
SAS/IML® Studio 3.3 for
SAS/STAT® Users

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010. SAS/IML® Studio 3.3 for
SAS/STAT® Users. Cary, NC: SAS Institute Inc.

SAS/IML® Studio 3.3 for SAS/STAT® Users

Copyright © 2010, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-60764-751-5

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation
by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, November 2010

1st printing, November 2010

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to
its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the
SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents
Chapter 1. Introduction to SAS/IML Studio 1
Chapter 2. Reading and Writing Data 11
Chapter 3. Creating Dynamically Linked Graphs 23
Chapter 4. Calling SAS Procedures . 27
Chapter 5. Adding Variables to the DataObject 31
Chapter 6. Adding Curves to Graphs 35
Chapter 7. Reading ODS Tables . 43
Chapter 8. Adding Titles, Legends, and Insets 49
Chapter 9. Adjusting Axes and Locations of Ticks 55
Chapter 10. Changing the Color and Shape of Observation Markers 63
Chapter 11. Calling Functions in the R Language 73

Index 81

iv

Release Notes

The following release notes pertain to SAS/IML® Studio 3.3:

� SAS/IML Studio was formerly named SAS® Stat Studio. SAS/IML Studio can run SAS
Stat Studio programs and modules without modification. For information about how to mi-
grate your SAS Stat Studio files and directories to SAS/IML Studio, see the “Changes and
Enhancements” topic in the online Help.

� SAS/IML Studio requires the second maintenance of SAS 9.2 or any later release.

� SAS/IML Studio includes interface to the R language. The IMLPlus language includes func-
tions that transfer data between SAS data sets and R data frames, and between SAS/IML
matrices and R matrices.

� You can now run portions of a program by highlighting certain statements and clicking
ProgramIRun. Only the highlighted statements are run.

� SAS/IML Studio contains a new program editor.

� SAS/IML Studio can now read and write JMP® data files.

� The SAS/IML Studio user interface is available in the following languages: English,
Japanese, Korean, and Simplified Chinese.

� If you need to open a data set that contains Chinese, Japanese, or Korean characters, it is
important that you configure the “Regional and Language Options” in the Windows Control
Panel for the appropriate country. It is not necessary to change the Windows setting called
“Language for non-Unicode programs,” which is also referred to as the system locale.

� When you are running SAS/IML Studio on a Windows system configured for a language
other than English, you can still use English fonts. For details, search for the term
“IMLStudio_ForceEnglishUI” in the online Help.

vi

Chapter 1

Introduction to SAS/IML Studio

Contents
What Is SAS/IML Studio? . 1
Purpose of This Book . 3
Why Program in SAS/IML Studio? . 4
Features of IMLPlus Programs . 5
Understanding Classes, Objects, and Methods . 6
The DataObject Class . 7
Where Are the Data? . 9

What Is SAS/IML Studio?

SAS/IML Studio (formerly known as SAS Stat Studio) is a programming environment for statistical
computations and graphics. SAS/IML Studio requires that you have a license for Base SAS®,
SAS/STAT®, and SAS/IML® software. SAS/IML Studio runs on a PC in the Microsoft Windows
operating environment.

The programming language in SAS/IML Studio, which is called IMLPlus, is an enhanced version
of the SAS/IML programming language. The “Plus” part of the name refers to new features that
extend the SAS/IML language, including the ability to create and manipulate statistical graphs, to
call SAS procedures, and to call functions in the R programming language.

SAS/IML Studio is intended for SAS programmers who want to implment algorithms that are not
available in any SAS procedure, but SAS/IML Studio also provides a graphical user interface (GUI)
to a number of standard statistical methods. You can use the SAS/IML Studio GUI to do the
following:

� explore data through graphs linked across multiple windows

� transform data

� subset data

� analyze univariate distributions

� discover structure and features in multivariate data

2 F Chapter 1: Introduction to SAS/IML Studio

� fit and evaluate explanatory models

Figure 1.1 shows the SAS/IML Studio interface with a logistic model for the probability that a pas-
senger survived the 1912 Titanic disaster. The figure shows output from the LOGISTIC procedure
and three linked views of the data: a data table, a diagnostic plot that uses the DIFCHISQ statis-
tic to identify observations that do not fit the model well, and a line plot that shows the predicted
probability of survival as a function of a passenger’s age, gender, and cabin class (first class, second
class, or third class). Observations that are selected in the diagnostic plot are shown as selected in
all other (graphical and tabular) views of the data. The shapes and colors of observations are also
shared among all views of the data.

Figure 1.1 was created by using only the SAS/IML Studio GUI. Although the GUI provides many
tools for analyzing data, SAS/IML Studio is primarily intended for SAS programmers. SAS/IML
Studio provides an integrated development environment that enables you to write, debug, and exe-
cute programs that combine the following:

� the flexibility of the SAS/IML matrix language

� the analytical power of SAS/STAT software

� the data manipulation capabilities of Base SAS software

� the dynamically linked graphs of SAS/IML Studio

� the functions and user-contributed packages of the R language

This book does not require previous knowledge of the SAS/IML language. The emphasis in this
book is on the “Plus” part of the IMLPlus language.

Purpose of This Book F 3

Figure 1.1 The SAS/IML Studio Interface

Purpose of This Book

The purpose of this book is to teach SAS/STAT users how to use SAS/IML Studio in conjunction
with SAS/STAT procedures in order to explore data and visualize statistical models. It assumes that
you are familiar with using Base SAS software and SAS/STAT procedures such as FREQ, PRINT,
REG, and KDE. The examples in this book do not require knowledge of the SAS/IML language.
A goal of this book is to enable SAS/STAT programmers to write programs in SAS/IML Studio as
quickly as possible.

In particular, this book focuses on how to create dynamically linked graphs so you can more easily
formulate, visualize, evaluate, and revise statistical models. If you already know how to write DATA
and PROC statements to perform a certain analysis, you can add a few IMLPlus statements to create
graphs for visualizing the results. Thus, you need to learn only a few new commands and techniques
in order to get started with IMLPlus programming.

This book is one of three documents about SAS/IML Studio. You can learn how to use the SAS/IML
Studio GUI to conduct exploratory data analysis and standard statistical analyses in the SAS/IML

4 F Chapter 1: Introduction to SAS/IML Studio

Studio User’s Guide. That book also shows you how to perform many of the tasks in this chapter by
using menus in the SAS/IML Studio GUI. You can learn more advanced programming commands
and techniques from the SAS/IML Studio online Help, which you can display by selecting Help
IHelp Topics from the main menu.

Why Program in SAS/IML Studio?

Although you can use SAS/IML Studio as a point-and-click tool for exploratory data analysis, there
are advantages to writing programs in SAS/IML Studio. Writing programs enables you to do the
following:

� create your own customized statistical graphs

� add legends, curves, maps, or other custom features to statistical graphs

� develop interactive programs that use dialog boxes

� extend the built-in analyses by calling SAS procedures

� create custom analyses

� repeat an analysis on different data

� extend the results of SAS procedures by using SAS/IML statements

� share analyses with colleagues who also use SAS/IML Studio

� call functions and user-contributed packages of the R language

� call functions from libraries written in C/C++, FORTRAN, or Java

Figure 1.2 shows the results of a program that evaluates the mortality of patients admitted to a certain
hospital with congestive heart failure. The program uses a statewide database to build a logistic
model that predicts mortality as a function of a patient’s age and the severity of her condition. The
program uses SAS/IML statements to compute an adjusted mortality rate (with confidence limits)
for cardiac physicians employed by the hospital. The adjusted rates are based on the observed
number of deaths, the expected number of deaths (as predicted by the statewide model), and the
mean number of deaths for this hospital.

The program implements many of the features listed previously. It creates a custom graphic with
explanatory text. It calls DATA steps and the LOGISTIC procedure. It extends the results of the
LOGISTIC procedure by using SAS/IML statements to compute adjusted mortality rates. It presents
SAS/IML Studio’s dynamically linked graphs to enable you to explore why some physicians have
high rates of patient mortality, to decide whether those rates are unacceptably high, and to evaluate
the overall performance of this hospital’s staff compared to staff at other hospitals in the state.
Although not shown in Figure 1.2, the program even uses a dialog box to enable you to choose the
explanatory effects used to create the logistic model.

Features of IMLPlus Programs F 5

Figure 1.2 Results of an IMLPlus Program

Features of IMLPlus Programs

IMLPlus programs such as the one that created Figure 1.2 share certain features. They typically
include the following steps:

1. If the data are not already in a SAS data set in a library, put them there (Chapter 2).

2. Call a SAS procedure (Chapter 4).

3. Read in results produced by the procedure (Chapter 5, Chapter 6, and Chapter 7) and, option-
ally, use SAS/IML statements for additional analysis.

4. Create graphs that use the results (Chapter 3, Chapter 5, and Chapter 6).

5. Customize attributes of the graphs (Chapter 8, Chapter 9, and Chapter 10).

The chapters of this book describe these steps in detail. Later chapters build on earlier chapters.
The last chapter (Chapter 11) discusses calling functions in the R language.

6 F Chapter 1: Introduction to SAS/IML Studio

In each chapter, you write a short program that illustrates a few key ideas. You should type the
program into the program window. You can create a new program window by selecting FileINew
Workspace from the main SAS/IML Studio menu. For your convenience, the program for each
chapter is also distributed with SAS/IML Studio.

The remainder of this chapter discusses concepts that are useful in IMLPlus programming but might
not be familiar to the average SAS programmer.

� IMLPlus programs use classes and methods to manage dynamically linked graphs. The sec-
tion “Understanding Classes, Objects, and Methods” on page 6 explains these concepts in
general, and the section “The DataObject Class” on page 7 focuses on a class that is particu-
larly important in SAS/IML Studio.

� IMLPlus programs that call SAS procedures require transferring data between an in-memory
version of the data and SAS data sets. The section “Where Are the Data?” on page 9 intro-
duces this concept. Chapter 2, “Reading and Writing Data,” discusses it in detail and gives
examples.

Understanding Classes, Objects, and Methods

SAS is a procedural programming language. (So are FORTRAN and C.) SAS programming tends
to be action-oriented. The procedure (or SAS/IML module) is the “unit” of programming. The
procedure manipulates and analyzes the data.

In contrast, the IMLPlus programming language borrows ideas from object-oriented programming.
An important idea in object-oriented programming is the concept of a class. A class is an abstract
package of data and of functions (called methods) that query, retrieve, or manipulate the data.

