KALDFS Call . 732
LAV Call . 735
LCP Call . 739
LENGTH Function . 742
LINK and RETURN Statements . 742
LIST Statement . 743
LMS Call . 746
LOAD Statement . 754
LOC Function . 754
LOG Function . 756
LP Call . 756
LTS Call . 758
LUPDT Call . 765
MAD Function . 766
MARG Call . 767
MATTRIB Statement . 770
MAX Function . 772
MAXQFORM Call . 772
MCD Call . 774
MIN Function . 780
MOD Function . 780
MODULEI Call . 781
MODULEIC Function . 782
MODULEIN Function . 782
MVE Call . 783
NAME Function . 789

� 551

NCOL Function . 790
NLENG Function . 790
Nonlinear Optimization and Related Subroutines 791
NLPCG Call . 793
NLPDD Call . 794
NLPFDD Call . 796
NLPFEA Call . 800
NLPHQN Call . 801
NLPLM Call . 804
NLPNMS Call . 805
NLPNRA Call . 809
NLPNRR Call . 812
NLPQN Call . 815
NLPQUA Call . 821
NLPTR Call . 824
NORMAL Function . 826
NROW Function . 826
NUM Function . 827
ODE Call . 827
ODSGRAPH Call . 833
OPSCAL Function . 834
ORPOL Function . 836
ORTVEC Call . 843
PAUSE Statement . 846
PGRAF Call . 847
POLYROOT Function . 848
PRINT Statement . 849
PRODUCT Function . 851
PURGE Statement . 851
PUSH Call . 852
PUT Statement . 853
PV Function . 854
QR Call . 856
QUAD Call . 861
QUEUE Call . 867
QUIT Statement . 868
RANDGEN Call . 868
RANDSEED Call . 875
RANK Function . 876
RANKTIE Function . 877
RATES Function . 878
RATIO Function . 879
RDODT and RUPDT Calls . 881
READ Statement . 884
REMOVE Function . 888
REMOVE Statement . 888
RENAME Call . 889
REPEAT Function . 890

552 � Chapter 20. Language Reference

REPLACE Statement . 890
RESET Statement . 893
RESUME Statement . 895
RETURN Statement . 895
ROOT Function . 895
ROWCAT Function . 897
ROWCATC Function . 898
RUN Statement . 898
RUPDT Call . 899
RZLIND Call . 899
SAVE Statement . 907
SEQ, SEQSCALE, and SEQSHIFT Calls 908
SEQSCALE Call . 920
SEQSHIFT Call . 921
SETDIF Function . 921
SETIN Statement . 921
SETOUT Statement . 922
SHAPE Function . 923
SHOW Statement . 924
SOLVE Function . 925
SOLVELIN Call . 926
SORT Call . 927
SORT Statement . 928
SORTNDX Call . 929
SOUND Call . 930
SPLINE and SPLINEC Calls . 931
SPLINEV Function . 938
SPOT Function . 939
SQRSYM Function . 939
SQRT Function . 940
SSQ Function . 940
START and FINISH Statements . 940
STOP Statement . 941
STORAGE Function . 942
STORE Statement . 942
SUBSTR Function . 943
SUM Function . 943
SUMMARY Statement . 944
SVD Call . 947
SWEEP Function . 949
SYMSQR Function . 951
T Function . 952
TEIGEN Call . 952
TEIGVAL Function . 952
TEIGVEC Function . 952
TOEPLITZ Function . 952
TPSPLINE Call . 954
TPSPLNEV Call . 957

� 553

TRACE Function . 960
TRISOLV Function . 960
TSBAYSEA Call . 961
TSDECOMP Call . 964
TSMLOCAR Call . 967
TSMLOMAR Call . 968
TSMULMAR Call . 969
TSPEARS Call . 970
TSPRED Call . 972
TSROOT Call . 972
TSTVCAR Call . 973
TSUNIMAR Call . 974
TYPE Function . 975
UNIFORM Function . 976
UNION Function . 976
UNIQUE Function . 977
UNIQUEBY Function . 977
USE Statement . 978
VALSET Call . 980
VALUE Function . 981
VARMACOV Call . 981
VARMALIK Call . 983
VARMASIM Call . 984
VECDIAG Function . 985
VNORMAL Call . 986
VTSROOT Call . 987
WAVFT Call . 988
WAVGET Call . 991
WAVIFT Call . 993
WAVPRINT Call . 995
WAVTHRSH Call . 996
WINDOW Statement . 997
XMULT Function . 999
XSECT Function . 999
YIELD Function . 1000

BASE SAS FUNCTIONS ACCESSIBLE FROM SAS/IML 1001
Bitwise Logical Operation Functions . 1002
Character and Formatting Functions . 1002
Character String Matching Functions and Subroutines 1005
Date and Time Functions . 1006
Descriptive Statistics Functions and Subroutines 1006
Double-Byte Character String Functions 1007
External Files Functions . 1007
File I/O Functions . 1008
Financial Functions . 1009
Macro Functions and Subroutines . 1010
Mathematical Functions and Subroutines 1010

Probability Functions . 1011
Quantile Functions . 1011
Random Number Functions and Subroutines 1012
State and Zip Code Functions . 1012
Trigonometric and Hyperbolic Functions 1012
Truncation Functions . 1013
Web Tools . 1013

REFERENCES . 1013

Chapter 20
Language Reference
Overview

This chapter describes all operators, statements, functions, and subroutines that can
be used in SAS/IML software. All necessary details, such as arguments and operands,
are included.

This chapter is divided into two sections. The first section contains operator descrip-
tions. They are in alphabetic order according to the name of the operator. The second
section contains descriptions of statements, functions, and subroutines also arranged
alphabetically by name.

The following tables list all statements, functions, and subroutines available in
SAS/IML software grouped by functionality.

Scalar Functions

ABS Function takes the absolute value
EXP Function calculates the exponential
INT Function truncates a value
LOG Function takes the natural logarithm
MOD Function computes the modulo (remainder)
NORMAL Function generates a pseudo-random normal deviate
SQRT Function calculates the square root
UNIFORM Function generates pseudo-random uniform deviates

Reduction Functions

MAX Function finds the maximum value of a matrix
MIN Function finds the smallest element of a matrix
SSQ Function calculates the sum of squares of all elements
SUM Function sums all elements

Matrix Inquiry Functions

ALL Function checks for all nonzero elements
ANY Function checks for any nonzero elements
CHOOSE Function conditionally chooses and changes elements
LOC Function finds nonzero elements of a matrix
NCOL Function finds the number of columns of a matrix
NLENG Function finds the size of an element
NROW Function finds the number of rows of a matrix
TYPE Function determines the type of a matrix

556 � Chapter 20. Language Reference

Matrix Sorting and BY-Group Processing Calls

SORT Call sorts a matrix by specified columns
SORTNDX Call creates a sorted index for a matrix
UNIQUEBY Function finds locations of unique BY groups in a sorted or indexed

matrix

Matrix Reshaping Functions

BLOCK Function forms block-diagonal matrices
BTRAN Function computes block transpose
DIAG Function creates a diagonal matrix
DO Function produces an arithmetic series
I Function creates an identity matrix
INSERT Function inserts one matrix inside another
J Function creates a matrix of identical values
REMOVE Function discards elements from a matrix
REPEAT Function creates a new matrix of repeated values
SHAPE Function reshapes and repeats values
SQRSYM Function converts a symmetric matrix to a square matrix
SYMSQR Function converts a square matrix to a symmetric matrix
T Function transposes a matrix
VECDIAG Function creates a vector from a diagonal

Character Functionality

BYTE Function translates numbers to ordinal characters
CHANGE Call replaces text
CHAR Function produces a character representation of a matrix
CONCAT Function Concatenates elementwise strings
CSHAPE Function reshapes and repeats character values
LENGTH Call finds the lengths of character matrix elements
NAME Function lists the names of arguments
NUM Function produces a numeric representation of a character matrix
ROWCAT Function concatenates rows without using blank compression
ROWCATC Function concatenates rows by using blank compression
SUBSTR Function takes substrings of matrix elements

Random Number Generation Functionality

RANDGEN Call generates random numbers from specified distributions
RANDSEED Call initializes seed for subsequent RANGEN calls

Statistical Functionality

BRANKS Function computes bivariate ranks
CUSUM Function calculates cumulative sums

Overview � 557

DESIGN Function creates a design matrix
DESIGNF Function creates a full-rank design matrix
GEOMEAN Function calculates geometric means
HADAMARD Function creates a Hadamard matrix
HARMEAN Function calculates harmonic means
IPF Call performs an iterative proportional fit of a contingency ta-

ble
LAV Call performs linear least absolute value regression by solving

the L1 norm minimization problem
LMS Call performs robust regression
LTS Call performs robust regression
MAD Function finds the univariate (scaled) median absolute deviation
MARG Call evaluates marginal totals in a multiway contingency table
MAXQFORM Call computes the subsets of a matrix system that maximize the

quadratic form
MCD Call finds the minimum covariance determinant estimator
MVE Call finds the minimum volume ellipsoid estimator
OPSCAL Function rescales qualitative data to be a least squares fit to qualita-

tive data
RANK Function ranks elements of a matrix
RANKTIE Function ranks matrix elements by using tie-averaging
SEQSCALE Call perform discrete sequential tests
SEQSHIFT Call perform discrete sequential tests
SEQTESTS Calls perform discrete sequential tests
SWEEP Function sweeps a matrix

Time Series Functionality

ARMACOV Call computes an autocovariance sequence for an ARMA
model

ARMALIK Call computes the log likelihood and residuals for an ARMA
model

ARMASIM Function simulates an ARMA series
CONVEXIT Function calculates convexity of a noncontingent cash flow
COVLAG Function computes autocovariance estimates for a vector time series
DURATION Function calculates modified duration of a noncontingent cash flow
FARMACOV Call computes the autocovariance function for an

ARFIMA(p, d, q) process
FARMAFIT Call estimate the parameters of an ARFIMA(p, d, q) model
FARMALIK Call computes the log-likelihood function of an

ARFIMA(p, d, q) model
FARMASIM Call generates an ARFIMA(p, d, q) process
FDIF Call obtain a fractionally differenced process
FORWARD Function calculates forward rates
KALCVF Call computes the one-step prediction zt+1|t and the filtered

estimate zt|t, as well as their covariance matrices. The call
uses forward recursions, and you can also use it to obtain
k-step estimates.

558 � Chapter 20. Language Reference

KALCVS Call uses backward recursions to compute the smoothed esti-
mate zt|T and its covariance matrix, Pt|T , where T is the
number of observations in the complete data set.

KALDFF Call computes the one-step forecast of state vectors in an SSM
by using the diffuse Kalman filter. The call estimates the
conditional expectation of zt, and it also estimates the ini-
tial random vector, δ, and its covariance matrix.

KALDFS Call computes the smoothed state vector and its mean square
error matrix from the one-step forecast and mean square
error matrix computed by KALDFF.

PV Function calculates present value
RATES Function converts interest rates from one base to another
SPOT Function calculates spot rates
TSBAYSEA Call performs Bayesian seasonal adjustment modeling
TSDECOMP Call analyzes nonstationary time series by using smoothness

priors modeling
TSMLOCAR Call analyzes nonstationary or locally stationary time series by

using the minimum AIC procedure
TSMLOMAR Call analyzes nonstationary or locally stationary multivariate

time series by using the minimum AIC procedure
TSMULMAR Call estimates VAR processes by using the minimum AIC pro-

cedure
TSPEARS Call analyzes periodic AR models with the minimum AIC pro-

cedure
TSPRED Call provides predicted values of univariate and multivariate

ARMA processes when the ARMA coefficients are input
TSROOT Call calculates AR and MA coefficients from the characteristic

roots of the model or calculates the characteristic roots of
the model from the AR and MA coefficients

TSTVCAR Call analyzes time series that are nonstationary in the covari-
ance function

TSUNIMAR Call determines the order of an AR process with the minimum
AIC procedure and estimates the AR coefficients

VARMACOV Call computes the theoretical cross-covariance matrices for a
stationary VARMA(p, q) model

VARMALIK Call computes the log-likelihood function for a VARMA(p, q)
model

VARMASIM Call generates VARMA(p,q) time series
VNORMAL Call generates multivariate normal random series
VTSROOT Call computes the characteristic roots for a VARMA(p, q)

model
YIELD Function calculates yield-to-maturity of a cash-flow stream

Numerical Analysis Functionality

BSPLINE Function computes B-spline basis
FFT Function performs the finite Fourier transform
IFFT Function computes the inverse finite Fourier transform

Overview � 559

JROOT Function computes the first nonzero roots of a Bessel function of
the first kind and the derivative of the Bessel function at
each root

ODE Call performs numerical integration of vector differential equa-
tions of the form

ORPOL Function generates orthogonal polynomials on a discrete set of
points

ORTVEC Call provides columnwise orthogonalization by the Gram-
Schmidt process and stepwise QR decomposition by the
Gram-Schmidt process

POLYROOT Function finds zeros of a real polynomial
PRODUCT Function multiplies matrices of polynomials
QUAD Call performs numerical integration of scalar functions in one

dimension over infinite, connected semi-infinite, and con-
nected finite intervals

RATIO Function divides matrix polynomials
SPLINE Call fits a cubic spline to points
SPLINEC Call fits a cubic spline to points
SPLINEV Function evaluates a cubic spline at new data points
TPSPLINE Call computes thin-plate smoothing splines
TPSPLNEV Call evaluates the thin-plate smoothing spline at new data

points

Linear Algebra Functionality

APPCORT CALL completes orthogonal decomposition
COMPORT Call completes orthogonal decomposition by Householder

transformations
CVEXHULL Function finds a convex hull of a set of planar points
DET Function computes the determinant of a square matrix
ECHELON Function reduces a matrix to row-echelon normal form
EIGEN Call computes eigenvalues and eigenvectors
EIGVAL Function computes eigenvalues
EIGVEC Function computes eigenvectors
GENEIG Call computes eigenvalues and eigenvectors of a generalized

eigenproblem
GINV Function computes the generalized inverse
GSORTH Call computes the Gram-Schmidt orthonormalization
HALF Function computes Cholesky decomposition
HANKEL Function generates a Hankel matrix
HDIR Function performs a horizontal direct product
HERMITE Function reduces a matrix to Hermite normal form
HOMOGEN Function solves homogeneous linear systems
INV Function produces the inverse
INVUPDT Function updates a matrix inverse
ITSOLVER Call solves a sparse general linear system by iteration

560 � Chapter 20. Language Reference

LUPDT Call provides updating and downdating for rank deficient linear
least squares solutions, complete orthogonal factorization,
and Moore-Penrose inverses

QR Call produces the QR decomposition of a matrix by
Householder transformations

RDODT Call downdates and updates QR and Cholesky decompositions
ROOT Function performs the Cholesky decomposition of a matrix
RUPDT Call updates QR and Cholesky decompositions
RZLIND Call updates QR and Cholesky decompositions
SOLVE Function solves a system of linear equations
SOLVELIN Call solves a sparse symmetric system of linear equations by

direct decomposition
SVD Call computes the singular value decomposition
TEIGEN Call computes the eigenvalues and eigenvectors of square ma-

trices
TEIGVAL Function computes eigenvalues of square matrices
TEIGVEC Function computes eigenvectors of square matrices
TOEPLITZ Function generates a Toeplitz or block-Toeplitz matrix
TRACE Function sums diagonal elements
TRISOLV Function solves linear systems with triangular matrices
XMULT Function performs accurate matrix multiplication

Optimization Subroutines

LCP Call solves the linear complementarity problem
LP Call solves the linear programming problem
NLPCG Call performs nonlinear optimization by conjugate gradient

method
NLPDD Call performs nonlinear optimization by double-dogleg

method
NLPFDD Call approximates derivatives by finite-differences method
NLPFEA Call computes feasible points subject to constraints
NLPHQN Call calculates hybrid quasi-Newton least squares
NLPLM Call calculates Levenberg-Marquardt least squares
NLPNMS Call performs nonlinear optimization by Nelder-Mead simplex

method
NLPNRA Call performs nonlinear optimization by Newton-Raphson

method
NLPNRR Call performs nonlinear optimization by Newton-Raphson

ridge method
NLPQN Call performs nonlinear optimization by quasi-Newton method
NLPQUA Call performs nonlinear optimization by quadratic method
NLPTR Call performs nonlinear optimization by trust-region method
Nonlinear Optimization
and Related Subroutines

lists of all nonlinear optimization and related subroutines
in IML

Overview � 561

Set Functions

SETDIF Function compares elements of two matrices
UNION Function performs unions of sets
UNIQUE Function sorts and removes duplicates
XSECT Function intersects sets

Control Statements

ABORT Statement ends IML
APPLY Function applies an IML module
CALL Statement calls a subroutine or function
DO and END
Statements

groups statements as a unit

DO, Iterative Statement iteratively executes a DO group
DO and UNTIL
Statement and Clause

conditionally executes statements iteratively

DO and WHILE
Statement and Clause

conditionally executes statements iteratively

END Statement ends a DO loop or DO statement
EXECUTE Call executes SAS statements immediately
FINISH Statement denotes the end of a module
FORCE Statement (see the description of the SAVE statement)
FREE Statement frees matrix storage space
GOTO Statement jumps to a new statement
IF-THEN/ELSE
Statement

conditionally executes statement

LINK Statement jumps to another statement
MATTRIB Statement associates printing attributes with matrices
PAUSE Statement interrupts module execution
PRINT Statement prints matrix values
PURGE Statement removes observations marked for deletion and renumbers

records
PUSH Call pushes SAS statements into the command input stream
QUEUE Call queues SAS statements into the command input stream
QUIT Statement exits from IML
REMOVE Statement removes matrices from storage
RESET Statement sets processing options
RESUME Statement resumes execution
RETURN Statement returns to caller
RUN Statement executes statements in a module
SHOW Statement prints system information
SOUND Call produces a tone
START/FINISH
Statements

define a module

STOP Statement stops execution of statements
STORAGE Function lists names of matrices and modules in storage
STORE Statement stores matrices and modules in library storage

562 � Chapter 20. Language Reference

VALSET Call performs indirect assignment
VALUE Function assigns values by indirect reference

Datas Set and File Functionality

APPEND Statement adds observations to SAS data set
CLOSE Statement closes a SAS data set
CLOSEFILE Statement closes a file
CONTENTS Function returns the variables in a SAS data set
CREATE Statement creates a new SAS data set
DATASETS Function obtains the names of SAS data sets
DELETE Call deletes a SAS data set
DELETE Statement marks observations for deletion
DO DATA Statement repeats a loop until an end of file occurs
EDIT Statement opens a SAS data set for editing
FILE Statement opens or points to an external file
FIND Statement finds observations
INDEX Statement indexes a variable in a SAS data set
INFILE Statement opens a file for input
INPUT Statement inputs data
LIST Statement displays observations of a data set
LOAD Statement loads modules and matrices from library storage
PUT Statement writes data to an external file
READ Statement reads observations from a data set
RENAME Call renames a SAS data set
REPLACE Statement replaces values in observations and updates observations
SAVE Statement saves data
SETIN Statement makes a data set current for input
SETOUT Statement makes a data set current for output
SORT Statement sorts a SAS data set
SUMMARY Statement computes summary statistics for SAS data sets
USE Statement opens a SAS data set for reading

Graphics and Window Functions

DISPLAY Statement displays fields in a display window
GBLKVP Call defines a blanking viewport
GBLKVPD Call deletes the blanking viewport
GCLOSE Call closes the graphics segment
GDELETE Call deletes a graphics segment
GDRAW Call draws a polyline
GDRAWL Call draws individual lines
GGRID Call draws a grid
GINCLUDE Call includes a graphics segment
GOPEN Call opens a graphics segment
GPIE Call draws pie slices
GPIEXY Call converts from polar to world coordinates

Overview � 563

GPOINT Call plots points
GPOLY Call draws and fills a polygon
GPORT Call defines a viewport
GPORTPOP Call pops the viewport
GPORTSTK Call stacks the viewport
GSCALE Call calculates round numbers for labeling axes
GSCRIPT Call writes multiple text strings with special fonts
GSET Call sets attributes for a graphics segment
GSHOW Call shows a graph
GSTART Call initializes the graphics system
GSTOP Call deactivates the graphics system
GSTRLEN Call finds the string length
GTEXT and GVTEXT
Calls

places text horizontally or vertically on a graph

GWINDOW Call defines the data window
GXAXIS and GYAXIS
Calls

draws a horizontal or vertical axis

PGRAF Call produces scatter plots
ODSGRAPH Call renders a graph by using ODS Statistical Graphics
WINDOW Statement opens a display window

Wavelet Analysis Calls

WAVFT Call computes a specified wavelet transform of one dimen-
sional data

WAVGET Call returns requested information encapsulated in a wavelet
transform

WAVIFT Call inverts a wavelet transform after applying specified thresh-
olding to the detail coefficients

WAVPRINT Call displays requested information encapsulated in a wavelet
transform

WAVTHRSH Call applies specified thresholding to the detail coefficients of
a wavelet transform

Genetic Algorithm Functionality

GAEND Call terminates genetic algorithm and frees memory resources
GAGETMEM Call gets requested members and objective values from current

solution population
GAGETVAL Call gets objective function values for requested member of

current solution population
GAINIT Call initializes the initial solution population
GAREEVAL Call reevaluates the objective function for all solutions in cur-

rent population
GASETCRO Call specifies a current crossover operator
GASETMUT Call specifies a current mutation operator
GASETOBJ Call specifies a current objective function

564 � Chapter 20. Language Reference

GASETSEL Call specifies a current selection parameters
GASETUP Function sets up a specific genetic algorithm optimization problem

Calling External Modules

MODULEI Call calls an external routine without any return code
MODULEIC Call calls an external routine that returns a character
MODULEIN Call calls an external routine that returns a numeric value

Operators
All operators available in SAS/IML software are described in this section.

Addition Operator: +

adds corresponding matrix elements

matrix1 + matrix2

matrix + scalar

matrix + vector

The addition infix operator (+) produces a new matrix containing elements that are
the sums of the corresponding elements of matrix1 and matrix2. The element in the
first row, first column of the first matrix is added to the element in the first row, first
column of the second matrix, with the sum becoming the element in the first row, first
column of the new matrix, and so on.

For example, the following statements produce the matrix C, as shown:

a={1 2,
3 4};

b={1 1,
1 1};

c=a+b;

C 2 rows 2 cols (numeric)

2 3
4 5

In addition to adding conformable matrices, you can also use the addition operator to
add a matrix and a scalar or row or column vector. When you use the matrix + scalar
(or scalar + matrix) form, the scalar value is added to each element of the matrix to
produce a new matrix. When you use the matrix + vector (or vector + matrix) form,
the vector is added to each row or column of the matrix to produce a new matrix.

For example, you can obtain the same result as you did in the previous example with
either of the following statements:

Comparison Operators: < > = <= >= ˆ = � 565

c=a+1;

c=a+{1 1};

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

You can also use the addition operator on character operands. In this case, the opera-
tor does elementwise concatenation exactly as the CONCAT function does.

Comparison Operators: < > = <= >= ˆ =

compare matrix elements

matrix1<matrix2

matrix1<=matrix2

matrix1>matrix2

matrix1>=matrix2

matrix1=matrix2

matrix1ˆ =matrix2

The comparison operators compare two matrices element by element and produce
a new matrix that contains only zeros and ones. If an element comparison is true,
the corresponding element of the new matrix is 1. If the comparison is not true, the
corresponding element is 0. You cannot use the English equivalents GT and LT for
the greater than and less than signs as you can in Base SAS software. Scalar or row or
column vector values can be used instead of matrices in any of the preceding forms.
If either operand is a scalar, the operation is performed for that scalar with each
element of the matrix. If either operand is a row or column vector, then the operation
is performed using that vector on each of the rows or columns of the matrix.

For example, let

a={1 7 3,
6 2 4};

b={0 8 2,
4 1 3};

Evaluation of the following expression yields the matrix C, as shown:

c=a>b;

C 2 rows 3 cols (numeric)

1 0 1
1 1 1

566 � Chapter 20. Language Reference

In addition to comparing conformable matrices, you can apply the comparison opera-
tors to a matrix and a scalar. If either argument is a scalar, the comparison is between
each element of the matrix and the scalar.

For example, the following expression produces the matrix D, as shown:

d=(a>=2);

D 2 rows 3 cols (numeric)

0 1 1
1 1 1

If the element lengths of two character operands are different, the shorter elements
are padded on the right with blanks for the comparison.

If a numeric missing value occurs in an operand, IML treats it as lower than any valid
number for the comparison.

When you are making conditional comparisons, all values of the result must be
nonzero for the condition to be evaluated as true.

Consider the following statement:

if x>=y then goto loop1;

The GOTO statement is executed only if every element of x is greater than or equal
to the corresponding element in y. See also the descriptions of the ALL and ANY
functions.

Concatenation Operator, Horizontal: ||

concatenates matrices horizontally

matrix1||matrix2

The horizontal concatenation operator (||) produces a new matrix by horizontally join-
ing matrix1 and matrix2. Matrix1 and matrix2 must have the same number of rows,
which is also the number of rows in the new matrix. The number of columns in
the new matrix is the number of columns in matrix1 plus the number of columns in
matrix2.

For example, the following statements produce the matrix C, as shown:

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a||b;

Concatenation Operator, Vertical: // � 567

C 2 rows 6 cols (numeric)

1 1 1 0 0 0
7 7 7 8 8 8

Now, suppose

b={A B C,
D E F};

c={"GH" "IJ",
"KL" "MN"};

In this case, the following statement produces the matrix A, as shown:

a=b||c;

A 2 rows 5 cols (character, size 2)

A B C GH IJ
D E F KL MN

For character operands, the element size in the result matrix is the larger of the two
operands. In the preceding example, A has element size 2.

You can use the horizontal concatenation operator when one of the arguments has no
value. For example, if A has not been defined and B is a matrix, A||B results in a
new matrix equal to B.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Concatenation Operator, Vertical: //

concatenates matrices vertically

matrix1//matrix2

The vertical concatenation operator (//) produces a new matrix by vertically joining
matrix1 and matrix2. Matrix1 and matrix2 must have the same number of columns,
which is also the number of columns in the new matrix. For example, if A has three
rows and two columns and B has four rows and two columns, then A//B produces
a matrix with seven rows and two columns. Rows 1 through 3 of the new matrix
correspond to A; rows 4 through 7 correspond to B.

For example, the following statements produce the matrix C, as shown:

a={1 1 1,
7 7 7};

b={0 0 0,
8 8 8};

c=a//b;

568 � Chapter 20. Language Reference

C 4 rows 3 cols (numeric)

1 1 1
7 7 7
0 0 0
8 8 8

Now, let

b={"AB" "CD",
"EF" "GH"};

c={"I" "J",
"K" "L",
"M" "N"};

In this case, the following statement produces the matrix A, as shown:

a=b//c;

A 5 rows 2 cols (character, size 2)

AB CD
EF GH
I J
K L
M N

For character matrices, the element size of the result matrix is the larger of the element
sizes of the two operands.

You can use the vertical concatenation operator when one of the arguments has not
been assigned a value. For example, if A has not been defined and B is a matrix,
A//B results in a new matrix equal to B.

Quotation marks (") are needed around matrix elements only if you want to embed
blanks or maintain uppercase and lowercase distinctions.

Direct Product Operator: @

takes the direct product of two matrices

matrix1@matrix2

The direct product operator (@) produces a new matrix that is the direct product (also
called the Kronecker product) of matrix1 and matrix2, usually denoted by A ⊗ B.
The number of rows in the new matrix equals the product of the number of rows in
matrix1 and the number of rows in matrix2; the number of columns in the new matrix
equals the product of the number of columns in matrix1 and the number of columns
in matrix2.

For example, the following statements produce the matrix C, as shown:

Division Operator: / � 569

a={1 2,
3 4};

b={0 2};
c=a@b;

C 2 rows 4 cols (numeric)

0 2 0 4
0 6 0 8

The following statement produces the matrix D, as shown:

d=b@a;

D 2 rows 4 cols (numeric)

0 0 2 4
0 0 6 8

Division Operator: /

performs elementwise division

matrix1/matrix2

matrix/scalar

matrix/vector

The division operator (/) divides each element of matrix1 by the corresponding ele-
ment of matrix2, producing a matrix of quotients.

In addition to dividing elements in conformable matrices, you can also use the di-
vision operator to divide a matrix by a scalar, or rows or columns of a matrix by a
vector. If either operand is a scalar, the operation does the division for each element
and the scalar value. If either operand is a row or column vector, then the operation
is performed using that vector on each of the rows or columns of the matrix.

When a missing value occurs in an operand, the IML procedure assigns a missing
value for the corresponding element in the result.

If a divisor is zero, the procedure prints a warning and assigns a missing value for
the corresponding element in the result. An example of a valid statement using this
operator follows:

c=a/b;

570 � Chapter 20. Language Reference

Element Maximum Operator: <>

selects the larger of two elements

matrix1<>matrix2

matrix<>scalar

matrix<>vector

The element maximum operator (<>) compares each element of matrix1 to the corre-
sponding element of matrix2. The larger of the two values becomes the corresponding
element of the new matrix that is produced.

When either argument is a scalar, the comparison is between each matrix element and
the scalar. If either operand is a row or column vector, then the operation is performed
using that vector on each of the rows or columns of the matrix.

The element maximum operator can take as operands two character matrices or a
character matrix and a character string. If the element lengths of the operands are
different, the shorter elements are padded on the right with blanks. The element
length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
number.

For example, the following statements produce the matrix C, as shown:

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a<>b;

C 2 rows 3 cols (numeric)

2 9 6
20 11 40

Element Minimum Operator: ><

selects the smaller of two elements

matrix1><matrix2

matrix1><scalar

matrix1><vector

The element minimum operator (><) compares each element of matrix1 with the cor-
responding element of matrix2. The smaller of the values becomes the corresponding
element of the new matrix that is produced.

When either argument is a scalar, the comparison is between the scalar and each
element of the matrix. If either operand is a row or column vector, then the operation
is performed using that vector on each of the rows or columns of the matrix.

Index Creation Operator: : � 571

The element minimum operator can take as operands two character matrices or a
character matrix and a character string. If the element lengths of the operands are
different, the shorter elements are padded on the right with blanks. The element
length of the result is the longer of the two operand element lengths.

When a missing value occurs in an operand, IML treats it as smaller than any valid
numeric value.

For example, the following statements produce the matrix C, as shown:

a={2 4 6, 10 11 12};
b={1 9 2, 20 10 40};
c=a><b;

C 2 rows 3 cols (numeric)

1 4 2
10 10 12

Index Creation Operator: :

creates an index vector

value1:value2

The index creation operator (:) creates a row vector with a first element that is value1.
The second element is value1+1, and so on, as long as the elements are less than or
equal to value2. For example, the following statement produces the vector I, as
shown:

I=7:10;

I 1 row 4 cols (numeric)

7 8 9 10

If value1 is greater than value2, a reverse-order index is created. For example, the
following statement produces the vector R, as shown:

r=10:6;

R 1 row 5 cols (numeric)

10 9 8 7 6

The index creation operator also works on character arguments with a numeric suffix.
For example, consider the following statement:

varlist=’var1’:’var5’;

572 � Chapter 20. Language Reference

This statement produces the following result:

VARLIST 1 row 5 cols (character, size 4)

var1 var2 var3 var4 var5

Use the DO function if you want an increment other than 1 or −1.

Logical Operators: & | ˆ

perform elementwise logical comparisons

matrix1&matrix2

matrix&scalar

matrix&vector

matrix1|matrix2

matrix|scalar

matrix|vector

ˆ matrix

The AND logical operator (&) compares two matrices, element by element, to pro-
duce a new matrix. An element of the new matrix is 1 if the corresponding elements
of matrix1 and matrix2 are both nonzero; otherwise, it is a zero.

An element of the new matrix produced by the OR operator (|) is 1 if either of the
corresponding elements of matrix1 and matrix2 is nonzero. If both are zero, the
element is zero.

If either operand is a scalar, the operator does the logical operation for each element
and the scalar value. If either operand is a row or column vector, then the operation
is performed using that vector on each of the rows or columns of the matrix.

The NOT prefix operator (ˆ) examines each element of a matrix and produces a new
matrix containing elements that are ones and zeros. If an element of matrix equals 0,
the corresponding element in the new matrix is 1. If an element of matrix is nonzero,
the corresponding element in the new matrix is 0.

The following statements illustrate the use of these logical operators:

z=x&r;
if a|b then print c;
if ^m then link x1;

Multiplication Operator, Elementwise: # � 573

Multiplication Operator, Elementwise: #

performs elementwise multiplication

matrix1#matrix2

matrix#scalar

matrix#vector

The elementwise multiplication operator (#) produces a new matrix with elements
that are the products of the corresponding elements of matrix1 and matrix2.

For example, the following statements produce the matrix C, as shown:

a={1 2,
3 4};

b={4 8,
0 5};

c=a#b;

C 2 rows 2 cols (numeric)

4 16
0 20

In addition to multiplying conformable matrices, you can use the elementwise multi-
plication operator to multiply a matrix and a scalar. When either argument is a scalar,
the scalar value is multiplied by each element in matrix to form the new matrix.

You can also multiply vectors by matrices. If either operand is a row or column vector,
then the operation is performed using that vector on each of the rows or columns of
the matrix.

You can multiply matrices as long as they either conform in each dimension or one
operand has dimension value 1. For example, a 2 × 3 matrix can be multiplied on
either side by a 2×3, 1×3, 2×1, or 1×1 matrix. The following statements multiply
the 2× 2 matrix A by the column vector D:

d={10,100};
ad=a#d;

These statements produce the following matrix:

AD 2 rows 2 cols (numeric)

10 20
300 400

Now, consider the following statements:

574 � Chapter 20. Language Reference

d={10 100};
ad=a#d;

These statements produce the following matrix:

AD 2 rows 2 cols (numeric)

10 200
30 400

The result of elementwise multiplication is also known as the Schur or Hadamard
product. Element multiplication (using the # operator) should not be confused with
matrix multiplication (using the * operator).

When a missing value occurs in an operand, IML assigns a missing value in the result.

Multiplication Operator, Matrix: *

performs matrix multiplication

matrix1*matrix2

The matrix multiplication infix operator (*) produces a new matrix by performing
matrix multiplication. The first matrix must have the same number of columns as the
second matrix has rows. The new matrix has the same number of rows as the first ma-
trix and the same number of columns as the second matrix. The matrix multiplication
operator does not consistently propagate missing values.

For example, the following statements produce the matrix C, as shown:

a={1 2,
3 4};

b={1 2};
c=b*a;

C 1 row 2 cols (numeric)

7 10

The following statement produces the matrix D, as shown:

d=a*b‘;

D 2 rows 1 col (numeric)

5
11

Power Operator, Matrix: ** � 575

Power Operator, Elementwise: ##

raises each element to a power

matrix1##matrix2

matrix##scalar

matrix##vector

The elementwise power operator (##) creates a new matrix with elements that are the
elements of matrix1 raised to the power of the corresponding element of matrix2. If
any value in matrix1 is negative, the corresponding element in matrix2 must be an
integer.

In addition to handling conformable matrices, the elementwise power operator en-
ables either operand to be a scalar or a row or column vector. If either operand is
scalar, the operation takes the power for each element and the scalar value. If either
operand is a row or column vector, the operation is applied elementwise using the
vector on each row or column of the matrix.

Missing values are propagated if they occur.

For example, the following statements produce the matrix B, as shown:

a={1 2 3};
b=a##3;

B 1 row 2 cols (numeric)

1 8 27

The following statement produces the new matrix B, as shown:

b=a##.5;

B 1 row 3 cols (numeric)

1 1.4142136 1.7320508

Power Operator, Matrix: **

raises a matrix to a power

matrix**scalar

The matrix power operator (**) creates a new matrix that is matrix multiplied by itself
scalar times. Matrix must be square; scalar must be an integer greater than or equal
to −1. Large scalar values cause numerical precision problems. If the scalar is not an
integer, it is truncated to an integer.

For example, the following statements produce the matrix C, as shown:

576 � Chapter 20. Language Reference

a={1 2,
1 1};

c=a**2;

C 2 rows 2 cols (numeric)

3 4
2 3

If the matrix is symmetric, it is preferable to power its eigenvalues rather than use the
matrix power operator directly on the matrix (see the description of the EIGEN call).
Note that the expression

A**(-1)

is permitted and is equivalent to INV(A).

The matrix power operator does not support missing values.

Sign Reverse Operator: –

reverses the signs of elements

–matrix

The sign reverse prefix operator (−) produces a new matrix containing elements that
are formed by reversing the sign of each element in matrix. A missing value is as-
signed if the element is missing.

For example, following statements produce the matrix B, as shown:

a={-1 7 6,
2 0 -8};

b=-a;

B 2 rows 3 cols (numeric)

1 -7 -6
-2 0 8

Subscripts: []

select submatrices

matrix[rows,columns]

matrix[elements]

Subscripts are used with matrices to select submatrices, where rows and columns are
expressions that evaluate to scalars or vectors. If these expressions are numeric, they
contain valid subscript values of rows and columns in the argument matrix. If a row

Subscripts: [] � 577

or column expression is a character matrix, then it refers to columns or rows in the
argument matrix assigned corresponding labels by a MATTRIB statement or READ
statement. A subscripted matrix can appear on the left side of the equal sign. The
dimensions of the target submatrix must conform to the dimensions of the source ma-
trix. See the section “Using Matrix Expressions” on page 52 for further information.

For example, the following statements select the element in the second row and third
column of X, producing the matrix M:

x={1 2 3,
4 5 6,
7 8 9};

a=3;
m=x[2,a];

Here is the matrix:

M 1 row 1 col (numeric)

6

The following statements select row 2 and columns 1 through 3 of X, producing the
matrix M:

a=1:3;
m=x[2,a];

Here is the matrix:

M 1 row 3 cols (numeric)

4 5 6

The following statements select the element in the second row and third column of
X, producing the matrix M:

x={1 2 3,
4 5 6,
7 8 9};

MATTRIB x colname = {’col1’ ’col2’ ’col3’}
rowname = {’row1’ ’row2’ ’row3’};

a=’col3’;
m=x[’row2’,a];

Here is the matrix:

M 1 row 1 col (numeric)

6

578 � Chapter 20. Language Reference

Subtraction Operator: –
subtracts corresponding matrix elements

matrix1–matrix2

matrix–scalar

matrix–vector

The subtraction infix operator (−) produces a new matrix containing elements that are
formed by subtracting the corresponding elements of matrix2 from those of matrix1.

In addition to subtracting conformable matrices, you can also use the subtraction op-
erator to subtract a matrix and a scalar or a matrix and a row or column vector. When
either argument is a scalar, the operation is performed by using the scalar against
each element of the matrix argument. If either operand is a row or column vector,
then the operation is performed using that vector on each of the rows or columns of
the matrix.

When a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

An example of a valid statement follows:

c=a-b;

Transpose Operator: ‘
transposes a matrix

matrix‘

The transpose operator (denoted by the backquote ‘ character) exchanges the rows
and columns of matrix, producing the transpose of matrix. For example, if an element
in matrix is in the first row and second column, it is in the second row and first column
of the transpose; an element in the first row and third column of matrix is in the third
row and first column of the transpose, and so on. If matrix contains three rows and
two columns, its transpose has two rows and three columns.

For example, the following statements produce the matrix B, as shown:

a={1 2,
3 4,
5 6};

b=a‘;

B 2 rows 3 cols (numeric)

1 3 5
2 4 6

If your keyboard does not have a backquote character, you can transpose a matrix
with the T (transpose) function, documented later in this chapter.

ALL Function � 579

Statements, Functions, and Subroutines
This section presents descriptions of all statements, functions, and subroutines avail-
able in IML.

ABORT Statement

stops execution and exits IML

ABORT ;

The ABORT statement instructs IML to stop executing statements. It also stops IML
from parsing any further statements, causing IML to close its files and exit. See also
the description of the STOP statement.

ABS Function

takes the absolute value

ABS(matrix)

where matrix is a numeric matrix or literal.

The ABS function is a scalar function that returns the absolute value of every element
of the argument matrix. An example of how to use the ABS function follows:

a = { -1 2 -3, 0 -1 2 };
c=abs(a);

ALL Function

checks for all nonzero elements

ALL(matrix)

where matrix is a numeric matrix or literal.

The ALL function returns a value of 1 if all elements in matrix are nonzero. If any
element of matrix is zero, the ALL function returns a value of 0. Missing values in
matrix are treated as zeros.

You can use the ALL function to express the results of a comparison operator as
a single 1 or 0. For example, the comparison operation A > B yields a matrix
containing elements that can be either ones or zeros. All the elements of the new
matrix are ones only if each element of A is greater than the corresponding element
of B.

For example, consider the following statement:

if all(a>b) then goto loop;

580 � Chapter 20. Language Reference

IML executes the GOTO statement only if every element of A is greater than the
corresponding element of B. The ALL function is implicitly applied to the evaluation
of all conditional expressions.

The following statements have the same effect:

if (a>b) then goto loop;

if all(a>b) then goto loop;

ANY Function
checks for any nonzero element

ANY(matrix)

where matrix is a numeric matrix or literal.

The ANY function returns a value of 1 if any of the elements in matrix are nonzero.
If all the elements of matrix are zeros, the ANY function returns a value of 0. Missing
values in matrix are treated as zeros.

For example, consider the statement

if any(a=b) then print a b;

The matrices A and B are printed if at least one value in A is the same as the corre-
sponding value in B. The following statements do not print the message:

a={-99 99};
b={-99 98};
if a^=b then print ’a^=b’;

However, the following statement prints the message:

if any(a^=b) then print ’a^=b’;

APPCORT Call
applies complete orthogonal decomposition by Householder transformations
on the right-hand-side matrix B for the solution of rank-deficient linear least
squares systems

CALL APPCORT(prqb, lindep, a, b <, sing>);

The inputs to the APPCORT subroutine are as follows:

a is anm×nmatrix A, withm ≥ n, which is to be decomposed into the
product of the m×m orthogonal matrix Q, the n× n upper triangular
matrix R, and the n× n orthogonal matrix P,

A = Q
[

R
0

]
Π′P′Π

APPCORT Call � 581

b is the m × p matrix B that is to be left multiplied by the transposed
m×m matrix Q′.

sing is an optional scalar specifying a singularity criterion.

The APPCORT subroutine returns the following values:

prqb is an n× p matrix product

PΠ
[

(L′)−1 0
0 0

]
Q′B

which is the minimum 2-norm solution of the (rank deficient) least
squares problem ‖Ax − b‖2

2. Refer to Golub and Van Loan (1989,
pp. 241−242) for more details.

lindep is the number of linearly dependent columns in the matrix A detected
by applying the r Householder transformations. That is, lindep= n−r,
where r = rank(A).

See the section “COMPORT Call” on page 599 for information about complete or-
thogonal decomposition.

An example that uses the APPCORT subroutine follows:

/* Only four linearly independent columns */
A = {1 0 1 0 0,

1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

/* compute Moore-Penrose generalized inverse */
b = i(nrow(A));
call appcort(Ainv,lindep,A,b);
print Ainv;

/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |

any(Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv)‘-A*Ainv > eps) |
any((Ainv*A)‘-Ainv*A > eps) then

print "Pseudoinverse conditions not satisfied";
else

print "Pseudoinverse conditions satisfied";

/* compute solution for rank deficient LS:
min |Ax-b|^2

The range of A is a line.
b is a point not on the line. */

582 � Chapter 20. Language Reference

A = { 1 2,
2 4,
-1 -2 };

b = {1, 3, -2};
call appcort(x,lindep,A,b);
print x;

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

Pseudoinverse conditions satisfied

X

0.3
0.6

APPEND Statement

adds observations to the end of a SAS data set

APPEND < VAR operand > ;

APPEND < FROM from-name < [ROWNAME=row-name] > > ;

In the preceding statements,

operand can be specified as one of the following:

• a literal containing variable names
• a character matrix containing variable names
• an expression in parentheses yielding variable names
• one of the keywords described in the following list:

–ALL– for all variables
–CHAR– for all character variables
–NUM– for all numeric variables

from-name is the name of a matrix containing data to append.

row-name is a character matrix or quoted literal containing descriptive row
names.

Use the APPEND statement to add data to the end of the current output data set. The
appended observations are from either the variables specified in the VAR clause or
variables created from the columns of the FROM matrix. The FROM clause and the
VAR clause should not be specified together.

APPEND Statement � 583

You can specify a set of variables to use with the VAR clause.

The following statements show each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

If the VAR clause includes a matrix with more than one row and column, the
APPEND statement adds one observation for each element in the matrix with the
greatest number of elements. Elements are appended in row-major order. Variables
in the VAR clause with fewer than the maximum number of elements contribute miss-
ing values to observations after all of their elements have been used.

The default variables for the APPEND statement are all matrices that match variables
in the current data set with respect to name and type.

The ROWNAME= operand to the FROM clause specifies the name of a character
matrix to contain row titles. The first nrow values of this matrix become values of a
variable with the same name in the output data set; nrow is the number of rows in the
FROM matrix. The procedure uses the first nrow elements in row-major order.

The following examples demonstrate the use of the APPEND statement. The first
example shows the use of the FROM clause when creating a new data set. For more
information, see the section “CREATE Statement” on page 605. Here is the code:

x={1 2 3, 4 5 6};
create mydata from x[colname={x1 x2 x3}];
append from x;
show contents;

/* shows 3 variables (x1 x2 x3) and 2 observations */

The next example shows the use of the VAR clause for selecting variables from which
to append data. Here is the code:

names={’Jimmy’ ’Sue’ ’Ted’};
sex={m f m};
create folks var{names sex};
append;
show contents;
/* shows 2 variables (names,sex) and 3 observations in FOLKS */

You could achieve the same result with the following statements:

dsvar={names sex};
create folks var dsvar;
append;

584 � Chapter 20. Language Reference

APPLY Function

applies an IML module to its arguments

APPLY(modname, argument1<, argument2,. . ., argument15>)

In the preceding statement,

modname is the name of an existing module, supplied in quotes, as a matrix
containing the module name, or an expression rendering the mod-
ule name.

argument is an argument passed to the module. You must have at least one
argument. You can specify up to 15 arguments.

The APPLY function applies a user-defined IML module to each element of the argu-
ment matrix or matrices and returns a matrix of results. The first argument to APPLY
is the name of the module. The module must already be defined before the APPLY
function is executed. The module must be a function module, capable of returning a
result.

The subsequent arguments to the APPLY function are the arguments passed to the
module. They all must have the same dimension. If the module takes n arguments,
argument1 through argumentn should be passed to APPLY where 1 ≤ n ≤ 15. The
APPLY function effectively calls the module. The result has the same dimension
as the input arguments, and each element of the result corresponds to the module
applied to the corresponding elements of the argument matrices. The APPLY function
can work on numeric as well as character arguments. For example, the following
statements define module ABC and then call the APPLY function, with matrix A as
an argument:

start abc(x);
r=x+100;
return (r);

finish abc;

a={6 7 8,
9 10 11};

r=apply("ABC",a);

The result is as follows:

R 2 rows 3 cols (numeric)

106 107 108
109 110 111

In the following example, the statements define the module SWAP and call the
APPLY function:

ARMACOV Call � 585

start swap(a,b,c);
r=a*b*c;
a=b;
if r<0 then return(0);
return(r);

finish swap;

a={2 3, 4 5};
b={4 3, 5 6};
c={9 -1, 3 7};
mod={swap};
r=apply(mod,a,b,c);
print a r;

The results are as follows:

A R
4 3 72 0
5 6 60 210

ARMACOV Call

computes an autocovariance sequence for an ARMA model

CALL ARMACOV(auto, cross, convol, phi, theta, num);

The inputs to the ARMACOV subroutine are as follows:

phi refers to a 1× (p+ 1) matrix containing the autoregressive param-
eters. The first element is assumed to have the value 1.

theta refers to a 1 × (q + 1) matrix containing the moving-average pa-
rameters. The first element is assumed to have the value 1.

num refers to a scalar containing n, the number of autocovariances to be
computed, which must be a positive number.

The ARMACOV subroutine returns the following values:

auto specifies a variable to contain the returned 1×n matrix containing
the autocovariances of the specified ARMA model, assuming unit
variance for the innovation sequence.

cross specifies a variable to contain the returned 1× (q + 1) matrix con-
taining the covariances of the moving-average term with lagged
values of the process.

convol specifies a variable to contain the returned 1× (q + 1) matrix con-
taining the autocovariance sequence of the moving-average term.

The ARMACOV subroutine computes the autocovariance sequence that corresponds
to a given autoregressive moving-average (ARMA) time series model. An arbitrary

586 � Chapter 20. Language Reference

number of terms in the sequence can be requested. Two related covariance sequences
are also returned.

The model notation for the ARMACOV and ARMALIK subroutines is the same. The
ARMA(p, q) model is denoted

p∑
j=0

φjyt−j =
q∑

i=0

θiεt−i

with θ0 = φ0 = 1. The notation is the same as that of Box and Jenkins (1976)
except that the model parameters are opposite in sign. The innovations {εt} satisfy
E(εt) = 0 and E(εtεt−k) = 1 if k = 0, and are zero otherwise. The formula for the
kth element of the convol argument is

q∑
i=k−1

θiθi−k+1

for k = 1, 2, . . . , q + 1. The formula for the kth element of the cross argument is

q∑
i=k−1

θiψi−k+1

for k = 1, 2, . . . , q+1, where ψi is the ith impulse response value. The ψi sequence,
if desired, can be computed with the RATIO function. It can be shown that ψk is
the same as E(Yt−kε

2
t)/σ, which is used by Box and Jenkins (1976, p. 75) in their

formulation of the autocovariances. The kth autocovariance, denoted γk and returned
as the k+1 element of the auto argument (k = 0, 1, . . . , n− 1), is defined implicitly
for k > 0 by

p∑
i=0

γk−iφi = ηk

where ηk is the kth element of the cross argument. See Box and Jenkins (1976) or
McLeod (1975) for more information.

Consider the model

yt = 0.5yt−1 + et + 0.8et−1

To compute the autocovariance function at lags zero through four for this model, use
the following statements:

/* an arma(1,1) model */
phi ={1 -0.5};
theta={1 0.8};
call armacov(auto,cross,convol,phi,theta,5);
print auto,,cross convol;

ARMALIK Call � 587

The result is as follows:

AUTO
3.2533333 2.4266667 1.2133333 0.6066667 0.3033333

CROSS CONVOL
2.04 0.8 1.64 0.8

ARMALIK Call

computes the log likelihood and residuals for an ARMA model

CALL ARMALIK(lnl, resid, std, x, phi, theta);

The inputs to the ARMALIK subroutine are as follows:

x is an n × 1 or 1 × n matrix containing values of the time series
(assuming mean zero).

phi is a 1 × (p + 1) matrix containing the autoregressive parameter
values. The first element is assumed to have the value 1.

theta is a 1 × (q + 1) matrix containing the moving-average parameter
values. The first element is assumed to have the value 1.

The ARMALIK subroutine returns the following values:

lnl specifies a 3× 1 matrix containing the log likelihood concentrated
with respect to the innovation variance; the estimate of the innova-
tion variance (the unconditional sum of squares divided by n); and
the log of the determinant of the variance matrix, which is stan-
dardized to unit variance for the innovations.

resid specifies an n × 1 matrix containing the standardized residuals.
These values are uncorrelated with a constant variance if the spec-
ified ARMA model is the correct one.

std specifies an n× 1 matrix containing the scale factors used to stan-
dardize the residuals. The actual residuals from the one-step-ahead
predictions using the past values can be computed as std#resid.

The ARMALIK subroutine computes the concentrated log-likelihood function for an
ARMA model. The unconditional sum of squares is readily available, as are the one-
step-ahead prediction residuals. Factors that can be used to generate confidence limits
associated with prediction from a finite past sample are also returned.

The notational conventions for the ARMALIK subroutine are the same as those used
by the ARMACOV subroutine. See the description of the ARMACOV call for the
model employed. In addition, the condition

∑q
i=0 θ

i
iz 6= 0 for |z| < 1 should be

satisfied to guard against floating-point overflow.

588 � Chapter 20. Language Reference

If the column vector x contains n values of a time series and the variance matrix is
denoted Σ = σ2V, where σ2 is the variance of the innovations, then, up to additive
constants, the log likelihood, concentrated with respect to σ2, is

−n
2

log
(
x′V−1x

)
− 1

2
log |V|

The matrix V is a function of the specified ARMA model parameters. If L is the
lower Cholesky root of V (that is, V = LL′), then the standardized residuals are
computed as resid= L−1x. The elements of std are the diagonal elements of L.
The variance estimate is x′V−1x/n, and the log determinant is log |V|. See Ansley
(1979) for further details. Consider the following model:

yt − yt−1 + 0.25yt−2 = et + 0.5et−1

To compute the log likelihood for this model, use the following IML code:

phi={ 1 -1 0.25} ;
theta={ 1 0.5} ;
x={ 1 2 3 4 5} ;
call armalik(lnl,resid,std,x,phi,theta);
print lnl resid std;

The printed output is as follows:

LNL RESID STD
-0.822608 0.4057513 2.4645637
0.8721154 0.9198158 1.2330147
2.3293833 0.8417343 1.0419028

1.0854175 1.0098042
1.2096421 1.0024125

ARMASIM Function

simulates a univariate ARMA series

ARMASIM(phi, theta, mu, sigma, n, <seed>)

The inputs to the ARMASIM function are as follows:

phi is a 1 × (p + 1) matrix containing the autoregressive parameters.
The first element is assumed to have the value 1.

theta is a 1× (q + 1) matrix containing the moving-average parameters.
The first element is assumed to have the value 1.

mu is a scalar containing the overall mean of the series.

sigma is a scalar containing the standard deviation of the innovation se-
ries.

n is a scalar containing n, the length of the series. The value of n
must be greater than 0.

ARMASIM Function � 589

seed is a scalar containing the random number seed. At the first execu-
tion of the function, the seed variable is used as follows:

If seed > 0, the input seed is used for generating the series.

If seed = 0, the system clock is used to generate the seed.

If seed < 0, the value (−1)×(seed) is used for generating the series.

If the seed is not supplied, the system clock is used to generate the
seed.

On subsequent calls of the function in the DO loop–like environ-
ment, the seed variable is used as follows: If seed > 0, the seed
remains unchanged. In other cases, after each execution of the
function, the current seed is updated internally.

The ARMASIM function generates a series of length n from a given autoregressive
moving-average (ARMA) time series model and returns the series in an n×1 matrix.
The notational conventions for the ARMASIM function are the same as those used
by the ARMACOV subroutine. See the description of the ARMACOV call for the
model employed. The ARMASIM function uses an exact simulation algorithm as
described in Woodfield (1988). A sequence Y0, Y1, . . . , Yp+q−1 of starting values is
produced by using an expanded covariance matrix, and then the remaining values are
generated by using the following recursion form of the model:

Yt = −
p∑

i=1

φiYt−i + εt +
q∑

i=1

θiεt−i t = p+ q, p+ q + 1, . . . , n− 1

The random number generator RANNOR is used to generate the noise component
of the model. Note that the following statement returns n standard normal pseudo-
random deviates:

armasim(1,1,0,1,n,seed);

For example, consider the following model:

yt = 0.5yt−1 + et + 0.8et−1

To generate a time series of length 10 from this model, use the following code to
produce the result shown:

phi={1 -0.5};
theta={1 0.8};
y=armasim(phi, theta, 0, 1, 10, -1234321);
print y;

590 � Chapter 20. Language Reference

Y

2.3253578
0.975835

-0.376358
-0.878433
-2.515351
-3.083021
-1.996886
-1.839975
-0.214027
1.4786717

BLOCK Function

forms block-diagonal matrices

BLOCK(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric matrix or literal.

The BLOCK function creates a new block-diagonal matrix from all the matrices spec-
ified in the argument matrices. Up to 15 matrices can be specified. The matrices are
combined diagonally to form a new matrix. For example, consider the following
statement:

block(a,b,c);

This statement produces a matrix of the form

 A 0 0
0 B 0
0 0 C

The following statements produce the matrix C, as shown:

a={2 2,
4 4} ;

b={6 6,
8 8} ;

c=block(a,b);

C 4 rows 4 cols (numeric)

2 2 0 0
4 4 0 0
0 0 6 6
0 0 8 8

BSPLINE Function � 591

BRANKS Function

computes bivariate ranks

BRANKS(matrix)

where matrix is an n× 2 numeric matrix.

The BRANKS function calculates the tied ranks and the bivariate ranks for an n× 2
matrix and returns an n× 3 matrix of these ranks. The tied ranks of the first column
of matrix are contained in the first column of the result matrix; the tied ranks of the
second column of matrix are contained in the second column of the result matrix; and
the bivariate ranks of matrix are contained in the third column of the result matrix.

The tied rank of an element xj of a vector is defined as

Ri =
1
2

+
∑

j

u(xi − xj)

where

u(t) =

1 if t > 0
1
2 if t = 0
0 if t < 0

The bivariate rank of a pair (xj , yj) is defined as

Qi =
3
4

+
∑

j

u(xi − xj)u(yi − yj)

For example, consider the following statements and the output they produce:

x={1 0,
4 2,
3 4,
5 3,
6 3};

f=branks(x);

F 5 rows 3 cols (numeric)

1 1 1
3 2 2
2 5 2
4 3.5 3
5 3.5 3.5

BSPLINE Function

computes a B-spline basis

592 � Chapter 20. Language Reference

BSPLINE(x, d, k <, i >)

The inputs to the BSPLINE function are as follows:

x is an m× 1 or 1×m numeric vector.

d is a nonnegative numeric scalar value that specifies the degree of the B-spline.
Note that the order of a B-spline is one greater than the degree.

k is a numeric vector of size n that contains the B-spline knots or a scalar that
denotes the number of interior knots. When n > 1, the elements of the knot
vector must be nondecreasing, kj−1 ≤ kj for j = 2, · · · , n.

i is an optional argument that specifies the number of interior knots when
n = 1 and k contains a missing value. In this case the BSPLINE func-
tion constructs a vector of knots as follows. If x(1) and x(m) are the smallest
and largest value in the x vector, then interior knots are placed at

x(1) + j(x(m) − x(1))/(k + 1), j = 1, · · · , k

In addition, d exterior knots are placed under x(1) and max(d,1) exterior knots
are placed over x(m). The exterior knots are evenly spaced and start at x(1)−
1E−12 and x(m)+ 1E−12. In this case the BSPLINE function returns a
matrix with m rows and i+ d+ 1 columns.

The BSPLINE function computes B-splines of degree d. Suppose thatBd
j (x) denotes

the jth B-spline of degree d in the knot sequence k1, · · · , kn. de Boor (2001) defines
the splines based on the following relationships:

B0
j (x) =

{
1 kj ≤ x < kj+1

0 otherwise

and for d > 0

Bd
j (x) = wd

j (x)B
d−1
j (x) + (1− wd

j+1(x))B
d−1
j+1 (x)

wd
j (x) =

x− kj

kj+d − kj

Note that de Boor (2001) expresses B-splines in terms of order rather than degree; in
his notation Bj,d = Bd−1

j . B-splines have many interesting properties. For example:

•
∑

j B
d
j = 1

• The sequence Bd
j is positive on d+ 1 knots and zero elsewhere.

• The B-spline Bd
j is a piecewise polynomial of at most d+ 1 pieces.

• If kj = kj+d, then Bd−1
j = 0.

BSPLINE Function � 593

See de Boor (2001) for more details. The BSPLINE function defines B-splines of
degree 0 as nonzero if kj < x ≤ kj+1.

A typical knot vector for calculating B-splines consists of d exterior knots smaller
than the smallest data value, and max{d, 1} exterior knots larger than the largest data
value. The remaining knots are the interior knots.

For example, consider the following statements and the output they produce:

x = {2.5 3 4.5 5.1};
knots = {0 1 2 3 4 5 6 7 8};
bsp = bspline(x,3,knots);
print bsp[format=best7.];

0.02083 0.47917 0.47917 0.02083 0 0 0
0 0.16667 0.66667 0.16667 0 0 0
0 0 0.02083 0.47917 0.47917 0.02083 0
0 0 0 0.1215 0.65717 0.22117 0.00017

In this example there are n∗ = 3 interior knots and the BSPLINE function returns
a matrix with n∗ + d + 1 = 3 + 3 + 1 = 7 columns. If you pass an x vector of
data values, you can also rely on the BSPLINE function to compute a knot vector for
you. For example, the following statements produce B-splines of degree 2 based on
4 equally spaced interior knots:

n = 20;
x = ranuni(J(n,1,45));
bsp = bspline(x,2,.,4);
print bsp[format=8.3];

The resulting matrix is as follows:

0.000 0.104 0.748 0.147 0.000 0.000 0.000
0.000 0.000 0.000 0.286 0.684 0.030 0.000
0.000 0.000 0.000 0.000 0.000 0.517 0.483
0.000 0.000 0.000 0.217 0.725 0.058 0.000
0.000 0.000 0.239 0.713 0.048 0.000 0.000
0.000 0.000 0.000 0.446 0.553 0.002 0.000
0.000 0.000 0.394 0.600 0.006 0.000 0.000
0.000 0.000 0.000 0.000 0.064 0.729 0.207
0.000 0.389 0.604 0.007 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.500 0.500
0.000 0.000 0.000 0.000 0.210 0.728 0.062
0.000 0.000 0.014 0.639 0.347 0.000 0.000
0.000 0.001 0.546 0.453 0.000 0.000 0.000
0.500 0.500 0.000 0.000 0.000 0.000 0.000
0.304 0.672 0.024 0.000 0.000 0.000 0.000
0.000 0.020 0.659 0.322 0.000 0.000 0.000
0.000 0.277 0.690 0.033 0.000 0.000 0.000
0.386 0.606 0.007 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.022 0.667 0.311
0.008 0.612 0.380 0.000 0.000 0.000 0.000

594 � Chapter 20. Language Reference

BTRAN Function

computes the block transpose

BTRAN(x, n, m)

The inputs to the BTRAN function are as follows:

x is an (in)× (jm) numeric matrix.

n is a scalar with a value that specifies the row dimension of the submatrix
blocks.

m is a scalar with a value that specifies the column dimension of the submatrix
blocks.

The BTRAN function computes the block transpose of a partitioned matrix. The
argument x is a partitioned matrix formed from submatrices of dimension n × n. If
the ith, jth submatrix of the argument x is denoted Aij , then the ith, jth submatrix
of the result is Aji.

The value returned by the BTRAN function is a (jn)× (im) matrix, the block trans-
pose of x, where the blocks are n×m.

For example, the following statements produce the matrix Z, as shown:

z=btran({1 2 3 4,
5 6 7 8},2,2);

print z;

Z 4 rows 2 cols (numeric)

1 2
5 6
3 4
7 8

BYTE Function

translates numbers to ordinal characters

BYTE(matrix)

where matrix is a numeric matrix or literal.

The BYTE function returns a character matrix with the same shape as the numeric
argument. Each element of the result is a single character with an ordinal position in
the computer’s character set that is specified by the corresponding numeric element
in the argument. These numeric elements should generally be in the range 0 to 255.

For example, in the ASCII character set, the following two statements are equivalent:

a=byte(47);

CALL Statement � 595

a="/"; /* the slash character */

The lowercase alphabet can be generated with the following statement:

y=byte(97:122);

This statement produces the following matrix:

Y 1 row 26 cols (character, size 1)

a b c d e f g h i j k l m n o p q r s t u v w x y z

This function simplifies the use of special characters and control sequences that can-
not be entered directly into IML source code by using the keyboard. Consult the
character set tables for the computer you are using to determine the printable and
control characters that are available and their ordinal positions.

CALL Statement

calls a subroutine or function

CALL name <(arguments)> ;

The inputs to the CALL statement are as follows:

name is the name of a user-defined module or an IML subroutine or func-
tion.

arguments are arguments to the module or subroutine.

The CALL statement executes a subroutine. The order of resolution for the CALL
statement is as follows:

1. IML built-in subroutine

2. user-defined module

This resolution order needs to be considered only if you have defined a module with
the same name as an IML built-in subroutine.

See also the section on the RUN statement.

596 � Chapter 20. Language Reference

CHANGE Call

searches and replaces text in an array

CALL CHANGE(matrix, old, new<, numchange>);

The inputs to the CHANGE call are as follows:

matrix is a character matrix or quoted literal.

old is the string to be changed.

new is the string to replace the old string.

numchange is the number of times to make the change.

The CHANGE subroutine changes the first numchange occurrences of the substring
old in each element of the character array matrix to the form new. If numchange
is not specified, the routine defaults to 1. If numchange is 0, the routine changes
all occurrences of old. If no occurrences are found, the matrix is not changed. For
example, consider the following statements:

a="It was a dark and stormy night.";
call change(a, "night","day");

The result of these statements is as follows:

A="It was a dark and stormy day."

In the old operand, the following characters are reserved:

% $ [] { } < > − ? * # @ ’ ‘(backquote) ˆ

CHAR Function

produces a character representation of a numeric matrix

CHAR(matrix<, w <, d >>)

The inputs to the CHAR function are as follows:

matrix is a numeric matrix or literal.

w is the field width.

d is the number of decimal positions.

The CHAR function takes a numeric matrix as an argument and, optionally, a field
width w and a number of decimal positions d. The CHAR function produces a char-
acter matrix with dimensions that are the same as the dimensions of the argument

CHOOSE Function � 597

matrix and with elements that are character representations of the corresponding nu-
meric elements.

The CHAR function can take one, two, or three arguments. The first argument is the
name of a numeric matrix and must always be supplied. The second argument is the
field width of the result. If the second argument is not supplied, the system default
field width is used. The third argument is the number of decimal positions in the
result. If no third argument is supplied, the best representation is used. See also the
description of the NUM function, which does the reverse conversion.

For example, the following statements produce the matrix F, as shown:

a={1 2 3 4};
f=char(a,4,1);

F 1 row 4 cols (character, size 4)

1.0 2.0 3.0 4.0

CHOOSE Function

conditionally chooses and changes elements

CHOOSE(condition, result-for-true, result-for-false)

The inputs to the CHOOSE function are as follows:

condition is checked for being true or false for each element.

result-for-true is returned when condition is true.

result-for-false is returned when condition is false.

The CHOOSE function examines each element of the first argument for being true
(nonzero and not missing) or false (zero or missing). For each true element, it re-
turns the corresponding element in the second argument. For each false element, it
returns the corresponding element in the third argument. Each argument must be
conformable with the others or be a single element to be propagated.

For example, suppose that you want to choose between x and y according to whether
x#y is odd or even, respectively. You can use the following statements to execute
this task:

x={1, 2, 3, 4, 5};
y={101, 205, 133, 806, 500};
r=choose(mod(x#y,2)=1,x,y);
print x y r;

Here is the result:

598 � Chapter 20. Language Reference

X Y R
1 101 1
2 205 205
3 133 3
4 806 806
5 500 500

Suppose you want all missing values in x to be changed to zeros. Submit the follow-
ing statements to create a matrix with missing values:

x={1 2 ., 100 . -90, . 5 8};
print x;

X 3 rows 3 cols (numeric)

1 2 .
100 . -90
. 5 8

The following statement replaces the missing values in X with zeros:

x=choose(x=.,0,x);
print x;

X 3 rows 3 cols (numeric)

1 2 0
100 0 -90
0 5 8

CLOSE Statement
closes a SAS data set

CLOSE <SAS-data-set>;

where SAS-data-set can be specified with a one-level name (for example, A) or a
two-level name (for example, SASUSER.A). For more information about specifying
SAS data sets, see Chapter 6. Also, refer to the chapter on SAS data sets in SAS
Language Reference: Concepts. More than one SAS data set can be listed in a
CLOSE statement.

The CLOSE statement is used to close one or more SAS data sets opened with the
USE, EDIT, or CREATE statement. To find out which data sets are open, use the
SHOW DATASETS statement; see also the section on the SAVE statement later in
this chapter. IML automatically closes all open data sets when a QUIT statement is
executed. See Chapter 6 for more information.

Examples of the CLOSE statement are as follows:

close mydata;
close mylib.mydata;
close; /* closes the current data set */

COMPORT Call � 599

CLOSEFILE Statement

closes an input or output file

CLOSEFILE files;

where files can be names (for defined filenames), literals, or expressions in parenthe-
ses (for pathnames).

The CLOSEFILE statement is used to close files opened by the INFILE or FILE
statement. The file specification should be the same as when the file was opened. File
specifications are either a name (for a defined filename), a literal, or an expression in
parentheses (for a pathname). To find out what files are open, use the SHOW FILES
statement. For further information, consult Chapter 7. See also the description of
the SAVE statement. IML automatically closes all files when a QUIT statement is
executed.

Examples of the CLOSEFILE statement follow:

filename in1 ’mylib.mydata’;
closefile in1;

closefile ’mylib.mydata’;

in=’mylib/mydata’;
closefile(in);

COMPORT Call

provides complete orthogonal decomposition by Householder transformations

CALL COMPORT(q, r, p, piv, lindep, a <, b><, sing>);

The COMPORT subroutine returns the following values:

q If b is not specified, q is the m × m orthogonal matrix Q that is the
product of the min(m,n) separate Householder transformations. If
b is specified, q is the m × p matrix Q′B that has the transposed
Householder transformations Q′ applied on the p columns of the ar-
gument matrix B.

r is the n×n upper triangular matrix R that contains the r×r nonsingular
upper triangular matrix L′ of the complete orthogonal decomposition,
where r ≤ n is the rank of A. The full m× n upper triangular matrix
R of the orthogonal decomposition of matrix A can be obtained by
vertical concatenation (IML operator //) of the (m − n) × n zero
matrix to the result r.

p is an n × n matrix that is the product PΠ of a permutation matrix Π
with an orthogonal matrix P. The permutation matrix is determined by
the vector piv.

600 � Chapter 20. Language Reference

piv is an n×1 vector of permutations of the columns of A. That is, the QR
decomposition is computed, not of A, but of the matrix with columns
[Apiv[1] · · ·Apiv[n]]. The vector piv corresponds to an n × n permu-
tation matrix, Π, of the pivoted QR decomposition in the first step of
orthogonal decomposition.

lindep specifies the number of linearly dependent columns in the matrix A
detected by applying the r Householder transformation in the order
specified by the argument piv. That is, lindep= n− r.

The inputs to the COMPORT subroutine are as follows:

a specifies the m×n matrix A, with m ≥ n, which is to be decomposed
into the product of the m ×m orthogonal matrix Q, the n × n upper
triangular matrix R, and the n× n orthogonal matrix P,

A = Q
[

R
0

]
Π′P′Π

b specifies an optional m× p matrix B that is to be left multiplied by the
transposed m×m matrix Q′.

sing is an optional scalar specifying a singularity criterion.

The complete orthogonal decomposition of the singular matrix A can be used to
compute the Moore-Penrose inverse A−, r = rank(A) < n, or to compute the
minimum 2-norm solution of the (rank deficient) least squares problem ‖Ax− b‖2

2.

1. Use the QR decomposition of A with column pivoting,

A = Q
[

R
0

]
Π′ =

[
Y Z

] [R1 R2

0 0

]
Π′

where R = [R1 R2] ∈ Rr×t is upper trapezoidal, R1 ∈ Rr×r is upper
triangular and invertible, R2 ∈ Rr×s, Q = [Y Z] is orthogonal, Y ∈
Rt×r, Z ∈ Rt×s, and Π permutes the columns of A.

2. Use the transpose L12 of the upper trapezoidal matrix R =
[

R1 R2

]
,

L12 =
[

L1

L2

]
= R′ ∈ Rt×r

with rank(L12) = rank(L1) = r, L1 ∈ Rr×r lower triangular, L2 ∈ Rs×r.
The lower trapezoidal matrix L12 ∈ Rt×r is premultiplied with r Householder
transformations P1, . . . ,Pr:

Pr · · ·P1

[
L1

L2

]
=
[

L
0

]

COMPORT Call � 601

each zeroing out one of the r columns of L2 and producing the nonsingular
lower triangular matrix L ∈ Rr×r. Therefore, you obtain

A = Q
[

L′ 0
0 0

]
Π′P′ = Y

[
L′ 0

]
Π′P′

with P = ΠPr · · ·P1 ∈ Rt×t and upper triangular L′. This second step is
described in Golub and Van Loan (1989, p. 220 and p. 236).

3. Compute the Moore-Penrose inverse A− explicitly:

A− = PΠ
[

(L′)−1 0
0 0

]
Q′ = PΠ

[
(L′)−1

0

]
Y′

(a) Obtain Y in Q =
[

Y Z
]

explicitly by applying the r Householder

transformations obtained in the first step to
[

Ir

0

]
.

(b) Solve the r× r lower triangular system (L′)−1Y′ with t right-hand sides
by using backward substitution, which yields an r×t intermediate matrix.

(c) Left-apply the r Householder transformations in P on the r × t inter-

mediate matrix
[

(L′)−1Y′

0

]
, which results in the symmetric matrix

A− ∈ Rt×t.

The GINV function computes the Moore-Penrose inverse A− by using the singular
value decomposition of A. Using complete orthogonal decomposition to compute
A− usually requires far fewer floating-point operations. However, it can be slightly
more sensitive to rounding errors, which can disturb the detection of the true rank of
A, than singular value decomposition.

The following example demonstrates the use of the APPCORT subroutine, as well as
the resulting output:

/* Only four linearly independent columns */
A = {1 0 1 0 0,

1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

m = nrow(A);
n = ncol(A);

call comport(q,r,p,piv,lindep,A);
fullR = r // j(m-n, n, 0);
perm = i(n);
perm[piv,] = i(n);

/* recover A from factorization */
A2 = q*fullR*p‘*perm‘;

602 � Chapter 20. Language Reference

reset fuzz;
print A2;

/* compute Moore-Penrose generalized inverse */
rankA = n - lindep;
subR = R[1:rankA, 1:rankA];
fullRinv = j(n, n, 0);
fullRinv[1:rankA, 1:rankA] = inv(subR);
Ainv = perm*p*fullRinv*q[,1:n]‘;
print Ainv;

/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |

any(Ainv*A*Ainv-Ainv > eps) |
any((A*Ainv)‘-A*Ainv > eps) |
any((Ainv*A)‘-Ainv*A > eps) then

print "Pseudoinverse conditions not satisfied";
else

print "Pseudoinverse conditions satisfied";

A2

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

Pseudoinverse conditions satisfied

CONCAT Function

performs elementwise string concatenation

CONCAT(argument1, argument2<, . . ., argument15>)

where arguments are character matrices or quoted literals.

The CONCAT function produces a character matrix containing elements that are the
concatenations of corresponding element strings from each argument. The CONCAT
function accepts up to 15 arguments, where each argument is a character matrix or
a scalar. All nonscalar arguments must conform. Any scalar arguments are used
repeatedly to concatenate to all elements of the other arguments. The element length
of the result equals the sum of the element lengths of the arguments. Trailing blanks

CONTENTS Function � 603

of one matrix argument appear before elements of the next matrix argument in the
result matrix. For example, suppose you specify the following matrices:

b={"AB" "C ",
"DE" "FG"};

c={"H " "IJ",
" K" "LM"};

The following statement produces the new 2× 2 matrix A, as shown:

a=concat(b,c);

A 2 rows 2 cols (character, size 4)

ABH C IJ
DE K FGLM

Quotation marks (") are needed only if you want to embed blanks or maintain upper-
case and lowercase distinctions. You can also use the ADD infix operator to concate-
nate character operands. See the description of the addition operator.

CONTENTS Function

obtains the variables in a SAS data set

CONTENTS(<libref><, SAS-data-set>)

where SAS-data-set can be specified with a one-level name or with a libref and a SAS
data set name. For more information about specifying SAS data sets, see Chapter 6.
Also, refer to the chapter on SAS data sets in SAS Language Reference: Concepts.

The CONTENTS function returns a character matrix containing the variable names
for SAS-data-set. The result is a character matrix with n rows, one column, and
8 characters per element, where n is the number of variables in the data set. The
variable list is returned in the order in which the variables occur in the data set. If
a one-level name is provided, IML uses the default SAS data library (as specified in
the DEFLIB= option). If no arguments are specified, the current open input data set
is used. Some examples follow:

x=contents(); /* current open input data set */

x=contents(’work’,’a’); /* contents of data set A in */
/* WORK library */

See also the description of the SHOW contents statement.

604 � Chapter 20. Language Reference

CONVEXIT Function

calculates and returns a scalar containing the convexity of a noncontingent cash
flow

CONVEXIT(times,flows,ytm)

The CONVEXIT function calculates and returns a scalar containing the convexity of
a noncontingent cash flow.

times is an n-dimensional column vector of times. Elements should be non-
negative.

flows is an n-dimensional column vector of cash flows.

ytm is the per-period yield-to-maturity of the cash-flow stream. This is a
scalar and should be positive.

Convexity is essentially a measure of how duration, the sensitivity of price to yield,
changes as interest rates change:

C =
1
P

d2P

dy2

With cash flows that are not yield sensitive, and the assumption of parallel shifts to a
flat term structure, convexity is given by

C =

∑K
k=1 tk(tk + 1) c(k)

(1+y)tk

P (1 + y)2

where P is the present value, y is the effective per-period yield-to-maturity, K is the
number of cash flows, and the kth cash flow is c(k) tk periods from the present.

Consider the following statements:

timesn=T(do(1,100,1));
flows=repeat(10,100);
ytm=0.1;
convexit=convexit(timesn,flows,ytm);
print convexit;

These statements result in the following output:

CONVEXIT
199.26229

COVLAG Function

computes autocovariance estimates for a vector time series

CREATE Statement � 605

COVLAG(x, k)

The inputs to the COVLAG function are as follows:

x is an n× nv matrix of time series values; n is the number of observations, and
nv is the dimension of the random vector.

k is a scalar, the absolute value of which specifies the number of lags desired. If
k is positive, a mean correction is made. If k is negative, no mean correction is
made.

The COVLAG function computes a sequence of lagged crossproduct matrices. This
function is useful for computing sample autocovariance sequences for scalar or vector
time series.

The value returned by the COVLAG function is an nv × (k ∗ nv) matrix. The ith
nv × nv block of the matrix is the sum

1
n

n∑
j=i

x′jxj−i+1 if k < 0

where xj is the jth row of x. If k > 0, then the ith nv × nv block of the matrix is

1
n

n∑
j=i

(xj − x̄)′(xj−i+1 − x̄)

where x̄ is a row vector of the column means of x. For example, the following
statements produce the matrix COV, as shown:

x={-9,-7,-5,-3,-1,1,3,5,7,9};
cov=covlag(x,4);

COV 1 row 4 cols (numeric)

33 23.1 13.6 4.9

CREATE Statement

creates a new SAS data set

CREATE SAS-data-set <VAR operand>;

CREATE SAS-data-set FROM matrix-name

<[COLNAME=column-name ROWNAME=row-name]>;

The inputs to the CREATE statement are as follows:

606 � Chapter 20. Language Reference

SAS-data-set can be specified with a one-level name (for example, A) or a two-
level name (for example, SASUSER.A). For more information
about specifying SAS data sets, see Chapter 6. Also refer to the
chapter on SAS data sets in SAS Language Reference: Concepts.

operand gives a set of existing IML variables to become data set variables.

matrix-name names a matrix containing the data.

column-name is a character matrix or quoted literal containing descriptive names
to associate with data set variables.

row-name is a character matrix or quoted literal containing descriptive names
to associate with observations on the data set.

The CREATE statement creates a new SAS data set and makes it both the current
input and output data sets. The variables in the new SAS data set are either the
variables listed in the VAR clause or variables created from the columns of the FROM
matrix. The FROM clause and the VAR clause should not be specified together.

You can specify a set of variables to use with the VAR clause, where operand can be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described in the following list:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples demonstrate each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

You can specify a COLNAME= and a ROWNAME= matrix in the FROM clause. The
COLNAME= matrix gives names to variables in the SAS data set being created. The
COLNAME= operand specifies the name of a character matrix. The first ncol values
from this matrix provide the variable names in the data set being created, where ncol
is the number of columns in the FROM matrix. The CREATE statement uses the first
ncol elements of the COLNAME= matrix in row-major order.

The ROWNAME= operand adds a variable to the data set to contain row titles. The
operand must be a character matrix that exists and has values. The length of the
data set variable added is the length of a matrix element of the operand. The same

CSHAPE Function � 607

ROWNAME= matrix should be used in any subsequent APPEND statements for this
data set.

The variable types and lengths are the current attributes of the matrices specified in
the VAR clause or the matrix in the FROM clause. The default type is numeric when
the name is undefined and unvalued. The default, when no variables are specified, is
all active variables. To add observations to your data set, you must use the APPEND
statement.

For example, the following statements create a new SAS data set CLASS having
variables NAME, SEX, AGE, HEIGHT, and WEIGHT. The data come from IML
matrices with the same names. You must initialize the character variables (NAME
and SEX) and set the length prior to invoking the CREATE statement. NAME and
SEX are character variables of lengths 12 and 1, respectively. AGE, HEIGHT, and
WEIGHT are, by default, numeric.

name="123456789012";
sex="M";
create class var {name sex age height weight};
append;

In the next example, you use the FROM clause with the COLNAME= operand to cre-
ate a SAS data set named MYDATA. The new data set has variables named with the
COLNAME= operand. The data are in the FROM matrix X, and there are two obser-
vations because X has two rows of data. The COLNAME= operand gives descriptive
names to the data set variables. Here is the code:

x={1 2 3, 4 5 6};
varnames=’x1’:’x3’;

/* creates data set MYDATA with variables X1, X2, X3 */
create mydata from x [colname=varnames];
append from x;

CSHAPE Function

reshapes and repeats character values

CSHAPE(matrix, nrow, ncol, size<, padchar>)

The inputs to the CSHAPE function are as follows:

matrix is a character matrix or quoted literal.

nrow is the number of rows.

ncol is the number of columns.

size is the element length.

padchar is a padding character.

608 � Chapter 20. Language Reference

The CSHAPE function shapes character matrices. See also the description of the
SHAPE function, which is used with numeric data.

The dimension of the matrix created by the CSHAPE function is specified by nrow
(the number of rows), ncol (the number of columns), and size (the element length). A
padding character is specified by padchar.

The CSHAPE function works by looking at the source matrix as if the characters of
the source elements had been concatenated in row-major order. The source characters
are then regrouped into elements of length size. These elements are assigned to the
result matrix, once again in row-major order. If there are not enough characters for
the result matrix, the source of the remaining characters depends on whether padding
was specified with padchar. If no padding was specified, the source matrix’s char-
acters are cycled through again. If a padding character was specified, the remaining
characters are all the padding character.

If one of the dimension arguments (nrow, ncol), or size) is zero, the function computes
the dimension of the output matrix by dividing the number of elements of the input
matrix by the product of the nonzero arguments.

For example, the following statement produces the matrix R, as shown:

r=cshape(’abcd’,2,2,1);

R 2 rows 2 cols (character, size 1)

a b
c d

The following statement produces a different matrix R, as shown:

r=cshape(’a’,1,2,3);

R 1 row 2 cols (character, size 3)

aaa aaa

The following statement produces the matrix R, as shown:

r=cshape({’ab’ ’cd’,
’ef’ ’gh’,
’ij’ ’kl’}, 2, 2, 3);

R 2 rows 2 cols (character, size 3)

abc def
ghi jkl

The following statement produces the matrix R, as shown:

CUSUM Function � 609

r=cshape(’XO’,3,3,1);

R 3 rows 3 cols (character, size 1)

X O X
O X O
X O X

Finally, the following statement produces the matrix R, as shown:

r=cshape(’abcd’,2,2,3,’*’);

R 2 rows 2 cols (character, size 3)

abc d**
*** ***

CUSUM Function

calculates cumulative sums

CUSUM(matrix)

where matrix is a numeric matrix or literal.

The CUSUM function returns a matrix of the same dimension as the argument ma-
trix. The result contains the cumulative sums obtained by scanning the argument and
summing in row-major order.

For example, the following statements produce the matrices A and B, as shown:

a=cusum({1 2 4 5});
b=cusum({5 6, 3 4});

A 1 row 4 cols (numeric)

1 3 7 12

B 2 rows 2 cols (numeric)

5 11
14 18

610 � Chapter 20. Language Reference

CVEXHULL Function

finds a convex hull of a set of planar points

CVEXHULL(matrix)

where matrix is an n× 2 matrix of (x, y) points.

The argument for the CVEXHULL function is an n× 2 matrix of (x, y) points. The
result matrix is an n × 1 matrix of indices. The indices of points in the convex hull
in counterclockwise order are returned as the first part of the result matrix, and the
negative of the indices of the internal points are returned as the remaining elements
of the result matrix. Any points that lie on the convex hull but lie on a line segment
joining two other points on the convex hull are not included as part of the convex hull.

The result matrix can be split into positive and negative parts by using the LOC
function. For example, the following statements find the index vector for the convex
hull and print the associated points:

points = {
0 2, 0.5 2, 1 2, 0.5 1, 0 0, 0.5 0, 1 0,

2 -1, 2 0, 2 1, 3 0, 4 1, 4 0, 4 -1,
5 2, 5 1, 5 0, 6 0 };

indices = cvexhull(points);
hullIndices = indices[loc(indices>0)];
convexHull = points[hullIndices,];
print convexHull;

CONVEXHULL

0 2
0 0
2 -1
4 -1
6 0
5 2

DATASETS Function

obtains the names of SAS data sets in a SAS data library

DATASETS(<libref>)

where libref is the name of a SAS data library. For more information about specifying
a SAS data library, see Chapter 6.

The DATASETS function returns a character matrix containing the names of the SAS
data sets in the specified SAS data library. The result is a character matrix with n rows
and one column, where n is the number of data sets in the library. If no argument is
specified, IML uses the default libname. (See the DEFLIB= option in the description
of the RESET statement.)

DELETE Call � 611

For example, suppose you have several data sets in the SAS data library SASUSER.
You can list the names of the data sets in SASUSER by using the DATASETS func-
tion as follows:

lib={sasuser};
a=datasets(lib);

Here is the output:

A 6 rows 1 col (character, size 8)

CLASS
FITNESS
GROWTH
HOUSES
SASPARM
TOBACCO

DELETE Call

deletes a SAS data set

CALL DELETE(<libname,> member-name);

The inputs to the DELETE subroutine are as follows:

libname is a character matrix or quoted literal containing the name of a SAS
data library.

member-name is a character matrix or quoted literal containing the name of a data
set.

The DELETE subroutine deletes a SAS data set in the specified library. If a one-level
name is specified, the default SAS data library is used. (See the DEFLIB= option in
the description of the RESET statement.)

Some examples follow:

call delete(work,a); /* deletes WORK.A */

reset deflib=work; /* sets default libname to WORK */
call delete(a); /* also deletes WORK.A */

d=datasets(’work’); /* returns all data sets in WORK */
call delete(work,d[1]);

/* deletes data set whose name is */
/* first element of matrix D */

612 � Chapter 20. Language Reference

DELETE Statement

marks observations for deletion

DELETE <range> <WHERE(expression)>;

The inputs to the DELETE statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

Use the DELETE statement to mark records for deletion in the current output data
set. To delete records and renumber the remaining observations, use the PURGE
statement.

You can specify range by using a keyword or by record number using the POINT
operand. The following keywords are valid values for range:

ALL specifies all observations.

CURRENT specifies the current observation.

NEXT <number> specifies the next observation or the next number of observa-
tions.

AFTER specifies all observations after the current one.

POINT operand specifies observations by number, where operand is one of the
following:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}
record numbers

the name of a matrix point p
containing record numbers

an expression in parentheses point (p+1)

CURRENT is the default value for range. If the current data set has an index in use,
the POINT option is invalid.

The WHERE clause conditionally selects observations that are contained within the
range specification. The general form of the WHERE clause is

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

DELETE Statement � 613

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is as follows:

clause&clause (for an AND clause)
clause|clause (for an AND clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

Here are several examples of DELETE statements:

delete; /* deletes the current obs */
delete point 34; /* deletes obs 34 */
delete all where(age<21); /* deletes obs where age<21 */

You can use the SETOUT statement with the DELETE statement as follows:

614 � Chapter 20. Language Reference

setout class point 34; /* makes CLASS current output */
delete; /* deletes ob 34 */

Observations deleted by using the DELETE statement are not physically removed
from the data set until a PURGE statement is issued.

DESIGN Function

creates a design matrix

DESIGN(column-vector)

where column-vector is a numeric column vector or literal.

The DESIGN function creates a design matrix of 0s and 1s from column-vector. Each
unique value of the vector generates a column of the design matrix. This column con-
tains ones in elements with corresponding elements in the vector that are the current
value; it contains zeros elsewhere. The columns are arranged in the sort order of the
original values.

For example, the following statements produce the design matrix A, as shown:

a={1,1,2,2,3,1};
a=design(a);

A 6 rows 3 cols (numeric)

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
1 0 0

DESIGNF Function

creates a full-rank design matrix

DESIGNF(column-vector)

where column-vector is a numeric column vector or literal.

The DESIGNF function works like the DESIGN function; however, the result matrix
is one column smaller and can be used to produce full-rank design matrices. The
result of the DESIGNF function is the same as if you took the last column off the
DESIGN function result and subtracted it from the other columns of the result.

For example, consider the following statements:

a={1,1,2,2,3,3};
b=designf(a);

These statements produce the following design matrix:

DET Function � 615

B 6 rows 2 cols (numeric)

1 0
1 0
0 1
0 1

-1 -1
-1 -1

DET Function
computes the determinant of a square matrix

DET(square-matrix)

where square-matrix is a numeric matrix or literal.

The DET function computes the determinant of square-matrix, which must be square.
The determinant, the product of the eigenvalues, is a single numeric value. If the
determinant of a matrix is zero, then that matrix is singular; that is, it does not have
an inverse.

The method performs an LU decomposition and collects the product of the diagonals
(Forsythe, Malcolm, and Moler 1967). For example, consider the following state-
ments:

a={1 1 1,1 2 4,1 3 9};
c=det(a);

These statements produce the following matrix C containing the determinant:

C 1 row 1 col (numeric)

2

The DET function (as well as the INV and SOLVE functions) uses the following
criterion to decide whether the input matrix, A = [aij]i,j=1,...,n, is singular:

sing = 100×MACHEPS× max
1≤i,j≤n

|aij |

where MACHEPS is the relative machine precision.

All matrix elements less than or equal to sing are now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal to sing, the
matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating-point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you might
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong, do the following:

616 � Chapter 20. Language Reference

• Try the GINV function to compute the generalized inverse.

• Examine the size of the singular values returned by the SVD call. The SVD call
can be used to compute a generalized inverse with a user-specified singularity
criterion.

If A is an n × n matrix, then the DET function temporarily allocates an n2 array in
order to compute the determinant.

DIAG Function
creates a diagonal matrix

DIAG(argument)

where argument can be either a numeric square matrix or a vector.

If argument is a square matrix, the DIAG function creates a matrix with diagonal
elements equal to the corresponding diagonal elements. All off-diagonal elements in
the new matrix are zeros.

If argument is a vector, the DIAG function creates a matrix with diagonal elements
that are the values in the vector. All off-diagonal elements are zeros.

For example, the following statements produce the matrix C, as shown:

a={4 3,
2 1};

c=diag(a);

C 2 rows 2 cols (numeric)

4 0
0 1

The following statements produce the matrix C = D, as shown:

b={1 2 3};
d=diag(b);

D 3 rows 3 cols (numeric)

1 0 0
0 2 0
0 0 3

DISPLAY Statement
displays fields in display windows

DISPLAY <group-spec group-options<, . . ., group-spec group-options>>;

The inputs to the DISPLAY statement are as follows:

DO Function � 617

group-spec specifies a group. It can be specified as either a compound name of
the form windowname.groupname or a window name followed by
a group of the form window-name (field-specs), where field-specs
is as defined for the WINDOW statement.

group-options can be any of the following:

NOINPUT displays the group with all fields protected so
that no data can be entered in the fields.

REPEAT repeats the group for each element of the matri-
ces specified as field operands.

BELL rings the bell, sounds the alarm, or causes the
speaker in your workstation to beep when the
window is displayed.

The DISPLAY statement directs IML to gather data into fields defined in the window
for purposes of display, data entry, or menu selection. The DISPLAY statement al-
ways refers to a window that has been previously opened by a WINDOW statement.
The statement is described completely in Chapter 13.

Following are several examples demonstrating the use of the DISPLAY statement:

display;
display w(i);
display w ("BELL") bell;
display w.g1 noinput;
display w (i protect=yes

color="blue"
j color="yellow");

DO Function

produces an arithmetic series

DO(start, stop, increment)

The inputs to the DO function are as follows:

start is the starting value for the series.

stop is the stopping value for the series.

increment is an increment value.

The DO function creates a row vector containing a sequence of numbers starting with
start and incrementing by increment as long as the elements are less than or equal
to stop (greater than or equal to stop for a negative increment). This function is a
generalization of the index creation operator (:).

For example, consider the following statement:

i=do(3,18,3);

618 � Chapter 20. Language Reference

This statements yields the following result:

I 1 row 6 cols (numeric)

3 6 9 12 15 18

Now consider the following statement:

j=do(3,-1,-1);

This statement yields the following result:

J 1 row 5 cols (numeric)

3 2 1 0 -1

DO and END Statements
group statements as a unit

DO ;

statements

END ;

The DO statement specifies that the statements following the DO statement be ex-
ecuted as a group until a matching END statement appears. DO statements often
appear in IF-THEN/ELSE statements, where they designate groups of statements to
be performed when the IF condition is true or false.

For example, consider the following statements:

if x=y then
do;

i=i+l;
print x;

end;
print y;

The statements between the DO and END statements (called the DO group) are exe-
cuted only if X = Y; that is, they are executed only if all elements of X are equal to
the corresponding elements of Y. If any element of X is not equal to the correspond-
ing element of Y, the statements in the DO group are skipped and the next statement
is executed. In this case, the next statement executed is as follows:

print y;

DO groups can be nested; there is no limit imposed on the number of nested DO
groups.

Here is an example of nested DO groups:

DO Statement, Iterative � 619

if y>z then
do;

if z=0 then
do;

z=b*c;
x=2#y;

end;
end;

It is good practice to indent the statements in a DO group as shown in the preceding
example so that their positions indicate their levels of nesting.

DO Statement, Iterative

iteratively executes a DO group

DO variable=start TO stop <BY increment>;

The inputs to the DO statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

When the DO group has this form, the statements between the DO and END state-
ments are executed repetitively. The number of times the statements are executed
depends on the evaluation of the expressions given in the DO statement.

The start, stop, and increment values should be scalars or expressions with evalua-
tions that yield scalars. The variable is given a new value for each repetition of the
group. The index variable starts with the start value, then is incremented by the in-
crement value each time. The iterations continue as long as the index variable is less
than or equal to the stop value. If a negative increment is used, then the rules reverse
so that the index variable decrements to a lower bound. Note that the start, stop, and
increment expressions are evaluated only once before the looping starts.

For example, consider the following statements:

do i=1 to 5 by 2;
print ’THE VALUE OF I IS:’ i;

end;

These statements produce the following output:

620 � Chapter 20. Language Reference

I
THE VALUE OF I IS: 1

I
THE VALUE OF I IS: 3

I
THE VALUE OF I IS: 5

DO DATA Statement

repeats a loop until an end of file occurs

DO DATA <variable=start TO stop>;

The inputs to the DO DATA statement are as follows:

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

The DO DATA statement is used for repetitive DO loops that need to be exited upon
the occurrence of an end of file for an INPUT, READ, or other I/O statement. This
form is common for loops that read data from either a sequential file or a SAS data
set.

When an end of file is reached inside the DO DATA group, IML immediately jumps
from the group and starts executing the statement following the END statement. DO
DATA groups can be nested, where each end of file causes a jump from the most local
DO DATA group. The DO DATA loop simulates the end-of-file behavior of the SAS
DATA step. You should avoid using GOTO and LINK statements to jump out of a
DO DATA group.

Examples of valid statements follow. The first example inputs the variable NAME
from an external file for the first 100 lines or until the end of file, whichever occurs
first. Here is the code:

do data i=1 to 100;
input name $8.;

end;

Or, if reading from a SAS data set, then you can use the following code:

do data; /* read next obs until eof is reached */
read next var{x}; /* read only variable X */

end;

DO Statement with a WHILE Clause � 621

DO Statement with an UNTIL Clause

conditionally executes statements iteratively

DO UNTIL(expression);

DO variable=start TO stop <BY increment> UNTIL(expression);

The inputs to the DO UNTIL statement are as follows:

expression is an expression that is evaluated at the bottom of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

Using an UNTIL expression makes possible the conditional execution of a set of
statements iteratively. The UNTIL expression is evaluated at the bottom of the loop,
and the statements inside the loop are executed repeatedly as long as the expression
yields a zero or missing value. In the example that follows, the body of the loop
executes until the value of X exceeds 100:

x=1;
do until (x>100);

x=x+1;
end;
print x; /* x=101 */

DO Statement with a WHILE Clause

conditionally executes statements iteratively

DO WHILE(expression);

DO variable=start TO stop <BY increment> WHILE(expression);

The inputs to the DO WHILE statement are as follows:

expression is an expression that is evaluated at the top of the loop for being
true or false.

variable is the name of a variable indexing the loop.

start is the starting value for the looping variable.

stop is the stopping value for the looping variable.

increment is an increment value.

622 � Chapter 20. Language Reference

Using a WHILE expression makes possible the conditional execution of a set of state-
ments iteratively. The WHILE expression is evaluated at the top of the loop, and the
statements inside the loop are executed repeatedly as long as the expression yields a
nonzero or nonmissing value.