An object is a concrete realization (or instance) of a class. To create an object, you need to specify
the data to the creation routine for the class. To call methods in IMLPlus, you use a “dot notation”
syntax in which the method name is appended to the name of the object. The form of the syntax is
Object.Method(arguments), as shown in the following examples.

In the SAS/IML language, all variables are matrices. In IMLPlus, a variable is implicitly assumed
to be a SAS/IML matrix unless the variable is declared to refer to an object. You can specify that
an IMLPlus variable refers to an object by using the declare keyword.

For example, to create a variable named dobj that refers to an object of the DataObject class, you
can use the CreateFromFile method of the class:

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");
dobj.Sort("latitude");

The dobj object is declared in the first line, created in the second, and manipulated in the third by
calling a method. The Sort method sorts the data in dobj by the latitude variable. The data set on
disk is not affected; it was used only to create the initial instance of the object.

The DataObject Class F 7

To simplify the discussion, the remainder of this document refers to objects by the name of their
class. Thus a DataObject object is called merely a “DataObject” instead of an “instance of the
DataObject class.”

NOTE: SAS/IML statements are not case-sensitive. That is, if you define a matrix named
MyMatrix, you can refer to the matrix as mymatrix, MyMaTrIx, or any other combination of upper-
case and lowercase letters. The names of IMLPlus classes and methods, however, are case-sensitive.
There is no class named “dataobject” (lowercase), only “DataObject.” There is no method in the
DataObject class named “sort,” only “Sort” (capitalized).

The DataObject Class

The most important class in SAS/IML Studio is the DataObject class. The DataObject class man-
ages an in-memory version of your data. It provide methods to query, retrieve, and manipulate the
data. It manages graphical information about observations such as the shape and color of mark-
ers, the selected state of observations, and whether observations are displayed in plots or hidden.
Figure 1.3 is a schematic depiction of a DataObject.

Figure 1.3 Using a DataObject

A DataObject is usually created from a SAS data set. (Other methods of creating DataObjects,
such as from Microsoft Excel files or from SAS/IML matrices, are discussed in the online Help.)

8 F Chapter 1: Introduction to SAS/IML Studio

However, after the DataObject is created, the data in the DataObject are independent from the
data used to initialize it. For example, you might use methods of the DataObject class to add new
variables, transform existing variables, sort by one or more variables, delete observations, or exclude
observations from being plotted. None of these operations affect the original SAS data set unless
the DataObject is saved back onto disk with the same filename.

The DataObject class provides methods that query the data. For example, a DataObject can provide
you with the number of variables and observations in the in-memory copy of the data. You can
query for a variable’s label or format, or for whether a variable contains nominal numeric data. You
can request the DataObject to return a vector that contains the values of a particular variable. The
values can then be used in a statistical analysis or to subset the data.

The DataObject class does not have any visible manifestation. Rather, you can create tabular and
graphical views of the data from a DataObject. Every data table and every plot has an underlying
DataObject, and usually several plots or tables share the same DataObject.

The most important role of the DataObject class is to synchronize all graphs and data tables that
view the same data. Thus it is the DataObject class that enables dynamically linked views of data.
This is schematically depicted in Figure 1.4.

Figure 1.4 The DataObject Role

For example, the DataObject class keeps track of which observations are selected. When you inter-
act with a graph or data table in order to select observations, your selections are remembered by the
underlying DataObject. All graphs and tables that are linked to the DataObject are alerted so that
they can update their displays to display the new set of selected observations.

Similarly, the DataObject class contains methods that manage markers for each observation. You
can set the shape and color of an observation marker by using DataObject methods. Whenever an
individual observation is plotted, it has the same shape and color in all graphs that display it.

Where Are the Data? F 9

In summary, the DataObject class is an in-memory version of data, together with methods to query
and manipulate data and graphical attributes that are associated with observations. The purpose of
the DataObject class is to ensure that all graphical and tabular views of the data display observations
with the same markers and selection state.

Where Are the Data?

SAS/IML Studio runs in a Microsoft Windows operating environment, but it can communicate with
SAS software running on other computers. The PC on which SAS/IML Studio runs is called the
client. The computer on which the SAS System runs is called the SAS server. If the SAS System
is running on the same PC that is running SAS/IML Studio, then the client and server machines are
the same.

There is a fundamental difference between the SAS/IML Studio graphs and the SAS/IML Studio
analyses. The DataObject class, which coordinates all of the dynamically linked graphs and tables,
runs on the client and keeps its data in memory on the client. Similarly, the graphs and tables run on
the client. The analyses, by contrast, are performed using SAS procedures, and so the analyses run
on the SAS server. The SAS procedures must read from a SAS data set in a library on the server.

To perform an analysis, you must get data out of the DataObject and write the data to a SAS data set
in a server library. Similarly, after an analysis is complete, you might want to get the results (such
as observation-wise statistics) out of a server data set and add them to the in-memory DataObject.
Figure 1.5 illustrates this idea.

Figure 1.5 Data Flow

10 F Chapter 1: Introduction to SAS/IML Studio

Thus it is important to know how to pass data between a DataObject and SAS data sets on the server.
In Chapter 2, “Reading and Writing Data,” you learn how to move variables between a DataObject
and a server data set. You also learn how to read and write SAS data sets on the client or on the
server, and how to create a DataObject from various sources of data.

Chapter 2

Reading and Writing Data

Contents
Introduction to Reading and Writing Data . 11
Use the GUI to Read a SAS Data Set . 12
Use the GUI to Write a SAS Data Set . 14
Use a Program to Read a SAS Data Set . 16
Use a Program to Write a SAS Data Set . 18
Use SAS/IML Matrices to Store Data . 20
Summary of Reading and Writing Data . 21

Introduction to Reading and Writing Data

SAS/IML Studio runs in a Microsoft Windows operating environment, but it can communicate with
SAS software that runs on other computers. The PC on which SAS/IML Studio runs is called the
client. The computer on which the SAS system runs is called the SAS server. If the SAS System
runs on the same PC as SAS/IML Studio, then the client and server machines are the same.

Dynamically linked graphs require an in-memory DataObject that runs on the client PC. Calling a
SAS procedure requires a SAS data set in a library on the server. Therefore, if you are graphically
exploring data and decide to perform an analysis with a procedure, you must write data from a
DataObject into a SAS data set in a server library. After the analysis is finished, you might want to
read results from an output data set and add one or more variables to the in-memory DataObject. For
example, you might want to add predicted values, residuals, and confidence limits for a regression
analysis.

This first part of this chapter teaches you how to use the SAS/IML Studio graphical user interface
(GUI) to do the following:

� read a SAS data set from the client

� read a SAS data set from the server

� write data to a SAS data set on the client

� write data to a SAS data set on the server

12 F Chapter 2: Reading and Writing Data

The second part of the chapter teaches you how to do these tasks by writing a program and also
describes how to add variables to an existing DataObject.

Use the GUI to Read a SAS Data Set

A SAS data set can be opened as a client data set if it is accessible by the PC operating system
of the computer on which SAS/IML Studio runs. A data set on a USB flash drive, hard drive, CD
drive, or DVD drive can be opened as a client data set. So, too, can a data set on a networked PC or
a UNIX data set that is accessible through a mounted networked drive. For example, the following
can be opened as client data sets:

� C:\Program Files\SAS\SASIMLStudio\3.2\Data Sets\Hurricanes.
sas7bdat

� \\PC123\Public\Data\climate.sas7bdat

� U:\SAS Data\patients.sas7bdat

A SAS data set is a server data set if it is in a SAS library such as Work, Sasuser, or Sashelp, or
in a libref that you define by using the LIBNAME statement. For example, the following are server
data sets:

� Sashelp.Class

� Work.Data1

� MyLib.Research

Open a Client Data Set

To use the GUI to open a SAS data set on the client:

1 Select FileIOpenIFile from the main menu. The dialog box in Figure 2.1 appears.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Double-click the Data Sets folder.

4 Select the Hurricanes.sas7bdat file.

5 Click Open.

Use the GUI to Read a SAS Data Set F 13

Figure 2.1 Opening a Client Data Set

A data table appears, showing a tabular view of the data. Connected to the data table (although
invisible) is an underlying DataObject that was created from the SAS data set. The DataObject
holds the data in memory; the data table displays a view of the data.

NOTE: Clicking Go to Personal Files directory navigates to your personal files directory. By
default, the personal files directory corresponds to the Windows directory shown in Table 2.1.

Table 2.1 The Personal Files Directory

Windows XP C:\Documents and Settings\userid\My Documents\
My IML Studio Files

Windows Vista C:\Users\userid\Documents\My IML Studio Files

Open a Server Data Set

To use the GUI to open a SAS data set in a library on the server:

1 Select File IOpen IServer Data Set from the main menu. The dialog box in Figure 2.2 ap-
pears.

2 Click the node labeled with your server name to open it. If the SAS System is running on your
PC, the server name is My SAS Server.

3 Click the SASHELP folder to view the data sets in the Sashelp library.

4 Select the CLASS data set.

14 F Chapter 2: Reading and Writing Data

5 Click OK.

Figure 2.2 Opening a Server Data Set

A data table appears, showing a tabular view of the data. There is a DataObject (not visible, but still
present) connected to the data table.

NOTE: Figure 2.2 shows librefs that are not predefined. If your PC is your SAS server, you can
create an AutoExec.sas file in the C:\ root directory that contains LIBNAME statements that define
librefs on your PC. Everytime a SAS server starts, the SAS System executes the AutoExec.sas file
automatically. If you are running a SAS server on another computer, ask your site administrator to
set up librefs for you.

Use the GUI to Write a SAS Data Set

In addition to reading data sets, you can use the SAS/IML Studio GUI to write SAS data sets. This
section presumes that you have opened a data table as described in the previous section.

Save Data to the Client

To use the GUI to save data from a data table (or more precisely, from the DataObject that underlies
the data table) to a SAS data set on the client:

Use the GUI to Write a SAS Data Set F 15

1 Activate the data table by clicking its title bar.

2 Select FileISave As File from the main menu. The dialog box in Figure 2.3 appears.

3 Navigate to the Windows directory in which you want to save the data set.

4 Type a valid Windows filename in the File name box.

5 Click Save.

Figure 2.3 Saving to a Client Data Set

The recommended Windows directory in which to save your data is the personal files directory
shown in Table 2.1. If you have many data sets, you can organize the data by making subdirecto-
ries of this directory. SAS/IML Studio provides easy navigation for loading files in this directory.
Furthermore, the section “Open a Client Data Set” on page 17 explains that this directory is auto-
matically searched when you use a program to create a DataObject from a data set.