Note that the incrementing is done before the WHILE expression is tested. The fol-
lowing example demonstrates the incrementing:

x=1;
do while(x<100);

x=x+1;
end;
print x; /* x=100 */

The next example increments the starting value by 2:

y=1;
do x=1 to 100 by 2 while(y<200);

y=y#x;
end; /* at end of loop, x=11 and y=945 */

DURATION Function

calculates and returns a scalar containing the modified duration of a noncontin-
gent cash flow.

DURATION(times,flows,ytm)

The DURATION function returns the modified duration of a noncontingent cash flow
as a scalar.

times is an n-dimensional column vector of times. Elements should be non-
negative.

flows is an n-dimensional column vector of cash flows.

ytm is the per-period yield-to-maturity of the cash-flow stream. This is a
scalar and should be positive.

Duration of a security is generally defined as

D = −
dP
P

dy

In other words, it is the relative change in price for a unit change in yield. Since
prices move in the opposite direction to yields, the sign change preserves positivity
for convenience. With cash flows that are not yield-sensitive and the assumption of
parallel shifts to a flat term structure, duration is given by

Dmod =

∑K
k=1 tk

c(k)
(1+y)tk

P (1 + y)

ECHELON Function � 623

where P is the present value, y is the per-period effective yield-to-maturity, K is the
number of cash flows, and the kth cash flow is c(k), tk periods from the present. This
measure is referred to as modified duration to differentiate it from the first duration
measure ever proposed, Macaulay duration:

DMac =

∑K
k=1 tk

c(k)
(1+y)tk

P

This expression also reveals the reason for the name duration, since it is a present-
value-weighted average of the duration (that is, timing) of all the cash flows and is
hence an “average time-to-maturity” of the bond.

For example, consider the following statements:

times={1};
ytm={0.1};
flow={10};
duration=duration(times,flow,ytm);
print duration;

These statements produce the following output:

DURATION
0.9090909

ECHELON Function
reduces a matrix to row-echelon normal form

ECHELON(matrix)

where matrix is a numeric matrix or literal.

The ECHELON function uses elementary row operations to reduce a matrix to row-
echelon normal form, as in the following example (Graybill 1969, p. 286):

a={3 6 9,
1 2 5,
2 4 10};

e=echelon(a);

The resulting matrix is as follows:

E 3 rows 3 cols (numeric)

1 2 0
0 0 1
0 0 0

If the argument is a square matrix, then the row-echelon normal form can be obtained
from the Hermite normal form by rearranging rows that are all zeros.

624 � Chapter 20. Language Reference

EDIT Statement

opens a SAS data set for editing

EDIT SAS-data-set <VAR operand> <WHERE(expression)>

<NOBS name>;

The inputs to the EDIT statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a two-
level name (for example, SASUSER.A). For more information
about specifying SAS data sets, refer to the chapter on SAS data
sets in SAS Language Reference: Concepts.

operand selects a set of variables.

expression selects observations conditionally.

name names a variable to contain the number of observations.

The EDIT statement opens a SAS data set for reading and updating. If the data set
has already been opened, the EDIT statement makes it the current input and output
data sets.

You can specify a set of variables to use with the VAR clause, where operand can be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described in the following list:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples demonstrate each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause.

The general form of the WHERE clause is

EDIT Statement � 625

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

The EDIT statement can define a set of variables and the selection criteria that are
used to control access to data set observations. The NOBS clause returns the total
number of observations in the data set in the variable name.

626 � Chapter 20. Language Reference

The VAR and WHERE clauses are optional and can be specified in any order. The
NOBS clause is also optional.

See Chapter 6 for more information on editing SAS data sets.

To edit the data set DAT, or WORK.DAT, use the following statements:

edit dat;
edit work.dat;

To control the variables you want to edit and conditionally select observations for
editing, use the VAR and WHERE clauses. For example, to read and update observa-
tions for variable I where I is greater than 9, use the following statement:

edit work.dat var{i} where (i>9);

The following example uses the NOBS option:

/* if MYDATA has 10 observations, */
/* then ct is a numeric matrix with value 10 */
edit mydata nobs ct;

EIGEN Call
computes eigenvalues and eigenvectors

CALL EIGEN(eigenvalues, eigenvectors, A) <VECL=“vl”>;

where A is an arbitrary square numeric matrix for which eigenvalues and eigenvec-
tors are to be calculated.

The EIGEN call returns the following values:

eigenvalues a matrix to contain the eigenvalues of the input matrix.

eigenvectors names a matrix to contain the right eigenvectors of the input
matrix.

vl is an optional n × n matrix containing the left eigenvectors
of A in the same manner that eigenvectors contains the right
eigenvectors.

The EIGEN subroutine computes eigenvalues, a matrix containing the eigenvalues of
A. If A is symmetric, eigenvalues is the n×1 vector containing the n real eigenvalues
of A. If A is not symmetric (as determined by the criteria in the symmetry test
described later), eigenvalues is an n × 2 matrix containing the eigenvalues of the
n×n matrix A. The first column of A contains the real parts, Re(λ), and the second
column contains the imaginary parts Im(λ). Each row represents one eigenvalue,
Re(λ) + iIm(λ).

If A is symmetric, the eigenvalues are arranged in descending order. Otherwise, the
eigenvalues are sorted first by their real parts, then by the magnitude of their imagi-
nary parts. Complex conjugate eigenvalues, Re(λ) ± iIm(λ), are stored in standard

EIGEN Call � 627

order; that is, the eigenvalue of the pair with a positive imaginary part is followed by
the eigenvalue of the pair with the negative imaginary part.

The EIGEN subroutine also computes eigenvectors, a matrix. If A is symmetric, then
eigenvectors has orthonormal column eigenvectors of A arranged so that the matrices
correspond; that is, the first column of eigenvectors is the eigenvector corresponding
to the largest eigenvalue, and so forth. If A is not symmetric, then eigenvectors is
an n × n matrix containing the right eigenvectors of A. If the eigenvalue in row i
of eigenvalues is real, then column i of eigenvectors contains the corresponding real
eigenvector. If rows i and i+1 of eigenvalues contain complex conjugate eigenvalues
Re(λ) ± iIm(λ), then columns i and i + 1 of eigenvectors contain the real, u, and
imaginary, v, parts, respectively, of the two corresponding eigenvectors u± iv.

The eigenvalues of a matrix A are the roots of the characteristic polynomial, which
is defined as p(z) = det(zI − A). The spectrum, denoted by λ(A), is the set of
eigenvalues of the matrix A. If λ(A) = {λ1, . . . , λn}, then det(A) = λ1λ2 · · ·λn.

The trace of A is defined by

tr(A) =
n∑

i=1

aii

and tr(A) = λ1 + · · ·+ λn.

An eigenvector is a nonzero vector, x, that satisfies Ax = λx for λ ∈ λ(A). Right
eigenvectors satisfy Ax = λx, and left eigenvectors satisfy xHA = λxH , where xH

is the complex conjugate transpose of x. Taking the conjugate transpose of both sides
shows that left eigenvectors also satisfy A′x = λ̄x.

The following are properties of the unsymmetric real eigenvalue problem, in which
the real matrix A is square but not necessarily symmetric:

• The eigenvalues of an unsymmetric matrix A can be complex. If A has a
complex eigenvalue Re(λ)+iIm(λ), then the conjugate complex value Re(λ)−
iIm(λ) is also an eigenvalue of A.

• The right and left eigenvectors corresponding to a real eigenvalue of A are real.
The right and left eigenvectors corresponding to conjugate complex eigenval-
ues of A are also conjugate complex.

• The left eigenvectors of A are the same as the complex conjugate right eigen-
vectors of A′.

The three routines, EIGEN, EIGVAL, and EIGVEC, use the following test of sym-
metry for a square argument matrix A:

1. Select the entry of A with the largest magnitude:

amax = max
i,j=1,...,n

|ai,j |

628 � Chapter 20. Language Reference

2. Multiply the value of amax by the square root of the machine precision ε. (The
value of ε is the largest value stored in double precision that, when added to 1
in double precision, still results in 1.)

3. The matrix A is considered unsymmetric if there exists at least one pair of
symmetric entries that differs in more than amax

√
ε,

|ai,j − aj,i| > amax

√
ε

Consider the following statement:

call eigen(m,e,a);

If A is symmetric, then the output of this statement has the following properties:

A ∗E = E ∗ diag(M)
E′ ∗E = I(N)

These properties imply the following:

E′ = inv(E)

A = E ∗ diag(M) ∗E′

The QL method is used to compute the eigenvalues (Wilkinson and Reinsch 1971).

In statistical applications, nonsymmetric matrices for which eigenvalues are desired
are usually of the form E−1H, where E and H are symmetric. The eigenvalues L
and eigenvectors V of E−1H can be obtained by using the GENEIG subroutine or as
follows:

f=root(einv);
a=f*h*f’;
call eigen(l,w,a);
v=f’*w;

The computation can be checked by forming the residuals. Here is the code:

r=einv*h*v-v*diag(l);

The values in R should be of the order of rounding error.

The following code computes the eigenvalues and left and right eigenvectors of a
nonsymmetric matrix with four real and four complex eigenvalues:

EIGEN Call � 629

A = {-1 2 0 0 0 0 0 0,
-2 -1 0 0 0 0 0 0,
0 0 0.2379 0.5145 0.1201 0.1275 0 0,
0 0 0.1943 0.4954 0.1230 0.1873 0 0,
0 0 0.1827 0.4955 0.1350 0.1868 0 0,
0 0 0.1084 0.4218 0.1045 0.3653 0 0,
0 0 0 0 0 0 2 2,
0 0 0 0 0 0 -2 0 };

call eigen(val,rvec,A) levec=’lvec’;

The sorted eigenvalues of this matrix are as follows:

VAL

1 1.7320508
1 -1.732051
1 0

0.2087788 0
0.0222025 0
0.0026187 0

-1 2
-1 -2

You can verify the correctness of the left and right eigenvector computation by using
the following code:

/* verify right eigenvectors are correct */
vec = rvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a * vec[,j] - val[j,1] * vec[,j];
if any(abs(v) > 1e-12) then
badVectors = badVectors || j;

end;
/* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
/* the real part */
rp = val[j,1] * vec[,j] - val[j,2] * vec[,j+1];
v = a * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] + val[j,2] * vec[,j];
u = a * vec[,j+1] - ip;
if any(abs(u) > 1e-12) | any(abs(v) > 1e-12) then
badVectors = badVectors || j || j+1;

end;
end;

if ncol(badVectors) > 0 then
print "Incorrect right eigenvectors:" badVectors;

else print "All right eigenvectors are correct";

630 � Chapter 20. Language Reference

Similar code can be written to verify the left eigenvectors, using the fact that the left
eigenvectors of A are the same as the complex conjugate right eigenvectors of A′.
Here is the code:

/* verify left eigenvectors are correct */
vec = lvec;
do j = 1 to ncol(vec);
/* if eigenvalue is real */
if val[j,2] = 0. then do;
v = a‘ * vec[,j] - val[j,1] * vec[,j];
if any(abs(v) > 1e-12) then
badVectors = badVectors || j;

end;
/* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
/* Note the use of complex conjugation */
/* the real part */
rp = val[j,1] * vec[,j] + val[j,2] * vec[,j+1];
v = a‘ * vec[,j] - rp;
/* the imaginary part */
ip = val[j,1] * vec[,j+1] - val[j,2] * vec[,j];
u = a‘ * vec[,j+1] - ip;
if any(abs(u) > 1e-12) | any(abs(v) > 1e-12) then
badVectors = badVectors || j || j+1;

end;
end;

if ncol(badVectors) > 0 then
print "Incorrect left eigenvectors:" badVectors;

else print "All left eigenvectors are correct";

The EIGEN call performs most of its computations in the memory allocated for re-
turning the eigenvectors.

EIGVAL Function
computes eigenvalues

EIGVAL(A)

where A is a square numeric matrix.

The EIGVAL function returns a column vector of the eigenvalues of A. See the
description of the EIGEN subroutine for more details.

The following code computes Example 7.1.1 from Golub and Van Loan (1989):

a = { 67.00 177.60 -63.20 ,
-20.40 95.88 -87.16 ,
22.80 67.84 12.12 };

val = EIGVAL(a);
print val;

The matrix produced containing the eigenvalues is as follows:

EIGVEC Function � 631

VAL

75 100
75 -100
25 0

Notice that a is not symmetric and that the eigenvalues are complex. The first column
of the VAL matrix is the real part and the second column is the complex part of the
three eigenvalues.

A symmetric example follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigval(xpx); /* xpx is a symmetric matrix */

The matrix produced containing the eigenvalues is as follows:

A 2 rows 1 col (numeric)

33.401219
0.5987805

EIGVEC Function

computes right eigenvectors

EIGVEC(A)

where A is a square numeric matrix.

The EIGVEC function creates a matrix containing the right eigenvectors of A. You
can obtain the left eigenvectors by first transposing A. See the description of the
EIGEN subroutine for more details.

An example calculating the eigenvectors of a symmetric matrix follows:

x={1 1,1 2,1 3,1 4};
xpx=t(x)*x;
a=eigvec(xpx); /* xpx is a symmetric matrix */

These statements produce the following matrix, which contains the eigenvectors:

A 2 rows 2 cols (numeric)

0.3220062 0.9467376
0.9467376 -0.322006

632 � Chapter 20. Language Reference

END Statement

ends a DO loop or DO statement

END:

See the description of the DO and END statements.

EXECUTE Call

executes SAS statements immediately

CALL EXECUTE(operands);

where operands are character matrices or quoted literals containing valid SAS state-
ments.

The EXECUTE subroutine pushes character arguments to the input command stream,
executes them, and then returns to the calling module. You can specify up to 15
arguments. The subroutine should be called from a module rather than from the
immediate environment (because it uses the resume mechanism that works only from
modules). The strings you push do not appear in the log.

Following are examples of valid EXECUTE subroutines:

call execute("x={1 2 3, 4 5 6};");
call execute(" x ’ls’;");
call execute(" dm ’log; color source red’;");
call execute(concat(" title ’",string,"’;"));

For more details about the EXECUTE subroutine, see Chapter 15, “Using SAS/IML
Software to Generate IML Statements.”

EXP Function

calculates the exponential

EXP(matrix)

where matrix is a numeric matrix or literal.

The EXP function applies the exponential function to every element of the argument
matrix. The exponential is the natural number e raised to the indicated power. An
example of a valid statement follows:

b={1 2 3 4};
a=exp(b);

A 1 row 4 cols (numeric)

2.7182818 7.3890561 20.085537 54.59815

If you want to compute the matrix exponential for some matrix, you can call the
EXPMATRIX module in IMLMLIB.

FARMACOV Call � 633

FARMACOV Call

computes the autocovariance function for an ARFIMA(p, d, q) process

CALL FARMACOV(cov, d <, phi, theta, sigma, p, q, lag>) ;

The inputs to the FARMACOV subroutine are as follows:

d specifies a fractional differencing order. The value of d must be in the open
interval (−0.5, 0.5) excluding zero. This input is required.

phi specifies an mp-dimensional vector containing the autoregressive coeffi-
cients, where mp is the number of the elements in the subset of the AR
order. The default is zero. All the roots of φ(B) = 0 should be greater than
one in absolute value, where φ(B) is the finite-order matrix polynomial in
the backshift operator B, such that Bjyt = yt−j .

theta specifies an mq-dimensional vector containing the moving-average coeffi-
cients, where mq is the number of the elements in the subset of the MA
order. The default is zero.

p specifies the subset of the AR order. The quantity mp is defined as the
number of elements of phi.

If you do not specify p, the default subset is p= {1, 2, . . . ,mp}.

For example, consider phi=0.5.

If you specify p=1 (the default), the FARMACOV subroutine computes
the theoretical autocovariance function of an ARFIMA(1, d, 0) process as
yt = 0.5 yt−1 + εt.

If you specify p=2, the FARMACOV subroutine computes the autocovari-
ance function of an ARFIMA(2, d, 0) process as yt = 0.5 yt−2 + εt.

q specifies the subset of the MA order. The quantity mq is defined as the
number of elements of theta.

If you do not specify q, the default subset is q= {1, 2, . . . ,mq}.

The usage of q is the same as that of p.

lag specifies the length of lags, which must be a positive number. The default
is lag = 12.

The FARMACOV subroutine returns the following value:

cov is a lag + 1 vector containing the autocovariance function of an
ARFIMA(p, d, q) process.

Consider the following ARFIMA(1, 0.3, 1) process:

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

In this process, εt ∼ NID(0, 1.2). To compute the autocovariance of this process,
you can use the following code:

634 � Chapter 20. Language Reference

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmacov(cov, d, phi, theta, sigma) lag=5;
print cov;

For d ∈ (−0.5, 0.5)\{0}, the series yt represented as (1−B)dyt = εt is a stationary
and invertible ARFIMA(0, d, 0) process with the autocovariance function

γk = E(ytyt−k) =
(−1)kΓ(−2d+ 1)

Γ(k − d+ 1)Γ(−k − d+ 1)

and the autocorrelation function

ρk =
γk

γ0
=

Γ(−d+ 1)Γ(k + d)
Γ(d)Γ(k − d+ 1)

∼ Γ(−d+ 1)
Γ(d)

k2d−1, k →∞

Notice that ρk decays hyperbolically as the lag increases, rather than showing the ex-
ponential decay of the autocorrelation function of a stationary ARMA(p, q) process.

The FARMACOV subroutine computes the autocovariance function of an
ARFIMA(p, d, q) process.

For d ∈ (0.5, 0.5)\{0}, the series yt is a stationary and invertible ARFIMA(p, d, q)
process represented as

φ(B)(1−B)dyt = θ(B)εt

where φ(B) = 1−φ1B−φ2B
2− · · ·−φpB

p and θ(B) = 1− θ1B− θ2B2− · · ·−
θqB

q and εt is a white noise process; all the roots of the characteristic AR and MA
polynomial lie outside the unit circle.

Let xt = θ(B)−1φ(B)yt, so that xt follows an ARFIMA(0, d, 0) process; let zt =
(1 − B)dyt, so that zt follows an ARMA(p, q) process; let γx

k be the autocovariance
function of {xt} and γz

k be the autocovariance function of {zt}.

Then the autocovariance function of {yt} is as follows:

γk =
j=∞∑

j=−∞
γz

j γ
x
k−j

The explicit form of the autocovariance function of {yt} is given by Sowell (1992, p.
175).

FARMAFIT Call � 635

FARMAFIT Call
estimate the parameters of an ARFIMA(p, d, q) model

CALL FARMAFIT(d, phi, theta, sigma, series <, p, q, opt>) ;

The inputs to the FARMAFIT subroutine are as follows:

series specifies a time series (assuming mean zero).

p specifies the set or subset of the AR order. If you do not specify p, the
default is p=0.

If you specify p=3, the FARMAFIT subroutine estimates the coefficient of
the lagged variable yt−3.

If you specify p={1, 2, 3}, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variables yt−1, yt−2, and yt−3.

q specifies the subset of the MA order. If you do not specify q, the default is
q=0.

If you specify q=2, the FARMAFIT subroutine estimates the coefficient of
the lagged variable εt−2.

If you specify q={1, 2}, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variables εt−1 and εt−2.

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.

opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMAFIT subroutine returns the following values:

d is a scalar containing a fractional differencing order.

phi is a vector containing the autoregressive coefficients.

theta is a vector containing the moving-average coefficients.

sigma is a scalar containing a variance of the innovation series.

Consider the following ARFIMA(1, 0.3, 1) model:

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

In this model, εt ∼ NID(0, 1). To estimate the parameters of this model, you can
use the following code:

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta);
call farmafit(d, ar, ma, sigma, yt) p=1 q=1;
print d ar ma sigma;

636 � Chapter 20. Language Reference

The FARMAFIT subroutine estimates parameters d, φ(B), θ(B), and σ2
ε of an

ARFIMA(p, d, q) model. The log-likelihood function needs to be solved by itera-
tive numerical procedures such as the quasi-Newton optimization. The starting value
d is obtained by the approach of Geweke and Porter-Hudak (1983); the starting values
of the AR and MA parameters are obtained from the least squares estimates.

FARMALIK Call

computes the log-likelihood function of an ARFIMA(p, d, q) model

CALL FARMALIK(lnl, series, d <, phi, theta, sigma, p, q, opt>) ;

The inputs to the FARMALIK subroutine are as follows:

series specifies a time series (assuming mean zero).

d specifies a fractional differencing order. This argument is required; the
value of d should be in the open interval (−1, 1) excluding zero.

phi specifies an mp-dimensional vector containing the autoregressive coeffi-
cients, where mp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies an mq-dimensional vector containing the moving-average coeffi-
cients, where mq is the number of the elements in the subset of the MA
order. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.

opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMALIK subroutine returns the following value:

lnl is a three-dimensional vector. lnl[1] contains the log-likelihood function of
the model; lnl[2] contains the sum of the log determinant of the innovation
variance; and lnl[3] contains the weighted sum of squares of residuals. The
log-likelihood function is computed as −0.5× (lnl[2]+lnl[3]). If the opt=0
is specified, only the weighted sum of squares of residuals returns in lnl[1].

Consider the following ARFIMA(1, 0.3, 1) model:

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

FARMALIK Call � 637

In this model, εt ∼ NID(0, 1.2). To compute the log-likelihood function of this
model, you can use the following code:

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmasim(yt, d, phi, theta, sigma);
call farmalik(lnl, yt, d, phi, theta, sigma);
print lnl;

The FARMALIK subroutine computes a log-likelihood function of the
ARFIMA(p, d, q) model. The exact log-likelihood function was proposed by
Sowell (1992); the conditional sum of squares function was proposed by Chung
(1996).

The exact log-likelihood function only considers a stationary and invertible
ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5)\{0} represented as

φ(B)(1−B)dyt = θ(B)εt

where εt ∼ NID(0, σ2).

Let YT = [y1, y2, . . . , yT]′ and the log-likelihood function is as follows without a
constant term:

` = −1
2
(log |Σ|+ Y ′

T Σ−1YT)

where Σ = [γi−j] for i, j = 1, 2, . . . , T .

The conditional sum of squares function does not require the normality assumption.
The initial observations y0, y−1, . . . and ε0, ε−1, . . . are set to zero.

Let yt be an ARFIMA(p, d, q) process represented as

φ(B)(1−B)dyt = θ(B)εt

then the conditional sum of squares function is

` = −T
2

log

(
1
T

T∑
t=1

ε2t

)

638 � Chapter 20. Language Reference

FARMASIM Call

generates an ARFIMA(p, d, q) process

CALL FARMASIM(series, d <, phi, theta, mu, sigma, n, p, q, initial,
seed>) ;

The inputs to the FARMASIM subroutine are as follows:

d specifies a fractional differencing order. This argument is required; the
value of d should be in the open interval (−1, 1) excluding zero.

phi specifies an mp-dimensional vector containing the autoregressive coeffi-
cients, where mp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies an mq-dimensional vector containing the moving-average coeffi-
cients, where mq is the number of the elements in the subset of the MA
order. The default is zero.

mu specifies a mean value. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

n specifies the length of the series. The value of n should be greater than or
equal to the AR order. The default is n = 100 is used.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

initial specifies the initial values of random variables. The initial value is used
for the nonstationary process. If initial = a0, then y−p+1, . . . , y0 take the
same value a0. If the initial option is not specified, the initial values are set
to zero.

seed is a scalar containing the random number seed. At the first execution of the
subroutine, the seed variable is used as follows:

If seed > 0, the input seed is used for generating the series.

If seed = 0, the system clock is used to generate the seed.

If seed < 0, the value (−1)×(seed) is used for generating the series.

If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO loop–like environment, the
seed variable is used as follows: If seed > 0, the seed remains unchanged.
In other cases, after each execution of the subroutine, the current seed is
updated internally.

The FARMASIM subroutine returns the following value:

series is an n vector containing the generated ARFIMA(p, d, q) process.

FDIF Call � 639

Consider the following ARFIMA(1, 0.3, 1) process:

(1− 0.5B)(1−B)0.3(yt − 10) = (1 + 0.1B)εt

In this process, εt ∼ NID(0, 1.2). To generate this process, you can use the follow-
ing code:

d = 0.3;
phi = 0.5;
theta= -0.1;
mu = 10;
sigma= 1.2;
call farmasim(yt, d, phi, theta, mu, sigma, 100);
print yt;

The FARMASIM subroutine generates a time series of length n from an
ARFIMA(p, d, q) model. If the process is stationary and invertible, the initial
values y−p+1, . . . , y0 are produced by using covariance matrices obtained from
FARMACOV. If the process is nonstationary, the time series is recursively generated
by using the user-defined initial value or the zero initial value.

To generate an ARFIMA(p, d, q) process with d ∈ [0.5, 1), xt is first generated for
d′ ∈ (−0.5, 0), where d′ = d− 1 and then yt is generated by yt = yt−1 + xt.

To generate an ARFIMA(p, d, q) process with d ∈ (−1,−0.5], a two-step approxi-
mation based on a truncation of the expansion (1 − B)d is used; the first step is to
generate an ARFIMA(0, d, 0) process xt = (1 − B)−dεt, with truncated moving-
average weights; the second step is to generate yt = φ(B)−1θ(B)xt.

FDIF Call
obtains a fractionally differenced process

CALL FDIF(out, series, d) ;

The inputs to the FDIF subroutine are as follows:

series specifies a time series with n length.

d specifies a fractional differencing order. This argument is required; the
value of d should be in the open interval (−1, 1) excluding zero.

The FDIF subroutine returns the following value:

out is an n vector containing the fractionally differenced process.

Consider an ARFIMA(1, 0.3, 1) process

(1− 0.5B)(1−B)0.3yt = (1 + 0.1B)εt

Let zt = (1−B)0.3yt; that is, zt follows an ARMA(1,1). To get the filtered series zt,
you can use the following code:

640 � Chapter 20. Language Reference

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta) n=100;
call fdif(zt, yt, d);
print zt;

FFT Function

performs the finite Fourier transform

FFT(x)

where x is a 1× n or n× 1 numeric vector.

The FFT function returns the cosine and sine coefficients for the expansion of a vector
into a sum of cosine and sine functions.

The argument of the FFT function, x, is a 1× n or n× 1 vector. The value returned
is the resulting transform, an np× 2 matrix, where

np = floor
(n

2
+ 1
)

The elements of the first column of the returned matrix are the cosine coefficients;
that is, the ith element of the first column is

n∑
j=1

xj cos
(

2π
n

(i− 1)(j − 1)
)

for i = 1, . . . , np, where the elements of x are denoted as xj . The elements of the
second column of the returned matrix are the sine coefficients; that is, the ith element
of the second column is

n∑
j=1

xj sin
(

2π
n

(i− 1)(j − 1)
)

for i = 1, . . . , np.

Note: For most efficient use of the FFT function, n should be a power of 2. If n is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

The FFT function can be used to compute the periodogram of a time series. In con-
junction with the inverse finite Fourier transform routine IFFT, the FFT function can
be used to efficiently compute convolutions of large vectors (Gentleman and Sande
1966; Nussbaumer 1982).

As an example, suppose you measure a signal at constant time intervals. You be-
lieve the signal consists of a small number of Fourier components (that is, sines and

FFT Function � 641

cosines) corrupted by noise. The following code uses the FFT function to trans-
form the signal into the frequency domain. The code then prints the frequencies
with the largest amplitudes in the signal. According to this analysis, the signal is
primarily composed of a constant signal, a signal with frequency 4 (for example,
A cos(4t) + B sin(4t)), a signal with frequency one, and a signal with frequency 3.
The amplitudes of the remaining Fourier components, are all substantially smaller.

Signal = {
1.96 1.45 0.86 0.46 0.39 0.54 -1.65 0.60 0.43 0.20
-1.15 1.10 0.42 3.22 2.02 3.41 3.46 3.51 4.33 4.38
3.92 4.35 2.60 3.95 4.72 4.84 1.62 0.97 0.96 1.10
2.53 1.09 2.84 2.51 2.38 2.40 2.76 3.42 3.78 4.08
3.84 5.62 4.33 6.66 5.27 3.14 3.82 5.74 3.45 1.07
0.31 2.07 0.49 -1.85 0.61 0.35 -0.89 -0.92 0.33 2.31
1.13 2.28 3.73 3.78 2.63 4.15 5.27 3.62 5.99 3.79
4.00 3.18 3.03 3.52 2.08 1.70 -1.50 -1.35 -0.34 -1.52
-2.37 -2.84 -1.68 -2.22 -2.49 -3.28 -2.12 -0.81 0.84 1.91
2.10 2.24 1.24 3.24 2.89 3.14 4.21 2.65 4.67 3.87
}‘;

z = fft(Signal);
Amplitude = z[,1]##2 + z[,2]##2;

/* find index into Amplitude so that idx[1] is the largest
value, idx[2] is the second largest value, etc. */

call sortndx(idx,Amplitude,1,1);

/* print the 10 most dominant frequencies */
Amplitude = Amplitude[idx[1:10],];
print (idx[1:10]-1)[label="Freqs"] Amplitude[format=10.2];

Freqs Amplitude

0 38757.80
4 13678.28
1 4077.99
3 2726.76

26 324.23
44 269.48
12 224.09
20 217.35
11 202.30
23 201.05

Based on these results, you might choose to filter the signal to keep only the most
dominant Fourier components. One way to accomplish this is to eliminate any fre-
quencies with small amplitudes. When the truncated frequencies are transformed
back by using IFFT, you obtain a filtered version of the original signal. The follow-
ing code performs these tasks:

642 � Chapter 20. Language Reference

/* based on amplitudes, keep only first few dominant frequencies */
NumFreqs = 4;
FreqsToDrop = idx[(NumFreqs+1):nrow(idx)];
z[FreqsToDrop,] = 0;

FilteredSignal = ifft(z) / nrow(Signal);

FILE Statement

opens or points to an external file

FILE file-name <RECFM=N> <LRECL=operand>;

The inputs to the FILE statement are as follows:

file-name is a name (for defined filenames), a quoted literal, or an expres-
sion in parentheses (for pathnames).

RECFM=N specifies that the file is to be written as a pure binary file with-
out record-separator characters.

LRECL=operand specifies the record length of the output file. The default record
length is 512.

You can use the FILE statement to open a file for output, or if the file is already open,
to make it the current output file so that subsequent PUT statements write to it. The
FILE statement is similar in syntax and operation to the INFILE statement. The FILE
statement is described in detail in Chapter 7.

The file-name is either a predefined filename or a quoted string or character expres-
sion in parentheses referring to the pathname. There are two ways to refer to an input
or output file: by a pathname and by a filename. The pathname is the name as known
to the operating system. The filename is a SAS reference to the file established di-
rectly through a connection made with the FILENAME statement. You can specify
a file in either way in the FILE and INFILE statements. To specify a filename as
the operand, just give the name. The name must be one already connected to a path-
name by a previously issued FILENAME statement. There are, however, two special
filenames that are recognized by IML: LOG and PRINT. These refer to the standard
output streams for all SAS sessions. To specify a pathname, put it in quotes or specify
an expression yielding the pathname in parentheses.

When the pathname is specified, there is a limit of 64 characters to the operand.

Note that RECFM=U is equivalent to RECFM=N. If an output file is subsequently
read by a SAS DATA step, RECFM=N must be specified in the DATA step to guar-
antee that the file is read properly.

Following are several valid uses of FILE statement:

file "student.dat"; /* by literal pathname */

filename out "student.dat"; /* specify filename OUT */

FIND Statement � 643

file out; /* refer to by filename */

file print; /* standard print output */
file log; /* output to log */

file "student.dat" recfm=n; /* for a binary file */

FIND Statement

finds observations

FIND <range> <WHERE(expression)> INTO matrix-name;

The inputs to the FIND statement are as follows:

range specifies a range of observations.

expression is an expression that is evaluated for being true or false.

matrix-name names a matrix to contain the observation numbers.

The FIND statement finds the observation numbers of records in range that satisfy
the conditions of the WHERE clause. The FIND statement places these observation
numbers in the numeric matrix whose name follows the INTO keyword.

You can specify a range of observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the next number of observations

AFTER all observations after the current one

POINT operand observations specified by number, where operand is one of the
following.

Operand Example
a single record number point 5

a literal giving several point {2 5 10}
record numbers

the name of a matrix point p
containing record numbers

an expression in parentheses point (p+1)

If the current data set has an index in use, the POINT option is invalid.

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

644 � Chapter 20. Language Reference

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? = : = *

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

Following are some valid examples of the FIND statement:

find all where(name=:"Smith") into p;
find next where(age>30) into p2;

P and P2 are column vectors containing the observation numbers that satisfy the
WHERE clause in the given range. The default range is all observations.

FORWARD Function � 645

FINISH Statement

denotes the end of a module

FINISH <module-name>;

where module-name is the name of a user-defined module.

The FINISH statement signals the end of a module and the end of module definition
mode. Optionally, the FINISH statement can take the module name as its argument.
See the description of the START statement and consult Chapter 5 for further infor-
mation about defining modules.

Some examples follow:

finish;
finish mod1;

FORCE Statement

(see the description of the SAVE statement)

FORWARD Function

calculates a column vector of forward rates given vectors of spot rates and times

FORWARD(times,spot–rates)

The FORWARD function returns an n× 1 vector of (per-period) forward rates.

times is an n×1 column vector of times in consistent units. Elements should
be nonnegative.

spot–rates is an n × 1 column vector of corresponding (per-period) spot rates.
Elements should be positive.

The FORWARD function transforms the given spot rates as

f1 = s1

fi =
(

(1 + si)ti

(1 + sti−1)ti−1

) 1
ti−ti−1

− 1; i = 2, . . . , n

For example, consider the following statements:

time=T(do(1,5,1));
spot=T(do(0.05,0.09,0.01));
forward=forward(time,spot);
print forward;

646 � Chapter 20. Language Reference

These statements produce the following output:

FORWARD

0.05
0.0700952
0.0902839
0.1105642
0.1309345

FREE Statement

frees matrix storage space

FREE matrices;

FREE / <matrices>;

where matrices are names of matrices.

The FREE statement causes the specified matrices to lose their values; the memory
is then freed for other uses. After execution of the FREE statement, the matrix does
not have a value, and it returns 0 for the NROW and NCOL functions. Any printing
attributes (assigned by the MATTRIB statement) are not released.

The FREE statement is used mostly in large applications or under tight memory con-
straints to make room for more data (matrices) in the workspace.

For example, to free the matrices a, b, and c, use the following statement:

free a b c;

If you want to free all matrices, specify a slash (/) after the keyword FREE. If you
want to free all matrices except a few, then list the ones you do not want to free
after the slash. For example, to free all matrices except d and e, use the following
statement:

free / d e;

For more information, see the discussion of workspace storage in Chapter 19.

GAEND Call (Experimental)

ends a genetic algorithm optimization and frees memory resources

CALL GAEND(id);

The inputs to the GAEND call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

GAGETMEM Call (Experimental) � 647

The GAEND call ends the genetic algorithm calculations associated with id and frees
up all associated memory.

See the GASETUP function for an example.

GAGETMEM Call (Experimental)

gets members of the current solution population for a genetic algorithm opti-
mization

CALL GAGETMEM(members, values, id<, index >);

The GAGETMEM call returns the following values:

members is a matrix representing the members of the current solution population
specified by the index parameter.

values is a matrix of objective function values, with the value at each row
corresponding to the solution in members.

The inputs to the GAGETMEM call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

index is a matrix of indices of the requested solution population members. If
index is not specified the entire population is returned.

The GAGETMEM call is used to retrieve members of the solution population and
their objective function values. If the elite parameter of the GASETSEL call is
nonzero, then the first elite members of the population have the most optimal objec-
tive function values of the population, and those elite members are sorted in ascending
order of objective function value for a minimization problem, and in descending order
for a maximization problem.

If a single member is requested, that member is returned as-is in members. If more
than one member is requested in a GAGETMEM call, each row of members has
one solution, shaped into a row vector. If solutions are not of fixed length, then the
number of columns of members equals the number of elements of the largest solution,
and rows representing solutions with fewer elements have the extra elements filled in
with missing values.

See the GASETUP function for an example.

648 � Chapter 20. Language Reference

GAGETVAL Call (Experimental)

gets current solution objective function values for a genetic algorithm optimiza-
tion

CALL GAGETVAL(values, id<, index >);

The GAGETVAL call returns the following values:

values is a matrix of objective function values for solutions in the current pop-
ulation specified by index. If index is not present, then values for all so-
lutions in the population are returned. Each row in values corresponds
to one solution.

The inputs to the GAGETVAL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

index is a matrix of indices of the requested objective function values. If
index is not specified, then all objective function values are returned.

The GAGETVAL call is used to retrieve objective function values of the current so-
lution population. If the elite parameter of the GASETSEL call is nonzero, then the
first elite members of the population have the most optimal objective function values
of the population, and those elite members are sorted in ascending order of objective
function value for a minimization problem, or in descending order for a maximization
problem.

See the GASETUP function for an example.

GAINIT Call (Experimental)

creates and initializes a solution population for a genetic algorithm optimization

CALL GAINIT(id, popsize <, < bounds > <, modname > >);

The inputs to the GAINIT call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

popsize is the number of solution matrices to create and initialize.

bounds is an optional parameter matrix specifying the lower and upper bounds
for each element of a solution matrix. It is only used for integer and
real fixed-length vector problem encoding.

modname is the name of a user-written module to be called from GAINIT when
generating the initial members of the solution population.

GAREEVAL Call (Experimental) � 649

The GAINIT call creates the members and computes the objective values for an initial
solution population for a genetic algorithm optimization. If the problem encoding is
specified as sequence in the corresponding GASETUP function call, and no modname
parameter is specified, then GAINIT creates an initial population of vectors of ran-
domly ordered integer values ranging from 1 to the size parameter of the GASETUP
function call. Otherwise, you control how the population is created and initialized
with the bounds and modname parameters.

If real or integer fixed-length vector encoding is specified in the corresponding
GASETUP function call, then the bounds parameter can be supplied as a 2 x n matrix,
where the dimension n equals the size parameter of the GASETUP function call: the
first row gives the lower bounds of the corresponding vector elements and the second
row gives the upper bounds. The solutions resulting from all IML-supplied crossover
and mutation operators are checked to ensure they are within the upper and lower
bounds, and any solution components violating the bounds are reset to the bound.
However, if user-written modules are provided for these operators, the modules are
expected to do the bounds checking internally. If no modname parameter is specified,
the initial population is generated by random variation of the solution components
between the lower and upper bounds.

For all problem encodings, if the modname parameter is specified, it is expected to be
the name of a user-written subroutine module with one parameter. The module should
generate and return an individual solution in that parameter. The GAINIT call invokes
that module popsize times, once for each member of the initial solution population.
The modname parameter is required if the encoding parameter of the corresponding
GASETUP function call was 0 or if the bounds parameter is not specified for real or
integer fixed-length vector encoding.

See the GASETUP function for an example.

GAREEVAL Call (Experimental)

reevaluates the objective function values for a solution population of a genetic
algorithm optimization

CALL GAREEVAL(id);

The inputs to the GAREEVAL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

The GAREEVAL call computes the objective values for a solution population of a
genetic algorithm optimization. Since the GAINIT call and the GAREGEN call also
evaluate the objective function values, it is usually not necessary to call GAREEVAL.
It is provided to handle the situation of a user modifying an objective function in-
dependently—for example, adjusting a global variable to relax or tighten a penalty
constraint. In such a case, GAREEVAL should be called before the next GAREGEN
call.

650 � Chapter 20. Language Reference

GAREGEN Call (Experimental)
replaces the current solution population by applying selection, crossover, and
mutation for a genetic algorithm optimization problem

CALL GAREGEN(id);

The inputs to the GAREGEN call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

The GAREGEN call applies the genetic algorithm to create a new solution population
from the current population. As the first step, if the elite parameter of the correspond-
ing GASETSEL call is nonzero, the best elite members of the current population
are copied into the new population, sorted by objective value with the best objective
value first. If a crossover operator has been specified in a corresponding GASETCRO
call or a default crossover operator is in effect, the remaining members of the pop-
ulation are determined by selecting members of the current population, applying the
crossover operator to generate offspring, and mutating the offspring according to the
mutation probability and mutation operator. Either the mutation probability and op-
erator are specified in the corresponding GASETMUT call or, if no such call is made,
a default value of 0.05 is assigned to the mutation probability, and a default muta-
tion operator is assigned based on the problem encoding (see the GASETMUT call).
The offspring are then transferred to the new population. If the no-crossover option is
specified in the GASETCRO call, then only mutation is applied to the non-elite mem-
bers of the current population to form the new population. After the new population is
formed, it becomes the current solution population, and the objective function speci-
fied in the GASETOBJ call is evaluated for each member.

See the GASETUP function for an example.

GASETCRO Call (Experimental)
sets the crossover operator for a genetic algorithm optimization

CALL GASETCRO(id, crossprob, type <, parm >);

The inputs to the GASETCRO call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

crossprob is the crossover probability, which has a range from zero to one. It
specifies the probability that selected members of the current genera-
tion will undergo crossover to produce new offspring for the next gen-
eration.

type specifies the kind of crossover operator to be used. type is used in
conjunction with parm to specify either a user-written module for the
crossover operator, or one of several other operators that IML provides,
as explained in the following list.

GASETCRO Call (Experimental) � 651

parm is a matrix whose interpretation depends on the value of type, as de-
scribed in the following list.

The GASETCRO call enables you to specify the crossover operator to be used in the
genetic algorithm optimization problem. You can specify the following options with
the type parameter:

type=-1 specifies that no crossover operator be applied, and the new population
is generated by applying the mutation operator to the old population,
according to the mutation probability.

type=0 specifies that a user-written module, whose name is passed in the parm
parameter, be used as the crossover operator. This module should be
an IML subroutine with four parameters. The module should return
the new offspring solutions in the first two parameters based on the
input parent solutions, which are selected by the genetic algorithm and
passed into the module in the last two parameters. The module is called
once for each crossover operation within the GAREGEN call to create
a new generation of solutions.

type=1 specifies the simple operator, defined for fixed-length integer and real
vector encoding. To apply this operator, a position k within the vector
of length n is chosen at random, such that 1 ≤ k < n. Then for parents
p1 and p2 the offspring are as follows:

c1= p1[1,1:k] || p2[1,k+1:n];

c2= p2[1,1:k] || p1[1,k+1:n];

For real fixed-length vector encoding, you can specify an additional
parameter, a, with the parm parameter, where a is a scalar and 0 <
a ≤ 1. It modifies the offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k] || x2[1,k+1:n];

x1 = a * p1 + (1-a) * p2
c2 = p2[1,1:k] || x1[1,k+1:n];

Note that for a = 1, which is the default value, x2 and x1 are the same
as p2 and p1. Small values of a reduce the difference between the
offspring and parents. For integer encoding, the parm parameter is
ignored and a is always 1.

type=2 specifies the two-point operator, defined for fixed-length integer and
real vector encoding with length n ≥ 3. To apply this operator, two po-
sitions k1 and k2 within the vector are chosen at random, such that
1 ≤ k1 < k2 < n. Element values between those positions are
swapped between parents. For parents p1 and p2 the offspring are as
follows:

652 � Chapter 20. Language Reference

c1 = p1[1,1:k1] || p2[1,k1+1:k2] || p1[1,k2+1:n];

c2 = p2[1,1:k1] || p1[1,k1+1:k2] || p2[1,k2+1:n];

For real vector encoding, you can specify an additional parameter, a, in
the parm field, where 0 < a ≤ 1. It modifies the offspring as follows:

x2 = a * p2 + (1-a) * p1;
c1 = p1[1,1:k1] || x2[1,k1+1:k2] || p1[1,k2+1:n];

x1 = a * p1 + (1-a) * p2;
c2 = p2[1,1:k1] || x1[1,k1+1:k2] || p2[1,k2+1:n];

Note that for a = 1, which is the default value, x2 and x1 are the same
as p2 and p1. Small values of a reduce the difference between the
offspring and parents. For integer encoding, the parm parameter is
ignored if present and a is always 1.

type=3 specifies the arithmetic operator, defined for real and integer fixed-
length vector encoding. This operator computes offspring of parents
p1 and p2 as follows:

c1 = a * p1 + (1-a) * p2;
c2 = a * p2 + (1-a) * p1;

where a is a random number between 0 and 1. For integer encoding,
each component is rounded off to the nearest integer. It has the ad-
vantage that it always produces feasible offspring for a convex solution
space. A disadvantage of this operator is that it tends to produce off-
spring toward the interior of the search region, so that it can be less
effective if the optimum lies on or near the search region boundary.

type=4 specifies the heuristic operator, defined for real fixed-length vector en-
coding. This operator computes the first offspring from the two parents
p1 and p2 as follows:

c1 = a * (p2 - p1) + p2;

where p2 is the parent with the better objective value, and a is a random
number between 0 and 1. The second offspring is computed as in the
arithmetic operator, as follows:

c2 = (1 - a) * p1 + a * p2;

This operator is unusual in that it uses the objective value. It has the
advantage of directing the search in a promising direction, and automat-
ically fine-tuning the search in an area where solutions are clustered. If
upper and lower bound constraints are specified in the GAINIT call, the
offspring are checked against the bounds, and any component outside
its bound is set equal to that bound.

type=5 specifies the partial match operator, defined for sequence encoding.
This operator produces offspring by transferring a subsequence from
one parent, and filling the remaining positions in a way consistent with

GASETCRO Call (Experimental) � 653

the position and ordering in the other parent. Start with two parents and
randomly chosen cutpoints as follows:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};

The first step is to cross the selected segments (. indicates positions
yet to be determined):

c1 = {. . 9 3 4 1 . . .};
c2 = {. . 3 4 5 6 . . .};

Next, define a mapping according to the two selected segments, as fol-
lows:

9-3, 3-4, 4-5, 1-6

Next, fill in the positions where there is no conflict from the corre-
sponding parent:

c1 = {. 2 9 3 4 1 7 8 .};
c2 = {8 7 3 4 5 6 2 . .};

Last, fill in the remaining positions from the subsequence mapping. In
this case, for the first child 1 → 6 and 9 → 3, and for the second child
5 → 4, 3 → 9, and 6 → 1:

c1 = {6 2 9 3 4 1 7 8 5};
c2 = {8 7 3 4 5 6 2 9 1};

This operator tends to maintain similarity of both the absolute position
and relative ordering of the sequence elements, and is useful for a wide
range of sequencing problems.

type=6 specifies the order operator, defined for sequence encoding. This opera-
tor produces offspring by transferring a subsequence of random length
and position from one parent, and filling the remaining positions ac-
cording to the order from the other parent. For parents p1 and p2, first
choose a subsequence, as follows:

p1 = {1 2|3 4 5 6|7 8 9};
p2 = {8 7|9 3 4 1|2 5 6};
c1 = {. . 3 4 5 6 . . .};
c2 = {. . 9 3 4 1 . . .};

Starting at the second cutpoint, the elements of p2 are in the following
order (cycling back to the beginning):

2 5 6 8 7 9 3 4 1

After removing 3, 4, 5 and 6, which have already been placed in c1,
you have the following:

2 8 7 9 1

654 � Chapter 20. Language Reference

Placing these back in order, starting at the second cutpoint, yields the
following:

c1 = {9 1 3 4 5 6 2 8 7};

Applying this logic to c2 yields the following:

c2 = {5 6 9 3 4 1 7 8 2};

This operator maintains the similarity of the relative order, or adja-
cency, of the sequence elements of the parents. It is especially effective
for circular path-oriented optimizations, such as the traveling salesman
problem.

type=7 specifies the cycle operator, defined for sequence encoding. This oper-
ator produces offspring such that the position of each element value in
the offspring comes from one of the parents. For example, consider the
following parents p1 and p2:

p1 = {1 2 3 4 5 6 7 8 9};
p2 = {8 7 9 3 4 1 2 5 6};

For the first child, pick the first element from the first parent, as follows:

c1 = {1};

To maintain the condition that the position of each element value must
come from one of the parents, the position of the ’8’ value must come
from p1, because the ’8’ position in p2 is already taken by the ’1’ in c1:

c1 = {1 8 .};

Now the position of ’5’ must come from p1, and so on until the process
returns to the first position:

c1 = {1 . 3 4 5 6 . 8 9};

At this point, choose the remaining element positions from p2:

c1 = {1 7 3 4 5 6 2 8 9};

For the second child, starting with the first element from the second
parent, similar logic produces the following:

c2 = {8 2 9 3 4 1 7 5 6};

This operator is most useful when the absolute position of the elements
is of most importance to the objective value.

A GASETCRO call is required when 0 is specified for the encoding parameter in
the GASETUP call, but for fixed-length vector and sequence encoding, a default
crossover operator is used in the GAREGEN call when no GASETCRO call is made.
For sequence encoding, the default is the partial match operator, unless the traveling
salesman option was specified in the GASETOBJ call, in which case the order oper-
ator is the default. For integer fixed-length vector encoding, the default is the simple
operator. For real fixed-length vector encoding, the default is the heuristic operator.

See the GASETUP function for an example.

GASETMUT Call (Experimental) � 655

GASETMUT Call (Experimental)

sets the mutation operator for a genetic algorithm optimization

CALL GASETMUT(id, mutprob <, type, <, parm > >);

The inputs to the GASETMUT call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

mutprob is the probability for a given solution to undergo mutation, a number
between 0 and 1.

type specifies the kind of mutation operator to be used. type is used in con-
junction with parm to specify either a user-written module for the mu-
tation operator, or one of several other operators that IML provides, as
explained in the following list.

parm is a matrix whose interpretation depends on the value of type, as de-
scribed in the following list.

The GASETMUT call enables you to specify the frequency of mutation and the mu-
tation operator to be used in the genetic algorithm optimization problem. If the type
parameter is not specified, then the GASETMUT call only alters the mutation prob-
ability, without resetting the mutation operator, and any operator set by a previous
GASETMUT call remains in effect. You can specify the following mutation opera-
tors with the type parameter:

type=0 specifies that a user-written module, whose name is passed in the parm
parameter, be used as the mutation operator. This module should be
an IML subroutine with one parameter, which receives the solution to
be mutated. The module is called once for each mutation operation,
and is expected to modify the input solution according to the desired
mutation operation. Any checking of bounds specified in the GAINIT
call should be done inside the module; in this case they are not checked
by IML.

type=1 specifies the uniform mutation operator, defined for fixed-length real
or integer encoding, with upper and lower bounds specified in the
GAINIT call. The parm parameter is not used with this option. To
apply this operator, a position k is randomly chosen within the solution
vector v, and v[k] is modified to a random value between the upper and
lower bounds for element k. This operator can prove especially useful
in early stages of the optimization, since it tends to distribute solutions
widely across the search space, and avoid premature convergence to a
local optimum. However, in later stages of an optimization with real
vector encoding, when the search needs to be fine-tuned to home in on
an optimum, the uniform operator can hinder the optimization.

656 � Chapter 20. Language Reference

type=2 specifies the delta mutation operator, defined for integer and real fixed-
length vector encoding. This operator first chooses an element of the
solution at random, and then perturbs that element by a fixed amount,
delta, which is set with the parm parameter. delta has the same dimen-
sion as the solution vectors, and each element delta[k] is set to parm[k],
unless parm is a scalar, in which case all elements are set equal to parm.
For integer encoding, all delta[k] are truncated to integers, if they are
not integers in parm. To apply the mutation, a randomly chosen ele-
ment k of the solution vector v is modified such that one of the follow-
ing statements is true:

v[k] = v[k] + delta[k]; /* with probability 0.5 */
or

v[k] = v[k] - delta[k];

If there are bounds specified for the problem in the GAINIT call, then
v[k] is adjusted as necessary to fit within the bounds. This operator
gives you the ability to control the scope of the search with the parm
matrix. One possible strategy is to start with a larger delta value, and
then reduce it with subsequent GASETMUT calls as the search pro-
gresses and begins to converge to an optimum. This operator is also
useful if the optimum is known to be on or near a boundary, in which
case delta can be set large enough to always perturb the solution ele-
ment to a boundary.

type=3 specifies the swap operator, which is defined for sequence problem
encoding. This operator picks two random locations in the solution
vector, and swaps their value. It is the default mutation operator for
sequence encoding, except for when the traveling salesman option is
specified in the GASETOBJ call. You can also specify that multiple
swaps be made for each mutation with the parm parameter. The num-
ber of swaps defaults to 1 if parm is not specified, and is equal to parm
otherwise.

type=4 specifies the invert operator, defined for sequence encoding. This op-
erator picks two locations at random, and then reverses the order of
elements between them. This operator is most often applied to the
traveling salesman problem. The parm parameter is not used with this
operator.

Mutation is generally useful in the application of the genetic algorithm to ensure that
a diverse population of solutions is sampled to avoid premature convergence to a local
optimum. In IML, more than one GASETMUT call can be made at any time in the
progress of the algorithm. This enables flexible adaptation of the mutation process,
either changing the mutation probability or changing the operator itself. You can do
this to ensure a wide search at the beginning of the optimization, and then reduce the
variation later to narrow the search close to an optimum.

A GASETMUT call is required when an encoding parameter of 0 is specified in
the GASETUP call, but when no GASETMUT call is made for fixed-length vector
and sequence encoding, a default value of 0.05 is set for mutprob, and a default

GASETOBJ Call (Experimental) � 657

mutation operator is used in the GAREGEN call. The mutation operator defaults
to the uniform operator for fixed-length vector encoding with bounds specified in
the GAINIT call, the delta operator with a parm value of 1 for fixed-length vector
encoding with no bounds specified, the invert operator for sequence encoding when
the traveling salesman option is chosen in the GASETOBJ call, and the swap operator
for all other sequence encoded problems.

See the GASETUP function for an example.

GASETOBJ Call (Experimental)

sets the objective function for a genetic algorithm optimization

CALL GASETOBJ(id, type <, parm >);

The inputs to the GASETOBJ call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

type specifies the type of objective function to be used.

parm is a matrix whose interpretation depends on the value of type, as de-
scribed in the following list.

IML enables the specification of a user-written module to be used to compute the
value of the objective function to be optimized, or a standard preset function can be
specified. This is specified with the type and parm parameters.

type=0 specifies that a user-written function module is to be minimized. The
name of the module is supplied in the parm parameter. The specified
module should take a single parameter representing a given solution,
and return a scalar numeric value for the objective function.

type=1 specifies that a user-written function module be maximized. The name
of the module is supplied in the parm parameter. The specified module
should take a single parameter representing a given solution, and return
a scalar numeric value for the objective function.

type=2 specifies an objective function from the traveling salesman problem,
which is minimized. This option is valid only if sequence encoding is
specified in the corresponding GASETUP function call, and the solu-
tion vector is to be interpreted as a circular route, with each element
representing a location. The parm parameter should be a square cost
matrix, such that parm[i, j] is the cost of going from location i to lo-
cation j. The dimension of the matrix should be the same as the size
parameter of the corresponding GASETUP function call.

The specified objective function is called once for each solution, to evaluate the
objective values for the GAREGEN call, GAINIT call, and GAREEVAL call. Also,

658 � Chapter 20. Language Reference

the objective values for the current solution population are reevaluated if GASETOBJ
is called after a GAINIT call.

See the GASETUP function for an example.

GASETSEL Call (Experimental)

sets the selection parameters for a genetic algorithm optimization

CALL GASETSEL(id, elite, type, parm);

The inputs to the GASETSEL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which
was returned by the GASETUP function.

elite specifies the number of solution population members to carry over un-
altered to the next generation in the GAREGEN call. If nonzero, then
elite members with the best objective function values will be carried
over without crossover or mutation.

type specifies the selection method to use.

parm is a parameter used to control the selection pressure.

This module sets the selection parameters that are used in the GAREGEN call to
select solutions for the crossover operation. IML currently enables you to choose
between two variants of the “tournament” selection method in which a group of dif-
ferent solutions is picked at random from the current solution population, and the
solution from that group with the best objective value is selected. In the first varia-
tion, chosen by setting type to 0, the most optimal solution is always selected, and
the parm parameter is used to specify the size of the group, always two or greater.
The larger the group size, the greater the selective pressure. In the second variation,
chosen by setting type = 1, the group size is set to 2, and the best solution is chosen
with probability specified by parm. If parm is 1 the best solution is always picked,
and a parm value of 0.5 is equivalent to pure random selection. The parm value must
be between 0.5 and 1. The first variation, type=0, always produces a selective pres-
sure greater than for type=1. Higher selective pressure will lead to faster convergence
of the genetic algorithm, but is more likely to give premature convergence to a local
optimum.

In order to ensure that the best solution of the current solution population is always
carried over to the next generation, an elite value of 1 should be specified. Higher
values of elite generally lead to faster convergence of the algorithm, but they increase
the chances of premature convergence to a local optimum. If GASETSEL is not
called, default values of elite=1, type=1, and parm=2 are used in the optimization.

See the GASETUP function for an example.

GASETUP Function (Experimental) � 659

GASETUP Function (Experimental)

sets up the problem encoding for a genetic algorithm optimization problem

GASETUP(encoding, size <, seed >)

The GASETUP function returns a scalar number identifying the genetic algorithm
optimization problem, to be used in subsequent calls in setting up and executing the
optimization.

The inputs to the GASETUP function are as follows:

encoding is a scalar number used to specify the form or structure of the problem
solutions to be optimized. A value of 0 is used to indicate a numeric
matrix of arbitrary dimensions, 1 to indicate a fixed-length floating-
point row vector, 2 to indicate a fixed-length integer row vector, and 3
to indicate a fixed-length sequence of integers, with alternate solutions
distinguished by different sequence ordering.

size is a numeric scalar, whose value is the vector or sequence length, if a
fixed-length encoding is specified. For arbitrary matrix encoding (en-
coding value of 0), size is not used.

seed is an optional initial random number seed to be used for the initializa-
tion and the selection process. If seed is not specified, or its value is 0,
an initial seed is derived from the current system time.

GASETUP is the first call that must be made to set up a genetic algorithm optimiza-
tion problem. It specifies the problem encoding, the size of a population member,
and an optional seed to use to initialize the random number generator used in the
selection process. GASETUP returns an identifying number that must be passed
to the other modules that specify genetic operators and control the execution of the
genetic algorithm. More than one optimization can be active concurrently, and op-
timization problems with different problem identifiers are completely independent.
When a satisfactory solution has been determined, the optimization problem should
be terminated with a call to GAEND to free up resources associated with the genetic
algorithm.

The following example demonstrates the use of several genetic algorithm subroutines.

/* Use a genetic algorithm to explore the solution space for the
"traveling salesman" problem. First, define the objective
function to minimize:
Compute the sum of distances between sequence of cities */

start EvalFitness(pop) global (dist);
fitness = j(nrow(pop),1);
do i = 1 to nrow(pop);

city1 = pop[i,1];
city2 = pop[i,ncol(pop)];
fitness[i] = dist[city1, city2];
do j = 1 to ncol(pop)-1;

city1 = pop[i,j];

660 � Chapter 20. Language Reference

city2 = pop[i,j+1];
fitness[i] = fitness[i] + dist[city1,city2];

end;
end;
return (fitness);

finish;

/* Set up parameters for the genetic algorithm */

mutationProb = 0.15; /* prob that a child will be mutated */
numElite = 2; /* copy this many to next generation */
numCities = 15; /* number of cities to visit */
numGenerations = 100; /* number of generations to evolve */
seed = 54321; /* random number seed */

/* fix population size; generate random locations for cities */
popSize = max(30,2*numCities);
locations = uniform(j(numCities,2,seed));

/* calculate distances between cities one time */
dist = j(numCities, numCities, 0);
do i = 1 to numCities;

do j = 1 to i-1;
v = locations[i,]-locations[j,];
dist[i,j] = sqrt(v[##]);
dist[j,i] = dist[i,j];

end;
end;

/* run the genetic algorithm */
id = gasetup(3, numCities, seed);
call gasetobj(id, 0, "EvalFitness");
call gasetcro(id, 1.0, 6);
call gasetmut(id, mutationProb, 3);
call gasetsel(id, numElite, 1, 0.95);
call gainit(id, popSize);

do i = 1 to numGenerations;
if mod(i,20)=0 then do;

call gagetval(value, id, 1);
print "Iteration:" i "Top value:" value;

end;
call garegen(id);

end;

/* report final sequence for cities */
call gagetmem(mem, value, id, 1);
print mem, value;
call gaend(id);

GBLKVP Call � 661

GBLKVP Call

defines a blanking viewport

CALL GBLKVP(viewport <, inside>);

The inputs to the GBLKVP subroutine are as follows:

viewport is a numeric matrix or literal defining a viewport. This rectangular
area’s boundary is specified in normalized coordinates, where you
specify the coordinates of the lower-left corner and the upper-right
corner of the rectangular area in the form

{minimum-x minimum-y maximum-x maximum-y}

inside is a numeric argument that specifies whether graphics output is to
be clipped inside or outside the blanking area. The default is to clip
outside the blanking area.

The GBLKVP subroutine defines an area, called the blanking area, in which nothing
is drawn until the area is released. This routine is useful for clipping areas outside the
graph or for blanking out inner portions of the graph. If inside is set to 0 (the default),
no graphics output appears outside the blanking area. Setting inside to 1 clips inside
the blanking areas.

Note that the blanking area (as specified by the viewport argument) is defined on the
current viewport, and it is released when the viewport is changed or popped. At most
one blanking area is in effect at any time. The blanking area can also be released by
the GBLKVPD subroutine or another GBLKVP call. The coordinates in use for this
graphics command are given in normalized coordinates because it is defined relative
to the current viewport.

For example, to blank out a rectangular area with corners at the coordinates (20,20)
and (80,80), relative to the currently defined viewport, use the following statement:

call gblkvp({20 20, 80 80});

No graphics or text can be written outside this area until the blanking viewport is
ended.

Alternatively, if you want to clip inside the rectangular area, use the inside parameter,
as follows:

call gblkvp({20 20, 80 80},1);

See also the description of the CLIP option in the RESET statement.

662 � Chapter 20. Language Reference

GBLKVPD Call

deletes the blanking viewport

CALL GBLKVPD;

The GBLKVPD subroutine releases the current blanking area. It enables graphics
output to be drawn in the area previously blanked out by a call to the GBLKVP
subroutine.

To release an area previously blanked out, as in the example for the GBLKVP sub-
routine, use the following statement.

/* define blanking viewport */
call gblkvp({20 20,80 80});

more graphics statements
/* now release the blanked out area */
call gblkvpd;
/* graphics or text can now be written to the area */

continue graphics statements

See also the description of the CLIP option in the RESET statement.

GCLOSE Call

closes the graphics segment

CALL GCLOSE;

The GCLOSE subroutine closes the current graphics segment. Once a segment is
closed, no other primitives can be added to it. The next call to a graph-generating
function begins building a new graphics segment. However, the GCLOSE subroutine
does not have to be called explicitly to terminate a segment; the GOPEN subroutine
causes GCLOSE to be called.

GDELETE Call

deletes a graphics segment

CALL GDELETE(segment-name);

where segment-name is a character matrix or quoted literal containing the name of
the segment.

The GDELETE subroutine searches the current catalog and deletes the first segment
found with the name segment-name.

An example of a valid statement follows:

/* SEG_A is defined as a character matrix */
/* that contains the name of the segment to delete */

call gdelete(seg_a);

GDRAW Call � 663

The segment can also be specified as a quoted literal, as follows:

call delete("plot_13");

GDRAW Call

draws a polyline

CALL GDRAW(x, y <, style><, color><, window><, viewport>);

The inputs to the GDRAW subroutine are as follows:

x is a vector containing the x coordinates of points used to draw a
sequence of lines.

y is a vector containing the y coordinates of points used to draw a
sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, where color can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
number n refers to the nth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GDRAW subroutine draws a sequence of connected lines from points represented
by values in x and y, which must be vectors of the same length. If x and y have n
points, there will be n − 1 lines. The first line will be from the point (x(1), y(1)) to
(x(2), y(2)). The lines are drawn in the same color and line style. The coordinates
in use for this graphics command are world coordinates. An example that uses the
GDRAW subroutine follows:

/* line from (50,50) to (75,75) - x and y take */
/* default window range of 0 to 100 */

call gdraw({50 75},{50 75});
call gshow;

664 � Chapter 20. Language Reference

GDRAWL Call

draws individual lines

CALL GDRAWL(xy1, xy2 <, style><, color><, window><, viewport>);

The inputs to the GDRAWL subroutine are as follows:

xy1 is a matrix of points used to draw a sequence of lines.

xy2 is a matrix of points used to draw a sequence of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, where color can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
number n refers to the nth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GDRAWL subroutine draws a sequence of lines specified by their beginning and
ending points. The matrices xy1 and xy2 must have the same number of rows and
columns. The first two columns (other columns are ignored) of xy1 give the x, y co-
ordinates of the beginning points of the line segment, and the first two columns of xy2
have x, y coordinates of the corresponding endpoints. If xy1 and xy2 have n rows, n
lines are drawn. The first line is from (xy1(1, 1), xy1(1, 2)) to (xy2(1, 1), xy2(1, 2)).
The lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates. An example that uses the GDRAWL call
follows:

/* line from (25,25) to (50,50) - x and y take */
/* default window range of 0 to 100 */

call gdrawl({25 25},{50 50});
call gshow;

GENEIG Call

computes eigenvalues and eigenvectors of a generalized eigenproblem

GENEIG Call � 665

CALL GENEIG(eigenvalues, eigenvectors, symmetric-matrix1,

symmetric-matrix2);

The inputs to the GENEIG subroutine are as follows:

eigenvalues is a returned vector containing the eigenvalues.

eigenvectors is a returned matrix containing the corresponding eigenvectors.

symmetric-matrix1 is a symmetric numeric matrix.

symmetric-matrix2 is a positive definite symmetric matrix.

The GENEIG subroutine computes eigenvalues and eigenvectors of the generalized
eigenproblem. Consider the following statement:

call geneig (m,e,a,b);

This statement computes eigenvalues M and eigenvectors E of the generalized eigen-
problem A ∗E = B ∗E ∗ diag(M), where A and B are symmetric and B is positive
definite. The vector M contains the eigenvalues arranged in descending order, and
the matrix E contains the corresponding eigenvectors in the columns.

The following example is from Wilkinson and Reinsch (1971, p. 311):

a={10 2 3 1 1,
2 12 1 2 1,
3 1 11 1 -1,
1 2 1 9 1,
1 1 -1 1 15};

b={12 1 -1 2 1,
1 14 1 -1 1,

-1 1 16 -1 1,
2 -1 -1 12 -1,
1 1 1 -1 11};

call geneig(m,e,a,b);

The matrices produced are as follows:

M
1.49235
1.10928
0.94385
0.66366
0.43278

E
-0.07638 0.14201 0.19171 -0.08292 -0.13459
0.01709 0.14242 -0.15899 -0.15314 0.06129
-0.06666 0.12099 0.07483 0.11860 0.15790
0.08604 0.12553 -0.13746 0.18281 -0.10946
0.28943 0.00769 0.08897 -0.00356 0.04147

666 � Chapter 20. Language Reference

GEOMEAN Function

calculates geometric means

GEOMEAN(matrix)

where matrix is a numeric matrix of nonnegative values.

The GEOMEAN function returns a scalar containing the geometric mean of the el-
ements of the input matrix. The geometric mean of a set of nonnegative numbers
a1, a2, . . . , an is the nth root of the product a1 · a2 · · · an.

The geometric mean is zero if any of the ai are zero. The geometric mean is not
defined for negative inputs. If any of the ai are missing, they are excluded from the
computation.

The geometric mean can be used to compute the average return on an investment.
For example, the following data gives the annual returns on U.S. Treasury bonds
from 1994–2004. The following statements compute that the average rate of return
during this time was 6.43%:

/* year return% */
TBonds = { 1994 -8.04,

1995 23.48,
1996 1.43,
1997 9.94,
1998 14.92,
1999 -8.25,
2000 16.66,
2001 5.57,
2002 15.12,
2003 0.38,
2004 4.49 };

proportion = 1 + TBonds[,2]/100; /* convert to proportion */
aveReturn = geomean(proportion);
print aveReturn;

aveReturn

1.0643334

GGRID Call

draws a grid

CALL GGRID(x, y <, style><, color><, window><, viewport>);

The inputs to the GGRID subroutine are as follows:

GINCLUDE Call � 667

x and y are vectors of points used to draw sequences of lines.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

color is a valid SAS color, where color can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
number n refers to the nth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GGRID subroutine draws a sequence of vertical and horizontal lines specified by
the x and y vectors, respectively. The start and end of the vertical lines are implicitly
defined by the minimum and maximum of the y vector. Likewise, the start and end of
the horizontal lines are defined by the minimum and maximum of the x vector. The
grid lines are drawn in the same color and line style. The coordinates in use for this
graphics command are world coordinates.

For example, use the following statements to place a grid in the lower-left corner of
the screen:

x={10,20,30,40,50};
y=x;

/* The following GGRID command places a GRID */
/* in the lower left corner of the screen, */
/* assuming the default window and viewport */

call ggrid(x,y);
call gshow;

GINCLUDE Call

includes a graphics segment

CALL GINCLUDE(segment-name);

where segment-name is a character matrix or quoted literal specifying a graphics
segment.

The GINCLUDE subroutine includes in the current graph a previously defined graph
named segment-name from the same catalog. The included segment is defined in the
current viewport but not in the current window.

668 � Chapter 20. Language Reference

The implementation of the GINCLUDE subroutine makes it possible to include
other segments in the current segment and reposition them in different viewports.
Furthermore, a segment can be included by different graphs, thus effectively reduc-
ing storage space. Examples of valid statements follow:

/* segment1 is a character variable */
/*containing the segment name */

segment1={myplot};
call ginclude(segment1);

/* specify the segment with quoted literal */
call ginclude("myseg");

GINV Function

computes the generalized inverse

GINV(matrix)

where matrix is a numeric matrix or literal.

The GINV function creates the Moore-Penrose generalized inverse of matrix. This
inverse, known as the four-condition inverse, has these properties:

If G = GINV(A) then

AGA = A GAG = G (AG)′ = AG (GA)′ = GA

The generalized inverse is also known as the pseudoinverse, usually denoted by A−.
It is computed by using the singular value decomposition (Wilkinson and Reinsch
1971).

See Rao and Mitra (1971) for a discussion of properties of this function.

Consider the following model:

Y = Xβ + ε

Least squares regression for this model can be performed by using the following
statement as the estimate of β:

b=ginv(x)*y;

This solution has minimum b′b among all solutions minimizing ε′ε, where ε = Y −
Xb.

Projection matrices can be formed by specifying GINV(X) ∗ X (row space) or
X∗GINV(X) (column space).

The following program demonstrates some common uses of the GINV function:

GINV Function � 669

A = {1 0 1 0 0,
1 0 0 1 0,
1 0 0 0 1,
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1 };

/* find generalized inverse */
Ainv = ginv(A);

/* find LS solution: min |Ax-b|^2 */
b = { 3, 2, 4, 2, 1, 3 };
x = Ainv*b;

/* form projection matrix onto row space.
Note P = P‘ and P*P = P */

P = Ainv*A;

/* find numerical rank of A */
rankA = round(trace(P));

reset fuzz;
print Ainv, rankA, x, P;

AINV

0.2666667 0.2666667 0.2666667 -0.066667 -0.066667 -0.066667
-0.066667 -0.066667 -0.066667 0.2666667 0.2666667 0.2666667

0.4 -0.1 -0.1 0.4 -0.1 -0.1
-0.1 0.4 -0.1 -0.1 0.4 -0.1
-0.1 -0.1 0.4 -0.1 -0.1 0.4

RANKA

4

X

2
1
1
0
2

P

0.8 -0.2 0.2 0.2 0.2
-0.2 0.8 0.2 0.2 0.2
0.2 0.2 0.8 -0.2 -0.2
0.2 0.2 -0.2 0.8 -0.2
0.2 0.2 -0.2 -0.2 0.8

670 � Chapter 20. Language Reference

If A is an n × m matrix, then, in addition to the memory allocated for the return
matrix, the GINV function temporarily allocates an n2 +nm array for performing its
computation.

GOPEN Call

opens a graphics segment

CALL GOPEN(<segment-name><, replace><, description>);

The inputs to the GOPEN subroutine are as follows:

segment-name is a character matrix or quoted literal specifying the name of a
graphics segment.

replace is a numeric argument.

description is a character matrix or quoted text string with a maximum length
of 40 characters.

The GOPEN subroutine starts a new graphics segment. The window and viewport
are reset to the default values ({0 0 100 100}) in both cases. Any attribute modified
by using a GSET call is reset to its default value, which is set by the attribute’s
corresponding GOPTIONS value.

A nonzero value for replace indicates that the new segment should replace the first
found segment with the same name, and zero indicates otherwise. If you do not
specify the replace flag, the flag set by a previous GSTART call is used. By default,
the GSTART subroutine sets the flag to NOREPLACE.

The description is a text string of up to 40 characters that you want to store with the
segment to describe the graph.

Two graphs cannot have the same name. If you try to create a segment—say,
PLOT–A—twice, the second segment is given a name generated by IML.

To open a new segment named COSINE, set replace to replace a like-named segment,
and attach a description to the segment. Use the following statement:

call gopen(’cosine’,1,’Graph of Cosine Curve’);

GOTO Statement

jumps to a new statement

GOTO label;

where label is a labeled statement. Execution jumps to this statement. A label is a
name followed by a colon (:).

The GOTO (or GO TO) statement directs IML to jump immediately to the statement
with the given label and begin executing statements from that point. Any IML state-
ment can have a label, which is a name followed by a colon preceding any executable
statement.

GPIE Call � 671

GOTO statements are usually clauses of IF statements. For example:

if x>y then goto skip;
y=log(y-x);
yy=y-20;
skip: if y<0 then

do;
more statements

end;

The function of GOTO statements is usually better performed by DO groups. For
example, the preceding statements could be better written as follows:

if x<=y then
do;

y=log(y-x);
yy=y-20;

end;
more statements

CAUTION: You can only use the GOTO statement inside a module or a DO group.
As good programming practice, you should avoid using a GOTO statement when it
refers to a label preceding the GOTO statement; otherwise, an infinite loop is possi-
ble.

GPIE Call

draws pie slices

CALL GPIE(x, y, r <, angle1><, angle2><, color><, outline>

<, pattern><, window><, viewport>);

The inputs to the GPIE subroutine are as follows:

x and y are numeric scalars (or possibly vectors) defining the center (or
centers) of the pie (or pies).

r is a scalar or vector giving the radii of the pie slices.

angle1 is a scalar or vector giving the start angles. It defaults to 0.

angle2 is a scalar or vector giving the terminal angles. It defaults to 360.

color is a valid SAS color, where color can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
number n refers to the nth color in the color list.

outline is an index indicating the side of the slice to draw. The default is 3.

pattern is a character matrix or quoted literal that specifies the pattern with
which to fill the interior of a closed curve.

672 � Chapter 20. Language Reference

window is a numeric matrix or literal specifying a window.
This is given in world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GPIE subroutine draws one or more pie slices. The number of pie slices is
the maximum dimension of the first five vectors. The angle arguments are specified
in degrees. The start angle (angle1) defaults to 0, and the terminal angle (angle2)
defaults to 360. Outline is an index that indicates the side of the slice to draw. The
outline specification can be one of the following:

<0 uses absolute value as the line style and draws no line segment from center to
arc.

0 draws no line segment from center to arc.

1 draws an arc and line segment from the center to the starting angle point.

2 draws an arc and line segment from the center to the ending angle point.

3 draws all sides of the slice. This is the default.

Color, outline, and pattern can have more than one element. The coordinates in use
for this graphics command are world coordinates. An example that uses the GPIE
subroutine follows:

/* draws a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});

GPIEXY Call

converts from polar to world coordinates

CALL GPIEXY(x, y, fract-radii, angles<, center><, radius><, window>);

The inputs to the GPIEXY subroutine are as follows:

x and y are vectors of coordinates returned by GPIEXY.

fract-radii is a vector of fractions of the radius of the reference circle.

angles is the vector of angle coordinates in degrees.

center defines the reference circle.

radius defines the reference circle.

GPOINT Call � 673

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GPIEXY subroutine computes the world coordinates of a sequence of points
relative to a circle. The x and y arguments are vectors of new coordinates returned
by the GPIEXY subroutine. Together, the vectors fract-radii and angles define the
points in polar coordinates. Each pair from the fract-radii and angles vectors yields a
corresponding pair in the x and y vectors. For example, suppose fract-radii has two
elements, 0.5 and 0.3, and the corresponding two elements of angles are 90 and 30.
The GPIEXY subroutine returns two elements in the x vector and two elements in the
y vector. The first (x, y) pair locates a point halfway from the center to the reference
circle on the vertical line through the center, and the second (x, y) pair locates a
point one-third of the way on the line segment from the center to the reference circle,
where the line segment slants 30 degrees from the horizontal. The reference circle
can be defined by an earlier GPIE call or another GPIEXY call, or it can be defined
by specifying center and radius.

Graphics devices can have diverse aspect ratios; thus, a circle can appear distorted
when drawn on some devices. The IML graphics subsystem adjusts computations to
compensate for this distortion. Thus, for any given point, the transformation from
polar coordinates to world coordinates might need an equivalent adjustment. The
GPIEXY subroutine ensures that the same adjustment applied in the GPIE subroutine
is applied to the conversion. An example that uses the GPIEXY call follows:

/* add labels to a pie with 4 slices of equal size */
call gpie(50,50,30,{0 90 180 270},{90 180 270 0});
call gpiexy(x,y,1.2,{45 135 225 315},{50 50},30,{0 0 100 100});

/* adjust for label size: */
x [4,]=x[4,]-3;
x [1,]=x[1,]-4;
x [2,]=x[2,]+1;
call gscript(x,y,{’QTR1’ ’QTR2’ ’QTR3’ ’QTR4’});
call gshow;

GPOINT Call

plots points

CALL GPOINT(x, y <, symbol><, color><, height><, window>

<, viewport>);

The inputs to the GPOINT subroutine are as follows:

x is a vector containing the x coordinates of points.

y is a vector containing the y coordinates of points.

674 � Chapter 20. Language Reference

symbol is a character vector or quoted literal that specifies a valid plotting
symbol or symbols.

color is a valid SAS color, where color can be specified as a quoted text
string (such as ’RED’), the name of a character matrix containing
a valid color as an element, or a color number (such as 1). A color
number n refers to the nth color in the color list.

height is a numeric matrix or literal specifying the character height.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GPOINT subroutine marks one or more points with symbols. The x and y vec-
tors define the points where the markers are to be placed. The symbol and color
arguments can have from one to as many elements as there are well-defined points.
The coordinates in use for this graphics command are world coordinates.

In the example that follows, points on the line Y = X are generated for 30 ≤ X ≤ 80
and then plotted with the GPOINT call:

x=30:80;
y=x;
call gpoint(x,y);
call gshow;

As another example, you can plot symbols at specific locations on the screen by using
the GPOINT subroutine. To print i in the lower-left corner and j in the upper-right
corner, use the following statements:

call gpoint({10 80},{5 95},{i j});
call gshow;

See Chapter 12 for examples using the GPOINT subroutine.

GPOLY Call

draws and fills a polygon

GPOLY Call � 675

CALL GPOLY(x, y <, style><, ocolor><, pattern><, color>

<, window><, viewport>);

The inputs to the GPOLY subroutine are as follows.

x is a vector defining the x coordinates of the corners of the polygon.

y is a vector defining the y coordinates of the corners of the polygon.

style is a numeric matrix or literal that specifies an index corresponding
to a valid line style.

ocolor is a matrix or literal specifying a valid outline color. The ocolor
argument can be specified as a quoted text string (such as ’RED’),
the name of a character matrix containing a valid color as an ele-
ment, or a color number (such as 1). A color number n refers to
the nth color in the color list.

pattern is a character matrix or quoted literal that specifies the pattern to
fill the interior of a closed curve.

color is a valid SAS color used in filling the polygon. The color argument
can be specified as a quoted text string (such as ’RED’), the name
of a character matrix containing a valid color as an element, or a
color number (such as 1). A color number n refers to the nth color
in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GPOLY subroutine fills an area enclosed by a polygon. The polygon is defined
by the set of points given in the vectors x and y. The color argument is the color used
in shading the polygon, and ocolor is the outline color. By default, the shading color
and the outline color are the same, and the interior pattern is empty. The coordinates
in use for this graphics command are world coordinates. An example that uses the
GPOLY subroutine follows:

xd={20 20 80 80};
yd={35 85 85 35};
call gpoly (xd,yd, , ,’X’,’red’);

676 � Chapter 20. Language Reference

GPORT Call

defines a viewport

CALL GPORT(viewport);

where viewport is a numeric matrix or literal defining the viewport. The rectangular
area’s boundary is specified in normalized coordinates, where you specify the coor-
dinates of the lower-left corner and the upper-right corner of the rectangular area in
the form

{minimum-x minimum-y maximum-x maximum-y}

The GPORT subroutine changes the current viewport. The viewport argument de-
fines the new viewport by using device coordinates (always 0 to 100). Changing the
viewport can affect the height of the character fonts; if so, you might want to modify
the HEIGHT parameter. An example of a valid statement follows:

call gport({20 20 80 80});

The default values for viewport are 0 0 100 100.

GPORTPOP Call

pops the viewport

CALL GPORTPOP;

The GPORTPOP subroutine deletes the top viewport from the stack.

GPORTSTK Call

stacks the viewport

CALL GPORTSTK(viewport);

where viewport is a numeric matrix or literal defined in normalized coordinates in the
form

{minimum-x minimum-y maximum-x maximum-y}

The GPORTSTK subroutine stacks the viewport defined by the matrix viewport onto
the current viewport; that is, the new viewport is defined relative to the current view-
port. The coordinates in use for this graphics command are world coordinates. An
example of a valid statement follows:

call gportstk({5 5 95 95});

GSCALE Call � 677

GSCALE Call

calculates round numbers for labeling axes

CALL GSCALE(scale, x, nincr<, nicenum><, fixed-end>);

The inputs to the GSCALE subroutine are as follows:

scale is a returned vector containing the scaled minimum data value, the
scaled maximum data value, and a grid increment.

x is a numeric matrix or literal.

nincr is the number of intervals desired.

nicenum is numeric and provides up to 10 numbers to use for scaling. By
default, nicenum is (1,2,2.5,5).

fixed-end is a character argument and specifies which end of the scale is held
fixed. The default is X.

The GSCALE subroutine obtains simple (round) numbers with uniform grid interval
sizes to use in scaling a linear axis. The GSCALE subroutine implements algorithm
463 of Collected Algorithms from CACM. The scale values are integer multiples of
the interval size. They are returned in the first argument, a vector with three elements.
The first element is the scaled minimum data value. The second element is the scaled
maximum data value. The third element is the grid increment.

The required input parameters are x, a matrix of data values, and nincr, the number of
intervals desired. If nincr is positive, the scaled range includes approximately nincr
intervals. If nincr is negative, the scaled range includes exactly ABS(nincr) intervals.
The nincr parameter cannot be zero.

The nicenum and fixed-end arguments are optional. The nicenum argument provides
up to 10 numbers, all between 1 and 10 (inclusive of the endpoints), to be used for
scaling. The default for nicenum is 1, 2, 2.5, and 5. The linear scale with this set of
numbers is a scale with an interval size that is the product of an integer power of 10
and 1, 2, 2.5, or 5. Changing these numbers alters the rounding of the scaled values.

For fixed-end, U fixes the upper end; L fixes the lower end; X allows both ends to vary
from the data values. The default is X. An example that uses the GSCALE subroutine
follows:

/* scalemat is set to {0,1000,100} */
call gscale(scalmat, {1 1000}, 10);

678 � Chapter 20. Language Reference

GSCRIPT Call

writes multiple text strings with special fonts

CALL GSCRIPT(x, y, text<, angle><, rotate><, height><, font>

<, color><, window><, viewport>);

The inputs to the GSCRIPT subroutine are as follows:

x is a scalar or vector containing the x coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing the y coordinates of the lower left
starting position of the text string’s first character.

text is a character vector of text strings.

angle is the slant of each text string.

rotate is the rotation of individual characters.

height is a real number specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

color is a valid SAS color. The color argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color number n refers to the nth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GSCRIPT subroutine writes multiple text strings with special character fonts.
The x and y vectors describe the coordinates of the lower left starting position of the
text string’s first character. The color argument can have more than one element.

Note: Hardware characters cannot always be obtained if you change the HEIGHT or
ASPECT parameters or if you use a viewport.

The coordinates in use for this graphics command are world coordinates. Examples
of valid statements follow:

call gscript(7,y,names);
call gscript(50,50,"plot of height vs weight");
call gscript(10,90,"yaxis",-90,90);

GSET Call � 679

GSET Call

sets attributes for a graphics segment

CALL GSET(attribute<, value>);

The inputs to the GSET subroutine are as follows:

attribute is a graphics attribute. The attribute argument can be a character
matrix or quoted literal.

value is the value to which the attribute is set. The value argument is
specified as a matrix or quoted literal.

The GSET subroutine enables you to change the following attributes for the current
graphics segment.

aspect a numeric matrix or literal that specifies the aspect ratio (width
relative to height) for characters.

color a valid SAS color. The color argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color number n refers to the nth color in the color list.

font a character matrix or quoted literal that specifies a valid font name.

height a numeric matrix or literal that specifies the character height.

pattern a character matrix or quoted literal that specifies the pattern to use
to fill the interior of a closed curve.

style a numeric matrix or literal that specifies an index corresponding to
a valid line style.

thick an integer specifying line thickness.

To reset the IML default value for any one of the attributes, omit the second argu-
ment. Attributes are reset back to the default with a call to the GOPEN or GSTART
subroutine. Single or double quotes can be used around this argument. For more
information about the attributes, see Chapter 12.

Examples of valid statements follow:

call gset(’pattern’,’m1n45’);
call gset(’font’,’simplex’);

f=’font’;
s=’simplex’;
call gset(f,s);

For example, the following statement resets color to its default:

call gset("color");

680 � Chapter 20. Language Reference

GSHOW Call

shows a graph

CALL GSHOW <(segment-name)>;

where segment-name is a character matrix or literal specifying a graphics segment.

If you do not specify segment-name, the GSHOW subroutine displays the current
graph. If the current graph is active at the time that the GSHOW subroutine is called,
it remains active after the call; that is, graphics primitives can still be added to the
segment. On the other hand, if you specify segment-name, the GSHOW subroutine
closes any active graphics segment, searches the current catalog for a segment with
the given name, and then displays that graph. Examples of valid statements follow:

call gshow;
call gshow("plot_a5");

seg={myplot};
call gshow(seg);

GSORTH Call

computes the Gram-Schmidt orthonormalization

CALL GSORTH(p, t, lindep, a);

The inputs to the GSORTH subroutine are as follows:

p is an m× n column-orthonormal output matrix.

t is an upper triangular n× n output matrix.

lindep is a flag with a value of 0 if columns of a are independent and a value
of 1 if they are dependent. The lindep argument is an output scalar.

a is an input m× n matrix.

The GSORTH subroutine computes the Gram-Schmidt orthonormal factorization of
the m×n matrix A, where m is greater than or equal to n; that is, the GSORTH sub-
routine computes the column-orthonormal m × n matrix P and the upper triangular
n× n matrix T such that

A = P ∗T

If the columns of A are linearly independent (that is, rank(A) = n), then P is full-
rank column-orthonormal: P′P = Iw, T is nonsingular, and the value of lindep (a
scalar) is set to 0. If the columns of A are linearly dependent (say, rank(A) = k < n)
then n− k columns of P are set to 0, the corresponding rows of T are set to 0 (T is
singular), and lindep is set to 1. The pattern of zero columns in P corresponds to the
pattern of linear dependencies of the columns of A when columns are considered in
left-to-right order.

GSTART Call � 681

The GSORTH subroutines implements an algorithm described by Golub (1969).

The GSORTH subroutine is not recommended for the construction of matrices of val-
ues of orthogonal polynomials; the ORPOL function should be used for that purpose.

If lindep is 1, you can rearrange the columns of P and rows of T so that the zero
columns of P are right-most—that is, P = (P(, 1),P(, k), 0, . . . , 0), where k is the
column rank of A and A = P ∗T is preserved. The following statements make this
rearrangement:

d=rank((ncol(t)-(1:ncol(t))‘)#(vecdiag(t)=0));
temp=p;
p[,d]=temp;
temp=t;
t[,d]=temp;

An example of a valid GSORTH call follows:

x={1 1 1, 1 2 4, 1 3 9};
xpx=x‘*x;
call gsorth(p, t, l, xpx);

These statements produce the following output matrices:

P 3 rows 3 cols (numeric)

0.193247 -0.753259 0.6286946
0.386494 -0.530521 -0.754434

0.9018193 0.3887787 0.1886084

T 3 rows 3 cols (numeric)

15.524175 39.035892 104.99753
0 2.0491877 8.4559365
0 0 0.1257389

L 1 row 1 col (numeric)

0

GSTART Call

initializes the graphics system

CALL GSTART(<catalog><, replace>);

The inputs to the GSTART subroutine are as follows:

catalog is a character matrix or quoted literal specifying the SAS catalog
for saving the graphics segments.

682 � Chapter 20. Language Reference

replace is a numeric argument.

The GSTART subroutine activates the graphics system the first time it is called. A
catalog is opened to capture the graphics segments to be generated in the session. If
you do not specify a catalog, IML uses the temporary catalog WORK.GSEG.

The replace argument is a flag; a nonzero value indicates that the new segment should
replace the first found segment with the same name. The replace flag set by the
GSTART subroutine is a global flag, as opposed to the replace flag set by the GOPEN
subroutine. When set by GSTART, this flag is applied to all subsequent segments
created for this catalog, whereas with GOPEN, the replace flag is applied only to
the segment that is being created. The GSTART subroutine sets the replace flag to
0 when the replace argument is omitted. The replace option can be very inefficient
for a catalog with many segments. In this case, it is better to create segments with
different names (if necessary) than to use the replace option.

The GSTART subroutine must be called at least once to load the graphics subsystem.
Any subsequent GSTART calls are generally to change graphics catalogs or reset the
global replace flag.

The GSTART subroutine resets the defaults for all graphics attributes that can be
changed by the GSET subroutine. It does not reset GOPTIONS to their defaults
unless the GOPTION corresponds to a GSET parameter. The GOPEN subroutine
also resets GSET parameters.

An example of a valid statement follows:

call gstart;

GSTOP Call

deactivates the graphics system

CALL GSTOP;

The GSTOP subroutine deactivates the graphics system. The graphics subsystem is
disabled until the GSTART subroutine is called again.

GSTRLEN Call

finds the string length

CALL GSTRLEN(length, text<, height><, font><, window>);

The inputs to the GSTRLEN subroutine are as follows:

length is a matrix of lengths specified in world coordinates.

text is a matrix of text strings.

height is a numeric matrix or literal specifying the character height.

font is a character matrix or quoted literal that specifies a valid font
name.

GTEXT and GVTEXT Calls � 683

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GSTRLEN subroutine returns in world coordinates the graphics text lengths in
a given font and for a given character height. The length argument is the returned
matrix. It has the same shape as the matrix text. Thus, if text is an n ×m matrix of
text strings, then length is an n×m matrix of lengths in world coordinates. If you do
not specify font, the default font is assumed. If you do not specify height, the default
height is assumed. An example that uses the GSTRLEN subroutine follows:

/* centers text strings about coordinate */
/* points (50, 90) assume font=simplex */

ht=2;
x=30;
y=90;
str=’Nonparametric Cluster Analysis’;
call gstrlen(len, str, ht, ’simplex’);
call gscript(x-(len/2), y, str, ,,ht,’simplex’);

GTEXT and GVTEXT Calls

place text horizontally or vertically on a graph

CALL GTEXT(x, y, text<, color><, window><, viewport>);

CALL GVTEXT(x, y, text<, color><, window><, viewport>);

The inputs to the GTEXT and GVTEXT subroutines are as follows:

x is a scalar or vector containing the x coordinates of the lower left
starting position of the text string’s first character.

y is a scalar or vector containing the y coordinates of the lower left
starting position of the text string’s first character.

text is a vector of text strings

color is a valid SAS color. The color argument can be specified as a
quoted text string (such as ’RED’), the name of a character matrix
containing a valid color as an element, or a color number (such as
1). A color number n refers to the nth color in the color list.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

684 � Chapter 20. Language Reference

{minimum-x minimum-y maximum-x maximum-y}

The GTEXT subroutine places text horizontally across a graph; the GVTEXT sub-
routine places text vertically on a graph. Both subroutines use hardware characters
when possible. The number of text strings drawn is the maximum dimension of the
first three vectors. The color argument can have more than one element. Hardware
characters cannot always be obtained if you change the HEIGHT or ASPECT param-
eter (using GSET or GOPTIONS) or if you use a viewport. The coordinates in use
for this graphics command are world coordinates.

Examples of the GTEXT and GVTEXT subroutines follow:

call gopen;
call gport({0 0 50 50});
call gset(’height’,4); /* shrink to one fourth of the screen */
call gtext(50,50,’Testing GTEXT: This will start in the

center of the viewport ’);
call gshow;
call gopen;
call gvtext(.35,4.6,’VERTICAL STRING BY GVTEXT’,

’white’,{0.2 -1,1.5 6.5},{0 0,100 100});
call gshow;

GWINDOW Call

defines the data window

CALL GWINDOW(window);

where window is a numeric matrix or literal specifying a window. The rectangular
area’s boundary is given in world coordinates, where you specify the lower-left and
upper-right corners in the form

{minimum-x minimum-y maximum-x maximum-y}

The GWINDOW subroutine sets up the window for scaling data values in subsequent
graphics primitives. It is in effect until the next GWINDOW call or until the segment
is closed. The coordinates in use for this graphics command are world coordinates.
An example that uses the GWINDOW subroutine follows:

ydata={2.358,0.606,3.669,1.000,0.981,1.192,0.926,1.590,
1.806,1.962,4.028,3.148,1.836,2.845,1.013,0.414};

xdata={1.215,0.930,1.152,1.138,0.061,0.696,0.686,1.072,
1.074,0.934,0.808,1.071,1.009,1.142,1.229,0.595};

/* WD shows the actual range of the data */
wd=(min(xdata)||min(ydata))//(max(xdata)||max(ydata));
call gwindow(wd);

GXAXIS and GYAXIS Calls � 685

GXAXIS and GYAXIS Calls

draw a horizontal or vertical axis

CALL GXAXIS(starting-point, length, nincr <, nminor><, noticklab>

<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

CALL GYAXIS(starting-point, length, nincr <, nminor><, noticklab>

<, format><, height><, font><, color><, fixed-end>

<, window><, viewport>);

The inputs to the GXAXIS and GYAXIS subroutines are as follows:

starting-point is the (x, y) starting point of the axis, specified in world coordi-
nates.

length is a numeric scalar giving the length of the axis.

nincr is a numeric scalar giving the number of major tick marks on the
axis.

nminor is an integer specifying the number of minor tick marks between
major tick marks.

noticklab is a flag that is nonzero if the tick marks are not labeled. The default
is to label tick marks.

format is a character scalar that gives a valid SAS numeric format used in
formatting the tick-mark labels. The default format is 8.2.

height is a numeric matrix or literal that specifies the character height.
This is used for the tick-mark labels.

font is a character matrix or quoted literal that specifies a valid font
name. This is used for the tick-mark labels.

color is a valid color. The color argument can be specified as a quoted
text string (such as ’RED’), the name of a character matrix contain-
ing a valid color as an element, or a color number (such as 1). A
color number n refers to the nth color in the color list.

fixed-end holds one end of the scale fixed. U fixes the upper end; L fixes
the lower end; X allows both ends to vary from the data values. In
addition, you can specify N, which causes the axis routines to by-
pass the scaling routine. The interval between tick marks is length
divided by (nincr−1). The default is X.

window is a numeric matrix or literal specifying a window. This is given in
world coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

686 � Chapter 20. Language Reference

viewport is a numeric matrix or literal specifying a viewport. This is given
in normalized coordinates and has the form

{minimum-x minimum-y maximum-x maximum-y}

The GXAXIS subroutine draws a horizontal axis; the GYAXIS subroutine draws a
vertical axis. The first three arguments are required.

The starting-point argument is a matrix of two numbers given in world coordinates.
The matrix is the (x, y) starting point of the axis.

The length argument is a scalar value giving the length of the x axis or y axis in world
coordinates along the x or y direction.

The nincr argument is a scalar value giving the number of major tick marks shown
on the axis. The first tick mark is on the starting point as specified.

The axis routines use the same scaling algorithm as the GSCALE subroutine. For
example, if the x starting point is 10 and the length of the axis is 44, and if you call
the GSCALE subroutine with the x vector containing the two elements, 10 and 44,
the scale obtained should be the same as that obtained by the GXAXIS subroutine.
Sometimes, it can be helpful to use the GSCALE subroutine in conjunction with the
axis routines to get more precise scaling and labeling.

For example, suppose you want to draw the axis for −2 ≤ X ≤ 2 and −2 ≤ Y ≤ 2.
The following code draws these axes. Each axis is 4 units long. Note that the x axis
begins at the point (−2, 0) and the y axis begins at the point (0,−2). The tick marks
can be set at each integer value, with minor tick marks in between the major tick
marks. The noticklab option is turned off, so that the tick marks are not labeled.

call gport({20 20 80 80});
call gwindow({-2 -2 2 2});
call gxaxis({-2,0},4,5,2,1);
call gyaxis({0,-2},4,5,2,1);

HADAMARD Function

returns a Hadamard matrix

HADAMARD(n, <, i>)

The inputs to the HADAMARD function are as follows:

n specifies the order of the Hadamard matrix. Specify n such that
n = 1, 2, or a multiple of 4 and any of the following hold:

• n ≤ 256
• n− 1 is prime
• (n/2)− 1 is prime and n/2 = 2 mod 4
• n = 2h, 4h, 8h, ..., 2ph, where h is any n above

HALF Function � 687

When any other n is specified, the HADAMARD function returns
a zero.

i specifies the row number to return. When i is not specified or i is
negative, the full n× n matrix is returned.

The HADAMARD function returns a Hadamard matrix, which is an n × n matrix
consisting entirely of the values 1 and –1. The columns of a Hadamard matrix are
all orthogonal. Hadamard matrices are frequently used to make orthogonal array ex-
perimental designs for two-level factors. For example, the following IML statements
create a 12× 12 Hadamard matrix:

h = hadamard(12);
print h[format=2.];

The results are as follows:

H

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 -1 1 -1 -1 -1 1 1 1 -1 1
1 1 1 -1 1 -1 -1 -1 1 1 1 -1
1 -1 1 1 -1 1 -1 -1 -1 1 1 1
1 1 -1 1 1 -1 1 -1 -1 -1 1 1
1 1 1 -1 1 1 -1 1 -1 -1 -1 1
1 1 1 1 -1 1 1 -1 1 -1 -1 -1
1 -1 1 1 1 -1 1 1 -1 1 -1 -1
1 -1 -1 1 1 1 -1 1 1 -1 1 -1
1 -1 -1 -1 1 1 1 -1 1 1 -1 1
1 1 -1 -1 -1 1 1 1 -1 1 1 -1
1 -1 1 -1 -1 -1 1 1 1 -1 1 1

The first column is an intercept and the next 11 columns form an orthogonal array
experimental design for 11 two-level factors in 12 runs, 211.

To request the 17th row of a Hadamard matrix of order 448, use the following state-
ment:

h = hadamard(448, 17);

HALF Function

computes Cholesky decomposition

HALF(matrix)

where matrix is a numeric matrix or literal.

The HALF function is the same as the ROOT function. See the description of the
ROOT function for Cholesky decomposition.

688 � Chapter 20. Language Reference

HANKEL Function
generates a Hankel matrix

HANKEL(matrix)

where matrix is a numeric matrix or literal.

The HANKEL function generates a Hankel matrix from a vector, or a block Hankel
matrix from a matrix. A block Hankel matrix has the property that all matrices on
the reverse diagonals are the same. The argument matrix is an (np) × p or p × (np)
matrix; the value returned is the (np)× (np) result.

The Hankel function uses the first p × p submatrix A1 of the argument matrix as
the blocks of the first reverse diagonal. The second p × p submatrix A2 of the argu-
ment matrix forms the second reverse diagonal. The remaining reverse diagonals are
formed accordingly. After the values in the argument matrix have all been placed, the
rest of the matrix is filled in with 0. If A is (np) × p, then the first p columns of the
returned matrix, R, are the same as A. If A is p × (np), then the first p rows of R
are the same as A. The HANKEL function is especially useful in time series applica-
tions, where the covariance matrix of a set of variables representing the present and
past and a set of variables representing the present and future is often assumed to be
a block Hankel matrix. If

A = [A1|A2|A3| · · · |An]

and if R is the matrix formed by the HANKEL function, then

R =

A1 | A2 | A3 | · · · | An

A2 | A3 | A4 | · · · | 0
A3 | A4 | A5 | · · · | 0

...
An | 0 | 0 | · · · | 0

If

A =

A1

A2
...

An

and if R is the matrix formed by the HANKEL function, then

R =

A1 | A2 | A3 | · · · | An

A2 | A3 | A4 | · · · | 0
...

An | 0 | 0 | · · · | 0

For example, consider the following IML code:

HARMEAN Function � 689

r=hankel({1 2 3 4 5});

This code produces the following output:

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 3 4 5 0
3 4 5 0 0
4 5 0 0 0
5 0 0 0 0

The following statement returns the matrix R, as shown:

r=hankel({1 2 ,
3 4 ,
5 6 ,
7 8});

R 4 rows 4 cols (numeric)

1 2 5 6
3 4 7 8
5 6 0 0
7 8 0 0

The following statement returns a different matrix R, as shown:

r=hankel({1 2 3 4 ,
5 6 7 8});

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 4 0 0
7 8 0 0

HARMEAN Function

calculates harmonic means

HARMEAN(matrix)

where matrix is a numeric matrix of nonnegative values.

The HARMEAN function returns a scalar containing the harmonic mean of the
elements of the input matrix. The harmonic mean of a set of positive numbers
a1, a2, . . . , an is n divided by the sum of the reciprocals of ai. That is, n/

∑
a−1

i .

690 � Chapter 20. Language Reference

The harmonic mean is zero if any of the ai are zero. The harmonic mean is not
defined for negative inputs. If any of the ai are missing, they are excluded from the
computation.

The harmonic mean is sometimes used to compute an average sample size in an
unbalanced experimental design. For example, the following statements compute an
average sample size for five samples:

sizes = { 8, 12, 23, 10, 8 }; /* sample sizes */
aveSize = harmean(sizes);
print aveSize;

aveSize

10.486322

HDIR Function

performs a horizontal direct product

HDIR(matrix1, matrix2)

where matrix1 and matrix2 are numeric matrices or literals.

The HDIR function performs a direct product on all rows of matrix1 and matrix2 and
creates a new matrix by stacking these row vectors into a matrix. This operation is
useful in constructing design matrices of interaction effects. The matrix1 and matrix2
arguments must have the same number of rows. The result has the same number of
rows as matrix1 and matrix2. The number of columns is equal to the product of the
number of columns in matrix1 and matrix2.

For example, the following statements produce the matrix C, as shown:

a={1 2,
2 4,
3 6};

b={0 2,
1 1,
0 -1};

c=hdir(a,b);

C 3 rows 4 cols (numeric)

0 2 0 4
2 2 4 4
0 -3 0 -6

The HDIR function is useful for constructing crossed and nested effects from main-
effect design matrices in ANOVA models.

HOMOGEN Function � 691

HERMITE Function

reduces a matrix to Hermite normal form

HERMITE(matrix)

where matrix is a numeric matrix or literal.

The HERMITE function uses elementary row operations to reduce a matrix to
Hermite normal form. For square matrices this normal form is upper triangular and
idempotent.

If the argument is square and nonsingular, the result is the identity matrix. In general
the result satisfies the following four conditions (Graybill 1969, p. 120):

• It is upper triangular.

• It has only values of 0 and 1 on the diagonal.

• If a row has a 0 on the diagonal, then every element in that row is 0.

• If a row has a 1 on the diagonal, then every off-diagonal element is 0 in the
column in which the 1 appears.

Consider the following example (Graybill 1969, p. 288):

a={3 6 9,
1 2 5,
2 4 10};

h=hermite(a);

These statements produce the following output:

H 3 rows 3 cols (numeric)

1 2 0
0 0 0
0 0 1

If the argument is a square matrix, then the Hermite normal form can be transformed
into the row echelon form by rearranging rows in which all values are 0.

HOMOGEN Function

solves homogeneous linear systems

HOMOGEN(matrix)

where matrix is a numeric matrix or literal.

The HOMOGEN function solves the homogeneous system of linear equations A ∗
X = 0 for X. For at least one solution vector X to exist, the m × n matrix A,
m ≥ n, has to be of rank r < n. The HOMOGEN function computes an n× (n− r)
column orthonormal matrix X with the property A ∗ X = 0, X′X = I. If A′A

692 � Chapter 20. Language Reference

is ill-conditioned, rounding-error problems can occur in determining the correct rank
of A and in determining the correct number of solutions X. Consider the following
example (Wilkinson and Reinsch 1971, p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,
9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

x=homogen(a);

These statements produce the following solution:

X 5 rows 2 cols (numeric)

-0.419095 0
0.4405091 0.4185481
-0.052005 0.3487901
0.6760591 0.244153
0.4129773 -0.802217

In addition, this function could be used to determine the rank of an m× n matrix A,
m ≥ n.

If X is an n×m matrix, then, in addition to the memory allocated for the return ma-
trix, the HOMOGEN function temporarily allocates an n2 +nm array for performing
its computation.

I Function
creates an identity matrix

I(dimension)

where dimension specifies the size of the identity matrix.

The I function creates an identity matrix with dimension rows and columns. The
diagonal elements of an identity matrix are 1s; all other elements are 0s. The value
of dimension must be an integer greater than or equal to 1. Noninteger operands are
truncated to their integer part.

For example, consider the following statement:

a=I(3);

This statement yields the following result:

A
1 0 0
0 1 0
0 0 1

IF-THEN/ELSE Statement � 693

IF-THEN/ELSE Statement

conditionally executes statements

IF expression THEN statement1;

ELSE statement2;

The inputs to the IF-THEN/ELSE statements are as follows:

expression is an expression that is evaluated for being true or false.

statement1 is a statement executed when expression is true.

statement2 is a statement executed when expression is false.

The IF statement contains an expression to be evaluated, the keyword THEN, and an
action to be taken when the result of the evaluation is true.

The ELSE statement optionally follows the IF statement and gives an action to be
taken when the IF expression is false. The expression to be evaluated is often a
comparison. For example:

if max(a)<20 then p=0;
else p=1;

The IF statement results in the evaluation of the condition MAX(A)<20. If the largest
value found in matrix A is less than 20, P is set to 0. Otherwise, P is set to 1. See
the description of the MAX function for details.

When the condition to be evaluated is a matrix expression, the result of the evaluation
is another matrix. If all values of the result matrix are nonzero and nonmissing, the
condition is true; if any element in the result matrix is 0 or missing, the condition is
false. This evaluation is equivalent to using the ALL function.

For example, consider the following code:

if x<y then
do;

This code produces the same result as the following code:

if all(x<y) then
do;

IF statements can be nested within the clauses of other IF or ELSE statements. IML
imposes no limit on the number of nesting levels. Consider the following example:

if x=y then if abs(y)=z then
do;

694 � Chapter 20. Language Reference

CAUTION: Execution of THEN clauses occurs as if you were using the ALL func-
tion.

Consider the following statements:

if a^=b then do;
if ^(a=b) then do;

Both statements are valid, but the THEN clause in each case is executed only when
all corresponding elements of A and B are unequal—that is, when none of the cor-
responding elements are equal.

Evaluation of the following statement requires only one element of A and B to be
unequal for the expression to be true:

if any(a^=b) then do;

IFFT Function

computes the inverse finite Fourier transform

IFFT(f)

where f is an np× 2 numeric matrix.

The IFFT function expands a set of sine and cosine coefficients into a sequence equal
to the sum of the coefficients times the sine and cosine functions. The argument f is
an np× 2 matrix; the value returned is an n× 1 vector.

Note: If the element in the last row and second column of f is exactly 0, then n is
2np− 2; otherwise, n is 2np− 1.

The inverse finite Fourier transform of a two column matrix F, denoted by the vector
x, is

xi = F1,1 + 2
np∑
j=2

(
Fj,1 cos

(
2π
n

(j − 1)(i− 1)
)

+ Fj,2 sin
(

2π
n

(j − 1)(i− 1)
))

+ qi

for i = 1, . . . , n, where qi = (−1)iFnp,1 if n is even, or q = 0 if n is odd.

Note: For most efficient use of the IFFT function, n should be a power of 2. If n is
a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z
algorithm is used (Monro and Branch 1976).

IFFT(FFT(X)) returns n times x, where n is the dimension of x. If f is not the
Fourier transform of a real sequence, then the vector generated by the IFFT function
is not a true inverse Fourier transform. However, applications exist where the FFT
and IFFT functions can be used for operations on multidimensional or complex data
(Gentleman and Sande 1966; Nussbaumer 1982).

As an example, the convolution of two vectors x (n × 1) and y (m × 1) can be
accomplished by using the following module:

IFFT Function � 695

start conv(u,v);
/* w = conv(u,v) convolves vectors u and v.

Algebraically, convolution is the same operation as
multiplying the polynomials whose coefficients are the
elements of u and v. Straight convolution is too slow,
so use the FFT.

Both of u and v are column vectors.
*/

m = nrow(u);
n = nrow(v);

wn = m + n - 1;
/* find p so that 2##(p-1) < wn <= 2##p */
p = ceil(log(wn)/ log(2));
nice = 2##p;

a = fft(u // j(nice-m,1,0));
b = fft(v // j(nice-n,1,0));
/* complex multiplication of a and b */
wReal = a[,1]#b[,1] - a[,2]#b[,2];
wImag = a[,1]#b[,2] + a[,2]#b[,1];
w = wReal || wImag;
z=ifft(w);
z = z[1:wn,1] / nice; /* take real part and first wn elements */
return (z);

finish;

/* example of convolution of two waveforms */
TimeStep = 0.01;
t = T(do(0,8,TimeStep));

Signal = j(nrow(t),1,5);
Signal[loc(t>4)] = -5;

ImpulseResponse = j(nrow(t),1,0);
ImpulseResponse[loc(t<=2)] = 3;

/* The time domain for this convolution is [0,16]
with the same time step.
For waveforms, rescale amplitude by the time step. */

y = conv(Signal,ImpulseResponse) * TimeStep;

Other applications of the FFT and IFFT functions include windowed spectral esti-
mates and the inverse autocorrelation function.

696 � Chapter 20. Language Reference

INDEX Statement

indexes a variable in a SAS data set

INDEX variables|NONE

where variables are the names of variables for which indexes are to be built.

You can use the INDEX statement to create an index for the named variables in the
current input SAS data set. An index is created for each variable listed if it does not
already have an index. Current retrieval is set to the last variable indexed. Subsequent
I/O operations such as LIST, READ, FIND, and DELETE can use this index to re-
trieve observations from the data set if IML determines that indexed retrieval will
be faster. The indices are automatically updated when a data set is edited with the
APPEND, DELETE, or REPLACE statements. Only one index is in effect at any
given time. The SHOW contents command indicates which index is in use.

For example, the following statement creates indexes for the SAS data set CLASS in
the order of NAME and the order of SEX:

index name sex;

Current retrieval is set to use SEX. A LISTall statement would list females before
males.

An INDEX none statement can be used to set retrieval back to physical order.

When a WHERE clause is being processed, IML automatically determines which
index to use, if any. The decision is based on the variables and operators involved in
the WHERE clause, and the decision criterion is based on the efficiency of retrieval.

INFILE Statement

opens a file for input

INFILE operand <options>;

The inputs to the INFILE statement are as follows:

operand is either a predefined filename or a quoted string containing the file-
name or character expression in parentheses referring to the path-
name.

options are explained in the following list.

You can use the INFILE statement to open an external file for input or, if the file is
already open, to make it the current input file so that subsequent INPUT statements
read from it.

The options available for the INFILE statement are described as follows.

LENGTH=variable
specifies a variable in which the length of a record is stored as IML reads it in.

INPUT Statement � 697

RECFM=N
specifies that the file is to be read in as a pure binary file rather than as a file with
record separator characters. To do this, you must use the byte operand (<) in the
INPUT statement to get new records rather than use separate input statements or the
new line (/) operator.

The following options control how IML behaves when an INPUT statement tries to
read past the end of a record. The default is STOPOVER.

FLOWOVER
enables the INPUT statement to go to the next record to obtain values for the vari-
ables.

MISSOVER
tolerates attempted reading past the end of the record by assigning missing values to
variables read past the end of the record.

STOPOVER
treats going past the end of a record as an error condition, which triggers an end-of-
file condition.

Several examples of INFILE statements follow:

filename in1 ’student.dat’; /* specify filename IN1 */
infile in1; /* infile pathname */

infile ’student.dat’; /* path by quoted literal */

infile ’student.dat’ missover; /* using options */

See Chapter 7 for further information.

INPUT Statement

inputs data

INPUT <variables> <informats> <record-directives> <positionals>;

where the clauses and options are explained in the following list.

You can use the INPUT statement to input records from the current input file, placing
the values into IML variables. The INFILE statement sets up the current input file.
See Chapter 7 for details.

The INPUT statement contains a sequence of arguments that include the following:

variables specify the variable or variables you want to read from the cur-
rent position in the record. Each variable can be followed im-
mediately by an input format specification.

informats specify an input format. These are of the form w.d or $w. for
standard numeric and character informats, respectively, where
w is the width of the field and d is the decimal parameter, if any.

698 � Chapter 20. Language Reference

You can also use a SAS format of the form NAMEw.d, where
NAME is the name of the format. Also, you can use a single
$ or & for list input applications. If the width is unspecified,
the informat uses list-input rules to determine the length by
searching for a blank (or comma) delimiter. The special format
$RECORD. is used for reading the rest of the record into one
variable. For more information about formats, refer to SAS
Language Reference: Dictionary.

Record holding is always implied for RECFM=N binary files,
as if the INPUT statement has a trailing @ sign. For more
information, see Chapter 7.

Examples of valid INPUT statements follow:

input x y;
input @1 name $ @20 sex $ @(20+2) age 3.;

eight=8;
input >9 <eight number2 ib8.;

The following example uses binary input:

file ’out2.dat’ recfm=n ;
number=499; at=1;
do i = 1 to 5;

number=number+1;
put >at number ib8.; at=at+8;

end;
closefile ’out2.dat’;

infile ’out2.dat’ recfm=n;
size=8; /* 8 bytes */
do pos=1 to 33 by size;

input >pos number ib8.;
print number;

end;

record-directives are used to advance to a new record. Record-directives are the
following:

holding @ sign is used at the end of an INPUT statement to
instruct IML to hold the current record so
that you can continue to read from the record
with later INPUT statements. Otherwise,
IML automatically goes to the next record
for the next INPUT statement.

/ advances to the next record.
> operand specifies that the next record to be read start

at the indicated byte position in the file (for
RECFM= N files only). The operand is a lit-
eral number, a variable name, or an expres-
sion in parentheses.

INSERT Function � 699

< operand instructs IML to read the indicated num-
ber of bytes as the next record. The record
directive must be specified for binary files
(RECFM=N). The operand is a literal num-
ber, a variable name, or an expression in
parentheses.

positionals instruct PROC IML to go to a specific column on the record.
The positionals are the following:

@ operand instructs IML to go to the indicated column,
where operand is a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.
The operand can also be a character operand
when pattern searching is needed. For more
information, see Chapter 7.

+ operand specifies to skip the indicated number of
columns. The operand is a literal number,
a variable name, or an expression in paren-
theses.

INSERT Function

inserts one matrix inside another

INSERT(x, y, row<, column>)

The inputs to the INSERT function are as follows:

x is the target matrix. It can be either numeric or character.

y is the matrix to be inserted into the target. It can be either numeric
or character, depending on the type of the target matrix.

row is the row where the insertion is to be made.

column is the column where the insertion is to be made.

The INSERT function returns the result of inserting the matrix y inside the matrix x
at the place specified by the row and column arguments. This is done by splitting x
either horizontally or vertically before the row or column specified and concatenating
y between the two pieces. Thus, if x is m rows by n columns, row can range from 0
to m+ 1 and column can range from 0 to n+ 1. However, it is not possible to insert
in both dimensions simultaneously, so either row or column must be 0, but not both.
The column argument is optional and defaults to 0. Also, the matrices must conform
in the dimension in which they are joined.

For example, consider the following statements:

700 � Chapter 20. Language Reference

a={1 2, 3 4};
b={5 6, 7 8};
c=insert(a, b, 2, 0);
d=insert(a, b, 0, 3);

These statements produce the following result:

C 4 rows 2 cols (numeric)

1 2
5 6
7 8
3 4

D 2 rows 4 cols (numeric)

1 2 5 6
3 4 7 8

C shows the result of insertion in the middle, while D shows insertion on an end.

INT Function
truncates a value

INT(matrix)

where matrix is a numeric matrix or literal.

The INT function truncates the decimal portion of the value of the argument. The
integer portion of the value of the argument remains. The INT function takes the
integer value of each element of the argument matrix.

An example that uses the INT function follows:

c=2.8;
b=int(c);

B 1 row 1 col (numeric)

2

In the next example, notice that a value of 11 is returned. This is because of the
maximal machine precision. If the difference is less than 1E−12, the INT function
rounds up. Here is the code:

x={12.95 10.9999999999999,
-30.5 1e-6};

b=int(x);

B 2 rows 2 cols (numeric)

12 11
-30 0

INV Function � 701

INV Function

computes the matrix inverse

INV(matrix)

where matrix is a square nonsingular matrix.

The INV function produces a matrix that is the inverse of matrix, which must be
square and nonsingular.

For G = INV(A) the inverse has the properties

GA = AG = identity

To solve a system of linear equations AX = B for X, you can use the following
statement:

x=inv(a)*b;

Note that the SOLVE function is more accurate and efficient for this task.

An example of valid usage is as follows:

A = {0 0 1 0 1,
1 0 0 1 0,
0 1 1 0 1,
1 0 0 0 1,
0 1 0 1 0};

b = {9,4,10,8,2};

/* find inverse and solve linear system */
Ainv = inv(A);
x1 = Ainv*b;

/* solve by using a more efficient algorithm */
x2 = solve(A,b);

These statements produce the following output:

X1 X2

3 3
1 1
4 4
1 1
5 5

The INV function uses an LU decomposition followed by back substitution to solve
for the inverse, as described in Forsythe, Malcolm, and Moler (1967).

702 � Chapter 20. Language Reference

The INV function (as well as the DET and SOLVE functions) uses the following
criterion to decide whether the input matrix, A = [aij]i,j=1,...,n, is singular:

sing = 100×MACHEPS× max
1≤i,j≤n

|aij |

where MACHEPS is the relative machine precision.

All matrix elements less than or equal to sing are now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal to sing, the
matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating-point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you might
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong, do the following:

• Try the GINV function to compute the generalized inverse.

• Examine the size of the singular values returned by the SVD function. The
SVD function can be used to compute a generalized inverse with a user-
specified singularity criterion.

If A is an n×n matrix, the INV function allocates an n×n matrix in order to return
the inverse. It also temporarily allocates an n2 array in order to compute the inverse.

INVUPDT Function

updates a matrix inverse

INVUPDT(matrix, vector<, scalar>)

The inputs to the INVUPDT function are as follows:

matrix is an n × n nonsingular matrix. In most applications matrix is
symmetric positive definite.

vector is an n× 1 or 1× n vector.

scalar is a numeric scalar.

The Sherman-Morrison-Woodbury formula is

(A + UV′)−1 = A−1 −A−1U(I + V′A−1U)−1V′A−1

where A is an n×n nonsingular matrix and U and V are n× k. The formula shows
that a rank k update to A corresponds to a rank k update of A−1.

INVUPDT Function � 703

The INVUPDT function is used primarily to update a matrix inverse. The func-
tion implements the Sherman-Morrison-Woodbury formula for rank-one updates with
U = wX and V = X, where X is an n× 1 vector and w is a scalar.

If M = A−1, then you can call the INVUPDT function as follows:

R=invupdt(M,X,w);

This statement computes the following matrix:

R = M− wMX(I + wX′MX)−1X′M

The matrix R is equivalent to (A + wXX′)−1. If A is symmetric positive definite,
then so is R.

If w is not specified, then it is given a default value of 1.

A common use of the INVUPDT function is in linear regression. If Z is a design
matrix, M = (Z′Z)−1 is the associated inverse crossproduct matrix, and v is a new
observation to be used in estimating the parameters of a linear model, then the inverse
crossproducts matrix that includes the new observation can be updated from M by
using the following statement:

M2=invupdt(M,v);

If w is 1, the function adds an observation to the inverse; if w is −1, the function
removes an observation from the inverse. If weighting is used, w is the weight.

To perform the computation, the INVUPDT function uses about 2n2 multiplications
and additions, where n is the row dimension of the positive definite argument matrix.

The following program demonstrates adding or removing observations from a linear
fit and updating the inverse crossproduct matrix:

X = {0,1,1,1,2,2,3,4,4};
Y = {1,1,2,6,2,3,3,3,4};

/* find linear fit */
Z = j(nrow(X),1,1) || X; /* design matrix */
M = inv(Z‘*Z);

b = M*Z‘*Y; /* LS estimate */
resid = Y - Z*b; /* residuals */
print "Original Fit", b resid;

/* residual for observation (1,6) seems too large.
Take obs number 4 out of data set and refit. */

v = z[4,];
M = invupdt(M, v, -1); /* update inverse crossprod */

keepObs = (1:3) || (5:nrow(X));
Z = Z[keepObs,];

704 � Chapter 20. Language Reference

Y = Y[keepObs,];
b = M*Z‘*Y; /* new LS estimate */
print "After deleting observation 4", b;

/* Add a new obs (x,y) = (0,2) and refit. */
obs = {0 2};
v = 1 || obs[1]; /* new row in design matrix */
M = invupdt(M, v);

Z = Z // v;
Y = Y // obs[2];
b = M*Z‘*Y; /* new LS estimate */
print "After adding observation (0,2)", b;

The output is as follows:

Original Fit

B RESID

2.0277778 -1.027778
0.375 -1.402778

-0.402778
3.5972222
-0.777778
0.2222222
-0.152778
-0.527778
0.4722222

After deleting observation 4

B

1
0.6470588

After adding observation (0,2)

B

1.3
0.5470588

IPF Call

performs an iterative proportional fit of a contingency table

IPF Call � 705

CALL IPF(fit, status, dim, table, config<, initab><, mod>);

The inputs to the IPF subroutine are as follows:

fit is a returned matrix. The matrix fit contains an array of the estimates of
the expected number in each cell under the model specified in config.
This matrix conforms to table, meaning that it has the same dimensions
and order of variables.

status is a returned matrix. The status argument is a row vector of length 3.
status[1] is 0 if there is convergence to the desired accuracy, otherwise
it is nonzero. status[2] is the maximum difference between estimates
of the last two iterations of the IPF algorithm. status[3] is the number
of iterations performed.

dim is an input matrix. If the problem contains v variables then dim is
1× v row vector. The value dim[i] is the number of possible levels for
variable i in a contingency table.

table is an input matrix. The table argument specifies an array of the number
of observations at each level of each variable. Variables are nested
across columns and then across rows.

config is an input matrix. The config argument specifies which marginal totals
to fit. Each column of config specifies a distinct marginal in the model
under consideration. Because the model is hierarchical, all subsets of
specified marginals are included in fitting.

initab is an input matrix. The initab argument is an array of initial values for
the iterative procedure. If you do not specify values, 1s are used. For
incomplete tables, initab is set to 1 if the cell is included in the design,
and 0 if it is not.

mod is an input matrix. The mod argument is a two-element vector specify-
ing the stopping criteria. If mod= {maxdev, maxit}, then the procedure
iterates either until the maximum difference between estimates of the
last two iterations is less than maxdev or until maxit iterations are com-
pleted. Default values are maxdev=0.25 and maxit=15.

The IPF subroutine performs an iterative proportional fit of a contingency table.
This is a standard statistical technique to obtain maximum likelihood estimates for
cells under any hierarchical log-linear model. The algorithm is described in Bishop,
Fienberg, and Holland (1975).

The matrix table must conform in size to the contingency table as specified in dim.
In particular, if table is n × m, the product of the entries in dim must equal nm.
Furthermore, there must be some integer k such that the product of the first k entries
in dim equals m. If you specify initab, then it must be the same size as table.

Adjusting a Table from Marginals

A common use of the IPF algorithm is to adjust the entries of a table in order to fit a
new set of marginals while retaining the interaction between cell entries.

706 � Chapter 20. Language Reference

Example 1: Adjusting Marital Status by Age

Bishop, Fienberg, and Holland (1975) present data from D. Friedlander showing the
distribution of women in England and Wales according to their marital status in 1957.
One year later, new official marginal estimates were announced. The problem is to
adjust the entries in the 1957 table so as to fit the new marginals while retaining the
interaction between cells. This problem can arise when you have internal cells that
are known from sampling a population, and then get margins based on a complete
census.

When you want to adjust an observed table of cell frequencies to a new set of mar-
gins, you must set the initab parameter to be the table of observed values. The new
marginals are specified through the table argument. The particular cell values for
table are not important, since only the marginals will be used (the proportionality
between cells is determined by initab).

There are two easy ways to create a table that contains given margins.
Recall that a table of independent variables has an expected cell value
Aij = (sum of row i)(sum of col j)/(sum of all cells). Thus you could form a
table with these cell entries. Another possibility is to use a “greedy algorithm” to
assign as many of the marginals as possible to the first cell, then assign as many
of the remaining marginals as possible to the second cell, and so on until all of the
marginals have been distributed. Both of these approaches are encapsulated into
modules in the following program:

/* Return a table such that cell (i,j) has value
(sum of row i)(sum of col j)/(sum of all cells) */

start GetIndepTableFromMargins(bottom, side);
if bottom[+] ^= side[+] then do;

print "Marginal totals are not equal";
abort;

end;
table = side*bottom/side[+];
return (table);

finish;

/* Use a "greedy" algorithm to create a table whose
marginal totals match given marginal totals.
Margin1 is the vector of frequencies totaled down

each column. Margin1 means that
Variable 1 has NOT been summed over.

Margin2 is the vector of frequencies totaled across
each row. Margin2 means that Variable 2
has NOT been summed over.

After calling, use SHAPE to change the shape of
the returned argument. */

start GetGreedyTableFromMargins(Margin1, Margin2);
/* copy arguments so they are not corrupted */
m1 = colvec(Margin1); /* colvec is in IMLMLIB */
m2 = colvec(Margin2);
if m1[+] ^= m2[+] then do;

print "Marginal totals are not equal";

IPF Call � 707

abort;
end;
dim1 = nrow(m1);
dim2 = nrow(m2);
table = j(1,dim1*dim2,0);
/* give as much to cell (1,1) as possible,

then as much as remains to cell (1,2), etc,
until all the margins have been distributed */

idx = 1;
do i2 = 1 to dim2;

do i1 = 1 to dim1;
t = min(m1[i1],m2[i2]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;

end;
end;
return (table);

finish;

Mod = {0.01 15}; /* tighten stopping criterion */

Columns = {’ Single’ ’ Married’ ’Widow/Divorced’};
Rows = {’15 - 19’ ’20 - 24’ ’25 - 29’ ’30 - 34’

’35 - 39’ ’40 - 44’ ’45 - 49’ ’50 Or Over’};

/* Marital status has 3 levels. Age has 8 levels */
Dim = {3 8};

/* Use known distribution for start-up values */
IniTab = { 1306 83 0 ,

619 765 3 ,
263 1194 9 ,
173 1372 28 ,
171 1393 51 ,
159 1372 81 ,
208 1350 108 ,
1116 4100 2329 };

/* New marginal totals for age by marital status */
NewMarital = { 3988 11702 2634 };
NewAge = {1412,1402,1450,1541,1681,1532,1662,7644};

/* Create any table with these marginals */
Table = GetGreedyTableFromMargins(NewMarital, NewAge);
Table = shape(Table, nrow(IniTab), ncol(IniTab));

/* Consider all main effects */
Config = {1 2};

call ipf(Fit,Status,Dim,Table,Config,IniTab,Mod);

if Status[1] = 0 then

708 � Chapter 20. Language Reference

print ’Known Distribution (1957)’,
IniTab [colname=Columns rowname=Rows format=8.0],,
’Adjusted Estimates Of Distribution (1958)’,
Fit [colname=Columns rowname=Rows format=8.2];

else
print "IPF did not converge in "

(Status[3]) " iterations";

The results of this program are as follows. The same results are obtained if the table
parameter is formed by using the “independent algorithm.”

Known Distribution (1957)

INITAB
Single Married Widow/Divorced

15 - 19 1306 83 0
20 - 24 619 765 3
25 - 29 263 1194 9
30 - 34 173 1372 28
35 - 39 171 1393 51
40 - 44 159 1372 81
45 - 49 208 1350 108
50 Or Over 1116 4100 2329

Adjusted Estimates Of Distribution (1958)

FIT
Single Married Widow/Divorced

15 - 19 1325.27 86.73 0.00
20 - 24 615.56 783.39 3.05
25 - 29 253.94 1187.18 8.88
30 - 34 165.13 1348.55 27.32
35 - 39 173.41 1454.71 52.87
40 - 44 147.21 1308.12 76.67
45 - 49 202.33 1352.28 107.40
50 Or Over 1105.16 4181.04 2357.81

Example 2: Adjusting Votes by Region

A similar technique can be used to standardize data from raw counts into percentages.
For example, consider data from a 1836 vote in the U.S. House of Representatives
on a resolution that the House should adopt a policy of tabling all petitions for the
abolition of slavery. Attitudes toward abolition were different among slaveholding
states that would later secede from the Union (“the South”), slaveholding states that
refused to secede (“the Border States”), and nonslaveholding states (“the North”).

The raw votes for the resolution are defined in the following code. The data are hard
to interpret because the margins are not homogeneous.

IPF Call � 709

/* Yea Abstain Nay */
IniTab = { 61 12 60, /* North */

17 6 1, /* Border */
39 22 7 }; /* South */

Standardizing the data by specifying homogeneous margins reveals interactions and
symmetry that were not apparent in the raw data. Suppose the margins are specified
as follows:

NewVotes = {100 100 100};
NewSection = {100,100,100};

In this case, the program for marital status by age can be easily rewritten to adjust the
votes into a standardized form. The resulting output is as follows:

FIT
Yea Abstain Nay

North 20.1 10.2 69.7
Border 47.4 42.8 9.8
South 32.5 47.0 20.5

Generating a Table with Given Marginals

The “greedy algorithm” presented in the Marital-Status-By-Age example can be ex-
tended in a natural way to the case where you have n 1-way marginals and want to
form an n-dimensional table. For example, a three-dimensional “greedy algorithm”
would allocate the vector table as table=j(dim1*dim2*dim3,1,0); and have
three nested loops as indicated in the following code. Afterwards the table parameter
can be reshaped by using the SHAPE function.

do i3 = 1 to dim3;
do i2 = 1 to dim2;

do i1 = 1 to dim1;
t = min(m1[i1],m2[i2],m3[i3]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;
m3[i3] = m3[i3]-t;

end;
end;

end;

The idea of the “greedy algorithm” can be extended to marginals that are not 1-way.
For example, the following three-dimensional table is similar to one appearing in
Christensen (1997) based on data from M. Rosenberg. The table presents data on a
person’s self-esteem for people classified according to their religion and their father’s
educational level.

710 � Chapter 20. Language Reference

Father’s Educational Level
Self- Not HS HS Some Coll Post

Religion Esteem Grad Grad Coll Grad Coll
High 575 388 100 77 51

Catholic
Low 267 153 40 37 19
High 117 102 67 87 62

Jewish
Low 48 35 18 12 13
High 359 233 109 197 90

Protestant
Low 159 173 47 82 32

Since the father’s education level is nested across columns, it is Variable 1 with levels
corresponding to not finishing high school, graduating from high school, attending
college, graduating from college, and attending graduate courses. The variable that
varies the quickest across rows is Self-Esteem, so Self-Esteem is Variable 2 with
values “High” and “Low.” The Religion variable is Variable 3 with values “Catholic,”
“Jewish,” and “Protestant.”

The following program encodes this table, using the MARG call to compute a 2-way
marginal table by summing over the third variable and a 1-way marginal by summing
over the first two variables. Then a new table (NewTable) is created by applying
the greedy algorithm to the two marginals. Finally, the marginals of NewTable are
computed and compared with those of table.

dim={5 2 3};

table={
/* Father’s Education:

NotHSGrad HSGrad Col ColGrad PostCol
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

config = { 1 3,
2 0 };

call marg(locmar, marginal, dim, table, config);
print locmar, marginal, table;

/* Examine marginals: The name indicates the

IPF Call � 711

variable(s) that are NOT summed over.
The locmar variable tells where to index
into the marginal variable. */

Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

NewTable = j(nrow(table),ncol(table),0);
/* give as much to cell (1,1,1) as possible,

then as much as remains to cell (1,1,2), etc,
until all the margins have been distributed. */

idx = 1;
do i3 = 1 to dim[3]; /* over Var3 */

do i2 = 1 to dim[2]; /* over Var2 */
do i1 = 1 to dim[1]; /* over Var1 */

/* Note Var12_Marg has Var1 varying across
the columns */

t = min(Var12_Marg[i2,i1],Var3_Marg[i3]);
NewTable[idx] = t;
idx = idx + 1;
Var12_Marg[i2,i1] = Var12_Marg[i2,i1]-t;
Var3_Marg[i3] = Var3_Marg[i3]-t;

end;
end;

end;

call marg(locmar, NewMarginal, dim, table, config);
maxDiff = abs(marginal-NewMarginal)[<>];
if maxDiff=0 then

print "Marginals are unchanged";
print NewTable;

The results of this program are as follows:

LOCMAR

1 11

MARGINAL

COL1 COL2 COL3 COL4 COL5 COL6 COL7

ROW1 1051 723 276 361 203 474 361

MARGINAL

COL8 COL9 COL10 COL11 COL12 COL13

ROW1 105 131 64 1707 561 1481

712 � Chapter 20. Language Reference

TABLE

575 388 100 77 51
267 153 40 37 19
117 102 67 87 62
48 35 18 12 13

359 233 109 197 90
159 173 47 82 32

Marginals are unchanged

NEWTABLE

1051 656 0 0 0
0 0 0 0 0
0 67 276 218 0
0 0 0 0 0
0 0 0 143 203

474 361 105 131 64

Fitting a Log-Linear Model to a Table

A second common usage of the IPF algorithm is to hypothesize that the table of
observations can be fitted by a model with known effects and to ask whether the
observed values indicate that the model hypothesis can be accepted or should be
rejected. In this usage, you normally do not specify the initab argument to IPF (but
see the comment on structural zeros in the section “Additional Details” on page 715).

Korff, Taback, and Beard (1952) reported statistics related to the outbreak of food
poisoning at a company picnic. A total of 304 people at the picnic were surveyed
to determine who had eaten either of two suspect foods: potato salad and crabmeat.
The predictor variables are whether the individual ate potato salad (Variable 1: “Yes”
or “No”) and whether the person ate crabmeat (Variable 2: “Yes” or “No”). The re-
sponse variable is whether the person was ill (Variable 3: “Ill” or “Not Ill”). The order
of the variables is determined by the dim and table arguments to IPF. The variables
are nested across columns, then across rows.

Crabmeat: Y E S N O
Potato salad: Yes No Yes No
Ill 120 4 22 0
Not Ill 80 31 24 23

The following program defines the variables and observations, and then fits three
separate models. How well each model fits the data is determined by computing a
Pearson chi-square statistic χ2 =

∑
(O − E)2/E, where the sum is over all cells,

IPF Call � 713

O stands for the observed cell count, and E stands for the fitted estimate. Other
statistics, such as the likelihood-ratio chi-square statistic G2 = −2

∑
O log(E/O),

could also be used.

The program first fits a model that excludes the three-way interaction. The model
fits well, so you can conclude that an association between illness and potato salad
does not depend on whether an individual ate crabmeat. The next model excludes
the interaction between potato salad and illness. This model is rejected with a large
chi-square value, so the data support an association between potato salad and illness.
The last model excludes the interaction between the crabmeat and the illness. This
model fits moderately well. Here is the code:

/* Compute a chi-square score for a table of observed
values, given a table of expected values. Compare
this score to a chi-square value with given degrees
of freedom at 95% confidence level. */

start ChiSqTest(obs, model, degFreedom);
diff = (obs - model)##2 / model;
chiSq = diff[+];
chiSqCutoff = cinv(0.95, degFreedom);
print chiSq chiSqCutoff;
if chiSq > chiSqCutoff then

print "Reject hypothesis";
else

print "No evidence to reject hypothesis";
finish;

dim={2 2 2};

/* Crab meat: Y E S N O
Potato: Yes No Yes No */

table={ 120 4 22 0, /* Ill */
80 31 24 23 }; /* Not Ill */

crabmeat = " C R A B N O C R A B";
potato = {’YesPot’ ’NoPot’ ’YesPot’ ’NoPot’};
illness = {’Ill’, ’Not Ill’};

hypoth = "Hypothesis: no three-factor interaction";
config={1 1 2,

2 3 3};
call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 1); /* 1 deg of freedom */

/* Test for interaction between Var 3 (Illness) and
Var 1 (Potato Salad) */

hypoth = "Hypothesis: no Illness-Potato Interaction";

714 � Chapter 20. Language Reference

config={1 2,
2 3};

call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

/* Test for interaction between Var 3 (Illness) and
Var 2 (Crab meat) */

hypoth = "Hypothesis: no Illness-Crab Interaction";
config={1 1,

2 3};
call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
fit[label=crabmeat colname=potato

rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

The associated output is as follows:

HYPOTH

Hypothesis: no three-factor interaction

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 121.08 2.92 20.92 1.08
Not Ill 78.92 32.08 25.07 21.93

CHISQ CHISQCUTOFF

1.7021335 3.8414588

No evidence to reject hypothesis

HYPOTH

Hypothesis: no interaction between Illness and Potatoes

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 105.53 18.47 14.67 7.33

IPF Call � 715

Not Ill 94.47 16.53 31.33 15.67

CHISQ CHISQCUTOFF

44.344643 5.9914645

Reject hypothesis

HYPOTH

Hypothesis: no interaction between Illness and Crab

Fitted Model:

C R A B N O C R A B
YesPot NoPot YesPot NoPot

Ill 115.45 2.41 26.55 1.59
Not Ill 84.55 32.59 19.45 21.41

CHISQ CHISQCUTOFF

5.0945132 5.9914645

No evidence to reject hypothesis

Additional Details

A few additional comments on the examples are in order.

Structural versus Random Zeros In the marriage-by-age example, the initab ar-
gument contained a zero for the “15-19 and Widowed/Divorced” category.
Because the initab parameter determines the proportionality between cells, the
fitted model retains a zero in that category. By contrast, in the potato-crab-
illness example, the table parameter contained a zero for number of illnesses
observed among those who did not eat either crabmeat or potato salad. This is
a sampling (or random) zero. Some models preserve that zero; others do not.
If your table has a structural zero (for example, the number of ovarian can-
cers observed among male patients), then you can use the initab parameter to
preserve that zero. Refer to Bishop, Fienberg, and Holland (1975) or the doc-
umentation for the CATMOD procedure in SAS/STAT for more information
about structural zeros and incomplete tables.

The config Parameter The columns of this matrix specify which interaction effects
should be included in the model. The following table gives the model and the
configuration parameter for common interactions for an I × J × K table in
three dimensions. The so-called noncomprehensive models that do not include
all variables (for example, config = {1}) are not listed in the table, but can

716 � Chapter 20. Language Reference

be used. You can also specify combinations of main and interaction effects.
For example, config = {1 3, 2 0}) specifies all main effects and the 1-
2 interaction. Bishop, Fienberg, and Holland (1975) and Christensen (1997)
explain how to compute the degrees of freedom associated with any model. For
models with structural zeros, computing the degrees of freedom is complicated.

Model Config Degrees of Freedom
No three-factor {1 1 2, (I − 1)(J − 1)(K − 1)

2 3 3}
One two-factor absent {1 2,

3 3} (I − 1)(J − 1)K
{1 2,
2 3} (I − 1)J(K − 1)
{1 1,
2 3} I(J − 1)(K − 1)

Two two-factor absent {2, 3} (I − 1)(JK − 1)
{1, 3} (J − 1)(IK − 1)
{1, 2} (K − 1)(IJ − 1)

No two-factor {1 2 3} IJK − (I + J +K) + 2
Saturated {1,2,3} IJK

The Shape of the table Parameter Since variables are nested across columns and
then across rows, any shape that conforms to the dim parameter is equivalent.

For example, the section “Generating a Table with Given Marginals” on page
709 presents data on a person’s self-esteem for people classified according to
their religion and their father’s educational level. To save space, the educational
levels are subsequently denoted by labels indicating the typical number of years
spent in school: “<12,” “12,” “<16,” “16,” and “>16.”

The table would be encoded as follows:

dim={5 2 3};

table={
/* Father’s Education:

<12 12 <16 16 >16
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

The same information for the same variables in the same order could also be
encoded into an n × m table in two other ways. Recall that the product of

ITSOLVER Call � 717

entries in dim is nm and that m must equal the product of the first k entries of
dim for some k. For this example, the product of the entries in dim is 30, and
so the table must be 6 × 5, 3 × 10, or 1 × 30. The 3 × 10 table is encoded as
concatenating rows 1–2, 3–4, and 5–6 to produce the following:

table={
/* Esteem: H I G H L O W */
/* <12 ... >16 <12 ... >16 */

575 ... 51 267 ... 19, /* Catholic */
117 ... 62 48 ... 13, /* Jewish */
359 ... 90 159 ... 32 /* Protestant*/

};

The 1× 30 table is encoded by concatenating all rows, as follows:

table={
/* CATHOLIC ... PROTESTANT

High Low ... High Low
<12 ... >16 <12 ... >16 ... <12 ... >16 <12 ... >16
*/
575 ... 51 267 ... 19 ... 359 ... 90 159 ... 32

};

ITSOLVER Call

solves a sparse linear system by using iterative methods

CALL ITSOLVER(x, error, iter, method, A, b,<precon>,<tol>,<maxiter>,
<start>, <history>);

The ITSOLVER call returns the following values:

x is the solution to Ax = b.

error is the final relative error of the solution.

iter is the number of iterations executed.

The inputs to the ITSOLVER call are as follows:

method is the type of iterative method to use.

A is the sparse coefficient matrix in the equation Ax = b.

b is a column vector, the right side of the equation Ax = b.

precon is the name of a preconditioning technique to use.

tol is the relative error tolerance.

maxiter is the iteration limit.

start is a starting point column vector.

history is a matrix to store the relative error at each iteration.

718 � Chapter 20. Language Reference

The ITSOLVER call solves a sparse linear system by iterative methods, which in-
volve updating a trial solution over successive iterations to minimize the error. The
ITSOLVER call uses the technique specified in the method parameter to update the
solution. The accepted method options are as follows:

method = ’CG’: conjugate gradient algorithm, when A is symmetric and positive
definite.

method = ’CGS’: conjugate gradient squared algorithm, for general A.

method = ’MINRES’: minimum residual algorithm, when A is symmetric indefinite.

method = ’BICG’: biconjugate gradient algorithm, for general A.

The input matrix A represents the coefficient matrix in sparse format; it is an n × 3
matrix, where n is the number of nonzero elements. The first column contains the
nonzero values, while the second and third columns contain the row and column loca-
tions for the nonzero elements, respectively. For the algorithms assuming symmetric
A, conjugate gradient, and minimum residual, only the lower triangular elements
should be specified. The algorithm continues iterating to improve the solution until
either the relative error tolerance specified in tol is satisfied or the maximum number
of iterations specified in maxiter is reached. The relative error is defined as

error = ‖Ax− b‖2/(‖b‖2 + ε)

where the ‖ ·‖2 operator is the Euclidean norm, and ε is a machine-dependent epsilon
value to prevent any division by zero. If tol or maxiter is not specified in the call,
then a default value of 10−7 is used for tol and 100000 for maxiter.

The convergence of an iterative algorithm can often be enhanced by preconditioning
the input coefficient matrix. The preconditioning option is specified with the precon
parameter, which can take one of the following values:

precon = ’NONE’: no preconditioning

precon = ’IC’: incomplete Cholesky factorization, formethod = ’CG’ or ’MINRES’
only

precon = ’DIAG’: diagonal Jacobi preconditioner, formethod = ’CG’ or ’MINRES’
only

precon = ’MILU’: modified incomplete LU factorization, for method = ’BICG’
only

If precon is not specified, no preconditioning is applied.

A starting trial solution can be specified with the start parameter; otherwise the
ITSOLVER call generates a zero starting point. You can supply a matrix to store the
relative error at each iteration with the history parameter. The history matrix should
be dimensioned with enough elements to store the maximum number of iterations you
expect.

ITSOLVER Call � 719

Your IML program should always check the returned error and iter parameters to
verify that the desired relative error tolerance was reached. If not, your program
might continue the solution process with another ITSOLVER call, with start set to
the latest result. You might also try a different precon option to enhance convergence.

For example, use the biconjugate gradient algorithm to solve the system

3 2 0 0
1.1 4 1 3.2
0 1 −10 0
0 3.2 0 3

x =

1
1
1
1

Here is the code:

/* value row column */
A = { 3 1 1,

2 1 2,
1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

-10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};
maxiter = 10;
hist = j(maxiter,1,.);
start = {1,1,1,1};
tol = 1e-10;
call itsolver(x, error, iter, ’bicg’, A, b, ’milu’, tol,

maxiter, start, hist);
print x;
print iter error;
print hist;

The results are as follows:

X

0.2040816
0.1938776

-0.080612
0.1265306

ITER ERROR

3 3.494E-16

720 � Chapter 20. Language Reference

HIST

0.0254375
0.0080432
3.494E-16

.

.

.

.

.

.

.

Use the conjugate gradient algorithm solve the symmetric positive definite system

3 1.1 0 0
1.1 4 1 3.2
0 1 10 0
0 3.2 0 3

x =

1
1
1
1

Here is the code:

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};

call itsolver(x, error, iter, ’CG’, A, b);

print x, iter, error;

The results are as follows:

X

2.68
-6.4
0.74
7.16

J Function � 721

ITER

4

ERROR

5.77E-15

J Function

creates a matrix of identical values

J(nrow<, ncol<, value>>)

The inputs to the J function are as follows:

nrow is a numeric matrix or literal giving the number of rows.

ncol is a numeric matrix or literal giving the number of columns.

value is a numeric or character matrix or literal for filling the rows and
columns of the matrix.

The J function creates a matrix with nrow rows and ncol columns with all elements
equal to value. If ncol is not specified, it defaults to nrow. If value is not specified,
it defaults to 1. The REPEAT and SHAPE functions can also perform this operation,
and they are more general.

Examples of the J function are as follows:

b=j(3);

B 3 rows 3 cols (numeric)

1 1 1
1 1 1
1 1 1

r=j(5,2,’xyz’);

R 5 rows 2 cols (character, size 3)

xyz xyz
xyz xyz
xyz xyz
xyz xyz
xyz xyz

722 � Chapter 20. Language Reference

JROOT Function

computes the first nonzero roots of a Bessel function of the first kind and the
derivative of the Bessel function at each root

JROOT(ν, n)

The JROOT function returns an n × 2 matrix with the calculated roots in the first
column and the derivatives in the second column.

The inputs to the JROOT function are as follows:

ν is a scalar denoting the order of the Bessel function, with ν > −1.

n is a positive integer denoting the number of roots.

The JROOT function returns a matrix in which the first column contains the first n
roots of the Bessel function; these roots are the solutions to the equation

Jν(xi) = 0, i = 1, . . . , n

The second column of this matrix contains the derivatives J ′ν(xi) of the Bessel func-
tion at each of the roots xi. The expression Jν(x) is a solution to the differential
equation

x2d
2Jν

dx2
+ x

dJν

dx
+ (x2 − ν2)Jν = 0

One of the expressions for such a function is given by the series

Jν(x) =
(

1
2
z

)ν ∞∑
k=0

(
−1

4z
2
)k

k!Γ(ν + k + 1)

where Γ(·) is the gamma function. Refer to Abramowitz and Stegun (1972) for more
details concerning the Bessel and gamma functions. The algorithm is a Newton
method coupled with a reasonable initial guess. For large values of n or ν, the al-
gorithm could fail due to machine limitations. In this case, JROOT returns a matrix
with zero rows and zero columns. The values that cause the algorithm to fail are
machine dependent.

The following code provides an example:

x = jroot(1,4);
print x;

To obtain only the roots, you can use the following statement, which extracts the first
column of the returned matrix:

x = jroot(1,4)[,1];

KALCVF Call � 723

KALCVF Call
computes the one-step prediction zt+1|t and the filtered estimate zt|t, as well as
their covariance matrices. The call uses forward recursions, and you can also
use it to obtain k-step estimates.

CALL KALCVF(pred, vpred, filt, vfilt, data, lead, a, f , b, h,

var <, z0, vz0>);

The inputs to the KALCVF subroutine are as follows:

data is a T ×Ny matrix containing data (y1, · · · ,yT)′.

lead is the number of steps to forecast after the end of the data.

a is anNz×1 vector for a time-invariant input vector in the transition
equation, or a (T + lead)Nz × 1 vector containing input vectors in
the transition equation.

f is an Nz × Nz matrix for a time-invariant transition matrix in the
transition equation, or a (T + lead)Nz × Nz matrix containing
transition matrices in the transition equation.

b is an Ny × 1 vector for a time-invariant input vector in the mea-
surement equation, or a (T + lead)Ny × 1 vector containing input
vectors in the measurement equation.

h is anNy×Nz matrix for a time-invariant measurement matrix in the
measurement equation, or a (T + lead)Ny ×Nz matrix containing
measurement matrices in the measurement equation.

var is an (Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a (T + lead)(Ny + Nz) × (Ny + Nz)
matrix containing variance matrices for the error in the transi-
tion equation and the error in the measurement equation—that is,
(η′t, ε

′
t)
′.

z0 is an optional 1×Nz initial state vector z′1|0.

vz0 is an optional Nz ×Nz covariance matrix of an initial state vector
P1|0.

The KALCVF call returns the following values:

pred is a (T + lead) × Nz matrix containing one-step predicted state
vectors (z1|0, · · · , zT+1|T , zT+2|T , · · · , zT+lead|T)′.

vpred is a (T+lead)Nz×Nz matrix containing mean square errors of pre-
dicted state vectors (P1|0, · · · ,PT+1|T ,PT+2|T , · · · ,PT+lead|T)′.

filt is a T × Nz matrix containing filtered state vectors
(z1|1, · · · , zT |T)′.

vfilt is a TNz × Nz matrix containing mean square errors of filtered
state vectors (P1|1, · · · ,PT |T)′.

724 � Chapter 20. Language Reference

The KALCVF call computes the conditional expectation of the state vector zt given
the observations, assuming that the mean and the variance of the initial state vector are
known. The filtered value is the conditional expectation of the state vector zt given
the observations up to time t. For k-step forecasting where k > 0, the conditional
expectation at time t+k is computed given observations up to t. For notation, Vt and
Rt are variances of ηt and εt, respectively, and Gt is a covariance of ηt and εt. A−

stands for the generalized inverse of A. The filtered value and its covariance matrix
are denoted zt|t and Pt|t, respectively. For k > 0, zt+k|t and Pt+k|t stand for the
k-step forecast of zt+k and its mean square error. The Kalman filtering algorithm for
one-step prediction and filtering is given as follows:

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

zt|t = zt|t−1 + Pt|t−1H
′
tD

−
t ε̂t

Pt|t = Pt|t−1 −Pt|t−1H
′
tD

−
t HtPt|t−1

Kt = (FtPt|t−1H
′
t + Gt)D−

t

zt+1|t = at + Ftzt|t−1 + Ktε̂t

Pt+1|t = FtPt|t−1F
′
t + Vt −KtDtK′

t

And for k-step forecasting for k > 1,

zt+k|t = at+k−1 + Ft+k−1zt+k−1|t

Pt+k|t = Ft+k−1Pt+k−1|tF
′
t+k−1 + Vt+k−1

When you use the alternative transition equation

zt = at + Ftzt−1 + ηt

the forward recursion algorithm is written

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + HtGt + G′

tH
′
t + Rt

zt|t = zt|t−1 + (Pt|t−1H
′
t + Gt)D−

t ε̂t

Pt|t = Pt|t−1 − (Pt|t−1H
′
t + Gt)D−

t (HtPt|t−1 + G′
t)

Kt = (Ft+1Pt|t−1H
′
t + Gt)D−

t

zt+1|t = at+1 + Ft+1zt|t−1 + Ktε̂t

Pt+1|t = Ft+1Pt|t−1F
′
t+1 + Vt+1 −KtDtK′

t

KALCVF Call � 725

And for k-step forecasting (k > 1),

zt+k|t = at+k + Ft+kzt+k−1|t

Pt+k|t = Ft+kPt+k−1|tF
′
t+k + Vt+k

You can use the KALCVF call when you specify the alternative transition equation
and Gt = 0.

The initial state vector and its covariance matrix of the time invariant Kalman filters
are computed under the stationarity condition

z1|0 = (I− F)−a

P1|0 = (I− F⊗ F)−vec(V)

where F and V are the time-invariant transition matrix and the covariance matrix of
transition equation noise, and vec(V) is an N2

z × 1 column vector that is constructed
by the stacking Nz columns of matrix V. Note that all eigenvalues of the matrix F
are inside the unit circle when the SSM is stationary. When the preceding formula
cannot be applied, the initial state vector estimate z1|0 is set to a1 and its covariance
matrix P1|0 is given by 106I. Optionally, you can specify initial values.

The KALCVF call accepts missing values in observations. If there is a missing ob-
servation, the filtered state vector for the missing observation is given by the one-step
forecast.

The following program gives an example of the KALCVF call:

q=2;
p=2;
n=10;
lead=3;

total=n+lead;

seed = 25735;
x=round(10*normal(j(n,p,seed)))/10;
f=round(10*normal(j(q*total,q,seed)))/10;
a=round(10*normal(j(total*q,1,seed)))/10;
h=round(10*normal(j(p*total,q,seed)))/10;
b=round(10*normal(j(p*total,1,seed)))/10;
do i = 1 to total;
temp=round(10*normal(j(p+q,p+q,seed)))/10;
var=var//(temp*temp‘);
end;

call kalcvf(pred,vpred,filt,vfilt,x,lead,a,f,b,h,var);

/* default initial state and covariance */
call kalcvs(sm,vsm,x,a,f,b,h,var,pred,vpred);
print sm [format=9.4] vsm [format=9.4];

726 � Chapter 20. Language Reference

This program produces the following output:

SM VSM

-1.5236 -0.1000 1.5813 -0.4779
0.3058 -0.1131 -0.4779 0.3963
-0.2593 0.2496 2.4629 0.2426
-0.5533 0.0332 0.2426 0.0944
-0.5813 0.1251 0.2023 -0.0228
-0.3017 0.7480 -0.0228 0.5799
1.1333 -0.2144 0.8615 -0.7653
1.5193 -0.6237 -0.7653 1.2334
-0.6641 -0.7770 1.0836 0.8706
0.5994 2.3333 0.8706 1.5252

0.3677 0.2510
0.2510 0.2051
0.3243 -0.4093
-0.4093 1.2287
0.1736 -0.0712
-0.0712 0.9048
1.3153 0.8748
0.8748 1.6575
8.6650 0.1841
0.1841 4.4770

KALCVS Call

uses backward recursions to compute the smoothed estimate zt|T and its covari-
ance matrix, Pt|T , where T is the number of observations in the complete data
set

CALL KALCVS(sm, vsm, data, a, f , b, h, var, pred, vpred <,un, vun>);

The inputs to the KALCVS subroutine are as follows.

data is a T ×Ny matrix containing data (y1, · · · ,yT)′.

a is an Nz × 1 vector for a time-invariant input vector in the transi-
tion equation, or a TNz × 1 vector containing input vectors in the
transition equation.

f is an Nz × Nz matrix for a time-invariant transition matrix in the
transition equation, or a TNz ×Nz matrix containing T transition
matrices.

b is an Ny × 1 vector for a time-invariant input vector in the mea-
surement equation, or a TNy × 1 vector containing input vectors
in the measurement equation.

h is an Ny × Nz matrix for a time-invariant measurement matrix in
the measurement equation, or a TNy × Nz matrix containing T
time-variant Ht matrices in the measurement equation.

KALCVS Call � 727

var is an (Ny + Nz) × (Ny + Nz) covariance matrix for the errors in
the transition and the measurement equations, or a T (Ny +Nz)×
(Ny +Nz) matrix containing covariance matrices in the transition
equation and measurement equation noises—that is, (η′t, ε

′
t)
′.

pred is a T × Nz matrix containing one-step forecasts
(z1|0, · · · , zT |T−1)′.

vpred is a TNz × Nz matrix containing mean square error matrices of
predicted state vectors (P1|0, · · · ,PT |T−1)′.

un is an optional 1 ×Nz vector containing uT . The returned value is
u0.

vun is an optional Nz ×Nz matrix containing UT . The returned value
is U0.

The KALCVS call returns the following values:

sm is a T × Nz matrix containing smoothed state vectors
(z1|T , · · · , zT |T)′.

vsm is a TNz ×Nz matrix containing covariance matrices of smoothed
state vectors (P1|T , · · · ,PT |T)′.

When the Kalman filtering is performed in the KALCVF call, the KALCVS call
computes smoothed state vectors and their covariance matrices. The fixed-interval
smoothing state vector at time t is obtained by the conditional expectation given all
observations.

The smoothing algorithm uses one-step forecasts and their covariance matrices,
which are given in the KALCVF call. For notation, zt|T is the smoothed value of
the state vector zt, and the mean square error matrix is denoted Pt|T . For smoothing,

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

Kt = (FtPt|t−1H
′
t + Gt)D−

t

Lt = Ft −KtHt

ut−1 = H′
tD

−
t ε̂t + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = zt|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 −Pt|t−1Ut−1Pt|t−1

where t = T, T − 1, . . . , 1. The initial values are uT = 0 and UT = 0.

When the SSM is specified by using the alternative transition equation

zt = at + Ftzt−1 + ηt

728 � Chapter 20. Language Reference

the fixed-interval smoothing is performed by using the following backward recur-
sions:

ε̂t = yt − bt −Htzt|t−1

Dt = HtPt|t−1H
′
t + Rt

Kt = Ft+1Pt|t−1H
′
tD

−
t

Lt = Ft+1 −KtHt

ut−1 = H′
tD

−
t ε̂t + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = zt|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 −Pt|t−1Ut−1Pt|t−1

where it is assumed that Gt = 0.

You can use the KALCVS call regardless of the specification of the transition equa-
tion when Gt = 0. Harvey (1989) gives the following fixed-interval smoothing
formula, which produces the same smoothed value:

zt|T = zt|t + P∗
t (zt+1|T − zt+1|t)

Pt|T = Pt|t + P∗
t (Pt+1|T −Pt+1|t)P

∗′
t

where

P∗
t = Pt|tF

′
tP

−
t+1|t

under the shifted transition equation, but

P∗
t = Pt|tF

′
t+1P

−
t+1|t

under the alternative transition equation.

The KALCVS call is accompanied by the KALCVF call, as shown in the following
code. Note that you do not need to specify UN and VUN.

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

You can also compute the smoothed estimate and its covariance matrix on an
observation-by-observation basis. When the SSM is time invariant, the following
example performs smoothing. In this situation, you should initialize UN and VUN as
matrices of value 0, as in the following code:

KALDFF Call � 729

call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
n = nrow(y);
nz = ncol(f);
un = j(1,nz,0);
vun = j(nz,nz,0);
do i = 1 to n;
y_i = y[n-i+1,];
pred_i = pred[n-i+1,];
vpred_i = vpred[(n-i)*nz+1:(n-i+1)*nz,];
call kalcvs(sm_i,vsm_i,y_i,a,f,b,h,var,pred_i,vpred_i,un,vun);
sm = sm_i // sm;
vsm = vsm_i // vsm;

end;

The KALCVF call has an example program that includes the KALCVS call.

KALDFF Call

computes the one-step forecast of state vectors in an SSM by using the diffuse
Kalman filter. The call estimates the conditional expectation of zt, and also esti-
mates the initial random vector, δ, and its covariance matrix.

CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var,

intd, coefd <, n0, at, mt, qt>);

The inputs to the KALDFF subroutine are as follows:

data is a T ×Ny matrix containing data (y1, · · · ,yT)′.

lead is the number of steps to forecast after the end of the data set.

int is an (Ny +Nz)×Nβ matrix for a time-invariant fixed matrix, or a
(T+ lead)(Ny +Nz)×Nβ matrix containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation—that is, (W′

t,X
′
t)
′.

coef is an (Ny +Nz) ×Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)×Nz matrix containing coefficients at each
time in the transition equation and the measurement equation—that
is, (F′

t,H
′
t)
′.

var is an (Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for the error in the transition equation and the error in the
measurement equation, or a (T + lead)(Ny + Nz) × (Ny + Nz)
matrix containing covariance matrices for the error in the transi-
tion equation and the error in the measurement equation—that is,
(η′t, ε

′
t)
′.

intd is an (Nz + Nβ) × 1 vector containing the intercept term in the
equation for the initial state vector z0 and the mean effect β—that
is, (a′,b′)′.

730 � Chapter 20. Language Reference

coefd is an (Nz +Nβ)×Nδ matrix containing coefficients for the initial
state δ in the equation for the initial state vector z0 and the mean
effect β—that is, (A′,B′)′.

n0 is an optional scalar including an initial denominator. If n0 > 0,
the denominator for σ̂2

t is n0 plus the number nt of elements of
(y1, · · · ,yt)′. If n0 ≤ 0 or n0 is not specified, the denominator
for σ̂2

t is nt. With n0 ≥ 0, the initial values, A1,M1, and Q1, are
assumed to be known and, hence, at, mt, and qt are used for input
containing the initial values. If the value of n0 is negative or n0
is not specified, the initial values for at, mt, and qt are computed.
The value of n0 is updated as max(n0, 0) + nt after the KALDFF
call.

at is an optional kNz × (Nδ + 1) matrix. If n0 ≥ 0, at con-
tains (A′

1, · · · ,A′
k)
′. However, only the first matrix A1 is used

as input. When you specify the KALDFF call, at returns
(A′

T−k+lead+1
, · · · ,A′

T+lead)′. If n0 is negative or the matrix
A1 contains missing values, A1 is automatically computed.

mt is an optional kNz × Nz matrix. If n0 ≥ 0, mt contains
(M1, · · · ,Mk)′. However, only the first matrix M1 is
used as input. If n0 is negative or the matrix M1 con-
tains missing values, mt is used for output, and it contains
(MT−k+lead+1, · · · ,MT+lead)′. Note that the matrix M1 can
be used as an input matrix if either of the off-diagonal elements
is not missing. The missing element M1(i, j) is replaced by the
nonmissing element M1(j, i).

qt is an optional k(Nδ + 1) × (Nδ + 1) matrix. If n0 ≥ 0, qt con-
tains (Q1, · · · ,Qk)′. However, only the first matrix Q1 is used as
input. If n0 is negative or the matrix Q1 contains missing values,
qt is used for output and contains (QT−k+lead+1, · · · ,QT+lead)′.
The matrix Q1 can also be used as an input matrix if either of
the off-diagonal elements is not missing since the missing element
Q1(i, j) is replaced by the nonmissing element Q1(j, i).

The KALDFF call returns the following values:

pred is a (T + lead) × Nz matrix containing estimated predicted state
vectors (ẑ1|0, · · · , ẑT+1|T , ẑT+2|T , · · · , ẑT+lead|T)′.

vpred is a (T + lead)Nz × Nz matrix containing esti-
mated mean square errors of predicted state vectors
(P1|0, · · · ,PT+1|T ,PT+2|T , · · · ,PT+lead|T)′.

initial is an Nd× (Nd +1) matrix containing an estimate and its variance
for initial state δ, that is, (δ̂T , Σ̂δ,T).

s2 is a scalar containing the estimated variance σ̂2
T .

KALDFF Call � 731

The KALDFF call computes the one-step forecast of state vectors in an SSM by using
the diffuse Kalman filter. The SSM for the diffuse Kalman filter is written

yt = Xtβ + Htzt + εt

zt+1 = Wtβ + Ftzt + ηt

z0 = a + Aδ

β = b + Bδ

where zt is an Nz × 1 state vector, yt is an Ny × 1 observed vector, and

[
ηt

εt

]
∼ N

(
0, σ2

[
Vt Gt

G′
t Rt

])
δ ∼ N(µ, σ2Σ)

It is assumed that the noise vector (η′t, ε
′
t)
′ is independent and δ is independent of

the vector (η′t, ε
′
t)
′. The matrices, Wt, Ft, Xt, Ht, a, A, b, B, Vt, Gt, and Rt,

are assumed to be known. The KALDFF call estimates the conditional expectation of
the state vector zt given the observations. The KALDFF subroutine also produces the
estimates of the initial random vector δ and its covariance matrix. For k-step forecast-
ing where k > 0, the estimated conditional expectation at time t+k is computed with
observations given up to time t. The estimated k-step forecast and its estimated MSE
are denoted zt+k|t and Pt+k|t (for k > 0). At+k(δ) and Et(δ) are last-column-deleted
submatrices of At+k and Et, respectively. The algorithm for one-step prediction is
given as follows:

Et = (XtB, yt −Xtb)−HtAt

Dt = HtMtH′
t + Rt

Qt+1 = Qt + E′
tD

−
t Et

=
[

St st

s′t qt

]
σ̂2

t = (qt − s′tS
−
t st)/nt

δ̂t = S−t st

Σ̂δ,t = σ̂2
t S

−
t

Kt = (FtMtH′
t + Gt)D−

t

At+1 = Wt(−B,b) + FtAt + KtEt

Mt+1 = (Ft −KtHt)MtF′
t + Vt −KtG′

t

zt+1|t = At+1(−δ̂′t, 1)′

Pt+1|t = σ̂2
t Mt+1 + At+1(δ)Σ̂δ,tA′

t+1(δ)

732 � Chapter 20. Language Reference

where nt is the number of elements of (y1, · · · ,yt)′ plus max(n0, 0). Unless initial
values are given and n0 ≥ 0, initial values are set as follows:

A1 = W1(−B,b) + F1(−A,a)

M1 = V1

Q1 = 0

For k-step forecasting where k > 1,

At+k = Wt+k−1(−B,b) + Ft+k−1At+k−1

Mt+k = Ft+k−1Mt+k−1F′
t+k−1 + Vt+k−1

Dt+k = Ht+kMt+kH′
t+k + Rt+k

zt+k|t = At+k(−δ̂′t, 1)′

Pt+k|t = σ̂2
t Mt+k + At+k(δ)Σ̂δ,tA′

t+k(δ)

Note that if there is a missing observation, the KALDFF call computes the one-step
forecast for the observation following the missing observation as the two-step forecast
from the previous observation.

An example that uses the KALDFF call is in the documentation for the KALDFS
call.

KALDFS Call

computes the smoothed state vector and its mean square error matrix from the
one-step forecast and mean square error matrix computed by KALDFF

CALL KALDFS(sm, vsm, data, int, coef, var, bvec, bmat, initial, at,

mt, s2 <, un, vun>);

The inputs to the KALDFS subroutine are as follows:

data is a T ×Ny matrix containing data (y1, · · · ,yT)′.

int is an (Ny + Nz) × Nβ vector for a time-invariant intercept, or a
(T + lead)(Ny +Nz)×Nβ vector containing fixed matrices for the
time-variant model in the transition equation and the measurement
equation—that is, (W′

t,X
′
t)
′.

coef is an (Ny +Nz) ×Nz matrix for a time-invariant coefficient, or a
(T + lead)(Ny +Nz)×Nz matrix containing coefficients at each
time in the transition equation and the measurement equation—that
is, (F′

t,H
′
t)
′.

var is an (Ny +Nz)× (Ny +Nz) matrix for a time-invariant variance
matrix for transition equation noise and the measurement equation
noise, or a (T + lead)(Ny +Nz) × (Ny +Nz) matrix containing

KALDFS Call � 733

covariance matrices for the transition equation and measurement
equation errors—that is, (η′t, ε

′
t)
′.

bvec is an Nβ×1 constant vector for the intercept for the mean effect β.

bmat is an Nβ ×Nδ matrix for the coefficient for the mean effect β.

initial is an Nδ × (Nδ + 1) matrix containing an initial random vector
estimate and its covariance matrix—that is, (δ̂T , Σ̂δ,T).

at is a TNz × (Nδ + 1) matrix containing (A′
1, · · · ,A′

T)′.

mt is a (TNz)×Nz matrix containing (M1, · · · ,MT)′.

s2 is the estimated variance in the end of the data set, σ̂2
T .

un is an optional Nz × (Nδ + 1) matrix containing uT . The returned
value is u0.

vun is an optional Nz ×Nz matrix containing UT . The returned value
is U0.

The KALDFS call returns the following values:

sm is a T × Nz matrix containing smoothed state vectors
(z1|T , · · · , zT |T)′.

vsm is a TNz × Nz matrix containing mean square error matrices of
smoothed state vectors (P1|T , · · · ,PT |T)′.

Given the one-step forecast and mean square error matrix in the KALDFF call, the
KALDFS call computes a smoothed state vector and its mean square error matrix.
Then the KALDFS subroutine produces an estimate of the smoothed state vector at
time t—that is, the conditional expectation of the state vector zt given all obser-
vations. Using the notations and results from the KALDFF section, the backward
recursion algorithm for smoothing is denoted for t = T, T − 1, . . . , 1,

Et = (XtB, yt −Xtb)−HtAt

Dt = HtMtH′
t + Rt

Lt = Ft − (FtMtH′
t + Gt)D−

t Ht

ut−1 = H′
tD

−
t Et + L′tut

Ut−1 = H′
tD

−
t Ht + L′tUtLt

zt|T = (At + Mtut−1)(−δ̂′T , 1)′

Ct = At + Mtut−1

Pt|T = σ̂2
T (Mt −MtRt−1Mt) + Ct(δ)Σ̂δ,TC′

t(δ)

where the initial values are uT = 0 and UT = 0, and Ct(δ) is the last-column-deleted
submatrix of Ct. Refer to De Jong (1991) for details about smoothing in the diffuse
Kalman filter.

734 � Chapter 20. Language Reference

The KALDFS call is accompanied by the KALDFF call as shown in the following
code:

ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
call kaldfs(sm,vsm,x,int,coef,var,bvec,bmat,initial,at,mt,s2);

You can also compute the smoothed estimate and its covariance matrix observation by
observation. When the SSM is time invariant, the following code performs smooth-
ing. You should initialize UN and VUN as matrices of value 0. Here is the code:

n = nrow(y);
ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz,nd+1,.);
mt = j(nz,nz,.);
qt = j(nd+1,nd+1,.);
n0 = -1;
call kaldff(pred,vpred,initial,s2,y,0,int,coef,var,intd,coefd,

n0,at,mt,qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
un = j(nz,nd+1,0);
vun = j(nz,nz,0);
do i = 1 to n;

call kaldfs(sm_i,vsm_i,y[n-i+1],int,coef,var,bvec,bmat,
initial,at,mt,s2,un,vun);

sm = sm_i // sm;
vsm = vsm_i // vsm;

end;

LAV Call � 735

LAV Call

performs linear least absolute value regression by solving the L1 norm mini-
mization problem

CALL LAV(rc, xr, a, b <, <x0><, opt>>);

The LAV subroutine returns the following values:

rc is a scalar return code indicating the reason for optimization termina-
tion.

rc Termination
0 Successful
1 Successful, but approximate covariance matrix and standard

errors cannot be computed
−1 or −3 Unsuccessful: error in the input arguments
−2 Unsuccessful: matrix A is rank deficient (rank(A) < n)
−4 Unsuccessful: maximum iteration limit exceeded
−5 Unsuccessful: no solution found for ill-conditioned prob-

lem

xr specifies a vector or matrix with n columns. If the optimization process
is not successfully completed, xr is a row vector with n missing values.
If termination is successful and the opt[3] option is not set, xr is the
vector with the optimal estimate, x∗. If termination is successful and
the opt[3] option is specified, xr is an (n+2)×nmatrix that contains the
optimal estimate, x∗, in the first row, the asymptotic standard errors in
the second row, and the n×n covariance matrix of parameter estimates
in the remaining rows.

The inputs to the LAV subroutine are as follows:

a specifies an m × n matrix A with m ≥ n and full column rank,
rank(A) = n. If you want to include an intercept in the model, you
must include a column of ones in the matrix A.

b specifies the m× 1 vector b.

x0 specifies an optional n× 1 vector that specifies the starting point of the
optimization.

opt is an optional vector used to specify options.

opt[1] specifies the maximum number maxi of outer iterations (this cor-
responds to the number of changes of the Huber parameter γ). The
default is maxi = min(100, 10n). (The number of inner iterations is

736 � Chapter 20. Language Reference

restricted by an internal threshold. If the number of inner iterations ex-
ceeds this threshold, a new outer iteration is started with an increased
value of γ.)

opt[2] specifies the amount of printed output. Higher values request
additional output and include the output of lower values.

opt[2] Termination
0 no output is printed
1 error and warning messages are printed
2 the iteration history is printed (this is the default)
3 the n least squares (L2 norm) estimates are printed if no start-

ing point is specified; the L1 norm estimates are printed;
if opt[3] is set, the estimates are printed together with the
asymptotic standard errors

4 the n × n approximate covariance matrix of parameter esti-
mates is printed if opt[3] is set

5 the residual and predicted values for all m rows (equations)
of A are printed

opt[3] specifies which estimate of the variance of the median of
nonzero residuals is to be used as a factor for the approximate co-
variance matrix of parameter estimates and for the approximate stan-
dard errors (ASE). If opt[3] = 0, the McKean-Schrader (1987) esti-
mate is used, and if opt[3] > 0, the Cox-Hinkley (1974) estimate, with
v =opt[3], is used. The default is opt[3] = −1 or opt[3] = ., which
means that the covariance matrix is not computed.

opt[4] specifies whether a computationally expensive test for necessary
and sufficient optimality of the solution x is executed. The default is
opt[4] = 0 or opt[4] = ., which means that the convergence test is not
performed.

Missing values are not permitted in the a or b argument. The x0 argument is ignored
if it contains any missing values. Missing values in the opt argument cause the default
value to be used.

The Least Absolute Values (LAV) subroutine is designed for solving the uncon-
strained linear L1 norm minimization problem,

min
x
L1(x) where L1(x) = ‖Ax− b‖1 =

m∑
i=1

∣∣∣∣∣∣
n∑

j=1

aijxj − bi

∣∣∣∣∣∣
for m equations with n (unknown) parameters x = (x1, . . . , xn). This is equivalent
to estimating the unknown parameter vector, x, by least absolute value regression in
the model

b = Ax + ε

LAV Call � 737

where b is the vector of n observations, A is the design matrix, and ε is a random
error term.

An algorithm by Madsen and Nielsen (1993) is used, which can be faster for large
values of m and n than the Barrodale and Roberts (1974) algorithm. The current
version of the algorithm assumes that A has full column rank. Also, constraints
cannot be imposed on the parameters in this version.

The L1 norm minimization problem is more difficult to solve than the least squares
(L2 norm) minimization problem because the objective function of the L1 norm prob-
lem is not continuously differentiable (the first derivative has jumps). A function that
is continuous but not continuously differentiable is called nonsmooth. Using PROC
NLP and the IML nonlinear optimization subroutines, you can obtain the estimates
in linear and nonlinear L1 norm estimation (even subject to linear or nonlinear con-
straints) as long as the number of parameters, n, is small. Using the nonlinear op-
timization subroutines, there are two ways to solve the nonlinear Lp norm, p ≥ 1,
problem:

• For small values of n, you can implement the Nelder-Mead simplex algorithm
with the NLPNMS subroutine to solve the minimization problem in its original
specification. The Nelder-Mead simplex algorithm does not assume a smooth
objective function, does not take advantage of any derivatives, and therefore
does not require continuous differentiability of the objective function. See the
section “NLPNMS Call” on page 805 for details.

• Gonin and Money (1989) describe how an original Lp norm estimation prob-
lem can be modified to an equivalent optimization problem with nonlinear con-
straints which has a simple differentiable objective function. You can invoke
the NLPQN subroutine, which implements a quasi-Newton algorithm, to solve
the nonlinearly constrained Lp norm optimization problem. See the section
“NLPQN Call” on page 815 for details about the NLPQN subroutine.

Both approaches are successful only for a small number of parameters and good
initial estimates. If you cannot supply good initial estimates, the optimal results of
the corresponding nonlinear least squares (L2 norm) estimation can provide fairly
good initial estimates.

Gonin and Money (1989, pp. 44–45) show that the nonlinear L1 norm estimation
problem

min
x

m∑
i=1

|fi(x)|

can be reformulated as a linear optimization problem with nonlinear constraints in
the following ways.

• min
x

m∑
i=1

ui subject to
fi(x)− ui ≤ 0
fi(x) + ui ≥ 0
ui ≥ 0

 i = 1, . . . ,m

738 � Chapter 20. Language Reference

is a linear optimization problem with 2m nonlinear inequality constraints in
m+ n variables ui and xj .

• min
x

m∑
i=1

(yi + zi) subject to
fi(x) + yi − zi = 0
yi ≥ 0
zi ≥ 0

 i = 1, . . . ,m

is a linear optimization problem with 2m nonlinear equality constraints in 2m+
n variables yi, zi, and xj .

For linear functions fi(x) =
∑n

j=1(aijxj − bi), i = 1, . . . ,m, you obtain linearly
constrained linear optimization problems, for which the number of variables and con-
straints is on the order of the number of observations, m. The advantage that the
algorithm by Madsen and Nielsen (1993) has over the Barrodale and Roberts (1974)
algorithm is that its computational cost increases only linearly with m, and it can be
faster for large values of m.

In addition to computing an optimal solution x∗ that minimizes L1(x), you can also
compute approximate standard errors and the approximate covariance matrix of x∗.
The standard errors can be used to compute confidence limits.

The following example is the same one used for illustrating the LAV procedure by
Lee and Gentle (1986). A and b are as follows:

A =

1 0
1 1
1 −1
1 −1
1 2
1 2

 b =

1
2
1

−1
2
4

The following code specifies the matrix A, the vector B, and the options vector OPT.
The options vector specifies that all output is printed (opt[2] = 5), that the asymptotic
standard errors and covariance matrix are computed based on the McKean-Schrader
(1987) estimate λ of the variance of the median (opt[3] = 0), and that the convergence
test should be performed (opt[4] = 1).

a = { 0, 1, -1, -1, 2, 2 };
m = nrow(a);
a = j(m,1,1.) || a;
b = { 1, 2, 1, -1, 2, 4 };

opt= { . 5 0 1 };
call lav(rc,xr,a,b,,opt);

The first part of the printed output refers to the least squares solution, which is used
as the starting point. The estimates of the largest and smallest nonzero eigenvalues of
A′A give only an idea of the magnitude of these values, and they can be very crude
approximations.

The second part of the printed output shows the iteration history.

LCP Call � 739

The third part of the printed output shows the L1 norm solution (first row) together
with asymptotic standard errors (second row) and the asymptotic covariance matrix
of parameter estimates (the ASEs are the square roots of the diagonal elements of this
covariance matrix).

The last part of the printed output shows the predicted values and residuals, as in Lee
and Gentle (1986).

LCP Call

solves the linear complementarity problem

CALL LCP(rc, w, z, m, q <, epsilon>);

The inputs to the LCP subroutine are as follows:

m is an m×m matrix.

q is an m× 1 matrix.

epsilon is a scalar defining virtual zero. The default value of epsilon is
1.0E−8.

rc returns one of the following scalar return codes:

0 solution found
1 no solution possible
5 solution is numerically unstable
6 subroutine could not obtain enough memory

w and z return the solution in an m-element column vector.

The LCP subroutine solves the linear complementarity problem:

w = Mz + q

w′z = 0
w, z ≥ 0

Consider the following example:

q={1, 1};
m={1 0,

0 1};
call lcp(rc,w,z,m,q);

The result is as follows:

RC 1 row 1 col (numeric)

0

740 � Chapter 20. Language Reference

W 2 rows 1 col (numeric)

1
1

Z 2 rows 1 col (numeric)

0
0

The next example shows the relationship between quadratic programming and the lin-
ear complementarity problem. Consider the linearly constrained quadratic program:

min c′x +
1
2
x′Hx

st. Gx ≥ b (QP)
x ≥ 0

If H is positive semidefinite, then a solution to the Kuhn-Tucker conditions solves
QP. The Kuhn-Tucker conditions for QP are

c + Hx = µ+ G′λ

λ′(Gx− b) = 0
µ′x = 0
Gx ≥ b

x, µ, λ ≥ 0

In the linear complementarity problem, let

M =
[
H −G′

G 0

]
w′ = (µ′s′)
z′ = (x′λ′)
q′ = (c′ − b)

Then the Kuhn-Tucker conditions are expressed as finding w and z that satisfy

w = Mz + q

w′z = 0
w, z ≥ 0

From the solution w and z to this linear complementarity problem, the solution to QP
is obtained; namely, x is the primal structural variable, s = Gx − b the surpluses,

LCP Call � 741

and µ and λ are the dual variables. Consider a quadratic program with the following
data:

C′ = (1245) B′ = (11)

H =

100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

G =

[
1 2 3 4

10 20 30 40

]

This problem is solved by using the LCP subroutine in PROC IML as follows:

/*---- Data for the Quadratic Program -----*/
c={1,2,3,4};
h={100 10 1 0, 10 100 10 1, 1 10 100 10, 0 1 10 100};
g={1 2 3 4, 10 20 30 40};
b={1, 1};

/*----- Express the Kuhn-Tucker Conditions as an LCP ----*/
m=h||-g‘;
m=m//(g||j(nrow(g),nrow(g),0));
q=c//-b ;

/*----- Solve for a Kuhn-Tucker Point --------*/
call lcp(rc,w,z,m,q);

/*------ Extract the Solution to the Quadratic Program ----*/
x=z[1:nrow(h)];
print rc x;

The printed solution is as follows:

RC 1 row 1 col (numeric)

0

X 4 rows 1 col (numeric)

0.0307522
0.0619692
0.0929721
0.1415983

742 � Chapter 20. Language Reference

LENGTH Function

finds the lengths of character matrix elements

LENGTH(matrix)

where matrix is a character matrix or quoted literal.

The LENGTH function takes a character matrix as an argument and produces a nu-
meric matrix as a result. The result matrix has the same dimensions as the argument
and contains the lengths of the corresponding string elements in matrix. The length
of a string is equal to the position of the rightmost nonblank character in the string.
If a string is entirely blank, its length value is set to 1. An example of the LENGTH
function follows:

c={’Hello’ ’My name is Jenny’};
b=length(c);

B 1 row 2 cols (numeric)

5 16

See also the description of the NLENG function.

LINK and RETURN Statements

jump to another statement

LINK label;

statements

label:statements

RETURN;

The LINK statement, like the GOTO statement, directs IML to jump to the statement
with the specified label. Unlike the GOTO statement, however, IML remembers
where the LINK statement was issued and returns to that point when a RETURN
statement is executed. This statement can only be used inside modules and DO
groups.

The LINK statement provides a way of calling sections of code as if they were sub-
routines. The LINK statement calls the routine. The routine begins with the label and
ends with a RETURN statement. LINK statements can be nested within other LINK
statements to any level. A RETURN statement without a LINK statement is executed
the same as the STOP statement.

Any time you use a LINK statement, you may consider using a RUN statement and a
module defined using the START and FINISH statements instead.

An example that uses the LINK statement follows:

LIST Statement � 743

start a;
x=1;
y=2;
link sum1;
print z;
stop;
sum1:

z=x+y;
return;

finish a;
run a;

Z 1 row 1 col (numeric)

3

LIST Statement

displays observations of a data set

LIST <range> <VAR operand> <WHERE(expression)>;

The inputs to the LIST statement are as follows:

range specifies a range of observations

operand specifies a set of variables

expression is an expression evaluated to be true or false

The LIST statement prints selected observations of a data set. If all data values for
variables in the VAR clause fit on a single line, values are displayed in columns
headed by the variable names. Each record occupies a separate line. If the data values
do not fit on a single line, values from each record are grouped into paragraphs. Each
element in the paragraph has the form name=value.

You can specify a range of observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify a range:

ALL all observations

CURRENT the current observation (this is the default for the LIST state-
ment)

NEXT <number> the next observation or the next number of observations

AFTER all observations after the current one

POINT operand observations specified by number, where operand can be one
of the following:

744 � Chapter 20. Language Reference

Operand Example
a single record number point 5

a literal giving several point {2 5 10}
record numbers

the name of a matrix point p
containing record numbers

an expression in parentheses point (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. The operand can be
specified as one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described in the following list:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples show each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than

LIST Statement � 745

>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
= : begins with a given string
= * sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is as follows:

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables
and the expression on the right-hand side refers to matrix values.

The following examples demonstrate the use of the LIST statement:

list all; /* lists whole data set */
list; /* lists current observation */
list var{name addr}; /* lists NAME and ADDR in current obs */
list all where(age>30); /* lists all obs where condition holds */
list next; /* lists next observation */
list point 24; /* lists observation 24 */
list point (10:15); /* lists observations 10 through 15 */

746 � Chapter 20. Language Reference

LMS Call

performs robust regression

CALL LMS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

The Least Median of Squares (LMS) performs robust regression (sometimes called
resistant regression) by minimizing the hth-ordered squared residual. The subroutine
is able to detect outliers and perform a least squares regression on the remaining
observations.

The algorithm used in the LMS subroutine is based on the PROGRESS program of
Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy
(1987). In the special case of regression through the origin with a single regressor,
Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in gen-
eral, find the slope that yields the least median of squares. Starting with release 9.2,
the LMS subroutine uses the algorithm of Barreto and Maharry (2006) to obtain the
correct LMS slope in the case of regression through the origin with a single regressor.
In this case, inputs to the LMS subroutine specific to the PROGRESS algorithm are
ignored and output specific to the PROGRESS algorithm is suppressed.

The value of h can be specified, but in most applications the default value works just
fine and the results seem to be quite stable toward different choices of h.

In the following discussion, N is the number of observations and n is the number of
regressors. The inputs to the LMS subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values). The options vector can be a null vector.

opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not
(opt[1]6= 0). If opt[1]=0, then a column of ones is added as the last
column to the input matrix X; that is, you do not need to add this
column of ones yourself. The default is opt[1]=0.

opt[2] specifies the amount of printed output. Higher values request addi-
tional output and include the output of lower values.

opt[2]=0 prints no output except error messages.
opt[2]=1 prints all output except (1) arrays of O(N), such as

weights, residuals, and diagnostics; (2) the history of the
optimization process; and (3) subsets that result in singular
linear systems.

opt[2]=2 additionally prints arrays ofO(N), such as weights, resid-
uals, and diagnostics; also prints the case numbers of the
observations in the best subset and some basic history of
the optimization process.

opt[2]=3 additionally prints subsets that result in singular linear
systems.

The default is opt[2]=0.

LMS Call � 747

opt[3] specifies whether only LMS is computed or whether, additionally,
least squares (LS) and weighted least squares (WLS) regression are
computed.

opt[3]=0 computes only LMS.
opt[3]=1 computes, in addition to LMS, weighted least squares re-

gression on the observations with small LMS residuals
(where small is defined by opt[8]).

opt[3]=2 computes, in addition to LMS, unweighted least squares
regression.

opt[3]=3 adds both unweighted and weighted least squares regres-
sion to LMS regression.

The default is opt[3]=0.
opt[4] specifies the quantile h to be minimized. This is used in the objective

function. The default is opt[4]= h =
[

N+n+1
2

]
, which corresponds

to the highest possible breakdown value. This is also the default of
the PROGRESS program. The value of h should be in the range
N
2 + 1 ≤ h ≤ 3N

4 + n+1
4

opt[5] specifies the number NRep of generated subsets. Each subset con-
sists of n observations (k1, . . . , kn), where 1 ≤ ki ≤ N . The total
number of subsets consisting of n observations out of N observa-
tions is

Ntot =
(
N

n

)
=

∏n
j=1(N − j + 1)∏n

j=1 j

where n is the number of parameters including the intercept.
Due to computer time restrictions, not all subset combinations of n
observations out of N can be inspected for larger values of N and
n. Specifying a value of NRep < Ntot enables you to save computer
time at the expense of computing a suboptimal solution.
If opt[5] is zero or missing, the default number of subsets is taken
from the following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

748 � Chapter 20. Language Reference

If the number of cases (observations) N is smaller than Nlower, then
all possible subsets are used; otherwise, NRep subsets are chosen
randomly. This means that an exhaustive search is performed for
opt[5]=−1. If N is larger than Nupper, a note is printed in the log
file indicating how many subsets exist.

opt[6] is not used.
opt[7] specifies whether the last argument sorb contains a given parameter

vector b or a given subset for which the objective function should be
evaluated.

opt[7]=0 sorb contains a given subset index.
opt[7]=1 sorb contains a given parameter vector b.

The default is opt[7]=0.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies
whether the covariance matrix of parameter estimates and approxi-
mate standard errors (ASEs) are computed and printed.

opt[8]=0 does not compute covariance matrix and ASEs.
opt[8]=1 computes covariance matrix and ASEs but prints neither

of them.
opt[8]=2 computes the covariance matrix and ASEs but prints only

the ASEs.
opt[8]=3 computes and prints both the covariance matrix and the

ASEs.

The default is opt[8]=0.

y refers to an N response vector y.

x refers to an N × n matrix X of regressors. If opt[1] is zero or missing, an
intercept xn+1 ≡ 1 is added by default as the last column of X. If the matrix
X is not specified, y is analyzed as a univariate data set.

sorb refers to an n vector containing either of the following:

• n observation numbers of a subset for which the objective function
should be evaluated; this subset can be the start for a pairwise exchange
algorithm if opt[7] is specified.

• n given parameters b = (b1, . . . , bn) (including the intercept, if neces-
sary) for which the objective function should be evaluated.

Missing values are not permitted in x or y. Missing values in opt cause the default
value to be used.

The LMS subroutine returns the following values:

sc is a column vector containing the following scalar information, where rows
1–9 correspond to LMS regression and rows 11–14 correspond to either LS
or WLS:

LMS Call � 749

sc[1] the quantile h used in the objective function
sc[2] number of subsets generated
sc[3] number of subsets with singular linear systems
sc[4] number of nonzero weights wi

sc[5] lowest value of the objective function FLMS attained
sc[6] preliminary LMS scale estimate SP

sc[7] final LMS scale estimate SF

sc[8] robust R2 (coefficient of determination)
sc[9] asymptotic consistency factor

If opt[3] > 0, then the following are also set:

sc[11] LS or WLS objective function (sum of squared residuals)
sc[12] LS or WLS scale estimate
sc[13] R2 value for LS or WLS
sc[14] F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, these rows correspond to LS estimates.

coef is a matrix with n columns containing the following results in its rows:

coef[1,] LMS parameter estimates
coef[2,] indices of observations in the best subset

If opt[3] > 0, then the following are also set:

coef[3] LS or WLS parameter estimates
coef[4] approximate standard errors of LS or WLS estimates
coef[5] t-values
coef[6] p-values
coef[7] lower boundary of Wald confidence intervals
coef[8] upper boundary of Wald confidence intervals

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, to LS estimates.

wgt is a matrix with N columns containing the following results in its rows:

wgt[1] weights (=1 for small, =0 for large residuals)
wgt[2] residuals ri = yi − xib
wgt[3] resistant diagnostic ui (note that the resistant diagnostic cannot be

computed for a perfect fit when the objective function is zero or
nearly zero)

750 � Chapter 20. Language Reference

Example

Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid:

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

on 21 consecutive days. The response variable yi gives the permillage of ammonia
lost (stackloss). The data are also given by Rousseeuw and Leroy (1987, p. 76) and
Osborne (1985, p. 267). Rousseeuw and Leroy (1987, p. 76) cite a large number of
papers where this data set was analyzed and state that most researchers “concluded
that observations 1, 3, 4, and 21 were outliers,” and that some people also reported
observation 2 as an outlier.

ForN = 21 and n = 4 (three explanatory variables including intercept), you obtain a
total of 5985 different subsets of 4 observations out of 21. If you decide not to specify
optn[5], the LMS subroutine chooses Nrep = 2000 random sample subsets. Since
there is a large number of subsets with singular linear systems, which you do not want
to print, choose optn[2]=2 for reduced printed output. Here is the code:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4]; b = aa[,5];
optn = j(8,1,.);
optn[2]= 2; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

CALL LMS(sc,coef,wgt,optn,b,a);

LMS Call � 751

The resulting output is as follows:

LMS: The 13th ordered squared residual will be minimized.

Median and Mean

Median Mean

VAR1 58 60.428571429
VAR2 20 21.095238095
VAR3 87 86.285714286
Intercep 1 1
Response 15 17.523809524

Dispersion and Standard Deviation

Dispersion StdDev

VAR1 5.930408874 9.1682682584
VAR2 2.965204437 3.160771455
VAR3 4.4478066555 5.3585712381
Intercep 0 0
Response 5.930408874 10.171622524

The following are the results of LS regression:

Unweighted Least-Squares Estimation

LS Parameter Estimates

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.715640 0.134858 5.31 <.0001
VAR2 1.295286 0.368024 3.52 0.0026
VAR3 -0.152123 0.156294 -0.97 0.3440
Intercep -39.919674 11.895997 -3.36 0.0038

Variable Lower WCI Upper WCI

VAR1 0.451323 0.979957
VAR2 0.573972 2.016600
VAR3 -0.458453 0.154208
Intercep -63.2354 -16.603949

752 � Chapter 20. Language Reference

Sum of Squares = 178.8299616
Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.018187 -0.036511 0.007144 0.287587
VAR2 -0.036511 0.135442 0.000010 -0.651794
VAR3 -0.007144 0.000011 0.024428 -1.676321
Intercep 0.287587 -0.651794 1.676321 141.514741

R-squared = 0.9135769045
F(3,17) Statistic = 59.9022259
Probability = 3.0163272E-9

These are the LMS results for the 2,000 random subsets:

Random Subsampling for LMS

Best
Subset Singular Criterion Percent

500 23 0.163262 25
1000 55 0.140519 50
1500 79 0.140519 75
2000 103 0.126467 100

Minimum Criterion= 0.1264668282
Least Median of Squares (LMS) Method

Minimizing 13th Ordered Squared Residual.
Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets
Among 2103 subsets 103 are singular.