Save Data to a SAS Library

To use the GUI to save data from a data table (or more precisely, from the DataObject that underlies
the data table) to a SAS data set in a library on the server:

1 Activate the data table by clicking its title bar.

2 Select File ISave As Server Data Set from the main menu. The dialog box in Figure 2.4
appears.

3 Click a node to see the available libraries for a server. If the SAS System is running on your PC,
the server name is My SAS Server.

16 F Chapter 2: Reading and Writing Data

4 Click the node for a library. Each SAS/IML Studio workspace has its own private Work library,
but other libraries (such as Sasuser) are shared across all SAS/IML Studio workspaces.

5 Type a valid SAS data set name in the Data set name box.

6 Click OK.

Figure 2.4 Saving to a SAS Library

Use a Program to Read a SAS Data Set

As explained in Chapter 1, “Introduction to SAS/IML Studio,” the DataObject class stores an in-
memory version of data. You can query, retrieve, and manipulate the data by calling methods in
the DataObject class. All graphical and tabular views of those data are linked together through the
common DataObject. Therefore, when you want to create a graph of some data, or to look at the
data in a table, you first need to create a DataObject.

A DataObject is typically created from a SAS data set. As explained in the introduction to this
chapter, a client data set is accessible through the Windows operating environment, whereas a server
data set resides in a SAS library.

In this section you write a program to create a DataObject from a SAS data set and save data
from a DataObject to a SAS data set. You can open a program window by selecting File
INewIWorkspace from the main menu.

Use a Program to Read a SAS Data Set F 17

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Data.sx file.

5 Click Open.

Open a Client Data Set

To create a DataObject from a SAS data set on the client, you can use the CreateFromFile method
of the DataObject class. Type or copy the following statements into a program window, and select
ProgramIRun from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");
DataTable.Create(dobj);

The first statement declares dobj to be an IMLPlus variable that refers to a DataObject. The second
statement creates the DataObject and populates it with data from the specified data set. (More
information about methods in the DataObject class is available in the SAS/IML Studio online Help.)

If you omit the file extension from the argument of CreateFromFile (as in this example), an exten-
sion of sas7bdat is assumed.

The last statement creates a DataTable, which displays the data in tabular form. The data table
might appear behind your program window, so move the program window if necessary. While it
is reassuring to see the data table and to know that your data set was correctly opened, this last
statement is not necessary: the DataObject is created even if you do not create a DataTable.

NOTE: You can specify an absolute Windows pathname for the argument passed to the Create-
FromFile method. However, if you specify a partial pathname as in the preceding example, then
SAS/IML Studio searches for the file relative to certain directories. The Hurricanes data set
is distributed with SAS/IML Studio. The directory that contains Stat Studio sample data sets
(C:\Program Files\SAS\SASIMLStudio\3.2\Data Sets) is, by default, one of the di-
rectories automatically searched. See the SAS/IML Studio online Help for information about how
to add or change directory search paths.

Open a Server Data Set

If your data are stored in a SAS data library, such as Work, Sashelp, or Sasuser, or in a libref
that you created using the LIBNAME statement, you can open the data by using a similar method.
The method’s name is CreateFromServerDataSet. It is valid to have a LIBNAME statement in

18 F Chapter 2: Reading and Writing Data

an IMLPlus program, so you can define your libref in the same program in which you use the
CreateFromServerDataSet method.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

declare DataObject dobjServer;
dobjServer = DataObject.CreateFromServerDataSet("Sashelp.CLASS");
DataTable.Create(dobjServer);

Again, the data table might appear behind your program window, so move the program window if
necessary. It is not necessary to create a DataTable unless you want to see a tabular view of the data.

If you already have a DataObject and you want to add variables from a server data set to it, then use
the CopyServerDataToDataObject module as discussed in the section “Use SAS/IML Matrices to
Store Data” on page 20 and Chapter 5, “Adding Variables to the DataObject.”

Use a Program to Write a SAS Data Set

In the previous section you learned programming statements to read SAS data sets. In this section
you learn programming statements to write SAS data sets.

Save Data to the Client

If you want to save data in a DataObject to a SAS data set on your PC, use the WriteToFile method.

Add the following statement at the bottom of the program window, and select ProgramIRun from
the main menu.

dobj.WriteToFile("C:\MyHurricanes.sas7bdat");

You must append the sas7bdat file extension to the filename when you use the WriteToFile method.
If you omit the extension, you get an error message that notifies you that the file format is not
supported.

It is often convenient to save data to your personal files directory, as described in the section “Open
a Client Data Set” on page 12. You can get the Windows path for your personal files directory by
using the GetPersonalFilesDirectory module. The following statements save data to the Data Sets
folder under your personal files directory:

run GetPersonalFilesDirectory(path);
fname = path + "Data Sets\MyHurricanes.sas7bdat"; /* concatenate strings */
dobj.WriteToFile(fname);

Use a Program to Write a SAS Data Set F 19

Save Data to a SAS Library

If you want to save certain variables in a DataObject to a data set in a SAS library, use the Write-
VarsToServerDataSet method of the DataObject.

Add the following statement at the bottom of the program window, and select ProgramIRun from
the main menu.

dobj.WriteVarsToServerDataSet({"Name" "latitude" "longitude"},
"Work", "HurrLatLon", true);

The first argument of the WriteVarsToServerDataSet method specifies the name of the variables in
the DataObject that you want to write to the server. The next two arguments specify the SAS library
(Work) and name of the data set (HurrLatLon) to be written. The last argument is a Java boolean
argument. If you specify true, then observations that are marked “Exclude from Analysis” are not
written to the server. If you specify false, then all observations are written to the server.

NOTE: Java is a case sensitive language, so the last argument of the WriteVarsToServerDataSet
method must be lowercase.

If you want to write all variables to a SAS data set on the server, you can use the WriteToServer-
DataSet method. It is more efficient to write only the variables that are relevant to your analysis. For
example, if you intend to run a regression that relates a single response variable to two explanatory
variables, you should write only those three variables to the server data set.

View Data Sets in a SAS Library

There are two ways to verify that your data were written to a SAS library as you intended. The first
way is to use the PRINT or CONTENTS procedure to print information to the output window. Add
the following statements at the bottom of the program window, and select Program IRun from
the main menu.

submit;
proc print data=HurrLatLon(obs=10);
run;
endsubmit;

The SUBMIT and ENDSUBMIT statements are discussed in Chapter 4, “Calling SAS Procedures.”
Anything between these two statements is passed from IMLPlus to the SAS System for processing.
The result of these statements is to print the first 10 observations of the Work.HurrLatLon data set
to the output window.

The second way to view a data set in a SAS library is to open the data set in SAS/IML Studio as
explained in the section “Open a Server Data Set” on page 13.

20 F Chapter 2: Reading and Writing Data

Use SAS/IML Matrices to Store Data

Although this book does not require previous knowledge of the SAS/IML language, experienced
SAS/IML programmers might wonder how to transfer data between matrices and a DataObject. For
completeness, this issue is addressed in this section.

The SAS/IML language provides statements to read and write server data to and from matrices.
The USE statement opens a SAS data set, and the READ statement reads server data into matri-
ces. The SAS/IML language also has a CREATE statement that creates a server data set and an
APPEND statement that writes variables from matrices. These statements are documented fully in
the SAS/IML User’s Guide.

Create a DataObject from SAS/IML Matrices

If you have data in SAS/IML matrices, you can create a DataObject from those matrices by using
the Create method of the DataObject. For example, type the following statements into a SAS/IML
Studio program window, and select ProgramIRun from the main menu.

xy = {0 4,
1 6,
2 7,
3 9,
4 10};

declare DataObject dobjMatrix;
dobjMatrix = DataObject.Create("Matrix", {"XVar" "YVar"}, xy);

The 5 � 2 matrix xy is used to initialize the dobjMatrix DataObject. The result is a DataObject
with two variables (named XVar and YVar) and five observations.

Add Variables to a DataObject

If the DataObject is already created, you can add a new variable to the DataObject by using the
AddVar method. For example, add the following statements to the SAS/IML Studio program from
the previous section, and select ProgramIRun from the main menu.

z = {-1, 1, 0, 0, 1};
dobjMatrix.AddVar("z", z);
DataTable.Create(dobjMatrix);

The result is a DataObject with three variables (the new variable is z) and five observations. It is an
error to try to add a new variable that has a different number of observations than the DataObject.

There is also a DataObject method, called the AddVars method, that enables you to add several
variables in a single call.

Summary of Reading and Writing Data F 21

Copy Variables to SAS/IML Matrices

You can copy data from the DataObject into a matrix by using the GetVarData method of the
DataObject. For example, add the following statements to the SAS/IML Studio program from
the previous section, and select ProgramIRun from the main menu.

dobjMatrix.GetVarData("XVar", x);
print x;

The result is a 5� 1 matrix x that contains the values of the XVar variable. You can name the matrix
anything you want. It can have the same name as the variable in the DataObject (as the z variable
and matrix did) or a completely different name (as in this example). After the data are copied into a
matrix, there is no linkage between the DataObject and the matrix: changing elements of the matrix
does not affect the DataObject, and changing the DataObject does not affect the matrix.

The CopyServerDataToDataObject module uses this approach to read variables in a server data
set directly into a DataObject. This module is discussed in Chapter 5, “Adding Variables to the
DataObject.” Again, the number of observations in the server data set must match the number of
observations in the DataObject.

Summary of Reading and Writing Data

Tables 2.2 through 2.4 summarize reading and writing data in IMLPlus programs.

Table 2.2 Reading Data into a DataObject

Source Statement

Client data set DataObject.CreateFromFile
Server data set DataObject.CreateFromServerDataSet

run CopyServerDataToDataObject module
SAS/IML matrix DataObject.Create

DataObject.AddVar
DataObject.AddVars

Table 2.3 Copying Data from a DataObject

Destination Statement

Client data set DataObject.WriteToFile
Server data set DataObject.WriteToServerDataSet

DataObject.WriteVarsToServerDataSet
SAS/IML matrix DataObject.GetVarData

22 F Chapter 2: Reading and Writing Data

Table 2.4 Reading and Writing Server Data in SAS/IML

Action Statement

Read from server into matrices USE, READ
Write server data set from matrices CREATE, APPEND

NOTE: If you create a server data set by using the WriteToServerDataSet or WriteVarsToServer-
DataSet method, you might want to delete the data set after you are finished with it by calling the
DELETE subroutine.