Observations of Best Subset

15 11 19 10

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.75 0.5 0 -39.25

LMS Objective Function = 0.75
Preliminary LMS Scale = 1.0478510755

LMS Call � 753

Robust R Squared = 0.96484375
Final LMS Scale = 1.2076147288

For LMS observations, 1, 3, 4, and 21 have scaled residuals larger than 2.5 (table not
shown) and are considered outliers. The corresponding WLS results are as follows:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.797686 0.067439 11.83 <.0001
VAR2 0.577340 0.165969 3.48 0.0041
VAR3 -0.067060 0.061603 -1.09 0.2961
Intercep -37.652459 4.732051 -7.96 <.0001

Lower WCI Upper WCI

0.665507 0.929864
0.252047 0.902634

-0.187800 0.053680
-46.927108 -28.37781

Weighted Sum of Squares = 20.400800254
Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.004548 -0.007921 -0.001199 0.001568
VAR2 -0.007921 0.027546 -0.000463 -0.065018
VAR3 -0.001199 -0.000463 0.003795 -0.246102
Intercep 0.001568 -0.065018 -0.246102 22.392305

Weighted R-squared = 0.9750062263
F(3,13) Statistic = 169.04317954

Probability = 1.158521E-10
There are 17 points with nonzero weight.

Average Weight = 0.8095238095

754 � Chapter 20. Language Reference

LOAD Statement

loads modules and matrices from library storage

LOAD <MODULE=(module-list)> <matrix-list>;

The inputs to the LOAD statement are as follows:

module-list is a list of modules.

matrix-list is a list of matrices.

The LOAD statement loads modules or matrix values from the current library storage
into the current workspace. For example, to load three modules A, B, and C and one
matrix X, use the following statement:

load module=(A B C) X;

The special operand –ALL– can be used to load all matrices or all modules. For
example, if you want to load all matrices, use the following statement:

load _all_;

If you want to load all modules, use the following statement:

load module=_all_;

To load all matrices and modules stored in the library storage, you can enter the
LOAD command without any arguments, as follows:

load;

The storage library can be specified by using a RESET storage command. The de-
fault library is WORK.IMLSTOR. For more information, see Chapter 14 and the
descriptions of the STORE, REMOVE, RESET, and SHOW statements.

LOC Function

finds nonzero elements of a matrix

LOC(matrix)

where matrix is a numeric matrix or literal.

The LOC function creates a 1 × n row vector, where n is the number of nonzero
elements in the argument. Missing values are treated as zeros. The values in the
resulting row vector are the locations of the nonzero elements in the argument (in
row-major order, like subscripting). For example, consider the following statements:

a={1 0 2 3 0};
b=loc(a);

LOC Function � 755

Because the first, third, and fourth elements of A are nonzero, these statements result
in the following row vector:

B 1 row 3 cols (numeric)

1 3 4

If every element of the argument vector is 0, the result is empty; that is, B has zero
rows and zero columns.

The LOC function is useful for subscripting parts of a matrix that satisfy some con-
dition.

For example, suppose you want to create a matrix Y containing the rows of X that
have a positive element in the diagonal of X. Specify the following statements:

x={1 1 0,
0 -2 2,
0 0 3};

y=x[loc(vecdiag(x)>0),];

Because the first and third rows of X have positive elements on the diagonal of X,
the matrix Y is as follows:

Y 2 rows 3 cols (numeric)

1 1 0
0 0 3

The following example selects all positive elements of a column vector A:

a={0,
-1,
2,
0};

y=a[loc(a>0),];

The resulting output is as follows:

Y 1 row 1 col (numeric)

2

756 � Chapter 20. Language Reference

LOG Function
takes the natural logarithm

LOG(matrix)

where matrix is a numeric matrix or literal.

The LOG function is the scalar function that takes the natural logarithm of each ele-
ment of the argument matrix. An example of a valid statement follows:

c = { 1 2 3 };
b=log(c);
print b;

B

0 0.6931472 1.0986123

LP Call
solves the linear programming problem

CALL LP(rc, x, dual, a, b <, cntl><, u><, l><, basis>);

The inputs to the LP subroutine are as follows:

a is an m × n vector specifying the technological coefficients, where m is
less than or equal to n.

b is an m× 1 vector specifying the right-side vector.

cntl is an optional row vector with 1 to 5 elements. If CNTL=(indx, nprimal,
ndual, epsilon, infinity), then

indx is the subscript of nonzero objective coefficient.
nprimal is the maximum number of primal iterations.
ndual is the maximum number of dual iterations.
epsilon is the value of virtual zero.
infinity is the value of virtual infinity.

The default values are as follows: indx equals n, nprimal equals 999999,
ndual equals 999999, epsilon equals 1.0E−8, and infinity is machine depen-
dent. If you specify ndual or nprimal or both, then on return they contain
the number of iterations actually performed.

u is an optional array of dimension n specifying upper bounds on the decision
variables. If you do not specify u, the upper bounds are assumed to be
infinity.

l is an optional array of dimension n specifying lower bounds on the decision
variables. If l is not given, then the lower bounds are assumed to be 0 for all
the decision variables. This includes the decision variable associated with
the objective value, which is specified by the value of indx.

LP Call � 757

basis is an optional array of dimension n specifying the current basis. This is
given by identifying which columns are explicitly in the basis and which
columns are at their upper bound, as given in u. The absolute value of the
elements in this vector is a permutation of the column indices. The columns
specified in the first m elements of basis are considered the explicit basis.
The absolute value of the last n − m elements of basis are the indices of
the nonbasic variables. Any of the last n − m elements of basis that are
negative indicate that the corresponding nonbasic variable is at its upper
bound. On return from the LP subroutine, the basis vector contains the
final basis encountered. If you do not specify basis, then the subroutine
assumes that an initial basis is in the last m columns of A and that no
nonbasic variables are at their upper bound.

rc returns one of the following scalar return codes:

0 solution is optimal
1 solution is primal infeasible and dual feasible
2 solution is dual infeasible and primal feasible
3 solution is neither primal nor dual feasible
4 singular basis encountered
5 solution is numerically unstable
6 subroutine could not obtain enough memory
7 number of iterations exceeded

x returns the current primal solution in a column vector of
length n.

dual returns the current dual solution in a row vector of length
m.

The LP subroutine solves the linear program:

max(0, . . . , 0, 1, 0, . . . , 0)x
st. Ax = b

l ≤ x ≤ u

The subroutine first inverts the initial basis. If the BASIS vector is given, then the
initial basis is the m×m submatrix identified by the first m elements in BASIS; oth-
erwise, the initial basis is defined by the last m columns of A. If the initial basis is
singular, the subroutine returns with RC=4. If the basis is nonsingular, then the cur-
rent dual and primal solutions are evaluated. If neither is feasible, then the subroutine
returns with RC=3. If the primal solution is feasible, then the primal algorithm iter-
ates until either a dual feasible solution is encountered or the number of NPRIMAL
iterations is exceeded. If the dual solution is feasible, then the dual algorithm iterates
until either a primal feasible solution is encountered or the number of NDUAL iter-
ations is exceeded. When a basis is identified that is both primal and dual feasible,
then the subroutine returns with RC=0.

758 � Chapter 20. Language Reference

Note that care must be taken when solving a sequence of linear programs and using
the NPRIMAL or NDUAL control parameters or both. Because the LP subroutine
resets the NPRIMAL and NDUAL parameters to reflect the number of iterations exe-
cuted, subsequent invocations of the LP subroutine will have the number of iterations
limited to the number used by the last LP subroutine executed. In these cases you
should consider resetting these parameters prior to each LP call.

Consider the following example to maximizeX1 subject to the constraintsX1+X2 ≤
10 and X1 ≥ 0. The problem is solved by using the following code:

/* the problem data */
obj={1 0};
coef={1 1};
b={0, 10};

/* embed the objective function */
/* in the coefficient matrix */

a=obj//coef;
a=a||{-1, 0};

/* solve the problem */
call lp(rc,x,dual,a,b);

The result is as follows:

RC 1 row 1 col (numeric)

0

X 3 rows 1 col (numeric)

10
0

10

DUAL 1 row 2 cols (numeric)

-1 1

LTS Call

performs robust regression

CALL LTS(sc, coef, wgt, opt, y <, < x ><, sorb>>);

A robust (resistant) regression method, defined by minimizing the sum of the h small-
est squared residuals.

The Least Trimmed Squares (LTS) subroutine performs robust regression (sometimes
called resistant regression). It is able to detect outliers and perform a least squares
regression on the remaining observations. Beginning with SAS/IML 8.1, the LTS

LTS Call � 759

subroutine implements a new algorithm, FAST-LTS, given by Rousseeuw and Van
Driessen (1998). The new algorithm is set as the default. The algorithm in previous
versions is temporarily available but will be phased out. See opt[9] for details.

The value of h can be specified, but for many applications the default value works
just fine and the results seem to be quite stable toward different choices of h.

In the following discussion, N is the number of observations and n is the number of
regressors. The inputs to the LTS subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values). The options vector can be a null vector.

opt[1] specifies whether an intercept is used in the model (opt[1]=0) or not
(opt[1]6= 0). If opt[1]=0, then a column of ones is added as the last
column to the input matrix X; that is, you do not need to add this
column of ones yourself. The default is opt[1]=0.

opt[2] specifies the amount of printed output. Higher values request addi-
tional output and include the output of lower values.

opt[2]=0 prints no output except error messages.
opt[2]=1 prints all output except (1) arrays of O(N), such as

weights, residuals, and diagnostics; (2) the history of the
optimization process; and (3) subsets that result in singular
linear systems.

opt[2]=2 additionally prints arrays ofO(N), such as weights, resid-
uals, and diagnostics; also prints the case numbers of the
observations in the best subset and some basic history of
the optimization process.

opt[2]=3 additionally prints subsets that result in singular linear
systems.

The default is opt[2]=0.
opt[3] specifies whether only LTS is computed or whether, additionally,

least squares (LS) and weighted least squares (WLS) regression are
computed:

opt[3]=0 computes only LTS.
opt[3]=1 computes, in addition to LTS, weighted least squares re-

gression on the observations with small LTS residuals
(where small is defined by opt[8]).

opt[3]=2 computes, in addition to LTS, unweighted least squares
regression.

opt[3]=3 adds both unweighted and weighted least squares regres-
sion to LTS regression.

The default is opt[3]=0.
opt[4] specifies the quantile h to be minimized. This is used in the objective

function. The default is opt[4]= h =
[

N+n+1
2

]
, which corresponds

to the highest possible breakdown value. This is also the default of
the PROGRESS program. The value of h should be in the range
N
2 + 1 ≤ h ≤ 3N

4 + n+1
4

760 � Chapter 20. Language Reference

opt[5] specifies the number NRep of generated subsets. Each subset con-
sists of n observations (k1, . . . , kn), where 1 ≤ ki ≤ N . The total
number of subsets consisting of n observations out of N observa-
tions is

Ntot =
(
N

n

)
=

∏n
j=1(N − j + 1)∏n

j=1 j

where n is the number of parameters including the intercept.
Due to computer time restrictions, not all subset combinations of n
observations out of N can be inspected for larger values of N and
n. Specifying a value of NRep < Ntot enables you to save computer
time at the expense of computing a suboptimal solution.
When opt[5] is zero or missing:
If N > 600, the default FAST-LTS algorithm constructs up to five
disjoint random subsets with sizes as equal as possible, but not to
exceed 300. Inside each subset, the algorithm chooses 500/5 = 100
subset combinations of n observations.
For the default FAST-LTS algorithm with N < 600 or the previ-
ous algorithm (before SAS/IML 8.1), the number of subsets is taken
from the following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations) N is smaller than Nlower, then
all possible subsets are used; otherwise, fixed 500 subsets for FAST-
LTS or NRep subsets for algorithm before SAS/IML 8.1 are chosen
randomly. This means that an exhaustive search is performed for
opt[5]=−1. If N is larger than Nupper, a note is printed in the log
file indicating how many subsets exist.

opt[6] is not used.
opt[7] specifies whether the last argument sorb contains a given parameter

vector b or a given subset for which the objective function should be
evaluated.

LTS Call � 761

opt[7]=0 sorb contains a given subset index.
opt[7]=1 sorb contains a given parameter vector b.

The default is opt[7]=0.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies
whether the covariance matrix of parameter estimates and approxi-
mate standard errors (ASEs) are computed and printed.

opt[8]=0 does not compute covariance matrix and ASEs.
opt[8]=1 computes covariance matrix and ASEs but prints neither

of them.
opt[8]=2 computes the covariance matrix and ASEs but prints only

the ASEs.
opt[8]=3 computes and prints both the covariance matrix and the

ASEs.

The default is opt[8]=0.
opt[9] is relevant only for LTS. If opt[9]=0, the algorithm FAST-LTS of

Rousseeuw and Van Driessen (1998) is used. If opt[9] = 1, the
algorithm of Rousseeuw and Leroy (1987) is used. The default is
opt[9]=0.

y refers to an N response vector y.

x refers to an N × n matrix X of regressors. If opt[1] is zero or missing, an
intercept xn+1 ≡ 1 is added by default as the last column of X. If the matrix
X is not specified, y is analyzed as a univariate data set.

sorb refers to an n vector containing either of the following:

• n observation numbers of a subset for which the objective function
should be evaluated; this subset can be the start for a pairwise exchange
algorithm if opt[7] is specified.

• n given parameters b = (b1, . . . , bn) (including the intercept, if neces-
sary) for which the objective function should be evaluated.

Missing values are not permitted in x or y. Missing values in opt cause the default
value to be used.

The LTS subroutine returns the following values:

sc is a column vector containing the following scalar information, where rows
1–9 correspond to LTS regression and rows 11–14 correspond to either LS
or WLS:

sc[1] the quantile h used in the objective function
sc[2] number of subsets generated
sc[3] number of subsets with singular linear systems
sc[4] number of nonzero weights wi

sc[5] lowest value of the objective function FLTS attained

762 � Chapter 20. Language Reference

sc[6] preliminary LTS scale estimate SP

sc[7] final LTS scale estimate SF

sc[8] robust R2 (coefficient of determination)
sc[9] asymptotic consistency factor

If opt[3] > 0, then the following are also set:

sc[11] LS or WLS objective function (sum of squared residuals)
sc[12] LS or WLS scale estimate
sc[13] R2 value for LS or WLS
sc[14] F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, these rows correspond to LS estimates.

coef is a matrix with n columns containing the following results in its rows:

coef[1,] LTS parameter estimates
coef[2,] indices of observations in the best subset

If opt[3] > 0, then the following are also set:

coef[3] LS or WLS parameter estimates
coef[4] approximate standard errors of LS or WLS estimates
coef[5] t-values
coef[6] p-values
coef[7] lower boundary of Wald confidence intervals
coef[8] upper boundary of Wald confidence intervals

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for
opt[3]=2, to LS estimates.

wgt is a matrix with N columns containing the following results in its rows:

wgt[1] weights (=1 for small, =0 for large residuals)
wgt[2] residuals ri = yi − xib
wgt[3] resistant diagnostic ui (note that the resistant diagnostic cannot be

computed for a perfect fit when the objective function is zero or
nearly zero)

LTS Call � 763

Example

Consider Brownlee’s (1965) stackloss data used in the example for the LMS subrou-
tine.

For N = 21 and n = 4 (three explanatory variables including intercept), you obtain
a total of 5,985 different subsets of 4 observations out of 21. If you decide not to
specify optn[5], the FAST-LTS algorithm chooses 500 random sample subsets, as
in the following code:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4]; b = aa[,5];
optn = j(8,1,.);
optn[2]= 1; /* ipri */
optn[3]= 3; /* ilsq */
optn[8]= 3; /* icov */

CALL LTS(sc,coef,wgt,optn,b,a);

The preceding program produces the following output:

Least Trimmed Squares (LTS) Method
Minimizing Sum of 13 Smallest Squared Residuals.
Highest Possible Breakdown Value = 42.86 %
Random Selection of 523 Subsets
Among 523 subsets 23 is/are singular.

764 � Chapter 20. Language Reference

The best half of the entire data set obtained after full
iteration consists of the cases:

5 6 7 8 9 10 11
12 15 16 17 18 19

Estimated Coefficients

VAR1 VAR2 VAR3 Intercep

0.7409210642 0.3915267228 0.0111345398 -37.32332647

LTS Objective Function = 0.474940583
Preliminary LTS Scale = 0.9888435617
Robust R Squared = 0.973976868
Final LTS Scale = 1.0360272594

For LTS observations, 1, 2, 3, 4, 13, and 21 have scaled residuals larger than 2.5
(table not shown) and are considered outliers. Following are the corresponding WLS
results:

Weighted Least-Squares Estimation

RLS Parameter Estimates Based on LMS

Approx Pr >
Variable Estimate Std Err t Value |t|

VAR1 0.756940 0.078607 9.63 <.0001
VAR2 0.453530 0.136050 3.33 0.0067
VAR3 -0.05211 0.054637 -0.95 0.3607
Intercep -34.0575 3.828818 -8.90 <.0001

Lower WCI Upper WCI

0.602872 0.911008
0.186876 0.720184
-0.15919 0.054977
-41.5618 -26.5531

Weighted Sum of Squares = 10.273044977
Degrees of Freedom = 11

RLS Scale Estimate = 0.9663918355

LUPDT Call � 765

Cov Matrix of Parameter Estimates

VAR1 VAR2 VAR3 Intercep

VAR1 0.0061791 -0.005776 -0.002300 -0.034290
VAR2 -0.005776 0.0185096 0.0002582 -0.069740
VAR3 -0.002300 0.0002582 0.0029852 -0.131487
Intercep -0.034290 -0.069740 -0.131487 14.659852

Weighted R-squared = 0.9622869127
F(3,11) Statistic = 93.558645037

Probability = 4.1136826E-8
There are 15 points with nonzero weight.

Average Weight = 0.7142857143

See the entry for the LMS subroutine for details.

LUPDT Call

provides updating and downdating for rank deficient linear least squares solu-
tions, complete orthogonal factorization, and Moore-Penrose inverses

CALL LUPDT(lup, bup, sup, l, z <, b, y <, ssq>>);

The LUPDT subroutine returns the following values:

lup is an n × n lower triangular matrix L that is updated or downdated by
using the q rows in Z.

bup is an n × p matrix B of right-hand sides that is updated or downdated
by using the q rows in Y. If b is not specified, bup is not accessible.

sup is a p vector of square roots of residual sum of squares that is updated
or downdated by using the q rows in Y. If ssq is not specified, sup is
not accessible.

The inputs to the LUPDT subroutine are as follows:

l specifies an n×n lower triangular matrix L to be updated or downdated
by q row vectors z stored in the q×nmatrix Z. Only the lower triangle
of l is used; the upper triangle can contain any information.

z is a q × n matrix Z used rowwise to update or downdate the matrix L.

b specifies an optional n × p matrix B of right-hand sides that have to
be updated or downdated simultaneously with L. If b is specified, the
argument y must be specified.

y specifies an optional q × p matrix Y used rowwise to update or down-
date the right-hand-side matrix B.

766 � Chapter 20. Language Reference

ssq specifies an optional p × 1 vector that, if b is specified, specifies the
square root of the error sum of squares that should be updated or down-
dated simultaneously with L and b.

The relevant formula for the LUPDT call is L̃L̃′ = LL′ + ZZ′. See the example in
the documentation for the RZLIND call.

MAD Function
finds the univariate (scaled) median absolute deviation

MAD((x <, spt >))

where

x is an n× p input data matrix.

spt is an optional string argument with the following values:

“MAD” for computing the MAD (which is the default)
“NMAD” for computing the normalized version of MAD
“SN” for computing Sn

“QN” for computing Qn

The MAD function treats the input matrix x as univariate data by append-
ing each row to the previous row to make a single row vector with elements
x11, . . . , x1p, x21, . . . , x2p, . . . , xn1, . . . , xnp. In the following description, the
notation xi means the ith element of x when thought of as a row vector.

The MAD function can be used for computing one of the following three robust scale
estimates:

• median absolute deviation (MAD) or normalized form of MAD:

MADn = b ∗medn
i |xi −medn

j xj |

where b = 1 is the unscaled default and b = 1.4826 is used for the scaled
version (consistency with the Gaussian distribution).

• Sn, which is a more efficient alternative to MAD:

Sn = cn ∗medi medj 6=i |xi − xj |

where the outer median is a low median (order statistic of rank
[

n+1
2

]
) and the

inner median is a high median (order statistic of rank
[

n
2 + 1

]
), and where cn

is a scalar depending on sample size n.

• Qn is another efficient alternative to MAD. It is based on the kth-order statistic
of the

(
n
2

)
inter-point distances:

Qn = dn ∗ {|xi − xj |; i < j}(k) with k ≈
(
n

2

)
/4

where dn is a scalar similar to but different from cn. See Rousseeuw and Croux
(1993) for more details.

MARG Call � 767

The scalars cn and dn are defined as follows:

cn = 1.1926∗

.743 for n=2
1.851 for n=3
.954 for n=4
1.351 for n=5
.993 for n=6
1.198 for n=7
1.005 for n=8
1.131 for n=9
n/(n− 0.9) odd n
1.0 otherwise

dn = 2.2219∗

.399 for n=2

.994 for n=3

.512 for n=4

.844 for n=5

.611 for n=6

.857 for n=7

.669 for n=8

.872 for n=9
n/(n+ 1.4) uneven n
n/(n+ 3.8) even n

Example

The following example uses the univariate data set of Barnett and Lewis (1978). The
data set is used in Chapter 9 to illustrate the univariate LMS and LTS estimates. Here
is the code:

b = { 3, 4, 7, 8, 10, 949, 951 };

rmad1 = mad(b);
rmad2 = mad(b,"mad");
rmad3 = mad(b,"nmad");
rmad4 = mad(b,"sn");
rmad5 = mad(b,"qn");
print "Default MAD=" rmad1,

"Common MAD =" rmad2,
"MAD*1.4826 =" rmad3,
"Robust S_n =" rmad4,
"Robust Q_n =" rmad5;

This program produces the following output:

Default MAD= 4
Common MAD = 4
MAD*1.4826 = 5.9304089
Robust S_n = 7.143674
Robust Q_n = 5.7125049

MARG Call

evaluates marginal totals in a multiway contingency table

CALL MARG(locmar, marginal, dim, table, config);

The inputs to the MARG subroutine are as follows:

768 � Chapter 20. Language Reference

locmar is a returned matrix containing a vector of indices to each new set
of marginal totals under the model specified by config. A marginal
total is exhibited for each level of the specified marginal. These
indices help locate particular totals.

marginal is a return vector of marginal totals.

dim is an input matrix. If the problem contains v variables then dim is
1× v row vector. The value dim[i] is the number of possible levels
for variable i in a contingency table.

table is an input matrix. The table argument specifies an array of the
number of observations at each level of each variable. Variables
are nested across columns and then across rows.

config is an input matrix. The config argument specifies which marginal
totals to evaluate. Each column of config specifies a distinct
marginal in the model under consideration.

The matrix table must conform in size to the contingency table specified in dim. In
particular, if table is n ×m, the product of the entries in the dim vector must equal
nm. In addition, there must be some integer k such that the product of the first k
entries in dim equals m. See the description of the IPF function for more information
about specifying table.

For example, consider the three-dimensional table discussed in the IPF call, based
on data appearing in Christensen (1997). The table presents data on a person’s self-
esteem for people classified according to their religion and their father’s educational
level.

Father’s Educational Level
Self- Not HS HS Some Coll Post

Religion Esteem Grad Grad Coll Grad Coll
High 575 388 100 77 51

Catholic
Low 267 153 40 37 19
High 117 102 67 87 62

Jewish
Low 48 35 18 12 13
High 359 233 109 197 90

Protestant
Low 159 173 47 82 32

As explained in the IPF documentation, the father’s education level is Variable 1,
self-esteem is Variable 2, and religion is Variable 3.

The following program encodes this table, uses the MARG call to compute a 2-way
marginal table by summing over the third variable and a 1-way marginal by summing
over the first two variables.

MARG Call � 769

dim={5 2 3};

table={
/* Father’s Education:

NotHSGrad HSGrad Col ColGrad PostCol
Self-

Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,

/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,

/* Prote- Hi */ 359 233 109 197 90,
/* stant Lo */ 159 173 47 82 32

};

config = { 1 3,
2 0 };

call marg(locmar, marginal, dim, table, config);
print locmar, marginal;

/* Examine marginals: The name indicates the
variable(s) that are NOT summed over.
The locmar variable tells where to index
into the marginal variable. */

Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

The results of this program are as follows:

LOCMAR

1 11

MARGINAL

COL1 COL2 COL3 COL4 COL5 COL6 COL7

ROW1 1051 723 276 361 203 474 361

MARGINAL

COL8 COL9 COL10 COL11 COL12 COL13

ROW1 105 131 64 1707 561 1481

770 � Chapter 20. Language Reference

VAR12_MARG

1051 723 276 361 203
474 361 105 131 64

VAR3_MARG

1707
561

1481

The first marginal total is contained in locations 1 through 10 of the marginal vector.
It represents the results of summing table over the religion variable. The first entry
of marginal is the number of subjects with high self-esteem whose fathers did not
graduate from high school (1051 = 575 + 117 + 359). The second entry is the
number of subjects with high self-esteem whose fathers were high school graduates
(723 = 388 + 102 + 233). The tenth entry is the number of subjects with low self-
esteem whose fathers had some post-collegiate education (64 = 19 + 13 + 32).

The second marginal is contained in locations 11 through 13 of the marginal vector. It
represents the results of summing table over the education and self-esteem variables.
The eleventh entry of the marginal vector is the number of Catholics in the study.
The thirteenth entry is the number of Protestants.

MATTRIB Statement

associates printing attributes with matrices

MATTRIB name <ROWNAME=row-name>

<COLNAME=column-name><LABEL=label><FORMAT=format>;

The inputs to the MATTRIB subroutine are as follows:

name is a character matrix or quoted literal giving the name of a matrix.

row-name is a character matrix or quoted literal specifying row names.

column-name is a character matrix or quoted literal specifying column names.

label is a character matrix or quoted literal associating a label with the
matrix. The label argument has a maximum length of 256 charac-
ters.

format is a valid SAS format.

The MATTRIB statement associates printing attributes with matrices. Each matrix
can be associated with a ROWNAME= matrix and a COLNAME= matrix, which is
used whenever the matrix is printed to label the rows and columns, respectively. The
statement is written as the keyword MATTRIB followed by a list of one or more
names and attribute associations. It is not necessary to specify all attributes. The

MATTRIB Statement � 771

attribute associations are applied to the previous name. Thus, the following statement
gives a row name RA and a column name CA to A, and a column name CB to B:

mattrib a rowname=ra colname=ca b colname=cb;

You cannot group names; although the following statement is valid, it does not asso-
ciate anything with A.

mattrib a b rowname=n;

The values of the associated matrices are not looked up until they are needed. Thus,
they need not have values at the time the MATTRIB statement is specified. They can
be specified later when the object matrix is printed. The attributes continue to bind
with the matrix until reassigned with another MATTRIB statement. To eliminate an
attribute, specify EMPTY as the name, for example, ROWNAME=EMPTY. Labels
can be up to 40 characters long. Longer labels are truncated. Use the SHOW names
statement to view current matrix attributes.

An example that uses the MATTRIB statement follows:

rows=’xr1’:’xr5’;
print rows;

ROWS
xr1 xr2 xr3 xr4 xr5

cols=’cl1’:’cl5’;
print cols;

COLS
cl1 cl2 cl3 cl4 cl5

x={1 1 1 1,2 2 2 2,3 3 3 3};
mattrib x rowname=(rows [1:3])

colname=(cols [1:4])
label={’matrix,x’}
format=5.2;

print x;

matrix,x
cl1 cl2 cl3 cl4

xr1 1.00 1.00 1.00 1.00
xr2 2.00 2.00 2.00 2.00
xr3 3.00 3.00 3.00 3.00

772 � Chapter 20. Language Reference

MAX Function

finds the maximum value of matrix

MAX(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric or character matrix or literal.

The MAX function produces a single numeric value (or a character string value)
that is the largest element (or highest character string value) in all arguments. There
can be as many as 15 argument matrices. The function checks for missing numeric
values and does not include them in the result. If all arguments are missing, then the
machine’s most negative representable number is the result.

If you want to find the elementwise maximums of the corresponding elements of two
matrices, use the maximum operator (<>).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

An example that uses the MAX function follows:

c = { 1 -123 13 56 128 -81 12 };
b=max(c);
print b;

B

128

MAXQFORM Call

computes the subsets of a matrix system that maximize the quadratic form

CALL MAXQFORM(rc, maxq, V , b <, best>);

If V and b are an n × n matrix and an n × 1 vector, respectively, then
the MAXQFORM function computes the subsets of components s such that
b′[s]V−1[s, s]b[s] is maximized.

The MAXQFORM subroutine returns the following values:

rc is one of the following scalar return codes:

0 normal return
1 error: the number of elements of b is too large to process
2 error: V is not positive semidefinite

MAXQFORM Call � 773

maxq is an m× (n+ 2) matrix, where m is the total number of subsets com-
puted and n is the number of elements in b. The value of m depends
on the value of best and is equal to 2n − 1 if best is not specified.
Each row of maxq contains information for a selected subset of V and
b. The first element of the row is the number of components in the
subset. The second element is the value of the quadratic form. The
following elements of the row are either 0 or 1, to indicate whether the
corresponding components of V and b are included in the subset.

The inputs to the MAXQFORM subroutine are as follows:

V specifies an n× n positive semidefinite matrix. Often this is generated
as a crossproduct matrix, X′X, where X is a k × n matrix.

b specifies an n× 1 vector. Often this arises as X′y, where X is a k × n
matrix, and y is a k × 1 vector.

best specifies an optional scalar. If best is specified with the value p, then
the p subsets with the largest value for the quadratic form are returned
for each subset size.

The leaps and bounds algorithm by Furnival and Wilson (1974) computes the maxi-
mum value of quadratic forms for subsets of components. Many statistics computed
as a quadratic form can then be used as the criterion for the method of subset selec-
tion. These include the regression sum of squares, Wald statistics, and score statistics.

Consider the following fitness data, which consists of observations with values for age
measured in years, weight measured in kilograms, time to run 1.5 miles measured
in minutes, heart rate while resting, heart rate while running, maximum heart rate
recorded while running, and oxygen intake rate while running measured in milliliters
per kilogram of body weight per minute.

fit = {
44 89.47 11.37 62 178 182 44.609,
40 75.07 10.07 62 185 185 45.313,
44 85.84 8.65 45 156 168 54.297,
42 68.15 8.17 40 166 172 59.571,
38 89.02 9.22 55 178 180 49.874,
47 77.45 11.63 58 176 176 44.811,
40 75.98 11.95 70 176 180 45.681,
43 81.19 10.85 64 162 170 49.091,
44 81.42 13.08 63 174 176 39.442,
38 81.87 8.63 48 170 186 60.055,
44 73.03 10.13 45 168 168 50.541,
45 87.66 14.03 56 186 192 37.388,
45 66.45 11.12 51 176 176 44.754,
47 79.15 10.60 47 162 164 47.273,
54 83.12 10.33 50 166 170 51.855,
49 81.42 8.95 44 180 185 49.156,
51 69.63 10.95 57 168 172 40.836,

774 � Chapter 20. Language Reference

51 77.91 10.00 48 162 168 46.672,
48 91.63 10.25 48 162 164 46.774,
49 73.37 10.08 67 168 168 50.388,
57 73.37 12.63 58 174 176 39.407,
54 79.38 11.17 62 156 165 46.080,
52 76.32 9.63 48 164 166 45.441,
50 70.87 8.92 48 146 155 54.625,
51 67.25 11.08 48 172 172 45.118,
54 91.63 12.88 44 168 172 39.203,
51 73.71 10.47 59 186 188 45.790,
57 59.08 9.93 49 148 155 50.545,
49 76.32 9.40 56 186 188 48.673,
48 61.24 11.50 52 170 176 47.920,
52 82.78 10.50 53 170 172 47.467 };

Use the following IML statement to center the data.

fit = fit - j(31,1,1) * fit[:,];

Now compute the crossproduct matrices, as follows:

x = fit[,1:6];
y = fit[,7];
xpx = x‘*x;
xpy = x‘*y;

The following statements compute the best three regression sums of squares for each
size of regressor set:

call maxqform(rc, maxq, xpx, xpy, 3);
print maxq;

MCD Call

finds the minimum covariance determinant estimator

CALL MCD(sc, coef, dist, opt, x);

The MCD call is the robust (resistant) estimation of multivariate location and scatter,
defined by minimizing the determinant of the covariance matrix computed from h
points. The algorithm for the MCD subroutine is based on the FAST-MCD algorithm
given by Rousseeuw and Van Driessen (1999).

The MCD subroutine computes the minimum covariance determinant estimator.
These robust locations and covariance matrices can be used to detect multivariate
outliers and leverage points. For this purpose, the MCD subroutine provides a table
of robust distances.

In the following discussion, N is the number of observations and n is the number of
regressors. The inputs to the MCD subroutine are as follows:

MCD Call � 775

opt refers to an options vector with the following components (missing values
are treated as default values):

opt[1] specifies the amount of printed output. Higher option values re-
quest additional output and include the output of lower values.

opt[1]=0 prints no output except error messages.
opt[1]=1 prints most of the output.
opt[1]=2 additionally prints case numbers of the observations in

the best subset and some basic history of the optimiza-
tion process.

opt[1]=3 additionally prints how many subsets result in singular
linear systems.

The default is opt[1]=0.
opt[2] specifies whether the classical, initial, and final robust covariance

matrices are printed. The default is opt[2]=0. Note that the final
robust covariance matrix is always returned in coef.

opt[3] specifies whether the classical, initial, and final robust correlation
matrices are printed or returned:

opt[3]=0 does not return or print.
opt[3]=1 prints the robust correlation matrix.
opt[3]=2 returns the final robust correlation matrix in coef.
opt[3]=3 prints and returns the final robust correlation matrix.

opt[4] specifies the quantile h used in the objective function. The default
is opt[4]= h = [N+n+1

2]. If the value of h is specified outside the
range N

2 +1 ≤ h ≤ 3N
4 + n+1

4 , it is reset to the closest boundary
of this region.

opt[5] specifies the number NRep of subset generations. This option is
the same as described for the LTS subroutines. Due to computer
time restrictions, not all subset combinations can be inspected for
larger values of N and n.
When opt[5] is zero or missing:
If N > 600, construct up to five disjoint random subsets with
sizes as equal as possible, but not to exceed 300. Inside each sub-
set, choose 500/5 = 100 subset combinations of n observations.
If N < 600, the number of subsets is taken from the following
table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0

n 11 12 13 14 15
Nlower 0 0 0 0 0

776 � Chapter 20. Language Reference

If the number of cases (observations) N is smaller than Nlower,
then all possible subsets are used; otherwise, 500 subsets are cho-
sen randomly. This means that an exhaustive search is performed
for opt[5]=−1. If N is larger than Nupper, a note is printed in the
log file indicating how many subsets exist.

x refers to an N × n matrix X of regressors.

Missing values are not permitted in x. Missing values in opt cause the default value
to be used.

The MCD subroutine returns the following values:

sc is a column vector containing the following scalar information:

sc[1] the quantile h used in the objective function
sc[2] number of subsets generated
sc[3] number of subsets with singular linear systems
sc[4] number of nonzero weights wi

sc[5] lowest value of the objective function FMCD attained (smallest
determinant)

sc[6] Mahalanobis-like distance used in the computation of the lowest
value of the objective function FMCD

sc[7] the cutoff value used for the outlier decision

coef is a matrix with n columns containing the following results in its rows:

coef[1] location of ellipsoid center
coef[2] eigenvalues of final robust scatter matrix
coef[3:2+n] the final robust scatter matrix for opt[2]=1 or

opt[2]=3
coef[2+n+1:2+2n] the final robust correlation matrix for opt[3]=1 or

opt[3]=3

dist is a matrix with N columns containing the following results in its rows:

dist[1] Mahalanobis distances
dist[2] robust distances based on the final estimates
dist[3] weights (=1 for small, =0 for large robust distances)

MCD Call � 777

Example

Consider Brownlee’s (1965) stackloss data used in the example for the MVE subrou-
tine.

For N = 21 and n = 4 (three explanatory variables including intercept), you obtain
a total of 5,985 different subsets of 4 observations out of 21. If you decide not to
specify optn[5], the MCD algorithm chooses 500 random sample subsets, as in
the following code:

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */

CALL MCD(sc,xmcd,dist,optn,a);

The first part of the output of this program is a summary of the MCD algorithm and
the final h points selected, as follows:

Fast MCD by Rousseeuw and Van Driessen

Number of Variables 3
Number of Observations 21
Default Value for h 12
Specified Value for h 12
Breakdown Value 42.86
- Highest Possible Breakdown Value -

778 � Chapter 20. Language Reference

The best half of the entire data set obtained after full
iteration consists of the cases:

4 5 6 7 8 9 10 11 12 13 14 20

The second part of the output is the MCD estimators of the location, scatter matrix,
and correlation matrix, as follows:

MCD Location Estimate

VAR1 VAR2 VAR3

59.5 20.833333333 87.333333333
Average of 12 Selected Points

MCD Scatter Matrix Estimate

VAR1 VAR2 VAR3

VAR1 5.1818181818 4.8181818182 4.7272727273
VAR2 4.8181818182 7.6060606061 5.0606060606
VAR3 4.7272727273 5.0606060606 19.151515152

Determinant = 238.07387929
Covariance Matrix of 12 Selected Points

MCD Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.7674714142 0.4745347313
VAR2 0.7674714142 1 0.4192963398
VAR3 0.4745347313 0.4192963398 1

The MCD scatter matrix is multiplied by a factor to make it
consistent when all the data come from a single Gaussian
distribution.

Consistent Scatter Matrix

VAR1 VAR2 VAR3

VAR1 8.6578437815 8.0502757968 7.8983838007
VAR2 8.0502757968 12.708297013 8.4553211199
VAR3 7.8983838007 8.4553211199 31.998580526

Determinant = 397.77668436

MCD Call � 779

The final output presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is, lever-
age points when explaining y with these three regressor variables):

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 12.173282 0
2 2.324745 12.255677 0
3 1.593712 9.263990 0
4 1.271898 1.401368 1.000000
5 0.303357 1.420020 1.000000
6 0.772895 1.291188 1.000000
7 1.852661 1.460370 1.000000
8 1.852661 1.460370 1.000000
9 1.360622 2.120590 1.000000

10 1.745997 1.809708 1.000000
11 1.465702 1.362278 1.000000
12 1.841504 1.667437 1.000000
13 1.482649 1.416724 1.000000
14 1.778785 1.988240 1.000000
15 1.690241 5.874858 0
16 1.291934 5.606157 0
17 2.700016 6.133319 0
18 1.503155 5.760432 0
19 1.593221 6.156248 0
20 0.807054 2.172300 1.000000
21 2.176761 7.622769 0

Robust distances are based on reweighted estimates.

The cutoff value is the square root of the 0.975 quantile of
the chi square distribution with 3 degrees of freedom.

Points whose robust distance exceeds 3.0575159206 have received
a zero weight in the last column above.

There were 9 such points in the data.
These may include boundary cases.

Only points whose robust distance is substantially larger
than the cutoff should be considered outliers.

780 � Chapter 20. Language Reference

MIN Function
finds the smallest element of a matrix

MIN(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric or character matrix or literal.

The MIN function produces a single numeric value (or a character string value) that
is the smallest element (lowest character string value) in all arguments. There can be
as many as 15 argument matrices. The function checks for missing numeric values
and excludes them from the result. If all arguments are missing, then the machine’s
largest representable number is the result.

If you want to find the elementwise minimums of the corresponding elements of two
matrices, use the element minimum operator (><).

For character arguments, the size of the result is the size of the largest of all argu-
ments.

An example that uses the MIN function follows:

c = { 1 -123 13 56 128 -81 12 };
b=min(c);
print b;

B

-123

MOD Function
computes the modulo (remainder)

MOD(value, divisor)

The inputs to the MOD function are as follows:

value is a numeric matrix or literal giving the dividend.

divisor is a numeric matrix or literal giving the divisor.

The MOD function is the scalar function returning the remainder of the division of
elements of the first argument by elements of the second argument.

If either operand is a scalar, the MOD function performs the operation for each ele-
ment of the matrix with the scalar value. If either operand is a row or column vector,
then the operation is performed using that vector on each of the rows or columns of
the matrix.

Unlike the MOD function in Base SAS, the IML MOD function does not perform
any numerical “fuzzing” to return an exact zero when the result would otherwise be
very small. Thus the results of the IML MOD function is more similar to the MODZ
function in Base SAS.

An example of a valid statement follows:

MODULEI Call � 781

c = { -7 14 20 -81 23 };
b=mod(c,4);
print b;

B

-3 2 0 -1 3

MODULEI Call

calls an external routine without any return code

CALL MODULEI(control, modname, <matrix1,. . .,matrix13>);

The inputs to the MODULEI subroutine are as follows:

control is a character matrix containing a control string.

modname is a character matrix containing the name of the external rou-
tine to be called.

matrix matrices with parameters to be passed to the external routine.

The CALL MODULEI routine executes a routine modname that resides in an external
shared library with the specified arguments.

The MODULEI call routine is the IML version of the MODULE call routine that
is available in the SAS DATA step. It is also closely related to the MODULEIN
function, which returns a scalar numeric value, and the MODULEIC function, which
returns a character value. CALL MODULEI builds a parameter list by using the
information in the arguments and a routine description and argument attribute table
that you define in a separate file. The attribute table is a sequential text file that
contains descriptions of the routines that you can invoke with the CALL MODULEI
routine and MODULEIN and MODULEIC functions. The purpose of the table is to
define how CALL MODULEI should interpret its supplied arguments when it builds
a parameter list to pass to the external routine. The attribute table should contain a
description for each external routine that you intend to call, and descriptions of each
argument associated with that routine. This enables you to call external routines that
have been compiled in different programming languages that use different calling and
matrix representation conventions.

Before you invoke CALL MODULEI, you must define the fileref of SASCBTBL to
point to the external file that contains the attribute table. You can name the file what-
ever you want when you create it. You can then use SAS/IML matrices as arguments
to CALL MODULEI and ensure that these arguments are properly converted before
being passed to the external routine. The exact syntax for the attribute table is system
dependent, and can be found in the SAS companion guide for the system you are
using. Attempting to use CALL MODULEI for a module without a correct attribute
table entry can cause the SAS System to fail or even force you to reset your computer.

782 � Chapter 20. Language Reference

MODULEIC Function

calls an external routine that returns a character

MODULEIC(control, modname, <matrix1,. . .,matrix13>);

The inputs to the MODULEIC function are as follows:

control is a character matrix containing a control string.

modname is a character matrix containing the name of the external rou-
tine to be called.

matrix matrices with parameters to be passed to the external routine.

The MODULEIC routine executes a routine modname that resides in an external
shared library with the specified arguments, and returns a character value. The de-
scription of this function is identical that for to the MODULEI call, except that the
MODULEIC function returns a character value from the external routine.

See the MODULEI call for a full description of the function and its inputs.

MODULEIN Function

calls an external routine that returns a numeric value

MODULEIN(control, modname, <matrix1,. . .,matrix13>);

The inputs to the MODULEIN function are as follows:

control is a character matrix containing a control string.

modname is a character matrix containing the name of the external rou-
tine to be called.

matrix matrices with parameters to be passed to the external routine.

The MODULEIN routine executes a routine modname that resides in an external
shared library with the specified arguments, and returns a character value. The de-
scription of this function is identical that for to the MODULEI call, except that the
MODULEIN function returns a scalar numeric value from the external routine.

See the MODULEI call for a full description of the function and its inputs.

This example invokes the changi routine from the TRYMOD.DLL module on a
Windows platform. Use the following attribute table.

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following PROC IML code calls the changi function:

MVE Call � 783

proc iml;
x1=J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j]=i*10+j+3;

end;
end;
y1=x1;
x2=x1;
y2=y1;
rc=modulein(’*i’,’changi’,6,x2);

MVE Call

finds the minimum volume ellipsoid estimator

CALL MVE(sc, coef, dist, opt, x <, s >);

The MVE call is the robust (resistant) estimation of multivariate location and scatter,
defined by minimizing the volume of an ellipsoid containing h points.

The MVE subroutine computes the minimum volume ellipsoid estimator. These ro-
bust locations and covariance matrices can be used to detect multivariate outliers and
leverage points. For this purpose, the MVE subroutine provides a table of robust
distances.

In the following discussion, N is the number of observations and n is the number of
regressors. The inputs to the MVE subroutine are as follows:

opt refers to an options vector with the following components (missing values
are treated as default values):

opt[1] specifies the amount of printed output. Higher option values re-
quest additional output and include the output of lower values.

opt[1]=0 prints no output except error messages.
opt[1]=1 prints most of the output.
opt[1]=2 additionally prints case numbers of the observations in

the best subset and some basic history of the optimiza-
tion process.

opt[1]=3 additionally prints how many subsets result in singular
linear systems.

The default is opt[1]=0.
opt[2] specifies whether the classical, initial, and final robust covariance

matrices are printed. The default is opt[2]=0. Note that the final
robust covariance matrix is always returned in coef.

opt[3] specifies whether the classical, initial, and final robust correlation
matrices are printed or returned:

784 � Chapter 20. Language Reference

opt[3]=0 does not return or print.
opt[3]=1 prints the robust correlation matrix.
opt[3]=2 returns the final robust correlation matrix in coef.
opt[3]=3 prints and returns the final robust correlation matrix.

opt[4] specifies the quantile h used in the objective function. The default
is opt[5]= h =

[
N+n+1

2

]
. If the value of h is specified outside

the range N
2 + 1 ≤ h ≤ 3N

4 + n+1
4 , it is reset to the closest

boundary of this region.
opt[5] specifies the number NRep of subset generations. This option is

the same as described previously for the LMS and LTS subrou-
tines. Due to computer time restrictions, not all subset combina-
tions can be inspected for larger values of N and n. If opt[5] is
zero or missing, the default number of subsets is taken from the
following table.

n 1 2 3 4 5 6 7 8 9 10
Nlower 500 50 22 17 15 14 0 0 0 0
Nupper 106 1414 182 71 43 32 27 24 23 22
NRep 500 1000 1500 2000 2500 3000 3000 3000 3000 3000

n 11 12 13 14 15
Nlower 0 0 0 0 0
Nupper 22 22 22 23 23
NRep 3000 3000 3000 3000 3000

If the number of cases (observations) N is smaller than Nlower,
then all possible subsets are used; otherwise, NRep subsets are
chosen randomly. This means that an exhaustive search is per-
formed for opt[5]=−1. If N is larger than Nupper, a note is
printed in the log file indicating how many subsets exist.

x refers to an N × n matrix X of regressors.

s refers to an n+ 1 vector containing n+ 1 observation numbers of a subset
for which the objective function should be evaluated, where n is the number
of parameters. In other words, the MVE algorithm computes the minimum
volume of the ellipsoid containing the observation numbers contained in s.

Missing values are not permitted in x. Missing values in opt cause the default value
to be used.

MVE Call � 785

The MVE subroutine returns the following values:

sc is a column vector containing the following scalar information:

sc[1] the quantile h used in the objective function
sc[2] number of subsets generated
sc[3] number of subsets with singular linear systems
sc[4] number of nonzero weights wi

sc[5] lowest value of the objective function FMVE attained (volume of
smallest ellipsoid found)

sc[6] Mahalanobis-like distance used in the computation of the lowest
value of the objective function FMVE

sc[7] the cutoff value used for the outlier decision

coef is a matrix with n columns containing the following results in its rows:

coef[1] location of ellipsoid center
coef[2] eigenvalues of final robust scatter matrix
coef[3:2+n] the final robust scatter matrix for opt[2]=1 or

opt[2]=3
coef[2+n+1:2+2n] the final robust correlation matrix for opt[3]=1 or

opt[3]=3

dist is a matrix with N columns containing the following results in its rows:

dist[1] Mahalanobis distances
dist[2] robust distances based on the final estimates
dist[3] weights (=1 for small, =0 for large robust distances)

Example

Consider results for Brownlee’s (1965) stackloss data. The three explanatory vari-
ables correspond to measurements for a plant oxidizing ammonia to nitric acid on 21
consecutive days:

• x1 air flow to the plant

• x2 cooling water inlet temperature

• x3 acid concentration

The response variable yi gives the permillage of ammonia lost (stackloss). These data
are also given by Rousseeuw and Leroy (1987, p. 76).

786 � Chapter 20. Language Reference

/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,

1 80 27 88 37,
1 75 25 90 37,
1 62 24 87 28,
1 62 22 87 18,
1 62 23 87 18,
1 62 24 93 19,
1 62 24 93 20,
1 58 23 87 15,
1 58 18 80 14,
1 58 18 89 14,
1 58 17 88 13,
1 58 18 82 11,
1 58 19 93 12,
1 50 18 89 8,
1 50 18 86 7,
1 50 19 72 8,
1 50 19 79 8,
1 50 20 80 9,
1 56 20 82 15,
1 70 20 91 15 };

Rousseeuw and Leroy (1987, p. 76) cite a large number of papers where this data
set was analyzed and state that most researchers “concluded that observations 1, 3, 4,
and 21 were outliers”; some people also reported observation 2 as an outlier.

By default, subroutine MVE chooses only 2,000 randomly selected subsets in its
search. There are in total 5,985 subsets of 4 cases out of 21 cases. Here is the code:

a = aa[,2:4];
optn = j(8,1,.);
optn[1]= 2; /* ipri */
optn[2]= 1; /* pcov: print COV */
optn[3]= 1; /* pcor: print CORR */
optn[5]= -1; /* nrep: use all subsets */

CALL MVE(sc,xmve,dist,optn,a);

The first part of the output shows the classical scatter and correlation matrix:

Minimum Volume Ellipsoid (MVE) Estimation
Consider Ellipsoids Containing 12 Cases.

Classical Covariance Matrix

VAR1 VAR2 VAR3

VAR1 84.057142857 22.657142857 24.571428571
VAR2 22.657142857 9.9904761905 6.6214285714
VAR3 24.571428571 6.6214285714 28.714285714

MVE Call � 787

Classical Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.781852333 0.5001428749
VAR2 0.781852333 1 0.3909395378
VAR3 0.5001428749 0.3909395378 1

Classical Mean

VAR1 60.428571429
VAR2 21.095238095
VAR3 86.285714286

There are 5985 subsets of 4 cases out of 21 cases.
All 5985 subsets will be considered.

The second part of the output shows the results of the optimization (complete subset
sampling):

Complete Enumeration for MVE

Best
Subset Singular Criterion Percent

1497 22 253.312431 25
2993 46 224.084073 50
4489 77 165.830053 75
5985 156 165.634363 100

Minimum Criterion= 165.63436284

Among 5985 subsets 156 are singular.

Observations of Best Subset

7 10 14 20

Initial MVE Location
Estimates

VAR1 58.5
VAR2 20.25
VAR3 87

Initial MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 34.829014749 28.413143611 62.32560534
VAR2 28.413143611 38.036950318 58.659393261
VAR3 62.32560534 58.659393261 267.63348175

788 � Chapter 20. Language Reference

The third part of the output shows the optimization results after local improvement:

Final MVE Estimates (Using Local Improvement)

Number of Points with Nonzero Weight=17

Robust MVE Location
Estimates

VAR1 56.705882353
VAR2 20.235294118
VAR3 85.529411765

Robust MVE Scatter Matrix

VAR1 VAR2 VAR3

VAR1 23.470588235 7.5735294118 16.102941176
VAR2 7.5735294118 6.3161764706 5.3676470588
VAR3 16.102941176 5.3676470588 32.389705882

Eigenvalues of Robust
Scatter Matrix

VAR1 46.597431018
VAR2 12.155938483
VAR3 3.423101087

Robust Correlation Matrix

VAR1 VAR2 VAR3

VAR1 1 0.6220269501 0.5840361335
VAR2 0.6220269501 1 0.375278187
VAR3 0.5840361335 0.375278187 1

The final output presents a table containing the classical Mahalanobis distances, the
robust distances, and the weights identifying the outlying observations (that is lever-
age points when explaining y with these three regressor variables):

Classical Distances and Robust (Rousseeuw) Distances
Unsquared Mahalanobis Distance and

Unsquared Rousseeuw Distance of Each Observation
Mahalanobis Robust

N Distances Distances Weight

1 2.253603 5.528395 0
2 2.324745 5.637357 0
3 1.593712 4.197235 0
4 1.271898 1.588734 1.000000
5 0.303357 1.189335 1.000000
6 0.772895 1.308038 1.000000

NAME Function � 789

7 1.852661 1.715924 1.000000
8 1.852661 1.715924 1.000000
9 1.360622 1.226680 1.000000
10 1.745997 1.936256 1.000000
11 1.465702 1.493509 1.000000
12 1.841504 1.913079 1.000000
13 1.482649 1.659943 1.000000
14 1.778785 1.689210 1.000000
15 1.690241 2.230109 1.000000
16 1.291934 1.767582 1.000000
17 2.700016 2.431021 1.000000
18 1.503155 1.523316 1.000000
19 1.593221 1.710165 1.000000
20 0.807054 0.675124 1.000000
21 2.176761 3.657281 0

Distribution of Robust Distances

MinRes 1st Qu. Median

0.6751244996 1.5084120761 1.7159242054

Mean 3rd Qu. MaxRes

2.2282960174 2.0831826658 5.6373573538

Cutoff Value = 3.0575159206

The cutoff value is the square root of
the 0.975 quantile of the chi square
distribution with 3 degrees of freedom.

There are 4 points with large robust distances receiving
zero weights. These may include boundary cases.
Only points whose robust distances are substantially larger
than the cutoff value should be considered outliers.

NAME Function

lists the names of arguments

NAME(arguments);

where arguments are the names of existing matrices.

The NAME function returns the names of the arguments in a column vector. In the
following example, N is a 3 × 1 character matrix of element size 8 containing the
character values A, B, and C:

n=name(a,b,c);

The main use of the NAME function is with macros when you want to use an argu-
ment for both its name and its value.

790 � Chapter 20. Language Reference

NCOL Function

finds the number of columns of a matrix

NCOL(matrix)

where matrix is a numeric or character matrix.

The NCOL function returns a single numeric value that is the number of columns in
matrix. If the matrix has not been given a value, the NCOL function returns a value
of 0.

For example, to let B contain the number of columns of matrix S, use the following
statement:

b=ncol(s);

NLENG Function

finds the size of an element

NLENG(matrix)

where matrix is a numeric or character matrix.

The NLENG function returns a single numeric value that is the size in bytes of each
element in matrix. All matrix elements have the same size. If the matrix does not have
a value, then the NLENG function returns a value of 0. This function is different from
the LENGTH function, which returns the size of each element of a character matrix,
omitting the trailing blanks.

The following statement returns the value 7:

a=nleng({"ab " "ijklm ",
"x" " "});

Nonlinear Optimization and Related Subroutines � 791

Nonlinear Optimization and Related Subroutines
Table 20.1. Nonlinear Optimization and Related Subroutines

Optimization Subroutines
Conjugate Gradient Optimization Method

CALL NLPCG(rc, xr, “fun”, x0 <, opt, blc, tc, par, “ptit”, “grd”>);

Double Dogleg Optimization Method
CALL NLPDD(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”>);

Nelder-Mead Simplex Optimization Method
CALL NLPNMS(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “nlc”>);

Newton-Raphson Optimization Method
CALL NLPNRA(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

Newton-Raphson Ridge Optimization Method
CALL NLPNRR(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

(Dual) Quasi-Newton Optimization Method
CALL NLPQN(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “nlc”, “jacnlc”>);

Quadratic Optimization Method
CALL NLPQUA(rc, xr, quad, x0 <,opt, blc, tc, par, “ptit”, lin>);

Trust-Region Optimization Method
CALL NLPTR(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

Least Squares Subroutines
Hybrid Quasi-Newton Least Squares Methods

CALL NLPHQN(rc, xr, “fun”, x0, opt <,blc, tc, par, “ptit”, “jac”>);

Levenberg-Marquardt Least Squares Method
CALL NLPLM(rc, xr, “fun”, x0, opt <,blc, tc, par, “ptit”, “jac”>);

Supplementary Subroutines
Approximate Derivatives by Finite Differences

CALL NLPFDD(f, g, h, “fun”, x0 <,par, “grd”>);

Feasible Point Subject to Constraints
CALL NLPFEA(xr, x0, blc <,par>);

Note: The names of the optional arguments can be used as keywords. For example,
the following statements are equivalent:

call nlpnrr(rc,xr,"fun",x0,,,ter,,,"grad");
call nlpnrr(rc,xr,"fun",x0) tc=ter grd="grad";

792 � Chapter 20. Language Reference

All the optimization subroutines require at least two input arguments.

• The NLPQUA subroutine requires the quad matrix argument, which specifies
the symmetric matrix G of the quadratic problem. The input can be dense or
sparse. Other optimization subroutines require the fun module argument, which
specifies an IML module that defines the objective function or functions. For
least squares subroutines, the FUN module must return a column vector of
length m that corresponds to the values of the m functions f1(x), . . . , fm(x),
each evaluated at the point x = (x1, . . . , xn). For other subroutines, the FUN
module must return the value of the objective function f = f(x) evaluated at
the point x.

• The argument x0 specifies a row vector that defines the number of parame-
ters n. If x0 is a feasible point, it represents a starting point for the iterative
optimization process. Otherwise, a linear programming algorithm is called at
the start of each optimization subroutine to replace the input x0 by a feasible
starting point.

The other arguments that can be used as input are described in the following list. As
indicated in Table 20.1, not all input arguments apply to each subroutine.

Note that you can specify optional arguments with the keyword=argument syntax.

• The opt argument indicates an options vector that specifies details of the opti-
mization process, such as particular updating techniques and whether the objec-
tive function is to be maximized instead of minimized. See the section “Options
Vector” on page 347 for details.

• The blc argument specifies a constraint matrix that defines lower and upper
bounds for the n parameters as well as general linear equality and inequality
constraints. For details, see the section “Parameter Constraints” on page 345.

• The tc argument specifies a vector of thresholds corresponding to the termina-
tion criteria tested in each iteration. See the section “Termination Criteria” on
page 352 for details.

• The par argument specifies a vector of control parameters that can be used to
modify the algorithms if the default settings do not complete the optimization
process successfully. For details, see the section “Control Parameters Vector”
on page 359.

• The “ptit” module argument specifies an IML module that replaces the sub-
routine used to print the iteration history and test the termination criteria. If
the “ptit” module is specified, the matrix specified by the tc argument has no
effect. See the section “Termination Criteria” on page 352 for details.

• The “grd” module argument specifies an IML module that computes the gra-
dient vector, g = ∇f , at a given input point x. See the section “Objective
Function and Derivatives” on page 337 for details.

• The “hes” module argument specifies an IML module that computes the n×n
Hessian matrix, G = ∇2f , at a given input point x. See the section “Objective
Function and Derivatives” on page 337 for details.

NLPCG Call � 793

• The “jac” module argument specifies an IML module that computes them×n
Jacobian matrix, J = (∇fi), of the m least squares functions at a given input
point x. See the section “Objective Function and Derivatives” on page 337 for
details.

• The “nlc” module argument specifies an IML module that computes general
equality and inequality constraints. This is the method by which nonlinear con-
straints must be specified. For details, see the section “Parameter Constraints”
on page 345.

• The “jacnlc” module argument specifies an IML module that computes the
Jacobian matrix of first-order derivatives of the equality and inequality con-
straints specified by the NLC module. For details, see the section “Parameter
Constraints” on page 345.

• The lin argument specifies the linear part of the quadratic optimization prob-
lem. See the section “NLPQUA Call” on page 821 for details.

The modules that can be used as input arguments for the subroutines (“fun,” “grd,”
“hes,” “jac,” “ptit,” “nlc,” and “jacnlc”) accept only a single input parameter x =
(x1, . . . , xn). You can provide more input parameters for these modules by using the
GLOBAL clause. See the section “Using the GLOBAL Clause” on page 81 for an
example.

All the optimization subroutines return the following results:

• The scalar return code rc indicates the reason for the termination of the opti-
mization process. A return code rc > 0 indicates successful termination cor-
responding to one of the specified termination criteria. A return code rc < 0
indicates unsuccessful termination—that is, that the result xr is unreliable. See
the section “Definition of Return Codes” on page 337 for more details.

• The row vector xr, which has length n, the number of parameters, contains the
optimal point when rc > 0.

NLPCG Call

nonlinear optimization by conjugate gradient method

CALL NLPCG(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPCG subroutine requires function and gradient calls; it does not need second-
order derivatives. The gradient vector contains the first derivatives of the objective
function f with respect to the parameters x1, . . . , xn, as follows:

g(x) = ∇f(x) =
(
∂f

∂xj

)

794 � Chapter 20. Language Reference

If you do not specify an IML module with the “grd” argument, the first-order deriva-
tives are approximated by finite difference formulas using only function calls. The
NLPCG algorithm can require many function and gradient calls, but it requires less
memory than other subroutines for unconstrained optimization. In general, many it-
erations are needed to obtain a precise solution, but each iteration is computationally
inexpensive. You can specify one of four update formulas for generating the conju-
gate directions with the fourth element of the opt input argument.

Value of opt[4] Update Method
1 Automatic restart method of Powell (1977) and Beale (1972).

This is the default.
2 Fletcher-Reeves update (Fletcher 1987)
3 Polak-Ribiere update (Fletcher 1987)
4 Conjugate-descent update of Fletcher (1987)

The NLPCG subroutine is useful for optimization problems with large n. For the
unconstrained or boundary constrained case, the NLPCG method needs only order n
bytes of working memory, whereas the other optimization methods require order n2

bytes of working memory. During n successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
size α that satisfies the Goldstein conditions. One of the Goldstein conditions can be
violated if the feasible region defines an upper limit for the step size. You can specify
other line-search algorithms with the fifth element of the opt argument.

For an example of the NLPCG subroutine, see the section “Constrained Betts
Function” on page 329.

NLPDD Call
nonlinear optimization by double dogleg method

CALL NLPDD(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The double dogleg optimization method combines the ideas of the quasi-Newton and
trust-region methods. In each iteration, the algorithm computes the step, s(k), as
a linear combination of the steepest descent or ascent search direction, s(k)

1 , and a
quasi-Newton search direction, s(k)

2 , as follows:

s(k) = α1s
(k)
1 + α2s

(k)
2

The step s(k) must remain within a specified trust-region radius (refer to Fletcher
1987). Hence, the NLPDD subroutine uses the dual quasi-Newton update but does

NLPDD Call � 795

not perform a line search. You can specify one of two update formulas with the fourth
element of the opt input argument.

Value of opt[4] Update Method
1 Dual BFGS update of the Cholesky factor of the Hessian matrix.

This is the default.
2 Dual DFP update of the Cholesky factor of the Hessian matrix

The double dogleg optimization technique works well for medium to moderately
large optimization problems, in which the objective function and the gradient are
much faster to compute than the Hessian. The implementation is based on Dennis
and Mei (1979) and Gay (1983), but it is extended for boundary and linear con-
straints. The NLPDD subroutine generally needs more iterations than the techniques
that require second-order derivatives (NLPTR, NLPNRA, and NLPNRR), but each
of the NLPDD iterations is computationally inexpensive. Furthermore, the NLPDD
subroutine needs only gradient calls to update the Cholesky factor of an approximate
Hessian.

In addition to the standard iteration history, the NLPDD routine prints the following
information:

• The heading lambda refers to the parameter λ of the double dogleg step. A
value of 0 corresponds to the full (quasi-) Newton step.

• The heading slope refers to gT s, the slope of the search direction at the current
parameter iterate x(k). For minimization, this value should be significantly
smaller than zero.

The following statements invoke the NLPDD subroutine to solve the constrained
Betts optimization problem (see the section “Constrained Betts Function” on page
329).

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 1};
call nlpdd(rc,xres,"F_BETTS",x,optn,con);

The preceding statements produce the following iteration history.

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

796 � Chapter 20. Language Reference

Without Parameter Scaling
Gradient Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2 Radius 1

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -99.54678
2 0 3 0 -99.59120
3 0 5 0 -99.90252
4 0 6 1 -99.96000
5 0 7 1 -99.96000
6 0 8 1 -99.96000

Objective Max Abs Slope of
Function Gradient Search

Iter Change Element Lambda Direction

1 1.0092 0.1346 6.012 -1.805
2 0.0444 0.1279 0 -0.0228
3 0.3113 0.0624 0 -0.209
4 0.0575 0.00432 0 -0.0975
5 4.66E-6 0.000079 0 -458E-8
6 1.559E-9 0 0 -16E-10

Optimization Results

Iterations 6 Function Calls 9
Gradient Calls 8 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -1.56621E-9 Radius 1

GCONV convergence criterion satisfied.

NLPFDD Call

approximates derivatives by finite-differences method

NLPFDD Call � 797

CALL NLPFDD(f, g, h, “fun”, x0, <,par, “grd”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPFDD subroutine can be used for the following tasks:

• If the module “fun” returns a scalar, the NLPFDD subroutine computes the
function value f, the gradient vector g, and the Hessian matrix h, all evaluated
at the point x0.

• If the module “fun” returns a column vector of m function values, the sub-
routine assumes that a least squares function is specified, and it computes the
function vector f, the Jacobian matrix J, and the crossproduct of the Jacobian
matrix J′J at the point x0. Note that in this case, you must set the first element
of the par argument to m.

If any of the results cannot be computed, the subroutine returns a missing value for
that result.

You can specify the following input arguments with the NLPFDD subroutine:

• The “fun” argument refers to an IML module that returns either a scalar value
or a column vector of length m. This module returns the value of the objective
function or, for least squares problems, the values of the m functions that the
objective function comprises.

• The x0 argument is a vector of length n that defines the point at which the
functions and derivatives should be computed.

• The par argument is a vector that defines options and control parameters. Note
that the par argument in the NLPFDD call is different from the one used in the
optimization subroutines.

• The “grd” argument is optional and refers to an IML module that returns a
vector defining the gradient of the function at x0. If the fun argument returns a
vector of values instead of a scalar, the “grd” argument is ignored.

If the “fun” module returns a scalar, the subroutine returns the following values:

• f is the value of the function at the point x0.

• g is a vector containing the value of the gradient at the point x0. If you specify
the “grd” argument, the gradient is computed from that module. Otherwise, the
approximate gradient is computed by a finite difference approximation using
calls of the function module in a neighborhood of x0.

• h is a matrix containing a finite difference approximation of the value of the
Hessian at the point x0. If you specify the “grd” argument, the Hessian is
computed by calls of that module in a neighborhood of x0. Otherwise, it is
computed by calls of the function module in a neighborhood of x0.

798 � Chapter 20. Language Reference

If the “fun” module returns a vector, the subroutine returns the following values:

• f is a vector containing the values of the m functions comprising the objective
function at the point x0.

• g is the m × n Jacobian matrix J, which contains the first-order derivatives of
the functions with respect to the parameters, evaluated at x0. It is computed by
finite difference approximations in a neighborhood of x0.

• h is the n × n crossproduct of the Jacobian matrix, JTJ. It is computed by
finite difference approximations in a neighborhood of x0.

The par argument is a vector of length 3.

• par[1] corresponds to the opt[1] argument in the optimization subroutines. This
argument is relevant only to least squares optimization methods, in which case
it specifies the number of functions returned by the module “fun”. If par[1] is
missing or is smaller than 1, it is set to 1.

• par[2] corresponds to the opt[8] argument in the optimization subroutines. It
determines what type of approximation is to be used and how the finite dif-
ference interval, h, is to be computed. See the section “Finite-Difference
Approximations of Derivatives” on page 342 for details.

• par[3] corresponds to the par[8] argument in the optimization subroutines. It
specifies the number of accurate digits in evaluating the objective function. The
default is − log10(ε), where ε is the machine precision.

If you specify a missing value in the par argument, the default value is used.

The NLPFDD subroutine is particularly useful for checking your analytical derivative
specifications of the “grd”, “hes”, and “jac” modules. You can compare the results
of the modules with the finite difference approximations of the derivatives of f at the
point x0 to verify your specifications.

In the unconstrained Rosenbrock problem (see the section “Unconstrained
Rosenbrock Function” on page 327), the objective function is

f(x) = 50(x2 − x2
1)

2 +
1
2
(1− x1)2

Then the gradient and the Hessian, evaluated at the point x = (2, 7), are

g′ =

 ∂f
∂x1

∂f
∂x2

 =
[

200x3
1 − 200x1x2 + x1 − 1
−100x2

1 + 100x2

]
=
[
−1199

300

]

H =

 ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

 =
[

600x2
1 − 200x2 + 1 −200x1

−200x1 100

]
=
[

1001 −400
−400 100

]

The following statements define the Rosenbrock function and use the NLPFDD call
to compute the gradient and the Hessian.

NLPFDD Call � 799

start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {2 7};
CALL NLPFDD(crit,grad,hess,"F_ROSEN",x);
print grad;
print hess;

Here is the resulting output:

GRAD

-1199 300.00001

HESS

1000.9998 -400.0018
-400.0018 99.999993

If the Rosenbrock problem is considered from a least squares perspective, the two
functions are

f1(x) = 10(x2 − x2
1)

f2(x) = 1− x1

Then the Jacobian and the crossproduct of the Jacobian, evaluated at the point x =
(2, 7), are

J =

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

 =
[
−20x1 10
−1 0

]
=
[
−40 10
−1 0

]

JTJ =
[

400x2
1 + 1 −200x1

−200x1 100

]
=
[

1601 −400
−400 100

]
The following statements define the Rosenbrock problem in a least squares frame-
work and use the NLPFDD call to compute the Jacobian and the crossproduct matrix.
Since the value of the PARMS variable, which is used for the par argument, is 2, the
NLPFDD subroutine allocates memory for a least squares problem with two func-
tions, f1(x) and f2(x).

start F_ROSEN(x);
y = j(2,1,0.);

800 � Chapter 20. Language Reference

y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;
x = {2 7};
parms = 2;
CALL NLPFDD(fun,jac,crpj,"F_ROSEN",x,parms);
print jac;
print crpj;

The finite difference approximations for the Jacobian follow.

JAC

-40 10
-1 0

CRPJ

1601 -400
-400 100

NLPFEA Call

computes feasible points subject to constraints

CALL NLPFEA(xr, x0, blc <,par>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPFEA subroutine tries to compute a point that is feasible subject to a set of
boundary and linear constraints. You can specify boundary and linear constraints that
define an empty feasible region, in which case the subroutine returns missing values.

You can specify the following input arguments with the NLPFEA subroutine:

• x0 is a row vector defining the coordinates of a point that is not necessarily
feasible for a set of linear and boundary constraints.

• blc is an m×n matrix defining a set of m boundary and linear constraints. See
the section “Parameter Constraints” on page 345 for details.

• par is a vector of length two. The argument is different from the one used
in the optimization subroutines. The first element sets the LCEPS parameter,
which controls how precisely the returned point must satisfy the constraints.
The second element sets the LCSING parameter, which specifies the criterion
for deciding when constraints are considered linearly dependent. For details,
see the section “Control Parameters Vector” on page 359.

NLPHQN Call � 801

The NLPFEA subroutine returns the xr argument. The result is a vector containing
either the n coordinates of a feasible point, which indicates that the subroutine was
successful, or missing values, which indicates that the subroutine could not find a
feasible point.

The following statements call the NLPFEA subroutine with the constraints from the
Betts problem (see the section “Constrained Betts Function” on page 329) and an
initial infeasible point x0 = (−17,−61). The subroutine returns the feasible point
(2,−50) as the vector XFEAS.

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-17. -61};
call nlpfea(xfeas,x,con);

NLPHQN Call
calculates hybrid quasi-Newton least squares

CALL NLPHQN(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “jac”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPHQN subroutine uses one of the Fletcher and Xu (1987) hybrid quasi-
Newton methods. Refer also to Al-Baali and Fletcher (1985, 1986). In each iteration,
the subroutine uses a criterion to decide whether a Gauss-Newton or a dual quasi-
Newton search direction is appropriate. You can choose one of three criteria (HY1,
HY2, or HY3) proposed by Fletcher and Xu (1987) with the sixth element of the
opt vector. The default is HY2. The subroutine computes the crossproduct Jacobian
(for the Gauss-Newton step), updates the Cholesky factor of an approximate Hessian
(for the quasi-Newton step), and performs a line search to compute an approximate
minimum along the search direction. The default line-search technique used by the
NLPHQN method is designed for least squares problems (refer to Lindström and
Wedin 1984, and Al-Baali and Fletcher 1986), but you can specify a different line-
search algorithm with the fifth element of the opt argument. See the section “Options
Vector” on page 347 for details.

You can specify two update formulas with the fourth element of the opt argument as
indicated in the following table.

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

The NLPHQN subroutine needs approximately the same amount of working memory
as the NLPLM subroutine, and in most applications, the latter seems to be superior.

802 � Chapter 20. Language Reference

Hence, the NLPHQN method is recommended only when the NLPLM method en-
counters problems.

Note: In least squares subroutines, you must set the first element of the opt vector to
m, the number of functions.

In addition to the standard iteration history, the NLPHQN subroutine prints the fol-
lowing information:

• Under the heading Iter, an asterisk (*) printed after the iteration number indi-
cates that, on the basis of the Fletcher and Xu (1987) criterion, the subroutine
used a Gauss-Newton search direction instead of a quasi-Newton search direc-
tion.

• The heading alpha is the step size, α, computed with the line-search algorithm.

• The heading slope refers to gT s, the slope of the search direction at the current
parameter iterate x(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements use the NLPHQN call to solve the unconstrained
Rosenbrock problem (see the section “Unconstrained Rosenbrock Function” on page
327).

title ’Test of NLPHQN subroutine: No Derivatives’;
start F_ROSEN(x);

y = j(1,2,0.);
y[1] = 10. * (x[2] - x[1] * x[1]);
y[2] = 1. - x[1];
return(y);

finish F_ROSEN;

x = {-1.2 1.};
optn = {2 2};
call nlphqn(rc,xr,"F_ROSEN",x,optn);

The iteration history for the subroutine follows.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799999
2 X2 1.000000 -44.000000

Value of Objective Function = 12.1

Hybrid Quasi-Newton LS Minimization

NLPHQN Call � 803

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Version HY2 of Fletcher & Xu (1987)

Gradient Computed by Finite Differences
CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.7999987

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 3 0 7.22423
2* 0 5 0 0.97090
3* 0 7 0 0.81911
4 0 9 0 0.69103
5 0 19 0 0.47345
6* 0 21 0 0.35906
7* 0 22 0 0.23342
8* 0 24 0 0.14799
9* 0 26 0 0.00948

10* 0 28 0 1.98834E-6
11* 0 30 0 7.0768E-10
12* 0 32 0 2.0246E-21

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 4.8758 56.9322 0.0616 -628.8
2* 6.2533 2.3017 0.266 -14.448
3* 0.1518 3.7839 0.119 -1.942
4 0.1281 5.5103 2.000 -0.144
5 0.2176 8.8638 11.854 -0.194
6* 0.1144 9.8734 0.253 -0.947
7* 0.1256 10.1490 0.398 -0.718
8* 0.0854 11.6248 1.346 -0.467
9* 0.1385 2.6275 1.443 -0.296

10* 0.00947 0.00609 0.938 -0.0190
11* 1.988E-6 0.000748 1.003 -398E-8
12* 7.08E-10 1.82E-10 1.000 -14E-10

Optimization Results

Iterations 12 Function Calls 33
Jacobian Calls 13 Gradient Calls 19
Active Constraints 0 Objective Function 2.024612E-21
Max Abs Gradient Element 1.816863E-10 Slope of Search Direction -1.415366E-9

ABSGCONV convergence criterion satisfied.

Optimization Results

804 � Chapter 20. Language Reference

Parameter Estimates
Gradient
Objective

N Parameter Estimate Function

1 X1 1.000000 1.816863E-10
2 X2 1.000000 -1.22069E-10

Value of Objective Function = 2.024612E-21

NLPLM Call

calculates Levenberg-Marquardt least squares

CALL NLPLM(rc, xr, “fun”, x0, opt, blc, tc, par, “ptit”, “jac”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPLM subroutine uses the Levenberg-Marquardt method, which is an efficient
modification of the trust-region method for nonlinear least squares problems and is
implemented as in Moré (1978). This is the recommended algorithm for small to
medium least squares problems. Large least squares problems can often be pro-
cessed more efficiently with other subroutines, such as the NLPCG and NLPQN
methods. In each iteration, the NLPLM subroutine solves a quadratically constrained
quadratic minimization problem that restricts the step to the boundary or interior of
an n-dimensional elliptical trust region.

The m functions f1(x), . . . , fm(x) are computed by the module specified with the
“fun” module argument. The m × n Jacobian matrix, J, contains the first-order
derivatives of the m functions with respect to the n parameters, as follows:

J(x) = (∇f1, . . . ,∇fm) =
(
∂fi

∂xj

)
You can specify J with the “jac” module argument; otherwise, the subroutine will
compute it with finite difference approximations. In each iteration, the subroutine
computes the crossproduct of the Jacobian matrix, JTJ, to be used as an approximate
Hessian.

Note: In least squares subroutines, you must set the first element of the opt vector to
m, the number of functions.

In addition to the standard iteration history, the NLPLM subroutine also prints the
following information:

• Under the heading Iter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

NLPNMS Call � 805

• The heading lambda represents the Lagrange multiplier, λ. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

• The heading rho refers to ρ, the ratio between the achieved and predicted dif-
ference in function values. Values that are much smaller than one indicate
optimization difficulties. Values close to or larger than one indicate that the
trust region radius can be increased.

See the section “Unconstrained Rosenbrock Function” on page 327 for an example
that uses the NLPLM subroutine to solve the unconstrained Rosenbrock problem.

NLPNMS Call

nonlinear optimization by Nelder-Mead simplex method

CALL NLPNMS(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “nlc”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The Nelder-Mead simplex method is one of the subroutines that can solve optimiza-
tion problems with nonlinear constraints. It does not use any derivatives, and it does
not assume that the objective function has continuous derivatives. However, the ob-
jective function must be continuous. The NLPNMS technique uses a large number of
function calls, and it can be unable to generate precise results when n > 40.

The NLPNMS subroutine uses the following simplex algorithms:

• For unconstrained or only boundary-constrained problems, the original Nelder-
Mead simplex algorithm is implemented and extended to boundary constraints.
This algorithm does not compute the objective for infeasible points, and it is
invoked if the “nlc” module argument is not specified and the blc argument
contains at most two rows (corresponding to lower and upper bounds).

• For linearly or nonlinearly constrained problems, a slightly modified ver-
sion of Powell’s (1992) Constrained Optimization BY Linear Approximations
(COBYLA) implementation is used. This algorithm is invoked if the “nlc”
module argument is specified or if at least one linear constraint is specified
with the blc argument.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints, but in the unconstrained or boundary-constrained cases, it can be faster.
It changes the shape of the simplex by adapting the nonlinearities of the objective
function; this contributes to an increased speed of convergence.

806 � Chapter 20. Language Reference

Powell’s COBYLA Algorithm

Powell’s COBYLA algorithm is a sequential trust-region algorithm that tries to main-
tain a regularly shaped simplex throughout the iterations. The algorithm uses a
monotone-decreasing radius, ρ, of a spheric trust region. The modification imple-
mented in the NLPNMS call permits an increase of the trust-region radius ρ in special
situations. A sequence of iterations is performed with a constant trust-region radius
ρ until the computed function reduction is much less than the predicted reduction.
Then, the trust-region radius ρ is reduced. The trust-region radius is increased only
if the computed function reduction is relatively close to the predicted reduction and
if the simplex is well-shaped. The start radius, ρbeg, can be specified with the sec-
ond element of the par argument, and the final radius, ρend, can be specified with
the ninth element of the tc argument. Convergence to small values of ρend, or high-
precision convergence, can require many calls of the function and constraint modules
and can result in numerical problems. The main reasons for the slow convergence of
the COBYLA algorithm are as follows:

• Linear approximations of the objective and constraint functions are used lo-
cally.

• Maintaining the regularly shaped simplex and not adapting its shape to non-
linearities yields very small simplexes for highly nonlinear functions, such as
fourth-order polynomials.

To allocate memory for the vector returned by the “nlc” module argument, you must
specify the total number of nonlinear constraints with the tenth element of the opt
argument. If any of the constraints are equality constraints, the number of equality
constraints must be specified by the eleventh element of the opt argument. See the
section “Parameter Constraints” on page 345 for details.

For more information about the special sets of termination criteria used by the
NLPNMS algorithms, see the section “Termination Criteria” on page 352.

In addition to the standard iteration history, the NLPNMS subroutine prints the fol-
lowing information. For unconstrained or boundary-constrained problems, the sub-
routine also prints

• difcrit, which, in this subroutine, refers to the difference between the largest
and smallest function values of the n+ 1 simplex vertices

• std, which is the standard deviation of the function values of the simplex ver-
tices

• deltax, which is the vertex length of a restarted simplex. If there are conver-
gence problems, the algorithm restarts the iteration process with a simplex of
smaller vertex length.

• size, which is the average L1 distance of the simplex vertex with the smallest
function value to the other simplex vertices

For linearly and nonlinearly constrained problems, the subroutine prints the follow-
ing:

NLPNMS Call � 807

• conmax is the maximum constraint violation.

• meritf is the value of the merit function, Φ.

• difmerit is the difference between adjacent values of the merit function.

• ρ is the trust-region radius.

The following code uses the NLPNMS call to solve the Rosen-Suzuki problem (see
the section “Rosen-Suzuki Problem” on page 331), which has three nonlinear con-
straints:

start F_HS43(x);
f = x*x‘ + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);

finish F_HS43;
start C_HS43(x);

c = j(3,1,0.);
c[1] = 8 - x*x‘ - x[1] + x[2] - x[3] + x[4];
c[2] = 10 - x*x‘ - x[2]*x[2] - x[4]*x[4] + x[1] + x[4];
c[3] = 5 - 2.*x[1]*x[1] - x[2]*x[2] - x[3]*x[3]

- 2.*x[1] + x[2] + x[4];
return(c);

finish C_HS43;
x = j(1,4,1);
optn= j(1,11,.); optn[2]= 3; optn[10]= 3; optn[11]=0;
call nlpnms(rc,xres,"F_HS43",x,optn,,,,,"C_HS43");

Part of the output produced by the preceding code follows.

Optimization Start
Parameter Estimates

N Parameter Estimate

1 X1 1.000000
2 X2 1.000000
3 X3 1.000000
4 X4 1.000000

Value of Objective Function = -19

Values of Nonlinear Constraints

Constraint Residual

[1] 4.0000
[2] 6.0000
[3] 1.0000

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

808 � Chapter 20. Language Reference

Minimum Iterations 0
Maximum Iterations 1000
Maximum Function Calls 3000
Iterations Reducing Constraint Violation 0
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0.0001
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion -1.34078E154
Initial Simplex Size (INSTEP) 0.5
Singularity Tolerance (SINGULAR) 1E-8

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -29.5 Maximum Constraint Violation 4.5

Maximum
Function Objective Constraint

Iter Restarts Calls Function Violation

1 0 12 -52.80342 4.3411
2 0 17 -39.51475 0.0227
3 0 53 -44.02098 0.00949
4 0 62 -44.00214 0.000833
5 0 72 -44.00009 0.000033
6 0 79 -44.00000 1.783E-6
7 0 90 -44.00000 1.363E-7
8 0 94 -44.00000 1.543E-8

Between
Actual

Merit and
Merit Function Predicted

Iter Function Change Change

1 -42.3031 12.803 1.000
2 -39.3797 -2.923 0.250
3 -43.9727 4.593 0.0625
4 -43.9977 0.0249 0.0156
5 -43.9999 0.00226 0.0039
6 -44.0000 0.00007 0.0010
7 -44.0000 1.74E-6 0.0002
8 -44.0000 5.33E-7 0.0001

NLPNRA Call � 809

Optimization Results

Iterations 8 Function Calls 95
Restarts 0 Objective Function -44.00000003
Maximum Constraint Violation 1.543059E-8 Merit Function -43.99999999
Actual Over Pred Change 0.0001

ABSXCONV convergence criterion satisfied.

WARNING: The point x is feasible only at the LCEPSILON= 1E-7 range.

Optimization Results
Parameter Estimates

N Parameter Estimate

1 X1 -0.000034167
2 X2 1.000004
3 X3 2.000023
4 X4 -0.999971

Value of Objective Function = -44.00000003

Values of Nonlinear Constraints

Constraint Residual

[1] -1.54E-8 *?*
[2] 1.0000
[3] -1.5E-8 *?*

NLPNRA Call
nonlinear optimization by Newton-Raphson method

CALL NLPNRA(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPNRA algorithm uses a pure Newton step at each iteration when both the
Hessian is positive definite and the Newton step successfully reduces the value of the
objective function. Otherwise, it performs a combination of ridging and line-search
to compute successful steps. If the Hessian is not positive definite, a multiple of the
identity matrix is added to the Hessian matrix to make it positive definite (refer to
Eskow & Schnabel 1991).

810 � Chapter 20. Language Reference

The subroutine uses the gradient g(k) = ∇f(x(k)) and the Hessian matrix

G(k) = ∇2f(x(k)), and it requires continuous first- and second-order derivatives of
the objective function inside the feasible region. If second-order derivatives are com-
puted efficiently and precisely, the NLPNRA method does not need many function,
gradient, and Hessian calls, and it can perform well for medium to large problems.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and can contain sig-
nificant rounding errors. If you use the “grd” input argument to specify a module
that computes first-order derivatives analytically, you can reduce drastically the com-
putation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses only n calls of the
module that specifies the gradient.

In each iteration, a line search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation. You can specify other line-search al-
gorithms with the fifth element of the opt argument. See the section “Options Vector”
on page 347 for details.

In unconstrained and boundary constrained cases, the NLPNRA algorithm can take
advantage of diagonal or sparse Hessian matrices that are specified by the input ar-
gument “hes”. To use sparse Hessian storage, the value of the ninth element of the
opt argument must specify the number of nonzero Hessian elements returned by the
Hessian module. See the section “Objective Function and Derivatives” on page 337
for more details.

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

• The heading alpha is the step size, α, computed with the line-search algorithm.

• The heading slope refers to gT s, the slope of the search direction at the current
parameter iterate x(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The following statements invoke the NLPNRA subroutine to solve the constrained
Betts optimization problem (see the section “Constrained Betts Function” on page
329). The iteration history follows.

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};

NLPNRA Call � 811

optn = {0 2};
call nlpnra(rc,xres,"F_BETTS",x,optn,con);
quit;

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint
1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Optimization with Line Search

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences
Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 0 -98.81551
2* 0 3 0 -99.40840
3* 0 4 1 -99.87504
4 0 5 1 -99.96000
5 0 6 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 0.2779 1.8000 0.100 -2.925
2* 0.5929 1.2713 0.294 -2.365
3* 0.4666 0.5829 0.542 -1.181
4 0.0850 0.000039 1.000 -0.170
5 3.9E-10 9.537E-7 1.000 -76E-11

Optimization Results

812 � Chapter 20. Language Reference

Iterations 5 Function Calls 7
Hessian Calls 6 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -7.64376E-10 Ridge 0

GCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 -0.000000196 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPNRR Call

nonlinear optimization by Newton-Raphson ridge method

CALL NLPNRR(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPNRR algorithm uses a pure Newton step when both the Hessian is positive
definite and the Newton step successfully reduces the value of the objective function.
Otherwise, a multiple of the identity matrix is added to the Hessian matrix.

The subroutine uses the gradient g(k) = ∇f(x(k)) and the Hessian matrix

G(k) = ∇2f(x(k)), and it requires continuous first- and second-order derivatives of
the objective function inside the feasible region.

Note that using only function calls to compute finite difference approximations for
second-order derivatives can be computationally very expensive and can contain sig-
nificant rounding errors. If you use the “grd” input argument to specify a module
that computes first-order derivatives analytically, you can reduce drastically the com-
putation time for numerical second-order derivatives. The computation of the finite
difference approximation for the Hessian matrix generally uses only n calls of the
module that specifies the gradient.

NLPNRR Call � 813

The NLPNRR method performs well for small to medium-sized problems, and it
does not need many function, gradient, and Hessian calls. However, if the gradient is
not specified analytically by using the “grd” module argument, or if the computation
of the Hessian module specified with the “hes” argument is computationally expen-
sive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more
efficient.

In addition to the standard iteration history, the NLPNRR subroutine prints the fol-
lowing information:

• The heading ridge refers to the value of the nonnegative ridge parameter. A
value of zero indicates that a Newton step is performed. A value greater than
zero indicates either that the Hessian approximation is zero or that the Newton
step fails to reduce the optimization criterion. A large value can indicate opti-
mization difficulties.

• The heading rho refers to ρ, the ratio of the achieved difference in function
values and the predicted difference, based on the quadratic function approxi-
mation. A value that is much smaller than one indicates possible optimization
difficulties.

The following statements invoke the NLPNRR subroutine to solve the constrained
Betts optimization problem (see the section “Constrained Betts Function” on page
329). The iteration history follows.

start F_BETTS(x);
f = .01 * x[1] * x[1] + x[2] * x[2] - 100.;
return(f);

finish F_BETTS;

con = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};

x = {-1. -1.};
optn = {0 2};
call nlpnrr(rc,xres,"F_BETTS",x,optn,con);
quit;

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

814 � Chapter 20. Language Reference

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Ridge Optimization

Without Parameter Scaling
Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

\end{jverbatim}

\begin{kverbatim}

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87337
2 0 3 1 -99.96000
3 0 4 1 -99.96000

Ratio
Actual

Objective Max Abs and
Function Gradient Predicted

Iter Change Element Ridge Change

1 1.3358 0.5887 0 0.706
2 0.0866 0.000040 0 1.000
3 4.07E-10 0 0 1.014

Optimization Results

Iterations 3 Function Calls 5
Hessian Calls 4 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.0135158294

GCONV convergence criterion satisfied.

NLPQN Call � 815

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0.000000134 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPQN Call

nonlinear optimization by quasi-Newton method

CALL NLPQN(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”,

“grd”, “nlc”, “jacnlc”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPQN subroutine uses (dual) quasi-Newton optimization techniques, and it
is one of the two subroutines available that can solve problems with nonlinear con-
straints. These techniques work well for medium to moderately large optimization
problems where the objective function and the gradient are much faster to compute
than the Hessian matrix. The NLPQN subroutine does not need to compute second-
order derivatives, but it generally requires more iterations than the techniques that
compute second-order derivatives.

The two categories of problems solved by the NLPQN subroutine are uncon-
strained or linearly constrained problems and nonlinearly constrained problems.
Unconstrained or linearly constrained problems do not use the “nlc” or “jacnlc”
module arguments, whereas nonlinearly constrained problems use the arguments to
specify the nonlinear constraints and the Jacobian matrix of their first-order deriva-
tives, respectively.

The type of optimization problem specified determines the algorithm that the sub-
routine invokes. The algorithms are very different, and they use different sets of
termination criteria. For more details, see the section “Termination Criteria” on page
352.

816 � Chapter 20. Language Reference

Unconstrained or Linearly Constrained QN Optimization

The NLPQN subroutine invokes this algorithm if you do not specify the “nlc” ar-
gument. Using the fourth element of the opt argument, you can specify two update
formulas for either the original quasi-Newton algorithm or the dual quasi-Newton
algorithm, as indicated in the following table:

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.
3 Original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up-

date of the inverse Hessian matrix.
4 Original Davidon, Fletcher, and Powell (DFP) update of the in-

verse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation to obtain a step size that satisfies the
Goldstein conditions. One of the Goldstein conditions can be violated if the feasible
region defines an upper limit of the step size. Violating the left-side Goldstein con-
dition can affect the positive definiteness of the quasi-Newton update. In these cases,
either the update is skipped or the iterations are restarted with an identity matrix re-
sulting in the steepest descent or ascent search direction. You can specify line-search
algorithms different from the default method with the fifth element of the opt argu-
ment.

Note: In SAS 6.08, the DBFGS and DDFP updates were implemented with the
NLPDQN subroutine. In SAS 6.09 and in later releases, these updates are specified
with the NLPQN subroutine, and the NLPDQN subroutine is not permitted.

The following statements invoke the NLPQN subroutine to solve the Rosenbrock
problem (see the section “Unconstrained Rosenbrock Function” on page 327):

start F_ROSEN(x);
y1 = 10. * (x[2] - x[1] * x[1]);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);

finish F_ROSEN;
x = {-1.2 1.};
optn = {0 2 . 2};
call nlpqn(rc,xr,"F_ROSEN",x,optn);

Since OPTN[4] = 2, the DDFP update is performed. The gradient is approximated
by finite differences since no module is specified that computes the first-order deriva-
tives. Part of the iteration history follows. In addition to the standard iteration history,
the NLPQN subroutine prints the following information for unconstrained or linearly
constrained problems:

NLPQN Call � 817

• The heading alpha is the step size, α, computed with the line-search algorithm.

• The heading slope refers to gT s, the slope of the search direction at the current
parameter iterate x(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.200000 -107.799989
2 X2 1.000000 -43.999999

Value of Objective Function = 12.1

Dual Quasi-Newton Optimization

Dual Davidon - Fletcher - Powell Update (DDFP)
Gradient Computed by Finite Differences

Parameter Estimates 2

Optimization Start

Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.79998927

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 4 0 2.06405
2 0 7 0 1.92035
3 0 10 0 1.78089
4 0 13 0 1.33331
5 0 17 0 1.13400
6 0 22 0 0.93915
7 0 24 0 0.84821
8 0 30 0 0.54334
9 0 32 0 0.46593

10 0 37 0 0.35322
12 0 41 0 0.20282
12 0 41 0 0.20282
13 0 46 0 0.11714
14 0 51 0 0.07149
15 0 53 0 0.04746
16 0 58 0 0.02759
17 0 60 0 0.01625
18 0 62 0 0.00475
19 0 66 0 0.00167
20 0 70 0 0.0005952

818 � Chapter 20. Language Reference

21 0 72 0 0.0000771
23 0 78 0 2.39914E-8
23 0 78 0 2.39914E-8
24 0 80 0 5.0936E-11
25 0 119 0 3.9538E-11

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 10.0359 0.7917 0.0340 -628.8
2 0.1437 8.6301 6.557 -0.0363
3 0.1395 11.0943 8.193 -0.0288
4 0.4476 7.6069 33.376 -0.0269
5 0.1993 0.9386 15.438 -0.0260
6 0.1948 3.5290 11.537 -0.0233
7 0.0909 4.8308 8.124 -0.0193
8 0.3049 4.1770 35.143 -0.0186
9 0.0774 0.9479 8.708 -0.0178

10 0.1127 2.5981 10.964 -0.0147
11 0.0894 3.3028 13.590 -0.0121
12 0.0610 0.6451 10.000 -0.0116
13 0.0857 1.6603 11.395 -0.0102
14 0.0456 2.4050 11.559 -0.0074
15 0.0240 0.5628 6.868 -0.0071
16 0.0199 1.3282 5.365 -0.0055
17 0.0113 1.9246 5.882 -0.0035
18 0.0115 0.6357 8.068 -0.0032
19 0.00307 0.4810 2.336 -0.0022
20 0.00108 0.6043 3.287 -0.0006
21 0.000518 0.0289 2.329 -0.0004
22 0.000075 0.0365 1.772 -0.0001
23 1.897E-6 0.00158 1.159 -331E-8
24 2.394E-8 0.000016 0.967 -46E-9
25 1.14E-11 7.962E-7 1.061 -19E-13

Optimization Results

Iterations 25 Function Calls 120
Gradient Calls 107 Active Constraints 0
Objective Function 3.953804E-11 Max Abs Gradient Element 7.9622469E-7
Slope of Search Direction -1.88032E-12

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

NLPQN Call � 819

1 X1 0.999991 -0.000000796
2 X2 0.999982 0.000000430

Value of Objective Function = 3.953804E-11

Nonlinearly Constrained QN Optimization
The algorithm used for nonlinearly constrained quasi-Newton optimization is an
efficient modification of Powell’s (1978a, 1982b) Variable Metric Constrained
WatchDog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part
of the Harwell library. Both the VMCWD and VF02AD algorithms use Fletcher’s
VE02AD algorithm, which is also part of the Harwell library, for positive definite
quadratic programming. This NLPQN implementation uses a quadratic program-
ming subroutine that updates and downdates the Cholesky factor when the active set
changes (refer to Gill et al. 1984). The nonlinear NLPQN algorithm is not a feasible
point algorithm, and the value of the objective function is not required to decrease
monotonically. Instead, the algorithm tries to reduce a linear combination of objec-
tive function and constraint violations.

The following are similarities and differences between this algorithm and Powell’s
VMCWD algorithm:

• You can use the sixth element of the opt argument to modify the algorithm used
by the NLPQN subroutine. If you specify opt[6] = 2, which is the default, the
evaluation of the Lagrange vector µ is performed the same way as described
in Powell (1982b). Note, however, that the VMCWD program seems to have a
bug in the implementation of formula (4.4) in Powell (1982b). If you specify
opt[6] = 1, the original update of µ used in the VF02AD algorithm in Powell
(1978a) is performed.

• Instead of updating an approximate Hessian matrix, this algorithm uses the dual
BFGS or dual DFP update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

• The Cholesky factor is loaded into the quadratic programming subroutine,
which ensures positive definiteness of the problem. During the quadratic pro-
gramming step, the Cholesky factor of the projected Hessian matrix ZT

k GZk is
updated simultaneously with QT decomposition when the active set changes.
Refer to Gill et al. (1984) for more information.

• The line-search strategy is very similar to that of Powell’s algorithm, but this
algorithm does not call for derivatives during the line search. For that rea-
son, this algorithm generally needs fewer derivative calls than function calls,
whereas the VMCWD algorithm always requires the same number of deriva-
tive calls as function calls. Also, Powell’s line-search method sometimes uses
steps that are too long during the early iterations. In those cases, you can use
the second element of the par argument to restrict the step length α in the first
five iterations. See the section “Control Parameters Vector” on page 359 for
more details.

820 � Chapter 20. Language Reference

• The watchdog strategy is also similar to that of Powell’s algorithm. However,
this algorithm does not return automatically after a fixed number of iterations
to a previous, more optimal point. A return to such a point is further delayed if
the observed function reduction is close to the expected function reduction of
the quadratic model.

• Although Powell’s termination criterion, the FTOL2 criterion, can still be used,
the NLPQN implementation uses, by default, two other termination criteria
(GTOL and ABSGTOL).

This algorithm is automatically invoked if the “nlc” argument is specified. The mod-
ule specified with the “nlc” argument must return a vector of length nc, where nc is
the total number of constraints. Letting nec be the number of equality constraints,
the constraints must be of the following form:

ci(x) = 0, i = 1, . . . , nec
ci(x) ≥ 0, i = nec+ 1, . . . , nc

The first nec elements of the returned vector contain the ci for the equality constraints,
and the remaining elements contain the ci for the inequality constraints.

Note: You must specify the total number of constraints with the tenth element of the
opt argument, and if there are any equality constraints, you must specify that number,
nec, with the eleventh element of the opt argument.

The nonlinear NLPQN algorithm requires the Jacobian matrix of the first-order
derivatives of the nc constraints returned by the module specified by the “nlc” ar-
gument. You can provide these derivatives by specifying a module with the “jacnlc”
argument. This module must return the Jacobian matrix J of first-order partial deriva-
tives. That is, J is an nc× n matrix such that the entry in the ith row and jth column
is given by

J(i, j) =
∂ci
∂xj

If you specify an “nlc” module without specifying a “jacnlc” argument, finite differ-
ence approximations of the first-order derivatives of the constraints are used. You can
use the ninth element of the par argument to specify the number of accurate digits
used in evaluating the constraints.

You can specify two update formulas with the fourth element of the opt argument as
indicated in the following table:

Value of opt[4] Update Method
1 Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update

of the Cholesky factor of the Hessian matrix. This is the default.
2 Dual Davidon, Fletcher, and Powell (DDFP) update of the

Cholesky factor of the Hessian matrix.

NLPQUA Call � 821

This algorithm uses its own line-search technique. None of the options and parame-
ters that control the line search in the other algorithms apply in the nonlinear NLPQN
algorithm, with the exception of the second element of the par vector, which can be
used to restrict the length of the step size in the first five iterations.

See Example 11.8 for an example where you need to specify a value for the second
element of the par argument. The values of the fourth, fifth, and sixth elements of the
par vector, which control the processing of linear and boundary constraints, are valid
only for the quadratic programming subroutine used in each iteration of the NLPQN
call. For a simple example of the NLPQN subroutine, see the section “Rosen-Suzuki
Problem” on page 331.

NLPQUA Call

nonlinear optimization by quadratic method

CALL NLPQUA(rc, xr, quad, x0 <,opt, blc, tc, par, “ptit”, lin>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPQUA subroutine uses a fast algorithm for maximizing or minimizing the
quadratic objective function

1
2
xTGx+ gTx+ con

subject to boundary constraints and general linear equality and inequality constraints.
The algorithm is memory-consuming for problems with general linear constraints.

The matrix G must be symmetric but not necessarily positive definite (or negative
definite for maximization problems). The constant term con affects only the value of
the objective function, not its derivatives or the optimal point x∗.

The algorithm is an active-set method in which the update of active boundary and lin-
ear constraints is done separately. The QT decomposition of the matrix Ak of active
linear constraints is updated iteratively (refer to Gill et al. 1984). If nf is the number
of free parameters (that is, n minus the number of active boundary constraints), and
na is the number of active linear constraints, then Q is an nf × nf orthogonal matrix
containing null space Z in its first nf − na columns and range space Y in its last
na columns. The matrix T is an na × na triangular matrix of the form tij = 0 for
i < n − j. The Cholesky factor of the projected Hessian matrix ZT

k GZk is updated
simultaneously with the QT decomposition when the active set changes.

The objective function is specified by the input arguments quad and lin, as follows:

• The quad argument specifies the symmetric n × n Hessian matrix, G, of the
quadratic term. The input can be in dense or sparse form. In dense form, all n2

entries of the quad matrix must be specified. If n ≤ 3, the dense specification
must be used. The sparse specification can be useful when G has many zero

822 � Chapter 20. Language Reference

elements. You can specify an nn× 3 matrix in which each row represents one
of the nn nonzero elements of G. The first column specifies the row location
in G, the second column specifies the column location, and the third column
specifies the value of the nonzero element.

• The lin argument specifies the linear part of the quadratic optimization prob-
lem. It must be a vector of length n or n + 1. If lin is a vector of length n, it
specifies the vector g of the linear term, and the constant term con is considered
zero. If lin is a vector of length n+1, then the first n elements of the argument
specify the vector g and the last element specifies the constant term con of the
objective function.

As in the other optimization subroutines, you can use the blc argument to specify
boundary and general linear constraints, and you must provide a starting point x0 to
determine the number of parameters. If x0 is not feasible, a feasible initial point is
computed by linear programming, and the elements of x0 can be missing values.

Assuming nonnegativity constraints x ≥ 0, the quadratic optimization problem
solved with the LCP call, which solves the linear complementarity problem. Refer to
SAS/IML Software: Usage and Reference, Version 6, First Edition for details.

Choosing a sparse (or dense) input form of the quad argument does not mean that
the algorithm used in the NLPQUA subroutine is necessarily sparse (or dense). If the
following conditions are satisfied, the NLPQUA algorithm will store and process the
matrix G as sparse:

• No general linear constraints are specified.

• The memory needed for the sparse storage ofG is less than 80% of the memory
needed for dense storage.

• G is not a diagonal matrix. If G is diagonal, it is stored and processed as a
diagonal matrix.

The sparse NLPQUA algorithm uses a modified form of minimum degree Cholesky
factorization (George and Liu 1981).

In addition to the standard iteration history, the NLPNRA subroutine prints the fol-
lowing information:

• The heading alpha is the step size, α, computed with the line-search algorithm.

• The heading slope refers to gT s, the slope of the search direction at the current
parameter iterate x(k). For minimization, this value should be significantly
smaller than zero. Otherwise, the line-search algorithm has difficulty reducing
the function value sufficiently.

The Betts problem (see the section “Constrained Betts Function” on page 329) can
be expressed as a quadratic problem in the following way:

x =
[
x1

x2

]
, G =

[
0.02 0
0 2

]
, g =

[
0
0

]
, con = −100

NLPQUA Call � 823

Then

1
2
xTGx− gTx+ con = 0.5[0.02x2

1 + 2x2
2]− 100 = 0.01x2

1 + x2
2 − 100

The following statements use the NLPQUA subroutine to solve the Betts problem:

lin = { 0. 0. -100};
quad = { 0.02 0.0 ,

0.0 2.0 };
c = { 2. -50. . .,

50. 50. . .,
10. -1. 1. 10.};

x = { -1. -1.};
optn = {0 2};
CALL NLPQUA(rc,xres,quad,x,optn,c,,,,lin);

The quad argument specifies the G matrix, and the lin argument specifies the g vec-
tor with the value of con appended as the last element. The matrix C specifies the
boundary constraints and the general linear constraint.

The iteration history follows.

Optimization Start
Parameter Estimates

Gradient Lower Upper
Objective Bound Bound

N Parameter Estimate Function Constraint Constraint

1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Null Space Method of Quadratic Problem

Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1
Using Sparse Hessian _

Optimization Start

Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2

824 � Chapter 20. Language Reference

Function Active Objective
Iter Restarts Calls Constraints Function

1 0 2 1 -99.87349
2 0 3 1 -99.96000

Objective Max Abs Slope of
Function Gradient Step Search

Iter Change Element Size Direction

1 1.3359 0.5882 0.706 -2.925
2 0.0865 0 1.000 -0.173

Optimization Results

Iterations 2 Function Calls 4
Gradient Calls 3 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -0.173010381

ABSGCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 X1 2.000000 0.040000 Lower BC
2 X2 0 0

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2

NLPTR Call

nonlinear optimization by trust-region method

NLPTR Call � 825

CALL NLPTR(rc, xr, “fun”, x0 <,opt, blc, tc, par, “ptit”, “grd”, “hes”>);

See the section “Nonlinear Optimization and Related Subroutines” on page 791 for a
listing of all NLP subroutines. See Chapter 11 for a description of the inputs to and
outputs of all NLP subroutines.

The NLPTR subroutine is a trust-region method that uses the gradient
g(k) = ∇f(x(k)) and Hessian matrix G(k) = ∇2f(x(k)). It requires that the
objective function f = f(x) has continuous first- and second-order derivatives inside
the feasible region.

The n×n Hessian matrix G contains the second derivatives of the objective function
f with respect to the parameters x1, . . . , xn, as follows:

G(x) = ∇2f(x) =
(

∂2f

∂xj∂xk

)
The trust-region method works by optimizing a quadratic approximation to the non-
linear objective function within a hyperelliptic trust region. This trust region has a ra-
dius, ∆, that constrains the step size corresponding to the quality of the quadratic ap-
proximation. The method is implemented by using Dennis, Gay, and Welsch (1981),
Gay (1983), and Moré and Sorensen (1983).

Note that finite difference approximations for second-order derivatives using only
function calls are computationally very expensive. If you specify first-order deriva-
tives analytically with the “grd” module argument, you can drastically reduce the
computation time for numerical second-order derivatives. Computing the finite dif-
ference approximation for the Hessian matrix G generally uses only n calls of the
module that computes the gradient analytically.

The NLPTR method performs well for small to medium-sized problems and does not
need many function, gradient, and Hessian calls. However, if the gradient is not spec-
ified analytically by using the “grd” argument or if the computation of the Hessian
module, as specified by the “hes” module argument, is computationally expensive,
one of the (dual) quasi-Newton or conjugate gradient algorithms might be more effi-
cient.

In addition to the standard iteration history, the NLPTR subroutine prints the follow-
ing information:

• Under the heading Iter, an asterisk (*) printed after the iteration number in-
dicates that the computed Hessian approximation was singular and had to be
ridged with a positive value.

• The heading lambda represents the Lagrange multiplier, λ. This has a value
of zero when the optimum of the quadratic function approximation is inside
the trust region, in which case a trust-region-scaled Newton step is performed.
It is greater than zero when the optimum is at the boundary of the trust re-
gion, in which case the scaled Newton step is too long to fit in the trust region
and a quadratically constrained optimization is done. Large values indicate
optimization difficulties, and as in Gay (1983), a negative value indicates the
special case of an indefinite Hessian matrix.

826 � Chapter 20. Language Reference

• The heading radius refers to ∆, the radius of the trust region. Small values
of the radius combined with large values of λ in subsequent iterations indicate
optimization problems.

For an example of the use of the NLPTR subroutine, see the section “Unconstrained
Rosenbrock Function” on page 327.

NORMAL Function
generates a pseudo-random normal deviate

NORMAL(seed)

where seed is a numeric matrix or literal. The seed argument can be any integer value
up to 231 − 1.

The NORMAL function is a scalar function that returns a pseudo-random number
having a normal distribution with a mean of 0 and a standard deviation of 1. The
NORMAL function returns a matrix with the same dimensions as the argument. The
first argument on the first call is used for the seed (or if that is 0, the system clock
is used for the seed). This function is synonymous with the DATA step function
RANNOR. The Box-Muller transformation of the UNIFORM function deviates is
used to generate the numbers. The following code produces the output vector B, as
shown:

seed = 123456;
c = j(10,1,seed);
b = normal(c);
print b;

B

-0.109483
-0.348785
1.1202546
-2.513766
1.3630022

NROW Function
finds the number of rows of a matrix

NROW(matrix)

where matrix is a numeric or character matrix.

The NROW function returns a single numeric value that is the number of rows in
matrix. If the matrix has not been given a value, the NROW function returns a value
of 0.

For example, to let J contain the number of rows of the matrix S, use the following
statement:

j=nrow(s);

ODE Call � 827

NUM Function

produces a numeric representation of a character matrix

NUM(matrix)

where matrix is a character matrix or a quoted literal.

The NUM function takes as an argument a character matrix with elements that are
character numerics; and produces a numeric matrix with dimensions that are the
same as the dimensions of the argument and with elements that are the numeric rep-
resentations (double-precision floating-point) of the corresponding elements of the
argument.

An example that uses the NUM function follows:

c={’1’ ’2’ ’3’};
j=num(c);

C 1 row 3 cols (character, size 1)

1 2 3

J 1 row 3 cols (numeric)
1 2 3

See also the description of the CHAR function, which does the reverse conversion.

ODE Call

performs numerical integration of vector differential equations of the form

dy
dt

= f(t,y(t)) with y(0) = c

CALL ODE(r, “dername”, c, t, h <, J=“jacobian”><, EPS=eps><, “data”>);

The ODE subroutine returns the following values:

r is a numeric matrix that contains the results of the integration over con-
nected subintervals. The number of columns in r is equal to the number
of subintervals of integration as defined by the argument t. In case of
any error in the integration on any subinterval, partial results will not
be reported in r.

The inputs to the ODE subroutine are as follows:

“dername” specifies the name of an IML module used to evaluate the integrand.

c specifies an initial value vector for the variable y.

828 � Chapter 20. Language Reference

t specifies a sorted vector that describes the limits of integration over
connected subintervals. The simplest form of the vector t contains only
the limits of the integration on one interval. The first component of t
should contain the initial value, and the second component should be
the final value of the independent variable. For more advanced usage
of the ODE subroutine, the vector t can contain more than two compo-
nents. The components of the vector must be sorted in ascending order.
Two consecutive components of the vector t are interpreted as a subin-
terval. The ODE call reports the final result of integration at the right
endpoint of each subinterval. This information is vital if f(·) has inter-
nal points of discontinuity. To produce accurate solutions, it is essential
that you provide the location of these points in the variable t, since the
continuity of the forcing function is vital to the internal control of error.

h specifies a numeric vector that contains three components: the min-
imum allowable step size, hmin; the maximum allowable step size,
hmax; and the initial step size to start the integration process, hinit.

“jacobian” optionally specifies the name of an IML module that is used to evaluate
the Jacobian analytically. The Jacobian is the matrix J , with

Jij =
∂fi

∂yj

If the “jacobian” module is not specified, the ODE call uses a finite-
difference method to approximate the Jacobian. The keyword for this
option is J.

eps specifies a scalar indicating the required accuracy. It has a default value
of 1E−4. The keyword for this option is EPS.

data (scalar, optional, character, input) a valid predefined SAS data set name
that is used to save the successful independent and dependent variables
of the integration at each step.

The ODE subroutine is an adaptive, variable order, variable step-size, stiff integrator
based on implicit backward-difference methods. Refer to Aiken (1985), Bickart and
Picel (1973), Donelson and Hansen (1971), Gaffney (1984), and Shampine (1978).
The integrator is an implicit predictor-corrector method that locally attempts to main-
tain the prescribed precision eps relative to

d = max
0≤t≤T

(‖y(t)‖∞, 1)

As you can see from the expression, this quantity is dynamically updated during the
integration process and can help you to understand the validity of the results reported
by the subroutine.

Consider the differential equation

dy

dt
= −ty with y = 0.5 at t = 0

ODE Call � 829

The following statements attempt to find the solution at t = 1:

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 1};
h = { 1E-12 1 1E-5};
call ode(r,"FUN",c,t,h);
print r[format=E21.14];

In this case, the integration is carried out over (0, 1) to give the value of y at t = 1.
The optional parameter eps has not been specified, so it is internally set to 1E−4.
Also, the optional parameter “jacobian” has not been specified, so finite-difference
methods are used to estimate the Jacobian. The accuracy of the answer can be in-
creased by specifying eps. For example, set eps=1E−7, as follows:

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = {0 1};
h = {1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format =E21.14];

Compare this value to 0.5e−0.5 = 3.03265329856310E−01 and observe that the
result is correct through the sixth decimal digit and has an error relative to 1 that is
O(1E−7).

If the solution was desired at 1 and 2 with an accuracy of 1E−7, you would use the
following statements:

/* Define the integrand */
start fun(t,y);

v = -t*y;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 1 2};

830 � Chapter 20. Language Reference

h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-7;

print r[format=E21.14];

Note that R contains the solution at t = 1 in the first column and at t = 2 in the
second column.

Now consider the smoothness of the forcing function f(·). For the purpose of esti-
mating errors, adaptive methods require some degree of smoothness in the function
f(·). If this smoothness is not present in f(·) over the interior and including the left
endpoint of the subinterval, the reported result will not have the desired accuracy. The
function f(·) must be at least continuous. If the function does not meet this require-
ment, you should specify the discontinuity as an intermediate point. For example,
consider the differential equation

dy

dt
=
{
t if t < 1
0.5t2 if t ≥ 1

To find the solution at t = 2, use the following statements:

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;
return(v);

finish;

/* Call ODE */
c = 0;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps = 1E-12;
print r[format =E21.14];

In the preceding case, the integration is carried out over a single interval, (0, 2). The
optional parameter eps is specified to be 1E−12. The optional parameter jacobian is
not specified, so finite-difference methods are used to estimate the Jacobian.

Note that the value of R does not have the required accuracy (it should contain a 12
decimal-place representation of 5/3), although no error message is produced. The
reason is that the function is not continuous at the point t = 1. Even the lowest-order
method cannot produce a local reliable error estimate near the point of discontinuity.
To avoid this problem, you can create subintervals so that the integration is carried
out first over (0, 1) and then over (1, 2). The following code implements this method:

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = .5*t*t;

ODE Call � 831

return(v);
finish;

/* Call ODE */
c = 0;
t = { 0 1 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];

The variable R contains the solutions at both t = 1 and t = 2, and the errors are of
the specified order. Although there is no interest in the solution at the point t = 1, the
advantage of specifying subintervals with no discontinuities is that the function f(·)
is infinitely differentiable in each subinterval.

When f(·) is continuous, the ODE subroutine can compute the integration to the
specified precision, even if the function is defined piecewise. Consider the differential
equation

dy

dt
=
{
t if t < 1
t2 if t ≥ 1

The following code finds the solution at t = 2: Since the function f(·) is continuous,
the requirements for error control are satisfied.

/* Define the integrand */
start fun(t,y);

if t < 1 then v = t;
else v = t*t;
return(v);

finish;

/* Call ODE */
c = 0.5;
t = { 0 2};
h = { 1E-12 1. 1E-5};
call ode(r,"FUN",c,t,h) eps=1E-12;
print r[format=E21.14];

This example compares the ODE call to an eigenvalue decomposition for stiff-linear
systems. In the problem

dy
dt

= Ay with y(0) = c

where A is a symmetric constant matrix, the solution can be written in terms of the
eigenvalue decomposition, as follows:

y(t) = UeDtU′c

832 � Chapter 20. Language Reference

where U is the matrix of eigenvectors and D is a diagonal matrix with the eigenvalues
on its diagonal.

The following statements produce two solutions, one by using the ODE call and the
other by using the eigenvalue decomposition:

/* Define the integrand */
start fun(t,x) global(a,count);

count = count+1;
v = a*x;
return(v);

finish;

/* Define the Jacobian */
start jac(t,x) global(a);

v = a;
return(v);

finish;

a = {-1000 -1 -2 -3,
-1 -2 3 -1,
-2 3 -4 -3,
-3 -1 -3 -5 };

/* Call ODE */
count = 0;
t = { 0 1 2};
h = {1E-12 1 1E-5};
eps = 1E-9;
c = {1, 0, 0, 0 };
call ode(z,"FUN",c,t,h) eps=eps j="JAC";
print z[format=E21.14];

print count;

/* Do the eigenvalue decomposition */
start eval(t) global(d,u,c);

v = u*diag(exp(d*t))*u‘*c;
return(v);

finish;

call eigen(d,u,a);
free z1;
do i = 1 to nrow(t)*ncol(t)-1;
z1 = z1 || (eval(t[i+1]));

end;
print z1[format=E21.14];

The question now is whether or not this is an O(1E−9) result. Note that for the
problem

d = max
0≤t≤T

(‖y(t)‖∞, 1) = 1

ODSGRAPH Call � 833

with the 1E−6 result, the ODE call should attempt to maintain an accuracy of 1E−9
relative to 1. Therefore, the 1E−6 result should have almost three correct decimal
places. At t = 2, the first component of Z is 6.58597048842310E−06, while its
more accurate value is 6.58580950203220E−06, showing an O(1E−10) error.

The ODE subroutine can fail for problems with unusual qualitative properties, such
as finite escape time in the interval of integration (that is, the solution goes towards
infinity at some finite time). In such cases, try testing with different subintervals and
different levels of accuracy to gain some qualitative information about the behavior
of the solution of the differential equation.

ODSGRAPH Call

renders a graph by using ODS Statistical Graphics

CALL ODSGRAPH(name, template, matrix1<,matrix2,. . .,matrix13>);

The inputs to the ODSGRAPH subroutine are as follows:

name is a character matrix or quoted literal that assigns a name to
the graph. The name is used to identify the output graph in the
SAS Results window.

template is a character matrix or quoted literal that names the template
used to render the graph.

matrix is a matrix whose columns are supplied to the template. You
can specify up to 13 arguments. The name of each column
must be specified by using the MATTRIB statement or the
COLNAME= option in a READ statement.

The ODSGRAPH subroutine (which requires a license for SAS/GRAPH) renders a
graph defined by the input template. Data for the graph are in the columns of the ma-
trix arguments. Column names are assigned to the matrices by using the MATTRIB
statement or by using the COLNAME= option in a READ statement. This is illus-
trated in the following example, which produces a three-dimensional surface plot:

proc template;
define statgraph SurfacePlot;
BeginGraph;
layout overlay3d;
surfaceplotparm x=x y=y z=z / surfacetype=fill;

endlayout;
EndGraph;

end;
run;

title ’Surface Plot’;
ods html;

proc iml;
XDiv = do(-5, 5, 0.25);

834 � Chapter 20. Language Reference

YDiv = do(-5, 5, 0.25);
x = j(ncol(XDiv)*ncol(YDiv), 1);
y = j(ncol(XDiv)*ncol(YDiv), 1);
k = 1;
do i = 1 to ncol(YDiv);

do j = 1 to ncol(XDiv);
x[k] = XDiv[j];
y[k] = YDiv[i];
k = k + 1;

end;
end;
z = sin(sqrt(x##2 + y##2));
matrix = x || y || z;
mattrib matrix colname={"x" "y" "z"};
call odsgraph("surface","SurfacePlot",matrix);
quit;

ods html close;

In the example, the TEMPLATE procedure defines a template for a surface plot.
The ODSGRAPH subroutine calls ODS to render the graph by using the layout in
the template. (The example renders the graph in the HTML destination; you can
also render the graph in the default listing destination.) The data for the graph are
contained in a matrix. The MATTRIB statement associates the columns of the matrix
with the variable names required by the template.

You can also create graphs from data read from a data set. If x, y, and z are variables
in a data set, then the following statements plot these variables:

use myData;
read all into matrix [colname = c];
call odsgraph("surface","SurfacePlot",matrix);

Since column names created via a READ statement are permanently associated with
the INTO matrix, you do not need to use a MATTRIB statement for this example.

The SAS/IML sample code includes other examples of plots available by using ODS
Statistical Graphics.

OPSCAL Function
rescales qualitative data to be a least squares fit to qualitative data

OPSCAL(mlevel, quanti<, qualit>)

The inputs to the OPSCAL function are as follows:

mlevel specifies a scalar that has one of two values. When mlevel is 1 the
qualit matrix is at the nominal measurement level; when mlevel is
2 it is at the ordinal measurement level.

quanti specifies an m × n matrix of quantitative information assumed to
be at the interval level of measurement.

OPSCAL Function � 835

qualit specifies an m × n matrix of qualitative information whose level
of measurement is specified by mlevel. When qualit is omitted,
mlevel must be 2. When omitted, a temporary qualit is constructed
that contains the integers from 1 to n in the first row, from n + 1
to 2n in the second row, from 2n+ 1 to 3n in the third row, and so
forth, up to the integers (m−1)n to mn in the last(mth) row. Note
that you cannot specify qualit as a character matrix.

The result of the OPSCAL function is the optimal scaling transformation of the qual-
itative (nominal or ordinal) data in qualit. The optimal scaling transformation result

• is a least squares fit to the quantitative data in quanti

• preserves the qualitative measurement level of qualit

When qualit is at the nominal level of measurement, the optimal scaling transfor-
mation result is a least squares fit to quanti, given the restriction that the category
structure of qualit must be preserved. If element i of qualit is in category c, then ele-
ment i of the optimum scaling transformation result is the mean of all those elements
of quanti that correspond to elements of qualit that are in category c.

For example, consider these statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(1,quanti,qualit);

The resulting vector OS has the following values:

OS 1 row 10 cols (numeric)

5 5 6 7 3 5 3
: 5 8 5

The optimal scaling transformation result is said to preserve the nominal measure-
ment level of qualit because wherever there was a qualit category c, there is now a
result category label v. The transformation is least squares because the result element
v is the mean of appropriate elements of quanti. This is Young’s (1981) discrete-
nominal transformation.

When qualit is at the ordinal level of measurement, the optimal scaling transformation
result is a least squares fit to quanti, given the restriction that the ordinal structure of
qualit must be preserved. This is done by determining blocks of elements of qualit so
that if element i of qualit is in block b, then element i of the result is the mean of all
those quanti elements corresponding to block b elements of qualit so that the means
are (weakly) in the same order as the elements of qualit. For example, consider these
statements:

quanti={5 4 6 7 4 6 2 4 8 6};
qualit={6 6 2 12 4 10 4 10 8 6};
os=opscal(2,quanti,qualit);

836 � Chapter 20. Language Reference

The resulting vector OS has the following values:

OS 1 row 10 cols (numeric)

5 5 4 7 4 6 4
: 6 6 5

This transformation preserves the ordinal measurement level of qualit because the
elements of qualit and the result are (weakly) in the same order. It is least squares
because the result elements are the means of appropriate elements of quanti. By
comparing this result to the nominal one, you see that categories whose means are
incorrectly ordered have been merged together to form correctly ordered blocks. This
is known as Kruskal’s (1964) least squares monotonic transformation. Consider the
following statements:

quanti={5 3 6 7 5 7 8 6 7 8};
os=opscal(2,quanti);

These statements imply that

qualit={ 1 2 3 4 5 6 7 8 9 10} ;

This means that the resulting vector has the following values:

OS 1 row 10 cols (numeric)

4 4 6 6 6 7 7
: 7 7 8

ORPOL Function

generates orthogonal polynomials on a discrete set of points

ORPOL(x<, maxdegree<, weights>>)

The inputs to the ORPOL function are as follows:

x is an n × 1 vector of values on which the polynomials are to be
defined.

maxdegree specifies the maximum degree polynomial to be computed. If
maxdegree is omitted, the default value is min(n, 19). If weights is
specified, maxdegree must also be specified.

weights specifies an n×1 vector of nonnegative weights associated with the
points in x. If you specify weights, you must also specify maxde-
gree. If maxdegree is not specified or is specified incorrectly, the
default weights (all weights are 1) are used.

ORPOL Function � 837

The ORPOL matrix function generates orthogonal polynomials evaluated at the n
points contained in x by using the algorithm of Emerson (1968). The result is a
column-orthonormal matrix P with n rows and maxdegree+1 columns such that
P′diag(weights)P = I. The result of evaluating the polynomial of degree j − 1
at the ith element of x is stored in P[i, j].

The maximum number of nonzero orthogonal polynomials (r) that can be computed
from the vector and the weights is the number of distinct values in the vector, ignoring
any value associated with a zero weight.

The polynomial of maximum degree has degree of r − 1. If the value of maxdegree
exceeds r− 1, then columns r+ 1, r+ 2,. . . , maxdegree+1 of the result are set to 0.
In this case,

P′diag(weights)P =
[
I(r) 0
0 0

]
The following statement results in a matrix with three orthogonal columns:

x = T(1:5);
P = orpol(x,2);

P

0.4472136 -0.632456 0.5345225
0.4472136 -0.316228 -0.267261
0.4472136 0 -0.534522
0.4472136 0.3162278 -0.267261
0.4472136 0.6324555 0.5345225

The first column is a polynomial of degree 0 (a constant polynomial) evaluated at
each point of x. The second column is a polynomial of degree 1 evaluated at each
point of x. The third column is a polynomial of degree 2 evaluated at each point of x.

Normalization of the Polynomials

The columns of P are orthonormal with respect to the inner product

〈f, g〉 =
n∑

i=1

f(xi)g(xi)wi

as the following code shows.

start InnerProduct(f,g,w);
h = f#g#w;
return (h[+]);

finish;

/* Verify orthonormal */
reset fuzz; /* print tiny numbers as zero */
w = j(ncol(x),1,1); /* default weight is all ones */

838 � Chapter 20. Language Reference

do i = 1 to 3;
do j = 1 to i;

InnerProd = InnerProduct(P[,i], P[,j], w);
print i j InnerProd;

end;
end;

Some reference books on orthogonal polynomials do not normalize the columns of
the matrix that represents the orthogonal polynomials. For example, a textbook might
give the following as a fourth-degree polynomial evaluated on evenly spaced data:

textbookPoly = { 1 -2 2 -1 1,
1 -1 -1 2 -4,
1 0 -2 0 6,
1 1 -1 -2 -4,
1 2 2 1 1 };

To compare this representation to the normalized representation that ORPOL pro-
duces, use the following program:

/* Normalize the columns of textbook representation */
normalPoly = textbookPoly;
do i = 1 to ncol(normalPoly);

v = normalPoly[,i];
norm = sqrt(v[##]);
normalPoly[,i] = v / norm;

end;

/* Compare the normalized matrix with ORPOL */
x = T(1:5); /* Any evenly spaced data gives the same answer */
imlPoly = orpol(x, 4);

diff = imlPoly - normalPoly;
maxDiff = abs(diff)[<>];
reset fuzz; /* print tiny numbers as zero */
print maxDiff;

MAXDIFF

0

Polynomial Regression

A typical use for orthogonal polynomials is to fit a polynomial to a set of data. Given
a set of points (xi, yi), i = 1, . . . ,m, the classical theory of orthogonal polynomials
says that the best approximating polynomial of degree d is given by

fd =
d+1∑
i=1

ciPi

ORPOL Function � 839

where ci = 〈y, Pi〉/〈Pi, Pi〉 and where Pi is the ith column of the matrix P re-
turned by ORPOL. But the matrix is orthonormal with respect to the inner product,
so 〈Pi, Pi〉 = 1 for all i. Thus you can easily compute a regression onto the span of
polynomials.

In the following program, the weight vector is used to overweight or underweight
particular data points. The researcher has reasons to doubt the accuracy of the first
measurement. The last data point is also underweighted because it is a leverage point
and is believed to be an outlier. The second data point was measured twice and is
overweighted. (Rerunning the program with a weight vector of all ones, and examin-
ing the new values of the fit variable is a good way to understand the effect of the
weight vector.)

x = {0.1, 2, 3, 5, 8, 10, 20};
y = {0.5, 1, 0.1, -1, -0.5, -0.8, 0.1};

/* The second measurement was taken twice.
The first and last data points are underweighted
because of uncertainty in the measurements. */

w = {0.5, 2, 1, 1, 1, 1, 0.2};
maxDegree = 4;
P = orpol(x,maxDegree,w);

/* The best fit by a polynomial of degree k is
Sum c_i P_i where c_i = <f,P_i> */

c = j(1,maxDegree+1);
do i = 1 to maxDegree+1;

c[i] = InnerProduct(y,P[,i],w);
end;

FitResults = j(maxDegree+1,2);
do k = 1 to maxDegree+1;

fit = P[,1:k] * c[1:k];
resid = y - fit;
FitResults[k,1] = k-1; /* degree of polynomial */
FitResults[k,2] = resid[##]; /* sum of square errors */

end;
print FitResults[colname={"Degree" "SSE"}];

The results of this program are as follows:

FITRESULTS
Degree SSE

0 3.1733014
1 4.6716722
2 1.3345326
3 1.3758639
4 0.8644558

840 � Chapter 20. Language Reference

Testing Linear Hypotheses

ORPOL can also be used to test linear hypotheses. Suppose you have an experimental
design with k factor levels. (The factor levels can be equally or unequally spaced.) At
the ith level, you record nk observation, i = 1 . . . k. If n1 = n2 = . . . = nk, then the
design is said to be balanced, otherwise it is unbalanced. You want to fit a polynomial
model to the data and then ask how much variation in the data is explained by the
linear component, how much variation is explained by the quadratic component after
the linear component is taken into account, and so on for the cubic, quartic, and
higher-level components.

To be completely concrete, suppose you have four factor levels (1, 4, 6, and 10) and
that you record seven measurements at first level, two measurements at the second
level, three measurements at the third level, and four measurements at the fourth
level. This is an example of an unbalanced and unequally spaced factor-level design.
The following program uses orthogonal polynomials to compute the Type I sum of
squares for the linear hypothesis. (The program works equally well for balanced
designs and for equally spaced factor levels.)

The program calls ORPOL to generate the orthogonal polynomial matrix P, and uses
it to form the Type I hypothesis matrix L. The program then uses the DESIGN func-
tion to generate X, the design matrix associated with the experiment. The program
then computes b, the estimated parameters of the linear model.

Since L was expressed in terms of the orthogonal polynomial matrix P, the compu-
tations involved in forming the Type I sum of squares are considerably simplified.

Here is the code:

/* unequally spaced and unbalanced factor levels */
levels = {
1,1,1,1,1,1,1,
4,4,
6,6,6,
10,10,10,10};

/* data for y. Make sure the data are sorted
according to the factor levels */

y = {
2.804823, 0.920085, 1.396577, -0.083318,
3.238294, 0.375768, 1.513658, /* level 1 */
3.913391, 3.405821, /* level 4 */
6.031891, 5.262201, 5.749861, /* level 6 */
10.685005, 9.195842, 9.255719, 9.204497 /* level 10 */
};

a = {1,4,6,10}; /* spacing */
trials = {7,2,3,4}; /* sample sizes */
maxDegree = 3; /* model with Intercept,a,a##2,a##3 */

P = orpol(a,maxDegree,trials);

/* Test linear hypotheses:

ORPOL Function � 841

How much variation is explained by the
i_th polynomial component after components
0..(i-1) have been taken into account? */

/* the columns of L are the coefficients of the
orthogonal polynomial contrasts */

L = diag(trials)*P;

/* form design matrix */
x = design(levels);

/* compute b, the estimated parameters of the
linear model. b is the mean of the y values
at each level.
b = ginv(x’*x) * x‘ * y
but since x is the output from DESIGN, then
x‘*x = diag(trials) and so
ginv(x‘*x) = diag(1/trials) */

b = diag(1/trials)*x‘*y;

/* (L‘*b)[i] is the best linear unbiased estimated
(BLUE) of the corresponding orthogonal polynomial
contrast */

blue = L‘*b;

/* the variance of (L‘*b) is
var(L‘*b) = L‘*ginv(x‘*x)*L
=[P‘*diag(trials)]*diag(1/trials)*[diag(trials)*P]
= P‘*diag(trials)*P
= Identity (by definition of P)

so therefore the standardized square of
(L‘*b) is computed as
SS1[i] = (blue[i]*blue[i])/var(L‘*b)[i,i])

= (blue[i])##2 */

SS1 = blue # blue;
rowNames = {’Intercept’ ’Linear’ ’Quadratic’ ’Cubic’};
print SS1[rowname=rowNames format=11.7 label="Type I SS"];

The resulting output is as follows:

Type I SS

Intercept 331.8783538
Linear 173.4756050
Quadratic 0.4612604
Cubic 0.0752106

This indicates that most of the variation in the data can be explained by a first-degree
polynomial.

842 � Chapter 20. Language Reference

Generating Families of Orthogonal Polynomials

There are classical families of orthogonal polynomials (for example, Legendre,
Laguerre, Hermite, and Chebyshev) that arise in the study of differential equations
and mathematical physics. These “named” families are orthogonal on particular in-
tervals (a, b) with respect to the inner product

∫ a
b f(x)g(x)w(x) dx. The functions

returned by ORPOL are different from these named families because ORPOL uses a
different inner product. There are no IML functions that can automatically generate
these families; however, you can write an IML program to generate them.

Each named polynomial family {pj}, j ≥ 0 satisfies a three-term recurrence relation
of the form

pj = (Aj + xBj)pj−1 − Cjpj−2

where the constants Aj , Bj , and Cj are relatively simple functions of j. To generate
these “named” families, use the three-term recurrence relation for the family. The
recurrence relations are found in references such as Abramowitz and Stegun (1972)
or Thisted (1988).

For example, the so-called Legendre polynomials (represented Pj for the polynomial
of degree j) are defined on (−1, 1) with the weight function w(x) = 1. They are
standardized by requiring that Pj(1) = 1 for all j ≥ 0. Thus P0(x) = 1. The linear
polynomial P1(x) = a+ bx is orthogonal to P0 so that

∫ 1

−1
P1(x)P0(x) dx =

∫ 1

−1
a+ bx dx = 0

which implies a = 0. The standardization P1(1) = 1 implies that P1(x) = x.
The remaining Legendre polynomials can be computed by looking up the three-term
recurrence relation: Aj = 0, Bj = (2j − 1)/j, and Cj = (j − 1)j. The following
program computes Legendre polynomials evaluated at a set of points.

maxDegree = 6;

/* evaluate polynomials at these points */
x = T(do(-1,1,0.05));

/* define the standard Legendre Polynomials
Using the 3-term recurrence with
A[j]=0, B[j]=(2j-1)/j, and C[j]=(j-1)/j
and the standardization P_j(1)=1
which implies P_0(x)=1, P_1(x)=x. */

legendre = j(nrow(x), maxDegree+1);
legendre[,1] = 1; /* P_0 */
legendre[,2] = x; /* P_1 */

do j = 2 to maxDegree;
legendre[,j+1] = (2*j-1)/j # x # legendre[,j] -

(j-1)/j # legendre[,j-1];
end;

ORTVEC Call � 843

ORTVEC Call

provides columnwise orthogonalization by the Gram-Schmidt process and step-
wise QR decomposition by the Gram-Schmidt process

CALL ORTVEC(w, r, ρ, lindep, v <, q>);

The ORTVEC subroutine returns the following values:

w If the Gram-Schmidt process converges (lindep=0), w is the m × 1
vector w orthonormal to the columns of Q, which is assumed to have
n ≤ m (nearly) orthonormal columns. If the Gram-Schmidt process
does not converge (lindep=1), w is a vector of missing values. For
stepwise QR decomposition, w is the (n + 1)th orthogonal column of
the matrix Q. If there is no matrix Q, that is, if the q argument is not
specified, w is the normalized value of the vector v,

w =
v√
v′v

r If the Gram-Schmidt process converges (lindep=0), r specifies the n×1
vector r of Fourier coefficients. If the Gram-Schmidt process does not
converge (lindep=1), r is a vector of missing values. If the q argument
is not specified, r is a vector with zero dimension. For stepwise QR
decomposition, r contains the n upper triangular elements of the (n +
1)th column of R.

ρ If the Gram-Schmidt process converges (lindep=0), ρ specifies the dis-
tance from w to the range of Q. Even if the Gram-Schmidt process
converges, if ρ is sufficiently small, the vector v can be linearly de-
pendent on the columns of Q. If the Gram-Schmidt process does not
converge (lindep=1), ρ is set to 0. For stepwise QR decomposition, ρ
contains the diagonal element of the (n+ 1)th column of R.

lindep returns a value of 1 if the Gram-Schmidt process does not converge in
10 iterations. In most cases, if lindep=1, the input vector v is linearly
dependent on the n columns of the input matrix Q. In that case, ρ is
set to 0, and the results w and r contain missing values. If lindep=0,
the Gram-Schmidt process did converge, and the results w, r, and ρ are
computed.

The inputs to the ORTVEC subroutine are as follows:

v specifies anm×1 vector v that is to be orthogonalized to the n columns
of Q. For stepwise QR decomposition of a matrix, v is the (n + 1)th
matrix column before its orthogonalization.

q specifies an optional m × n matrix Q that is assumed to have n ≤ m
(nearly) orthonormal columns. Thus, the n×n matrix Q′Q should ap-
proximate the identity matrix. The column orthonormality assumption

844 � Chapter 20. Language Reference

is not tested in the ORTVEC call. If it is violated, the results are not
predictable. The argument q can be omitted or can have zero rows and
columns. For stepwise QR decomposition of a matrix, q contains the
first n matrix columns that are already orthogonal.

The relevant formula for the ORTVEC subroutine is

v = Qr + ρw

Assuming that them×nmatrix Q has n (nearly) orthonormal columns, the ORTVEC
subroutine orthogonalizes the vector v to the columns of Q. The vector r is the array
of Fourier coefficients, and ρ is the distance from w to the range of Q.

There are two special cases:

• If m > n, ORTVEC normalizes the result w, so that w′w = 1.

• If m = n, the output vector w is the null vector.

The case m < n is not possible since Q is assumed to have n (nearly) orthonormal
columns.

To initialize a stepwise QR decomposition, ORTVEC can be called to normalize v
only, that is, to compute w = v/

√
v′v and ρ =

√
v′v only. There are two ways of

using the ORTVEC call for this reason:

• Omit the last argument q, as in call ortvec(w,r,rho,lindep,v);.

• Provide a matrix Q with zero rows and columns, for example, by using the
free q; command.

In both cases, r is a column vector with zero rows.

The ORTVEC subroutine is useful for the following applications:

• performing stepwise QR decomposition. Compute Q and R, so that A = QR,
where Q is column orthonormal, Q′Q = I, and R is upper triangular. The jth
step is applied to the jth column, v, of A, and it computes the jth column w
of Q and the jth column, (r ρ 0)′, of R.

• computing the m× (m−n) null space matrix, Q2, corresponding to an m×n
range space matrix, Q1 (m > n), by the following stepwise process: set v =
ei (where ei is the ith unit vector) and try to make it orthogonal to all column
vectors of Q1 and the already generated Q2, if the subroutine is successful,
append w to Q2; otherwise, try v = ei+1.

The 4 × 3 matrix Q contains the unit vectors e1, e3, and e4. The column vector
v is pairwise linearly independent with the three columns of Q. As expected, the
ORTVEC call computes the vector w as the unit vector e2 with u = (1, 1, 1) and
ρ = 1. Here is the code:

ORTVEC Call � 845

q = { 1 0 0,
0 0 0,
0 1 0,
0 0 1 };

v = { 1, 1, 1, 1 };
call ortvec(w,u,rho,lindep,v,q);
print rho u w;

You can perform the QR decomposition of the linearly independent columns of an
m× n matrix A with the following statements:

a = { . . . enter matrix A here . . . };
nind = 0; ndep = 0; dmax = 0.;
n = ncol(a); m = nrow(a);
free q;
do j = 1 to n;

v = a[,j];
call ortvec(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
else do;

print "Column " j " is linearly dependent.";
ndep = ndep + 1; ind[ndep] = j;

end;
end;

Next, process the remaining columns of A:

do j = 1 to ndep;
k = ind[ndep-j+1];
v = a[,k];
call ortvec(w,u,rho,lindep,v,q);
if lindep = 0 then do;

nind = nind + 1;
q = q || w;
if nind = n then r = r || (u // rho);
else r = r || (u // rho // j(n-nind,1,0.));

end;
end;

Now compute the null space in the last columns of Q:

do i = 1 to m;
if nind < m then do;

v = j(m,1,0.); v[i] = 1.;

846 � Chapter 20. Language Reference

call ortvec(w,u,rho,lindep,v,q);
aro = abs(rho);
if aro > dmax then dmax = aro;
if aro <= 1.e-10 * dmax then lindep = 1;
if lindep = 0 then do;
nind = nind + 1;
q = q || w;

end;
else print "Unit vector" i "linearly dependent.";

end;
end;
if nind < m then do;

print "This is theoretically not possible.";
end;

PAUSE Statement

interrupts module execution

PAUSE <expression> <*>;

The inputs to the PAUSE statement are as follows:

expression is a character matrix or quoted literal giving a message to print.

* suppresses any messages.

The PAUSE statement stops execution of a module, saves the calling chain so that
execution can resume later (by a RESUME statement), prints a pause message that
you can specify, and puts you in immediate mode so you can enter more statements.

You can specify an operand in the PAUSE statement to supply a message to be printed
for the pause prompt. If no operand is specified, the following default message is
printed:

paused in module XXX

In this case, XXX is the name of the module containing the pause. If you want to sup-
press all messages in a PAUSE statement, use an asterisk as the operand, as follows:

pause *;

The PAUSE statement should only be specified in modules. It generates a warning if
executed in immediate mode.

When an error occurs while executing inside a module, IML automatically behaves
as though a PAUSE statement was issued. IML prints the following note:

paused in module

PGRAF Call � 847

IML also puts you in immediate mode within the module environment, where you
can correct the error. You can then resume execution from the statement following
the one where the error occurred by issuing a RESUME command.

IML supports pause processing of both subroutine and function modules. See also
the description of the SHOW statement using the PAUSE option.

PGRAF Call

produces scatter plots

CALL PGRAF(xy <, id><, xlabel><, ylabel><, title>);

The inputs to the PGRAF subroutine are as follows:

xy is an n× 2 matrix of (x, y) points.

id is an n × 1 character matrix of labels for each point. The PGRAF
subroutine uses up to 8 characters per point. If id is a scalar (1 ×
1), then the same label is used for all of the points. The label is
centered over the actual point location. If you do not specify id, x
is the default character for labeling the points.

xlabel is a character scalar or quoted literal that labels the x axis (centered
beneath the x axis).

ylabel is a character scalar or quoted literal that labels the y axis (printed
vertically to the left of the y axis).

title is a character scalar or quoted literal printed above the graph.

The PGRAF subroutine produces a scatter plot suitable for display on a line printer
or similar device.

The following statements specify a plotting symbol, axis labels, and a title to produce
the plot shown.

848 � Chapter 20. Language Reference

xy={1 2, 3 3, 5 4, 6 2};
call pgraf(xy,’*’,’X’,’Y’,’Plot of X vs Y’);

Plot of X vs Y
|

4 + *
|
|
|

Y |
3 + *
|
|
|
|

2 + * *
--+------+------+------+------+------+-
1.0 2.0 3.0 4.0 5.0 6.0

X

POLYROOT Function

finds zeros of a real polynomial

POLYROOT(vector)

where vector is an n × 1 (or 1 × n) vector containing the coefficients of an (n − 1)
degree polynomial with the coefficients arranged in order of decreasing powers. The
POLYROOT function returns the array r, which is an (n− 1)× 2 matrix containing
the roots of the polynomial. The first column of r contains the real part of the com-
plex roots and the second column contains the imaginary part. If a root is real, the
imaginary part is 0.

The POLYROOT function finds the real and complex roots of a polynomial with real
coefficients.

The POLYROOT function uses an algorithm proposed by Jenkins and Traub (1970)
to find the roots of the polynomial. The algorithm is not guaranteed to find all roots
of the polynomial. An appropriate warning message is issued when one or more roots
cannot be found. If r is given as a root of the polynomial P (x), then 1 + P (R) = 1
based on the rounding error of the computer that is employed.

For example, suppose you want to find the roots of the polynomial

P (x) = 0.2567x4 + 0.1570x3 + 0.0821x2 − 0.3357x+ 1

Use the following IML code to produce the result shown.

p={0.2567 0.1570 0.0821 -0.3357 1};
r=polyroot(p);

PRINT Statement � 849

R 4 rows 2 cols (numeric)

0.8383029 0.8514519
0.8383029 -0.851452
-1.144107 1.1914525
-1.144107 -1.191452

The polynomial has two conjugate pairs of roots that, within machine precision, are
given by r = 0.8383029± 0.8514519i and r = −1.144107± 1.1914525i.

PRINT Statement

prints matrix values

PRINT <matrices> <(expression)> <“message”>

<pointer-controls> <[options]>;

The inputs to the PRINT statement are as follows:

matrices are the names of matrices.

(expression) is an expression in parentheses that is evaluated. The result of the
evaluation is printed. The evaluation of a subscripted matrix used
as an expression results in printing the submatrix.

“message” is a message in quotes.

pointer-controls control the pointer for printing. For example, using a comma (,)
skips a single line and using a slash (/) skips to a new page.

[options] are described in the following list.

The PRINT statement prints the specified matrices or message. The following options
can appear in the PRINT statement. They are specified in brackets after the matrix
name to which they apply.

COLNAME=matrix
specifies the name of a character matrix whose first ncol elements are to be used for
the column labels of the matrix to be printed, where ncol is the number of columns in
the matrix. (You can also use the RESET autoname statement to automatically label
columns as COL1, COL2, and so on.)

FORMAT=format
specifies a valid SAS or user-defined format to use in printing the values of the matrix,
for example:

print x[format=5.3];

LABEL=label
specifies the name of a scalar character matrix or literal to use as a label when printing
the matrix. For example:

850 � Chapter 20. Language Reference

print x[label="Net Pay"];

ROWNAME=matrix
specifies the name of a character matrix whose first nrow elements are to be used for
the row labels of the matrix to be printed, where nrow is the number of rows in the
matrix and where the scan to find the first nrow elements goes across row 1, then
across row 2, and so forth through row n. (You can also use the RESET autoname
statement as follows to automatically label rows as ROW1, ROW2, and so on.)

reset autoname;

For example, you can use the following statements to print a matrix called X in
format 12.2 with columns labeled AMOUNT and NET PAY, and rows labeled DIV
A and DIV B:

x={45.125 50.500,
75.375 90.825};

r={"DIV A" "DIV B"};
c={"AMOUNT" "NET PAY"};

print x[rowname=r colname=c format=12.2];

The output is as follows:

X AMOUNT NET PAY

DIV A 45.13 50.50
DIV B 75.38 90.83

To permanently associate the preceding options with a matrix name, refer to the de-
scription of the MATTRIB statement.

If there is not enough room to print all the matrices across the page, then one or
more matrices are printed out in the next group. If there is not enough room to print
all the columns of a matrix across the page, then the columns are folded, with the
continuation lines identified by a colon (:).

The spacing between adjacent matrices can be controlled by the SPACES= option
of the RESET statement. The FW= option of the RESET statement can be used to
control the number of print positions used to print each numeric element. For more
print-related options, including the PRINTADV option, see the description of the
RESET statement. The following example shows how to print part of a matrix:

y=1:10;
/* prints first five elements of y*/

print (y[1:5]) [format=5.1];

PURGE Statement � 851

PRODUCT Function

multiplies matrices of polynomials

PRODUCT(a, b <, dim>)

The inputs to the PRODUCT function are as follows:

a is an m × (ns) numeric matrix. The first m × n submatrix contains the
constant terms of the polynomials, the second m × n submatrix contains
the first-order terms, and so on.

b is an n× (pt) matrix. The first n× p submatrix contains the constant terms
of the polynomials, the second n × p submatrix contains the first-order
terms, and so on.

dim is a 1 × 1 matrix, with value p > 0. The value of this matrix is used to set
the dimension p of the matrix b. If omitted, the value of p is set to 1.

The PRODUCT function multiplies matrices of polynomials. The value returned is
the m× (p(s+ t− 1)) matrix of the polynomial products. The first m× p submatrix
contains the constant terms, the secondm×p submatrix contains the first-order terms,
and so on.

Note: The PRODUCT function can be used to multiply the matrix operators em-
ployed in a multivariate time series model of the form

Φ1(B)Φ2(B)Yt = Θ1(B)Θ2(B)εt

where Φ1(B), Φ2(B), Θ1(B), and Θ2(B) are matrix polynomial operators whose
first matrix coefficients are identity matrices. Often Φ2(B) and Θ2(B) represent
seasonal components that are isolated in the modeling process but multiplied with
the other operators when forming predictors or estimating parameters. The RATIO
function is often employed in a time series context as well.

For example, the following statement produces the matrix R, as shown:

r=product({1 2 3 4,
5 6 7 8},
{1 2 3,
4 5 6}, 1);

R 2 rows 4 cols (numeric)

9 31 41 33
29 79 105 69

PURGE Statement

removes observations marked for deletion and renumbers records

852 � Chapter 20. Language Reference

PURGE;

The PURGE data processing statement is used to remove observations marked for
deletion and to renumber the remaining observations. This closes the gaps created
by deleted records. Execution of this statement can be time-consuming because it
involves rewriting the entire data set.

CAUTION: Any indexes associated with the data set are lost after a purge.

IML does not do an automatic purge for you at quit time.

In the example that follows, a data set named A is created. Then, you begin an
IML session and edit A. You delete the fifth observation, list the data set, and is-
sue a PURGE statement to delete the fifth observation and renumber the remaining
observations.

data a;
do i=1 to 10;

output;
end;

run;

proc iml;
edit a;
delete point 5;
list all;
purge;
list all;

PUSH Call

pushes SAS statements into the command input stream

CALL PUSH(argument1<, argument2,. . ., argument15>);

where argument is a character matrix or quoted literal containing valid SAS state-
ments.

The PUSH subroutine pushes character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) to the input command stream.
You can specify up to 15 arguments. Any statements pushed to the input command
queue get executed when the module is put in a hold state. This is usually induced by
one of the following:

• an execution error within a module

• an interrupt

• a pause command

The string pushed is read before any other lines of input. If you call the PUSH
subroutine several times, the strings pushed each time are ahead of the less recently

PUT Statement � 853

pushed strings. If you would rather place the lines after others in the input stream,
then use the QUEUE command instead.

The strings you push do not appear on the log.

CAUTION: Do not push too much code at one time.

Pushing too much code at one time, or getting into infinite loops of pushing, causes
problems that can result in exiting the SAS system.

For details, see Chapter 15.

An example that uses the PUSH subroutine follows:

start;
code=’reset pagesize=25;’;
call push(code,’resume;’);
pause;

/* show that pagesize was set to 25 during */
/* a PAUSE state of a module */

show options;
finish;
run;

PUT Statement

writes data to an external file

PUT <operand> <record-directives> <positionals> <format>;

The inputs to the PUT statement are as follows:

operand specifies the value you want to output to the current position
in the record. The operand can be either a variable name, a
literal value, or an expression in parentheses. The operand can
be followed immediately by an output format specification.

record-directives start new records. There are three types:

holding @ at the end of a PUT statement, instructs IML
to put a hold on the current record so that
IML can write more to the record with later
PUT statements. Otherwise, IML automati-
cally begins the next record for the next PUT
statement.

/ writes out the current record and begins
forming a new record.

> operand specifies that the next record written will
start at the indicated byte position in the file
(for RECFM=N files only). The operand is
a literal number, a variable name, or an ex-
pression in parentheses, for example:

854 � Chapter 20. Language Reference

put >3 x 3.2;

positionals specify the column on the record to which the PUT statement
should go. There are two types of positionals:

@ operand specifies to go to the indicated column,
where operand is a literal number, a variable
name, or an expression in parentheses. For
example, @30 means to go to column 30.

+ operand specifies that the indicated number of
columns are to be skipped, where operand
is a literal number, a variable name, or an
expression in parentheses.

format specifies a valid SAS or user-defined output format. These are
of the form w.d or $w. for standard numeric and character
formats, respectively, where w is the width of the field and d
is the decimal parameter, if any. They can also be a named
format of the form NAMEw.d, where NAME is the name of the
format. If the width is unspecified, then a default width is used;
this is 9 for numeric variables.

The PUT statement writes to the file specified in the previously executed FILE state-
ment, putting the values from IML variables. The statement is described in detail in
Chapter 7.

The PUT statement is a sequence of positionals and record directives, variables, and
formats. An example that uses the PUT statement follows:

/* output variable A in column 1 using SAS format 6.4. */
/* Skip 3 columns and output X using format 8.4 */

put @1 a 6.4 +3 x 8.4;

PV Function
calculates the present value of a vector of cash flows and returns a scalar

PV(times,flows,freq,rates)

The PV function returns a scalar containing the present value of the cash flows based
on the specified frequency and rates.

times is an n× 1 column vector of times. Elements should be nonnegative.

flows is an n× 1 column vector of cash flows.

freq is a scalar that represents the base of the rates to be used for discount-
ing the cash flows. If positive, it represents discrete compounding as the
reciprocal of the number of compoundings per period. If zero, it rep-
resents continuous compounding. If -1, the rates represent per-period
discount factors. No other negative values are accepted.

PV Function � 855

rates is an n × 1 column vector of rates to be used for discounting the cash
flows. Elements should be positive.

A general present value relationship can be written as

P =
K∑

k=1

c(k)D(tk)

where P is the present value of the asset, {c(k)}k = 1, . . . ,K is the sequence of cash
flows from the asset, tk is the time to the kth cash flow in periods from the present,
and D(t) is the discount function for time t.
With per-unit-time-period discount factors dt:

D(t) = dt
t

With continuous compounding:

D(t) = e−rtt

With discrete compounding:

D(t) = (1 + fr)−t/f

where f > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period.

The following code presents an example of the PV function:

data a;
pv=mort(.,438.79,.10/12,30*12);

run;

proc print data=a;
run;

/* Use PROC IML PV function to compute PV. */

proc iml;

/* If rate is specified as annual rate divided */
/* by 12 and FREQ=1, then results are equal */
/* to those computed by the MORT function. */

timesn=t(do(1,360,1));
flows=repeat(438.79,360);
rate=repeat(.10/12,360);
freq=1;
pv=pv(timesn,flows,freq,rate);

856 � Chapter 20. Language Reference

print pv;

/* If rate is specified as annual rate, then */
/* the cash flow TIMES need to be specified */
/* in 1/12 increments and the FREQ=1/12. This */
/* specification returns the same result as */
/* the MORT function and the previous PV run. */

timesn=t(do(1/12,30,1/12));
flows=repeat(438.79,360);
rate=repeat(.10,360); /* specify annual rate */
freq=1/12; /* 12 compoundings annually: freq=1/12 */
pv=pv(timesn,flows,freq,rate);
print pv;
quit;

The result is as follows:

Obs pv

1 50000.48

pv

50000.48

pv

50000.48

QR Call

produces the QR decomposition of a matrix by Householder transformations

CALL QR(q, r, piv, lindep, a <, ord><, b>);

The QR subroutine returns the following values:

q specifies an orthogonal matrix Q that is the product of the Householder
transformations applied to the m×n matrix A, if the b argument is not
specified. In this case, the min(m,n) Householder transformations are
applied, and q is anm×mmatrix. If the b argument is specified, q is the
m×pmatrix Q′B that has the transposed Householder transformations
Q′ applied on the p columns of the argument matrix B.

r specifies a min(m,n) × n upper triangular matrix R that is the upper
part of them×n upper triangular matrix R̃ of the QR decomposition of
the matrix A. The matrix R̃ of the QR decomposition can be obtained
by vertical concatenation (by using the IML operator //) of the (m −
min(m,n))× n zero matrix to the result matrix R.

QR Call � 857

piv specifies an n × 1 vector of permutations of the columns of A; that
is, on return, the QR decomposition is computed, not of A, but of the
permuted matrix whose columns are [Apiv[1] · · ·Apiv[n]]. The vector
piv corresponds to an n× n permutation matrix Π.

lindep is the number of linearly dependent columns in matrix A detected
by applying the min(m,n) Householder transformations in the order
specified by the argument vector piv.

The inputs to the QR subroutine are as follows:

a specifies an m× n matrix A that is to be decomposed into the product
of the orthogonal matrix Q and the upper triangular matrix R̃.

ord specifies an optional n×1 vector that specifies the order of Householder
transformations applied to matrix A, as follows:

ord[j] > 0 Column j of A is an initial column, meaning it has to
be processed at the start in increasing order of ord[j].

ord[j] = 0 Column j of A can be permuted in order of decreas-
ing residual Euclidean norm (pivoting).

ord[j] < 0 Column j of A is a final column, meaning it has to
be processed at the end in decreasing order of ord[j].

The default is ord[j] = j, in which case the Householder transforma-
tions are done in the same order that the columns are stored in matrix
A (without pivoting).

b specifies an optional m × p matrix B that is to be multiplied by the
transposed m×m matrix Q′. If b is specified, the result q contains the
m×pmatrix Q′B. If b is not specified, the result q contains them×m
matrix Q.

The QR subroutine decomposes an m × n matrix A into the product of an m ×m
orthogonal matrix Q and an m× n upper triangular matrix R̃, so that

AΠ = QR̃, Q′Q = QQ′ = Im

by means of min(m,n) Householder transformations.

The m × m orthogonal matrix Q is computed only if the last argument b is not
specified, as in the following code:

call qr(q,r,piv,lindep,a,ord);

In many applications, the number of rows,m, is very large. In these cases, the explicit
computation of the m×m matrix Q can require too much memory or time.

858 � Chapter 20. Language Reference

In the usual case where m > n,

A =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 Q =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

R̃ =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0
0 0 0

 R =

 ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

Q = [Q1 Q2] , R̃ =
[

R
0

]
where R is the result returned by the QR subroutine.

The n columns of matrix Q1 provide an orthonormal basis for the n columns of A
and are called the range space of A. Since them−n columns of Q2 are orthogonal to
the n columns of A, Q′

2A = 0, they provide an orthonormal basis for the orthogonal
complement of the columns of A and are called the null space of A.

In the case where m < n,

A =

 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 Q =

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

R̃ = R =

 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗

Specifying the argument ord as an n vector lets you specify a special order of the
columns in matrix A on which the Householder transformations are applied. When
you specify the ord argument, the columns of A can be divided into the following
groups:

• ord[j] > 0: Column j of A is an initial column, meaning it has to be processed
at the start in increasing order of ord[j]. This specification defines the first nl
columns of A that are to be processed.

• ord[j] = 0: Column j of A is a pivot column, meaning it is to be processed
in order of decreasing residual Euclidean norms. The pivot columns of A are
processed after the nl initial columns and before the nu final columns.

• ord[j] < 0: Column j of A is a final column, meaning it has to be processed
at the end in decreasing order of ord[j]. This specification defines the last nu
columns of A that are to be processed. If n > m, some of these columns will
not be processed at all.

QR Call � 859

There are two special cases:

• If you do not specify the ord argument, the default values ord[j] = j are used.
In this case, Householder transformations are done in the same order in which
the columns are stored in A (without pivoting).

• If you set all components of ord to zero, the Householder transformations are
done in order of decreasing Euclidean norms of the columns of A.

The resulting n×1 vector piv specifies the permutation of the columns of A on which
the Householder transformations are applied; that is, on return, the QR decomposition
is computed, not of A, but of the matrix with columns that are permuted in the order
Apiv[1], . . . ,Apiv[n].

To check the QR decomposition, use the following statements to compute the three
residual sum of squares, represented by the variables SS0, SS1, and SS2, which
should be close to zero:

m = nrow(a); n = ncol(a);
call qr(q,r,piv,lindep,a,ord);
ss0 = ssq(a[,piv] - q[,1:n] * r);
ss1 = ssq(q * q‘ - i(m));
ss2 = ssq(q‘ * q - i(m));

If the QR subroutine detects linearly dependent columns while processing matrix A,
the column order given in the result vector piv can differ from an explicitly specified
order in the argument vector ord. If a column of A is found to be linearly dependent
on columns already processed, this column is swapped to the end of matrix A. The
order of columns in the result matrix R corresponds to the order of columns processed
in A. The swapping of a linearly dependent column of A to the end of the matrix
corresponds to the swapping of the same column in R and leads to a zero row at the
end of the upper triangular matrix R.

The scalar result lindep counts the number of linearly dependent columns that are
detected in constructing the first min(m,n) Householder transformations in the order
specified by the argument vector ord. The test of linear dependence depends on the
size of the singularity criterion used; currently it is specified as 1E−8.

Solving the linear system Rx = Q′b with an upper triangular matrix R whose
columns are permuted corresponding to the result vector piv leads to a solution x
with permuted components. You can reorder the components of x by using the index
vector piv at the left-hand side of an expression, as follows:

call qr(qtb,r,piv,lindep,a,ord,b);
x[piv] = inv(r) * qtb[1:n,1:p];

The following example solves the full-rank linear least squares problem. Specify the
argument b as an m× p matrix B, as follows:

call qr(q,r,piv,lindep,a,ord,b);

860 � Chapter 20. Language Reference

When you specify the b argument, the QR call computes the matrix Q′B (instead
of Q) as the result q. Now you can compute the p least squares solutions xk of an
overdetermined linear system with an m × n,m > n coefficient matrix A, rank(A)
= n, and p right-hand sides bk stored as the columns of the m× p matrix B:

min
xk

‖Axk − bk‖2, k = 1, . . . , p

where ‖ ·‖ is the Euclidean vector norm. This is accomplished by solving the p upper
triangular systems with back-substitution:

xk = Π′R−1Q′
1bk, k = 1, . . . , p

For most applications,m, the number of rows of A, is much larger than n, the number
of columns of A, or p, the number of right-hand sides. In these cases, you are advised
not to compute the large m × m matrix Q (which can consume too much memory
and time) if you can solve your problem by computing only the smaller m×p matrix
Q′B implicitly. For example, use the first five columns of the 6 × 6 Hilbert matrix
A, as follows:

a= { 36 -630 3360 -7560 7560 -2772,
-630 14700 -88200 211680 -220500 83160,
3360 -88200 564480 -1411200 1512000 -582120,

-7560 211680 -1411200 3628800 -3969000 1552320,
7560 -220500 1512000 -3969000 4410000 -1746360,

-2772 83160 -582120 1552320 -1746360 698544 };
b= { 463, -13860, 97020, -258720, 291060, -116424};
n = 5; aa = a[,1:n];
call qr(qtb,r,piv,lindep,aa,,b);
if lindep=0 then x=inv(r)*qtb[1:n];
print x;

Note that you are using only the first n rows, Q′
1B, of QTB. The IF-THEN statement

of the preceding code can be replaced by the more efficient TRISOLV function, as
follows:

if lindep=0 then x=trisolv(1,r,qtb[1:n],piv);
print x;

Both cases produce the following output:

X
1

0.5
0.3333333

0.25
0.2

For information about solving rank-deficient linear least squares problems, see the
RZLIND call.

QUAD Call � 861

QUAD Call

performs numerical integration of scalar functions in one dimension over infi-
nite, connected semi-infinite, and connected finite intervals

CALL QUAD(r, "fun", points <, EPS=eps><, PEAK=peak>

<, SCALE=scale><, MSG=msg><, CYCLES=cycles>);

The QUAD subroutine returns the following value:

r is a numeric vector containing the results of the integration. The size of
r is equal to the number of subintervals defined by the argument points.
Should the numerical integration fail on a particular subinterval, the
corresponding element of r is set to missing.

The inputs to the QUAD subroutine are as follows:

“fun” specifies the name of an IML module used to evaluate the integrand.

points specifies a sorted vector that provides the limits of integration over con-
nected subintervals. The simplest form of the vector provides the limits
of the integration on one interval. The first element of points should
contain the left limit. The second element should be the right limit. A
missing value of .M in the left limit is interpreted as −∞, and a miss-
ing value of .P is interpreted as +∞. For more advanced usage of the
QUAD call, points can contain more than two elements. The elements
of the vector must be sorted in an ascending order. Each two consecu-
tive elements in points defines a subinterval, and the subroutine reports
the integration over each specified subinterval. The use of subintervals
is important because the presence of internal points of discontinuity in
the integrand hinders the algorithm.

eps is an optional scalar specifying the desired relative accuracy. It has a
default value of 1E−7. You can specify eps with the keyword EPS.

peak is an optional scalar that is the approximate location of a maximum of
the integrand. By default, it has a location of 0 for infinite intervals, a
location that is one unit away from the finite boundary for semi-infinite
intervals, and a centered location for bounded intervals. You can spec-
ify peak with the keyword PEAK.

scale is an optional scalar that is the approximate estimate of any scale in the
integrand along the independent variable (see the examples). It has a
default value of 1. You can specify scale with the keyword SCALE.

msg is an optional character scalar that restricts the number of messages
produced by the QUAD subroutine. If msg = “NO” then it does not
produce any warning messages. You can specify msg with the keyword
MSG.

862 � Chapter 20. Language Reference

cycles is an optional integer indicating the maximum number of refinements
the QUAD subroutine can make in order to achieve the required ac-
curacy. It has a default value of 8. You can specify cycles with the
keyword CYCLES.

If the dimensions of any optional argument are 0× 0, the QUAD subroutine uses its
default value.

The QUAD subroutine is a numerical integrator based on adaptive Romberg-type in-
tegration techniques. Refer to Rice (1973), Sikorsky (1982), Sikorsky and Stenger
(1984), and Stenger (1973a, 1973b, 1978). Many adaptive numerical integration
methods (Ralston and Rabinowitz 1978) start at one end of the interval and proceed
towards the other end, working on subintervals while locally maintaining a certain
prescribed precision. This is not the case with the QUAD call. The QUAD call is an
adaptive global-type integrator that produces a quick, rough estimate of the integra-
tion result and then refines the estimate until achieving the prescribed accuracy. This
gives the subroutine an advantage over Gauss-Hermite and Gauss-Laguerre quadra-
tures (Ralston and Rabinowitz 1978, Squire 1987), particularly for infinite and semi-
infinite intervals, because those methods perform only a single evaluation.

Consider the integral∫ ∞

0
e−t dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

finish;

/* Call QUAD */
a = { 0 .P };
call quad(z,"fun",a);
print z[format=E21.14];

The integration is carried out over the interval (0,∞), as specified by the variable
A. Note that the missing value in the second element of A is interpreted as ∞. The
values of eps=1E−7, peak=1, scale=1, and cycles=8 are used by default.

The following code performs the integration over two subintervals, as specified by
the variable A:

/* Define the integrand */
start fun(t);

v = exp(-t);
return(v);

finish;

QUAD Call � 863

/* Call QUAD */
a = { 0 3 .P };
call quad(z,"fun",a);
print z[format=E21.14];

Note that the elements of A are in ascending order. The integration is carried out
over (0, 3) and (3,∞), and the corresponding results are shown in the output. The
values of eps=1E−7, peak=1, scale=1, and cycles=8 are used by default. To obtain
the results of integration over (0,∞), use the SUM function on the elements of the
vector Z, as follows:

b = sum(z);
print b[format=E21.14];

The purpose of the peak and scale options is to enable you to avoid analytically
changing the variable of the integration in order to produce a well-conditioned inte-
grand that permits the numerical evaluation of the integration.

Consider the integration∫ ∞

0
e−10000t dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-10000*t);
return(v);

finish;

/* Call QUAD */
a = { 0 .P };
/* Either syntax can be used */
/* call quad(z,"fun",a,1E-10,0.0001); or */
call quad(z,"fun",a) eps=1E-10 peak=0.0001 ;
print z[format=E21.14];

Only one interval exists. The integration is carried out over (0,∞). The default
values of scale=1 and cycles=8 are used.

If you do not specify a peak value, the integration cannot be evaluated to the desired
accuracy, a message is printed to the LOG, and a missing value is returned. Note that
peak can still be set to 1E−7 and the integration will be successful. The evaluation of
the integrand at peak must be nonzero for the computation to continue. You should
adjust the value of peak to get a nonzero evaluation at peak before trying to adjust
scale. Reducing scale decreases the initial step size and can lead to an increase in the
number of function evaluations per step at a linear rate.

864 � Chapter 20. Language Reference

Consider the integration∫ ∞

−∞
e−100000(t−3)2 dt

The following statements evaluate this integral:

/* Define the integrand */
start fun(t);

v = exp(-100000*(t-3)*(t-3));
return(v);

finish;
/* Call QUAD */
a = { .M .P };
call quad(z,"fun",a) eps=1E-10 peak=3 scale=0.001 ;
print z[format=E21.14];

Only one interval exists. The integration is carried out over (−∞,∞). The default
value of cycles=8 has been used.

If you use the default value of scale, the integral cannot be evaluated to the desired
accuracy, and a missing value is returned. The variables scale and cycles can be
used to increase the number of possible function evaluations; the number of possible
function evaluations increases linearly with the reciprocal of scale, but it potentially
increases in an exponential manner when cycles is increased. Increasing the number
of function evaluations increases execution time.

When you perform double integration, you must separate the variables between the
iterated integrals. There should be a clear distinction between the variables of the
one-dimensional integration at hand and the parameters to be passed to the integrand.
Posting the correct limits of integration is also an important issue. For example,
consider the binormal probability, given by

probbnrm(a, b, ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dy dx

The inner integral is

g(x, b, ρ) =
1

2π
√

1− ρ2

∫ b

−∞
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dy

with parameters x and ρ, and the limits of integration are from −∞ to b. The outer
integral is then

probbnrm(a, b, ρ) =
∫ a

−∞
g(x, b, ρ) dx

with the limits from −∞ to a.

You can write the equation in the form of a function with the parameters a, b, ρ as
arguments. The following statements provide an example of this technique:

QUAD Call � 865

start norpdf2(t) global(yv,rho,omrho2,count);

/*---*/
/* This function is the density function and requires */
/* the variable T (passed in the argument) */
/* and a list of parameters, YV, RHO, OMRHO2, COUNT */
/* (defined in the GLOBAL clause) */
/*---*/

count = count+1;
q=(t#t-2#rho#t#yv+yv#yv)/omrho2;
p=exp(-q/2);
return(p);

finish;

start marginal(v) global(yy,yv,eps);
/*--*/
/* The inner integral */
/* The limits of integration from .M to YY */
/* YV is passed as a parameter to the inner integral*/
/*--*/

interval = .M || yy;
if (v < -12) then return(0);
yv = v;
call quad(pm,"NORPDF2",interval) eps=eps;
return(pm);

finish;

start norcdf2(a,b,rrho) global(yy,rho,omrho2,eps);
/*--*/
/* Post some global parameters */
/* YY, RHO, OMRHO2 */
/* EPS will be set from IML */
/* RHO and B cannot be arguments in the GLOBAL */
/* list at the same time */
/*--*/

rho = rrho;
yy = b;
omrho2 = 1-rho#rho;
/*--*/
/* The outer integral */
/* The limits of integration */
/*--*/
interval= .M || a;

/*--*/
/*Note that EPS the keyword = EPS the variable */
/*--*/
call quad(p,"MARGINAL",interval) eps=eps;

/*--------------------------*/
/* PER will be reset here */

866 � Chapter 20. Language Reference

/*--------------------------*/
per = 1/(8#atan(1)#sqrt(omrho2)) * p;
return(per);

finish;

/*----------------------------------*/
/*First set up the global constants */
/*----------------------------------*/
count = 0;
eps = 1E-11;

/*------------------------------------*/
/* Do the work and print the results */
/*------------------------------------*/
p = norcdf2(2,1,0.1);
print p[format=E21.14];
print count;

The variable COUNT contains the number of times the NORPDF2 module is called.
Note that the value computed by the NORCDF2 module is very close to that returned
by the PROBBNRM function, as computed by the following statements:

/*--*/
/* Calculate the value with the PROBBNRM function */
/*--*/
pp = probbnrm(2,1,0.1);
print pp[format=E21.14];

Note the following:

• The iterated inner integral cannot have a left endpoint of −∞. For large values
of v, the inner integral does not contribute to the answer but still needs to
be calculated to the required relative accuracy. Therefore, either cut off the
function (when v ≤ −12), as in the MARGINAL module in the preceding
code, or have the intervals start from a reasonable cutoff value. In addition, the
QUAD call stops if the integrands appear to be identically 0 (probably caused
by underflow) over the interval of integration.

• This method of integration (iterated, one-dimensional integrals) is extremely
conservative and requires unnecessary function evaluations. In this example,
the QUAD call for the inner integration lacks information about the final value
that the QUAD call for the outer integration is trying to refine. The lack of com-
munication between the two QUAD routines can cause useless computations
to be performed in the inner integration.

To illustrate this idea, let the relative error be 1E−11 and let the answer deliv-
ered by the outer integral be 0.8, as in this example. Any computation of the
inner execution of the QUAD call that yields 0.8E−11 or less does not con-
tribute to the final answer of the QUAD call for the outer integral. However,
the inner integral lacks this information, and for a given value of the parameter

QUEUE Call � 867

yv, it attempts to compute an answer with much more precision than is neces-
sary. The lack of communication between the two QUAD subroutines prevents
the introduction of better cut-offs. Although this method can be inefficient, the
final calculations are accurate.

QUEUE Call

queues SAS statements into the command input stream

CALL QUEUE(argument1<, argument2,. . ., argument15>);

where argument is a character matrix or quoted literal containing valid SAS state-
ments.

The QUEUE subroutine places character arguments containing valid SAS statements
(usually SAS/IML statements or global statements) at the end of the input command
stream. You can specify up to 15 arguments. The string queued is read after other
lines of input already on the queue. If you want to push the lines in front of other
lines already in the queue, use the PUSH subroutine instead. Any statements queued
to the input command queue get executed when the module is put in a hold state. This
is usually induced by one of the following:

• an execution error within a module

• an interrupt

• a pause command.

The strings you queue do not appear on the log.

CAUTION: Do not queue too much code at one time.

Queuing too much code at one time, or getting into infinite loops of queuing, causes
problems that can result in exiting the SAS System.

For more examples, consult Chapter 15.

An example that uses the QUEUE subroutine follows:

start mod(x);
code=’x=0;’;
call queue (code,’resume;’);
pause;

finish;
x=1;
run mod(x);
print(x);

This code produces the following result:

X

0

868 � Chapter 20. Language Reference

QUIT Statement
exits from IML

QUIT;

Use the QUIT statement to exit IML. If a DATA or PROC statement is encountered,
QUIT is implied. The QUIT statement is executed immediately; therefore, you can-
not use QUIT as an executable statement, that is, as part of a module or conditional
clause. (See the description of the ABORT statement.)

PROC IML closes all open data sets and files when a QUIT statement is encountered.
Workspace and symbol spaces are freed up. If you need to use any matrix values or
any module definitions in a later session, you must store them in a storage library
before you quit.

RANDGEN Call
generates random numbers from a specified distribution

CALL RANDGEN(result, distname<, parm1><, parm2><, parm3>);

The inputs to the RANDGEN call are as follows:

result is a matrix that is to be filled with random samples from the specified
distribution.

distname is the name of the distribution that is to be sampled.

parm1 is a distribution shape parameter.

parm2 is a distribution shape parameter.

parm3 is a distribution shape parameter.

The RANDGEN call generates random numbers by using the same numerical method
as the RAND function in base SAS, with the efficiency optimized for IML. You can
initialize the random number stream used by RANDGEN with the RANDSEED call.
The result parameter should be preallocated to a size equal to the number of samples
you want to generate. If result is not initialized, then it receives a single random
sample.

The following distributions can be sampled.

Bernoulli Distribution

The random sample x is from the probability density function:

f(x) =

1 for p = 0, x = 0
px(1− p)1−x for 0 < p < 1, x = 0, 1
1 for p = 1, x = 1

x is in the range: x = 0, 1

p is the success probability, with range: 0 ≤ p ≤ 1

RANDGEN Call � 869

Beta Distribution

The random sample x is from the probability density function:

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1

x is in the range: 0 < x < 1

a and b are shape parameters, with range: a > 0 and b > 0

Binomial Distribution

The random sample x is from the probability density function:

f(x) =

1 for p = 0, x = 0(
n
x

)
px(1− p)1−x for 0 < p < 1, x = 0, . . . , n

1 for p = 1, x = 1

x is in the range: x = 0, 1, . . . , n

p is a success probability, with range: 0 ≤ p ≤ 1

n specifies the number of independent trials, with range: n = 1, 2, . . .

Cauchy Distribution

The random sample x is from the probability density function:

f(x) =
1

π(1 + x2)

x is in the range: −∞ < x <∞

Chi-Square Distribution

The random sample x is from the probability density function:

f(x) =
2−df/2

Γ(df
2)

xdf/2−1e−x/2

x is in the range: x > 0

df is degrees of freedom, with range: df > 0

870 � Chapter 20. Language Reference

Erlang Distribution

The random sample x is from the probability density function:

f(x) =
1

Γ(a)
xa−1e−x

x is in the range: x > 0

a is an integer shape parameter, with range: a = 1, 2, . . .

Exponential Distribution

The random sample x is from the probability density function:

f(x) = e−x

x is in the range: x > 0

F Distribution (Fn,d)

The random sample x is from the probability density function:

f(x) =
Γ(n+d

2)n
n
2 d

d
2x

n
2
−1

Γ(n
2)Γ(d

2)(d+ nx)
n+d

2

x is in the range: x > 0

n and d are degrees of freedom, with range: n > 0 and d > 0

Gamma Distribution

The random sample x is from the probability density function:

f(x) =
xa−1

Γ(a)
e−x

x is in the range: x > 0

a is a shape parameter: a > 0

Geometric Distribution

The random sample x is from the probability density function:

f(x) =
{

(1− p)x−1p for 0 < p < 1, x = 1, 2, . . .
1 for p = 1, x = 1

x is in the range: x = 1, 2, . . .

p is the success probability, with range: 0 < p ≤ 1

RANDGEN Call � 871

Hypergeometric Distribution
The random sample x is from the probability density function:

f(x) =

(
R
x

)(
N −R
n− x

)
(
N
n

)
x is in the range: x = max(0, (n− (N −R))), . . . ,min(n,R)

N is the population size, with range: N = 1, 2, . . .

R is the size of the category of interest, with range: R = 0, 1, . . . , N

n is the sample size, with range: n = 0, 1, . . . , N

Lognormal Distribution
The random sample x is from the probability density function:

f(x) =
e− ln2(x)/2

x
√

2π

x is in the range: x ≥ 0

Negative Binomial Distribution
The random sample x is from the probability density function:

f(x) =

(
x+ k − 1
k − 1

)
(1− p)xpk for 0 < p < 1, x = 0, 1, . . .

1 for p = 1, x = 0

x is in the range: x = 0, 1, . . .

p is the success probability with range: 0 < p ≤ 1

k is an integer number that counts the number of successes, with range: k = 1, 2, . . .

Normal Distribution
The random sample x is from the probability density function:

f(x) =
1

λ
√

2π
exp

(
−(x− θ)2

2λ2

)
x is in the range: −∞ < x <∞

θ is the mean, with range: −∞ < θ <∞. This parameter is optional and defaults to
0.

λ is the standard deviation, with range: λ > 0. This parameter is optional and defaults
to 1.

872 � Chapter 20. Language Reference

Poisson Distribution

The random sample x is from the probability density function:

f(x) =
mxe−m

x!

x is in the range: x = 0, 1, . . .

m is the mean, with range m > 0

T Distribution

The random sample x is from the probability density function:

f(x) =
Γ
(

df+1
2

)
√
dfπ Γ

(
df
2

) (1 +
x2

df

)− df+1
2

x is in the range: −∞ < x <∞

df is the degrees of freedom, with the range: df > 0

Table Distribution

The random sample i is from the probability density function:

f(i) =
{
pi for i = 1, 2, . . . , n
1−

∑n
j=1 pj for i = n+ 1

where p is a vector of probabilities, such that 0 ≤ p ≤ 1, and n is the largest integer
such that n ≤ size of p and

n∑
j=1

pj ≤ 1

Triangle Distribution

The random sample x is from the probability density function:

f(x) =

{
2x
h for 0 ≤ x ≤ h
2(1−x)
1−h for h < x ≤ 1

x is in the range: 0 ≤ x ≤ 1

h is the horizontal location of the peak of the triangle, with range: 0 ≤ h ≤ 1

RANDGEN Call � 873

Uniform Distribution

The random sample x is from the probability density function:

f(x) = 1

x is in the range: 0 < x < 1

Weibull Distribution

The random sample x is from the probability density function:

f(x) =
a

ba
xa−1e−(x

b)
a

x is in the range: x ≥ 0

a and b are shape parameters, with range a > 0 and b > 0

The following table describes how parameters of the RANDGEN call correspond to
the distribution parameters.

Table 20.2. Parameter Assignments for Distributions

Distribution distname parm1 parm2 parm3
Bernoulli ’BERNOULLI’ p
Beta ’BETA’ a b
Binomial ’BINOMIAL’ p n
Cauchy ’CAUCHY’
Chi-Square ’CHISQUARE’ df
Erlang ’ERLANG’ a
Exponential ’EXPONENTIAL’
Fn,d ’F’ n d
Gamma ’GAMMA’ a
Geometric ’GEOMETRIC’ p
Hypergeometric ’HYPERGEOMETRIC’ N R n
Lognormal ’LOGNORMAL’
Negative Binomial ’NEGBINOMIAL’ p k
Normal ’NORMAL’ θ λ
Poisson ’POISSON’ m
T ’T’ df
Table ’TABLE’ p
Triangle ’TRIANGLE’ h
Uniform ’UNIFORM’
Weibull ’WEIBULL’ a b

In practice, distname can be in lowercase or uppercase, and you only need to specify
enough letters to distinguish one distribution from the others. For example,

874 � Chapter 20. Language Reference

/* generate 10 samples from a Bernoulli distribution */
r = j(10,1,.);
call randgen(r,’ber’,p);

Except for the normal distribution, you must specify the parameters listed for each of
the preceding distributions or IML will report an error. For the normal distribution,
default values of θ = 0 and λ = 1 are used if none are supplied.

The following example illustrates the use of the RANDGEN call.

call randseed(12345);

/* get four random observations from each distribution */
x = j(1,4,.);
/* each row of m comes from a different distribution */
m = j(20,4,.);
call randgen(x,’BERN’,0.75);
m[1,] = x;
call randgen(x,’BETA’,3,0.1);
m[2,] = x;
call randgen(x,’BINOM’,10,0.75);
m[3,] = x;
call randgen(x,’CAUCHY’);
m[4,] = x;
call randgen(x,’CHISQ’,22);
m[5,] = x;
call randgen(x,’ERLANG’, 7);
m[6,] = x;
call randgen(x,’EXPO’);
m[7,] = x;
call randgen(x,’F’,12,322);
m[8,] = x;
call randgen(x,’GAMMA’,7.25);
m[9,] = x;
call randgen(x,’GEOM’,0.02);
m[10,] = x;
call randgen(x,’HYPER’,10,3,5);
m[11,] = x;
call randgen(x,’LOGN’);
m[12,] = x;
call randgen(x,’NEGB’,0.8,5);
m[13,] = x;
call randgen(x,’NORMAL’); /* default parameters */
m[14,] = x;
call randgen(x,’POISSON’,6.1);
m[15,] = x;
call randgen(x,’T’,4);
m[16,] = x;
p = {0.1 0.2 0.25 0.1 0.15 0.1 0.1};
call randgen(x,’TABLE’,p);
m[17,] = x;
call randgen(x,’TRIANGLE’,0.7);
m[18,] = x;

RANDSEED Call � 875

call randgen(x,’UNIFORM’);
m[19,] = x;
call randgen(x,’WEIB’,0.25,2.1);
m[20,] = x;
print m;

The output is as follows:

M

1 0 1 0
1 0.9999234 0.9842784 0.9997739
7 8 5 10

-1.209834 3.9732282 -0.048339 -1.337284
30.300691 20.653151 27.301922 26.878221
10.636299 4.6455449 7.5284821 2.5558646
0.2449632 2.7656037 4.2254588 0.2866158
0.7035829 1.2676112 0.9806787 1.4811389
8.475216 8.8723256 8.2993617 8.0409742

109 4 33 30
1 1 2 1

0.7784513 0.9792472 0.6018993 0.3643607
3 2 0 2

0.0053637 1.4026784 -0.271338 -0.416685
5 11 8 4

1.3237918 0.0505162 -0.660845 -0.634447
2 3 2 3

0.5270875 0.6909336 0.8607548 0.5450831
0.4064393 0.7464901 0.3463207 0.2615394
0.4183405 0.9981923 16.812803 0.0001131

RANDSEED Call
sets initial random seed for RANDGEN call

CALL RANDSEED(seed<, reinit>);

The inputs to the RANDSEED call are as follows:

seed is a number to be used to initialize the RANDGEN random number
generator.

reinit specifies whether or not the random number stream can be reinitialized
after the first initialization, within the same IML session.

The RANDSEED call creates an initial random seed for subsequent RANDGEN
calls. If RANDSEED is not called, an initial seed is generated from the system clock.
This call is normally used when it is desirable to reproduce the same random num-
ber stream in different IML sessions. The optional reinit parameter controls whether
the seed will be reinitialized within the same IML session. If it is set to one, iden-
tical seeds will produce the same random number sequence; otherwise a second call
to RANDSEED within the same IML session is ignored. Normally you should not

876 � Chapter 20. Language Reference

specify reinit, or you should set it to zero to ensure that you are working with an
independent random number stream within your IML session.

RANK Function

ranks elements of a matrix

RANK(matrix)

where matrix is a numeric matrix or literal.

The RANK function creates a new matrix containing elements that are the ranks of the
corresponding elements of matrix. The ranks of tied values are assigned arbitrarily
rather than averaged. (See the description of the RANKTIE function.)

For example, the following statements produce the vector Y, as shown:

x={2 2 1 0 5};
y=rank(x);

Y

3 4 2 1 5

The RANK function can be used to sort a vector x, as follows:

b=x;
x[,rank(x)]=b;

X

0 1 2 2 5

You can also sort a matrix by using the SORT subroutine.

The RANK function can also be used to find anti-ranks of x, as follows:

r=rank(x);
i=r;
i[,r]=1:ncol(x);

I

4 3 1 2 5

While the RANK function only ranks the elements of numerical matrices, you can
rank the elements of a character matrix by using the UNIQUE function, as demon-
strated in the following code:

RANKTIE Function � 877

/* Create RANK-like functionality for character matrices */
start rankc(x);

/* the unique function returns a sorted list */
s = unique(x);
idx = j(nrow(x), ncol(x));
ctr = 1; /* there can be duplicate values in x */
do i = 1 to ncol(s); /* for each unique value */

t = loc(x = s[i]);
nDups = ncol(t);
idx[t] = ctr : ctr+nDups-1;
ctr = ctr + nDups;

end;
return (idx);

finish;

/* call the RANKC module */
x = { every good boy does fine and good and well every day};
r = rankc(x);
sortedx=x;
sortedx[r] = x;
print r, x, sortedx;

/* note that ranking is in ASCII order, where capital
letters precede lower case letters. To get case-insensitive
behavior, transform matrix before comparison */

x = {’a’ ’b’ ’X’ ’Y’ };
asciiOrder = rankc(x);
alphaOrder = rankc(upcase(x));
print x, asciiOrder, alphaOrder;

IML does not have a function that directly computes the rank of a matrix. You can
use the following technique to compute the rank of matrix A:

rank=round(trace(ginv(a)*a));

RANKTIE Function
ranks matrix elements by using tie averaging

RANKTIE(matrix)

where matrix is a numeric matrix or literal.

The RANKTIE function creates a new matrix containing elements that are the ranks
of the corresponding elements of matrix. The ranks of tied values are averaged.

For example, the following statements produce the vector Y, as shown:

x={2 2 1 0 5};
y=ranktie(x);

Y

3.5 3.5 2 1 5

878 � Chapter 20. Language Reference

The RANKTIE function differs from the RANK function in that RANKTIE averages
the ranks of tied values, whereas RANK breaks ties arbitrarily.

While the RANK function only ranks the elements of numerical matrices, you can
rank the elements of a character matrix by using the UNIQUE function, as demon-
strated in the following code:

/* Create RANKTIE-like functionality for character matrices */
start ranktiec(x);

s = unique(x);
idx = j(nrow(x), ncol(x));
ctr = 1; /* there can be duplicate values in x */
do i = 1 to ncol(s); /* for each unique value */

t = loc(x = s[i]);
nDups = ncol(t);
idx[t] = ctr+(nDups-1)/2; /* =(ctr:ctr+nDups-1)[:] */
ctr = ctr + nDups;

end;
return (idx);

finish;

/* call the RANKTIEC module */
x = { every good boy does fine and good and well every day};
rt = ranktiec(x);
print x, rt;

RATES Function

calculates a column vector of (per-period, such as per-year) interest rates con-
verted from one base to another

RATES(rates,oldfreq,newfreq)

The RATES function returns an n×1 vector of interest rates converted from one base
to another.

rates is an n × 1 column vector of rates corresponding to the old base.
Elements should be positive.

oldfreq is a scalar that represents the old base. If positive, it represents discrete
compounding as the reciprocal of the number of compoundings per
period. If zero, it represents continuous compounding. If -1, the rates
represent discount factors. No other negative values are accepted.

newfreq is a scalar that represents the new base. If positive, it represents discrete
compounding as the reciprocal of the number of compoundings per
period. If zero, it represents continuous compounding. If -1, the rates
represent discount factors. No other negative values are accepted.

Let D(t) be the discount function, which is the present value of a unit amount to
be received t periods from now. The discount function can be expressed in three

RATIO Function � 879

different ways:

with per-period discount factors dt:

D(t) = dt
t

with continuous compounding:

D(t) = e−rtt

with discrete compounding:

D(t) = (1 + fr)−t/f

where 0 < f < 1 is the frequency, the reciprocal of the number of compoundings per
period. The RATES function converts between these three representations.

For example, the following code uses the RATES function:

rates=T(do(0.1,0.3,0.1));
oldfreq=0;
newfreq=0;
rates=rates(rates,oldfreq,newfreq);
print rates;

The output is as follows:

RATES
0.1
0.2
0.3

RATIO Function

divides matrix polynomials

returns a matrix containing the terms of Φ(B)−1Θ(B) considered as a matrix of
rational functions in B that have been expanded as power series

RATIO(ar, ma, terms<, dim>)

The inputs to the RATIO function are as follows:

ar is an n× (ns) matrix representing a matrix polynomial generating function,
Φ(B), in the variable B. The first n × n submatrix represents the constant
term and must be nonsingular, the second n × n submatrix represents the
first-order coefficients, and so on.

880 � Chapter 20. Language Reference

ma is an n× (mt) matrix representing a matrix polynomial generating function,
Θ(B), in the variable B. The first n ×m submatrix represents the constant
term, the second n×m submatrix represents the first-order term, and so on.

terms is a scalar containing the number of terms to be computed, denoted by r in
the following discussion. This value must be positive.

dim is a scalar containing the value of m, a dimension of the matrix ma. The
default value is 1.

The RATIO function multiplies a matrix of polynomials by the inverse of another
matrix of polynomials. It is useful for expressing univariate and multivariate ARMA
models in pure moving-average or pure autoregressive forms.

The value returned is an n × (mr) matrix containing the terms of Φ(B)−1Θ(B)
considered as a matrix of rational functions in B that have been expanded as power
series.

Note: The RATIO function can be used to consolidate the matrix operators employed
in a multivariate time series model of the form

Φ(B)Yt = Θ(B)εt

where Φ(B) and Θ(B) are matrix polynomial operators whose first matrix coeffi-
cients are identity matrices. The RATIO function can be used to compute a truncated
form of Ψ(B) = Φ(B)−1Θ(B) for the equivalent infinite-order model

Yt = Ψ(B)εt

The RATIO function can also be employed for simple scalar polynomial division,
giving a truncated form of θ(x)/φ(x) for two scalar polynomials θ(x) and φ(x).

The cumulative sum of the elements of a column vector x can be obtained by using
the following statement:

ratio({ 1 -1} ,x,ncol(x));

Consider the following example for multivariate ARMA(1,1):

ar={1 0 -.5 2,
0 1 3 -.8};

ma={1 0 .9 .7,
0 1 2 -.4};

psi=ratio(ar,ma,4,2);

The matrix produced is as follows:

PSI
1 0 1.4 -1.3 2.7 -1.45 11.35

: -9.165

0 1 -1 0.4 -5 4.22 -12.1
: 7.726

RDODT and RUPDT Calls � 881

RDODT and RUPDT Calls

downdate and update QR and Cholesky decompositions

CALL RDODT(def, rup, bup, sup, r, z <, b, y <, ssq>>);

CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

The RDODT and RUPDT subroutines return the values:

def is only used for downdating, and it specifies whether the downdating of
matrix R by using the q rows in argument z has been successful. The
result def=2 means that the downdating of R by at least one row of Z
leads to a singular matrix and cannot be completed successfully (since
the result of downdating is not unique). In that case, the results rup,
bup, and sup contain missing values only. The result def=1 means that
the residual sum of squares, ssq, could not be downdated successfully
and the result sup contains missing values only. The result def=0 means
that the downdating of R by Z was completed successfully.

rup is the n× n upper triangular matrix R that has been updated or down-
dated by using the q rows in Z.

bup is the n × p matrix B of right-hand sides that has been updated or
downdated by using the q rows in argument y. If the argument b is not
specified, bup is not computed.

sup is a p vector of square roots of residual sum of squares that is updated
or downdated by using the q rows of argument y. If ssq is not specified,
sup is not computed.

The inputs to the RDODT and RUPDT subroutines are as follows:

r specifies an n×n upper triangular matrix R to be updated or downdated
by the q rows in Z. Only the upper triangle of R is used; the lower
triangle can contain any information.

z specifies a q × n matrix Z used rowwise to update or downdate the
matrix R.

b specifies an optional n × p matrix B of right-hand sides that have to
be updated or downdated simultaneously with R. If b is specified, the
argument y must also be specified.

y specifies an optional q × p matrix Y used rowwise to update or down-
date the right-hand side matrix B. If b is specified, the argument y must
also be specified.

ssq is an optional p vector that, if b is specified, specifies the square root of
the error sum of squares that should be updated or downdated simulta-
neously with R and B.

882 � Chapter 20. Language Reference

The upper triangular matrix R of the QR decomposition of an m× n matrix A,

A = QR, where Q′Q = QQ′ = Im

is recomputed efficiently in two cases:

• update: An n vector z is added to matrix A.

• downdate: An n vector z is deleted from matrix A.

Computing the whole QR decomposition of matrix A by Householder transforma-
tions requires 4mn2 − 4n3/3 floating-point operations, whereas updating or down-
dating the QR decomposition (by Givens rotations) of one row vector z requires only
2n2 floating-point operations.

If the QR decomposition is used to solve the full-rank linear least squares problem

min
x
‖Ax− b‖2 = ssq

by solving the nonsingular upper triangular system

x = R−1Q′b

then the RUPDT and RDODT subroutines can be used to update or downdate the
p-transformed right-hand sides Q′B and the residual sum-of-squares p vector ssq
provided that for each n vector z added to or deleted from A there is also a p vector
y added to or deleted from the m× p right-hand-side matrix B.