Chapter 3

Creating Dynamically Linked Graphs

Contents
Introduction to Creating Dynamically Linked Graphs 23
Create a Scatter Plot and Histogram . 23
Select Observations . 24
Summary of Creating Graphs . 26

Introduction to Creating Dynamically Linked Graphs

Dynamically linked graphs are one of the primary tools of exploratory data analysis. When you
have multivariate data and you want to understand relationships between variables, it is often useful
to create dynamically linked graphs.

Chapter 2, “Reading and Writing Data,” demonstrated ways to open SAS data sets stored on your
PC or on a SAS server. In this chapter you create standard statistical graphs to visualize your data
and relationships between variables.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Graphs.sx file.

5 Click Open.

Create a Scatter Plot and Histogram

In this example, you write a program to create a scatter plot and a histogram from variables in a
DataObject. Type or copy the following statements into a program window, and select Program

24 F Chapter 3: Creating Dynamically Linked Graphs

IRun from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind_kts");

declare Histogram hist;
hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);

The first set of statements create a DataObject and are explained in Chapter 2, “Reading and Writing
Data.” The next statements declare plot to be an IMLPlus variable that refers to a ScatterPlot,
which is the class that displays and manipulates attributes of a scatter plot. The scatter plot in
this example is created from the min_pressure and wind_kts variables in the DataObject. The
min_pressure variable contains the minimum central pressure in hectopascals (1 hPa = 1 millibar),
and the wind_kts variable contains the maximum wind speed in knots for each observation of a
tropical cyclone.

The final set of statements declare hist to be a Histogram, which is the class that displays and
manipulates attributes of a histogram. The histogram is created from the latitude variable. The
latitude variable contains the latitude in degree (north of the equator) at which the observation was
made.

To avoid having the histogram appear on top of the scatter plot, the SetWindowPosition method is
called to move the histogram into the lower right corner of the SAS/IML Studio workspace. The
SetWindowPosition method is a method in the DataView class. Any plot or data table can call
methods in the DataView class. (Formally, the DataView class is a base class for all plots and data
tables.) The DataView class is documented in the SAS/IML Studio online Help.

Select Observations

You can now select observations in either graph and see how the latitude of Atlantic cyclones is
related to the wind speed and minimum pressure. You can select observations in a plot by clicking
on observations or on bars. You can add to a set of selected observations by holding the CTRL key
and clicking. You can also select observations by using a selection rectangle. To create a selection
rectangle, click in a graph and hold down the left mouse button while you move the mouse pointer
to a new location.

In the scatter plot, use a selection rectangle to select all observations with wind speed greater than
or equal to 100 knots. The result is shown in Figure 3.1.

Select Observations F 25

Figure 3.1 Creating Linked Graphs

Note that these very intense storms tend to occur in southern latitudes, primarily between 14 and 35
degrees of latitude.

In the histogram, use a selection rectangle to select all observations with latitude greater than 41
degrees. The result is shown in Figure 3.2.

The National Hurricane Center classifies a cyclone as a hurricane if it has sustained low-level winds
of 64 knots or greater. Note that few of the storms that enter northern latitudes are still strong
enough to be classified as hurricanes. Northern storms tend to have relatively low wind speeds.

26 F Chapter 3: Creating Dynamically Linked Graphs

Figure 3.2 Storms in Relatively Northern Latitudes

Summary of Creating Graphs

In this chapter you learned how to use IMLPlus statements to create a scatter plot and a histogram.
Many other statistical graphs are available to you in SAS/IML Studio. Consult the SAS/IML Studio
online Help for documentation on all classes of statistical graphs available in SAS/IML Studio.

Chapter 4

Calling SAS Procedures

Contents
Introduction to Calling a SAS Procedure . 27
Create a Data Set for the Procedure . 27
Call a Procedure . 28
Substitute Values from SAS/IML Matrices . 29

Introduction to Calling a SAS Procedure

In previous chapters you learned how to open a data set and how to explore the data by creating
dynamically linked graphs. Qualitatively exploring your data might lead you to formulate statistical
models. You can use Base SAS and SAS/STAT procedures to quantitatively analyze your data.

This chapter shows you how to call SAS procedures from an IMLPlus program. The program
statements in this chapter are distributed with SAS/IML Studio. To open the program that contains
the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Proc.sx file.

5 Click Open.

Create a Data Set for the Procedure

Recall from Chapter 1, “Introduction to SAS/IML Studio,” that the DataObject, which coordinates
all of the dynamically linked graphs and tables, runs on the client and keeps its data in memory on
the client. However, SAS procedures run on the SAS server and read data from a SAS data set in

28 F Chapter 4: Calling SAS Procedures

a library. Therefore, to perform an analysis, you must get data out of the DataObject and write the
data to a SAS data set in a server library.

In Chapter 3, “Creating Dynamically Linked Graphs,” you created a scatter plot of wind_kts versus
min_pressure for the Hurricanes data. You might have noticed that the scatter plot reveals a linear
relationship between these two variables. In this section you call the REG procedure to fit a linear
least squares model.

Type or copy the following statements into a program window.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

dobj.WriteVarsToServerDataSet({"wind_kts" "min_pressure"},
"Work", "Hurr", true);

These statements create a DataObject from the Hurricanes data set on your PC and write the
wind_kts and min_pressure variables to a server data set called Work.Hurr. These statements are
explained in Chapter 2, “Reading and Writing Data.”

NOTE: If your data are already in a data library on the SAS server (for example, Sasuser), then the
previous statements are not necessary. You can just reference the data set in the DATA= option of
the procedure.

Call a Procedure

Now that a SAS data set that contains variables of interest is on the server, you can call any SAS
procedure to analyze the data. In order to tell the IMLPlus language that you want certain statements
to be sent to the SAS System rather than interpreted as IMLPlus, you must bracket your SAS
statements with SUBMIT and ENDSUBMIT statements.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

submit;
proc reg data=Hurr CORR;

model wind_kts = min_pressure;
run;
endsubmit;

When you run the program, SAS/IML Studio calls the REG procedure with the CORR option. The
CORR option prints out the correlation matrix for the variables in the MODEL statement.

The REG procedure displays its tables in the SAS/IML Studio output window as shown in Fig-
ure 4.1. From the output you can see that the correlation between these two variables is �0:9336.
The R-square value is 0:8716 for the line of least squares given approximately by wind_kts D
1333 � 1:291 �min_pressure.

Substitute Values from SAS/IML Matrices F 29

Figure 4.1 Calling the REG Procedure

Substitute Values from SAS/IML Matrices

The SUBMIT statement enables you to substitute the values of a SAS/IML matrix into the state-
ments that are submitted to the SAS System. For example, the following program submits SAS
statements that are identical to the preceding example:

YVar = "wind_kts";
XVar = "min_pressure";
submit XVar YVar;
proc reg data=Hurr CORR;

model &YVar = &XVar;
run;
endsubmit;

You can list the names of SAS/IML matrices on the SUBMIT statement and refer to the contents of
those matrices inside the SUBMIT/ENDSUBMIT block. The syntax is reminiscent of the syntax for

30 F Chapter 4: Calling SAS Procedures

macros: an ampersand (&) preceding an expression means “substitute the value of the expression.”
However, the substitution takes place before the SUBMIT/ENDSUBMIT block is sent to the SAS
System; no macro variables are actually created. You can substitute character values, as shown in
this example, or numeric values. If x is a vector, then &x lists the elements of x separated by spaces.

Chapter 5

Adding Variables to the DataObject

Contents
Introduction to Adding Variables to a DataObject 31
Add a Variable to a DataObject . 31

Introduction to Adding Variables to a DataObject

In previous chapters, you learned how to open a data set and how to call a SAS procedure by using
the SUBMIT and ENDSUBMIT statements. This chapter shows you how to read observation-wise
statistics from the output data set of a procedure, and how to add these variables to the DataObject
so that you can visualize the results.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the AddVar.sx file.

5 Click Open.

Add a Variable to a DataObject

Type or copy the following statements into a program window, and select ProgramIRun from the
main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

32 F Chapter 5: Adding Variables to the DataObject

dobj.WriteVarsToServerDataSet({"wind_kts" "min_pressure"},
"Work", "Hurr", true);

These statements open the Hurricanes data set from your PC and write the wind_kts and
min_pressure variables to a server data set called Work.Hurr. These statements are explained in
Chapter 2, “Reading and Writing Data.”

In the Chapter 4, “Calling SAS Procedures,” you called the REG procedure with the Work.Hurr data
and viewed tables and statistics in the output window. This time, you use the OUTPUT statement
to create an output data set that includes the residual values for the regression model.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

submit;
proc reg data=Hurr;

model wind_kts = min_pressure;
output out=RegOut R=Residual;

run;
endsubmit;

When you run the program, SAS/IML Studio calls the REG procedure. The procedure creates an
output data set named Work.RegOut that contains all of the original variables in Work.Hurr, plus a
new variable named Residual. This variable is created by the R= option in the OUTPUT statement.

Now that an output variable is created, you can add it to the DataObject. You can read variables
in a server data set directly into a DataObject by using the CopyServerDataToDataObject module.
(Note that the number of observations in Work.RegOut matches the number of observations in the
dobj DataObject.) After a variable is in the DataObject, you can use that variable to create graphs
that help to visualize the analysis. In this case, you can create a plot of the residuals versus the
explanatory variable.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

ok = CopyServerDataToDataObject("Work", "RegOut", dobj,
{"Residual"}, /* name on server */
{"Residual"}, /* name in DataObject */
{"Residuals"}, /* label in DataObject */
true /* if an existing variable has this name, replace it */
);

declare ScatterPlot ResPlot;
ResPlot = ScatterPlot.Create(dobj, "min_pressure", "Residual");

The residual plot (Figure 5.1) shows many storms with large negative residuals. These storms had
much lower wind speeds (20–40 knots lower) than predicted from their values of min_pressure.

Add a Variable to a DataObject F 33

Figure 5.1 Creating a Residual Plot

34

Chapter 6

Adding Curves to Graphs

Contents
Introduction to Adding Curves to Graphs . 35
Call a Procedure to Create Data for a Curve . 35
Draw a Reference Line . 36
Draw a Curve from Variables in the DataObject 38
Draw a Curve from Variables in a Data Set or from a SAS/IML Matrix 40

Introduction to Adding Curves to Graphs

In previous chapters you learned how to open a data set and how to call a SAS procedure by using
the SUBMIT and ENDSUBMIT statements. You learned how to read output variable from the
server into the DataObject. This chapter shows you how to add lines and curves to a graph to
visualize a model’s fit.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Fit.sx file.