If the arguments z and y of the subroutines RUPDT and RDODT contain q > 1 row
vectors for which R (and Q′B, and eventually ssq) is to be updated or downdated,
the process is performed stepwise by processing the rows zk (and yk), k = 1, . . . , q,
in the order in which they are stored.

The QR decomposition of an m× n matrix A, m ≥ n, rank(A) = n,

A = QR, where Q′Q = QQ′ = Im

corresponds to the Cholesky factorization

C = R′R, where C = A′A

of the positive definite n × n crossproduct matrix C = A′A. In the case where
m ≥ n and rank(A) = n, the upper triangular matrix R computed by the QR
decomposition (with positive diagonal elements) is the same as the one computed by
Cholesky factorization except for numerical error,

A′A = (QR)′(QR) = R′R

RDODT and RUPDT Calls � 883

Adding a row vector z to matrix A corresponds to the rank-1 modification of the
crossproduct matrix C

C̃ = C + z′z, where C̃ = Ã′Ã

and the (m+ 1)× n matrix Ã contains all rows of A with the row z added.

Deleting a row vector z from matrix A corresponds to the rank-1 modification

C∗ = C− z′z, where C∗ = A∗′A∗

and the (m− 1)× n matrix A∗ contains all rows of A with the row z deleted. Thus,
you can also use the subroutines RUPDT and RDODT to update or downdate the
Cholesky factor R of a positive definite crossproduct matrix C of A.

The process of downdating an upper triangular matrix R (and eventually a residual
sum-of-squares vector ssq) is not always successful. First of all, the downdated ma-
trix R could be rank deficient. Even if the downdated matrix R is of full rank, the
process of downdating can be ill-conditioned and does not work well if the down-
dated matrix is close (by rounding errors) to a rank-deficient one. In these cases, the
downdated matrix R is not unique and cannot be computed by subroutine RDODT. If
R cannot be computed, def returns 2, and the results rup, bup, and sup return missing
values.

The downdating of the residual sum-of-squares vector ssq can be a problem, too. In
practice, the downdate formula

ssqnew =
√

ssqold − ssqdod

cannot always be computed because, due to rounding errors, the radicand can be
negative. In this case, the result vector sup returns missing values, and def returns 1.

You can use various methods to compute the p columns xk of the n × p matrix X
that minimize the p linear least squares problems with an m × n coefficient matrix
A, m ≥ n, rank(A) = n, and p right-hand-side vectors bk (stored columnwise in
the m× p matrix B). The first of the following methods solves the normal equations
and cannot be applied to the example with the 6 × 5 Hilbert matrix since too much
rounding error is introduced. Therefore, use the following simple example:

a = { 1 3 ,
2 2 ,
3 1 };

b = { 1, 1, 1};
m = nrow(a);
n = ncol(a);
p = 1;

• Cholesky Decomposition of Crossproduct Matrix:

884 � Chapter 20. Language Reference

aa = a‘ * a; ab = a‘ * b;
r = root(aa);
x = trisolv(2,r,ab);
x = trisolv(1,r,x);

• QR Decomposition by Householder Transformations:

call qr(qtb,r,piv,lindep,a, ,b);
x = trisolv(1,r[,piv],qtb[1:n,]);

• Stepwise Update by Givens Rotations:

r = j(n,n,0.); qtb = j(n,p,0.); ssq = j(1,p,0.);
do i = 1 to m;

z = a[i,];
y = b[i,];
call rupdt(rup,bup,sup,r,z,qtb,y,ssq);
r = rup;
qtb = bup;
ssq = sup;

end;
x = trisolv(1,r,qtb);

Or equivalently:

r = j(n,n,0.);
qtb = j(n,p,0.);
ssq = j(1,p,0.);
call rupdt(rup,bup,sup,r,a,qtb,b,ssq);
x = trisolv(1,rup,bup);

• Singular Value Decomposition:

call svd(u,d,v,a);
d = diag(1 / d);
x = v * d * u‘ * b;

For the preceding 3× 2 example matrix A, each method obtains the unique LS esti-
mator:

ss = ssq(a * x - b);
print ss x;

To compute the (transposed) matrix Q, you can use the following specification:

r = shape(0,n,n);
y = i(m);
qt = shape(0,n,m);
call rupdt(rup,qtup,sup,r,a,qt,y);

READ Statement

reads observations from a data set

READ Statement � 885

READ <range> <VAR operand> <WHERE(expression)>

<INTO name <[ROWNAME=row-name

COLNAME=column-name]>> ;

The inputs to the READ function are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of the target matrix.

row-name is a character matrix or quoted literal giving descriptive row labels.

column-name is a character matrix or quoted literal giving descriptive column
labels.

The clauses and options are explained in the following lists.

Use the READ statement to read variables or records from the current SAS data set
into column matrices of the VAR clause or into the single matrix of the INTO clause.
When the INTO clause is used, each variable in the VAR clause becomes a column
of the target matrix, and all variables in the VAR clause must be of the same type. If
you specify no VAR clause, the default variables for the INTO clause are all numeric
variables. Read all character variables into a target matrix by using VAR –CHAR–.

You can specify a range of observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify a range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the next number of observations

AFTER all observations after the current one

POINT operand observations specified by number, where operand can be one
of the following.

Operand Example
a single record number point 5

a literal giving several point {2 5 10}
record numbers

the name of a matrix point p
containing record numbers

an expression in parentheses point (p+1)

886 � Chapter 20. Language Reference

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. The operand in the
VAR clause can be one of the following:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of keywords described in the following list:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables.

The following examples demonstrate each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is as follows:

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

READ Statement � 887

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

You can specify ROWNAME= and COLNAME= matrices as part of the INTO clause.
The COLNAME= matrix specifies the name of a new character matrix to be created.
This COLNAME= matrix is created in addition to the target matrix of the INTO
clause and contains variable names from the input data set corresponding to columns
of the target matrix. The COLNAME= matrix has dimension 1×nvar, where nvar is
the number of variables contributing to the target matrix.

The ROWNAME= option specifies the name of a character variable in the input data
set. The values of this variable are put in a character matrix with the same name as
the variable. This matrix has the dimension nobs×1, where nobs is the number of
observations in the range of the READ statement.

The range, VAR, WHERE, and INTO clauses are all optional and can be specified in
any order.

Row and column names created via a READ statement are permanently associated
with the INTO matrix. You do not need to use a MATTRIB statement to get this
association.

For example, to read all observations from the data set variables NAME and AGE, use
a READ statement with the VAR clause and the keyword ALL for the range operand.
This creates two IML variables with the same names as the data set variables. Here
is the statement:

read all var{name age};

To read all variables for the 23rd observation only, use the following statement:

888 � Chapter 20. Language Reference

read point 23;

To read the data set variables NAME and ADDR for all observations with a STATE
value of NJ, use the following statement:

read all var{name addr} where(state="NJ");

See Chapter 6 for further information.

REMOVE Function

discards elements from a matrix

REMOVE(matrix, indices)

The inputs to the REMOVE function are as follows:

matrix is a numeric or character matrix or literal.

indices refers to a matrix containing the indices of elements that are re-
moved from matrix.

The REMOVE function returns as a row vector elements of the first argument, with
elements corresponding to the indices in the second argument discarded and the gaps
removed. The first argument is indexed in row-major order, as in subscripting, and
the indices must be in the range 1 to the number of elements in the first argument.
Noninteger indices are truncated to their integer part. You can repeat the indices, and
you can give them in any order. If all elements are removed, the result is a null matrix
(zero rows and zero columns).

Thus, the following statement removes the third element, producing the result shown:

a=remove({ 5 6, 7 8} , 3);

A
5 6 8

The following statement causes all but the fourth element to be removed, giving the
result shown:

a=remove({ 5 6 7 8} , { 3 2 3 1});

A
8

REMOVE Statement

removes matrices from storage

RENAME Call � 889

REMOVE <MODULE=(module-list) <matrix-list>>;

The inputs to the REMOVE statement are as follows:

module-list specifies a module or modules to remove from storage.

matrix-list specifies a matrix or matrices to remove from storage.

The REMOVE statement removes matrices or modules or both from the current li-
brary storage. For example, the following statement removes the three modules A, B,
and C and the matrix X:

remove module=(A B C) X;

The special operand –ALL– can be used to remove all matrices or all modules or
both. For example, the following statement removes everything:

remove _all_ module=_all_;

See Chapter 14, “Storage Features,” and also the descriptions of the LOAD, STORE,
RESET, and SHOW statements for related information.

RENAME Call

renames a SAS data set

CALL RENAME(<libname,> member-name, new-name);

The inputs to the RENAME subroutine are as follows:

libname is a character matrix or quoted literal containing the name of the
SAS data library.

member-name is a character matrix or quoted literal containing the current name
of the data set.

new-name is a character matrix or quoted literal containing the new data set
name.

The RENAME subroutine renames a SAS data set in the specified library. All of
the arguments can directly be specified in quotes, although quotes are not required.
If a one-level data set name is specified, the libname specified by the RESET deflib
statement is used. Examples of valid statements follow:

call rename(’a’,’b’);
call rename(a,b);
call rename(work,a,b);

890 � Chapter 20. Language Reference

REPEAT Function

creates a new matrix of repeated values

REPEAT(matrix, nrow, ncol)

The inputs to the REPEAT function are as follows:

matrix is a numeric matrix or literal.

nrow gives the number of times matrix is repeated across rows.

ncol gives the number of times matrix is repeated across columns.

The REPEAT function creates a new matrix by repeating the values of the argu-
ment matrix nrow*ncol times, ncol times across the rows, and nrow times down the
columns. The matrix argument can be numeric or character. For example, the follow-
ing statements result in the matrix Y, repeating the X matrix twice down and three
times across:

x={ 1 2 ,
3 4} ;

y=repeat(x,2,3);

Y
1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

REPLACE Statement

replaces values in observations and updates observations

REPLACE <range> <VAR operand> <WHERE(expression)>;

The inputs to the REPLACE statement are as follows:

range specifies a range of observations.

operand selects a set of variables.

expression is evaluated for being true or false.

The REPLACE statement replaces the values of observations in a SAS data set
with current values of IML matrices with the same name. Use the range, VAR,
and WHERE arguments to limit replacement to specific variables and observa-
tions. Replacement matrices should be the same type as the data set variables. The
REPLACE statement uses matrix elements in row order replacing the value in the ith
observation with the ith matrix element. If there are more observations in range than
matrix elements, the REPLACE statement continues to use the last matrix element.

For example, the following statements cause all occurrences of ILL to be replaced by
IL for the variable STATE:

REPLACE Statement � 891

state="IL";
replace all var{state} where(state="ILL");

You can specify a range of observations with a keyword or by record number using
the POINT option. You can use any of the following keywords to specify a range:

ALL all observations

CURRENT the current observation

NEXT <number> the next observation or the next number of observations

AFTER all observations after the current one

POINT operand observations by number, where operand can be one of the fol-
lowing:

Operand Example
a single record number point 5

a literal giving several point {2 5 10}
record numbers

the name of a matrix point p
containing record numbers

an expression in parentheses point (p+1)

If the current data set has an index in use, the POINT option is invalid.

You can specify a set of variables to use with the VAR clause. The variables argument
can have the following values:

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the keywords described in the following list:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples demonstrate each possible way you can use the VAR clause.

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

892 � Chapter 20. Language Reference

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is any one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

The following statement replaces all variables in the current observation:

replace;

RESET Statement � 893

RESET Statement

sets processing options

RESET <options>;

where the options are described in the following list.

The RESET statement sets processing options. The options described in the following
list are currently implemented options. Note that the prefix NO turns off the feature
where indicated. For options that take operands, the operand should be a literal, a
name of a matrix containing the value, or an expression in parentheses. The SHOW
options statement displays the current settings of all of the options.

AUTONAME
NOAUTONAME

specifies whether rows are automatically labeled ROW1, ROW2, and so on, and
columns are labeled COL1, COL2, and so on, when a matrix is printed. Row-name
and column-name attributes specified in the PRINT statement or associated via the
MATTRIB statement override the default labels. The AUTONAME option causes
the SPACES option to be reset to 4. The default is NOAUTONAME.

CENTER
NOCENTER

specifies whether output from the PRINT statement is centered on the page. The
default is CENTER. This resets the global CENTER/NOCENTER option for the SAS
session.

CLIP
NOCLIP

specifies whether SAS/IML graphs are automatically clipped outside the viewport;
that is, any data falling outside the current viewport is not displayed. NOCLIP is the
default.

DEFLIB=operand
specifies the default libname for SAS data sets when no other libname is given. This
defaults to USER if a USER libname is set up, or WORK if not. The libname operand
can be specified with or without quotes.

DETAILS
NODETAILS

specifies whether additional information is printed from a variety of operations, such
as when files are opened and closed. The default is NODETAILS.

FLOW
NOFLOW

specifies whether operations are shown as executed. It is used for debugging only.
The default is NOFLOW.

FUZZ <=number>
NOFUZZ

894 � Chapter 20. Language Reference

specifies whether very small numbers are printed as zero rather than in scientific no-
tation. If the absolute value of the number is less than the value specified in number,
it will be printed as 0. The number argument is optional, and the default value varies
across hosts but is typically around 1E−12. The default is NOFUZZ.

FW=number
sets the field width for printing numeric values. The default field width is 9.

LINESIZE=n
specifies the linesize for printing. The default value is usually 78. This resets the
global LINESIZE option for the SAS session.

LOG
NOLOG

specifies whether output is routed to the log file rather than to the print file. On the
log, the results are interleaved with the statements and messages. The NOLOG option
routes output to the OUTPUT window in the SAS windowing environment and to the
listing file in batch mode. The default is NOLOG.

NAME
NONAME

specifies whether the matrix name or label is printed with the value for the PRINT
statement. The default is NAME.

PAGESIZE=n
specifies the pagesize for printing. The default value is usually 21. This resets the
global PAGESIZE option for the SAS session.

PRINT
NOPRINT

specifies whether the final results from assignment statements are printed automati-
cally. NOPRINT is the default.

PRINTADV=n
inserts blank lines into the log before printing out the value of a matrix. The default,
PRINTADV=2, causes two blank lines to be inserted.

PRINTALL
NOPRINTALL

specifies whether the intermediate and final results are printed automatically. The
default is NOPRINTALL.

SPACES=n
specifies the number of spaces between adjacent matrices printed across the page.
The default value is 1, except when AUTONAME is on. Then, the default value is 4.

STORAGE=<libname.>memname;
specifies the file to be the current library storage for STORE and LOAD statements.
The default library storage is WORK.IMLSTOR. The libname argument is optional
and defaults to SASUSER. It can be specified with or without quotes.

ROOT Function � 895

RESUME Statement

resumes execution

RESUME;

The RESUME statement enables you to continue execution from the line in the mod-
ule where the most recent PAUSE statement was executed. PROC IML issues an
automatic pause when an error occurs inside a module. If a module was paused due
to an error, the RESUME statement resumes execution immediately after the state-
ment that caused the error. The SHOW pause statement displays the current state of
all paused modules.

RETURN Statement

returns to caller

RETURN <(operand)>;

where operand is the value of the function returned. Use operand only in function
modules.

The RETURN statement causes IML to return to the calling point in a program. If a
LINK statement has been issued, IML returns to the statement following the LINK.
If no LINK statement was issued, the RETURN statement exits a module. If not in
a module, execution is stopped (as with a STOP statement), and IML looks for more
statements to parse.

The RETURN statement with an operand is used in function modules that return a
value. The operand can be a variable name or an expression. It is evaluated, and the
value is returned.

See the description of the LINK statement. Also, see Chapter 5 for details.

If you use a LINK statement, you need a RETURN statement at the place where you
want to go back to the statement after LINK.

If you are writing a function, use a RETURN to return the value of the function. Here
is an example:

start sum1(a,b);
sum=a+b;
return(sum);

finish;

ROOT Function

performs the Cholesky decomposition of a matrix

896 � Chapter 20. Language Reference

ROOT(matrix)

where matrix is a symmetric positive-definite matrix.

The ROOT function performs the Cholesky decomposition of a matrix (for example,
A) such that

U′U = A

where U is upper triangular. The matrix A must be symmetric and positive definite.

For example, consider the following statements:

xpx={25 0 5, 0 4 6, 5 6 59};
U=root(xpx);

These statements produce the following result:

U

5 0 1
0 2 3
0 0 7

If you need to solve a linear system and you already have a Cholesky decomposition
of your matrix, then use the TRISOLV function as illustrated in the following code.

b = {5, 2, 53};
/* want to solve xpx * t = b.

First solve U‘ z = b,
then solve U t = z */

z = trisolv(2,U,b);
t = trisolv(1,U,z);

The solution is as follows:

T

0
-1
1

The ROOT function performs most of its computations in the memory allocated for
returning the Cholesky decomposition.

ROWCAT Function � 897

ROWCAT Function

concatenates rows without using blank compression

ROWCAT(matrix<, rows<, columns>>);

The inputs to the ROWCAT function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows of matrix.

columns select the columns of matrix.

The ROWCAT function takes a character matrix or submatrix as its argument and
creates a new matrix with one column whose elements are the concatenation of all
row elements into a single string. If the argument has n rows and m columns, the
result will have n rows and 1 column. The element length of the result will be m
times the element length of the argument. The optional rows and columns arguments
can be used to select which rows and columns are concatenated.

For example, the following statements produce the 2× 1 matrix shown:

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcat(b);

A 2 rows 1 col (character, size 9)

ABCD EF
GH I JK

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

The form

ROWCAT(matrix, rows, columns)

returns the same result as

ROWCAT(matrix[rows, columns])

The form

ROWCAT(matrix, rows)

returns the same result as

ROWCAT(matrix[rows,])

898 � Chapter 20. Language Reference

ROWCATC Function

concatenates rows using blank compression

ROWCATC(matrix<, rows<, columns>>);

The inputs to the ROWCATC function are as follows:

matrix is a character matrix or quoted literal.

rows select the rows of matrix.

columns select the columns of matrix.

The ROWCATC function works the same way as the ROWCAT function except that
blanks in element strings are moved to the end of the concatenation. For example,
the following statements produce the matrix A as shown:

b={"ABC" "D " "EF ",
" GH" " I " " JK"};

a=rowcatc(b);

A 2 rows 1 col (character, size 9)

ABCDEF
GHIJK

Quotes (") are needed only if you want to embed blanks or special characters or to
maintain uppercase and lowercase distinctions.

RUN Statement

executes statements in a module

RUN <name> <(arguments)>;

The inputs to the RUN statement are as follows:

name is the name of a user-defined module or an IML built-in subroutine.

arguments are arguments to the subroutine. Arguments can be both local and
global.

The RUN statement executes a user-defined module or invokes PROC IML’s built-in
subroutines.

The resolution order for the RUN statement is

1. A user-defined module

2. An IML built-in function or subroutine

RZLIND Call � 899

This resolution order need only be considered if you have defined a module that has
the same name as an IML built-in subroutine. If a RUN statement cannot be resolved
at resolution time, a warning is produced. If the RUN statement is still unresolved
when executed and a storage library is open at the time, IML attempts to load a
module from that storage. If no module is found, then the program is interrupted and
an error message is generated. By default, the RUN statement tries to run the module
named MAIN.

You will usually want to supply both a name and arguments, as follows:

run myf1(a,b,c);

See Chapter 5 for further details.

RUPDT Call

update QR and Cholesky decompositions

CALL RUPDT(rup, bup, sup, r, z <, b, y <, ssq>>);

See the entry for the RDODT subroutine for details.

RZLIND Call

computes rank deficient linear least squares solutions, complete orthogonal fac-
torization, and Moore-Penrose inverses

CALL RZLIND(lindep, rup, bup, r <, sing><, b>);

The RZLIND subroutine returns the following values:

lindep is a scalar giving the number of linear dependencies that are recognized
in R (number of zeroed rows in rup[n,n]).

rup is the updated n × n upper triangular matrix R containing zero rows
corresponding to zero recognized diagonal elements in the original R.

bup is the n×pmatrix B of right-hand sides that is updated simultaneously
with R. If b is not specified, bup is not accessible.

The inputs to the RZLIND subroutine are as follows:

r specifies the n× n upper triangular matrix R. Only the upper triangle
of r is used; the lower triangle can contain any information.

sing is an optional scalar specifying a relative singularity criterion for the
diagonal elements of R. The diagonal element rii is considered zero if
rii ≤ sing‖ri‖, where ‖ri‖ is the Euclidean norm of column ri of R.
If the value provided for sing is not positive, the default value sing=
1000ε is used, where ε is the relative machine precision.

b specifies the optional n × p matrix B of right-hand sides that have to
be updated or downdated simultaneously with R.

900 � Chapter 20. Language Reference

The singularity test used in the RZLIND subroutine is a relative test using the
Euclidean norms of the columns ri of R. The diagonal element rii is considered
as nearly zero (and the ith row is zeroed out) if the following test is true:

rii ≤ sing‖ri‖, where ‖ri‖ =
√

r′iri

Providing an argument sing≤ 0 is the same as omitting the argument sing in the
RZLIND call. In this case, the default is sing= 1000ε, where ε is the relative machine
precision. If R is computed by the QR decomposition A = QR, then the Euclidean
norm of column i of R is the same (except for rounding errors) as the Euclidean norm
of column i of A.

Consider the following possible application of the RZLIND subroutine. Assume that
you want to compute the upper triangular Cholesky factor R of the n × n positive
semidefinite matrix A′A,

A′A = R′R where A ∈ Rm×n, rank(A) = r, r ≤ n ≤ m

The Cholesky factor R of a positive definite matrix A′A is unique (with the exception
of the sign of its rows). However, the Cholesky factor of a positive semidefinite
(singular) matrix A′A can have many different forms.

In the following example, A is a 12 × 8 matrix with linearly dependent columns
a1 = a2 + a3 + a4 and a1 = a5 + a6 + a7 with r = 6, n = 8, and m = 12.

a = {1 1 0 0 1 0 0,
1 1 0 0 1 0 0,
1 1 0 0 0 1 0,
1 1 0 0 0 0 1,
1 0 1 0 1 0 0,
1 0 1 0 0 1 0,
1 0 1 0 0 1 0,
1 0 1 0 0 0 1,
1 0 0 1 1 0 0,
1 0 0 1 0 1 0,
1 0 0 1 0 0 1,
1 0 0 1 0 0 1};

a = a || uniform(j(12,1,1));
aa = a‘ * a;
m = nrow(a); n = ncol(a);

Applying the ROOT function to the coefficient matrix A′A of the normal equations
generates an upper triangular matrix R1 where linearly dependent rows are zeroed
out. You can verify that A′A = R′

1R1. Here is the code:

r1 = root(aa);
ss1 = ssq(aa - r1‘ * r1);
print ss1 r1 [format=best6.];

RZLIND Call � 901

Applying the QR subroutine with column pivoting on the original matrix A yields a
different result, but you can also verify A′A = R′

2R2 after pivoting the rows and
columns of A′A. Here is the code:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
ss2 = ssq(aa[pivqr,pivqr] - r2‘ * r2);
print ss2 r2 [format=best6.];

Using the RUPDT subroutine for stepwise updating of R by the m rows of A finally
results in an upper triangular matrix R3 with n − r nearly zero diagonal elements.
However, other elements in rows with nearly zero diagonal elements can have signif-
icant values. The following statements verify that A′A = R′

3R3:

r3 = shape(0,n,n);
call rupdt(rup,bup,sup,r3,a);
r3 = rup;
ss3 = ssq(aa - r3‘ * r3);
print ss3 r3 [format=best6.];

The result R3 of the RUPDT subroutine can be transformed into the result R1 of
the ROOT function by left applications of Givens rotations to zero out the remaining
significant elements of rows with small diagonal elements. Applying the RZLIND
subroutine on the upper triangular result R3 of the RUPDT subroutine generates
a Cholesky factor R4 with zero rows corresponding to diagonal elements that are
small, giving the same result as the ROOT function (except for the sign of rows) if its
singularity criterion recognizes the same linear dependencies. Here is the code:

call rzlind(lind,r4,bup,r3);
ss4 = ssq(aa - r4‘ * r4);
print ss4 r4 [format=best6.];

Consider the rank-deficient linear least squares problem:

min
x
‖Ax− b‖2 where A ∈ Rm×n, rank(A) = r, r ≤ n ≤ m

For r = n, the optimal solution, x̂, is unique; however, for r < n, the rank-deficient
linear least squares problem has many optimal solutions, each of which has the same
least squares residual sum of squares:

ss = (Ax̂− b)′(Ax̂− b)

The solution of the full-rank problem, r = n, is illustrated in the QR call. The
following list shows several solutions to the singular problem. The following example
uses the 12×8 matrix from the preceding section and generates a new column vector
b. The vector b and the matrix A are shown in the output.

902 � Chapter 20. Language Reference

b = uniform(j(12,1,1));
ab = a‘ * b;
print b a [format=best6.];

Each entry in the following list solves the rank-deficient linear least squares problem.
Note that while each method minimizes the residual sum of squares, not all of the
given solutions are of minimum Euclidean length.

• Use the singular value decomposition of A, given by A = UDV′. Take the
reciprocals of significant singular values and set the small values of D to zero.

call svd(u,d,v,a);
t = 1e-12 * d[1];
do i=1 to n;

if d[i] < t then d[i] = 0.;
else d[i] = 1. / d[i];

end;
x1 = v * diag(d) * u‘ * b;
len1 = x1‘ * x1;
ss1 = ssq(a * x1 - b);
x1 = x1‘;
print ss1 len1, x1 [format=best6.];

The solution x̂1 obtained by singular value decomposition, x̂1 = VD−U′b/4,
is of minimum Euclidean length.

• Use QR decomposition with column pivoting:

AΠ = QR =
[

Y Z
] [R1 R2

0 0

]
= Y

[
R1 R2

]
Set the right part R2 to zero and invert the upper triangular matrix R1 to obtain
a generalized inverse R− and an optimal solution x̂2:

R− =
[

R−1
1

0

]
x̂2 = ΠR−Y′b

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr];
x2 = shape(0,n,1);
x2[pivqr] = trisolv(1,r,qtb[1:nr]) // j(lindqr,1,0.);
len2 = x2‘ * x2;
ss2 = ssq(a * x2 - b);
x2 = x2‘;
print ss2 len2, x2 [format=best6.];

Note that the residual sum of squares is minimal, but the solution x̂2 is not of
minimum Euclidean length.

• Use the result R1 of the ROOT function on page 900 to obtain the vector piv
indicating the zero rows in the upper triangular matrix R1:

RZLIND Call � 903

r1 = root(aa);
nr = n - lind;
piv = shape(0,n,1);
j1 = 1; j2 = nr + 1;
do i=1 to n;

if r1[i,i] ^= 0 then do;
piv[j1] = i; j1 = j1 + 1;

end;
else do;

piv[j2] = i; j2 = j2 + 1;
end;

end;

Now compute x̂3 by solving the equation x̂3 = R−1R−′A′b.

r = r1[piv[1:nr],piv[1:nr]];
x = trisolv(2,r,ab[piv[1:nr]]);
x = trisolv(1,r,x);
x3 = shape(0,n,1);
x3[piv] = x // j(lind,1,0.);
len3 = x3‘ * x3;
ss3 = ssq(a * x3 - b);
x3 = x3‘;
print ss3 len3, x3 [format=best6.];

Note that the residual sum of squares is minimal, but the solution x̂3 is not of
minimum Euclidean length.

• Use the result R3 of the RUPDT call on page 901 and the vector piv (obtained
in the previous solution), which indicates the zero rows of upper triangular
matrices R1 and R3. After zeroing out the rows of R3 belonging to small
diagonal pivots, solve the system x̂4 = R−1Y′b.

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
qtb = bup[piv[1:nr]];
x = trisolv(1,r4[piv[1:nr],piv[1:nr]],qtb);
x4 = shape(0,n,1);
x4[piv] = x // j(lind,1,0.);
len4 = x4‘ * x4;
ss4 = ssq(a * x4 - b);
x4 = x4‘;
print ss4 len4, x4 [format=best6.];

Since the matrices R4 and R1 are the same (except for the signs of rows), the
solution x̂4 is the same as x̂3.

• Use the result R4 of the RZLIND call in the previous solution, which is the
result of the first step of complete QR decomposition, and perform the second

904 � Chapter 20. Language Reference

step of complete QR decomposition. The rows of matrix R4 can be permuted
to the upper trapezoidal form[

R̂ T
0 0

]
where R̂ is nonsingular and upper triangular and T is rectangular. Next, per-
form the second step of complete QR decomposition with the lower triangular
matrix[

R̂′

T′

]
= Ȳ

[
R̄
0

]
which leads to the upper triangular matrix R̄.

r = r4[piv[1:nr],]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb);
x5 = q * (y // j(lind,1,0.));
len5 = x5‘ * x5;
ss5 = ssq(a * x5 - b);
x5 = x5‘;
print ss5 len5, x5 [format=best6.];

The solution x̂5 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform both steps of complete QR decomposition. The first step performs the
pivoted QR decomposition of A,

AΠ = QR = Y
[

R
0

]
= Y

[
R̂T
0

]
where R̂ is nonsingular and upper triangular and T is rectangular. The second
step performs a QR decomposition as described in the previous method. This
results in

AΠ = Y
[

R̄′ 0
0 0

]
Ȳ′

where R̄′ is lower triangular.

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,]‘;
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb[1:nr]);
x6 = shape(0,n,1);
x6[pivqr] = q * (y // j(lindqr,1,0.));
len6 = x6‘ * x6;
ss6 = ssq(a * x6 - b);
x6 = x6‘;
print ss6 len6, x6 [format=best6.];

RZLIND Call � 905

The solution x̂6 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform complete QR decomposition with the QR and LUPDT calls:

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
x7 = shape(0,n,1);
x7[pivqr] = rd‘ * qtb[1:nr,];
len7 = x7‘ * x7;
ss7 = ssq(a * x7 - b);
x7 = x7‘;
print ss7 len7, x7 [format=best6.];

The solution x̂7 obtained by complete QR decomposition has minimum
Euclidean length.

• Perform complete QR decomposition with the RUPDT, RZLIND, and LUPDT
calls:

r3 = shape(0,n,n);
qtb = shape(0,n,1);
call rupdt(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;
z = r4[piv[1:nr],piv[nr+1:n]]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
x8 = shape(0,n,1);
x8 = rd‘ * qtb[piv[1:nr],];
len8 = x8‘ * x8;
ss8 = ssq(a * x8 - b);
x8 = x8‘;
print ss8 len8, x8 [format=best6.];

The solution x̂8 obtained by complete QR decomposition has minimum
Euclidean length. The same result can be obtained with the APPCORT or
COMPORT call.

You can use various methods to compute the Moore-Penrose inverse A− of a rectan-
gular matrix A using orthogonal methods. The entries in the following list find the
Moore-Penrose inverse of the matrix A shown on page 901.

• Use the GINV operator. The GINV operator in IML uses the singular decom-
position A = UDV′. The result A− = VD−U′ should be identical to the
result given by the next solution.

906 � Chapter 20. Language Reference

ga = ginv(a);
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss1 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss1, ga [format=best6.];

• Use singular value decomposition. The singular decomposition A = UDV′

with U′U = Im, D = diag(di), and V′V = VV′ = In, can be used to
compute A− = VD†U′, with D† = diag(d†i) and

d†i =
{

0 where di ≤ ε
1/di otherwise

The result A− should be the same as that given by the GINV operator if the
singularity criterion ε is selected correspondingly. Since you cannot specify the
criterion ε for the GINV operator, the singular value decomposition approach
can be important for applications where the GINV operator uses an unsuitable
ε criterion. The slight discrepancy between the values of SS1 and SS2 is due
to rounding that occurs in the statement that computes the matrix GA.

call svd(u,d,v,a);
do i=1 to n;

if d[i] <= 1e-10 * d[1] then d[i] = 0.;
else d[i] = 1. / d[i];

end;
ga = v * diag(d) * u‘;
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss2 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss2;

• Use complete QR decomposition. The complete QR decomposition

A = Y
[

R̄′ 0
0 0

]
Ȳ′Π′

where R̄′ is lower triangular, yields the Moore-Penrose inverse

A− = ΠȲ
[

R̄−′ 0
0 0

]
Y′

ord = j(n,1,0);
call qr(q1,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
q1 = q1[,1:nr]; r = r2[1:nr,]‘;
call qr(q2,r5,piv2,lin2,r);
tt = trisolv(4,r5‘,q1‘);
ga = shape(0,n,m);
ga[pivqr,] = q2 * (tt // shape(0,n-nr,m));
t1 = a * ga; t2 = t1‘;

SAVE Statement � 907

t3 = ga * a; t4 = t3‘;
ss3 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss3;

• Use complete QR decomposition with QR and LUPDT:

ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
r = r2[1:nr,1:nr]‘; z = r2[1:nr,nr+1:n]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga[pivqr,] = rd‘ * q[,1:nr]‘;
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss4 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss4;

• Use complete QR decomposition with RUPDT and LUPDT:

r3 = shape(0,n,n);
y = i(m); qtb = shape(0,n,m);
call rupdt(rup,bup,sup,r3,a,qtb,y);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);
nr = n - lind; qtb = bup;
r = r4[piv[1:nr],piv[1:nr]]‘;
z = r4[piv[1:nr],piv[nr+1:n]]‘;
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r4[piv[1:nr],]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga = rd‘ * qtb[piv[1:nr],];
t1 = a * ga; t2 = t1‘;
t3 = ga * a; t4 = t3‘;
ss5 = ssq(t1 - t2) + ssq(t3 - t4) +

ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss5;

SAVE Statement

saves data

SAVE;

The SAVE statement forces out any data residing in output buffers for all active output
data sets and files to ensure that the data are written to disk. This is equivalent to
closing and then reopening the files.

908 � Chapter 20. Language Reference

SEQ, SEQSCALE, and SEQSHIFT Calls

perform discrete sequential tests

CALL SEQ(prob, domain <, <TSCALE=tscale><, <EPS=eps>

<, <DEN=den>>>>);

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>

<, <TSCALE=tscale><, <EPS=eps><, <DEN=den>>>>>);

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>

<, <TSCALE=tscale><, <EPS=eps><, <DEN=den>>>>>);

The SEQSHIFT subroutine returns the following values:

prob is an (m+1)×nmatrix. The [i, j] entry in the array contains the prob-
ability at the [i, j] entry of the argument domain. Also, the probability
at infinity at every level j is returned in the last entry ([m + 1, j]) of
column j. Upon a successful completion of any routine, this variable
is always returned.

gscale is a numeric variable that returns from the routine SEQSCALE and
contains the scaling of the current geometry defined by domain that
would yield a given significance level level.

shift is a numeric variable that returns from the routine SEQSHIFT and con-
tains the shift of current geometry defined by domain that would yield
a given power level plevel.

The inputs to the SEQSHIFT subroutine are as follows:

domain specifies anm×nmatrix containing the boundary points separating the
intervals of continuation/stopping of the sequential test. Each column
k contains the boundary points at level k sorted in an ascending order,
with .M and .P representing −∞ and +∞, respectively. They must
start on the first row, and any remaining entries must be filled with a
missing value. Elements that follow the missing value in any column
are ignored. The number of columns n is equal to the number of stages
present in the sequential test. The row dimension m must be even, and
it is equal to the maximum number of boundary points in a level. In
fact, domain is the tabular form of the finite boundary points. Entries
in domain with absolute values that exceed a standardized value of 8
at any level are internally reset to a standardized value of 8 or −8, de-
pending on the sign of the entry. This is reflected in the results returned
for the probabilities and the densities.

tscale specifies an optional n − 1 vector that describes the time intervals be-
tween two consecutive stages. In the absence of tscale, these time in-
tervals are internally set to 1. The IML keyword for tscale is TSCALE.

SEQ, SEQSCALE, and SEQSHIFT Calls � 909

eps specifies an optional numeric parameter for controlling the absolute
precision of the computation. In the absence of eps, the precision is
internally set to 1E−7. The IML keyword for eps is EPS.

den specifies an optional character string to describe the name of an m× n
matrix. The [i, j] entry in the matrix returns the density of the distribu-
tion at the [i, j] entry of the matrix specified by the domain argument.
The IML keyword for den is DEN.

iguess specifies an optional numeric parameter that contains an initial guess
for the variable gscale in the SEQSCALE subroutine or for the variable
mean in the SEQSHIFT subroutine. In general, very good estimates
for these initial guesses can be provided by an iterative process, and
these estimates become extremely valuable near convergence. The IML
keyword for iguess is IGUESS.

level specifies a numeric parameter in the SEQSCALE subroutine that con-
tains the required significance level to be achieved through scaling the
domain (see the description of SEQSCALE).

plevel specifies a numeric parameter in the SEQSHIFT subroutine that pro-
vides the required power level to be achieved through shifting the do-
main (see the description of SEQSHIFT).

SEQ Call

To compute the probability from a sequential test, you must specify a matrix con-
taining the boundaries. With the optional additional information concerning the time
intervals and the target accuracy, or their default values, the SEQ subroutine returns
the matrix that contains the probability and optionally returns the density from a
sequential test evaluated at each given point of the boundary. Let Cj denote the con-
tinuation set at each level j. Cj is defined to be the union at the jth level of all the
intervals bounded from below by the points with even indices 0, 2, 4, . . . and from
above by the points with odd indices 1, 3,

The SEQ call computes, with µ = 0, the densities

fj(s, µ) =
∫

Cj−1

φ(s− y, µ, tj−1)fj−1(y, µ) dy, for j = 2, 3, . . .

with

f1(s, µ) =
1√
2π

exp
[
−(s− µ)2

2

]
and

φ(s, µ, t) =
1√
2πt

exp
[
−(s− µ)2

2t

]

910 � Chapter 20. Language Reference

with the associated probability at any point a at level j to be

Pj(a, µ) =
∫

Cj−1

Φ(a− y, µ, tj)fj−1(y, µ) dy, for j = 2, 3, . . .

with

Φ(b, µ, t) =
∫ b

−∞
φ(s, µ, t) ds

The notation τ denotes the vector of time intervals t1, . . . , tn−1, and Pj(g, µ, τ) de-
notes the probability of continuation at the jth level for a given domain g, a given
mean µ, and a given time vector τ . The variance at the jth level can be calculated
from τ .

σ2
1 = 1

σ2
j+1 = σ2

j + τj , for j = 1, 2, . . .

It is important to understand the limitations that are imposed internally on the domain
by the numerical method. Any element gij will always be limited within a symmetric
interval with standardized values not to exceed 8. That is,

gij = max[min(gij , 8σj),−8σj]

SEQSCALE Call

Given a domain g, an optional time vector τ , and a probability level ps, the
SEQSCALE subroutine finds the amount of scaling s that would solve the problem

Pn(gs, 0) = ps

The result for the amount of scaling s is returned as the second argument of the
SEQSCALE subroutine, scale. Note that because of the complexity of the problem,
the SEQSCALE subroutine will not attempt to scale a domain with multiple intervals
of continuation.

For a significance level of α, set ps = 1− α.

SEQSHIFT Call

Given a geometry g, an optional time vector τ , and a power level 1 − β, the
SEQSHIFT subroutine finds the mean µ that solves µ ≥ 0 such that Pn(g, µ) = β.

Actually, a simple transformation of the variables in the sequential problem yields
the following result:

Pj(gµ, 0) = Pj(g, µ), for j = 1, 2, . . . , n

where gµ is given by gµ
ij = gij − µj.

SEQ, SEQSCALE, and SEQSHIFT Calls � 911

Many options are available with the NLP family of optimization routines, which are
described in Chapter 4, “Nonlinear Optimization Subroutines.”

Consider the following continuation intervals:

C1 = {−6, 2}
C2 = {−6, 3}
C3 = {−6, 4, 5, 6}
C4 = {−6, 4}

The following IML program computes the probability from the sequential test at each
boundary point specified in the geometry.

/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);
if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-6,2},1);
call table(m,{-6,3},2);
call table(m,{-6,4,5,6},3);
call table(m,{-6,4},4);
call seq(prob,m) eps = 1.e-8 den="density";
print m;
print prob;
print density;

The following output displays the values returned for m, prob and den, respectively.

The probability at the level k = 3 at the point x = 6 is prob[4, 3] = 0.96651, while
the density at the same point is density[4, 3] = 0.0000524.

Consider the continuation intervals

C1 = {−20, 2}
C2 = {−20, 20}
C3 = {−3, 3}

Note that the continuation at level 2 can be effectively considered infinite, and it does
not numerically affect the results of the computation at level 3. The following IML
program verifies this by using the tscale parameter to compute this problem.

reset nocenter;
/* function to insert in m the geometry column a at level k*/
start table(m,a,k);

if ncol(m) = 0 & nrow(m) = 0 then m = j(nrow(a),k,.);
if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.);

912 � Chapter 20. Language Reference

if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.);
m[1:nrow(a),k] = a;

finish;

call table(m,{-20,2},1);
call table(m,{-20,20},2);
call table(m,{-3,3},3);

/**************************************/
/* TSCALE has the default value of 1 */
/**************************************/
call seq(prob1,m) eps = 1.e-8 den="density";
print m[format=f5.] prob1[format=e12.5];

call table(mm,{-20,2},1);
call table(mm,{-3,3},2);

/* You can show a 2-step separation between the levels */
/* while dropping the intermediate level at 2 */

tscale = { 2 };
call seq(prob2,mm) eps = 1.e-8 den="density" TSCALE=tscale;
print mm[format=f5.] prob2[format=e12.5];

The values returned for the variables m and prob1 as well as mm and prob2 are
shown in the output.

Some internal limitations are imposed on the geometry. Consider the three-level case
with geometrym in the preceding code. Since the tscale variable is not specified, it is
set to its default value, (1, 1). The variance at the jth level is σ2

j = j for j = 1, 2, 3.
The first level has a lower boundary point of −20, as represented by the value of
m[1, 1]. Since the absolute standardized value is larger than 8, this point is replaced
internally by the value −8. Hence, the densities and the probabilities reported for
the first level at this point are not for the given value −20; instead, they are for the
internal value of −8. For practical purposes, this limitation is not severe since the
absolute error introduced is of the order of 10−16.

The computations performed by the first call of the SEQ subroutine can be simplified
since the second level is large enough to be considered infinite. The matrix MM
contains the first and third columns of the matrix M. However, in order to specify the
two-step separation between the levels, you must specify tscale=2.

This example verifies some of the results published in Table 3 of Pocock (1982). That
is, the following IML program verifies for the given domain that the significance level
is 0.05 and that the power is 1− β under the alternative hypothesis:

/***/
/* first check whether the numbers yield */
/* 0.95 for the alpha level */
/***/

bm ={-3.663 -2.884 -2.573 -2.375 -2.037,
-2.988 -2.537 -2.407 -2.346 -2.156,

SEQ, SEQSCALE, and SEQSHIFT Calls � 913

-2.598 -2.390 -2.390 -2.390 -2.310,
-2.446 -2.404 -2.404 -2.404 -2.396};

bplevel = { 0.5 0.25 0.1 0.05};
level = 0.95; /* this the required alpha value */
sigma = diag(sqrt(1:5)); /* global sigma matrix */

do i = 1 to 4;
m = bm[i,];
plevel = bplevel[i];
geom = (m//(-m))*sigma;

/***************************/
/* Try the null hypothesis */
/***************************/

call seq(prob,geom) eps = 1.e-10;
palpha = (prob[2,]-prob[1,])[5];

/**********************************/
/* Try the alternative hypothesis */
/**********************************/

call seqshift(prob,mean,geom,plevel);
beta = (prob[2,] -prob[1,])[5];
p = prob[3,]-prob[2,]+prob[1,];

/**********************************/
/* Number of patients per group */
/**********************************/

tn = 4*mean##2;
maxn = 5*tn;

/*************************************/
/* compute the average sample number */
/*************************************/

asn = tn *(5 - (4:0) * p‘);
summary = summary // (palpha || level || beta ||

plevel || tn || maxn ||asn);
end;
print summary[format=10.5];

Note that the variables eps and tscale have been internally set to their default values.
The following values are returned for the matrix SUMMARY:

These values compare well with the values shown in Table 3 of Pocock (1982).
Differences are of the order of 10−5.

This example shows how to verify the results in Table 1 of Wang and Tsiatis (1987).
For a given δ, the following program finds Γ that yields a symmetric continuation

914 � Chapter 20. Language Reference

interval given by

−Γjδ ≤ Cj ≤ Γjδ

with a given significance level of α:

start func(delta,k) global(level);
m = ((1:k))##delta;
mm = (-m//m);
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/
call seqscale(prob,scale,mm,level);
return(scale);

finish;

/*********************************/
/* alpha levels of 0.05 and 0.01 */
/*********************************/

blevel = {0.95 0.99};
do i = 1 to 2;

level = blevel[i];
free summary;
do delta = 0 to .7 by .1;

free row;
do k=2 to 5;

x = func(delta,k);
row = row || x;

end;
summary = summary //row;

end;
print summary[format=10.5];

end;

The value of SUMMARY for the 0.95 level is as follows.

The value for SUMMARY for the 0.99 level is as follows.

Note that since eps and tscale are not specified, they are internally set to their default
values.

This example verifies the results in Table 2 of Pocock (1977). The following program
finds Γ that yields a symmetric continuation interval given by

−Γ
√
j ≤ Cj ≤ Γ

√
j

for five groups. The overall significance level is α (the probability palpha = 1− α),
and the power is 1− β.

SEQ, SEQSCALE, and SEQSHIFT Calls � 915

%let nl = 5;
start func(plevel) global(level,scale,mean,palpha,beta,tn,asn);

m = sqrt((1: &nl));
mm = -m //m;
/*******************************/
/* meet the significance level */
/* by scaling */
/*******************************/

call seqscale(prob,scale,mm,level);
palpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
return(mean);

finish;

/****************/
/* alpha = 0.95 */
/****************/

level = 9.50000E-01;
bplevel = { 0.5 .25 .1 0.05 0.01};
free summary;
do i = 1 to 5;

summary = summary || func(bplevel[i]);
end;
print summary[format=10.5];

The value returned for SUMMARY are shown in the following table, and the entries
agree with Table 2 of Pocock (1977).

SUMMARY

0.99359 1.31083 1.59229 1.75953 2.07153

This example illustrates how to find the optimal boundary of the δ-class of Wang and
Tsiatis (1987). The δ-class boundary has the form

−Γjδ ≤ Cj ≤ Γjδ

The δ-class boundary is optimal if it minimizes the average sample number while
satisfying the required significance level α and the required power 1 − β. You can
use the following program to verify some of the results published in Tables 2 and 3
of Wang and Tsiatis (1987):

916 � Chapter 20. Language Reference

%let nl=5;
start func(delta) global(level,plevel,mean,

scale,alpha,beta,tn,asn);

m = ((1: &nl))##delta;
mm = (-m//m);

/*******************************/
/* meet the significance level */
/*******************************/

call seqscale(prob,scale,mm,level);
alpha = (prob[2,]-prob[1,])[&nl];
mm = mm *scale;

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,mm,plevel);
beta = (prob[2,]-prob[1,])[&nl];

/*************************************/
/* compute the average sample number */
/*************************************/

p = prob[3,]-prob[2,]+prob[1];
tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */
/**/

level = 0.95;
plevel = 0.01;

/***/
/* set up the controlling options of the */
/* optimization routine */
/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epsd;

/*****************************/
/* provide the initial guess */

SEQ, SEQSCALE, and SEQSHIFT Calls � 917

/* and let nlpdd do the work */
/*****************************/

delta = 0.5;
call nlpdd(rc,rx,"func",delta) opt=opt tc=tc par=par;

The following output displays the results.

Optimization Start
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 X1 -1.500000 -8.09752

Value of Objective Function = 35.232023082

Double Dogleg Optimization
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling
Gradient Computed by Finite Differences

Number of Parameter Estimates 1

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Criterion = 35.232
Max Abs Gradient Element 8.098 Radius = 1.000

Function Active Objective
Iter Restart Calls Constraints Function

1 0 3 0 34.8914
2* 0 4 0 34.8774
3* 0 5 0 34.8774

Iter difcrit maxgrad lambda slope

1 0.3406 1.644 49.273 -0.830
2* 0.0140 0.0440 0 -0.0144
3* 0.00001 0.00013 0 -1E-5

Optimization Results

918 � Chapter 20. Language Reference

Iterations 3 Function Calls 6
Gradient Calls 5 Active Constraints 0
Criterion 34.877417 Max Grad Element 0.000126832
Slope -0.0000100034 Radius 1

NOTE: FCONV convergence criterion satisfied.

Optimization Results
Parameter Estimates

N Parameter Estimate Gradient

1 X1 0.586554 -0.0001268

Value of Objective Function = 34.877416815

The optimal function value of 34.88 agrees with the entry in Table 2 of Wang and
Tsiatis (1987) for five groups, α = 0.05, and 1 − β = 0.99. Note that the variables
eps and tscale are internally set to their default values. For more information about
the NLPDD subroutine, see the section “NLPDD Call” on page 794. For details about
the opt, tc, and par arguments in the NLPDD call, see the section “Options Vector” on
page 347, the section “Termination Criteria” on page 352, and the section “Control
Parameters Vector” on page 359, respectively.

You can replicate other values in Table 2 of Wang and Tsiatis (1987) by changing
the values of the variables NL and PLEVEL. You can obtain values from Table 3 by
changing the value of the variable LEVEL to 0.99 and specifying NL and PLEVEL
accordingly.

This example illustrates how to find the boundaries that minimize ASN given the
required significance level and the required power. It replicates some of the results
published in Table 3 of Pocock (1982). The IML program computes the domain that

• minimizes the ASN

• yields a given significance level of 0.05

• yields a given power 1− β under the alternative hypothesis

The last two nonlinear conditions on the optimization process can be incorporated
as a penalty applied on the error in these nonlinear conditions. The following IML
program does the computations for a power of 0.9.

%let nl=5;
start func(m) global(level,plevel,sigma,epss,

geometry,stgeom,gscale,mean,alpha,beta,tn,asn);
m = abs(m);
mm = (-m // m)*sigma;
/*******************************/
/* meet the significance level */
/*******************************/

SEQ, SEQSCALE, and SEQSHIFT Calls � 919

call seqscale(prob,gscale,mm,level) iguess=gscale eps=epss;
stgeom = gscale*m;
geometry= mm*gscale;

alpha = (prob[2,]-prob[1,])[&nl];

/*******************************/
/* meet the power condition */
/*******************************/

call seqshift(prob,mean,geometry,plevel) iguess=mean eps=epss;
beta = (prob[2,]-prob[1,])[&nl];
p = prob[3,] - prob[2,]+prob[1,];

/*************************************/
/* compute the average sample number */
/*************************************/

tn = 4*mean##2; /* number per group */
asn = tn *(&nl - p *(%eval(&nl-1):0)‘);
return(asn);

finish;

/**/
/* set up the global variables needed by func */
/**/
epss = 1.e-8;
epso = 1.e-5;
level = 9.50000E-01;
plevel = 0.05;
sigma = diag(sqrt(1:5));

/***/
/* set up the controlling options of the */
/* optimization routine */
/***/

opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epso;

/*************************************/
/* provide the constraint matrix */
/* you need monotonically increasing */
/* significance levels */
/*************************************/

con = { ,
. ,
1 -1 . . . 1 0 ,
. 1 -1 . . 1 0 ,

920 � Chapter 20. Language Reference

. . 1 -1 . 1 0 ,

. . . 1 -1 1 0 };

/*****************************/
/* provide the initial guess */
/* and let nlp do the work */
/*****************************/

m = { 1 1 1 1 1 };
call nlpdd(rc,rx,"func",m) opt=opt blc = con tc=tc par=par;
print stgeom;

Note that while eps has been set to eps=10−8, tscale has been internally set to its
default value. You can choose to run the IML program with and without the specifi-
cation of the keyword IGUESS to see the effect on the execution time.

Note the following about the optimization process:

• Different levels of precision are imposed on different modules. In this ex-
ample, epss, which is used as the precision for the sequential tests, is 1E−8.
The absolute and relative function criteria for the objective function are set to
par[7]=1E−5 and tc[7]=1E−4, respectively. Since finite differences are used
to compute the first and second derivatives, the sequential test should be more
precise than the optimization routine. Otherwise, the finite difference estima-
tion is worthless. Optimally, if the precision of the function evaluation is O(ε),
the first- and second-order derivatives should be estimated with perturbations
O(ε

1
2) and O(ε

1
3), respectively. For example, if all three precision levels are

set to 1E−5, the optimization process does not work properly.

• Line search techniques that do not depend on the computation of the derivative
are preferable.

• The amount of printed information from the optimization routines is controlled
by opt[2] and can be set to any value between 0 and 3, with larger numbers
representing more printed output.

SEQSCALE Call

performs discrete sequential tests

CALL SEQSCALE(prob, gscale, domain, level<, <IGUESS=iguess>

<, <TSCALE=tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for the SEQ subroutine for details.

SETIN Statement � 921

SEQSHIFT Call

performs discrete sequential tests

CALL SEQSHIFT(prob, shift, domain, plevel<, <IGUESS=iguess>

<, <TSCALE=tscale><, <EPS=eps><, <DEN=den>>>>>);

See the entry for the SEQ subroutine for details.

SETDIF Function

compares elements of two matrices

SETDIF(matrix1, matrix2)

The inputs to the SETDIF function are as follows:

matrix1 is a reference matrix. Elements of matrix1 not found in matrix2 are
returned in a vector. It can be either numeric or character.

matrix2 is the comparison matrix. Elements of matrix1 not found in ma-
trix2 are returned in a vector. It can be either numeric or character,
depending on the type of matrix1.

The SETDIF function returns as a row vector the sorted set (without duplicates) of
all element values present in matrix1 but not in matrix2. If the resulting set is empty,
the SETDIF function returns a null matrix (with zero rows and zero columns). The
argument matrices and result can be either both character or both numeric. For char-
acter matrices, the element length of the result is the same as the element length of
the matrix1. Shorter elements in the second argument are padded on the right with
blanks for comparison purposes.

For example, the following statements produce the matrix C, as shown:

a={1 2 4 5};
b={3 4};
c=setdif(a,b);

C 1 row 3 cols (numeric)

1 2 5

SETIN Statement

makes a data set current for input

SETIN SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETIN statement are as follows:

922 � Chapter 20. Language Reference

SAS-data-set can be specified with a one-level name (for example, A) or a two-
level name (for example, SASUSER.A). For more information
about specifying SAS data sets, see the chapter on data sets in SAS
Language Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the current observation.

The SETIN statement chooses the specified data set from among the data sets already
opened for input by the EDIT or USE statement. This data set becomes the current
input data set for subsequent data management statements. The NOBS option is not
required. If specified, the NOBS option returns the number of observations in the data
set in the scalar variable name. The POINT option makes the specified observation
the current one. It positions the data set to a particular observation. The SHOW
datasets command lists data sets already opened for input.

In the example that follows, if the data set WORK.A has 20 observations, the variable
SIZE is set to 20. Also, the current observation is set to 10.

setin work.a nobs size point 10;
list; /* lists observation 10 */

SETOUT Statement
makes a data set current for output

SETOUT SAS-data-set <NOBS name> <POINT operand>;

The inputs to the SETOUT statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a two-
level name (for example, SASUSER.A). For more information
about specifying SAS data sets, see the chapter on SAS data sets in
SAS Language Reference: Concepts.

name is the name of a variable to contain the number of observations in
the data set.

operand specifies the observation to be made the current observation.

The SETOUT statement chooses the specified data set from among those data sets
already opened for output by the EDIT or CREATE statement. This data set becomes
the current output data set for subsequent data management statements. If specified,
the NOBS option returns the number of observations currently in the data set in the
scalar variable name. The POINT option makes the specified observation the current
one.

In the example that follows, the data set WORK.A is made the current output data set
and the fifth observation is made the current observation. The number of observations
in WORK.A is returned in the variable SIZE.

setout work.a nobs size point 5;

SHAPE Function � 923

SHAPE Function

reshapes and repeats values

SHAPE(matrix<, nrow<, ncol<, pad-value>>>)

The inputs to the SHAPE function are as follows:

matrix is a numeric or character matrix or literal.

nrow gives the number of rows of the new matrix.

ncol gives the number of columns of the new matrix.

pad-value is a fill value.

The SHAPE function shapes a new matrix from a matrix with different dimensions;
nrow specifies the number of rows, and ncol specifies the number of columns in the
new matrix. The operator works for both numeric and character operands. The three
ways of using the function are outlined in the following list:

• If only nrow is specified, the number of columns is determined as the number
of elements in the object matrix divided by nrow. The number of elements
must be exactly divisible; otherwise, a conformability error is diagnosed.

• If both nrow and ncol are specified, but not pad-value, the result is obtained
moving along the rows until the desired number of elements is obtained. The
operation cycles back to the beginning of the object matrix to get more ele-
ments, if needed.

• If pad-value is specified, the operation moves the elements of the object matrix
first and then fills in any extra positions in the result with the pad-value.

If nrow or ncol is specified as 0, the number of rows or columns, respectively, be-
comes the number of values divided by ncol or nrow.

For example, the following statement produces the result shown:

r=shape(12,3,4);

R 3 rows 4 cols (numeric)

12 12 12 12
12 12 12 12
12 12 12 12

The following statement produces the result matrix by moving along the rows until
the desired number of elements is obtained, cycling back as necessary:

r=shape(77,1,5);

Here is the output:

924 � Chapter 20. Language Reference

R 1 row 5 cols (numeric)

77 77 77 77 77

The following statement has nrow specified and converts the 3×2 matrix into a 2×3
matrix:

r=shape({1 2, 3 4, 5 6},2);

Here is the output:

R 2 rows 3 cols (numeric)

1 2 3
4 5 6

The following statement demonstrates the cycling back and repetition of elements in
row-major order until the number of elements desired is obtained:

r=shape({99 31},3,3);

Here is the output:

R 3 rows 3 cols (numeric)

99 31 99
31 99 31
99 31 99

SHOW Statement

prints system information

SHOW operands;

where operands are any of the valid operands to the SHOW statement. These are
given in the following list.

The SHOW statement prints system information. The following operands are avail-
able:

ALL shows all the information included by OPTIONS, SPACE,
DATASETS, FILES, and MODULES.

ALLNAMES behaves like NAMES, but also shows names without values.

CONTENTS shows the names and attributes of the variables in the current SAS
data set.

DATASETS shows all open SAS data sets.

SOLVE Function � 925

FILES shows all open files.

MEMORY returns the size of the largest chunk of main memory available.

MODULES shows all modules that exist in the current IML environment. A
module already referenced but not yet defined is listed as unde-
fined.

name shows attributes of the specified matrix. If the name of a matrix
is one of the SHOW keywords, then both the information for the
keyword and the matrix are shown.

NAMES shows attributes of all matrices having values. Attributes include
number of rows, number of columns, data type, and size.

OPTIONS shows current settings of all IML options (see the RESET state-
ment).

PAUSE shows the status of all paused modules that are pending resume.

SPACE shows the workspace and symbolspace size and their current usage.

STORAGE shows the modules and matrices in the current IML library storage.

WINDOWS shows all active windows opened by WINDOW statements.

An example of a valid statement follows:

show all;

SOLVE Function
solves a system of linear equations

SOLVE(A, B)

The inputs to the SOLVE function are as follows:

A is an n× n nonsingular matrix.

B is an n× p matrix.

The SOLVE function solves the set of linear equations AX = B for X. A must be
square and nonsingular.

X = SOLVE(A,B) is equivalent to using the INV function as X = INV(A) ∗ B.
However, the SOLVE function is recommended over the INV function because it is
more efficient and more accurate. An example follows:

x=solve(a,b);

The solution method used is discussed in Forsythe, Malcolm, and Moler (1967).

The SOLVE function (as well as the DET and INV functions) uses the following
criterion to decide whether the input matrix, A = [aij]i,j=1,...,n, is singular:

sing = 100×MACHEPS× max
1≤i,j≤n

|aij |

926 � Chapter 20. Language Reference

where MACHEPS is the relative machine precision.

All matrix elements less than or equal to sing are now considered rounding errors of
the largest matrix elements, so they are taken to be zero. For example, if a diagonal
or triangular coefficient matrix has a diagonal value less than or equal to sing, the
matrix is considered singular by the DET, INV, and SOLVE functions.

Previously, a much smaller singularity criterion was used, which caused algebraic
operations to be performed on values that were essentially floating-point error. This
occasionally yielded numerically unstable results. The new criterion is much more
conservative, and it generates far fewer erroneous results. In some cases, you might
need to scale the data to avoid singular matrices. If you think the new criterion is too
strong, do the following:

• Try the GINV function to compute the generalized inverse.

• Examine the size of the singular values returned by the SVD function. The
SVD function can be used to compute a generalized inverse with a user-
specified singularity criterion.

If A is an n × n matrix, the SOLVE function temporarily allocates an n2 array in
addition to the memory allocated for the return matrix.

SOLVELIN Call
solves a sparse symmetric linear system by direct decomposition

CALL SOLVELIN(x, status, A, b, method);

The SOLVELIN call returns the following values:

x is the solution to Ax = b.

status is the final status of the solution.

The inputs to the SOLVELIN call are as follows:

A is the sparse coefficient matrix in the equation Ax = b.

b is the right side of the equation Ax = b.

method is the name of the decomposition to be used.

The SOLVELIN call uses direct decomposition to solve sparse symmetric linear sys-
tems. The input matrix A represents the coefficient matrix in sparse format; it is an n
by 3 matrix, where n is the number of nonzero elements. The first column contains
the nonzero values, while the second and third columns contain the row and column
locations for the nonzero elements, respectively. SinceA is assumed to be symmetric,
only the elements on and below the diagonal should be specified, and it is an error to
specify elements above the diagonal.

The solution to the system is returned in x. Your program should also check the
returned status to make sure that a solution was found.

SORT Call � 927

status = 0 indicates success.

status = 1 indicates the matrix A is not positive-definite.

status = 2 indicates the system ran out of memory.

If the SOLVELIN call is unable to solve your system, you can try the iterative method
call ITSOLVER.

Two different factorization methods are available from the call, Cholesky and
Symbolic LDL, specified as ’CHOL’ or ’LDL’ with the method parameter. Both
these factorizations are applicable only to positive-definite symmetric systems; if
your system is not positive-definite or not symmetric, you can use an ITSOLVER
call.

The following example uses SOLVELIN to solve the system:

3 1.1 0 0
1.1 4 1 3.2
0 1 10 0
0 3.2 0 3

x =

1
1
1
1

/* value row column */
A = { 3 1 1,

1.1 2 1,
4 2 2,
1 3 2,
3.2 4 2,

10 3 3,
3 4 4};

/* right hand side */
b = {1, 1, 1, 1};

call solvelin(x, status, A, b, ’LDL’);

print status x;

The results are as follows:

STATUS X

0 2.68
-6.4
0.74
7.16

SORT Call

sorts a matrix by specified columns

928 � Chapter 20. Language Reference

CALL SORT(matrix, by<, descend >)

The inputs to the SORT call are as follows:

matrix is the input matrix, which is sorted in place by the call.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed to matrix by a MATTRIB statement or READ statement.

descend is an optional matrix, indicating which columns, if any, should be de-
scending order. Any by columns not specified as descending will be
ascending. If descend = by, then all by columns will be descending;
if descend is skipped or is a null matrix, then all by columns will be
ascending.

The SORT call is used to sort a matrix, rearranging its rows according to the columns
and order determined by the by and descend inputs. Because the sort is done in
place, very little additional memory space is required. The SORT call is not as
fast as the SORTNDX call for matrices with large rows. After a matrix has been
sorted, the unique combinations of values in the by columns can be obtained from the
UNIQUEBY function.

For example, the following statements produce the matrix M, as shown:

m = { 1 1 0,
2 2 0,
1 1 1,
2 2 2};

call sort(m, {1 3}, {3});

M

1 1 1
1 1 0
2 2 2
2 2 0

SORT Statement

sorts a SAS data set

SORT <DATA=>SAS-data-set <OUT=SAS-data-set>

BY <DESCENDING> variables;

where you can use the following clauses with the SORT statement:

DATA=SAS-data-set names the SAS data set to be sorted. It can be speci-
fied with a one-level name (for example, A) or a two-level
name (for example, SASUSER.A). For more information

SORTNDX Call � 929

about specifying SAS data sets, see the chapter on SAS
data sets in SAS Language Reference: Concepts. Note that
the DATA= portion of the specification is optional.

OUT=SAS-data-set specifies a name for the output data set. If this clause is
omitted, the DATA= data set is sorted and the sorted ver-
sion replaces the original data set.

BY variables specifies the variables to be sorted. A BY clause must be
used with the SORT statement.

DESCENDING specifies the variables are to be sorted in descending order.

The SORT statement sorts the observations in a SAS data set by one or more vari-
ables, stores the resulting sorted observations in a new SAS data set, or replaces the
original. As opposed to all other IML data processing statements, it is mandatory that
the data set to be sorted be closed prior to the execution of the SORT statement.

The SORT statement first arranges the observations in the order of the first variable
in the BY clause; then it sorts the observations with a given value of the first variable
by the second variable, and so forth. Every variable in the BY clause can be preceded
by the keyword DESCENDING to denote that the variable that follows is to be sorted
in descending order. Note that the SORT statement in IML always retains the same
relative positions of the observations with identical BY variable values.

For example, the following IML statement sorts the SAS data set CLASS by the
variables AGE and HEIGHT, where AGE is sorted in descending order, and all ob-
servations with the same AGE value are sorted by HEIGHT in ascending order:

sort class out=sclass by descending age height;

The output data set SCLASS contains the sorted observations. When a data set is
sorted in place (without the OUT= clause) any indexes associated with the data set
become invalid and are automatically deleted.

Note that all the clauses of the SORT statement must be specified in the order given
in the preceding list.

SORTNDX Call

creates an index to reorder a matrix by specified columns

CALL SORTNDX(index, matrix, by<, descend >)

The SORTNDX call returns the following value:

index is a vector such that index[i] is the row index of the ith element of
matrix when sorted according to by and descend. Consequently, ma-
trix[index,] is the sorted matrix.

The inputs to the SORTNDX call are as follows:

930 � Chapter 20. Language Reference

matrix is the input matrix, which is not modified by the call.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed to matrix by a MATTRIB statement or READ statement.

descend is an optional matrix, indicating which columns, if any, should be de-
scending order. Any by columns not specified as descending will be
ascending. If descend = by, then all by columns will be descending;
if descend is skipped or is a null matrix, then all by columns will be
ascending.

The SORTNDX call can be used to process the rows of a matrix in different sorted
order, without having to actually modify it.

For example, the following statements result in the output shown:

m = { 1 1 0,
2 0 0,
1 3 1,
2 2 2 };

call SORTNDX(ndx, m, {1 3}, {3});

NDX

3
1
4
2

The matrix can be physically sorted with the SORT call), as follows:

call SORTNDX(ndx, m, by);
m = m[ndx,];

The SORTNDX call can be used with the UNIQUEBY function to extract the unique
combinations of values in the by columns.

SOUND Call

produces a tone

CALL SOUND(freq<, dur>);

The inputs to the SOUND subroutine are as follows:

freq is a numeric matrix or literal giving the frequency in hertz.

dur is a numeric matrix or literal giving the duration in seconds. Note that the
dur argument differs from that in the DATA step.

SPLINE and SPLINEC Calls � 931

The SOUND subroutine generates a tone using freq for frequency (in hertz) and dur
for duration (in seconds). Matrices can be specified for frequency and duration to
produce multiple tones, but if both arguments are nonscalar, then the number of el-
ements must match. The duration argument is optional and defaults to 0.25 (one
quarter second).

For example, the following statements produce tones from an ascending musical
scale, all with a duration of 0.2 seconds:

notes=400#(2##do(0, 1, 1/12));
call sound(notes,0.2);

SPLINE and SPLINEC Calls

provide cubic spline fits

CALL SPLINE(fitted, data<, smooth><, delta><, nout>

<, type><, slope>);

CALL SPLINEC(fitted, coeff, endSlopes, data<, smooth><, delta>

<, nout><, type><, slope>);

The SPLINE subroutine is the same as SPLINEC but does not return the matrix of
spline coefficients needed to call SPLINEV, nor does it return the slopes at the end-
points of the curve.

The SPLINEC subroutine returns the following values:

fitted is an n× 2 matrix of fitted values.

coeff is an n × 5 (or n × 9) matrix of spline coefficients. The matrix con-
tains the cubic polynomial coefficients for the spline for each interval.
Column 1 is the left endpoint of the x-interval for the regular (nonpara-
metric) spline or the left endpoint of the parameter for the parametric
spline. Columns 2 − 5 are the constant, linear, quadratic, and cubic
coefficients, respectively, for the x-component. If a parametric spline
is used, then columns 6− 9 are the constant, linear, quadratic, and cu-
bic coefficients, respectively, for the y-component. The coefficients for
each interval are with respect to the variable x− xi where xi is the left
endpoint of the interval and x is the point of interest. The matrix coeff
can be processed to yield the integral or the derivative of the spline.
This, in turn, can be used with the SPLINEV function to evaluate the
resulting curves. The SPLINEC call returns coeff.

endSlopes is a 1× 2 matrix containing the slopes of the two ends of the curve ex-
pressed as angles in degrees. The SPLINEC call returns the endSlopes
argument.

The inputs to the SPLINEC subroutine are as follows:

932 � Chapter 20. Language Reference

data specifies a n×2 (or n×3) matrix of (x, y) points on which the spline is
to be fit. The optional third column is used to specify a weight for each
data point. If smooth > 0, the weight column is used in calculations. A
weight ≤ 0 causes the data point to be ignored in calculations.

smooth is an optional scalar specifying the degree of smoothing to be used. If
smooth is omitted or set equal to 0, then a cubic interpolating spline is
fit to the data. If smooth > 0, then a cubic spline is used. Larger values
of smooth generate more smoothing.

delta is an optional scalar specifying the resolution constant. If delta is spec-
ified, the fitted points are spaced by the amount delta on the scale of
the first column of data if a regular spline is used or on the scale of the
curve length if a parametric spline is used. If both nout and delta are
specified, nout is used and delta is ignored.

nout is an optional scalar specifying the number of fitted points to be com-
puted. The default is nout=200. If nout is specified, then nout equally
spaced points are returned. The nout argument overrides the delta ar-
gument.

type is an optional 1× 1 (or 1× 2) character matrix or quoted literal giving
the type of spline to be used. The first element of type should be one of
the following:

• periodic, which requests periodic endpoints
• zero, which sets second derivatives at endpoints to 0

The type argument controls the endpoint constraints unless the slope
argument is specified. If periodic is specified, the response values
at the beginning and end of column 2 of data must be the same unless
the smoothing spline is being used. If the values are not the same, an
error message is printed and no spline is fit. The default value is zero.
The second element of type should be one of the following.

• nonparametric, which requests a nonparametric spline
• parametric, which requests a parametric spline

If parametric is specified, a parameter sequence {ti} is formed as
follows: t1 = 0 and

ti = ti−1 +
√

(xi − xi−1)2 + (yi − yi−1)2

Splines are then fit to both the first and second columns of data. The
resulting splined values are paired to form the output. Changing the
relative scaling of the first two columns of data changes the output
because the sequence {ti} assumes Euclidean distance.

Note that if the points are not arranged in strictly ascending order by
the first columns of data, then a parametric method must be used. An
error message results if the nonparametric spline is requested.

SPLINE and SPLINEC Calls � 933

slope is an optional 1×2 matrix of endpoint slopes given as angles in degrees.
If a parametric spline is used, the angle values are used modulo 360. If
a nonparametric spline is used, the tangent of the angles is used to set
the slopes (that is, the effective angles range from −90 to 90 degrees).

Refer to Stoer and Bulirsch (1980), Reinsch (1967), and Pizer (1975) for descrip-
tions of the methods used to fit the spline. For simplicity, the following explanation
assumes that the data matrix does not contain a weighting column.

Nonparametric splines can be used to fit data for which you believe there is a func-
tional relationship between the X and Y variables. The unique values of X (stored in
the first column of data) form a partition {a = x1 < x2 < · · · < xn = b} of the
interval [a, b]. You can use a spline to interpolate the data (produce a curve that passes
through each data point) provided that there is a single Y value for each X value. The
spline is created by constructing cubic polynomials on each subinterval [xi, xi+1] so
that the value of the cubic polynomials and their first two derivatives coincide at each
xi.

An interpolating spline is not uniquely determined by the set of Y values. To achieve
a unique interpolant, S, you must specify two constraints on the endpoints of the
interval [a, b]. You can achieve uniqueness by specifying one of the following condi-
tions:

• S′′(a) = 0, S′′(b) = 0. The second derivative at both endpoints is zero. This is
the default condition, but can be explicitly set by using type=’zero’.

• Periodic conditions. If your data are periodic so that x1 can be identified with
xn, and if y1 = yn, then the interpolating spline already satisfies S(a) = S(b).
Setting type=’periodic’ further requires that S′(a) = S′(b) and S′′(a) =
S′′(b).

• Fixed slopes at endpoints. Setting slope={y′1, y′n} requires that S′(a) = y′1
and S′(b) = y′n.

The following code gives three examples of computing an interpolating spline for
data. Note that the first and last Y values are the same, so you can ask for a periodic
spline.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };

/* Compute three spline interpolants of the data */
/* (1) a cubic spline with type=zero (the default) */
call spline(fitted,data);

/* (2) A periodic spline */
call spline(periodicFitted,data) type=’periodic’;

/* (3) A spline with specific slopes at endpoints */
call spline(slopeFitted,data) slope={45 30};

934 � Chapter 20. Language Reference

You can also use a spline to smooth data. In general, a smoothing spline will not pass
through any data pair exactly. A very small value of the smooth smoothing parameter
will approximate an interpolating polynomial for data in which each unique X value
is assigned the mean of the Y values corresponding to that X value. As the smooth
parameter gets very large, the spline will approximate a linear regression.

The following code computes two smoothing splines for the same data as in the pre-
vious example. The spline coefficients are passed to the SPLINEV function which
evaluates the smoothing spline at the original X values. Note that the smoothing
spline does not pass through the original Y values. Note also that the smoothing pa-
rameter for the periodic spline is smaller, so the periodic spline has more “wiggles”
than the corresponding spline with the larger smoothing parameter.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };

/* Compute spline smoothers of the data. */
call splinec(fitted,coeff,endSlopes,data) smooth=1;

/* Evaluate the smoother at the original X positions */
smoothFit = splinev(coeff, data[,1]);

/* Compute periodic spline smoother of the data. */
call splinec(fitted,coeff,endSlopesP,data)

smooth=0.1 type=’periodic’;

/* Evaluate the smoother at the original X positions */
smoothPeriodicFit = splinev(coeff, data[,1]);

/* Compare the two fits. Verify that the periodic
spline has identical slopes at the end points. */

print smoothFit smoothPeriodicFit, endSlopesP;

SMOOTHFIT SMOOTHPERIODICFIT

0 4.4761214 0 4.7536432
1 4.002489 1 3.5603915
2 4.2424509 2 4.3820561
3 4.8254655 3 4.47148
4 5.7817386 4 5.8811872
5 6.3661254 5 6.8331581
6 6.0606327 6 6.1180839
7 5.2449764 7 4.7536432

ENDSLOPESP

-58.37255 -58.37255

A parametric spline can be used to interpolate or smooth data for which there does
not seem to be a functional relationship between the X and Y variables. A partition
{ti} is formed as explained in the documentation for the type parameter. Splines are
then used to fit the X and Y values independently.

SPLINE and SPLINEC Calls � 935

The following program fits a parametric curve to data that is shaped like an “S.” The
variable fitted is returned as a numParam ×2 matrix that contains the ordered pairs
corresponding to the parametric spline. These ordered pairs correspond to numParam
evenly spaced points in the domain of the parameter t.

The purpose of the SPLINEV function is to evaluate (or score) an interpolating or
smoothing spline at an arbitrary set of points. The following program shows how
to construct the parameters corresponding to the original data by using the formula
specified in the documentation for the type argument. These parameters are used to
construct the evenly spaced parameters corresponding to the data in the fitted matrix.

data = {3 7, 2 7, 1 6, 1 5, 2 4, 3 3, 3 2, 2 1, 1 1};

/* Compute parametric spline interpolant */
numParam = 20;
call splinec(fitted,coeff,endSlopes,data)

nout=numParam type={’zero’ ’parametric’};

/* Form the parameters mapped onto the data */
/* Evaluating the splines at t would return data */
t = j(nrow(data),1,0); /* first parameter is zero */
do i = 2 to nrow(t);

t[i] = t[i-1] + sqrt((data[i,1]-data[i-1,1])##2 +
(data[i,2]-data[i-1,2])##2);

end;

/* construct numParam evenly-spaced parameters
between 0 and t[nrow(t)] */

params = do(0, t[nrow(t)], t[nrow(t)]/(numParam-1))‘;

/* evaluate the parametric spline at these points */
xy = splinev(coeff, params);
print params fitted xy;

The output from this program is as follows:

PARAMS FITTED XY

0 3 7 3 7
0.6897753 2.3002449 7.0492667 2.3002449 7.0492667
1.3795506 1.6566257 6.8416091 1.6566257 6.8416091
2.0693259 1.1581077 6.3289203 1.1581077 6.3289203
2.7591012 0.9203935 5.6475064 0.9203935 5.6475064
3.4488765 1.0128845 4.9690782 1.0128845 4.9690782
4.1386518 1.4207621 4.4372889 1.4207621 4.4372889
4.8284271 2 4 2 4
5.5182024 2.5792379 3.5627111 2.5792379 3.5627111
6.2079777 2.9871155 3.0309218 2.9871155 3.0309218
6.897753 3.0796065 2.3524936 3.0796065 2.3524936

7.5875283 2.8418923 1.6710797 2.8418923 1.6710797

936 � Chapter 20. Language Reference

8.2773036 2.3433743 1.1583909 2.3433743 1.1583909
8.9670789 1.6997551 0.9507333 1.6997551 0.9507333
9.6568542 1 1 1 1

Attempting to evaluate a spline outside of its domain of definition will result in a
missing value. For example, the following code defines a spline on the interval [0, 7].
Attempting to evaluate the spline at points outside of this interval (−1 or 20) results
in missing values.

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
call splinec(fitted,coeff,endSlopes,data) slope={45 45};
v = splinev(coeff,{-1 1 2 3 3.5 4 20});
print v;

V

-1 .
1 3
2 5
3 4

3.5 4.7073171
4 6
20 .

One use of splines is to estimate the integral of a function that is known only by its
value at a discrete set of points. Many people are familiar with elementary methods of
numerical integration such as the Left-Hand Rule, the Trapezoid Rule, and Simpson’s
Rule. In the Left-Hand Rule, the integral of discrete data is estimated by the exact
integral of a piecewise constant function between the data. In the Trapezoid Rule, the
integral is estimated by the exact integral of a piecewise linear function connecting the
data. In Simpson’s Rule, the integral is estimated as the exact integral of a piecewise
quadratic function between the data points.

Since a cubic spline is a sequence of cubic polynomials, it is possible to compute the
exact integral of the cubic spline and use this as an estimate for the integral of the
discrete data. The next example takes a function defined by discrete data and finds
the integral and the first moment of the function.

The implementation of the integrand function (fcheck) uses a useful trick to eval-
uate a spline at a single point. Note that if you pass in a scalar argument to the
SPLINEV function, you get back a vector that represents the evaluation of the spline
along evenly spaced points. To get around this, the function evaluates the spline at
the vector x // x and then takes the entry in the first row, second column. This
number is the value of the spline evaluated at x. Here is the code:

x = { 0, 2, 5, 7, 8, 10 };
y = x + 0.1*sin(x);
a = x || y;
call splinec(fit,coeff,endSlopes,a);

start fcheck(x) global(coeff,pow);
/* The first column of v contains the points of evaluation

SPLINE and SPLINEC Calls � 937

while the second column contains the evaluation. */
v = x##pow # splinev(coeff,x //x)[1,2];
return(v);

finish;

/* use QUAD to integrate */
start moment(po) global(coeff,pow);

pow = po;
call quad(z,’fcheck’,coeff[,1]) eps = 1.e-10;
v1 = sum(z);
return(v1);

finish;

mass = moment(0); /* to compute the mass */
mass = mass //

(moment(1)/mass) // /* to compute the mean */
(moment(2)/mass) ; /* to compute the meansquare */

print mass;

/* Check the computation by using Gauss-Legendre integration: this
is good for moments up to maxng. */

gauss = {
-9.3246951420315205e-01
-6.6120938646626448e-01
-2.3861918608319743e-01
2.3861918608319713e-01
6.6120938646626459e-01
9.3246951420315183e-01,
1.713244923791701e-01
3.607615730481388e-01
4.679139345726905e-01
4.679139345726904e-01
3.607615730481389e-01
1.713244923791707e-01 };

ngauss = ncol(gauss);
maxng = 2*ngauss-4;

start moment1(pow) global(coeff,gauss,ngauss,maxng);
if pow < maxng then do;

nrow = nrow(coeff);
ncol = ncol(coeff);
left = coeff[1:nrow-1,1];
right = coeff[2:nrow,1];
mid = 0.5*(left+right);
interv = 0.5*(right - left);
/* scale the weights on each interval */
wgts = shape(interv*gauss[2,],1);
/* scale the points on each interval */
pts = shape(interv*gauss[1,] + mid * repeat(1,1,ngauss),1) ;
/* evaluate the function */
eval = splinev(coeff,pts)[,2]‘;
mat = sum (wgts#pts##pow#eval);

end;
return(mat);

finish;

mass = moment1(0); /* to compute the mass */
mass = mass // (moment1(1)/mass) // (moment1(2)/mass) ;

938 � Chapter 20. Language Reference

print mass; /* should agree with earlier result */

The program prints the following results:

MASS

50.204224
6.658133
49.953307

MASS

50.204224
6.658133
49.953307

SPLINEV Function

provides cubic spline evaluations

SPLINEV(coeff<, delta<, nout>>)

The SPLINEV function returns a two-column matrix containing the points of evalua-
tion in the first column and the corresponding fitted values of the spline in the second
column.

The inputs to the SPLINEV function are as follows:

coeff is an n × 5 (or n × 9) matrix of spline coefficients, as returned by the
SPLINEC Call. The coeff argument should not contain missing values.

delta is an optional vector specifying evaluation points. If delta is a scalar,
the spline is evaluated at equally spaced points delta apart. If delta is
a vector arranged in ascending order, the spline is evaluated at each of
these values. Evaluation at a point outside the support of the spline re-
sults in a missing value in the output. If you specify the delta argument,
you cannot specify the nout argument.

nout is an optional scalar specifying the number of fitted points desired. The
default is nout=200. If you specify the nout argument, you cannot spec-
ify the delta argument.

See the section “SPLINE and SPLINEC Calls” on page 931 for details and examples.

SQRSYM Function � 939

SPOT Function

calculates a column vector of spot rates given vectors of forward rates and times

SPOT(times,forward–rates)

The SPOT function returns an n× 1 vector of (per-period) spot rates.

times is an n × 1 column vector of times in consistent units. Elements
should be nonnegative.

forward–rates is an n×1 column vector of corresponding (per-period) forward rates.
Elements should be positive.

The SPOT function transforms the given spot rates as

s1 = f1

si =
(
Πj=i

j=1(1 + fj)tj−tj−1

) 1
ti − 1; i = 2, . . . , n

where, by convention, t0 = 0.

For example, the following code produces the output shown:

time=T(do(1,5,1));
forward=T(do(0.05,0.09,0.01));
spot=spot(time,forward);
print spot;

SPOT

0.05
0.0549882
0.0599686
0.0649413
0.0699065

SQRSYM Function

converts a symmetric matrix to a square matrix

SQRSYM(matrix)

where matrix is a symmetric numeric matrix.

The SQRSYM function takes a matrix such as those generated by the SYMSQR
function and transforms it back into a square matrix. The elements of the argument
are unpacked into the lower triangle of the result and reflected across the diagonal
into the upper triangle.

For example, consider the following two statements, which are equivalent:

940 � Chapter 20. Language Reference

sqr=sqrsym(symsqr({1 2, 3 4}));

sqr=sqrsym({ 1, 3, 4});

Both statements produce the following result:

SQR 2 rows 2 cols (numeric)

1 3
3 4

SQRT Function

calculates the square root
SQRT(matrix)

where matrix is a numeric matrix or literal.

The SQRT function is the scalar function returning the positive square roots of each
element of the argument. An example of a valid statement follows.

a = { 1 2 3 4 };
c=sqrt(a);
print c;

C

1 1.4142136 1.7320508 2

SSQ Function

calculates the sum of squares of all elements

SSQ(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric matrix or literal.

The SSQ function returns as a single numeric value the (uncorrected) sum of squares
for all the elements of all arguments. You can specify as many as 15 numeric argu-
ment matrices.

The SSQ function checks for missing arguments and does not include them in the
accumulation. If all arguments are missing, the result is 0.

An example of a valid statement follows:

a={1 2 3, 4 5 6};
x=ssq(a);

START and FINISH Statements

define a module

STOP Statement � 941

START <name> <(arguments)> <GLOBAL(arguments)>;

module statements;

FINISH <name>;

The inputs to the START and FINISH statements are as follows:

name is the name of a user-defined module.

arguments are names of variable arguments to the module. Arguments
can be either input variables or output (returned) variables.
Arguments listed in the GLOBAL clause are treated as global
variables. Otherwise, the arguments are local.

module statements are statements making up the body of the module.

The START statement instructs IML to enter a module-collect mode to collect the
statements of a module rather than execute them immediately. The FINISH statement
signals the end of a module. Optionally, the FINISH statement can take the module
name as its argument. When no name argument is given in the START statement, the
module name MAIN is used by default. If an error occurs during module compilation,
the module is not defined. See Chapter 5 for details.

The following example defines a module named MYMOD that has two local variables
(A and B) and two global variables (X and Y). The module creates the variable Y from
the arguments A, B, and X.

start mymod(a,b) global(x,y);
y=a*x+b;

finish;

STOP Statement

stops execution of statements

STOP;

The STOP statement stops the IML program, and no further matrix statements are
executed. However, IML continues to execute if more statements are entered. See
also the descriptions of the RETURN and ABORT statements.

If IML execution was interrupted by a PAUSE statement or by a break, the STOP
statement clears all the paused states and returns to immediate mode.

IML supports STOP processing of both regular and function modules.

942 � Chapter 20. Language Reference

STORAGE Function

lists names of matrices and modules in storage

STORAGE();

The STORAGE function returns a matrix of the names of all of the matrices and
modules in the current storage library. The result is a character vector with each
matrix or module name occupying a row. Matrices are listed before modules. The
SHOW storage command separately lists all of the modules and matrices in storage.

For example, the following statements reset the current library storage to MYLIB and
then print a list of the modules and matrices in storage:

reset storage="MYLIB";

Issue the following command to get the resulting matrix:

a=storage();
print a;

STORE Statement

stores matrices and modules in library storage

STORE <MODULE=(module-list)> <matrix-list>;

The inputs to the STORE statement are as follows.

module-list is a list of module names.

matrix-list is a list of matrix names.

The STORE statement stores matrices or modules in the storage library. For example,
the following statement stores the modules A, B, and C and the matrix X:

store module=(A B C) X;

The special operand –ALL– can be used to store all matrices or all modules. For
example, the following statement stores all matrices and modules:

store _all_ module=_all_;

The storage library can be specified by using the RESET storage command and de-
faults to WORK.IMLSTOR. The SHOW storage command lists the current contents
of the storage library. The following statement stores all matrices:

store;

See Chapter 14, “Storage Features,” and also the descriptions of the LOAD,
REMOVE, RESET, and SHOW statements for related information.

SUM Function � 943

SUBSTR Function

takes substrings of matrix elements

SUBSTR(matrix, position<, length>)

The inputs to the SUBSTR function are as follows:

matrix is a character matrix or quoted literal.

position is a numeric matrix or scalar giving the starting position.

length is a numeric matrix or scalar giving the length of the substring.

The SUBSTR function takes a character matrix as an argument along with starting
positions and lengths and produces a character matrix with the same dimensions as
the argument. Elements of the result matrix are substrings of the corresponding argu-
ment elements. Each substring is constructed by using the starting position supplied.
If a length is supplied, this length is the length of the substring. If no length is sup-
plied, the remainder of the argument string is the substring.

The position and length arguments can be scalars or numeric matrices. If position or
length is a matrix, its dimensions must be the same as the dimensions of the argument
matrix or submatrix. If either one is a matrix, its values are applied to the substringing
of the corresponding elements of the matrix. If length is supplied, the element length
of the result is MAX(length); otherwise, the element length of the result is

NLENG(matrix)−MIN(position) + 1

The following statements return the output shown:

B={abc def ghi, jkl mno pqr};
a=substr(b,3,2);

A 2 rows 3 cols (character, size 2)

C F I
L O R

The element size of the result is 2; the elements are padded with blanks.

SUM Function

sums all elements

SUM(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric matrix or literal.

The SUM function returns as a single numeric value the sum of all the elements in
all arguments. There can be as many as 15 argument matrices. The SUM function

944 � Chapter 20. Language Reference

checks for missing values and does not include them in the accumulation. It returns
0 if all values are missing.

For example, consider the following statements:

a={2 1, 0 -1};
b=sum(a);

These statements return the following scalar:

B 1 row 1 col (numeric)

2

SUMMARY Statement

computes summary statistics for SAS data sets

SUMMARY <CLASS operand> <VAR operand> <WEIGHT operand>

<STAT operand> <OPT operand> <WHERE(expression)>;

where the operands used by most clauses take either a matrix name, a matrix literal,
or an expression yielding a matrix name or value. A discussion of the clauses and
operands follows.

The SUMMARY statement computes statistics for numeric variables for an entire
data set or a subset of observations in the data set. The statistics can be stratified
by the use of CLASS variables. The computed statistics are displayed in tabular
form and optionally can be saved in matrices. Like most other IML data processing
statements, the SUMMARY statement works on the current data set.

The following options are available with the SUMMARY statement:

CLASS operand
specifies the variables in the current input SAS data set to be used to group the sum-
maries. The operand is a character matrix containing the names of the variables, for
example:

summary class { age sex} ;

Both numeric and character variables can be used as CLASS variables.

VAR operand

calculates statistics for a set of numeric variables from the current input data set. The
operand is a character matrix containing the names of the variables. Also, the special
keyword –NUM– can be used as a VAR operand to specify all numeric variables. If
the VAR clause is missing, the SUMMARY statement produces only the number of
observations in each class group.

SUMMARY Statement � 945

WEIGHT operand
specifies a character value containing the name of a numeric variable in the current
data set whose values are to be used to weight each observation. Only one variable
can be specified.

STAT operand
computes the statistics specified. The operand is a character matrix containing the
names of statistics. For example, to get the mean and standard deviation, specify the
following:

summary stat{mean std};

The following list describes the keywords that can be specified as the STAT operand:

CSS computes the corrected sum of squares.

MAX computes the maximum value.

MEAN computes the mean.

MIN computes the minimum value.

N computes the number of observations in the subgroup used in the
computation of the various statistics for the corresponding analysis
variable.

NMISS computes the number of observations in the subgroup having miss-
ing values for the analysis variable.

STD computes the standard deviation.

SUM computes the sum.

SUMWGT computes the sum of the WEIGHT variable values if WEIGHT is
specified; otherwise, IML computes the number of observations
used in the computation of statistics.

USS computes the uncorrected sum of squares.

VAR computes the variance.

When the STAT clause is omitted, the SUMMARY statement computes these statis-
tics for each variable in the VAR clause:

• MAX

• MEAN

• MIN

• STD

Note that NOBS, the number of observations in each CLASS group, is always given.

OPT operand
sets the PRINT or NOPRINT and SAVE or NOSAVE options. The NOPRINT option

946 � Chapter 20. Language Reference

suppresses the printing of the results from the SUMMARY statement. The SAVE op-
tion requests that the SUMMARY statement save the resultant statistics in matrices.
The operand is a character matrix containing one or more of the options.

When the SAVE option is set, the SUMMARY statement creates a CLASS vector for
each CLASS variable, a statistic matrix for each analysis variable, and a column vec-
tor named –NOBS–. The CLASS vectors are named by the corresponding CLASS
variable and have an equal number of rows. There are as many rows as there are sub-
groups defined by the interaction of all CLASS variables. The statistic matrices are
named by the corresponding analysis variable. Each column of the statistic matrix
corresponds to a statistic requested, and each row corresponds to the statistics of the
subgroup defined by the CLASS variables. If no CLASS variable has been specified,
each statistic matrix has one row, containing the statistics of the entire population.
The –NOBS– vector contains the number of observations for each subgroup.

The default is PRINT NOSAVE.

WHERE expression
conditionally selects observations, within the range specification, according to con-
ditions given in expression. The general form of the WHERE clause is

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

SVD Call � 947

= ? =: =*

Logical expressions can be specified within the WHERE clause, by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

See Chapter 6 for an example that uses the SUMMARY statement.

SVD Call

computes the singular value decomposition

CALL SVD(u, q, v, a);

In the SVD subroutine:

a is the input matrix that is decomposed as described in the following
discussion.

u, q, and v are the returned decomposition matrices.

The SVD subroutine decomposes a real m× n matrix A (where m is greater than or
equal to n) into the form

A = U ∗ diag(Q) ∗V′

where

U′U = V′V = VV′ = In

and Q contains the singular values of A. U is m× n, Q is n× 1, and V is n× n.

When m is greater than or equal to n, U consists of the orthonormal eigenvectors of
AA′, and V consists of the orthonormal eigenvectors of A′A. Q contains the square
roots of the eigenvalues of A′A and AA′, except for some zeros.

If m is less than n, a corresponding decomposition is done where U and V switch
roles:

A = U ∗ diag(Q) ∗V′

948 � Chapter 20. Language Reference

but

U′U = UU′ = V′V = Iw

The singular values are sorted in descending order.

For information about the method used in the SVD subroutine, refer to Wilkinson
and Reinsch (1971). Consider the following example (Wilkinson and Reinsch 1971,
p. 149):

a={22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,
9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2};

call svd(u,q,v,a);
reset fuzz; /* print small numbers as zero */
zero = ssq(a - u*diag(q)*v‘);

The matrix is rank-3 with exact singular values
√

1248, 20,
√

384, 0, and 0. Because
of the repeated singular values, the last two columns of the U matrix are not uniquely
determined. A valid result is the following:

U 8 rows 5 cols (numeric)

0.7071068 0.1581139 -0.176777 -0.212785 -0.560643
0.5303301 0.1581139 0.3535534 0.0801354 0.3127085
0.1767767 -0.790569 0.1767767 0.486821 -0.155628

0 0.1581139 0.7071068 0.1118328 -0.175184
0.3535534 -0.158114 0 -0.082888 0.348706
0.1767767 0.1581139 -0.53033 0.5984857 0.1586763

0 0.4743416 0.1767767 0.4882498 0.1463314
0.1767767 -0.158114 0 -0.308798 0.6039844

Q 5 rows 1 col (numeric)

35.327043
20

19.595918
1.113E-15
5.079E-16

V 5 rows 5 cols (numeric)

0.8006408 0.3162278 -0.288675 -0.419095 0
0.4803845 -0.632456 0 0.4405091 0.4185481
0.1601282 0.3162278 0.8660254 -0.052005 0.3487901

0 0.6324555 -0.288675 0.6760591 0.244153

SWEEP Function � 949

0.3202563 0 0.2886751 0.4129773 -0.802217

The SVD routine performs most of its computations in the memory allocated for
returning the singular value decomposition.

SWEEP Function

sweeps a matrix

SWEEP(matrix, index-vector)

The inputs to the SWEEP function are as follows:

matrix is a numeric matrix or literal.

index-vector is a numeric vector indicating the pivots.

The SWEEP function sweeps matrix on the pivots indicated in index-vector to pro-
duce a new matrix. The values of the index vector must be less than or equal to the
number of rows or the number of columns in matrix, whichever is smaller.

For example, suppose that A is partitioned into

[
R S
T U

]

such that R is q × q and U is (m− q)× (n− q). Let

I = [1 2 3 . . . q]

Then, the statement

B=sweep(A,I);

becomes[
R−1 R−1S

−TR−1 U−TR−1S

]
The index vector can be omitted. In this case, the function sweeps the matrix on all
pivots on the main diagonal 1:MIN(nrow,ncol).

The SWEEP function has sequential and reversibility properties when the submatrix
swept is positive definite:

• SWEEP(SWEEP(A,1),2)=SWEEP(A,{ 1 2 })

• SWEEP(SWEEP(A,I),I)=A

950 � Chapter 20. Language Reference

See Beaton (1964) for more information about these properties.

To use the SWEEP function for regression, suppose the matrix A contains[
X′X X′Y
Y′X Y′Y

]

where X′X is k × k.

Then B = SWEEP(A, 1 . . . k) contains[
(X′X)−1 (X′X)−1X′Y

−Y′X(X′X)−1 Y′(I−X(X′X)−1X′)Y

]
The partitions of B form the beta values, SSE, and a matrix proportional to the co-
variance of the beta values for the least squares estimates of B in the linear model

Y = XB + ε

If any pivot becomes very close to zero (less than or equal to 1E−12), the row and
column for that pivot are zeroed. See Goodnight (1979) for more information.

An example that uses the SWEEP function for regression follows:

x = { 1 1 1,
1 2 4,
1 3 9,
1 4 16,
1 5 25,
1 6 36,
1 7 49,
1 8 64 };

y = { 3.929,
5.308,
7.239,
9.638,

12.866,
17.069,
23.191,
31.443 };

n = nrow(x); /* number of observations */
k = ncol(x); /* number of variables */
xy = x||y; /* augment design matrix */
A = xy‘ * xy; /* form cross products */
S = sweep(A, 1:k);

beta = S[1:k,4]; /* parameter estimates */
sse = S[4,4]; /* sum of squared errors */
mse = sse / (n-k); /* mean squared error */
cov = S[1:k, 1:k] # mse; /* covariance of estimates */

SYMSQR Function � 951

print cov, beta, sse;

COV

0.9323716 -0.436247 0.0427693
-0.436247 0.2423596 -0.025662
0.0427693 -0.025662 0.0028513

BETA

5.0693393
-1.109935
0.5396369

SSE

2.395083

The SWEEP function performs most of its computations in the memory allocated for
the result matrix.

SYMSQR Function

converts a square matrix to a symmetric matrix

SYMSQR(matrix)

where matrix is a square numeric matrix.

The SYMSQR function takes a square numeric matrix (size n×n) and compacts the
elements from the lower triangle into a column vector (n(n+1)/2 rows). The matrix
is not checked for actual symmetry.

The following statement produces the output shown:

sym=symsqr({1 2, 3 4});

SYM 3 rows 1 col (numeric)

1
3
4

Note that the 2 is lost since it is only present in the upper triangle.

952 � Chapter 20. Language Reference

T Function

transposes a matrix

T(matrix)

where matrix is a numeric or character matrix or literal.

The T (transpose) function returns the transpose of its argument. It is equivalent to
the transpose operator as written with a transpose postfix operator (‘), but since some
keyboards do not support the backquote character, this function is provided as an
alternate.

For example, the following statements produce the matrix Y, as shown:

x={1 2, 3 4};
y=t(x);

Y 2 rows 2 cols (numeric)

1 3
2 4

TEIGEN Call

computes the eigenvalues and eigenvectors of square matrices

The TEIGEN subroutine is an alias for the EIGEN subroutine.

TEIGVAL Function

compute eigenvalues of square matrices

The TEIGVAL function is an alias for the EIGVAL function.

TEIGVEC Function

compute eigenvectors of square matrices

The TEIGVEC function is an alias for the EIGVEC function.

TOEPLITZ Function

generates a Toeplitz or block-Toeplitz matrix

TOEPLITZ(a)

where a is either a vector or a numeric matrix.

The TOEPLITZ function generates a Toeplitz matrix from a vector, or a block
Toeplitz matrix from a matrix. A block Toeplitz matrix has the property that all
matrices on the diagonals are the same. The argument a is an (np) × p or p × (np)
matrix; the value returned is the (np)× (np) result.

TOEPLITZ Function � 953

The TOEPLITZ function uses the first p × p submatrix, A1, of the argument matrix
as the blocks of the main diagonal. The second p× p submatrix, A2, of the argument
matrix forms one secondary diagonal, with the transpose A′

2 forming the other. The
remaining diagonals are formed accordingly. If the first p× p submatrix of the argu-
ment matrix is symmetric, the result is also symmetric. If A is (np) × p, the first p
columns of the returned matrix, R, are the same as A. If A is p × (np), the first p
rows of R are the same as A. The TOEPLITZ function is especially useful in time
series applications, where the covariance matrix of a set of variables with its lagged
set of variables is often assumed to be a block Toeplitz matrix.

If

A = [A1|A2|A3| · · · |An]

and if R is the matrix formed by the TOEPLITZ function, then

R =

A1 | A2 | A3 | · · · | An

A′
2 | A1 | A2 | · · · | An−1

A′
3 | A′

2 | A1 | · · · | An−2
...

A′
n | A′

n−1 | A′
n−2 | · · · | A1

If

A =

A1

A2
...

An

and if R is the matrix formed by the TOEPLITZ function, then

R =

A1 | A′

2 | A′
3 | · · · | A′

n

A2 | A1 | A′
2 | · · · | A′

n−1
...

An | An−1 | An−2 | · · · | A1

Three examples follow.

r=toeplitz(1:5);

R 5 rows 5 cols (numeric)

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2

954 � Chapter 20. Language Reference

5 4 3 2 1

r=toeplitz({1 2 ,
3 4 ,
5 6 ,
7 8});

R 4 rows 4 cols (numeric)

1 2 5 7
3 4 6 8
5 6 1 2
7 8 3 4

r=toeplitz({1 2 3 4 ,
5 6 7 8});

R 4 rows 4 cols (numeric)

1 2 3 4
5 6 7 8
3 7 1 2
4 8 5 6

TPSPLINE Call
computes thin-plate smoothing splines

CALL TPSPLINE(fitted, coeff, adiag, gcv, x, y <, lambda>);

The TSPLINE subroutine computes thin-plate smoothing spline (TPSS) fits to ap-
proximate smooth multivariate functions that are observed with noise. The general-
ized cross validation (GCV) function is used to select the smoothing parameter.

The TPSPLINE subroutine returns the following values:

fitted is an n × 1 vector of fitted values of the TPSS fit evaluated at the
design points x. The n is the number of observations. The final
TPSS fit depends on the optional lambda.

coeff is a vector of spline coefficients. The vector contains the coef-
ficients for basis functions in the null space and the representer of
evaluation functions at unique design points. (Refer to Wahba 1990
for more detail on reproducing kernel Hilbert space and representer
of evaluation functions.) The length of coeff vector depends on the
number of unique design points and the number of variables in the
spline model. In general, let nuobs and k be the number of unique
rows and the number of columns of x respectively. The length of
coeff equals to k + nuobs + 1. The coeff vector can be used as an
input of TPSPLNEV to evaluate the resulting TPSS fit at new data
points.

TPSPLINE Call � 955

adiag is an n×1 vector of diagonal elements of the “hat” matrix. See the
“Details” section.

gcv If lambda is not specified, then gcv is the minimum value of the
GCV function. If lambda is specified, then gcv is a vector (or scalar
if lambda is a scalar) of GCV values evaluated at the lambda points.
It provides you with both the ability to study the GCV curves by
plotting gcv against lambda and the chance to identify a possible
local minimum.

The inputs to the TPSPLINE subroutine are as follows:

x is an n× k matrix of design points on which the TPSS is to be fit.
The k is the number of variables in the spline model. The columns
of x need to be linearly independent and contain no constant col-
umn.

y is the n× 1 vector of observations.

lambda is a optional q × 1 vector containing λ values in log10(nλ) scale.
This option gives you the power to control how you want the
TPSPLINE subroutine to function. If lambda is not specified (or
lambda is specified and q > 1) the GCV function is used to choose
the “best” λ and the returning fitted values are based on the λ that
minimizes the GCV function. If lambda is specified and q = 1, no
minimization of the GCV function is involved and the fitted, coeff
and adiag values are all based on the TPSS fit using this particular
lambda. This gives you the freedom to choose the λ that you deem
appropriate.

Aside from the values returned, the TPSPLINE subroutine also prints other useful
information such as the number of unique observations, the dimensions of the null
space, the number of parameters in the model, a GCV estimate of λ, the smoothing
penalty, the residual sum of square, the trace of (I − A(λ)), an estimate of σ2, and
the sum of squares for replication.

Note: No missing values are accepted within the input arguments. Also, you
should use caution if you want to specify small lambda values. Since the true
λ = (10log10 lambda)/n, a very small value for lambda can cause λ to be smaller
than the magnitude of machine error and usually the returned gcv values from such
a λ cannot be trusted. Finally, when using TPSPLINE be aware that TPSS is a com-
putationally intensive method. Therefore a large data set (that is, a large number of
unique design points) will take a lot of computer memory and time.

For convenience, the TPSS method is illustrated with a two-dimensional independent
variable X = (x1,x2). More details can be found in Wahba (1990), or in Bates et al.
(1987).

Assume that the data are from the model

yi = f(xi) + εi,

956 � Chapter 20. Language Reference

where (xi, yi), i = 1, . . . , n are the observations. The function f is unknown and you
assume that it is reasonably smooth. The error terms εi, i = 1, . . . , n are independent
zero-mean random variables.

You measure the smoothness of f by the integral over the entire plane of the square
of the partial derivatives of f of total order 2, that is

J2(f) =
∫ ∞

−∞

∫ ∞

−∞

[
∂2f

∂x1
2

]2

+ 2
[

∂2f

∂x1∂x2

]2

+
[
∂2f

∂x2
2

]2

dx1dx2

Using this as a smoothness penalty, the thin-plate smoothing spline estimate fλ of f
is the minimizer of

Sλ(f) =
1
n

n∑
i=1

(yi − f(xi))2 + λJ2(f).

Duchon (1976) derived that the minimizer fλ can be represented as

fλ(x) =
3∑

i=1

βiφi(x) +
n∑

i=1

δiE2(x− xi),

where (φ1(x), φ2(x), φ3(x)) = (1,x1,x2) and E2(s) = 1
23π

‖s‖2ln(‖s‖).

Let matrix K have entries (K)ij = E2(xi − xj) and matrix T have entries (T)ij =
φj(xi). Then the minimization problem can be rewritten as finding coefficients β and
δ to minimize

Sλ(β, δ) =
1
n
‖y −Tβ −Kδ‖2 + λδTKδ

The final TPSS fits can be viewed as a type of generalized ridge regression estimator.
The λ is called the smoothing parameter, which controls the balance between the
goodness of fit and the smoothness of the final estimate. The smoothing parameter
can be chosen by minimizing the generalized cross validation function (GCV). If you
write

ŷ = A(λ)y

and call the A(λ) as the “hat” matrix, the GCV function V (λ) is defined as

V (λ) =
(1/n)‖(I−A(λ)y‖2

[(1/n)tr(I−A(λ))]2

The returned values from this function call provide the ŷ as fitted, the (β, δ) as coeff,
and diag(A(λ)) as adiag.

To evaluate the TPSS fit fλ(x) at new data points, you can use the TPSPLNEV call.

TPSPLNEV Call � 957

Suppose Xnew, a m × k matrix, contains the m new data points at which you want
to evaluate fλ. Let (Tnew

ij) = φj(xnew
i) and (Knew

ij) = E2(xnew
i − xj) be the ijth

elements of Tnew and Knew respectively. The prediction at new data points Xnew

is

ypred = Tnewβ +Knewδ

Therefore, using the coefficient (β, δ) obtained from TPSPLINE call, the ypred can
be easily evaluated.

An example is given in the documentation for the TPSPLNEV call.

TPSPLNEV Call

evaluates the thin-plate smoothing spline at new data points

It can be used only after the TPSPLINE call.

CALL TPSPLNEV(pred, xpred, x, coeff);

The TPSPLNEV subroutine returns the following value:

pred is anm×1 vector of the predicated values of the TPSS fit evaluated
at m new data points.

The inputs to the TPSPLNEV subroutine are as follows:

xpred is an m × k matrix of data points at which the fλ is evaluated,
where m is the number of new data points and k is the number of
variables in the spline model.

x is an n × k matrix of design points that is used as an input of
TPSPLINE call.

coeff is the coefficient vector returned from the TPSPLINE call.

See the previous section on the TPSPLINE call for details about the TSPLNEV sub-
routine.

As an example, consider the following data set, which consists of two independent
variables. The plot of the raw data can be found in the first panel of Figure 20.1.

x={ -1.0 -1.0, -1.0 -1.0, -.5 -1.0, -.5 -1.0,
.0 -1.0, .0 -1.0, .5 -1.0, .5 -1.0,
1.0 -1.0, 1.0 -1.0, -1.0 -.5, -1.0 -.5,
-.5 -.5, -.5 -.5, .0 -.5, .0 -.5,
.5 -.5, .5 -.5, 1.0 -.5, 1.0 -.5,

-1.0 .0, -1.0 .0, -.5 .0, -.5 .0,
.0 .0, .0 .0, .5 .0, .5 .0,
1.0 .0, 1.0 .0, -1.0 .5, -1.0 .5,
-.5 .5, -.5 .5, .0 .5, .0 .5,
.5 .5, .5 .5, 1.0 .5, 1.0 .5,

958 � Chapter 20. Language Reference

-1.0 1.0, -1.0 1.0, -.5 1.0, -.5 1.0,
.0 1.0, .0 1.0, .5 1.0, .5 1.0,

1.0 1.0, 1.0 1.0 };

y={15.54483570, 15.76312613, 18.67397826, 18.49722167,
19.66086310, 19.80231311, 18.59838649, 18.51904737,
15.86842815, 16.03913832, 10.92383867, 11.14066546,
14.81392847, 14.82830425, 16.56449698, 16.44307297,
14.90792284, 15.05653924, 10.91956264, 10.94227538,
9.614920104, 9.646480938, 14.03133439, 14.03122345,
15.77400253, 16.00412514, 13.99627680, 14.02826553,
9.557001644, 9.584670472, 11.20625177, 11.08651907,
14.83723493, 14.99369172, 16.55494349, 16.51294369,
14.98448603, 14.71816070, 11.14575565, 11.17168689,
15.82595514, 15.96022497, 18.64014953, 18.56095997,
19.54375504, 19.80902641, 18.56884576, 18.61010439,
15.86586951, 15.90136745 };

Now generate a sequence of λ from −3.8 to −3.3 so that you can study the GCV
function within this range. Use the following statement:

lambda=T(do(-3.8,-3.3,0.1));

Use the following IML statement to do the thin-plate smoothing spline fit and return-
ing the fitted values on those design points.

call tpspline(fit,coef,adiag,gcv, x, y,lambda);

The output from this call follows.

SUMMARY OF TPSPLINE CALL

Number of observations 50
Number of unique design points 25
Dimension of polynomial Space 3
Number of Parameters 28

GCV Estimate of Lambda 0.00000668
Smoothing Penalty 2558.14323
Residual Sum of Squares 0.24611
Trace of (I-A) 25.40680
Sigma^2 estimate 0.00969
Sum of Squares for Replication 0.24223

After this TPSPLINE call, you obtained the fitted value. The fitted surface is plotted
in the second panel of Figure 20.1. Also in Figure 20.1, panel 4, you plot the GCV
function values against lambda. From panel 2, you see that because of the spare
design points, the fitted surface is a little bit rough. In order to study the TPSS fit
fλ(x) more closely, you use the following IML statements to generate a more dense
grid on [−1, 1]× [−1, 1].

TPSPLNEV Call � 959

do i1=-1 to 1 by 0.1;
do i2=-1 to 1 by 0.1;

x1=x1||i1;
x2=x2||i2;

end;
end;
x1=t(x1);
x2=t(x2);
xpred=x1||x2;

Now you can use the function TPSPLNEV to evaluate fλ(x) on this dense grid. Here
is the statement:

call tpsplnev(pred, xpred, x, coef);

The final fitted surface is plotted in Figure 20.1, panel 3.

Figure 20.1. Plots of Fitted Surface

960 � Chapter 20. Language Reference

TRACE Function

sums diagonal elements

TRACE(matrix)

where matrix is a numeric matrix or literal.

The TRACE function produces a single numeric value that is the sum of the diagonal
elements of matrix. For example, the following statement produces the output shown:

a=trace({5 2, 1 3});

A 1 row 1 col (numeric)

8

TRISOLV Function

solves linear systems with triangular matrices

TRISOLV(code, r, b <, piv>)

The TRISOLV function returns the following value:

x is the n × p matrix X containing p solutions of the p linear systems
specified by code, r, and b.

The inputs to the TRISOLV function are as follows:

code specifies which of the following forms of triangular linear system has
to be solved:

code=1 solve Rx = b, R upper triangular
code=2 solve R′x = b, R upper triangular
code=3 solve R′x = b, R lower triangular
code=4 solve Rx = b, R lower triangular

r specifies the n × n nonsingular upper (code=1,2) or lower (code=3,4)
triangular coefficient matrix R. Only the upper or lower triangle of ar-
gument matrix r is used; the other triangle can contain any information.

b specifies the n× p matrix, B, of p right-hand sides bk.

piv specifies an optional n vector that relates the order of the columns of
matrix R to the order of the columns of an original coefficient matrix
A for which matrix R has been computed as a factor. For example,
the vector piv can be the result of the QR decomposition of a matrix A
whose columns were permuted in the order Apiv[1], . . . ,Apiv[n].

TSBAYSEA Call � 961

For code=1 and code=3, the solution is obtained by backward elimination. For
code=2 and code=4, the solution is obtained by forward substitution.

If TRISOLV recognizes the upper or lower triangular matrix R as a singular matrix
(that is, one that contains at least one zero diagonal element), it exits with an error
message.

Consider the following example:

R = { 1 0 0 0,
3 2 0 0,
1 -3 5 0,
2 7 9 -1 };

b = {1, 1, 4, -6 };
x = trisolv(4, R, b);
print x;

X

1
-1
0
1

Also see the example in the QR call section.

TSBAYSEA Call

performs Bayesian seasonal adjustment modeling

CALL TSBAYSEA(trend, season, series, adjust, abic, data

<,order, sorder, rigid, npred, opt, cntl, print>);

The inputs to the TSBAYSEA subroutine are as follows:

data specifies a T × 1 (or 1× T) data vector.

order specifies the order of trend differencing. The default is order=2.

sorder specifies the order of seasonal differencing. The default is sorder=1.

rigid specifies the rigidity of the seasonal pattern. The default is rigid=1.

npred specifies the length of the forecast beyond the available observations. The
default is npred=0.

opt specifies the options vector.

opt[1] specifies the number of seasonal periods (speriod). By default,
opt[1]=12.

962 � Chapter 20. Language Reference

opt[2] specifies the year when the series starts (year). If opt[2]=0, there
will be no trading day adjustment. By default, opt[2]=0.

opt[3] specifies the month when the series starts (month). If opt[2]=0,
this option is ignored. By default, opt[3]=1.

opt[4] specifies the upper limit value for outlier determination (rlim).
Outliers are considered as missing values. If this value is less than
or equal to 0, TSBAYSEA assumes that the input data does not
contain outliers. The default is rlim=0. See the section “Missing
Values” on page 290.

opt[5] refers to the number of time periods processed at one time (span).
The default is opt[5]=4.

opt[6] specifies the number of time periods to be shifted (shift). By de-
fault, opt[6]=1.

opt[7] controls the transformation of the original series (logt). If
opt[7]=1, log transformation is requested. No transformation
(opt[7]=0) is the default.

cntl specifies control values for the TSBAYSEA subroutine. These values are
automatically set. Be careful if you change these values.

cntl[1] controls the adaptivity of the trading day adjustment component
(wtrd). The default is cntl[1]=1.0.

cntl[2] controls the sum of seasonal components within a period (zer-
sum). The larger the value of cntl[2], the closer to zero this sum
is. By default, cntl[2]=1.0.

cntl[3] controls the leap year effect (delta). The default is cntl[3]=7.0.
cntl[4] specifies the prior variance of the initial trend (alpha). The de-

fault is cntl[4]=0.01.
cntl[5] specifies the prior variance of the initial seasonal component

(beta). The default is cntl[5]=0.01. [.03in]
cntl[6] specifies the prior variance of the initial sum of seasonal compo-

nents (gamma). The default is cntl[6]=0.01.

print requests the power spectrum and the estimated and forecast values of time
series components. If print=2, the spectra of irregular, differenced trend
and seasonal series are printed, together with estimates and forecast values.
If print=1, only the estimates and forecast values of time series components
are printed.

If print=0, printed output is suppressed. The default is print=0.

The TSBAYSEA subroutine returns the following values:

trend refers to the estimate and forecast of the trend component.

season refers to the estimate and forecast of the seasonal component.

series refers to the smoothed and forecast values of the time series.

TSBAYSEA Call � 963

adjust refers to the seasonally adjusted series.

abic refers to the value of ABIC from the final estimates.

Bayesian seasonal adjustments are performed with the TSBAYSEA subroutine. The
smoothness of the trend and seasonal components is controlled by the prior distri-
bution. The Akaike Bayesian information criterion (ABIC) is defined to compare
with alternative models. The basic TSBAYSEA procedure processes the block of
data in which the length is SPAN*SPERIOD, while the first block of data con-
sists of length (2*SPAN-1)*SPERIOD. The block of data is shifted successively by
SHIFT*SPERIOD.

The TSBAYSEA call decomposes the series yt into the following form:

yt = Tt + St + εt

where Tt is a trend component, St denotes a seasonal component, and εt is an irregular
component. To estimate the seasonal and trend components, some constraints are
imposed such that the sum of squares of∇kTt,∇l

LSt, and
∑L−1

i=0 St−i is small, where
∇ and∇L are difference operators. Then the solution can be obtained by minimizing

N∑
t=1

{
(yt − Tt − St)2 + d2

[
s2(∇kTt)2 + (∇l

LSt)2 + z2(St + · · ·+ St−L+1)2
]}

where d measures the smoothness of the trend and seasonality, s measures the
smoothness of the trend, and z is a smoothness constant for the sum of the sea-
sonal variability. The value of d is estimated while the constants, s and z, are chosen
a priori. The value of s is equal to 1

RIGID , and the constant z is determined as
ZERSUM*RIGID/SPERIOD1/2. The larger the constant RIGID, the more rigid the
seasonal pattern is. See the section “Bayesian Constrained Least Squares” on page
285 for more information.

To analyze the monthly data with rigidity 0.5, you can specify either of the following
two statements:

call tsbaysea(trend,season,series,adj,abic) data=z order=2
sorder=1 rigid=0.5 npred=10 print=2;

call tsbaysea(trend,season,series,adj,abic,z,2,1,0.5,10,,,2);

The TREND, SEASON, and SERIES components contain 10-period-ahead forecast
values as well as the smoothed estimates. The detailed result is also printed since the
PRINT=2 option is specified.

964 � Chapter 20. Language Reference

TSDECOMP Call

analyzes nonstationary time series by using smoothness priors modeling

CALL TSDECOMP(comp, est, aic, data, <,xdata, order, sorder,

nar, npred, init, opt, icmp, print>);

The inputs to the TSDECOMP subroutine are as follows:

data specifies a T × 1 (or 1× T) data vector.

xdata specifies a T ×K explanatory data matrix.

order specifies the order of trend differencing (0, 1, 2, or 3). The default is 2.

sorder specifies the order of seasonal differencing (0, 1, or 2). The default is 1.

nar specifies the order of the AR process. The default is 0.

npred specifies the length of the forecast beyond the available observations. The
default is 0.

init specifies the initial values of parameters. The initial values are specified
as variances for trend difference equation, AR process, seasonal difference
equation, regression equation, and partial AR coefficients. The correspond-
ing default variance values are 0.005, 0.8, 1E−5, and 1E−5. The default
partial AR coefficient values are determined as

ψi = 0.88× (−0.6)i−1 i = 1, 2, . . . ,nar

opt specifies the options vector.

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series if opt[1]=−1. By default, the
original series is processed (opt[1]=0). When regressors are spec-
ified, only the opt[1]=0 option is accepted.

opt[2] specifies the trading day adjustment. The default is opt[2]=0.
opt[3] specifies the year (≥ 1900) when the series starts. If opt[3]=0,

there is no trading day adjustment. By default, opt[3]=0.
opt[4] specifies the number of seasons within a period (speriod). By

default, opt[4]=12.
opt[5] controls the transformation of the original series. If opt[5]=1, log

transformation is requested. By default, there is no transforma-
tion (opt[5]=0).

opt[6] specifies the maximum number of iterations allowed. The default
is opt[6] = 200.

opt[7] specifies the update technique for the quasi-Newton optimization
technique. If opt[7]=1 is specified, the dual Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) update method is used. If opt[7]=2
is specified, the dual Davidon, Fletcher, and Powell (DFP) update
method is used. The default is opt[7]=1.

TSDECOMP Call � 965

opt[8] specifies the line search technique for the quasi-Newton opti-
mization method. The default is opt[8] = 2.

opt[8]=1 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=2 specifies a line search method that requires more ob-
jective function calls than gradient calls for cubic in-
terpolation and extrapolation.

opt[8]=3 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and extrapolation.

opt[8]=4 specifies a line search method that requires the same
number of objective function and gradient calls for
cubic interpolation and stepwise extrapolation.

opt[8]=5 specifies a line search method that is a modified ver-
sion of opt[8]=4.

opt[8]=6 specifies the golden section line search method that
uses only function values for linear approximation.

opt[8]=7 specifies the bisection line search method that uses
only function values for linear approximation.

opt[8]=8 specifies the Armijo line search method that uses only
function values for linear approximation.

opt[9] specifies the upper bound of the variance estimates. If you specify
opt[9]=value, the variances are estimated with the constraint that
σ ≤ value . When you specify the opt[9]=0 option, the upper
bound is not imposed. The default is opt[9]=0.

opt[10] specifies the length of data used in backward filtering for the
Kalman filter initialization. The default value of opt[10] is 100
if the number of observations is greater than 100; otherwise, the
default value is the number of observations.

icmp specifies which component is calculated.

icmp=1 requests the estimate and forecast of trend component.
icmp=2 requests the estimate and forecast of seasonal component.
icmp=3 requests the estimate and forecast of AR component.
icmp=4 requests the trading day adjustment component.
icmp=5 requests the regression component.
icmp=6 requests the time-varying regression coefficients.

You can calculate multiple components by specifying a vector. For exam-
ple, you can specify icmp={1 2 3 5}.

print specifies the print option. By default, printed output is suppressed
(print=0). If you specify print=1, the subroutine prints the final estimates.
The iteration history is printed if you specify print=2.

The TSDECOMP subroutine returns the following values:

966 � Chapter 20. Language Reference

comp refers to the estimate and forecast of the trend component.

est refers to the parameter estimates including coefficients of the AR process.

aic refers to the AIC statistic obtained from the final estimates.

The TSDECOMP subroutine analyzes nonstationary time series by using smooth-
ness priors modeling (see the section “Smoothness Priors Modeling” on page 272 for
more details). The likelihood function is maximized with respect to hyperparame-
ters. The Kalman filter algorithm is used for filtering, smoothing, and forecasting.
The TSDECOMP call decomposes the time series yt as follows:

yt = Tt + St + TDt + ut +Rt + εt

where Tt represents the trend component, St denotes the seasonal component, TDt

represents the trading day adjustment component, ut denotes the autoregressive pro-
cess component, Rt denotes regression effect components, and εt represents the ir-
regular term with zero mean and constant variance.

The trend components are constrained as follows:

∇kTt = w1t, w1t ∼ N(0, τ2
1)

When you specify the ORDER=0 option, the trend component is not estimated. The
maximum order of differencing is 3 (k = 0, . . . , 3).

The seasonal components are denoted as a stochastically perturbed equation:

(
1 +

L−1∑
i=1

Bi

)l

St = w2t, w2t ∼ N(0, τ2
2)

When you specify SORDER=0, the seasonal component is not estimated. The maxi-
mum value of l is 2 (l = 0, 1, or 2).

The stationary autoregressive (AR) process is denoted as a stochastically perturbed
equation:

ut =
p∑

i=1

αiut−i + w3t, w3t ∼ N(0, τ2
3)

where p is the order of AR process. When NAR=0 is specified, the AR process
component is not estimated.

The time-varying regression coefficients are estimated if you include exogenous vari-
ables:

Rt = Xtβt

TSMLOCAR Call � 967

where Xt contains m regressors except the constant term and β′t = (β1t, . . . , βmt).
The time-varying coefficients βt follow the random walk process:

βjt = βjt−1 + vjt, vjt ∼ N(0, σ2
j)

where βjt is an element of the coefficient vector βt.

The trading day adjustment component TDt is deterministically restricted. See the
section “State Space and Kalman Filter Method” on page 287, for more information.

You can estimate the time-varying coefficient model as follows:

call tsdecomp COMP=beta ORDER=0 SORDER=0 NAR=0
DATA=y XDATA=x ICMP=6;

The output matrix BETA contains time-varying regression coefficients.

TSMLOCAR Call

analyzes nonstationary or locally stationary time series by using the minimum
AIC procedure

CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

The inputs to the TSMLOCAR subroutine are as follows:

data specifies a T × 1 (or 1× T) data vector.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the length of locally stationary spans. The default is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted if opt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data are processed as-
suming that the mean value of the input series is 0. The default is
opt[1]=0.

opt[2] specifies the span length to be used when breaking up the time
series into separate blocks. By default, opt[2] = 0, which forces
all of the time series values into a single span.

opt[3] specifies the minimum AIC option. If opt[3]=0, the maximum lag
AR process is estimated. If opt[3]=1, the minimum AIC proce-
dure is performed. The default is opt[3]=1.

missing specifies the missing value option. By default, only the first contiguous ob-
servations with no missing values are used (missing=0). The missing=1 op-
tion ignores observations with missing values. If you specify the missing=2
option, the missing values are replaced with the sample mean. print] spec-
ifies the print option. By default, printed output is suppressed (print=0).

968 � Chapter 20. Language Reference

The print=1 option prints the AR estimation result, while the print=2 op-
tion plots the power spectral density as well as the AR estimates.

The TSMLOCAR subroutine returns the following values:

arcoef refers to an nar× 1 AR coefficient vector of the final model if the intercept
estimate is not included. If opt[1]=1, the first element of the arcoef vector
is an intercept estimate.

ev refers to the error variance.

nar is the selected AR order of the final model. If opt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input series, which corresponds to the
first observation of the final model.

finish refers to the ending position of the input series, which corresponds to the
last observation of the final model.

The TSMLOCAR subroutine analyzes nonstationary (or locally stationary) time se-
ries by using the minimum AIC procedure. The data of length T is divided into
J locally stationary subseries, which consist of T

J observations. See the section
“Nonstationary Time Series” on page 276 for details.

TSMLOMAR Call

analyzes nonstationary or locally stationary multivariate time series by using the
minimum AIC procedure

CALL TSMLOMAR(arcoef, ev, nar, aic, start, finish, data

<,maxlag, opt, missing, print>);

The inputs to the TSMLOMAR subroutine are as follows:

data specifies a T ×M data matrix, where T is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the vector AR (VAR) process. This value
should be less than 1

2M of the length of locally stationary spans. The default
is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted if opt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data are processed as-
suming that the mean values of input series are zeroes. The de-
fault is opt[1]=0.

opt[2] specifies the span length to be used when breaking up the time
series into separate blocks. By default, opt[2] = 0, which forces
all of the time series values into a single span.

TSMULMAR Call � 969

opt[3] specifies the minimum AIC option. If opt[3]=0, the maximum lag
VAR process is estimated. If opt[3]=1, a minimum AIC proce-
dure is used. The default is opt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). The missing=1
option ignores observations with missing values. If you specify the miss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). The print=1 option prints the AR estimates, minimum AIC, min-
imum AIC order, and innovation variance matrix.

The TSMLOMAR subroutine returns the following values.

arcoef refers to an M × (M ∗ nar) VAR coefficient vector of the final model if the
intercept vector is not included. If opt[1]=1, the first column of the arcoef
matrix is an intercept estimate vector.

ev refers to the error variance matrix.

nar is the selected VAR order of the final model. If opt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input series data, which corresponds to
the first observation of the final model.

finish refers to the ending position of the input series data, which corresponds to
the last observation of the final model.

The TSMLOMAR subroutine analyzes nonstationary (or locally stationary) multi-
variate time series by using the minimum AIC procedure. The data of length T is
divided into J locally stationary subseries. See “Nonstationary Time Series” in the
section “Nonstationary Time Series” on page 276 for details.

TSMULMAR Call

estimates VAR processes by using the minimum AIC procedure

CALL TSMULMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

The inputs to the TSMULMAR subroutine are as follows:

data specifies a T ×M data matrix, where T is the number of observations and
M is the number of variables to be analyzed.

maxlag specifies the maximum lag of the VAR process. This value should be less
than 1

2M of the length of input data. The default is maxlag=10.

opt specifies an options vector.

970 � Chapter 20. Language Reference

opt[1] specifies the mean deletion option. The mean of the original data
is deleted if opt[1]=−1. An M × 1 intercept vector is estimated
if opt[1]=1. If opt[1]=0, the original input data are processed
assuming that the mean value of the input data is 0. The default
is opt[1]=0.

opt[2] specifies the minimum AIC option. If opt[2]=0, the maximum lag
AR process is estimated. If opt[2]=1, the minimum AIC proce-
dure is used, while the opt[2]=2 option specifies the VAR order
selection method based on the AIC. The default is opt[2]=1.

opt[3] specifies instantaneous response modeling if opt[3]=1. The de-
fault is opt[3]=0. See the section “Multivariate Time Series
Analysis” on page 279 for more information.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). The missing=1
option ignores observations with missing values. If you specify the miss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). The print=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSMULMAR subroutine returns the following values:

arcoef refers to an M × (M ∗ nar) AR coefficient matrix if the intercept is not
included. If opt[1]=1, the first column of the arcoef matrix is an intercept
vector estimate.

ev refers to the error variance matrix.

nar is the selected VAR order of the minimum AIC procedure. If opt[2]=0,
nar=maxlag. aic] refers to the minimum AIC value.

The TSMULMAR subroutine estimates the VAR process by using the minimum
AIC method. The widely used VAR order selection method is added to the original
TIMSAC program, which considers only the possibilities of zero coefficients at the
beginning and end of the model. The TSMULMAR subroutine can also estimate the
instantaneous response model. See the section “Multivariate Time Series Analysis”
on page 279 for details.

TSPEARS Call

analyzes periodic AR models with the minimum AIC procedure

CALL TSPEARS(arcoef, ev, nar, aic, data

TSPEARS Call � 971

<,maxlag, opt, missing, print>);

The inputs to the TSPEARS subroutine are as follows:

data specifies a T × 1 (or 1× T) data matrix.

maxlag specifies the maximum lag of the periodic AR process. This value should
be less than 1

2J of the input series. The default is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data
is deleted if opt[1]=−1. An intercept coefficient is estimated if
opt[1]=1. If opt[1]=0, the original input data are processed as-
suming that the mean values of input series are zeroes. The de-
fault is opt[1]=0.

opt[2] specifies the number of instants per period. By default, opt[2]=1.
opt[3] specifies the minimum AIC option. If opt[3]=0, the maximum lag

AR process is estimated. If opt[3]=1, the minimum AIC proce-
dure is used. The default is opt[3]=1.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). The missing=1
option ignores observations with missing values. If you specify the miss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). The print=1 option prints the periodic AR estimates and inter-
mediate process.

The TSPEARS subroutine returns the following values:

arcoef refers to a periodic AR coefficient matrix of the periodic AR model. If
opt[1]=1, the first column of the arcoef matrix is an intercept estimate vec-
tor.

ev refers to the error variance.

nar refers to the selected AR order vector of the periodic AR model.

aic refers to the minimum AIC values of the periodic AR model.

The TSPEARS subroutine analyzes the periodic AR model by using the minimum
AIC procedure. The data of length T are divided into d periods. There are J instants
in one period. See the section “Multivariate Time Series Analysis” on page 279 for
details.

972 � Chapter 20. Language Reference

TSPRED Call

provides predicted values of univariate and multivariate ARMA processes when
the ARMA coefficients are input

CALL TSPRED(forecast, impulse, mse, data, coef, nar, nma

<,ev, npred, start, constant>);

The inputs to the TSPRED subroutine are as follows:

data specifies a T × M data matrix if the intercept is not included, where T
denotes the length of the time series and M is the number of variables to
be analyzed. If the univariate time series is analyzed, the input data should
be a column vector.

coef refers to the M(P +Q)×M ARMA coefficient matrix, where P is an AR
order and Q is an MA order. If the intercept term is included (constant=1),
the first row of the coefficient matrix is considered as the intercept term and
the coefficient matrix is anM(P +Q+1)×M matrix. If there are missing
values in the coef matrix, these are converted to zero.

nar specifies the order of the AR process. If the subset AR process is requested,
nar should be a row or column vector. The default is nar=0.

nma specifies the order of the MA process. If the subset MA process is re-
quested, nma should be a vector. The default is nma=0.

ev specifies the error variance matrix. If the ev matrix is not provided, the
prediction error covariance will not be computed.

npred specifies the maximum length of multistep forecasting. The default is
npred=0.

start specifies the position where the multistep forecast starts. The default is
start=T .

constant specifies the intercept option. No intercept estimate is included if con-
stant=0; otherwise, the intercept estimate is included in the first row of the
coefficient matrix. If constant=−1, the coefficient matrix is estimated by
using mean deleted series. By default, constant=0.

The TSPRED subroutine returns the following values:

forecast refers to predicted values.

impulse refers to the impulse response function.

mse refers to the mean square error of s-step-ahead forecast. A scalar missing
value is returned if the error variance (ev) is not provided.

TSROOT Call

calculates AR and MA coefficients from the characteristic roots of the model or
calculates the characteristic roots of the model from the AR and MA coefficients

TSTVCAR Call � 973

CALL TSROOT(matout, matin, nar, nma, <,qcoef, print>);

The inputs to the TSROOT subroutine are as follows:

matin refers to the (nar + nma) × 2 characteristic root matrix if the polynomial
(ARMA) coefficients are requested (qcoef=1), where the first column of
the matin matrix contains the real part of the root and the second column
of the matin matrix contains the imaginary part of the root. When the char-
acteristic roots are requested (qcoef=0), the first nar rows are complex AR
coefficients and the last nma rows are complex MA coefficients. The de-
fault is qcoef=0.

nar specifies the order of the AR process. If you specify the subset AR model,
the input nar should be a row or column vector.

nma specifies the order of the MA process. If you specify the subset MA model,
the input nma should be a row or column vector.

qcoef requests the ARMA coefficients when the characteristic roots are provided
(qcoef=1). By default, the characteristic roots of the polynomial are calcu-
lated (qcoef=0).

print specifies the print option if print=1. By default, printed output is suppressed
(print=0).

The TSROOT subroutine returns the following values

matout refers to the characteristic root matrix if qcoef=0; otherwise, the matout
matrix contains the AR and MA coefficients.

TSTVCAR Call

analyzes time series that are nonstationary in the covariance function

CALL TSTVCAR(arcoef, variance, est, aic, data

<,nar, init, opt, outlier, print>);

The inputs to the TSTVCAR subroutine are as follows:

data specifies a T × 1 (or 1× T) data vector.

nar specifies the order of the AR process. The default is nar=8.

init specifies the initial values of the parameter estimates. The default is (1E−4,
0.3, 1E−5, 0).

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original se-
ries is subtracted from the series if opt[1]=−1. By default, the
original series is processed (opt[1]=0).

opt[2] specifies the filtering period (nfilter). The number of state vectors
is determined by T

nfilter . The default is opt[2]=10.

974 � Chapter 20. Language Reference

opt[3] specifies the numerical differentiation method. If opt[3]=1, the
one-sided (forward) differencing method is used. The two-sided
(or central) differencing method is used if opt[3]=2. The default
is opt[3]=1.

outlier specifies the vector of outlier observations. The value should be less than
or equal to the maximum number of observations. The default is outlier=0.

print specifies the print option. By default, printed output is suppressed
(print=0). The print=1 option prints the final estimates. The iteration his-
tory is printed if print=2.

The TSTVCAR subroutine returns the following values:

arcoef refers to the time-varying AR coefficients.

variance refers to the time-varying error variances. See the section “Smoothness
Priors Modeling” on page 272 for details.

est refers to the parameter estimates.

aic refers to the value of AIC from the final estimates.

Nonstationary time series modeling usually deals with nonstationarity in the mean.
The TSTVCAR subroutine analyzes the model that is nonstationary in the covariance.
Smoothness priors are imposed on each time-varying AR coefficient and frequency
response function. See the section “Nonstationary Time Series” on page 276 for
details.

TSUNIMAR Call

determines the order of an AR process with the minimum AIC procedure and
estimates the AR coefficients

CALL TSUNIMAR(arcoef, ev, nar, aic, data

<,maxlag, opt, missing, print>);

The inputs to the TSUNIMAR subroutine are as follows:

data specifies a T × 1 (or 1×T) data vector, where T is the number of observa-
tions.

maxlag specifies the maximum lag of the AR process. This value should be less
than half the number of observations. The default is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original
data is deleted if opt[1]=−1. An intercept term is estimated if
opt[1]=1. If opt[1]=0, the original input data are processed as-
suming that the mean value of the input data is 0. The default is
opt[1]=0.

TYPE Function � 975

opt[2] specifies the minimum AIC option. If opt[2]=0, the maximum lag
AR process is estimated. The minimum AIC option, opt[2]=1, is
the default.

missing specifies the missing value option. By default, only the first contiguous
observations with no missing values are used (missing=0). The missing=1
option ignores observations with missing values. If you specify the miss-
ing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed
(print=0). The print=1 option prints the final estimation result, while the
print=2 option prints intermediate and final results.

The TSUNIMAR subroutine returns the following values.

arcoef refers to an nar× 1 AR coefficient vector if the intercept is not included. If
opt[1]=1, the first element of the arcoef vector is an intercept estimate.

ev refers to the error variance.

nar refers to the selected AR order by minimum AIC procedure. If
opt[2]=0, nar = maximum lag.

aic refers to the minimum AIC value.

The TSUNIMAR subroutine determines the order of the AR process by using the
minimum AIC procedure and estimates the AR coefficients. All AR coefficient esti-
mates up to maximum lag are printed if you specify the print option. See the section
“Least Squares and Householder Transformation” on page 284 for more information.

TYPE Function

determines the type of a matrix

TYPE(matrix)

where matrix is a numeric or character matrix or literal.

The TYPE function returns a single character value; it is N if the type of the matrix
is numeric; it is C if the type of the matrix is character; it is U if the matrix does not
have a value. Examples of valid statements follow.

The following statements set R to C:

a={tom};
r=type(a);

The following statements set R to U:

free a;
r=type(a);

The following statements set R to N:

976 � Chapter 20. Language Reference

a={1 2 3};
r=type(a);

UNIFORM Function

generates pseudo-random uniform deviates

UNIFORM(seed)

where seed is a numeric matrix or literal. The seed can be any integer value up to
231 − 1.

The UNIFORM function returns one or more pseudo-random numbers with a uniform
distribution over the interval 0 to 1. The UNIFORM function returns a matrix with
the same dimensions as the argument. The first argument on the first call is used for
the seed, or if that argument is 0, the system clock is used for the seed. The function
is equivalent to the DATA step function RANUNI. An example of a valid statement
follows:

seed = 123456;
c = j(5,1,seed);
b = uniform(c);
print b;

B

0.73902
0.2724794
0.7095326
0.3191636
0.367853

UNION Function

performs unions of sets

UNION(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric or character matrix or quoted literal.

The UNION function returns as a row vector the sorted set (without duplicates) which
is the union of the element values present in its arguments. There can be up to 15
arguments, which can be either all character or all numeric. For character arguments,
the element length of the result is the longest element length of the arguments. Shorter
character elements are padded on the right with blanks. This function is identical to
the UNIQUE function. For example, the following statements produce the output
shown:

a={1 2 4 5};
b={3 4};
c=union(a,b);

UNIQUEBY Function � 977

C 1 row 5 cols (numeric)

1 2 3 4 5

The UNION function can be used to sort elements of a matrix when there are no
duplicates by calling UNION with a single argument.

UNIQUE Function

sorts and removes duplicates

UNIQUE(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric or character matrix or quoted literal.

The UNIQUE function returns as a row vector the sorted set (without duplicates)
of all the element values present in its arguments. The arguments can be either all
numeric or all character, and there can be up to 15 arguments specified. This function
is identical to the UNION function, the description of which includes an example.

UNIQUEBY Function

returns the locations of the unique by-group combinations for a sorted or in-
dexed matrix

UNIQUEBY(matrix, by, index)

The inputs to the UNIQUEBY function are as follows:

matrix is the input matrix, which must be sorted or indexed according to the
by columns.

by is either a numeric matrix of column numbers, or a character matrix
containing the names of columns corresponding to column labels as-
signed to matrix by a MATTRIB statement or READ statement.

index is a vector such that index[i] is the row index of the ith element of
matrix when sorted according to by. Consequently, matrix[index,] is
the sorted matrix. index can be computed for a matrix and a given set
of by columns with the SORTNDX call. If the matrix is known to be
sorted according to the by columns already, then index should be just
1:nrow(matrix)

The UNIQUEBY function returns a column vector, whose ith row gives the row in
index whose value is the row in matrix of the ith unique combination of values in the
by columns. Suppose you submit the following statement:

unique_rows = uniqueby(matrix, by, index);

Once you have submitted this statement, the following statement gives the values of
the unique by combinations:

978 � Chapter 20. Language Reference

unique = matrix[index[unique_rows], by];

In addition, the following statement gives the number of unique values:

n = nrow(unique);

The following statement gives the number of rows in the ith by combination, except
for the last combination.

size = unique_rows[i+1] - unique_rows[i];

The last combination is given by the following statement:

size_last = nrow(matrix) - unique_rows[nrow(unique_rows)] + 1;

If matrix is already sorted according to the by columns (see the SORT call), then
UNIQUEBY can be called with 1:nrow(matrix) for the index argument, as follows:

unique_loc = uniqueby(matrix, by, 1:nrow(matrix));

USE Statement

opens a SAS data set for reading

USE SAS-data-set <VAR operand> <WHERE(expression)>

<NOBS name>;

The inputs to the USE statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a two-
level name (for example, SASUSER.A). For more information
about specifying SAS data sets, see the chapter on SAS data sets in
SAS Language Reference: Concepts.

operand selects a set of variables.

expression is evaluated for being true or false.

name is the name of a variable to contain the number of observations.

If the data set has not already been opened, the USE statement opens the data set
for read access. The USE statement also makes the data set the current input data
set so that subsequent statements act on it. The USE statement optionally can define
selection criteria that are used to control access.

The VAR clause specifies a set of variables to use, where operand can be any of the
following:

USE Statement � 979

• a literal containing variable names

• the name of a matrix containing variable names

• an expression in parentheses yielding variable names

• one of the following keywords:

–ALL– for all variables

–CHAR– for all character variables

–NUM– for all numeric variables

The following examples demonstrate each possible way you can use the VAR clause:

var {time1 time5 time9}; /* a literal giving the variables */
var time; /* a matrix containing the names */
var(’time1’:’time9’); /* an expression */
var _all_; /* a keyword */

The WHERE clause conditionally selects observations, within the range specifica-
tion, according to conditions given in the clause. The general form of the WHERE
clause is as follows:

WHERE(variable comparison-op operand)

In the preceding statement,

variable is a variable in the SAS data set.

comparison-op is one of the following comparison operators:

< less than
<= less than or equal to
= equal to
> greater than
>= greater than or equal to
ˆ = not equal to
? contains a given string
ˆ ? does not contain a given string
=: begins with a given string
=* sounds like or is spelled like a given string

operand is a literal value, a matrix name, or an expression in parentheses.

WHERE comparison arguments can be matrices. For the following operators, the
WHERE clause succeeds if all the elements in the matrix satisfy the condition:

ˆ = ˆ ? < <= > >=

For the following operators, the WHERE clause succeeds if any of the elements in
the matrix satisfy the condition:

980 � Chapter 20. Language Reference

= ? =: =*

Logical expressions can be specified within the WHERE clause by using the AND
(&) and OR (|) operators. The general form is

clause&clause (for an AND clause)
clause|clause (for an OR clause)

where clause can be a comparison, a parenthesized clause, or a logical expression
clause that is evaluated by using operator precedence.

Note: The expression on the left-hand side refers to values of the data set variables,
and the expression on the right-hand side refers to matrix values.

The VAR and WHERE clauses are optional, and you can specify them in any order.
If a data set is already open, all the options that the data set was first opened with are
still in effect. To override any old options, the new USE statement must explicitly
specify the new options. Examples of valid statements follow.

use class;
use class var{name sex age};
use class var{name sex age} where(age>10);

VALSET Call

performs indirect assignment

CALL VALSET(char-scalar, argument);

The inputs to the VALSET subroutine are as follows:

char-scalar is a character scalar containing the name of a matrix.

argument is a value to which the matrix is set.

The VALSET subroutine expects a single character string argument containing the
name of a matrix. It looks up the matrix and moves the value of the second argu-
ment to this matrix. For example, the following statements find that the value of the
argument B is A and then assign the value 99 to A, the indirect result:

b="A";
call valset(b,99);

The previous value of the indirect result is freed. The following statement sets B to
99, but the value of A is unaffected by this statement:

b=99;

VARMACOV Call � 981

VALUE Function

assigns values by indirect reference

VALUE(char-scalar)

where char-scalar is a character scalar containing the name of a matrix.

The VALUE function expects a single character string argument containing the name
of a matrix. It looks up the matrix and moves its value to the result. For example, the
following statements find that the value of the argument B is A, then look up A and
copy the value 1 2 3 to C:

a={1 2 3};
b="A";
c=value(b);

Here is the resulting output:

C 1 row 3 cols (numeric)

1 2 3

VARMACOV Call

computes the theoretical cross-covariance matrices for a stationary
VARMA(p, q) model

CALL VARMACOV(cov, phi, theta, sigma <, p, q, lag>);

The inputs to the VARMACOV subroutine are as follows:

phi specifies a kmp × k matrix, Φ, containing the autoregressive coefficient
matrices, wheremp is the number of elements in the subset of the AR order
and k ≥ 2 is the number of variables. All the roots of |Φ(B)| = 0 should
be greater than one in absolute value, where Φ(B) is the finite order matrix
polynomial in the backshift operator B, such that Bjyt = yt−j . You must
specify either phi or theta.

theta specifies a kmq × k matrix containing the moving-average coefficient ma-
trices, where mq is the number of the elements in the subset of the MA
order. You must specify either phi or theta.

sigma specifies a k×k symmetric positive-definite covariance matrix of the inno-
vation series. If sigma is not specified, then an identity matrix is used.

p specifies the subset of the AR order. The quantity mp is defined as

mp = nrow(phi)/ncol(phi)

where nrow(phi) is the number of rows of the matrix phi and ncol(phi) is
the number of columns of the matrix phi.

982 � Chapter 20. Language Reference

If you do not specify p, the default subset is p= {1, 2, . . . ,mp}.

For example, consider a 4-dimensional vector time series, and phi is a
4 × 4 matrix. If you specify p=1 (the default, since mp = 4/4 = 1), the
VARMACOV subroutine computes the theoretical cross-covariance matri-
ces of VAR(1) as yt = Φyt−1 + εt.

If you specify p=2, the VARMACOV subroutine computes the cross-
covariance matrices of VAR(2) as yt = Φyt−2 + εt.

Let phi = [Φ′
1, Φ′

2]
′ be an 8 × 4 matrix. If you specify p= {1, 3},

the VARMACOV subroutine computes the cross-covariance matrices of
VAR(3) as yt = Φ1yt−1 + Φ2yt−3 + εt. If you do not specify p,
the VARMACOV subroutine computes the cross-covariance matrices of
VAR(2) as yt = Φ1yt−1 + Φ2yt−2 + εt.

q specifies the subset of the MA order. The quantity mq is defined as

mq = nrow(theta)/ncol(theta)

where nrow(theta) is the number of rows of matrix theta and ncol(theta) is
the number of columns of matrix theta.

If you do not specify q, the default subset is q= {1, 2, . . . ,mq}.

The usage of q is the same as that of p.

lag specifies the length of lags, which must be a positive number. If lag = h,
the VARMACOV computes the cross-covariance matrices from lag zero to
lag h. By default, lag = 12.

The VARMACOV subroutine returns the following value:

cov is a k(lag + 1) × k matrix that contains the theoretical cross-covariance
matrices of the VARMA(p, q) model.

Consider the following bivariate (k = 2) VARMA(1,1) model:

yt = Φyt−1 + εt −Θεt−1

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
Σ =

[
1.0 0.5
0.5 1.25

]

To compute the cross-covariance matrices of this model, you can use the following
statements:

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmacov(cov, phi, theta, sigma) lag=5;

VARMALIK Call � 983

VARMALIK Call

computes the log-likelihood function for a VARMA(p, q) model

CALL VARMALIK(lnl, series, phi, theta, sigma <, p, q, opt>);

The inputs to the VARMALIK subroutine are as follows:

series specifies an n× k matrix containing the vector time series (assuming mean
zero), where n is the number of observations and k ≥ 2 is the number of
variables.

phi specifies a kmp × k matrix containing the autoregressive coefficient matri-
ces, where mp is the number of the elements in the subset of the AR order.
You must specify either phi or theta.

theta specifies a kmq × k matrix containing the moving-average coefficient ma-
trices, where mq is the number of the elements in the subset of the MA
order. You must specify either phi or theta.

sigma specifies a k × k covariance matrix of the innovation series. If you do not
specify sigma, an identity matrix is used.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

opt specifies the method of computing the log-likelihood function:

opt=0 requests the multivariate innovations algorithm. This algorithm
requires that the time series is stationary and does not contain
missing observations.

opt=1 requests the conditional log-likelihood function. This algorithm
requires that the number of the observations in the time series
must be greater than p+q and that the series does not contain
missing observations.

opt=2 requests the Kalman filtering algorithm. This is the default and is
used if the required conditions in opt=0 and opt=1 are not satis-
fied.

The VARMALIK subroutine returns the following value:

lnl is a 3 × 1 matrix containing the log-likelihood function, the sum of log
determinant of the innovation variance, and the weighted sum of squares of
residuals. The log-likelihood function is computed as −0.5× (the sum of
last two terms).

The options opt=0 and opt=2 are equivalent for stationary time series without missing
values. Setting opt=0 is useful for a small number of the observations and a high
order of p and q; opt=1 is useful for a high order of p and q; opt=2 is useful for a low
order of p and q, or for missing values in the observations.

984 � Chapter 20. Language Reference

Consider the following bivariate (k = 2) VARMA(1,1) model:

yt = Φyt−1 + εt −Θεt−1

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
Σ =

[
1.0 0.5
0.5 1.25

]

To compute the log-likelihood function of this model, you can use the following
statements:

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta) sigma=sigma;
call varmalik(lnl, yt, phi, theta, sigma);

VARMASIM Call

generates a VARMA(p,q) time series

CALL VARMASIM(series, phi, theta, mu, sigma, n <, p, q, initial, seed>);

The inputs to the VARMASIM subroutine are as follows:

phi specifies a kmp × k matrix containing the autoregressive coefficient matri-
ces, where mp is the number of the elements in the subset of the AR order
and k ≥ 2 is the number of variables. You must specify either phi or theta.

theta specifies a kmq × k matrix containing the moving-average coefficient ma-
trices, where mq is the number of the elements in the subset of the MA
order. You must specify either phi or theta.

mu specifies a k× 1 (or 1×k) mean vector of the series. If mu is not specified,
a zero vector is used.

sigma specifies a k× k covariance matrix of the innovation series. If sigma is not
specified, an identity matrix is used.

n specifies the length of the series. If n is not specified, n = 100 is used.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

initial specifies the initial values of random variables. If initial = a0, then
y−p+1, . . . ,y0 and ε−q+1, . . . , ε0 all take the same value a0. If the ini-
tial option is not specified, the initial values are estimated for the stationary
vector time series; the initial values are assumed as zero for the nonstation-
ary vector time series.

seed is a scalar containing the random number seed. At the first execution of the
subroutine, the seed variable is used as follows:

If seed > 0, the input seed is used for generating the series.

VECDIAG Function � 985

If seed = 0, the system clock is used to generate the seed.

If seed < 0, the value (−1)×(seed) is used for generating the series.

If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO loop like environment the
seed variable is used as follows: If seed > 0, the seed remains unchanged.
In other cases, after each execution of the subroutine, the current seed is
updated internally.

The VARMASIM subroutine returns the following value:

series is an n×kmatrix containing the generated VARMA(p, q) time series. When
either the initial option is specified or zero initial values are used, these
initial values are not included in series.

Consider the following bivariate (k = 2) stationary VARMA(1,1) time series:

yt − µ = Φ(yt−1 − µ) + εt −Θεt−1

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
µ =

[
10
20

]
Σ =

[
1.0 0.5
0.5 1.25

]

To generate this series, you can use the following statements:

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call varmasim(yt, phi, theta, mu, sigma, 100);

Consider a bivariate (k = 2) nonstationary VARMA(1,1) time series with the same
µ, Σ, and Θ in the previous example and the following AR coefficient:

Φ =
[

1.0 0
0 0.3

]
To generate this series, you can use the following statements:

phi = { 1.0 0.0, 0.0 0.3 };
call varmasim(yt, phi, theta, mu, sigma, 100) initial=3;

VECDIAG Function

creates a vector from a diagonal

986 � Chapter 20. Language Reference

VECDIAG(square-matrix)

where square-matrix is a square numeric matrix.

The VECDIAG function creates a column vector whose elements are the main diag-
onal elements of square-matrix. For example, the following statements produce the
column vector shown:

a={2 1, 0 -1};
c=vecdiag(a);

C 2 rows 1 col (numeric)

2
-1

VNORMAL Call

generates a multivariate normal random series

CALL VNORMAL(series, mu, sigma, n <, seed>);

The inputs to the VNORMAL subroutine are as follows:

mu specifies a k × 1 (or 1 × k) mean vector, where k ≥ 2 is the number of
variables. You must specify either mu or sigma. If mu is not specified, a
zero vector is used.

sigma specifies a k×k symmetric positive-definite covariance matrix. By default,
sigma is an identity matrix with dimension k. You must specify either mu
or sigma. If sigma is not specified, an identity matrix is used.

n specifies the length of the series. If n is not specified, n = 100 is used.

seed is a scalar containing the random number seed. At the first execution of the
subroutine, the seed variable is used as follows:

If seed > 0, the input seed is used for generating the series.

If seed = 0, the system clock is used to generate the seed.

If seed < 0, the value (−1)×(seed) is used for generating the series.

If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO loop like environment the
seed variable is used as follows: If seed > 0, the seed remains unchanged.
In other cases, after each execution of the subroutine, the current seed is
updated internally.

The VNORMAL subroutine returns the following value:

series is an n× k matrix that contains the generated normal random series.

VTSROOT Call � 987

Consider a bivariate (k = 2) normal random series with mean µ and covariance
matrix Σ, where

µ =
[

10
20

]
and Σ =

[
1.0 0.5
0.5 1.25

]
To generate this series, you can use the following statements:

mu = { 10, 20 };
sigma= { 1.0 0.5, 0.5 1.25};
call vnormal(et, mu, sigma, 100);

VTSROOT Call

calculates the characteristic roots of the model from AR and MA characteristic
functions

CALL VTSROOT(root, phi, theta<, p, q>);

The inputs to the VTSROOT subroutine are as follows:

phi specifies a kmp × k matrix containing the autoregressive coefficient matri-
ces, where mp is the number of the elements in the subset of the AR order
and k ≥ 2 is the number of variables. You must specify either phi or theta.

theta specifies a kmq × k matrix containing the moving-average coefficient ma-
trices, where mq is the number of the elements in the subset of the MA
order. You must specify either phi or theta.

p specifies the subset of the AR order. See the VARMACOV subroutine.

q specifies the subset of the MA order. See the VARMACOV subroutine.

The VTSROOT subroutine returns the following value:

root is a k(pmax + qmax) × 5 matrix, where pmax is the maximum order of
the AR characteristic function and qmax is the maximum order of the MA
characteristic function. The first kpmax rows refer to the results of the AR
characteristic function; the last kqmax rows refer to the results of the MA
characteristic function.

The first column contains the real parts, x, of eigenvalues of companion ma-
trix associated with the AR(pmax) or MA(qmax) characteristic function; the
second column contains the imaginary parts, y, of the eigenvalues; the third
column contains the moduli of the eigenvalues,

√
x2 + y2; the fourth col-

umn contains the arguments (arctan(y/x)) of the eigenvalues, measured in
radians from the positive real axis. The fifth column contains the arguments
expressed in degrees rather than radians.

988 � Chapter 20. Language Reference

Consider the roots of the characteristic functions, Φ(B) = I − ΦB and Θ(B) =
I −ΘB, where I is an identity matrix with dimension 2 and

Φ =
[

1.2 −0.5
0.6 0.3

]
Θ =

[
−0.6 0.3
0.3 0.6

]
To compute these roots, you can use the following statements:

phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
call vtsroot(root, phi, theta);

WAVFT Call

computes fast wavelet transform

CALL WAVFT(decomp, data, opt <, levels>);

The fast wavelet transform (WAVFT) subroutine computes a specified discrete
wavelet transform of the input data by using the algorithm of Mallat (1989). This
transform decomposes the input data into sets of detail and scaling coefficients de-
fined at a number of scales or “levels.”

The input data are used as scaling coefficients at the top level in the decomposition.
The fast wavelet transform then recursively computes a set of detail and a set of
scaling coefficients at the next lower level by respectively applying “low pass” and
“high pass” conjugate mirror filters to the scaling coefficients at the current level. The
number of coefficients in each of these new sets is approximately half the number of
scaling coefficients at the level above them. Depending on the filters being used,
a number of additional scaling coefficients, known as boundary coefficients, can be
involved. These boundary coefficients are obtained by extending the sequence of
interior scaling coefficients using a specified method.

Details of the discrete wavelet transform and the fast wavelet transformation algo-
rithm are available in many references, including Mallat (1989), Daubechies (1992),
and Ogden (1997).

The inputs to the WAVFT subroutine are as follows:

data specifies the data to transform. These data must be in either a row or column
vector.

opt refers to an options vector with the following components:

opt[1] specifies the boundary handling used in computing the wavelet
transform. At each level of the wavelet decomposition, neces-
sary boundary scaling coefficients are obtained by extending the
interior scaling coefficients at that level as follows:

opt[1]=0 specifies extension by zero.
opt[1]=1 specifies periodic extension.

WAVFT Call � 989

opt[1]=2 specifies polynomial extension.
opt[1]=3 specifies extension by reflection.
opt[1]=4 specifies extension by anti-symmetric reflection.

opt[2] specifies the polynomial degree that is used for polynomial ex-
tension. The value of opt[2] is ignored if opt[1]6= 2.

opt[2]=0 specifies constant extension.
opt[2]=1 specifies linear extension.
opt[2]=2 specifies quadratic extension.

opt[3] specifies the wavelet family.

opt[3]=1 specifies the Daubechies Extremal phase family
(Daubechies, 1992).

opt[3]=2 specifies the Daubechies Least Asymmetric family
(also known as the Symmlet family) (Daubechies,
1992).

opt[4] specifies the wavelet family member. Valid values are

opt[4]=1 through 10, if opt[3]=1
opt[4]=4 through 10, if opt[3]=2

Some examples of wavelet specifications are

opt={1 . 1 1}; specifies the first member (more commonly known as the
Haar system) of the Daubechies extremal phase family
with periodic boundary handling.

opt={2 1 2 5}; specifies the fifth member of the Symmlet family with
linear extension boundary handling.

levels is an optional scalar argument that specifies the number of levels from the
top level to be computed in the decomposition. If you do not specify this
argument, then the decomposition terminates at level 0. Usually, you do
not need to specify this optional argument. You use this option to avoid
unneeded computations in situations where you are interested in only the
higher level detail and scaling coefficients.

The WAVFT subroutine returns

decomp a row vector that encapsulates the specified wavelet transform. The infor-
mation that is encoded in this vector includes:

• the options specified for computing the transform
• the number of detail coefficients at each level of the decomposition
• all detail coefficients
• the scaling coefficients at the bottom level of the decomposition
• boundary scaling coefficients at all levels of the decomposition

990 � Chapter 20. Language Reference

Note: decomp is a private representation of the specified wavelet transform and is
not intended to be interpreted in its raw form. Rather, you should use this vector
as an input argument to the WAVIFT, WAVPRINT, WAVGET, and WAVTHRSH
subroutines

The following program shows an example that uses wavelet calls to estimate and
reconstruct a piecewise constant function:

/* define a piecewise constant step function */
start blocky(t);

/* positions (p) and magnitudes (h) of jumps */
p = {0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81};
h = {4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1 -4.2};

y=j(1, ncol(t), 0);
do i=1 to ncol(p);

diff=((t-p[i])>=0);
y=y+h[i]*diff;

end;
return (y);

finish blocky;

n=2##8;
x=1:n;
x=(x-1)/n;
y=blocky(x);

optn = { 2, /* polynomial extension at boundary */
1, /* using linear polynominal */
1, /* Daubechies Extremal phase */
3 /* family member 3 */
};

call wavft(decomp, y, optn);
call wavprint(decomp,1); /* print summary information */

/* perform permanent thresholding */
threshOpt = { 2, /* soft thresholding */

2, /* global threshold */
., /* ignored */

-1 /* apply to all levels */
};

call wavthrsh(decomp, threshOpt);

/* request detail coefficients at level 4 */
call wavget(detail4,decomp,2,4);

/* reconstruct function by using wavelets */
call wavift(estimate,decomp);

errorSS=ssq(y-estimate);
print errorSS;

WAVGET Call � 991

Decomposition Summary

Decomposition Name DECOMP
Wavelet Family Daubechies Extremal Phase
Family Member 3
Boundary Treatment Recursive Linear Extension
Number of Data Points 256
Start Level 0

ERRORSS

1.746E-25

WAVGET Call

extracts wavelet information

CALL WAVGET(result, decomp, request <, options>);

The WAVGET subroutine is used to return information that is encoded in a wavelet
decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed by using a call
to the WAVFT subroutine.

request specifies a scalar indicating what information is to be returned.

You can specify different optional arguments depending on the value of
request:

request=1 requests the number of points in the input data vector.

result returns as a scalar containing this number.

request=2 requests the detail coefficients at a specified level. Valid syntax
is

CALL WAVGET(result, decomp, 2, level <, opt>);
where the argument

level is the level at which the detail coefficients are re-
quested.

opt is an optional vector which specifies the thresholding
to be applied to the returned detail coefficients. See
the WAVIFT subroutine call for details. If you omit
this argument, no thresholding is applied.

result returns as a column vector containing the specified
detail coefficients.

request=3 requests the scaling coefficients at a specified level. Valid syn-
tax is

992 � Chapter 20. Language Reference

CALL WAVGET(result, decomp, 3, level <, opt>);
where the argument

level is the level at which the scaling coefficients are re-
quested.

opt is an optional vector that specifies the thresholding
to be applied. See the WAVIFT subroutine call for a
description of this vector. The scaling coefficients at
the requested level are obtained by using the inverse
wavelet transform, after applying the specified thresh-
olding. If you omit this argument, no thresholding is
applied.

result returns as a column vector containing the specified
scaling coefficients.

request=4 requests the thresholding status of the detail coefficients in de-
comp.

result returns as a scalar whose value is
0, if the detail coefficients have not been thresh-

olded
1, otherwise

request=5 requests the wavelet options vector that you specified in the
WAVFT subroutine call to compute decomp.

result returns as a column vector with 4 elements containing
the specified options vector. See the WAVFT subrou-
tine call for the interpretation of the vector entries.

request=6 requests the index of the top level in decomp.

result returns as a scalar containing this number.

request=7 requests the index of the lowest level in decomp.

result returns as a scalar containing this number.

request=8 requests a vector evaluating the father wavelet used in decomp,
at an equally spaced grid spanning the support of the father
wavelet. The number of points in the grid is specified as a power
of 2 times the support width of the father wavelet. For wavelets
in the Daubechies extremal phase and least asymmetric fami-
lies, the support width of the father wavelet is 2m−1, where m
is the family member. Valid syntax is

CALL WAVGET(result, decomp, 8 <, power>);
where the optional argument

power is the exponent of 2 determining the number of grid
points used. power defaults to 8 if you do not specify
this argument.

WAVIFT Call � 993

result returns as a column vector containing the specified
evaluation of the father wavelet.

An example is available in the documentation for the WAVFT subroutine.

WAVIFT Call

computes inverse fast wavelet transform

CALL WAVIFT(result, decomp <, opt <, level>>);

The Inverse Fast Wavelet Transform (WAVIFT) subroutine computes the inverse
wavelet transform of a wavelet decomposition computed by using the WAVFT sub-
routine. Details of this algorithm are available in many references, including Mallat
(1989), Daubechies (1992), and Ogden (1997).

The inverse transform yields an exact reconstruction of the original input data, pro-
vided that no smoothing is specified. Alternatively, a smooth reconstruction of the in-
put data can be obtained by thresholding the detail coefficients in the decomposition
prior to applying the inverse transformation. Thresholding, also known as shrinkage,
replaces the detail coefficient d(i)

j at level i by δTi(d
(i)
j), where the δT (x) is a shrink-

age function and Ti is the threshold value used at level i. The SAS/IML wavelet
subroutines support hard and soft shrinkage functions (Donoho and Johnstone 1994)
and the nonnegative garrote shrinkage function (Breiman 1995). These functions are
defined as follows:

δhard
T (x) =

{
0 |x| ≤ T
x |x| > T

δsoft
T (x) =

0 |x| ≤ T
x− T x > T
x+ T x < −T

δ
garrote
T (x) =

{
0 |x| ≤ T
x− T 2/x |x| > T

You can specify several methods for choosing the threshold values. Methods in which
the threshold Ti varies with the level i are called adaptive. Methods where the same
threshold is used at all levels are called global.

The inputs to the WAVIFT subroutine are as follows:

decomp specifies a wavelet decomposition that has been computed by using a call
to the WAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm. If this
optional argument is not specified, then no thresholding is applied.

The options vector has the following components:

994 � Chapter 20. Language Reference

opt[1] specifies the thresholding policy.

opt[1]=0 specifies that no thresholding be done. If opt[1]=0 then
all other entries in the options vector are ignored.

opt[1]=1 specifies hard thresholding.
opt[1]=2 specifies soft thresholding.
opt[1]=3 specifies garrote thresholding.

opt[2] specifies the method for selecting the threshold.

opt[2]=0 specifies a global user-supplied threshold.
opt[2]=1 specifies a global threshold chosen by using the mini-

max criterion of Donoho and Johnstone (1994).
opt[2]=2 specifies a global threshold defined by using the univer-

sal criterion of Donoho and Johnstone (1994).
opt[2]=3 specifies an adaptive method where the thresholds at

each level i are chosen to minimize an approximation of
the L2 risk in estimating the true data values using the
reconstruction with thresholded coefficients (Donoho
and Johnstone 1995).

opt[2]=4 specifies a hybrid method of Donoho and Johnstone
(1995). The universal threshold as specified by opt[2]=2
is used at levels where most of the detail coefficients are
essentially zero. The risk minimization method as spec-
ified by opt[2]=4 is used at all other levels.

opt[3] specifies the value of the global user-supplied threshold if opt[2]=1.
It is ignored if opt[2] 6= 1.

opt[4] specifies the number of levels starting at the highest detail coeffi-
cient level at which thresholding is to be applied. If this value is
negative or missing, thresholding is applied at all levels in decomp.

Some common examples of threshold options specifications are:

opt={1 3 . -1}; specifies hard thresholding with a minimax threshold ap-
plied at all levels in the decomposition. This threshold is
named “RiskShrink” in Donoho and Johnstone (1994).

opt={2 2 . -1}; specifies soft thresholding with a universal threshold ap-
plied at all levels in the decomposition. This threshold is
named “VisuShrink” in Donoho and Johnstone (1994).

opt={2 4 . -1}; specifies soft thresholding with level dependent thresh-
olds which minimize the Stein Unbiased Estimate of
Risk (SURE). This threshold is named “SureShrink” in
Donoho and Johnstone (1995).

level is an optional scalar argument that specifies the level at which the recon-
structed data are to be returned. If this argument is not specified then the
reconstructed data are returned at the top level defined in decomp.

The WAVIFT subroutine returns

WAVPRINT Call � 995

result a vector obtained by inverting, after thresholding the detail coefficients, the
discrete wavelet transform encoded in decomp. The row or column orienta-
tion of result is the same as that of the input data specified in the correspond-
ing WAVFT subroutine call. If you specify the optional level argument, result
contains the reconstruction at the specified level, otherwise the reconstruction
corresponds to the top level in the decomposition.

An example is available in the documentation for the WAVFT subroutine.

WAVPRINT Call

displays wavelet information

CALL WAVPRINT(decomp, request <, options>);

The WAVPRINT subroutine is used to display the information that is encoded in a
wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed by using a call
to the WAVFT subroutine.

request specifies a scalar indicating what information is to be displayed.

You can specify different optional arguments depending on the value of
request:

request=1 displays information about the wavelet family used to perform
the wavelet transform. No additional arguments need to be
specified.

request=2 displays the detail coefficients by level. Valid syntax is
CALL WAVPRINT(decomp, 2 <, lower <, upper>>

);
where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value of lower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value of upper is the highest de-
tail level in decomp.

request=3 displays the scaling coefficients by level. Valid syntax is
CALL WAVPRINT(decomp,3 < , lower <, upper>>

);
where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value of lower is the lowest level
in decomp.

996 � Chapter 20. Language Reference

upper is optional and specifies the upper level to be dis-
played. The default value of upper is the top level
in decomp.

request=4 displays thresholded detail coefficients by level. Valid syntax is
CALL WAVPRINT(decomp, 4,< opt <, lower <, upper>>>);

where the argument

opt is an optional vector which specifies the thresholding
to be applied to the displayed detail coefficients. See
the WAVIFT subroutine call for details. If you omit
this argument, no thresholding is applied.

lower is optional and specifies the lowest level to be dis-
played. The default value of lower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value of upper is the highest de-
tail level in decomp.

An example is available in the documentation for the WAVFT subroutine.

WAVTHRSH Call

thresholds wavelet detail coefficients

CALL WAVTHRSH(decomp, opt);

The wavelet threshold (WAVTHRSH) subroutine thresholds the detail coefficients in
a wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed by using a call
to the WAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm used.
See the WAVIFT subroutine call for a description of this options vector.

On return, the detail coefficients encoded in decomp are replaced by their thresh-
olded values. Note that this action is not reversible. If you want to retain the original
detail coefficients, you should not use the WAVTHRSH subroutine to do threshold-
ing. Rather, you should supply the thresholding argument where appropriate in the
WAVIFT, WAVGET, and WAVPRINT subroutine calls.

An example is available in the documentation for the WAVFT subroutine.

WINDOW Statement � 997

WINDOW Statement

opens a display window

WINDOW <CLOSE=>window-name <window-options>

<GROUP=group-name field-specs>

< . . .GROUP=group-name field-specs>;

where the arguments and options are described in the following list.

The WINDOW statement defines a window on the display and can include a num-
ber of fields. The DISPLAY statement actually writes values to the window. The
following fields can be specified in the WINDOW statement:

window-name
specifies a name 1 to 8 characters long for the window. This name is displayed in the
upper-left border of the window.

CLOSE=window-name
closes the window.

window-options
control the size, position, and other attributes of the window. The attributes can
also be changed interactively with window commands such as WGROW, WDEF,
WSHRINK, and COLOR. A description of the window options follows.

GROUP=group-name
starts a repeating sequence of groups of fields defined for the window. The group-
name specification is a name 1 to 8 characters long used to identify a group of fields
in a later DISPLAY statement.

field-specs
are a sequence of field specifications made up of positionals, field operands, formats,
and options. These are described in the next section.

The following window options can be specified in the WINDOW statement:

CMNDLINE=name
specifies the name of a variable in which the command line entered by the user will
be stored.

COLOR=operand
specifies the background color for the window. The operand is either a quoted char-
acter literal, a name, or an operand. The valid values are “WHITE,” “BLACK,”
“GREEN,” “MAGENTA,” “RED,” “YELLOW,” “CYAN,” “GRAY,” and “BLUE.”
The default value is “BLACK.”

COLUMNS=operand
specifies the starting number of columns for the window. The operand is either a
literal number, a variable name, or an expression in parentheses. The default value is
78 columns.

998 � Chapter 20. Language Reference

ICOLUMN=operand
specifies the initial starting column position of the window on the display. The
operand is either a literal number or a variable name. The default value is column 1.

IROW=operand
specifies the initial starting row position of the window on the display. The operand
is either a literal number or a variable name. The default value is row 1.

MSGLINE=operand
specifies the message to be displayed on the standard message line when the window
is made active. The operand is almost always the name of a variable, but a character
literal can be used.

ROWS=operand
determines the starting number of rows of the window. The operand is either a literal
number, the name of a variable containing the number, or an expression in parentheses
yielding the number. The default value is 23 rows.

Both the WINDOW and DISPLAY statements accept field specifications, which have
the following general form:

<positionals> field-operand <format> <field-options>

In the preceding statement,

positionals are directives determining the position on the screen to begin the
field. There are four kinds of positionals; any number of positionals
are accepted for each field operand.

operand specifies the row position; that is, it moves the current position to
column 1 of the specified line. The operand is either a number, a
name, or an expression in parentheses.

/ specifies that the current position move to column 1 of the next
row.

@ operand specifies the column position. The operand is either a number, a
name, or an expression in parentheses. The @ directive should
come after the # position if # is specified.

+ operand specifies a skip of columns. The operand is either a number, a
name, or an expression in parentheses.

field-operand is a character literal in quotes or the name of a variable that speci-
fies what is to go in the field.

format is the format used for display, the value, and the informat applied to
entered values. If no format is specified, then the standard numeric
or character format is used.

field-options specify the attributes of the field as follows:

PROTECT=YES
P=YES

specifies that the field is protected; that is, you cannot enter values
in the field. If the field operand is a literal, it is already protected.

XSECT Function � 999

COLOR=operand
specifies the color of the field. The operand is a literal character
value in quotes, a variable name, or an expression in parentheses.
The colors available are “WHITE,” “BLACK,” “GREEN,”
“MAGENTA,” “RED,” “YELLOW,” “CYAN,” “GRAY,” and
“BLUE.” Note that the color specification is different from that of
the corresponding DATA step value because it is an operand rather
than a name without quotes. The default value is “BLUE.”

XMULT Function

performs accurate matrix multiplication

XMULT(matrix1, matrix2)

where matrix1 and matrix2 are numeric matrices.

The XMULT function computes the matrix product like the matrix multiplication
operator (*) except XMULT uses extended precision to accumulate sums of products.
You should use the XMULT function only when you need great accuracy.

The following program uses the XMULT function:

a=1e13;
b=1e13;
c=100*a;
a=a+1;
x=c || a || b || c;
y=c || a || (-b) || (-c);

z=xmult(x,y‘); /* correct answer */
print z [format=16.0];

wrong = x * y‘; /* loss of precision */
print wrong [format=16.0];

Z

20000000000001

WRONG

19997367730176

XSECT Function

intersects sets

1000 � Chapter 20. Language Reference

XSECT(matrix1<, matrix2,. . ., matrix15>)

where matrix is a numeric or character matrix or quoted literal.

The XSECT function returns as a row vector the sorted set (without duplicates) of
the element values that are present in all of its arguments. This set is the intersection
of the sets of values in its argument matrices. When the intersection is empty, the
XSECT function returns a null matrix (zero rows and zero columns). There can be up
to 15 arguments, which must all be either character or numeric. For characters, the
element length of the result is the same as the shortest of the element lengths of the
arguments. For comparison purposes, shorter elements are padded on the right with
blanks.

For example, the following statements return the result shown:

a={1 2 4 5};
b={3 4};
c=xsect(a,b);

C 1 row 1 col (numeric)

4

YIELD Function

calculates yield-to-maturity of a cash-flow stream and returns a scalar

YIELD(times,flows,freq,value)

The YIELD function returns a scalar containing yield-to-maturity of a cash-flow
stream based on frequency and value specified.

times is an n-dimensional column vector of times. Elements should be non-
negative.

flows is an n-dimensional column vector of cash flows.

freq is a scalar that represents the base of the rates to be used for discount-
ing the cash flows. If positive, it represents discrete compounding as
the reciprocal of the number of compoundings. If zero, it represents
continuous compounding. No negative values are accepted.

value is a scalar that is the discounted present value of the cash flows.

The present value relationship can be written as

P =
K∑

k=1

c(k)D(tk)

where P is the present value of the asset, {c(k)}k = 1, ..K is the sequence of cash
flows from the asset, tk is the time to the kth cash flow in periods from the present,

Base SAS Functions Accessible from SAS/IML � 1001

and D(t) is the discount function for time t.

With continuous compounding:

D(t) = e−yt

With discrete compounding:

D(t) = (1 + fy)−t/f

where f > 0 is the frequency, the reciprocal of the number of compoundings per unit
time period, and y is the yield-to-maturity. The YIELD function solves for y.

For example, the following code produces the output shown:

timesn=T(do(1,100,1));
flows=repeat(10,100);
freq=50;
value=682.31027;
yield=yield(timesn,flows,freq,value);
print yield;

YIELD
0.0100001

Base SAS Functions Accessible from SAS/IML
The following Base SAS functions are either not available from IML, or behave dif-
ferently from the Base SAS function of the same name.

Function Comment
CALL CATS return variable must be preinitialized
MAD conflicts with built-in function of the same name
MEDIAN conflicts with IMLMLIB function of the same name
MOD base function performs “fuzzing;” IML does not
CALL PRXNEXT return variables must be preinitialized
CALL PRXPOSN return variables must be preinitialized
CALL PRXSUBSTR return variables must be preinitialized
CALL RXCHANGE return variables must be preinitialized
CALL RXMATCH return variables must be preinitialized
CALL RXSUBSTR return variables must be preinitialized
CALL SCAN return variables must be preinitialized
VVALUE not applicable: interrogates DATA step variables
VVALUEX not applicable: interrogates DATA step variables
VNEXT not applicable: interrogates DATA step variables

1002 � Chapter 20. Language Reference

There are some Base SAS functions that are not supported by SAS/IML. For example,
the DATA step permits N-literals (strings that end with ’N’) to be interpreted as the
name of a variable, but IML does not.

The following Base SAS functions can be called from SAS/IML. The functions are
documented in the SAS Language Reference: Dictionary. In some cases, SAS/IML
does not accept all variations in the syntax. For example, SAS/IML does not accept
the OF keyword as a way to generate an argument list in the RANGE function.

The functions displayed in italics are documented elsewhere in this user’s guide.
These functions operate on matrices as well as on scalar values, as do many of the
mathematical and statistical functions.

Bitwise Logical Operation Functions

BAND returns the bitwise logical AND of two arguments
BLSHIFT performs a bitwise logical left shift of an argument by a specified

amount
BNOT returns the bitwise logical NOT of an argument
BOR returns the bitwise logical OR of two arguments
BRSHIFT performs a bitwise logical right shift of an argument by a specified

amount
BXOR returns the bitwise logical EXCLUSIVE OR of two arguments

Character and Formatting Functions

ANYALNUM searches a character string for an alphanumeric character and re-
turns the first position at which it is found

ANYALPHA searches a character string for an alphabetic character and returns
the first position at which it is found

ANYCNTRL searches a character string for a control character and returns the
first position at which it is found

ANYDIGIT searches a character string for a digit and returns the first position
at which it is found

ANYFIRST searches a character string for a character that is valid as the first
character in a SAS variable name under VALIDVARNAME=V7,
and returns the first position at which that character is found

ANYGRAPH searches a character string for a graphical character and returns the
first position at which it is found

ANYLOWER searches a character string for a lowercase letter and returns the
first position at which it is found

ANYNAME searches a character string for a character that is valid in a SAS
variable name under VALIDVARNAME=V7, and returns the first
position at which that character is found

ANYPRINT searches a character string for a printable character and returns the
first position at which it is found

Character and Formatting Functions � 1003

ANYPUNCT searches a character string for a punctuation character and returns
the first position at which it is found

ANYSPACE searches a character string for a white-space character (blank, hor-
izontal and vertical tab, carriage return, line feed, form feed) and
returns the first position at which it is found

ANYUPPER searches a character string for an uppercase letter and returns the
first position at which it is found

ANYXDIGIT searches a character string for a hexadecimal character that repre-
sents a digit and returns the first position at which that character is
found

BYTE returns one character in the ASCII or EBCDIC collating sequence
CAT concatenates character strings without removing leading or trailing

blanks
CATS concatenates character strings and removes leading and trailing

blanks
CALL CATS concatenates character strings and removes leading and trailing

blanks
CATT concatenates character strings and removes trailing blanks
CALL CATT concatenates character strings and removes trailing blanks
CATX concatenates character strings, removes leading and trailing

blanks, and inserts separators
CALL CATX concatenates character strings, removes leading and trailing

blanks, and inserts separators
CHOOSEC returns a character value that represents the results of choosing

from a list of arguments
CHOOSEN returns a numeric value that represents the results of choosing from

a list of arguments
COLLATE returns an ASCII or EBCDIC collating sequence character string
COMPARE returns the position of the left-most character by which two strings

differ, or returns 0 if there is no difference
COMPBL removes multiple blanks from a character string
CALL COMPCOST sets the costs of operations for later use by the COMPGED func-

tion
COMPGED compares two strings by computing the generalized edit distance
COMPLEV compares two strings by computing the Levenshtein edit distance
COMPRESS removes specific characters from a character string
COUNT counts the number of times that a specific substring of characters

appears within a character string that you specify
COUNTC counts the number of specific characters that either appear or do

not appear within a character string that you specify
COUNTW counts the number of words in a character expression
FIND searches for a specific substring of characters within a character

string that you specify
FINDC searches for specific characters that either appear or do not appear

within a character string that you specify
IFC returns a character value that matches an expression
IFN returns a numeric value that matches an expression
INDEX searches a character expression for a string of characters

1004 � Chapter 20. Language Reference

INDEXC searches a character expression for specific characters
INDEXW searches a character expression for a specified string as a word
INPUTC applies a character informat at run time
INPUTN applies a numeric informat at run time
LEFT left aligns a character expression
LENGTH returns the length of a character string
LENGTHC returns the length of a character string, including trailing blanks
LENGTHM returns the amount of memory (in bytes) that is allocated for a

character string
LENGTHN returns the length of a nonblank character string, excluding trailing

blanks, and returns 0 for a blank character string
LOWCASE converts all letters in an argument to lowercase
CALL MISSING assigns a missing value to the specified character or numeric vari-

able
NLITERAL converts a character string that you specify to a SAS name literal

(N-literal)
NOTALNUM searches a character string for a nonalphanumeric character and

returns the first position at which it is found
NOTALPHA searches a character string for a nonalphabetic character and re-

turns the first position at which it is found
NOTCNTRL searches a character string for a character that is not a control char-

acter and returns the first position at which it is found
NOTDIGIT searches a character string for any character that is not a digit and

returns the first position at which that character is found
NOTFIRST searches a character string for an invalid first character in a SAS

variable name under VALIDVARNAME=V7, and returns the first
position at which that character is found

NOTGRAPH searches a character string for a nongraphical character and returns
the first position at which it is found

NOTLOWER searches a character string for a character that is not a lowercase
letter and returns the first position at which that character is found

NOTNAME searches a character string for an invalid character in a SAS vari-
able name under VALIDVARNAME=V7, and returns the first po-
sition at which that character is found

NOTPRINT searches a character string for a nonprintable character and returns
the first position at which it is found

NOTPUNCT searches a character string for a character that is not a punctuation
character and returns the first position at which it is found

NOTSPACE searches a character string for a character that is not a white-space
character (blank, horizontal and vertical tab, carriage return, line
feed, form feed) and returns the first position at which it is found

NOTUPPER searches a character string for a character that is not an uppercase
letter and returns the first position at which that character is found

NOTXDIGIT searches a character string for a character that is not a hexadecimal
digit and returns the first position at which that character is found

NVALID checks a character string for validity for use as a SAS variable
name in a SAS statement

PROPCASE converts all words in an argument to proper case

Character String Matching Functions and Subroutines � 1005

PUTC applies a character format at run time
PUTN applies a numeric format at run time
REPEAT repeats a character expression
REVERSE reverses a character expression
RIGHT right aligns a character expression
SCAN selects a given word from a character expression
CALL SCAN returns the position and length of a given word from a character

expression
ROUNDEX encodes a string to facilitate searching
SPEDIS determines the likelihood of two words matching, expressed as the

asymmetric spelling distance between the two words
STRIP returns a character string with all leading and trailing blanks re-

moved
SUBPAD returns a substring that has a length you specify, using blank

padding if necessary
SUBSTRN returns a substring, allowing a result with a length of zero
SUBSTR extracts substrings of character expressions
TRANSLATE replaces specific characters in a character expression
TRANWRD replaces or removes all occurrences of a word in a character string
TRIM removes trailing blanks from character expressions and returns one

blank if the expression is missing
TRIMN removes trailing blanks from character expressions and returns a

null string (zero blanks) if the expression is missing
UPCASE converts all letters in an argument to uppercase
UUIDGEN returns the short or binary form of a Universal Unique Identifier

(UUID)
VERIFY returns the position of the first character that is unique to an

expression

Character String Matching Functions and Subroutines

CALL RXCHANGE changes one or more substrings that match a pattern
CALL RXFREE frees memory allocated by other regular expression (RX) functions

and CALL routines
RXMATCH finds the beginning of a substring that matches a pattern
RXPARSE parses a pattern
CALL RXSUBSTR finds the position, length, and score of a substring that matches a

pattern
CALL PRXCHANGE performs a pattern matching substitution
CALL PRXDEBUG enables Perl regular expressions in a DATA step to send debug

output to the SAS log
CALL PRXFREE frees unneeded memory that was allocated for a Perl regular ex-

pression
PRXMATCH searches for a pattern match and returns the position at which the

pattern is found
CALL PRXNEXT returns the position and length of a substring that matches a pattern

and iterates over multiple matches within one string

1006 � Chapter 20. Language Reference

PRXPAREN returns the last bracket match for which there is a match in a pattern
PRXPARSE compiles a Perl regular expression that can be used for pattern

matching of a character value
CALL PRXPOSN returns the start position and length for a capture buffer
CALL PRXSUBSTR returns the position and length of a substring that matches a pattern

Date and Time Functions

DATDIF returns the number of days between two dates
DATE returns the current date as a SAS date value
DATEJUL converts a Julian date to a SAS date value
DATEPART extracts the date from a SAS datetime value
DATETIME returns the current date and time of day as a SAS datetime value
DAY returns the day of the month from a SAS date value
DHMS returns a SAS datetime value from date, hour, minute, and seconds
HMS returns a SAS time value from hour, minute, and seconds
HOUR returns the hour from a SAS time or datetime value
INTCK returns the integer number of time intervals in a given time span
INTNX advances a date, time, or datetime value by a given interval, and

returns a date, time, or datetime value
JULDATE returns the Julian date from a SAS date value
JULDATE7 returns a seven-digit Julian date from a SAS date value
MDY returns a SAS date value from month, day, and year values
MINUTE returns the minute from a SAS time or datetime value
MONTH returns the month from a SAS date value
QTR returns the quarter of the year from a SAS date value
SECOND returns the second from a SAS time or datetime value
TIME returns the current time of day
TIMEPART extracts a time value from a SAS datetime value
TODAY returns the current date as a SAS date value
WEEKDAY returns the day of the week from a SAS date value
YEAR returns the year from a SAS date value
YRDIF returns the difference in years between two dates
YYQ returns a SAS date value from the year and quarter

Descriptive Statistics Functions and Subroutines

CMISS returns the number of missing values for numeric or character ma-
trices

CSS returns the corrected sum of squares
CV returns the coefficient of variation
GEOMEAN returns the geometric mean
EUCLID returns the Euclidean norm of the nonmissing arguments
GEOMEANZ returns the geometric mean without fuzzing the values of the argu-

ments that are approximately 0
HARMEAN returns the harmonic mean

External Files Functions � 1007

HARMEANZ returns the harmonic mean without fuzzing the values of the argu-
ments that are approximately 0

IQR returns the interquartile range
KURTOSIS returns the kurtosis
LARGEST returns the kth largest nonmissing value
LPNORM returns the Lp norm of the nonmissing arguments
MAX returns the largest value
MAD returns the median absolute deviation from the median
MEDIAN computes median values
MEAN returns the arithmetic mean (average)
MIN returns the smallest value
N returns the number of nonmissing values
NMISS returns the number of missing values
ORDINAL returns any specified order statistic
PCTL computes percentiles
RANGE returns the range of values
RMS returns the root mean square
SKEWNESS returns the skewness
SMALLEST returns the kth smallest nonmissing value
SUM returns the sum of the nonmissing arguments
STD returns the standard deviation
CALL STDIZE standardizes the values of one or more variables
STDERR returns the standard error of the mean
SUMABS returns the sum of the absolute values of the nonmissing arguments
USS returns the uncorrected sum of squares
VAR returns the variance

Double-Byte Character String Functions

Many of the Base SAS character functions have analogous companion functions that
take double-byte character strings (DBCS) as arguments. These functions (for exam-
ple, KCOMPARE, KCVT, KINDEX, and KSUBSTR) are accessible from SAS/IML.
See the SAS Language Reference: Dictionary for a complete list of DBCS functions.