5 Click Open.

Call a Procedure to Create Data for a Curve

In Chapter 5, “Adding Variables to the DataObject,” you created a residual plot. In this chapter
you also create a scatter plot of the independent and dependent variables that shows the model’s
predicted values and the upper and lower 95% limits for individual predictions. The REG procedure

36 F Chapter 6: Adding Curves to Graphs

outputs the predicted values with the P= option in the MODEL statement, and the upper and lower
prediction limits with the LCL= and UCL= options.

Type or copy the following statements into a program window, and select ProgramIRun from the
main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

dobj.WriteVarsToServerDataSet({"wind_kts" "min_pressure"},
"Work", "Hurr", true);

submit;
proc reg data=Hurr;

model wind_kts = min_pressure;
output out=RegOut P=Pred R=Residual LCL=LCL UCL=UCL;

run;
endsubmit;

ok = CopyServerDataToDataObject("Work", "RegOut", dobj,
{"Pred" "Residual" "LCL" "UCL"}, /* names on server */
{"Pred" "Residual" "LCL" "UCL"}, /* names in DataObject */
{"Predicted" "Residuals" "Lower Conf. Limit" "Upper Conf. Limit"},
true);

The first two sets of statements are explained in Chapter 2, “Reading and Writing Data.” The next
two sets of statements are similar to statements in the example from Chapter 5, “Adding Variables
to the DataObject.”

Whenever you want to add a line or curve to a plot, you need to specify the following:

� whether the curve will be drawn on top of observations or under them

� the coordinate system in which the curve will be drawn

� the color, line style, and line width of the curve

� the coordinates of the curve

These aspects are discussed in the SAS/IML Studio online Help.

Draw a Reference Line

You can create a residual plot of the residuals versus the explanatory variable as before. However,
this time you add a horizontal reference line to the plot to indicate where residuals are zero.

By default, curves are drawn on top of observations, which is fine for this example. The following
statements draw a dashed black line at Residual D 0.

Draw a Reference Line F 37

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

declare ScatterPlot ResPlot;
ResPlot = ScatterPlot.Create(dobj, "min_pressure", "Residual");
ResPlot.DrawUseDataCoordinates();
ResPlot.DrawSetPenStyle(DASHED);
ResPlot.DrawLine(850, 0, 1150, 0); /* from (850,0) to (1150,0) */

The DrawUseDataCoordinates method is a method in the Plot class. The ScatterPlot class can use
all the methods in the Plot class. (Formally, the Plot class is a base class for the ScatterPlot class.)
The DrawUseDataCoordinates method specifies that the coordinate system for the reference line is
the same as the coordinate system for the plot’s data.

If you do not specify otherwise, a curve in a plot is drawn as a solid black line with a one-pixel width.
The DrawSetPenStyle method specifies that you want to override the default line style (SOLID) with
a different style (DASHED).

The DrawLine method specifies the two endpoints of the line segment. In this example, a line is
drawn on the plot from .850; 0/ to .1150; 0/. The line extends across the entire plot area since both
endpoints are beyond the range of the min_pressure variable. Figure 6.1 shows the resulting plot.

Figure 6.1 A Plot with a Reference Line

38 F Chapter 6: Adding Curves to Graphs

Draw a Curve from Variables in the DataObject

Now you will create a scatter plot of wind_kts versus min_pressure. On this plot you add the
predicted values and the upper and lower confidence limits as computed by the REG procedure.
This fitted model is a straight line, which can be visualized by specifying two points as you did for
the residual plot. However, visualizing a more general parametric model (for example, a quadratic
model in min_pressure) or a nonparametric model requires that you plot a polyline, so this example
adopts the general approach.

A polyline is a sequence of connected line segments specified by passing two vectors to the Draw-
Line method. The first vector specifies the X coordinates, and the second specifies the Y coordi-
nates. The polyline is drawn from .x1; y1/ to .x2; y2/ to .x3; y3/ and so on until .xn; yn/.

To draw the polyline, you need a SAS/IML matrix that contains the coordinates to be plotted. You
can use the GetVarData method of the DataObject class to get the data from the DataObject. You
also need to sort the data according to the X variable, which is min_pressure for this example.
(Alternatively, you can use the SAS/IML SORT call if you do not want to change the order of
observations in the DataObject.)

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

declare ScatterPlot FitPlot;
FitPlot = ScatterPlot.Create(dobj, "min_pressure", "wind_kts");
FitPlot.SetWindowPosition(50, 50, 50, 50);

dobj.Sort("min_pressure");
dobj.GetVarData("min_pressure", minPress);
dobj.GetVarData("Pred", pred);
FitPlot.DrawUseDataCoordinates();
FitPlot.DrawSetPenColor(BLUE);
FitPlot.DrawLine(minPress, pred);

dobj.GetVarData("LCL", lower);
dobj.GetVarData("UCL", upper);
FitPlot.DrawSetPenColor(GRAY);
FitPlot.DrawLine(minPress, lower);
FitPlot.DrawLine(minPress, upper);

The predicted line is drawn in blue, as specified by the DrawSetPenColor method of the Plot class.
The lower and upper limits of prediction are drawn in gray. All lines are drawn on top of the
observations and are drawn as solid lines with a width of one pixel, since those default values were
not changed. Figure 6.2 shows the resulting plot.

Draw a Curve from Variables in the DataObject F 39

Figure 6.2 A Fitted Model and Confidence Intervals

Notice that the preceding statements read variables from an output data set into a DataObject. This
is possible only if the output data set has the same number of observations as the DataObject. The
advantages of reading variables into the DataObject are that you can open a data table to see the
values of the added variables and that you can use these variables in subsequent analyses. Further-
more, you can use the dynamically linked graphs to identify observations in a plot that have certain
characteristics. For example, Figure 6.3 shows the observations that have large negative residuals
for this model.

40 F Chapter 6: Adding Curves to Graphs

Figure 6.3 Observations with Large Negative Residuals

NOTE: Alternatively, you could have used the USE and READ statements to read the predicted
values and the upper and lower limits of prediction into SAS/IML matrices. This approach is
described in the next section.

Draw a Curve from Variables in a Data Set or from a
SAS/IML Matrix

Sometimes the number of observations in your data is different from the number of observations in
an output data set created by a procedure. This eliminates the possibility of reading the output into
the DataObject that contains the original data.

For example, you can use the SCORE procedure to evaluate a linear model on a separate set of
values of the explanatory variables. Or you can use the SCORE statement of the LOESS, GAM,
or TPSPLINE procedure to evaluate a nonparametric model. In each of these cases, you can read
variables from the output data set by using the SAS/IML USE and READ statements and then use
the DrawLine method to add the relevant curve to a plot.

Draw a Curve from Variables in a Data Set or from a SAS/IML Matrix F 41

As an example of this approach, suppose you want to add a kernel density estimate to a histogram
of the min_pressure variable. You can do this by calling the KDE procedure. Add the following
statements at the bottom of the program window, and select ProgramIRun from the main menu.

submit;
proc kde data=Hurr;

univar min_pressure / out=KDEOut;
run;

endsubmit;

The KDE procedure creates the data set Work.KDEout on the SAS server with 401 observations. The
data set contains a variable Value that consists of evenly spaced points between the minimum and
maximum values of min_pressure. A variable named Density contains the kernel density estimate
evaluated at the points of Value.

NOTE: You do not need to use the SORT procedure to sort this data set by Value, because it was
created in sorted order. However, for unsorted data, you need to sort by the independent variable.

A straightforward approach is to create a histogram and add the kernel density estimate by reading
in the Work.KDEout data set. Add the following statements at the bottom of the program window,
and select ProgramIRun from the main menu.

use KDEOut;
read all var {value density};
close KDEOut;

declare Histogram hist;
hist = Histogram.Create(dobj, "min_pressure");
hist.ShowDensity(); /* show density instead of frequency */
hist.DrawUseDataCoordinates();
hist.DrawLine(value, density);

Figure 6.4 displays the resulting histogram and the overlaid kernel density estimate.

42 F Chapter 6: Adding Curves to Graphs

Figure 6.4 A Histogram Overlaid with a Kernel Density Estimate

Chapter 7

Reading ODS Tables

Contents
Introduction to Reading ODS Tables . 43
Read Data from an ODS Table . 43

Introduction to Reading ODS Tables

In Chapter 6, “Adding Curves to Graphs,” you generated output data sets by using SAS procedures
and learned how to read variables from the server into the DataObject and into SAS/IML matrices.
This chapter shows you how to read information from tables into an IMLPlus program.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the ODS.sx file.

5 Click Open.

Read Data from an ODS Table

The key to this chapter is knowing how to create SAS data sets directly from output tables by using
the Output Delivery System (ODS). When you run a SAS procedure, the procedure typically creates
one or more tables. By default, ODS sends the tables to the SAS listing, which in SAS/IML Studio
is called the output window. But you can also tell ODS to send a table to a SAS data set. By
subsequently reading the data set, you can read statistics from tables into your IMLPlus programs.

44 F Chapter 7: Reading ODS Tables

Suppose you perform a linear regression analysis with the REG procedure, and you want to read
certain statistics into SAS/IML matrices. You might want to use the statistics in future computations,
or you might want to use them in a title or legend for a plot.

To be specific, suppose you want to read the following statistics into your IMLPlus program: the
number of observations used in the regression, the R-square value of the fitted model, and the slope
and intercept of the least squares line.

Your first task is to determine the name of the ODS tables that contain the information you need.
The “Details” section of the documentation for PROC REG includes a section about the names of
ODS tables. You can also have ODS display the names by including the ODS TRACE ON statement
before running your PROC REG statement.

This approach is illustrated in the following program. Type or copy the following statements into
the program window, and select ProgramIRun from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

dobj.WriteVarsToServerDataSet({"wind_kts" "min_pressure"},
"Work", "Hurr", true);

submit;
ods trace on / listing;
proc reg data=Hurr;

model wind_kts = min_pressure;
run;
ods trace off;
endsubmit;

Read Data from an ODS Table F 45

Figure 7.1 Printing ODS Tables Names

The output is shown in Figure 7.1. The LISTING option in the ODS TRACE ON statement tells
ODS to send the names of tables to the output window rather than to the SAS log. By scrolling
through the output, you can see that the number of observations used in the regression is part of the
“NObs” table. The R-square value of the fitted model is contained in the “FitStatistics” table. The
slope and intercept of the least squares line are contained in the “ParameterEstimates” table. The
following example uses the ODS OUTPUT statement to write these tables to data sets in Work.