External Files Functions

DROPNOTE deletes a note marker from a SAS data set or an external file and
returns a value

EXIST verifies the existence of a SAS data library member
FAPPEND appends the current record to the end of an external file and returns

a value
FCLOSE closes an external file, directory, or directory member, and returns

a value
FCOL returns the current column position in the File Data Buffer (FDB)
FDELETE deletes an external file or an empty directory
FEXIST verifies the existence of an external file associated with a fileref

and returns a value

1008 � Chapter 20. Language Reference

FGET copies data from the File Data Buffer (FDB) into a variable and
returns a value

FILEEXIST verifies the existence of an external file by its physical name and
returns a value

FILENAME assigns or deassigns a fileref for an external file, directory, or out-
put device and returns a value

FILEREF verifies that a fileref has been assigned for the current SAS session
and returns a value

FINFO returns the value of a file information item
FNOTE identifies the last record that was read and returns a value that

FPOINT can use
FOPEN opens an external file and returns a file identifier value
FOPTNAME returns the name of an item of information about a file
FOPTNUM returns the number of information items that are available for an

external file
FPOINT positions the read pointer on the next record to be read and returns

a value
FPOS sets the position of the column pointer in the File Data Buffer

(FDB) and returns a value
FPUT moves data to the File Data Buffer (FDB) of an external file, start-

ing at the FDB’s current column position, and returns a value
FREAD reads a record from an external file into the File Data Buffer (FDB)

and returns a value
FREWIND positions the file pointer to the start of the file and returns a value
FRLEN returns the size of the last record read, or, if the file is opened for

output, returns the current record size
FSEP sets the token delimiters for the FGET function and returns a value
FWRITE writes a record to an external file and returns a value
MOPEN opens a file by directory identifier and member name, and returns

the file identifier or a 0
PATHNAME returns the physical name of a SAS data library or of an external

file, or returns a blank
SYSMSG returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC returns a system error number

File I/O Functions

ATTRC returns the value of a character attribute for a SAS data set
ATTRN returns the value of a numeric attribute for the specified SAS data

set
CEXIST verifies the existence of a SAS catalog or SAS catalog entry and

returns a value
CLOSE closes a SAS data set and returns a value
CUROBS returns the observation number of the current observation
DROPNOTE deletes a note marker from a SAS data set or an external file and

returns a value

Financial Functions � 1009

DSNAME returns the SAS data set name that is associated with a data set
identifier

EXIST verifies the existence of a SAS data library member
FETCH reads the next nondeleted observation from a SAS data set into the

Data Set Data Vector (DDV) and returns a value
FETCHOBS reads a specified observation from a SAS data set into the Data Set

Data Vector (DDV) and returns a value
GETVARC returns the value of a SAS data set character variable
GETVARN returns the value of a SAS data set numeric variable
LIBNAME assigns or deassigns a libref for a SAS data library and returns a

value
LIBREF verifies that a libref has been assigned and returns a value
NOTE returns an observation ID for the current observation of a SAS data

set
OPEN opens a SAS data set and returns a value
PATHNAME returns the physical name of a SAS data library or of an external

file, or returns a blank
POINT locates an observation identified by the NOTE function and returns

a value
REWIND positions the data set pointer at the beginning of a SAS data set

and returns a value
SYSMSG returns the text of error messages or warning messages from the

last data set or external file function execution
SYSRC returns a system error number
VARFMT returns the format assigned to a SAS data set variable
VARINFMT returns the informat assigned to a SAS data set variable
VARLABEL returns the label assigned to a SAS data set variable
VARLEN returns the length of a SAS data set variable
VARNAME returns the name of a SAS data set variable
VARNUM returns the number of a variable’s position in a SAS data set
VARTYPE returns the data type of a SAS data set variable

Financial Functions

COMPOUND returns compound interest parameters
CONVX returns the convexity for an enumerated cash flow
CONVXP returns the convexity for a periodic cash flow stream
DACCDB returns the accumulated declining balance depreciation
DACCDBSL returns the accumulated declining balance with conversion to a

straight-line depreciation
DACCSL returns the accumulated straight-line depreciation
DACCSYD returns the accumulated sum-of-years-digits depreciation
DACCTAB returns the accumulated depreciation from specified tables
DEPDB returns the declining balance depreciation
DEPDBSL returns the declining balance with conversion to a straight-line

depreciation
DEPSL returns the straight-line depreciation

1010 � Chapter 20. Language Reference

DEPSYD returns the sum-of-years-digits depreciation
DEPTAB returns the depreciation from specified tables
DUR returns the modified duration for an enumerated cash flow
INTRR returns the internal rate of return as a decimal
IRR returns the internal rate of return as a percentage
MORT returns amortization parameters
NETPV returns the net present value as a decimal
NPV returns the net present value as a percentage
PVP returns the present value for a periodic cash flow stream
SAVING returns the future value of a periodic saving
YIELDP returns the yield-to-maturity for a periodic cash flow stream

Macro Functions and Subroutines

CALL RESOLVE resolves the value of a text expression at execution time
CALL SYMGET returns the character value of a macro variable
CALL SYMGETN returns the numeric value of a macro variable
SYMEXIST indicates the existence of a macro variable
CALL SYMPUT sets the character value of a macro variable
CALL SYMPUTN sets the numeric value of a macro variable
CALL SYMPUTX assigns a value to a macro variable and removes both leading and

trailing blanks

Mathematical Functions and Subroutines

CALL ALLPERM generates all permutations of the values of several variables.
ABS returns the absolute value
AIRY returns the Airy function
BETA returns the value of the beta function.
COALESCE returns the first non-missing value from a list of numeric argu-

ments
COALESCEC returns the first non-missing value from a list of character argu-

ments
COMB returns the number of combinations of n items taken r at a time
COMPFUZZ returns the result of a fuzzy comparison of numeric values
CONSTANT returns some machine and mathematical constants
CNONCT returns the noncentrality parameter from a chi-squared distribution
DAIRY returns the derivative of the Airy function
DEVIANCE returns the deviance from a specified distribution
DIGAMMA returns the DIGAMMA function
ERF returns the normal error function
ERFC returns the complementary normal error function
EXP returns the exponential function
FACT returns the factorial of an integer
FNONCT returns the noncentrality parameter of an F distribution
GAMMA returns the gamma function
IBESSEL returns a modified Bessel function

Quantile Functions � 1011

JBESSEL returns a Bessel function
LOGBETA returns the logarithm of the beta function
LGAMMA returns the natural logarithm of the gamma function
LOG returns the natural (base e) logarithm
LOG2 returns the logarithm base 2
LOG10 returns the logarithm base 10
CALL LOGISTIC returns the logistic value of each argument
MOD returns the remainder value
CALL RANPERK randomly permutes the values of the arguments, and returns a per-

mutation of k out of n values
CALL RANPERM randomly permutes the values of the arguments
PERM returns the number of permutations of n items taken r at a time
SIGN returns the sign of a value
CALL SOFTMAX returns the softmax value for each argument
SQRT returns the square root of a value
TNONCT returns the value of the noncentrality parameter from the

student’s t distribution
TRIGAMMA returns the value of the TRIGAMMA function

Probability Functions

CDF computes cumulative distribution functions
LOGCDF returns the logarithm of a left cumulative distribution function
LOGPDF computes the logarithm of a probability function
LOGSDF computes the logarithm of a survival function
PDF computes probability density functions
POISSON returns the probability from a Poisson distribution
PROBBETA returns the probability from a beta distribution
PROBBNML returns the probability from a binomial distribution
PROBBNRM returns the probability from the bivariate normal distribution
PROBCHI returns the probability from a chi-squared distribution
PROBF returns the probability from an F distribution
PROBGAM returns the probability from a gamma distribution
PROBHYPR returns the probability from a hypergeometric distribution
PROBMC returns a probability or a quantile from various distributions for

multiple comparisons of means
PROBNEGB returns the probability from a negative binomial distribution
PROBNORM returns the probability from the standard normal distribution
PROBT returns the probability from a t distribution
SDF computes a survival function

Quantile Functions

BETAINV returns a quantile from the beta distribution
CINV returns a quantile from the chi-squared distribution
FINV returns a quantile from the F distribution
GAMINV returns a quantile from the gamma distribution

1012 � Chapter 20. Language Reference

PROBIT returns a quantile from the standard normal distribution
QUANTILE returns the quantile from the specified distribution
TINV returns a quantile from the t distribution

Random Number Functions and Subroutines

NORMAL returns a random variate from a normal distribution
RANBIN returns a random variate from a binomial distribution
RANCAU returns a random variate from a Cauchy distribution
RAND returns a random variate from a specified distribution
RANEXP returns a random variate from an exponential distribution
RANGAM returns a random variate from a gamma distribution
RANNOR returns a random variate from a normal distribution
RANPOI returns a random variate from a Poisson distribution
RANTBL returns a random variate from a tabled probability
RANTRI returns a random variate from a triangular distribution
RANUNI returns a random variate from a uniform distribution
CALL STREAMINIT specifies a seed value to use for subsequent random number gen-

eration by the RAND function.
UNIFORM returns a random variate from a uniform distribution

State and Zip Code Functions

FIPNAME converts FIPS codes to uppercase state names
FIPNAMEL converts FIPS codes to mixed-case state names
FIPSTATE converts FIPS codes to two-character postal codes
STFIPS converts state postal codes to FIPS state codes
STNAME converts state postal codes to uppercase state names
STNAMEL converts state postal codes to mixed-case state names
ZIPCITY returns a city name and the two-character postal code that corre-

sponds to a zip code
ZIPCITYDISTANCE returns the geodetic distance between two zip code locations
ZIPFIPS converts zip codes to FIPS state codes
ZIPNAME converts zip codes to uppercase state names
ZIPNAMEL converts zip codes to mixed-case state names
ZIPSTATE converts zip codes to state postal codes

Trigonometric and Hyperbolic Functions

ARCOS returns the arccosine
ARSIN returns the arcsine
ATAN returns the arctangent
ATAN2 returns the arc tangent of two numeric variables
COS returns the cosine
COSH returns the hyperbolic cosine
SIN returns the sine

References � 1013

SINH returns the hyperbolic sine
TAN returns the tangent
CALL TANH returns the hyperbolic tangent of each argument
TANH returns the hyperbolic tangent

Truncation Functions

CEIL returns the smallest integer ≥ the argument
CEILZ returns the smallest integer that is greater than or equal to the ar-

gument, using zero fuzzing
FLOOR returns the largest integer ≤ the argument
FLOORZ returns the largest integer that is less than or equal to the argument,

using zero fuzzing
FUZZ returns the nearest integer if the argument is within 1E-12
INT returns the integer portion of a value
INTZ returns the integer portion of the argument, using zero fuzzing
MODZ returns the remainder from the division of the first argument by the

second argument, using zero fuzzing
ROUND rounds a value to the nearest round-off unit
ROUNDE rounds the first argument to the nearest multiple of the second ar-

gument, and returns an even multiple when the first argument is
halfway between the two nearest multiples

ROUNDZ rounds the first argument to the nearest multiple of the second ar-
gument, with zero fuzzing

TRUNC returns a truncated numeric value of a specified length

Web Tools

HTMLDECODE decodes a string containing HTML numeric character refer-
ences or HTML character entity references and returns the de-
coded string

HTMLENCODE encodes characters by using HTML character entity references
and returns the encoded string

URLDECODE returns a string that was decoded using the URL escape syntax
URLENCODE returns a string that was encoded using the URL escape syntax

References
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions,

New York: Dover Publications, Inc.

Aiken, R. C. (1985), Stiff Computation, New York: Oxford University Press, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least
Squares,” Journal of the Operations Research Society, 36, 405–421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least
Squares,” Journal of Optimization Theory Application, 48, 359–377.

1014 � Chapter 20. Language Reference

Ansley, C. (1979), “An Algorithm for the Exact Likelihood of a Mixed
Autoregressive-Moving Average Process,” Biometrika, 66, 59–65.

Ansley, C. F. (1980), “Computation of the Theoretical Autocovariance Function for a
Vector ARMA Process,” Journal of Statistical Computation and Simulation, 12,
15–24.

Ansley, C. F. and Kohn, R. (1986), “A Note on Reparameterizing a Vector
Autoregressive Moving Average Model to Enforce Stationary,” Journal of
Statistical Computation and Simulation, 24, 99–106.

Barnett, V. and Lewis, T. (1978), Outliers in Statistical Data, New York: John Wiley
& Sons, Inc.

Barreto, H. and Maharry, D. (2006), “Least Median of Squares and Regression
Through the Origin,” Computatitional Statistics and Data Analysis, 50,
1391–1397.

Barrodale, I. and Roberts, F. D. K. (1974), “Algorithm 478: Solution of an
Overdetermined System of Equations in the L1-Norm,” Communications ACM,
17, 319–320.

Bates, D., Lindstrom, M., Wahba, G. and Yandell, B. (1987), “GCVPACK-Routines
for Generalized Cross Validation,” Communications in Statistics: Simulation and
Computation, 16, 263–297.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in Numerical
Methods for Nonlinear Optimization, ed. F. A. Lootsma (ed.), London:
Academic Press.

Beaton, A. E. (1964), “The Use of Special Matrix Operations in Statistical Calculus,”
Research Bulletin RB-64-51, Princeton: Educational Testing Service.

Bickart, T. A. and Picel, Z. (1973), “High Order Stiffly Stable Composite Multistep
Methods for Numerical Integration of Stiff Differential Equations,” in BIT, 13,
272–286.

Bishop, Y. M., Fienberg, S. E., and Holland, P. W. (1975), Discrete Multivariate
Analysis: Theory and Practice, Cambridge, MA: MIT Press.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and
Control, Oakland, CA: Holden-Day.

Breiman, L. (1995), “Better Subset Regression Using the Nonnegative Garrote,”
Technometrics, 37, 373–384.

Brockwell, P. J. and Davis, R. A. (1991), Time Series: Theory and Methods, Second
Edition, New York: Springer-Verlag.

Brownlee, K. A. (1965), Statistical Theory and Methodology in Science and
Engineering, New York: John Wiley & Sons, Inc.

Charnes, A., Frome, E. L., and Yu, P. L. (1976), “The Equivalence of Generalized
Least Squares and Maximum Likelihood Estimation in the Exponential Family,”
Journal of the American Statistical Association, 71, 169–172.

References � 1015

Christensen, Ronald (1997), Log-Linear Models and Logistic Regression, Second ed.,
New York: Springer-Verlag.

Chung, C. F. (1996), “A Generalized Fractionally Integrated ARMA Process,”
Journal of Time Series Analysis, 2, 111–140.

Cox, D. R. and Hinkley, D. V. (1974), Theoretical Statistics, London: Chapman and
Hall.

Daubechies, I. (1992), Ten Lectures on Wavelets, Volume 61, CBMS-NSF Regional
Conference Series in Applied Mathematics, Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Davies, L. (1992), “The Asymptotics of Rousseeuw’s Minimum Volume Ellipsoid
Estimator,” The Annals of Statistics, 20, 1828–1843.

De Boor, C. (2001), A Practical Guide to Splines. Revised Edition, New York:
Springer-Verlag.

De Jong, P. (1991), “Stable Algorithms for the State Space Model,” Journal of Time
Series Analysis, 12, 143–157.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least
Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.

Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization
Algorithms which Use Function and Gradient Values,” Journal of Optimization
Theory Applications, 28, 453–482.

Donelson, J. and Hansen, E. (1971), “Cyclic Composite Predictor-Corrector
Methods,” SIAM Journal on Numerical Analysis, 8, 137–157.

Donoho, D. L., and Johnstone, I. M. (1994), “Ideal Spatial Adaptation via Wavelet
Shrinkage,” Biometrika, 81, 425–455.

Donoho, D. L., and Johnstone, I. M. (1995), “Adapting to Unknown Smoothness
via Wavelet Shrinkage,” Journal of the American Statistical Association, 90,
1200–1224.

Duchon, J. (1976), “Fonctions-Spline et Esperances Conditionnelles de Champs
Guassiens,” Ann. Sci. Univ. Clermont Ferrand II Math, 14, 19–27.

Emerson, Phillip L. (1968), “Numerical construction of orthogonal polynomials from
a general recurrence formula,” Biometrics 24, 695–701.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified
Cholesky Factorization,” ACM Transactions on Mathematical Software, 17,
306–312.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester,
England: John Wiley & Sons, Ltd.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,”
Journal of Numerical Analysis, 7, 371–389.

Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1967), Computer Solution of
Linear Algebraic Systems, Chapter 17, Englewood Cliffs, NJ: Prentice-Hall, Inc.

1016 � Chapter 20. Language Reference

Furnival, G. M. and Wilson, R. W. (1974), “Regression by Leaps and Bounds,”
Technometrics, 16, 499–511.

Gaffney, P. W. (1984), “A Performance Evaluation of Some FORTRAN Subroutines
for the Solution of Stiff Oscillatory Ordinary Differential Equations,” Association
for Computing Machinery, Transactions on Mathematical Software, 10, 58–72.

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM
Transactions on Mathematical Software, 9, 503–524.

Gentleman, W. M. and Sande, G. (1966), “Fast Fourier Transforms for Fun and
Profit,” AFIPS Proceedings of the Fall Joint Computer Conference, 19, 563–578.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive
Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.

Geweke, J. and Porter-Hudak, S. (1983), “The Estimation and Application of Long
Memory Time Series Models,” Journal of Time Series Analysis, 4, 221-238.

Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints,” ACM Transactions on Mathematical Software, 10, 282–298.

Golub, G. H. (1969), “Matrix Decompositions and Statistical Calculations” in
Statistical Computation, ed. R.C. Milton and J.A. Nelder, New York: Academic
Press.

Golub, G. H., and Van Loan, C. F. (1989), Matrix Computations, Second Edition,
Baltimore: Johns Hopkins University Press.

Gonin, R. and Money, A. H. (1989), Nonlinear Lp-norm Estimation, New York: M.
Dekker, Inc.

Goodnight, J. H. (1979), “A Tutorial on the SWEEP Operator,” The American
Statistician, 33, 149–158.

Graybill, F. A. (1969), Introduction to Matrices with Applications in Statistics,
Belmont, CA: Wadsworth, Inc.

Grizzle, J. E., Starmer, C. F., and Koch, G. G. (1969), “Analysis of Categorical Data
by Linear Models,” Biometrics, 25, 489–504.

Hadley, G. (1963), Linear Programming, Reading, MA: Addison-Wesley Publishing
Company, Inc.

Harvey, A. C. (1989), Forecasting, Structural Time Series Models and the Kalman
Filter, Cambridge: Cambridge University Press.

Jenkins, M. A. and Traub, J. F. (1970), “ A Three-Stage Algorithm for Real
Polynomials Using Quadratic Iteration,” SIAM Journal of Numerical Analysis,
7, 545–566.

Jenrich, R. I. and Moore, R. H. (1975), “Maximum Likelihood Estimation by Means
of Nonlinear Least Squares,” American Statistical Association, 1975 Proceedings
of the Statistical Computing Section, 57–65.

References � 1017

Kaiser, H. F. and Caffrey, J. (1965), “Alpha Factor Analysis,” Psychometrika, 30,
1–14.

Kastenbaum, M. A. and Lamphiear, D. E. (1959), “Calculation of Chi-Square to Test
the No Three-Factor Interaction Hypothesis,” Biometrics, 15, 107–122.

Kohn, R. and Ansley, C. F. (1982), “A Note on Obtaining the Theoretical
Autocovariances of an ARMA Process,” Journal of Statistical Computation and
Simulation, 15, 273–283.

Korff, F. A., Taback, M. A. M., and Beard, J. H. (1952), “A Coordinated Investigation
of a Food Poisoning Outbreak,” Public Health Reports, 67, 909–913.

Kruskal, J. B. (1964), “Multidimensional Scaling by Optimizing Goodness of Fit to
a Nonmetric Hypothesis,” Psychometrika, 29, 1–27.

Lee, W. and Gentle, J. E. (1986), “The LAV Procedure,” SUGI Supplemental Library
User’s Guide, Cary, NC: SAS Institute, Chapter 21, 257–260.

Lindström, P. and Wedin, P. A. (1984), “A New Linesearch Algorithm for Nonlinear
Least Squares Problems,” Mathematical Programming, 29, 268–296.

Madsen, K. and Nielsen, H. B. (1993), “A Finite Smoothing Algorithm for Linear L1

Estimation,” SIAM Journal on Optimization, 3, 223–235.

Mallat, S. (1989), “Multiresolution Approximation and Wavelets,” Transactions of
the American Mathematical Society, 315, 69–88.

McKean, J. W. and Schrader, R. M. (1987), “Least Absolute Errors Analysis of
Variance,” Statistical Data Analysis - Based on L1 Norm and Related Methods,
ed. Y. Dodge, Amsterdam: North Holland, 297–305.

McLeod, I. (1975), “Derivation of the Theoretical Autocovariance Function of
Autoregressive-Moving Average Time Series,” Applied Statistics, 24, 255–256.

Mittnik, S. (1990), “Computation of Theoretical Autocovariance Matrices of
Multivariate Autoregressive Moving Average Time Series,” Journal of Royal
Statistical Society, B, 52, 151–155.

Monro, D. M. and Branch, J. L. (1976), “Algorithm AS 117. The Chirp Discrete
Fourier Transform and General Length,” Applied Statistics, 26, 351–361.

Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Lecture Notes in Mathematics 630, ed. G.A. Watson, New York:
Springer-Verlag, 105–116.

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM
Journal on Scientific and Statistical Computing, 4, 553–572.

Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,”
Journal of the Royal Statistical Society, A.3, 370.

Nussbaumer, H. J. (1982), Fast Fourier Transform and Convolution Algorithms,
Second Edition, New York: Springer-Verlag.

Ogden, R. T. (1997), Essential Wavelets for Statistical Applications and Data
Analysis, Boston: Birkhäuser.

1018 � Chapter 20. Language Reference

Osborne, M. R. (1985), Finite Algorithms in Optimization and Data Analysis, New
York: John Wiley & Sons, Inc.

Pizer, S. M. (1975), Numerical Computing and Mathematical Analysis, Chicago, IL:
Science Research Associates, Inc.

Pocock, S. J. (1977), “Group Sequential Methods in the Design and Analysis of
Clinical Trials,” Biometrika, 64, 191–199.

Pocock, S. J. (1982), “Interim Analyses for Randomized Clinical Trials: The group
Sequential Approach,” Biometrics, 38, 153–162.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, 12, 241–254.

Powell, M. J. D. (1978a), “A Fast Algorithm for Nonlinearly Constraint Optimization
Calculations,” Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics
630, ed. G.A. Watson, New York: Springer-Verlag, 144–175.

Powell, M. J. D. (1982b), “VMCWD: A Fortran Subroutine for Constrained
Optimization,” DAMTP 1982/NA4, Cambridge, England.

Powell, M. J. D. (1992), “A Direct Search Optimization Method that Models
the Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5,
Cambridge, England.

Ralston, A. and Rabinowitz, P. (1978), A First Course in Numerical Analysis, New
York: McGraw-Hill, Inc.

Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and Its
Applications, New York: John Wiley & Sons, Inc.

Reinsch, Christian H. (1967), “Smoothing by Spline Functions,” Numerische
Mathematik, 10, 177–183.

Reinsel, G. C. (1997), Elements of Multivariate Time Series Analysis, Second Edition,
New York: Springer-Verlag.

Rice, S. O. (1973), “Efficient Evaluation of Integrals of Analytic Functions by the
Trapezoidal Rule,” Bell System Technical Journal, 52:5, 702–722.

Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal of the
American Statistical Association, 79, 871–880.

Rousseeuw, P. J. (1985), “Multivariate Estimation with High Breakdown Point,” in
Mathematical Statistics and Applications, ed. by W. Grossmann, G. Pflug, I.
Vincze, and W. Wertz, Dordrecht: Reidel Publishing Company, 283–297.

Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute
Deviation,” Journal of the American Statistical Association, 88, 1273–1283.

Rousseeuw, P. J. and Hubert, M. (1997), “Recent Developments in PROGRESS,” L1-
Statistical Procedures and Related Topics, ed. by Y. Dodge, IMS Lecture Notes
- Monograph Series, No. 31, 201–214.

Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection,
New York: John Wiley & Sons, Inc.

References � 1019

Rousseeuw, P. J. and Van Driessen, K. (1998), “Computing LTS Regression for Large
Data Sets,” Technical Report, University of Antwerp, submitted.

Rousseeuw, P. J. and Van Driessen, K. (1999), “A Fast Algorithm for the Minimum
Covariance Determinant Estimator,” Technometrics , 41, 212–223.

Rousseeuw, P. J. and Van Zomeren, B. C. (1990), “Unmasking Multivariate Outliers
and Leverage Points,” Journal of the American Statistical Association, 85,
633–639.

Schatzoff, M., Tsao, R., and Fienberg, S. (1968), “Efficient Calculation of All
Possible Regressions,” Technometrics, 4.

Shampine, L. (1978), “Stability Properties of Adams Codes,” Association for
Computing Machinery, Transactions on Mathematical Software, 4, 323–329.

Singleton, R. C. (1969), “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,” IEEE Transactions on Audio and Electroacoustics, AU-17, 93–103.

Sikorsky, K. (1982), “Optimal Quadrature Algorithms in HP Spaces,” Numerische
Mathematik, 39, 405–410.

Sikorsky, K. and Stenger, F. (1984), “Optimal Quadratures in HP Spaces,”
Association for Computing Machinery, Transactions on Mathematical Software,
3, 140–151.

Sowell, F. B. (1992), “Maximum Likelihood Estimation of Stationary Univariate
Fractionally Integrated Time Series Models,” Journal of Econometrics, 53,
165–188.

Squire, W. (1987), “Comparison of Gauss-Hermite and Midpoint Quadrature
with the Application of the Voigt Function,” Numerical Integration: Recent
Developments, eds. P. Keast and G. Fairweather, Boston: Reidel, 111–112.

Stenger, F. (1973a), “Integration Formulas Based on the Trapezoidal Formula,”
Journal of the Institute of Mathematics and Its Applications, 12, 103–114.

Stenger, F. (1973b), “Remarks on Integration Formulas Based on the Trapezoidal
Formula,” Journal of the Institute of Mathematics and Its Applications, 19,
145–147.

Stenger, F. (1978), “Optimal Convergence of minimum Norm Approximations in
HP ,” Numerische Mathematik, 29, 345–362.

Stoer, J. and Bulirsch, R. (1980), Introduction to Numerical Analysis, New York:
Springer-Verlag.

Thisted, Ronald A. (1988), Elements of Statistical Computing: Numerical
Computation, London: Chapman and Hall.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for
Industrial and Applied Mathematics.

Wang, S. and Tsiatis, A. (1987), “Approximately Optimal One Parameter Boundaries
for Group Sequential Trials,” Biometrics, 43, 193–199.

1020 � Chapter 20. Language Reference

Wilkinson, J. H. and Reinsch, C., eds., (1971), Handbook for Automatic
Computation: Linear Algebra, Volume 2, New York: Springer-Verlag.

Woodfield, Terry J. (1988), “Simulating Stationary Gaussian ARMA Time Series,”
Computer Science and Statistics: Proceedings of the 20th Symposium on the
Interface, 612–617.

Young, F. W. (1981), “Quantitative Analysis of Qualitative Data,” Psychometrika, 46,
357–388.

Chapter 21
Module Library

Chapter Contents

OVERVIEW . 1023
Contents of IMLMLIB . 1023
IMLMLIB and the STORAGE library . 1024
Accessing the IML Source Code . 1025
Order of Resolution . 1025
Error Diagnostics . 1026
Modules for Multivariate Random Sampling 1026

MODULES REFERENCE . 1027
COLVEC Function . 1027
CORR Function . 1027
EXPMATRIX Function . 1027
GBXWHSKR Call . 1028
GPROBCNT Call . 1028
GXYPLOT Call . 1029
MEDIAN Function . 1029
QUADREG Call . 1029
QUARTILE Function . 1030
RANDDIRICHLET Function . 1030
RANDMULTINOMIAL Function . 1032
RANDMVT Function . 1033
RANDNORMAL Function . 1035
RANDWISHART Function . 1036
REGRESS Call . 1037
ROWVEC Function . 1038
RSUBSTR Function . 1038
STANDARD Function . 1039
TABPRT Call . 1039

REFERENCES . 1039

1022

Chapter 21
Module Library
Overview

IMLMLIB is a library of modules written in the IML language. These modules can
be used as though they were built-in functions of IML.

The library contains both functions and subroutines. You can invoke functions in
assignment statements or expressions. You can invoke subroutines by using CALL
or RUN statements. IML automatically loads, resolves, and executes a module when
you use it.

Contents of IMLMLIB

The library contains the following modules. Many of them are derived from the
examples in the IML sample library. Each module is described in detail at the end of
this chapter.

COLVEC
converts a matrix into a column vector

CORR
computes correlation coefficients

EXPMATRIX
computes the exponential of a matrix

GBXWHSKR
draws a box-and-whiskers plot

GPROBCNT
draws probability contours for x-y data

GXYPLOT
draws scatter plots of x-y data

MEDIAN
returns the median of numeric data

QUADREG
performs quadratic regression

QUARTILE
computes quartiles

RANDDIRICHLET
generates a random sample from a Dirichlet distribution

RANDMULTINOMIAL
generates a random sample from a multinomial distribution

1024 � Chapter 21. Module Library

RANDMVT
generates a random sample from a multivariate Student’s t distri-
bution

RANDNORMAL
generates a random sample from a multivariate normal distribution

RANDWISHART
generates a random sample from a Wishart distribution

REGRESS
performs regression analysis

ROWVEC
converts a matrix into a row vector

RSUBSTR
replaces substrings

STANDARD
standardizes numeric data

TABPRT
prints matrices in tabular format

IMLMLIB and the STORAGE library

IML enables you to store and load matrices and modules in your own STORAGE
library (refer to the chapter on storage features in SAS/IML Software: Usage and
Reference, Version 6). The IMLMLIB library is different from this STORAGE li-
brary. IMLMLIB contains predefined modules that can be loaded only by IML.

The STORAGE library, on the other hand, is under the control of the user. You
can store and load both matrices and modules. The STORE, LOAD, REMOVE, and
RESET STORAGE commands apply only to the STORAGE library. You cannot store
additional modules in IMLMLIB.

You can use the SHOW command to obtain information about the IMLMLIB and
STORAGE libraries.

• SHOW OPTIONS displays the current settings of both STORAGE and
IMLMLIB libraries and their open status.

• SHOW STORAGE displays the contents of the STORAGE library.

• SHOW IMLMLIB displays the contents of the IMLMLIB library.

• SHOW MODULES displays the names of the modules existing in the current
environment. These include modules loaded from the STORAGE library or the
IMLMLIB library and modules defined in the current session.

Order of Resolution � 1025

Accessing the IML Source Code

The IMLMLIB library is a catalog residing in the SASHELP directory. The catalog
contains one entry of type IMOD for each module. Each entry is a module stored in
its compiled form.

The IML source code defining the modules is available in the catalog SASHELP.IML.
There is an entry of type SOURCE for each module. You can view the source code in
the program editor window under DMS by using the COPY command and specifying
the four-level name:

SASHELP.IML.modulename.SOURCE

The source code is generally followed by examples of its use.

The source code can be edited for customization or enhancements, and can be in-
cluded in other IML applications. The modules also illustrate a variety of IML fea-
tures that can be used to solve more complex problems.

Order of Resolution

SAS/IML resolves functions and subroutines in the following order:

• Functions

1. IML’s built-in functions
2. User-defined IML modules existing in the current environment
3. STORAGE library, if open
4. SAS DATA step functions
5. IMLMLIB library

• CALL statement

1. IML’s built-in calls
2. User-defined IML modules existing in the current environment
3. STORAGE library, if open
4. SAS DATA step call
5. IMLMLIB library

• RUN statement

1. User-defined IML modules existing in the current environment
2. STORAGE library, if open
3. IML’s built-in calls
4. SAS DATA step call
5. IMLMLIB library

1026 � Chapter 21. Module Library

Error Diagnostics
When an error occurs in any IML module, IML pauses in the module and prints
error diagnostics with a full traceback that can help in locating the problem. In the
case of loaded modules, however, the traceback includes line offsets instead of the
absolute SAS LOG line numbers. The offsets can be used to track the problem into
the actual source code that originally defined the module. The START statement at
the beginning of the module definition is always at offset=1.

Note that offsets apply only to loaded modules. For modules explicitly defined in any
given session, absolute line numbers are printed in the traceback.

Modules for Multivariate Random Sampling
For certain kinds of statistical simulations and Bayesian analyses, it is necessary to
generate random samples of N observations from multivariate distributions in p vari-
ables. SAS/IML software provides the RANDGEN function for generating random
samples from univariate distributions. However, the only subroutine for sampling
from multivariate distributions is the VNORMAL call, which samples from multi-
variate normal distributions.

The typical method of generating a multivariate sample is to transform a sample from
a related univariate distribution. Thus SAS/IML is a natural choice for generating
samples from common multivariate distributions.

The SAS/IML function modules and associated multivariate distributions are as fol-
lows:

RANDDIRICHLET
generates a random sample from a Dirichlet distribution (a multi-
variate generalization of the beta distribution).

RANDMULTINOMIAL
generates a random sample from a multinomial distribution (a mul-
tivariate generalization of the binomial distribution).

RANDMVT
generates a random sample from a multivariate Student’s t distri-
bution.

RANDNORMAL
generates a random sample from a multivariate normal distribution.

RANDWISHART
generates a random sample from a Wishart distribution (a multi-
variate generalization of the gamma distribution).

All of the modules compute their results by using transformations of univariate
random samples generated by the RANDGEN function. Thus you can use the
RANDSEED subroutine to set the seed for the modules.

While you can currently sample from a multivariate normal distribution by using
the built-in SAS/IML subroutine VNORMAL, VNORMAL does not use the random

EXPMATRIX Function � 1027

number seed set in RANDSEED. Thus, to ensure independence and reproducibility of
random number streams, the RANDNORMAL function is provided in this package.

For an overview of multivariate sampling, see Gentle (2003).

Modules Reference

COLVEC Function

converts a matrix into a column vector

COLVEC(matrix)

where matrix is any n×m matrix.

The COLVEC function returns an nm× 1 vector. It converts a matrix into a column
vector in row-major order. The returned vector has 1 column and nm rows. The first
m elements in the vector correspond to the first row of the input matrix, the next m
elements correspond to the second row, and so on.

CORR Function

computes correlation coefficients

CORR(matrix)

where matrix is any n×m matrix, m is the number of variables, and n is the number
of data points.

The CORR function returns an m×m matrix of correlation coefficients. It computes
the correlation between variables for any multivariate numeric data.

EXPMATRIX Function

computes the exponential of a matrix

EXPMATRIX(matrix)

where matrix is any n× n matrix.

Given a matrix A, the EXPMATRIX function returns an n×n matrix approximating
eA =

∑∞
k=0

Ak

k! . The function uses a Padé approximation algorithm as presented in
Golub and Van Loan (1989, p. 558).

Note that this module does not exponentiate each entry of a matrix; for that, use the
EXP function.

The following example demonstrates the EXPMATRIX function. For the matrix used

in the example, etA is the matrix
(
et tet

0 et

)
. Here is the code:

A = { 1 1, 0 1 };
t = 3;
X = ExpMatrix(t*A);

1028 � Chapter 21. Module Library

ExactAnswer = (exp(t) || t*exp(t)) //
(0 || exp(t));

print X, ExactAnswer;

The output from this code is

X

20.085537 60.256611
0 20.085537

EXACTANSWER

20.085537 60.256611
0 20.085537

GBXWHSKR Call
draws box-and-whiskers plots

RUN GBXWHSKR(matrix);

where matrix is any n×m matrix.

The GBXWHSKR module draws a box-and-whiskers plot for univariate numeric data
contained in the specified matrix. The box outlines the quartile range, and the min-
imum, median, and maximum points are labeled on the plot. You cannot produce
graphics until you invoke the CALL GSTART statement. The plot created by the
GBXWHSKR module remains open for further additions until you specify the CALL
GCLOSE statement, which terminates the current graphics segment. The module
source code can be edited for changes, such as adding viewports, text, or colors.

GPROBCNT Call
draws probability contours

RUN GPROBCNT(x, y <, p >);

The inputs to the GPROBCNT subroutine are as follows:

x is any n×m matrix of x values.

y is a corresponding n×m matrix of y values.

p is an optional probability value matrix.

The GPROBCNT module draws one contour curve corresponding to each value in the
matrix p, which must contain entries between zero and one. If you do not specify the
matrix p, contours for the probability values of 0.5, 0.8, and 0.9 are drawn. You can-
not produce graphics until you specify the CALL GSTART statement. The contour
plot remains open for further additions until you specify the CALL GCLOSE state-
ment, which terminates the current graphics segment. Note that this module cannot
be used for general contour plots of three-dimensional data.

QUADREG Call � 1029

GXYPLOT Call

draws a scatter plot of any x-y data

RUN GXYPLOT(x, y);

The inputs to the GXYPLOT subroutine are as follows:

x is any n×m matrix of x values.

y is a corresponding n×m matrix of y values.

The GXYPLOT module draws a simple scatter plot of any numeric x-y data. Axes
with labeled tickmarks are drawn as well. You cannot produce graphics until you
specify the CALL GSTART statement. The plot remains open for further addi-
tions (such as a title and axis labels) until you specify the CALL GCLOSE state-
ment, which terminates the current graphics segment. The module uses the GPOINT,
GXAXIS, and GYAXIS calls to plot the points. The module source code can be
edited to specify many of the options available for these calls.

MEDIAN Function

returns the median of numeric data

MEDIAN(matrix)

where matrix is any n×m matrix.

The MEDIAN function returns the median value for each column in the matrix. It
computes the median of univariate numeric data contained in the specified matrix.
When the number of data points is odd, it returns the middle element from the sorted
order. When the number of data points is even, it returns the mean of the middle two
elements. Missing values are ignored. If all values in a column are missing, the return
value for that column is missing.

QUADREG Call

performs quadratic response surface regression

RUN QUADREG(xopt, yopt, type, parms, x, y);

The inputs to the GPROBCNT subroutine are as follows:

xopt is a returned value containing m× 1 critical factor values.

yopt is a returned value containing the critical response value.

type is a returned character string containing the solution type (maximum or
minimum).

parms is a returned value containing the parameter estimates for the quadratic
model.

x is an n ×m factor matrix, where m is the number of factor variables
and n is the number of data points.

1030 � Chapter 21. Module Library

y is an n× 1 response vector.

The QUADREG module fits a regression model with a complete quadratic set of
regressions across several factors. The estimated model parameters are divided into
a vector of linear coefficients and a matrix of quadratic coefficients to obtain critical
factor values that optimize the response. It further determines the type of the optima
(maximum, minimum, or saddle point) by computing the eigenvalues of the estimated
parameters.

QUARTILE Function

computes quartiles for any univariate numeric data

QUARTILE(matrix)

where matrix is any n×m matrix.

The QUARTILE function returns a 5×1 column vector for each column in the matrix.
The column vector contains the minimum, lower quartile, median, upper quartile,
and maximum values for the numeric data in the specified matrix. Missing values are
ignored. If all values in a column are missing, the return values for that column are
missing.

RANDDIRICHLET Function

generates a random sample from a Dirichlet distribution

RANDDIRICHLET(N, Shape)

The inputs are as follows:

N is the number of desired observations sampled from the distribution.

Shape is a 1 × (p + 1) vector of shape parameters for the distribution,
Shape[i] > 0.

The Dirichlet distribution is a multivariate generalization of the beta distribution. The
RANDDIRICHLET function returns an N × p matrix containing N random draws
from the Dirichlet distribution.

If X = {X1X2 . . . Xp} with
∑p

i=1Xi < 1 and Xi > 0 follows a Dirichlet distribu-
tion with shape parameter α = {α1 α2 . . . αp+1}, then

• the probability density function for x is

f(x;α) =
Γ(
∑p+1

i=1 αi)∏p+1
i=1 Γ(αi)

p∏
i=1

xi
αi−1(1− x1 − x2 − . . .− xp)αp+1−1

• if p = 1, the probability distribution is a beta distribution.

• if α0 = Σp+1
i=1αi, then

RANDDIRICHLET Function � 1031

– the expected value of Xi is αi/α0.
– the variance of Xi is αi(α0 − αi)/(α2

0(α0 + 1)).
– the covariance of Xi and Xj is −αiαj/(α2

0(α0 + 1)).

The following example generates 1000 samples from a two-dimensional Dirichlet
distribution. Each row of the returned matrix x is a row vector sampled from the
Dirichlet distribution. The example then computes the sample mean and covariance
and compares them with the expected values. Here are the code and the output:

call randseed(1);
n = 1000;
Shape = {2, 1, 1};
x = RANDDIRICHLET(n,Shape);
Shape0 = sum(Shape);
d = nrow(Shape)-1;
s = Shape[1:d];
ExpectedValue = s‘/Shape0;
Cov = -s*s‘ / (Shape0##2*(Shape0+1));
/* replace diagonal elements with variance */
Variance = s#(Shape0-s) / (Shape0##2*(Shape0+1));
do i = 1 to d;

Cov[i,i] = Variance[i];
end;

SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y‘*y / (n-1);
print SampleMean ExpectedValue, SampleCov Cov;

SampleMean ExpectedValue

0.4992449 0.2485677 0.5 0.25

SampleCov Cov

0.0502652 -0.026085 0.05 -0.025
-0.026085 0.0393922 -0.025 0.0375

For further details about sampling from the Dirichlet distribution, see Kotz,
Balakrishnan, and Johnson (2000, p. 448); Gentle (2003, p. 205); or Devroye (1986,
p. 593).

1032 � Chapter 21. Module Library

RANDMULTINOMIAL Function

generates a random sample from a multinomial distribution

RANDMULTINOMIAL(N, NumTrials, Prob)

The inputs are as follows:

N is the number of desired observations sampled from the distribution.

NumTrials is the number of trials for each observation. NumTrials[j] ≥ 0, for
j = 1 . . . p.

Prob is a 1 × p vector of probabilities with 0 < Prob[j] ≤ 1 and
Σp

j=1Prob[j] = 1.

The multinomial distribution is a multivariate generalization of the binomial distribu-
tion. For each trial, Prob[j] is the probability of event Ej , where the Ej are mutually
exclusive and Σp

j=1Prob[j] = 1.

The RANDMULTINOMIAL function returns an N × p matrix containing N obser-
vations of NumTrials random draws from the multinomial distribution. Each row of
the resulting matrix is an integer vector {X1X2 . . . Xp} with ΣXj = NumTrials.
That is, for each row, Xj indicates how many times event Ej occurred in NumTrials
trials.

If X = {X1X2 . . . Xp} follows a multinomial distribution with n trials and proba-
bilities ρ = {ρ1 ρ2 . . . ρp}, then

• the probability density function for x is

f(x;n, ρ) =
n!∏p

i=1 xi!

p∏
i=1

ρi
xi

• the expected value of Xi is nρi.

• the variance of Xi is nρi(1− ρi).

• the covariance of Xi with Xj is −nρiρj .

• if p = 1 then X is constant.

• if p = 2 then X1 is Binomial(n, ρ1) and X2 is Binomial(n, ρ2).

The following example generates 1000 samples from a multinomial distribution with
three mutually exclusive events. For each sample, 10 events are generated. Each row
of the returned matrix x represents the number of times each event was observed. The
example then computes the sample mean and covariance and compares them with the
expected values. Here are the code and the output:

call randseed(1);
prob = {0.3,0.6,0.1};
NumTrials = 10;

RANDMVT Function � 1033

N = 1000;
x = RANDMULTINOMIAL(N,NumTrials,prob);
ExpectedValue = NumTrials * prob‘;
Cov = -NumTrials*prob*prob‘;
/* replace diagonal elements of Cov with Variance */
Variance = -NumTrials*prob#(1-prob);
d = nrow(prob);
do i = 1 to d;

Cov[i,i] = Variance[i];
end;

SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y‘*y / (n-1);
print SampleMean, ExpectedValue, SampleCov, Cov;

SampleMean ExpectedValue

2.971 5.972 1.057 3 6 1

SampleCov Cov

2.0622212 -1.746559 -0.315663 -2.1 -1.8 -0.3
-1.746559 2.3775936 -0.631035 -1.8 -2.4 -0.6
-0.315663 -0.631035 0.9466977 -0.3 -0.6 -0.9

For further details about sampling from the multinomial distribution, see Gentle 2003,
p. 198, or Fishman 1996, pp. 224–225.

RANDMVT Function

generates a random sample from a multivariate Student’s t distribution

RANDMVT(N, DF, Mean, Cov)

The inputs are as follows:

N is the number of desired observations sampled from the multivariate
Student’s t distribution.

DF is a scalar value representing the degrees of freedom for the t distribu-
tion.

Mean is a 1× p vector of means.

Cov is a p× p symmetric positive definite variance-covariance matrix.

The RANDMVT function returns an N × p matrix containing N random draws from
the Student’s t distribution with DF degrees of freedom, mean vector Mean, and
covariance matrix Cov.

1034 � Chapter 21. Module Library

If X follows a multivariate t distribution with ν degrees of freedom, mean vector µ,
and variance-covariance matrix Σ, then

• the probability density function for x is

f(x; ν, µ,Σ) =
Γ((ν + p)/2)

|Σ|1/2(πν)p/2Γ(ν/2)

(
1 +

(x− µ)Σ−1(x− µ)T

ν

)−(ν+p)/2

• if p = 1, the probability density function reduces to a univariate Student’s t
distribution.

• the expected value of Xi is µi.

• the covariance of Xi and Xj is ν
ν−2Σij when ν > 2.

The following example generates 1000 samples from a two-dimensional t distribution
with 7 degrees of freedom, mean vector (1 2), and covariance matrix S. Each row of
the returned matrix x is a row vector sampled from the t distribution. The example
then computes the sample mean and covariance and compares them with the expected
values. Here are the code and the output:

call randseed(1);
N=1000;
DF = 4;
Mean = {1 2};
S = {1 1, 1 5};
x = RandMVT(N, DF, Mean, S);
SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y‘*y / (n-1);
Cov = (DF/(DF-2)) * S;
print SampleMean Mean, SampleCov Cov;

SampleMean Mean

1.0768636 2.0893911 1 2

SampleCov Cov

1.8067811 1.8413406 2 2
1.8413406 9.7900638 2 10

In the preceding example, the columns (marginals) of x do not follow univariate t
distributions. If you want a sample whose marginals are univariate t, then you need
to scale each column of the output matrix:

x = RandMVT(N, DF, Mean, S);
StdX = x / sqrt(diag(S)); /* StdX columns are univariate t */

RANDNORMAL Function � 1035

Equivalently, you can generate samples whose marginals are univariate t by passing
in a correlation matrix instead of a general covariance matrix.

For further details about sampling from the multivariate t distribution, see Kotz and
Nadarajah (2004, pp. 1–11).

RANDNORMAL Function

generates a random sample from a multivariate normal distribution

RANDNORMAL(N, Mean, Cov)

The inputs are as follows:

N is the number of desired observations sampled from the multivariate
normal distribution.

Mean is a 1× p vector of means.

Cov is a p× p symmetric positive definite variance-covariance matrix.

The RANDNORMAL function returns an N × p matrix containing N random draws
from the multivariate normal distribution with mean vector Mean and covariance ma-
trix Cov.

If X follows a multivariate normal distribution with mean vector µ and variance-
covariance matrix Σ, then

• the probability density function for x is

f(x;µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

(
−(x− µ)Σ−1(x− µ)T

2

)
• if p = 1, the probability density function reduces to a univariate normal distri-

bution.

• the expected value of Xi is µi.

• the covariance of Xi and Xj is Σij .

The following example generates 1000 samples from a two-dimensional multivariate
normal distribution with mean vector (1 2), correlation matrix Corr, and variance
vector Var. Each row of the returned matrix x is a row vector sampled from the
multivariate normal distribution. The example then computes the sample mean and
covariance and compares them with the expected values. Here are the code and the
output:

call randseed(1);
N=1000;
Mean = {1 2};
Corr = {0.6 0.5,0.5 0.9};
Var = {4 9};
/*create the covariance matrix*/

1036 � Chapter 21. Module Library

Cov = Corr # sqrt(Var‘ * Var);
x = RANDNORMAL(N, Mean, Cov);
SampleMean = x[:,];
n = nrow(x);
y = x - repeat(SampleMean, n);
SampleCov = y‘*y / (n-1);
print SampleMean Mean, SampleCov Cov;

SampleMean Mean

1.0619604 2.1156084 1 2

SampleCov Cov

2.5513518 3.2729559 2.4 3
3.2729559 8.7099585 3 8.1

For further details about sampling from the multivariate normal distribution, see
Gentle (2003, p. 197).

RANDWISHART Function

generates a random sample from a Wishart distribution

RANDWISHART(N, DF, Sigma)

The inputs are as follows:

N is the number of desired observations sampled from the distribution.

DF is a scalar value representing the degrees of freedom, DF ≥ p.

Sigma is a p× p symmetric positive definite matrix.

The RANDWISHART function returns an N × (p× p) matrix containing N random
draws from the Wishart distribution with DF degrees of freedom. Each row of the
returned matrix represents a p× p matrix.

The Wishart distribution is a multivariate generalization of the gamma distribu-
tion. (Note, however, that Kotz, Balakrishnan, and Johnson 2000 suggest that the
term “multivariate gamma distribution” should be restricted to those distributions for
which the marginal distributions are univariate gamma. This is not the case with the
Wishart distribution.) A Wishart distribution is a probability distribution for nonneg-
ative definite matrix-valued random variables. These distributions are often used to
estimate covariance matrices.

If a p×p nonnegative definite matrixX follows a Wishart distribution with parameters
ν degrees of freedom and a p× p symmetric positive definite matrix Σ, then

REGRESS Call � 1037

• the probability density function for x is

f(x; ν,Σ) =
|x|(ν−p−1)/2 exp(−1

2 trace(xΣ−1))
2pν/2|Σ|ν/2πp(p−1)/4

∏p
i=1 Γ(ν−i+1

2)

• if p = 1 and Σ = 1, then the Wishart distribution reduces to a chi-square
distribution with ν degrees of freedom.

• the expected value of X is νΣ.

The following example generates 1000 samples from a Wishart distribution with 7
degrees of freedom and 2× 2 matrix parameter S. Each row of the returned matrix x
represents a 2×2 nonnegative definite matrix. (You can reshape the ith row of x with
the SHAPE function.) The example then computes the sample mean and compares
them with the expected value. Here are the code and the output:

call randseed(1);
N=1000;
DF = 7;
S = {1 1, 1 5};
x = RandWishart(N, DF, S);
ExpectedValue = DF * S;
SampleMean = shape(x[:,], 2, 2);
print SampleMean ExpectedValue;

SampleMean ExpectedValue

7.0518633 14.103727 7 14
14.103727 28.207453 14 28

For further details about sampling from the Wishart distribution, see Johnson (1987,
pp. 203–204).

REGRESS Call

performs regression analysis

RUN REGRESS(x, y, name, <tval>, <l1>, <l2>, <l3>);

The inputs to the REGRESS subroutine are as follows:

x is an n×m numeric matrix, where m is the number of variables and n
is the number of data points.

y is an n× 1 response vector.

name is an m× 1 matrix of variable names.

tval is an optional t-value.

l1, l2, l3 are optional 1 ×m vectors that specify linear combinations of coeffi-
cients for hypothesis testing.

1038 � Chapter 21. Module Library

The REGRESS module does regression analysis and prints results. The design matrix
is given by x, and y is the response vector. The name vector identifies each of the
variables. If you specify a t-value, the module prints a table of observed and predicted
values, residuals, hat diagonal, and confidence limits for the mean and predicted val-
ues. If you also specify linear combinations with l1, l2, and l3, the module performs
the hypothesis test H : l′b = 0, where b is the vector of parameter estimates.

ROWVEC Function

converts a matrix into a row vector

ROWVEC(matrix)

where matrix is any n×m matrix.

The ROWVEC function returns a 1 × nm vector. The specified matrix is converted
into a row vector in row-major order. The returned vector has 1 row and nm columns.
The first n elements in the vector correspond to the first row of the input matrix, the
next n elements correspond to the second row, and so on.

RSUBSTR Function

replaces substrings in each entry of a given matrix

RSUBSTR(x, p, l, r)

The inputs to the RSUBSTR subroutine are as follows:

x is any m× n character matrix.

p is an m× n matrix or a scalar that determines the starting positions for
substrings to be replaced.

l is an m× n matrix or a scalar that determines the lengths of substrings
to be replaced.

r is an m× n matrix or a scalar that specifies the replacement strings.

The RSUBSTR function returns anm×nmatrix with substrings replaced. It replaces
or substitutes substrings of the input matrix with new strings. If l is zero, the replace-
ment string in r is simply inserted into the input matrix x at the position indicated by
p.

For example, the following statements replace the first two characters of each entry
in the matrix X with the corresponding entry in the matrix R:

proc iml;
x = {abc def ghi,jkl mno pqr};
r = {z y x, w v u};
p = 1;
l = 2;
c=rsubstr(x,p,l,r);
print x;
print c;

References � 1039

STANDARD Function

standardizes numeric data

STANDARD(matrix)

where matrix is any n×mmatrix, n is the number of data points, andm is the number
of variables.

The STANDARD function returns a standardized n×m matrix. It standardizes each
column of the input matrix, so that the mean of each column is zero and the standard
deviation for each column is one.

TABPRT Call

prints matrices in tabular format

RUN TABPRT(matrix);

where matrix is any n×m matrix.

The TABPRT module prints any numeric or character matrix in table format. The reg-
ular PRINT command output is often difficult to read, especially for large matrices,
where individual rows can wrap around. The module source code can be edited for
further cosmetic changes, such as alternative format or field width, or for assigning
specific row and column labels.

References
Devroye, L. (1986), Nonuniform Random Variate Generation, New York: Springer-

Verlag.

Fishman, G. S. (1996), Monte Carlo: Concepts, Algorithms, and Applications, New
York: John Wiley & Sons.

Gentle, J. E. (2003), Random Number Generation and Monte Carlo Methods, Second
Edition, Berlin: Springer-Verlag.

Golub, G. H. and Van Loan, C. F. (1989), Matrix Computations, Second Edition,
Baltimore: Johns Hopkins University Press.

Johnson, M. (1987), Multivariate Statistical Simulation, New York: John Wiley &
Sons.

Kotz, S., Balakrishnan, N., and Johnson, N. L. (2000), Continuous Multivariate
Distributions, Second Edition, Wiley-Interscience.

Kotz, S. and Nadarajah, S. (2004), Multivariate t Distributions and Their
Applications, Cambridge University Press.

1040

Subject Index

A
ABORT statement

exiting IML, 577
ABS statement

absolute value, 577
ADDITION operator

adds corresponding matrix elements, 562
ALL statement

checking for nonzero elements, 577
ANY function

checking for nonzero elements, 578
APPEND statement

SAS data sets, 580
APPLY function, 582
ARMACOV call

autocovariance sequence, 583
ARMALIK call

log likelihood and residuals, 585
ARMASIM function

simulating univariate ARMA series, 586

B
Basic time series analysis

autocovarince function of ARMA model, 240
example, 238
generating an ARMA process, 240
log-likelihood function of ARMA model, 240
overview, 238

Bessel function
finding nonzero roots and derivatives of, 720

Biconjugate Gradient Algorithm, 529, 534
BLOCK function

forming block-diagonal matrices, 588
Box-and-whiskers plots, 1026
BRANKS function

computing bivariate ranks, 589
BSPLINE function

computing B-spline basis, 589
BTRAN function

computing the block transpose, 592
BYTE function

translating numbers to ordinal characters, 592

C
CALL statement

calling a subroutine or function, 593
Calling External Modules, 562
CHANGE call

replacing text in an array, 594
CHAR function

character representation of a numeric matrix,
594

Character Functionality, 554
CHOOSE function

choosing and changing elements, 595
CLOSE statement

closing SAS data sets, 596
CLOSEFILE statement

closing a file, 597
COMPARISON operator

compare matrix elements, 563
CONCAT function

performing elementwise string concatenation,
600

CONCATENATION operator, horizontal
concatenates matrices horizontally, 564

CONCATENATION operator, vertical
concatenates matrices vertically, 565

Conjugate Gradient Algorithm, 529, 531
CONTENTS function

obtaining the variables in SAS data sets, 601
Control Statements, 559
CONVEXIT function

calculating convexity of noncontingent cash
flows, 602

Correlation coefficient computation, 1025
COVLAG function

computing autocovariance estimates, 602
CREATE statement

creating new SAS data sets, 603
CSHAPE function

reshaping and repeating character values, 605
CUSUM function

calculating cumulative sums, 607
CVEXHULL function

finding a convex hull, 608

D
Dataset and File Functionality, 560
DATASETS function

obtaining names of SAS data sets, 608
DELETE call

deleting SAS data sets, 609
DELETE statement

marking observations for deletion, 610
DESIGN function

creating a design matrix, 612

1042 � Subject Index

DESIGNF function
creating a full-rank design matrix, 612

DET function
computing determinants of a square matrix, 613

DIAG function
creating a diagonal matrix, 614

DIRECT PRODUCT operator
takes the direct product of two matrices, 566

DISPLAY statement
displaying fields in display windows, 614

DIVISION operator
performs elementwise division, 567

DO and END statements
grouping statements as a unit, 616

DO DATA statement
repeating a loop until, 618

DO function
producing an arithmetic series, 615

DO statement
DATA clause, 618
UNTIL clause, 619
WHILE clause, 619

DO statement, iterative
iteratively executing a DO group, 617

DO UNTIL statement
conditionally executing statements iteratively,

619
DO WHILE statement

conditionally executing statements iteratively,
619

DURATION function
calculating modified duration of noncontingent

cash flows, 620

E
ECHELON function

reducing a matrix to row-echelon normal form,
621

EDIT statement
opening a SAS data set for editing, 622

EIGEN call
computing eigenvalues and eigenvectors, 624

Eigenvalue Decomposition
compared with ODE call, 829

EIGVAL function
computing eigenvalues, 628

EIGVEC function
computing right eigenvectors, 629

ELEMENT MAXIMUM operator
selects the larger of two elements, 568

ELEMENT MINIMUM operator
selects the smaller of two elements, 568

END statement
ending a DO loop or DO statement, 630

EXECUTE call
executing SAS statements immediately, 630

EXP function
calculating the exponential, 630

Exponential of a matrix, 1025

F
FARMACOV call

generating an ARFIMA(p, d, q) process, 631
FARMAFIT call

estimation of an ARFIMA(p, d, q) model, 633
FARMALIK call

generating an ARFIMA(p, d, q) model, 634
FARMASIM call

generating an ARFIMA(p, d, q) process, 636
FDIF call

obtaining a fractionally differenced process, 637
FFT function

performing the finite Fourier transform, 638
FILE statement

opening or pointing to an external file, 640
FIND statement

finding observations, 641
FINISH statement

denoting the end of a module, 643
Forward rates, 643
Fractionally integrated time series analysis

ARFIMA modeling, 316
autocovariance function, 316
example, 313
fractional differencing, 316
generating a fractional time series, 316
log-likelihood function, 316
overview, 313

FREE statement
freeing matrix storage space, 644

G
GAEND call

ending a genetic algorithm optimization, 644
GAGETMEM call

getting current members of the solution popula-
tion for a genetic algorithm optimization,
645

GAGETVAL call
getting current solution objective function values

for a genetic algorithm optimization, 646
GAINIT call

creating an initial solution population for a ge-
netic algorithm optimization, 646

GAREEVAL call
reevaluating the objective function values for a

solution population of a genetic algorithm
optimization, 647

GAREGEN call
regenerating a solution population by application

of selection and genetic operators, 648
GASETCRO call

setting the crossover operator for a genetic algo-
rithm optimization, 648

GASETMUT call
setting the mutation operator for a genetic algo-

rithm optimization, 653
GASETOBJ call

Subject Index � 1043

setting the objective function for a genetic algo-
rithm optimization, 655

GASETSEL call
setting the selection parameters for a genetic al-

gorithm optimization, 656
GASETUP function

setting up a genetic algorithm optimization prob-
lem, 657

GBLKVP call
defining a blanking viewport, 659

GBLKVPD call
deleting the blanking viewport, 660

GCLOSE call
closing the graphics segment, 660

GDELETE call
deleting a graphics segment, 660

GDRAW call
drawing a polyline, 661

GDRAWL call
drawing individual lines, 662

GENEIG call
generalized eigenproblems, 662

Genetic Algorithm Functionality, 561
GEOMEAN function

calculates geometric means , 664
GGRID call

drawing a grid, 664
GINCLUDE call

including graphics segments, 665
GINV function

computing generalized inverses, 666
GOPEN call

opening graphics segments, 668
GOTO statement

jumping to a new statement, 668
GPIE call

drawing pie slices, 669
GPIEXY call

converting coordinates, 670
GPOINT call

plotting points, 671
GPOLY call

drawing and filling a polygon, 672
GPORT call

defining a viewport, 674
GPORTPOP call

popping viewports, 674
GPORTSTK call

stacking viewports, 674
Graphics and Window Functions, 560
GSCALE call

calculating round numbers for labeling axes, 675
GSCRIPT call

writing multiple text strings, 676
GSET call

setting attributes for graphics segments, 677
GSHOW call

showing a graph, 678
GSORTH call

computing the Gram-Schmidt orthonormaliza-
tion, 678

GSTART call
initializing the graphics system, 679

GSTOP call
deactivating the graphics system, 680

GSTRLEN call
finding the string length, 680

GTEXT and GVTEXT calls
placing text on a graph, 681

GWINDOW call
defining the data window, 682

GXAXIS and GYAXIS calls
drawing an axis, 683

H
HADAMARD function, 684
HALF function

computing Cholesky decomposition, 685
HANKEL function

generating a Hankel matrix, 686
HARMEAN function

calculates harmonic means , 687
HDIR function

performing a horizontal direct product, 688
HERMITE function

reducing a matrix to Hermite normal form, 689
HOMOGEN function

solving homogeneous linear systems, 689

I
I function

creating an identity matrix, 690
IF-THEN/ELSE statement

conditionally executing statements, 691
IFFT function

computing the inverse finite Fourier transform,
692

IMLMLIB Module Library
modules reference, 1025, 1027–1029, 1031,

1033, 1034, 1036, 1037
overview, 1021–1023

INDEX CREATION operator
creates an index vector, 569

INDEX statement
indexing a variable in a SAS data set, 694

INFILE statement
opening a file for input, 694

INPUT statement
inputting data, 695

INSERT function
inserting one matrix inside another, 697

INT function
truncating a value, 698

INV function
computing a matrix inverse, 699

Inverses
Moore-Penrose inverse, 599, 897, 903–905

INVUPDT function

1044 � Subject Index

updating a matrix inverse, 700
IPF call

performing an iterative proportional fit, 702
ISM TIMSAC packages, 288–290
Iterative Algorithm, 715
ITSOLVER call

solving a sparse linear system by using iterative
methods, 715

J
J function

creating a matrix of identical values, 719

K
Kalman filter subroutines

covariance filtering and prediction, 298
diffuse covariance filtering and prediction, 298
diffuse fixed-interval smoothing, 298
examples, 298
fixed-interval smoothing, 298
one-step forecast for SSM, 727–730
one-step predictions, 721, 722, 724
overview, 296
smoothed estimate, 724–727
smoothed state vectors, 730, 731
syntax, 721

KRONECKER product
takes the direct product of two matrices, 566

L
LABEL

quadratic form maximization, 770
LCP call

solving the linear complementarity problem, 737
Least absolute value regression, 733–736
LENGTH function

finding the lengths of character matrix elements,
740

Linear Algebra Functionality, 557
Linear least squares

full-rank example, 857, 858
QR decomposition, 880
rank deficient solutions, 897, 899–903

LINK and RETURN statements
jumping to another statement, 740

LIST statement
displaying observations of a data set, 741

LMS call
performing robust regression, 744

LOAD statement
loading modules and matrices, 752

LOC function
finding nonzero elements of a matrix, 752

LOG function
taking the natural logarithm, 754

LOGICAL operator
perform elementwise logical comparisons, 570

LP call
solving the linear programming problem, 754

LTS call
performs robust regression, 756

LUPDT call, 763

M
MAD function

univariate median absolute deviation, 764
MARG call

evaluating marginal totals, 765
Matrix decomposition

Cholesky decomposition, 897–899
complete orthogonal decomposition, 578, 579,

597–599
downdating and updating, 879–882, 897
QR decomposition, 841, 842, 844, 854–858

Matrix Inquiry Functions, 553
Matrix Reshaping Functions, 554
Matrix Sorting And By-Group Processing Calls, 554
MATTRIB statement

associating printing attributes with matrices, 768
MAX function

finding the maximum value of matrix, 770
MCD call, 772
Median computation, 1027
MIN function

finding the smallest element of a matrix, 778
Minimum Residual Algorithm, 529, 533
MOD function

computing the modulo (remainder), 778
MODULEI call, 779
MODULEIC function

calling an external function, 780
MODULEIN function

calling an external function, 780
MULTIPLICATION operator, elementwise

performs elementwise multiplication, 571
MULTIPLICATION operator, matrix

performs matrix multiplication, 572
Multivariate sampling, 1028, 1030, 1031, 1033, 1034
MVE call, 781

N
NAME function

listing the names of arguments, 787
NCOL function

finding the number of columns of a matrix, 788
NLENG function

finding the size of an element, 788
Nonlinear optimization subroutines

advanced examples, 361
conjugate gradient optimization, 791
control parameters vector, 357–359
double dogleg optimization, 792–794
feasible point computation, 798
finite difference approximations, 794–796, 798
finite-difference approximations, 340–342
global vs. local optima, 332, 333
hybrid quasi-Newton optimization, 799, 800,

802

Subject Index � 1045

Kuhn-Tucker conditions, 334
least squares methods, 799, 800, 802, 803
Levenberg-Marquardt optimization, 802, 803
Nelder-Mead simplex optimization, 803, 804,

807
Newton-Raphson optimization, 807, 808, 810
Newton-Raphson ridge optimization, 810, 813
objective function and derivatives, 335–340
options vector, 345–350
parameter constraints, 343–345
printing optimization history, 360, 361
quadratic optimization, 819, 820, 822
quasi-Newton optimization, 813, 814, 817–819
return codes, 335
termination criteria, 350–355, 357
trust-region optimization, 822, 824

NORMAL function
generating a pseudo-random normal deviate, 824

NROW function
finding the number of rows of a matrix, 824

NUM function
producing a numeric representation of a charac-

ter matrix, 825
Numerical Analysis Functionality, 556
Numerical integration, 859–864

adaptive Romberg method, 860
of differential equations, 825, 826, 828–831
specifying subintervals, 859
two-dimensional integration, 862

O
ODSGRAPH call, 831
OPSCAL Function, 832
Optimization Subroutines, 558
ORPOL function

generating orthogonal polynomials, 834
Orthogonal factorization, 897–899
Orthogonalization

by ORTVEC call, 841, 842, 844

P
PAUSE statement

interrupting module execution, 844
PGRAF call

producing scatter plots, 845
POLYROOT function

finding zeros of a real polynomial, 846
POWER operator, elementwise

raises each element to a power, 573
POWER operator, matrix

raises a matrix to a power, 573
PRINT statement

printing matrix values, 847
Printing matrices, 1037
Probability contour plot, 1026
PRODUCT function

multiplying matrices of polynomials, 849
PURGE statement

removing observations marked for deletion, 849

PUSH call, 850
PUT statement

writing data to an external file, 851
PV function

calculating present value, 852

Q
Quadratic form maximization, 771, 772
Quartile computation, 1028
QUEUE call

queuing SAS statements, 865
QUIT statement

exiting from IML, 866

R
RANDGEN call

generating random numbers, 866
Random multivariate sampling, 1028, 1030, 1031,

1033, 1034
Random Number Generation Functionality, 554
RANDSEED call

generating random numbers, 873
RANK function

ranking elements of a matrix, 874
RANKTIE function

ranking matrix elements by using tie averaging,
875

RATES function
converting interest rates, 876

RATIO function
dividing matrix polynomials, 877

READ statement
reading observations from a data set, 882

Reduction Functions, 553
Regression, 1035

best subsets, 772
least absolute value, 733–736
response surface, 1027

REMOVE function
discarding elements from a matrix, 886

REMOVE statement
removing matrices from storage, 886

RENAME call
renaming SAS data sets, 887

REPEAT function
creating a new matrix of repeated values, 888

REPLACE statement
replacing values, 888

RESET statement
setting processing options, 891

Reshaping matrices, 1025, 1036
Response surface regression, 1027
RESUME statement

resuming execution, 893
RETURN statement

returning to caller, 893
ROOT function

performing the Cholesky decomposition of a ma-
trix, 893

1046 � Subject Index

ROWCAT function
concatenating rows without blank compression,

895
ROWCATC function

concatenating rows with blank compression, 896
RUN statement

executing statements in a module, 896

S
SAVE statement

saving data, 905
Scalar Functions, 553
Scatter plots, 1027
Sequential tests, 906–916, 918, 919

group sequential methods, 912, 913
minimizing average sample number (ASN), 916,

918
randomized clinical trials, 916, 918
scaling, 908
shifting, 908

Set Functions, 559
SETDIF function

comparing elements of two matrices, 919
SETIN statement

making a data set current for input, 919
SETOUT statement

making a data set current for output, 920
SHAPE function

reshaping and repeating values, 921
SHOW statement

printing system information, 922
SIGN REVERSE operator

reverses the signs of elements, 574
SOLVE function

solving a system of linear equations, 923
SOLVELIN call

solving a sparse symmetric linear system by di-
rect decomposition, 924

SORT call
sorting a matrix, 925

SORT statement
sorting a SAS data set, 926

SORTNDX call
creating a sorted index for a matrix, 927

SOUND call
producing a tone, 928

Sparse Matrix Algorithms, 529, 715
preconditioners, 529, 924

Splines, 929, 931, 934, 936
integration of splines, 934

SPOT function
calculating spot rates, 937

SQRSYM function
converting to a square matrix, 937

SQRT function
calculating the square root, 938

SSQ function
calculating the sum of squares, 938

Standardizing numeric data, 1037

START and FINISH statements
defining a module, 938

Statistical Functionality, 554
STOP statement

stopping execution of statements, 939
STORAGE function

listing names of matrices and modules, 940
STORE statement

storing matrices and modules, 940
SUBSCRIPTS

select submatrices, 574
SUBSTR function

taking substrings of matrix elements, 941
Substring replacement, 1036
SUBTRACTION operator

subtracts corresponding matrix elements, 576
SUM function

summing all elements, 941
SUMMARY statement

computing summary statistics, 942
SVD call

computing the singular value decomposition,
945

SWEEP function
sweeping a matrix, 947

SYMSQR function
converting to a symmetric matrix, 949

T
T function

transposing a matrix, 950
TEIGEN call

computing eigenvalues and eigenvectors, 950
TEIGVAL functions

computing eigenvalues, 950
TEIGVEC functions

computing eigenvectors, 950
Time series analysis and control

AR model selection, 242, 972
ARMA model prediction, 263, 264, 970
Bayesian constrained least squares, 283–285
Bayesian seasonal adjustment, 260, 271, 273,

959, 960
instantaneous response model, 246, 247, 292–

294
ISM TIMSAC packages, 288–290
least squares and Householder transformation,

282, 283
locally stationary multivariate time series, 966,

967
locally stationary time series, 965, 966
minimum AIC method, 242, 245–247, 267, 269,

270
missing values, 288
multivariate time series, 263, 264, 277–279, 970
nonstationary covariance function analysis, 971
nonstationary data analysis, 249, 250, 252–255,

257–260

Subject Index � 1047

nonstationary time series, 274–277, 962, 963,
965

overview, 240
periodic AR model, 968, 969
roots of AR and MA equations, 265, 266, 970
smoothness priors modeling, 270, 271, 962, 963,

965
spectral analysis, 279–282
state space and Kalman filter method, 285–287
VAR model, 245–247, 292, 293, 967, 968

Time Series Functionality, 555
TOEPLITZ function

generating a Toeplitz matrix, 950
TPSPLINE call

computing thin-plate smoothing splines, 952
TPSPLNEV call

evaluating thin-plate smoothing splines, 955
TRACE function

summing diagonal elements, 958
TRANSPOSE operator

transposes a matrix, 576
Triangular linear systems, 958
TYPE function

determining matrix types, 973

U
UNIFORM function

generating pseudo-random uniform deviates,
974

UNION function
performing unions of sets, 974

UNIQUE function
sorting and removing duplicates, 975

UNIQUEBY function
processing BY groups in a matrix, 975

USE statement
opening SAS data sets, 976

V
VALSET call

performing indirect assignments, 978
VALUE function

assigning values, 979
VARMACOV Call

computing cross-covariance matrices, 979
VARMALIK Call

computing log-likelihood function, 981
VARMASIM Call

generating VARMA(p,q) time series, 982
VECDIAG function

creating vectors, 983
Vector time series analysis

cross-covariance matrix, 312
example, 309, 311
generating a multivariate normal, 312
generating a multivariate time series, 312
log-likelihood function, 312
overview, 308
roots of VARMA characteristic function, 312

VNORMAL Call
generating multivariate normal random series,

984
VTSROOT Call

calculating characteristic roots, 985

W
Wavelet Analysis Calls, 561
WAVFT call

computing fast wavelet transform, 986
WAVGET call

extracting wavelet information, 989
WAVIFT call

computing inverse fast wavelet transform, 991
WAVPRINT call

printing wavelet information, 993
WAVTHRSH call

thresholding wavelet detail coefficients, 994
WINDOW statement

opening a display window, 995

X
XMULT function

performing accurate matrix multiplication, 997
XSECT function

intersecting sets, 997

Y
YIELD function

calculating yield-to-maturity of a cash-flow
stream, 998

1048

Syntax Index

A
ABORT statement, 577
ABS statement, 577
ADDITION operator, 562
ALL statement, 577
ANY function, 578
APPCORT call, 578, 579
APPEND statement, 580
APPLY function, 582
ARMACOV call, 583
ARMALIK call, 585
ARMASIM function, 586

B
Basic time series subroutines

ARMACOV subroutine, 240
ARMALIK subroutine, 240
ARMASIM function, 240
example, 238
overview, 238
syntax, 240

BLOCK function, 588
BRANKS function, 589
BSPLINE function, 589
BTRAN function, 592
BYTE function, 592

C
CALL statement, 593
CHANGE call, 594
CHAR function, 594
CHOOSE function, 595
CLOSE statement, 596
CLOSEFILE statement, 597
COLVEC function, 1025
COMPARISON operator, 563
COMPORT call, 597–599
CONCAT function, 600
CONCATENATION operator, horizontal, 564
CONCATENATION operator, vertical, 565
CONTENTS function, 601
CONVEXIT function, 602
CORR function, 1025
COVLAG function, 602
CREATE statement, 603
CSHAPE function, 605
CUSUM function, 607
CVEXHULL function, 608

D
DATASETS function, 608
DELETE call, 609
DELETE statement, 610
DESIGN function, 612
DESIGNF function, 612
DET function, 613
DIAG function, 614
DIRECT PRODUCT operator, 566
DISPLAY statement, 614
DIVISION operator, 567
DO and END statements, 616
DO DATA statement, 618
DO function, 615
DO statement, iterative, 617
DO UNTIL statement, 619
DO WHILE statement, 619
DURATION function, 620

E
ECHELON function, 621
EDIT statement, 622
EIGEN call, 624
EIGVAL function, 628
EIGVEC function, 629
ELEMENT MAXIMUM operator, 568
ELEMENT MINIMUM operator, 568
END statement, 630
EXECUTE call, 630
EXP function, 630
EXPMATRIX function, 1025

F
FARMACOV call, 631
FARMAFIT call, 633
FARMALIK call, 634
FARMASIM call, 636
FDIF call, 637
FFT function, 638
FILE statement, 640
FIND statement, 641
FINISH statement, 643
FORWARD function, 643
Fractional time series subroutines

syntax, 316
Fractionally integrated time series subroutines

example, 313
FARMACOV subroutine, 316

1050 � Syntax Index

FARMAFIT subroutine, 316
FARMALIK subroutine, 316
FARMASIM subroutine, 316
FDIF subroutine, 316
overview, 313

FREE statement, 644

G
GAEND call, 644
GAGETMEM call, 645
GAGETVAL call, 646
GAINIT call, 646
GAREEVAL call, 647
GAREGEN call, 648
GASETCRO call, 648
GASETMUT call, 653
GASETOBJ call, 655
GASETSEL call, 656
GASETUP function, 657
GBLKVP call, 659
GBLKVPD call, 660
GBXWHSKR call, 1026
GCLOSE call, 660
GDELETE call, 660
GDRAW call, 661
GDRAWL call, 662
GENEIG call, 662
GEOMEAN function, 664
GGRID call, 664
GINCLUDE call, 665
GINV function, 666
GOPEN call, 668
GOTO statement, 668
GPIE call, 669
GPIEXY call, 670
GPOINT call, 671
GPOLY call, 672
GPORT call, 674
GPORTPOP call, 674
GPORTSTK call, 674
GPROBCNT call, 1026
GSCALE call, 675
GSCRIPT call, 676
GSET call, 677
GSHOW call, 678
GSORTH call, 678
GSTART call, 679
GSTOP call, 680
GSTRLEN call, 680
GTEXT and GVTEXT calls, 681
GWINDOW call, 682
GXAXIS and GYAXIS calls, 683
GXYPLOT call, 1027

H
HADAMARD function, 684
HALF function, 685
HANKEL function, 686
HARMEAN function, 687

HDIR function, 688
HERMITE function, 689
HOMOGEN function, 689

I
I function, 690
IF-THEN/ELSE statement, 691
IFFT function, 692
IMLMLIB Module Library

modules reference, 1025, 1027–1029, 1031,
1033, 1034, 1036, 1037

overview, 1021–1023
INDEX CREATION operator, 569
INDEX statement, 694
INFILE statement, 694
INPUT statement, 695
INSERT function, 697
INT function, 698
INV function, 699
INVUPDT function, 700
IPF call, 702
ITSOLVER call, 715

J
J function, 719
JROOT function, 720

K
KALCVF call, 299, 303, 305, 306, 721, 722, 724
KALCVS call, 303, 724–727
KALDFF call, 306, 727–730
KALDFS call, 730, 731
Kalman filter subroutines

examples, 298
KALCVF subroutine, 298
KALCVS subroutine, 298
KALDFF subroutine, 298
KALDFS subroutine, 298
overview, 296
syntax, 298, 721

KRONECKER product, 566

L
LAV call, 733–736
LCP call, 737
LENGTH function, 740
LINK and RETURN statements, 740
LIST statement, 741
LMS call, 744
LOAD statement, 752
LOC function, 752
LOG function, 754
LOGICAL operator, 570
LP call, 754
LTS call, 756
LUPDT call, 763

Syntax Index � 1051

M
MAD function, 764
MARG call, 765
MATTRIB statement, 768
MAX function, 770
MAXQFORM call, 770–772
MCD call, 772
MEDIAN function, 1027
MIN function, 778
MOD function, 778
MODULEI call, 779
MODULEIC function, 780
MODULEIN function, 780
MULTIPLICATION operator, elementwise, 571
MULTIPLICATION operator, matrix, 572
MVE call, 781

N
NAME function, 787
NCOL function, 788
NLENG function, 788
Nonlinear optimization subroutines

advanced examples, 361
details, 332
introductory examples, 325
NLPCG Call, 367
NLPCG call, 791
NLPDD Call, 372, 374, 391, 793, 794
NLPDD call, 792
NLPFDD Call, 380, 795, 798
NLPFDD call, 794, 796
NLPFEA call, 798
NLPHQN Call, 800, 802
NLPHQN call, 799
NLPLM Call, 382, 802, 803
NLPLM call, 802
NLPNMS Call, 804, 807
NLPNMS call, 803, 804
NLPNRA Call, 808, 810
NLPNRA call, 807
NLPNRR Call, 368, 813
NLPNRR call, 810
NLPQN Call, 376, 377, 395, 814, 817–819
NLPQN call, 813
NLPQUA Call, 820, 822
NLPQUA call, 819
NLPTR Call, 363, 379, 824
NLPTR call, 822
overview, 323
syntax, 788

NORMAL function, 824
NROW function, 824
NUM function, 825

O
ODE call, 825, 826, 828–831
ODSGRAPH call, 831
OPSCAL function, 832
ORPOL function, 834

ORTVEC call, 841, 842, 844

P
PAUSE statement, 844
PGRAF call, 845
POLYROOT function, 846
POWER operator, elementwise, 573
POWER operator, matrix, 573
PRINT statement, 847
PROC IML Statement, 9, 539
PRODUCT function, 849
PURGE statement, 849
PUSH call, 850
PUT statement, 851
PV function, 852

Q
QR call, 854–858
QUAD call, 859–864
QUADREG call, 1027
QUARTILE function, 1028
QUEUE call, 865
QUIT statement, 866

R
RANDDIRICHLET function, 1028
RANDGEN call, 866
RANDMULTINOMIAL function, 1030
RANDMVT function, 1031
RANDNORMAL function, 1033
RANDSEED call, 873
RANDWISHART function, 1034
RANK function, 874
RANKTIE function, 875
RATES function, 876
RATIO function, 877
RDODT call, 879–882
READ statement, 882
REGRESS call, 1035
REMOVE function, 886
REMOVE statement, 886
RENAME call, 887
REPEAT function, 888
REPLACE statement, 888
RESET statement, 891
RESUME statement, 893
RETURN statement, 893
ROOT function, 893
ROWCAT function, 895
ROWCATC function, 896
ROWVEC function, 1036
RSUBSTR function, 1036
RUN statement, 896
RUPDT call, 879–882, 897
RZLIND call, 897–905

S
SAVE statement, 905
SEQ call, 906–916, 918

1052 � Syntax Index

SEQSCALE call, 906–916, 918
SEQSHIFT call, 906–916, 918, 919
SETDIF function, 919
SETIN statement, 919
SETOUT statement, 920
SHAPE function, 921
SHOW statement, 922
SIGN REVERSE operator, 574
SOLVE function, 923
SOLVELIN call, 924
SORT call, 925
SORT statement, 926
SORTNDX call, 927
SOUND call, 928
SPLINE call, 929, 931, 934, 936
SPLINEC call, 929, 931, 934, 936
SPLINEV function, 931, 934, 936
SPOT function, 937
SQRSYM function, 937
SQRT function, 938
SSQ function, 938
STANDARD function, 1037
START and FINISH statements, 938
STOP statement, 939
STORAGE function, 940
STORE statement, 940
SUBSCRIPTS, 574
SUBSTR function, 941
SUBTRACTION operator, 576
SUM function, 941
SUMMARY statement, 942
SVD call, 945
SWEEP function, 947
SYMSIZE= option, 9, 539
SYMSQR function, 949

T
T function, 950
TABPRT call, 1037
TEIGEN call, 950
TEIGVAL functions, 950
TEIGVEC functions, 950
TIMSAC subroutines

advanced examples, 291
details, 267
introductory examples, 242
overview, 240
syntax, 267
TSBAYSEA subroutine, 260, 959–961
TSDECOMP subroutine, 259, 962, 963, 965
TSMLOCAR subroutine, 249, 965, 966
TSMLOMAR subroutine, 257, 966, 967
TSMULMAR subroutine, 245–247, 292–294,

967, 968
TSPEARS subroutine, 968, 969
TSPRED subroutine, 263, 264, 293, 970
TSROOT subroutine, 265, 266, 970
TSTVCAR subroutine, 971
TSUNIMAR subroutine, 972

TOEPLITZ function, 950
TPSPLINE call, 952
TPSPLNEV call, 955
TRACE function, 958
TRANSPOSE operator, 576
TRISOLV function, 958
TYPE function, 973

U
UNIFORM function, 974
UNION function, 974
UNIQUE function, 975
UNIQUEBY function, 975
USE statement, 976

V
VALSET call, 978
VALUE function, 979
VARMACOV Call, 979
VARMALIK Call, 981
VARMASIM Call, 982
VECDIAG function, 983
Vector time series subroutines

example, 309, 311
overview, 308
syntax, 312
VARMACOV subroutine, 312
VARMALIK subroutine, 312
VARMASIM subroutine, 312
VNORMAL subroutine, 312
VTSROOT subroutine, 312

VNORMAL Call, 984
VTSROOT Call, 985

W
WAVFT call, 986
WAVGET call, 989
WAVIFT call, 991
WAVPRINT call, 993
WAVTHRSH call, 994
WINDOW statement, 995
WORKSIZE= option, 9, 539

X
XMULT function, 997
XSECT function, 997

Y
YIELD function, 998

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

66

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

66

	Contents
	What's New in SAS/IML 9.2
	New Features
	Modules for Multivariate Random Sampling
	Performance Improvements
	ODS Statistical Graphics Interface
	BSPLINE Function
	Vector-Matrix Operations
	GEOMEAN and HARMEAN Functions
	New Related Software

	Chapter 1. Introduction to SAS/IML Software
	Overview
	SAS/IML Software: Highlights
	An Introductory Interactive Session
	PROC IML Statement

	Chapter 2. Understanding the Interactive Matrix Language
	Defining a Matrix
	Matrix Names and Literals
	Matrix Names
	Matrix Literals

	Creating Matrices from Matrix Literals
	Scalar Literals
	Numeric Literals
	Character Literals
	Repetition Factors
	Reassigning Values
	Assignment Statements

	Types of Statements
	Control Statements
	Functions
	CALL Statements and Subroutines
	Commands

	Missing Values
	Summary

	Chapter 3. Tutorial: A Module for Linear Regression
	Overview
	Solving a System of Equations

	A Module for Linear Regression
	Plotting Regression Results
	Summary

	Chapter 4. Working with Matrices
	Overview
	Entering Data as Matrix Literals
	Scalars
	Matrices with Multiple Elements

	Using Assignment Statements
	Simple Assignment Statements
	Matrix-Generating Functions
	Index Vectors

	Using Matrix Expressions
	Operators
	Compound Expressions
	Elementwise Binary Operators
	Subscripts
	Subscript Reduction Operators

	Displaying Matrices with Row and Column Headings
	Using the AUTONAME Option
	Using the ROWNAME= and COLNAME= Options
	Using the MATTRIB Statement

	More about Missing Values

	Chapter 5. Programming Statements
	Overview
	IF-THEN/ELSE Statements
	DO Groups
	Iterative Execution
	Jumping
	Module Definition and Execution
	Defining and Executing a Module
	Nesting Modules
	Understanding Symbol Tables
	Modules with No Arguments
	Modules with Arguments
	More about Argument Passing
	Module Storage

	Stopping Execution
	PAUSE Statement
	STOP Statement
	ABORT Statement

	Summary

	Chapter 6. Working with SAS Data Sets
	Overview
	Opening a SAS Data Set
	Making a SAS Data Set Current
	Displaying SAS Data Set Information
	Referring to a SAS Data Set
	Listing Observations
	Specifying a Range of Observations
	Selecting a Set of Variables
	Selecting Observations

	Reading Observations from a SAS Data Set
	Using the READ Statement with the VAR Clause
	Using the READ Statement with the VAR and INTO Clauses
	Using the READ Statement with the WHERE Clause

	Editing a SAS Data Set
	Updating Observations
	Deleting Observations

	Creating a SAS Data Set from a Matrix
	Using the CREATE Statement with the FROM Option
	Using the CREATE Statement with the VAR Clause

	Understanding the End-of-File Condition
	Producing Summary Statistics
	Sorting a SAS Data Set
	Indexing a SAS Data Set
	Data Set Maintenance Functions
	Summary of Commands
	Comparison with the SAS DATA Step
	Summary

	Chapter 7. File Access
	Overview
	Referring to an External File
	Types of External Files

	Reading from an External File
	Using the INFILE Statement
	Using the INPUT Statement

	Writing to an External File
	Using the FILE Statement
	Using the PUT Statement
	Examples

	Listing Your External Files
	Closing an External File
	Summary

	Chapter 8. General Statistics Examples
	Overview
	General Statistics Examples
	Example 8.1. Correlation
	Example 8.2. Newton's Method for Solving Nonlinear Systems of Equations
	Example 8.3. Regression
	Example 8.4. Alpha Factor Analysis
	Example 8.5. Categorical Linear Models
	Example 8.6. Regression of Subsets of Variables
	Example 8.7. Response Surface Methodology
	Example 8.8. Logistic and Probit Regression for Binary Response Models
	Example 8.9. Linear Programming
	Example 8.10. Quadratic Programming
	Example 8.11. Regression Quantiles
	Example 8.12. Simulations of a Univariate ARMA Process
	Example 8.13. Parameter Estimation for a Regression Model with ARMA Errors
	Example 8.14. Iterative Proportional Fitting
	Example 8.15. Full-Screen Nonlinear Regression

	References

	Chapter 9. Robust Regression Examples
	Overview
	Flow Chart for LMS, LTS, MCD, and MVE

	Using LMS and LTS
	Example 9.1. Substantial Leverage Points
	Example 9.2. Comparison of LMS, V7 LTS, and FAST-LTS
	Example 9.3. Univariate (Location) Problem

	Using MVE and MCD
	Example 9.4. Brainlog Data
	Example 9.5. Stackloss Data

	Combining Robust Residual and Robust Distance
	Example 9.6. Hawkins-Bradu-Kass Data
	Example 9.7. Stackloss Data

	References

	Chapter 10. Time Series Analysis and Examples
	Overview
	Basic Time Series Subroutines
	Getting Started
	Syntax

	Time Series Analysis and Control Subroutines
	Getting Started
	Minimum AIC Model Selection
	Nonstationary Data Analysis
	Seasonal Adjustment
	Miscellaneous Time Series Analysis Tools

	Syntax
	Details
	Minimum AIC Procedure
	Smoothness Priors Modeling
	Bayesian Seasonal Adjustment
	Nonstationary Time Series
	Multivariate Time Series Analysis
	Spectral Analysis
	Computational Details
	Missing Values
	ISM TIMSAC Packages

	Example 10.1. VAR Estimation and Variance Decomposition

	Kalman Filter Subroutines
	Getting Started
	Syntax
	Example 10.2. Kalman Filtering: Likelihood Function Evaluation
	Example 10.3. Kalman Filtering: SSM Estimation With the EM Algorithm
	Example 10.4. Diffuse Kalman Filtering

	Vector Time Series Analysis Subroutines
	Getting Started
	Stationary VAR Process
	Nonstationary VAR Process

	Syntax

	Fractionally Integrated Time Series Analysis
	Getting Started
	Syntax

	References

	Chapter 11. Nonlinear Optimization Examples
	Overview
	Getting Started
	Details
	Global versus Local Optima
	Kuhn-Tucker Conditions
	Definition of Return Codes
	Objective Function and Derivatives
	Finite-Difference Approximations of Derivatives
	Parameter Constraints
	Options Vector
	Termination Criteria
	Control Parameters Vector
	Printing the Optimization History

	Nonlinear Optimization Examples
	Example 11.1. Chemical Equilibrium
	Example 11.2. Network Flow and Delay
	Example 11.3. Compartmental Analysis
	Example 11.4. MLEs for Two-Parameter Weibull Distribution
	Example 11.5. Profile-Likelihood-Based Confidence Intervals
	Example 11.6. Survival Curve for Interval Censored Data
	Example 11.7. A Two-Equation Maximum Likelihood Problem
	Example 11.8. Time-Optimal Heat Conduction

	References

	Chapter 12. Graphics Examples
	Overview
	An Introductory Graph
	 Details
	Graphics Segments
	Segment Attributes
	Coordinate Systems
	Windows and Viewports
	Clipping Your Graphs
	Common Arguments

	Graphics Examples
	Example 12.1. Scatter Plot Matrix
	Example 12.2. Train Schedule
	Example 12.3. Fisher's Iris Data

	Chapter 13. Window and Display Features
	Overview
	Creating a Display Window for Data Entry
	Using the WINDOW Statement
	Window Options
	Field Specifications

	Using the DISPLAY Statement
	Group Specifications
	Group Options

	Details about Windows
	Number and Position of Windows
	Windows and the Display Surface
	Deciding Where to Define Fields
	Groups of Fields
	Field Attributes
	Display Execution
	Field Formatting and Inputting
	Display-Only Windows
	Opening Windows
	Closing Windows
	Repeating Fields
	Example

	Chapter 14. Storage Features
	Overview
	 Storage Catalogs
	Catalog Management
	Restoring Matrices and Modules
	Removing Matrices and Modules
	Specifying the Storage Catalog
	Listing Storage Entries
	Storing Matrices and Modules

	Chapter 15. Using SAS/IML Software to Generate IML Statements
	Overview
	Generating and Executing Statements
	Executing a String Immediately
	Feeding an Interactive Program
	Calling the Operating System
	Calling the SAS Windowing Environment
	Executing Any Command in an EXECUTE Call
	Making Operands More Flexible
	Interrupt Control
	Specific Error Control
	General Error Control
	Macro Interface
	IML Line Pushing Contrasted with Using the Macro Facility
	Example 15.1. Full-Screen Editing

	Summary

	Chapter 16. Wavelet Analysis
	Overview
	Some Brief Mathematical Preliminaries

	Getting Started
	Creating the Wavelet Decomposition
	Wavelet Coefficient Plots
	Multiresolution Approximation Plots
	Multiresolution Decomposition Plots
	Wavelet Scalograms
	Reconstructing the Signal from the Wavelet Decomposition

	Details
	Using Symbolic Names
	Obtaining Help for the Wavelet Macros and Modules

	References

	Chapter 17. Genetic Algorithms
	Overview
	Formulating a Genetic Algorithm Optimization
	Choosing the Problem Encoding
	Setting the Objective Function
	Controlling the Selection Process
	Using Crossover and Mutation Operators

	Executing a Genetic Algorithm
	Setting Up the IML Program
	Incorporating Local Optimization
	Handling Constraints
	Example 17.1. Genetic Algorithm with Local Optimization
	Example 17.2. Real-Valued Objective Optimization with Constant Bounds
	Example 17.3. Integer Programming Knapsack Problem
	Example 17.4. Optimization with Linear Constraints Using Repair Strategy

	References

	Chapter 18. Sparse Matrix Algorithms
	Overview
	Iterative Methods
	Input Data Description
	Example: Conjugate Gradient Algorithm
	Example: Minimum Residual Algorithm
	Example: Biconjugate Gradient Algorithm

	Symbolic LDL and Cholesky Factorizations
	References

	Chapter 19. Further Notes
	Memory and Workspace
	Accuracy
	Error Diagnostics
	Efficiency
	Missing Values
	Principles of Operation
	Operation-Level Execution

	Chapter 20. Language Reference
	Overview
	Operators
	Addition Operator: +
	Comparison Operators: < > = <= >= =
	Concatenation Operator, Horizontal: ||
	Concatenation Operator, Vertical: //
	Direct Product Operator: @
	Division Operator: /
	Element Maximum Operator: <>
	Element Minimum Operator: ><
	Index Creation Operator: :
	Logical Operators: & |
	Multiplication Operator, Elementwise: #
	Multiplication Operator, Matrix: *
	Power Operator, Elementwise: ##
	Power Operator, Matrix: **
	Sign Reverse Operator: –
	Subscripts: []
	Subtraction Operator: –
	Transpose Operator: `

	Statements, Functions, and Subroutines
	ABORT Statement
	ABS Function
	ALL Function
	ANY Function
	APPCORT Call
	APPEND Statement
	APPLY Function
	ARMACOV Call
	ARMALIK Call
	ARMASIM Function
	BLOCK Function
	BRANKS Function
	BSPLINE Function
	BTRAN Function
	BYTE Function
	CALL Statement
	CHANGE Call
	CHAR Function
	CHOOSE Function
	CLOSE Statement
	CLOSEFILE Statement
	COMPORT Call
	CONCAT Function
	CONTENTS Function
	CONVEXIT Function
	COVLAG Function
	CREATE Statement
	CSHAPE Function
	CUSUM Function
	CVEXHULL Function
	DATASETS Function
	DELETE Call
	DELETE Statement
	DESIGN Function
	DESIGNF Function
	DET Function
	DIAG Function
	DISPLAY Statement
	DO Function
	DO and END Statements
	DO Statement, Iterative
	DO DATA Statement
	DO Statement with an UNTIL Clause
	DO Statement with a WHILE Clause
	DURATION Function
	ECHELON Function
	EDIT Statement
	EIGEN Call
	EIGVAL Function
	EIGVEC Function
	END Statement
	EXECUTE Call
	EXP Function
	FARMACOV Call
	FARMAFIT Call
	FARMALIK Call
	FARMASIM Call
	FDIF Call
	FFT Function
	FILE Statement
	FIND Statement
	FINISH Statement
	FORCE Statement
	FORWARD Function
	FREE Statement
	GAEND Call (Experimental)
	GAGETMEM Call (Experimental)
	GAGETVAL Call (Experimental)
	GAINIT Call (Experimental)
	GAREEVAL Call (Experimental)
	GAREGEN Call (Experimental)
	GASETCRO Call (Experimental)
	GASETMUT Call (Experimental)
	GASETOBJ Call (Experimental)
	GASETSEL Call (Experimental)
	GASETUP Function (Experimental)
	GBLKVP Call
	GBLKVPD Call
	GCLOSE Call
	GDELETE Call
	GDRAW Call
	GDRAWL Call
	GENEIG Call
	GEOMEAN Function
	GGRID Call
	GINCLUDE Call
	GINV Function
	GOPEN Call
	GOTO Statement
	GPIE Call
	GPIEXY Call
	GPOINT Call
	GPOLY Call
	GPORT Call
	GPORTPOP Call
	GPORTSTK Call
	GSCALE Call
	GSCRIPT Call
	GSET Call
	GSHOW Call
	GSORTH Call
	GSTART Call
	GSTOP Call
	GSTRLEN Call
	GTEXT and GVTEXT Calls
	GWINDOW Call
	GXAXIS and GYAXIS Calls
	HADAMARD Function
	HALF Function
	HANKEL Function
	HARMEAN Function
	HDIR Function
	HERMITE Function
	HOMOGEN Function
	I Function
	IF-THEN/ELSE Statement
	IFFT Function
	INDEX Statement
	INFILE Statement
	INPUT Statement
	INSERT Function
	INT Function
	INV Function
	INVUPDT Function
	IPF Call
	ITSOLVER Call
	J Function
	JROOT Function
	KALCVF Call
	KALCVS Call
	KALDFF Call
	KALDFS Call
	LAV Call
	LCP Call
	LENGTH Function
	LINK and RETURN Statements
	LIST Statement
	LMS Call
	LOAD Statement
	LOC Function
	LOG Function
	LP Call
	LTS Call
	LUPDT Call
	MAD Function
	MARG Call
	MATTRIB Statement
	MAX Function
	MAXQFORM Call
	MCD Call
	MIN Function
	MOD Function
	MODULEI Call
	MODULEIC Function
	MODULEIN Function
	MVE Call
	NAME Function
	NCOL Function
	NLENG Function
	Nonlinear Optimization and Related Subroutines
	NLPCG Call
	NLPDD Call
	NLPFDD Call
	NLPFEA Call
	NLPHQN Call
	NLPLM Call
	NLPNMS Call
	NLPNRA Call
	NLPNRR Call
	NLPQN Call
	NLPQUA Call
	NLPTR Call
	NORMAL Function
	NROW Function
	NUM Function
	ODE Call
	ODSGRAPH Call
	OPSCAL Function
	ORPOL Function
	ORTVEC Call
	PAUSE Statement
	PGRAF Call
	POLYROOT Function
	PRINT Statement
	PRODUCT Function
	PURGE Statement
	PUSH Call
	PUT Statement
	PV Function
	QR Call
	QUAD Call
	QUEUE Call
	QUIT Statement
	RANDGEN Call
	RANDSEED Call
	RANK Function
	RANKTIE Function
	RATES Function
	RATIO Function
	RDODT and RUPDT Calls
	READ Statement
	REMOVE Function
	REMOVE Statement
	RENAME Call
	REPEAT Function
	REPLACE Statement
	RESET Statement
	RESUME Statement
	RETURN Statement
	ROOT Function
	ROWCAT Function
	ROWCATC Function
	RUN Statement
	RUPDT Call
	RZLIND Call
	SAVE Statement
	SEQ, SEQSCALE, and SEQSHIFT Calls
	SEQSCALE Call
	SEQSHIFT Call
	SETDIF Function
	SETIN Statement
	SETOUT Statement
	SHAPE Function
	SHOW Statement
	SOLVE Function
	SOLVELIN Call
	SORT Call
	SORT Statement
	SORTNDX Call
	SOUND Call
	SPLINE and SPLINEC Calls
	SPLINEV Function
	SPOT Function
	SQRSYM Function
	SQRT Function
	SSQ Function
	START and FINISH Statements
	STOP Statement
	STORAGE Function
	STORE Statement
	SUBSTR Function
	SUM Function
	SUMMARY Statement
	SVD Call
	SWEEP Function
	SYMSQR Function
	T Function
	TEIGEN Call
	TEIGVAL Function
	TEIGVEC Function
	TOEPLITZ Function
	TPSPLINE Call
	TPSPLNEV Call
	TRACE Function
	TRISOLV Function
	TSBAYSEA Call
	TSDECOMP Call
	TSMLOCAR Call
	TSMLOMAR Call
	TSMULMAR Call
	TSPEARS Call
	TSPRED Call
	TSROOT Call
	TSTVCAR Call
	TSUNIMAR Call
	TYPE Function
	UNIFORM Function
	UNION Function
	UNIQUE Function
	UNIQUEBY Function
	USE Statement
	VALSET Call
	VALUE Function
	VARMACOV Call
	VARMALIK Call
	VARMASIM Call
	VECDIAG Function
	VNORMAL Call
	VTSROOT Call
	WAVFT Call
	WAVGET Call
	WAVIFT Call
	WAVPRINT Call
	WAVTHRSH Call
	WINDOW Statement
	XMULT Function
	XSECT Function
	YIELD Function

	Base SAS Functions Accessible from SAS/IML
	Bitwise Logical Operation Functions
	Character and Formatting Functions
	Character String Matching Functions and Subroutines
	Date and Time Functions
	Descriptive Statistics Functions and Subroutines
	Double-Byte Character String Functions
	External Files Functions
	File I/O Functions
	Financial Functions
	Macro Functions and Subroutines
	Mathematical Functions and Subroutines
	Probability Functions
	Quantile Functions
	Random Number Functions and Subroutines
	State and Zip Code Functions
	Trigonometric and Hyperbolic Functions
	Truncation Functions
	Web Tools

	References

	Chapter 21. Module Library
	Overview
	Contents of IMLMLIB
	IMLMLIB and the STORAGE library
	Accessing the IML Source Code
	Order of Resolution
	Error Diagnostics
	Modules for Multivariate Random Sampling

	Modules Reference
	COLVEC Function
	CORR Function
	EXPMATRIX Function
	GBXWHSKR Call
	GPROBCNT Call
	GXYPLOT Call
	MEDIAN Function
	QUADREG Call
	QUARTILE Function
	RANDDIRICHLET Function
	RANDMULTINOMIAL Function
	RANDMVT Function
	RANDNORMAL Function
	RANDWISHART Function
	REGRESS Call
	ROWVEC Function
	RSUBSTR Function
	STANDARD Function
	TABPRT Call

	References

	Subject Index
	Syntax Index