Replace the SUBMIT/ENDSUBMIT block of statements in the program window with the following
revised statements. Then select ProgramIRun from the main menu.

submit;
proc reg data=Hurr;

model wind_kts = min_pressure;
ods output NObs = RegNObs

FitStatistics = RegFitStat
ParameterEstimates = RegParamEst;

run;
endsubmit;

These statements cause the REG procedure to create three new data sets in the Work library. You
can examine each data set by opening it from the server into a data table as follows:

1 Select File IOpen IServer Data Set from the main menu. The dialog box in Figure 7.2 ap-
pears.

46 F Chapter 7: Reading ODS Tables

2 Expand the entry for your current SAS server.

3 Expand the entry for the Work directory.

4 Click the RegNObs data set.

5 Click OK.

6 Repeat the previous steps to open the RegFitStat and RegParamEst data sets.

Figure 7.2 Opening a Server Data Set

You might notice that some data sets look different from the corresponding tables that are displayed
in the output window. Some tables have nonprinting columns that are not visible in the output
window but are written to the data set.

By opening each data set in turn, you can determine the name of the variable that contains the
information that you want to read into SAS/IML matrices. The number of observations used in the
regression is contained in the N variable in the RegNObs data set. The R-square value of the fitted
model is contained in the NValue2 variable in the RegFitStat data set. The slope and intercept of
the least squares line are contained in the Estimate variable of the RegParamEst data set.

The SAS/IML language provides statements to read and write server data to and from matrices. The
USE statement opens a SAS data set, and the READ statement reads server data into matrices. Add
the following statements at the bottom of the program window, and select Program IRun from
the main menu.

Read Data from an ODS Table F 47

use RegNObs;
read all var {N};
close RegNObs;

use RegFitStat;
read all var {Label2 NValue2}; /* name of statistic and value */
close RegFitStat;

use RegParamEst;
read all var {Variable Estimate}; /* var name and coefficient */
close RegParamEst;

print "--------------------------------------";
print N[rowname={"Num Read","Num Used","Num Missing"}],

NValue2[rowname=Label2],
Estimate[rowname=Variable];

The output is shown in Figure 7.3. Statistics from the REG tables are now contained in SAS/IML
matrices. You can use these matrices in computations or, as the next chapter shows, in a title or
legend for a plot.

NOTE: You can often read in the names of statistics from the ODS data set, as the Label2 and
Variable matrices in the preceding example demonstrate.

Figure 7.3 Creating Matrices from ODS Tables

48

Chapter 8

Adding Titles, Legends, and Insets

Contents
Introduction to Adding Titles, Legends, and Insets 49
Create Statistics for the Title and Legends . 49
Create a Title Based on an Analysis . 51
Create a Legend . 52
Create an Inset Based on an Analysis . 53

Introduction to Adding Titles, Legends, and Insets

In Chapter 7, “Reading ODS Tables,” you learned how to write ODS tables to SAS data sets and
then how to read variables from the data sets into SAS/IML matrices. This chapter shows you how
to create titles, legends, and insets on a graph. (An inset is a box that contains statistics and is drawn
on the plot.) In particular, you learn how to incorporate statistical information from ODS tables into
titles, legends, and insets.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Titles.sx file.

5 Click Open.

Create Statistics for the Title and Legends

In previous chapters you performed a linear regression with PROC REG, and you created a scatter
plot that shows the fitted model and 95% confidence intervals for individual predictions as shown
in Figure 8.1.

50 F Chapter 8: Adding Titles, Legends, and Insets

Figure 8.1 A Fitted Model and Confidence Intervals

Suppose now that you want to add a title and legends to the graph that results from the linear
regression. Specifically, you want to display the following information:

� a title that shows the fitted model

� a legend that explains the different colors of lines in the plot

� an inset that shows the number of observations used in the regression and the R-square value
of the fitted model

In Chapter 7, “Reading ODS Tables,” you learned how to get all of the needed information out of the
ODS tables output by using PROC REG. The program that follows combines ideas from previous
chapters. Copy the following statements into a program window, and select Program IRun from
the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

dobj.WriteVarsToServerDataSet({"wind_kts" "min_pressure"},
"Work", "Hurr", true);

submit;
proc reg data=hurr;

model wind_kts = min_pressure;
output out=RegOut P=Pred LCL=LCL UCL=UCL;
ods output NObs = RegNObs

FitStatistics = RegFitStat
ParameterEstimates = RegParamEst;

Create a Title Based on an Analysis F 51

run;
endsubmit;

ok = CopyServerDataToDataObject("Work", "RegOut", dobj,
{"Pred" "LCL" "UCL"}, /* names on server */
{"Pred" "LCL" "UCL"}, /* names in DataObject */
{"Predicted" "Lower Conf. Limit" "Upper Conf. Limit"},
true);

declare ScatterPlot FitPlot;
FitPlot = ScatterPlot.Create(dobj, "min_pressure", "wind_kts");

dobj.Sort("min_pressure");
dobj.GetVarData("min_pressure", minPress);
dobj.GetVarData("Pred", pred);
FitPlot.DrawUseDataCoordinates();
FitPlot.DrawSetPenColor(BLUE);
FitPlot.DrawLine(minPress, pred);

dobj.GetVarData("LCL", lower);
dobj.GetVarData("UCL", upper);
FitPlot.DrawSetPenColor(GRAY);
FitPlot.DrawLine(minPress, lower);
FitPlot.DrawLine(minPress, upper);

use RegNObs; read all var {N}; close RegNObs;
use RegFitStat; read all var {NValue2}; close RegFitStat;
use RegParamEst; read all var {Estimate}; close RegParamEst;

print "--------------------------------------";
print N[rowname={"Num Read","Num Used","Num Missing"}],

NValue2[rowname={"R-Square","Adj R-sq"," "}],
Estimate[rowname={"Intercept","min_pressure"}];

Create a Title Based on an Analysis

This section adds a title to the graph that shows the fitted model. You can add a title by calling
the SetTitleText and ShowTitle methods of the Plot class. However, in this case you first need to
convert the values stored in the Estimate matrix from numerical to character values. One way to
do this is to apply a w.d format by using the Base SAS function PUTN. You can then concatenate
pieces of the title together using the SAS/IML CONCAT function and display the result.

The statements that follow build the title intelligently. Let b0 be the intercept and b1 be the slope
of the regression line. The regression line for this example has negative slope (b1 < 0). If you built
the title as

title = concat("wind_kts = ", b0, " + ", b1, " * min_pressure");

52 F Chapter 8: Adding Titles, Legends, and Insets

then the title string might appear as

wind_kts = 1333.35 + -1.29 * min_pressure

While this is correct, it is awkward to read. A more aesthetic title would be

wind_kts = 1333.35 - 1.29 * min_pressure

This can be accomplished by treating the case of negative slope separately from the case of positive
slope.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu. Figure 8.2 shows how the title appears.

b0 = putn(Estimate[1], "7.2");
if Estimate[2]<0 then do; /* if slope is negative */

sign = " - "; /* display b0 - (-b1) */
b1 = putn(-Estimate[2], "4.2");
end;

else do; /* else display b0 + b1 */
sign = " + ";
b1 = putn(Estimate[2], "4.2");
end;

title = concat("wind_kts = ", b0, sign, b1, " * min_pressure");
FitPlot.SetTitleText(title);
FitPlot.ShowTitle();

Create a Legend

This section adds a legend that explains the different colors of lines in the graph. Adding a legend
is usually accomplished by using the DrawLegend module that is distributed with SAS/IML Studio.
The module is documented in the SAS/IML Studio online Help. The statements that follow show
one choice for displaying a legend. Add these at the bottom of the program window, and select
ProgramIRun from the main menu. Figure 8.2 shows how the legend appears.

Labels = {"Least-Squares Fit" "95% Prediction Limits"};
LabelSize = 8; /* 8 point font */
LineColor = BLUE || GRAY; /* form 1x2 matrix */
LineStyle = SOLID; /* all lines are solid */
Symbol = -1; /* no symbols */
BackgroundColor = WHITE;
Location = 'ILB'; /* Inside, Left, Bottom */
run DrawLegend(FitPlot, Labels, LabelSize,

LineColor, LineStyle, Symbol,
BackgroundColor, Location);

Create an Inset Based on an Analysis F 53

Note the use of the SAS/IML concatenation operator ||. This operator takes the two predefined
integers BLUE and GRAY and concatenates them into a 1 � 2 matrix.

NOTE: Trying to form the matrix by using the following statement does not work because the
SAS/IML language interprets that statement as forming a character matrix with values “BLUE”
and “GRAY”:

LineColor = {BLUE GRAY}; /* wrong! */

Similarly, as the next statement illustrates, you must use the concatenation operator when creating
a matrix from submatrices. You cannot write

Values = {N[2] NValue2[1]}; /* wrong! */

Create an Inset Based on an Analysis

This section adds an inset to the graph that shows the number of observations used in the regression
and the R-square value of the fitted model. You can add an inset by using the DrawInset module
that is distributed with SAS/IML Studio. The module is documented in the SAS/IML Studio online
Help. The following statements show one choice for creating an inset. Add the following statements
at the bottom of the program window, and select ProgramIRun from the main menu.

Labels = {"Num Obs" "R-Square"};
Values = N[2] || NValue2[1];
LabelProps = .; /* accept default settings for labels */
LabelTypeface = "Arial"; /* font */
BackgroundColor = -1; /* no color (transparent) */
Location = 'IRT'; /* Inside, Right, Top */
run DrawInset(FitPlot, Labels, Values,

LabelProps, LabelTypeface,
BackgroundColor, Location);

Figure 8.2 shows the title, the legend, and the inset created in this chapter.

54 F Chapter 8: Adding Titles, Legends, and Insets

Figure 8.2 Plot with Title, Legend, and Inset

Chapter 9

Adjusting Axes and Locations of Ticks

Contents
Introduction to Adjusting Axes and Locations of Ticks 55
Change Axes Properties and Tick Locations . 55
Set Nonuniform Tick Locations . 58
Adjust Tick Marks for a Histogram . 59

Introduction to Adjusting Axes and Locations of Ticks

In Chapter 3, “Creating Dynamically Linked Graphs,” you created standard statistical graphs. In
this chapter, you learn how to adjust the range and location of tick marks on axes. You also learn
how to change the label for an axis. You cannot adjust the tick locations for nominal variables (for
example, the horizontal axis on a bar chart), but you can change the axis label.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Axes.sx file.

5 Click Open.

Change Axes Properties and Tick Locations

First, open the Hurricanes data set and create a scatter plot. Type or copy the following statements
into the program window, and select ProgramIRun from the main menu.

56 F Chapter 9: Adjusting Axes and Locations of Ticks

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind_kts");

The plot in Figure 9.1 appears. SAS/IML Studio tries to make appropriate choices for the location
of ticks and for the minimum and maximum of the axis view range. However, sometimes you might
want to change characteristics of the axes.

Figure 9.1 Default Axes

There are several methods in the Plot class that can be used to change the way that axes are dis-
played. These methods all begin with the prefix SetAxis. For example:

� The SetAxisLabel method changes the axis label.

� The SetAxisTickUnit method changes the increment between tick marks.

� The SetAxisTickAnchor method shifts the location of tick marks along an axis. (The argu-
ment to SetTickAnchor must be a number between the minimum and maximum values of the
axis tick range.)

� The SetAxisMinorTicks method adds minor tick marks (that is, unlabeled tick marks between
major ticks).

These and other methods that affect axes are documented in the SAS/IML Studio online Help.

Suppose you want to change the horizontal axis in the following ways:

Change Axes Properties and Tick Locations F 57

� Label the axis with the variable’s label instead of the variable’s name.

� Change the size of the increment between successive ticks from 25 to 20 so that the ticks
marks are located at 900, 920, . . . , 1020.

� Add one minor tick mark between each major tick.

To make these changes, add the following statements at the bottom of the program window, and
select Program IRun from the main menu. Figure 9.2 shows the new label, minor ticks, and tick
placement for the horizontal axis.

plot.SetAxisLabel (XAXIS, AXISLABEL_VARLABEL);
plot.SetAxisTickUnit(XAXIS, 20);
plot.SetAxisTickAnchor(XAXIS, 900);
plot.SetAxisMinorTicks(XAXIS, 1);

Figure 9.2 New Horizontal Axis

By default, the axis view range is determined by the minimum and maximum values of the axis
variable. (More precisely, it is determined by the minimum and maximum values that are included
in the plots.) At times you might want to override that default. A common reason for doing this is
to include a reference value (for example, zero) in the plot, even though there are no observations
with that value.

As an example of changing the axis view range, suppose you want the vertical axis (the wind_kts
axis) to show zero wind speed as in Figure 9.3. To change the ticks on the horizontal axis, add
the following statement at the bottom of the program window, and select ProgramIRun from the
main menu.

58 F Chapter 9: Adjusting Axes and Locations of Ticks

plot.SetAxisViewRange(YAXIS, 0, 160);

Figure 9.3 Vertical Axis Range That Includes Zero

Set Nonuniform Tick Locations

Up to this point, this example has shown you how to construct uniformly spaced tick marks at
locations of your choosing. You can also draw tick marks that are not uniformly spaced by using
the SetAxisTicks method of the Plot class. This method can also be used to display labels for ticks
that are different from the numerical values of the ticks. For example, you might decide that you
want the tick marks on the vertical axis to show the categories of the Saffir-Simpson intensity scale
(Table 9.1).

Table 9.1 The Saffir-Simpson Intensity Scale

Category Wind Speed (knots)

Tropical depression (TD) 22–34
Tropical storm (TS) 34–64
Category 1 hurricane (Cat1) 64–83
Category 2 hurricane (Cat2) 83 –96
Category 3 hurricane (Cat3) 96 –114
Category 4 hurricane (Cat4) 114 –135
Category 5 hurricane (Cat5) greater than 135

Adjust Tick Marks for a Histogram F 59

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu. Figure 9.4 shows the tick locations and labels for the vertical axis.

plot.SetAxisLabel(YAXIS, "Intensity");
StormTicks = {22 34 64 83 96 114 135};
StormLabels = {'TD' 'TS' 'Cat1' 'Cat2' 'Cat3' 'Cat4' 'Cat5'};
plot.SetAxisTicks(YAXIS, StormTicks, StormLabels);
plot.ShowAxisReferenceLines(YAXIS);

Figure 9.4 Vertical Axis with Custom Ticks

Adjust Tick Marks for a Histogram

For a histogram, the location of tick marks determines the bins used to visualize the frequency
distribution. Therefore, the Histogram class has some special rules for specifying tick marks.

Create a histogram by adding the following statements at the bottom of the program window, and
select ProgramIRun from the main menu.

declare Histogram hist;
hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);

60 F Chapter 9: Adjusting Axes and Locations of Ticks

Figure 9.5 Histogram with Default Bins

These statements create a histogram from the latitude variable as shown in Figure 9.5. To avoid
having the histogram appear on top of the scatter plot, the SetWindowPosition method is called to
move the histogram into the lower right corner of the SAS/IML Studio workspace.

For a histogram, the major tick unit is also the width of each histogram bin. The tick marks for this
histogram are anchored at 6.25 and have a tick unit of 2.5. The following steps show you how to
change the location of the histogram ticks so that the bins show the frequency of observations in the
intervals 5–10, 10–15, 15–20, and so on.

1 Right-click on the horizontal axis of the histogram. A pop-up menu appears as in Figure 9.6.

Figure 9.6 Plot Area Pop-up Menu

Adjust Tick Marks for a Histogram F 61

2 Select Axis Properties from the pop-up menu. The Axis Properties dialog box appears as in
Figure 9.7. This is a quick way to determine the anchor location, tick unit, and tick range for an
axis.

3 Change the value in the Major tick unit box to 5.

4 Change the value in the Anchor tick box to 10.

5 Click OK.

Figure 9.7 Specifying Histogram Bins

The histogram updates to reflect the new histogram bin locations (Figure 9.8). The visible axis
range and the tick range (both shown in Figure 9.7) are automatically widened, if necessary, so that
all histogram bins are visible.

62 F Chapter 9: Adjusting Axes and Locations of Ticks

Figure 9.8 Histogram with Customized Bins

You can also change the location and width of histogram bins by using program statements. For
example, the Histogram class has a special ReBin method that you can often use to change the
anchor tick and the major tick unit in a single method call. However, in the current example, you
do not get tick marks at 0 or at 75 if you use only the following statement:

hist.ReBin(10, 5);

This is because no tick mark can be outside the interval specified by the Tick Range values in
Figure 9.7, and the tick range for this example is [6.25, 71.25]. You can adjust the axis tick range
by using the SetAxisTickRange method of the Plot class:

hist.SetAxisTickRange(XAXIS, 0, 75);
hist.ReBin(10, 5);

Another solution is to use the SetAxisNumericTicks method of the Plot class to change the bin
locations of a histogram. This method requires that you specify the tick anchor, unit, and range, all
in the same call.

hist.SetAxisNumericTicks(XAXIS, 10, 5, 0, 75);

Chapter 10

Changing the Color and Shape of
Observation Markers

Contents
Introduction to Changing the Color and Shape of Markers 63
Color Markers to Represent Values of a Continuous Variable 64
Color Markers to Represent Values of a Nominal Variable 66
Color Markers That Satisfy a Criterion . 67
Change Marker Shapes . 68
Show Only Selected Observations . 70

Introduction to Changing the Color and Shape of Markers

In Chapter 3, “Creating Dynamically Linked Graphs,” you created standard statistical graphs. In
this chapter you learn how to change the appearance of observation markers. You can change the
color and shape of markers. For each plot, you can also choose the size of markers, and whether a
marker is displayed all the time or only when it is selected.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the Markers.sx file.

5 Click Open.

64 F Chapter 10: Changing the Color and Shape of Observation Markers

Color Markers to Represent Values of a Continuous Variable

You might find it useful to color observation markers by using the value of an interval (that is,
continuous) variable. This enables you to examine values of the coloration variable, even if that
variable is not being explicitly plotted.

Suppose you are looking at a scatter plot of the min_pressure and wind_kts variables in the Hurri-
canes data set. You want to color-code observations by using the value of a third variable, latitude.
You want to assign red to the most southerly observation, blue to the most northerly, and other
colors to observations with intermediate values.

To accomplish this, you can call the ColorCodeObs module, which is distributed with SAS/IML
Studio. The module colors observations according to values of a single variable by using a user-
defined color blend. Type or copy the following statements into the program window, and select
ProgramIRun from the main menu.

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");

declare ScatterPlot plot;
plot = ScatterPlot.Create(dobj, "min_pressure", "wind_kts");

ColorMap = RED//YELLOW//CYAN//BLUE;
NumColors = 13;
run ColorCodeObs(dobj, "latitude", ColorMap, NumColors);

declare Histogram hist;
hist = Histogram.Create(dobj, "latitude");
hist.SetWindowPosition(50, 50, 50, 50);
hist.SetAxisNumericTicks(XAXIS, 10, 5, 0, 75);

The first and last statements create a scatter plot and histogram as described in Chapter 3, “Creat-
ing Dynamically Linked Graphs.” They also adjust the histogram bins as described in Chapter 9,
“Adjusting Axes and Locations of Ticks.” The resulting scatter plot is shown in Figure 10.1.

Color Markers to Represent Values of a Continuous Variable F 65

Figure 10.1 Markers Colored by an Interval Variable

The new statements in this program are those that color markers by using the latitude variable.
This is done with the ColorCodeObs module. In this example, the latitude variable is used to color
observations. The smallest value of the latitude variable (7.2) is assigned to the first color (red) in
the ColorMap matrix. The largest value of the latitude variable (70.7) is assigned to the last color
(blue) in the ColorMap matrix. The remaining values are assigned to one of 13 colors obtained by
linearly blending the four colors defined in the ColorMap matrix. Observations are colored yellow
if they are near 28.4 degrees (28:4 � 7:2C 1

3
.70:7 � 7:2/). Observations are colored cyan if they

are near 49.5 degrees (49:5 � 7:2C 2
3
.70:7 � 7:2/).

NOTE: Observations with missing values for the requested variable are not colored. The latitude
variable used in this example does not contain any missing values.

To confirm that the observations were color-coded according to values of latitude, follow these
steps:

1 Click on the histogram bars for low values of latitude.

Note that the observations are mainly colored red and orange. Orange appears because the red
and yellow colors in the ColorMap matrix were blended.

2 Click on the histogram bars for high values of latitude.

High values of latitude are colored in shades of blue. Each shade is a blend of cyan and blue.

3 Click on the histogram bars for medium values of latitude.

Medium values of latitude are colored in shades of yellows and greens.

You can use the predefined colors available in SAS/IML Studio, or you can create your own colors
by specifying their RGB or hexadecimal values as described in the SAS/IML Studio online Help.

66 F Chapter 10: Changing the Color and Shape of Observation Markers

Table 10.1 lists the predefined colors in SAS/IML Studio. Each color (written in all capitals) is an
IMLPlus keyword.

Table 10.1 Predefined Colors

BLACK CHARCOAL GRAY, GREY WHITE
RED MAROON SALMON ROSE
MAGENTA PURPLE LILAC PINK
BLUE STEEL VIOLET CYAN
GREEN OLIVE LIME
YELLOW ORANGE GOLD
BROWN TAN CREAM

Color Markers to Represent Values of a Nominal Variable

You might also find it useful to color observation markers according to the value of a nominal (that
is, discrete) variable. This enables you to visually identify specific categories of the coloration
variable, provided that the variable has a small number of categories.

You can use the ColorCodeObsByGroups module to color observation markers according to the
value of a nominal variable. One of the arguments to the ColorCodeObsByGroups module is a
vector of colors (a color map or color ramp) that has the same number of colors as the number of
unique categories in the nominal coloration variable.

If the coloration variable is a character variable, then color coding corresponds to an alphabetical
ordering of the values of the variable. The first color corresponds to the first sorted value; the last
color corresponds to the last sorted value. If the coloration variable is a numeric nominal variable,
then color coding corresponds to a numeric ordering of the values of the variable. Missing values
appear first in the sorted order for all variables.

For example, in the Hurricanes data set, you might want to color observations by using the category
variable that contains the Saffir-Simpson intensity of the cyclone as given in Table 9.1. Add the
following statements at the bottom of the program window, and select Program IRun from the
main menu. The resulting plot is shown in Figure 10.2.

/* color markers by value of a nominal variable */
/* missing Cat1 Cat2 Cat3 Cat4 Cat5 TD TS */
ColorMap = BLACK//YELLOW//ORANGE//MAGENTA//RED//GOLD//CYAN//GREEN;
run ColorCodeObsByGroups(dobj, "category", ColorMap);

Color Markers That Satisfy a Criterion F 67

Figure 10.2 Markers Colored by a Nominal Variable

Color Markers That Satisfy a Criterion

The ColorCodeObs and ColorCodeObsByGroups modules color observations by calling the Set-
MarkerColor method of the DataObject class. While these module are often convenient to use,
sometimes you might want to color markers according to some criterion that is not covered by
either module. In this case, you can use the SetMarkerColor method directly.

The SetMarkerColor method changes the colors of specified observations. It is usually used in
conjunction with the GetVarData method of the DataObject and the SAS/IML LOC function to find
observations that satisfy some criterion.

As an example, suppose you are interested in the size of the eye of a tropical cyclone. (The eye
of a cyclone is a calm, relatively cloudless central region.) The Hurricanes data set has a variable
radius_eye that gives the radius of the cyclone’s eye in nautical miles. The radius_eye variable has
many missing values, because not all storms have well-defined eyes. You can use the SetMarker-
Color method to visualize the observations for which well-defined eyes exist.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu.

/* color markers manually */
dobj.SetMarkerColor(OBS_ALL, BLACK);
dobj.GetVarData("radius_eye", rEye);
idx = loc(rEye = .);
if ncol(idx)>0 then

68 F Chapter 10: Changing the Color and Shape of Observation Markers

dobj.SetMarkerColor(idx, GREEN);

Figure 10.3 Markers Colored Manually

The first statement uses the special keyword OBS_ALL to set the color of all observations in the
data set to black. The GetVarData method of the DataObject copies the values of the radius_eye
variable into a SAS/IML matrix called rEye. The LOC function is then used to find the indices of
missing values in the rEye matrix. If at least one element of the matrix satisfies the condition, then
the SetMarkerColor method sets the color of corresponding observations to green.

You can see from the resulting graph (Figure 10.3) that very few storms with low wind speeds have
well-defined eyes, whereas most of the intense storms have well-defined eyes.

Of course, you could repeat this process for other conditions you want to visualize. For example,
you could locate the values of rEye that are greater than or equal to 20 nautical miles and color
those observations.

Change Marker Shapes

When a graph is printed on a gray-scale printer, it is often easier to discern observations that have
different marker shapes than it is to discern markers of different colors. Even on a computer screen,
marker shape is sometimes preferred for classifying markers according to a small number of discrete
values. For example, if some observations represent males and others females, marker shape is an
ideal way to encode that information.

Change Marker Shapes F 69

Just as you can change marker colors with the SetMarkerColor method, you can change a marker’s
shape with the DataObject’s SetMarkerShape method. For the Hurricanes data set, suppose you
want to use marker shape to differentiate observations with missing values for the radius_eye vari-
able from those with nonmissing values. One way to accomplish this is to copy the values of
radius_eye from the DataObject, and then use the LOC function to find the observation numbers
with certain properties. You can then use the SetMarkerShape method to set the shape of the obser-
vations.

Add the following statements at the bottom of the program window, and select Program IRun
from the main menu. Figure 10.4 shows the result of running these statements.

/* change marker shapes */
dobj.GetVarData("radius_eye", rEye);
idx = loc(rEye = .);
if ncol(idx)>0 then

dobj.SetMarkerShape(idx, MARKER_X);
idx = loc(rEye ^= .);
if ncol(idx)>0 then

dobj.SetMarkerShape(idx, MARKER_CIRCLE);
plot.SetMarkerSize(6);
dobj.SetMarkerFillColor(OBS_ALL, NOCOLOR);

When you run these statements, the GetVarData method of the DataObject copies the values of the
radius_eye variable into a SAS/IML matrix called rEye. The LOC function is then used to find
the indices of missing values in the rEye matrix. If at least one element of the matrix satisfies the
condition, then the SetMarkerShape method sets the shape of corresponding observations to an “�.”
The shape of markers for observations with nonmissing values is set to a circle.

NOTE: It is a good programming practice to verify that the LOC statement did not return an empty
matrix.

The SetMarkerSize method changes the marker sizes on a scale from 1 (the smallest) to 8 (the
largest). This method is in the Plot class, so changing the size of markers in one graph does not
change the size of markers in other graphs. (This is in contrast to the DataObject methods, which
set the shape and color for all graphs that display an observation.) Finally, the SetMarkerFillColor
method is used to make all markers hollow. Hollow markers can sometimes help reduce overplotting
in scatter plots.

70 F Chapter 10: Changing the Color and Shape of Observation Markers

Figure 10.4 Changing Marker Shapes

In this example you used the MARKER_X and MARKER_CIRCLE shapes. The complete list of
valid SAS/IML Studio marker shapes is given in Table 10.2.

Table 10.2 Marker Shapes

MARKER_SQUARE �
MARKER_PLUS C

MARKER_CIRCLE ı

MARKER_DIAMOND Þ
MARKER_X �

MARKER_TRIANGLE 4

MARKER_INVTRIANGLE 5

MARKER_STAR ?

Show Only Selected Observations

A technique that is sometimes useful for exploring data is to show only observations that are se-
lected. For example, suppose you are trying to understand how the wind_kts and min_pressure
variables are distributed, given specific values for the latitude variable. Add the following statement
at the bottom of the program window, and select ProgramIRun from the main menu.

plot.ShowObs(false);

Show Only Selected Observations F 71

The scatter plot now displays only selected observations as shown in Figure 10.5. You can select
bars in the histogram and examine how the wind speed and atmospheric pressure of storms vary as
storms move from lower latitudes to higher latitudes. You can immediately see that storms at or
above 45ı tend to be weaker storms without well-developed eyes.

Figure 10.5 Showing Only Selected Observations

72

Chapter 11

Calling Functions in the R Language

Contents
Introduction to Calling R Functions . 73
Submit R Statements . 74
Transfer between SAS and R Data Structures . 75

Transfer from a SAS Source to an R Destination 75
Transfer from an R Source to a SAS Destination 76

Call an R Analysis from IMLPlus . 76
Call R Packages and Graphics from IMLPlus . 79

Introduction to Calling R Functions

R is a freely available language and environment for statistical computing and graphics. Like
IMLPlus, the R language has features suitable for developers of statistical algorithms: the abil-
ity to manipulate matrices and vectors, a large number of built-in functions for computing statistical
quantities and for creating statistical graphs, and the capability to extend the basic function library
by writing user-defined functions. There are also a large number of R packages that implement
specialized computations.

SAS/IML Studio has an interface to the R language that enables you to submit R statements from
within your IMLPlus program. In previous chapters you learned how to transfer data between
SAS/IML Studio and a SAS server, how to call SAS procedures, and how to read the results back
into SAS/IML Studio. This chapter describes how to transfer data to R, how to call R functions,
and how to transfer the results to a number of SAS data structures.

The program statements in this chapter are distributed with SAS/IML Studio. To open the program
that contains the statements:

1 Select FileIOpenIFile from the main menu.

2 Click Go to Installation directory near the bottom of the dialog box.

3 Navigate to the Programs\Doc\STATGuide folder.

4 Select the R.sx file.

5 Click Open.

74 F Chapter 11: Calling Functions in the R Language

In order to run the examples in this chapter, you must first install R on the same PC that runs
SAS/IML Studio. For details on how to install R and which versions of R are supported, see the
chapter “Accessing R” in the SAS/IML Studio online Help.

Submit R Statements

Submitting R statements is similar to submitting SAS statements. You use a SUBMIT statement,
but add the R option: SUBMIT / R. All statements in the program prior to the next ENDSUBMIT
statement are sent to R for execution.

The simplest program that calls R is one that does not transfer any data between the two environ-
ments. In the following program, SAS/IML is used to compute the product of a matrix and a vector.
The result is printed. Then the SUBMIT statement with the R option is used to send an equivalent
set of statements to R.

/* Comparison of matrix operations in IML and R */
print "---------- SAS/IML Results -----------------";
x = 1:3; /* vector of sequence 1,2,3 */
m = {1 2 3, 4 5 6, 7 8 9}; /* 3x3 matrix */
q = m * t(x); /* matrix multiplication */
print q;

print "------------- R Results --------------------";
submit / R;
rx <- matrix(1:3, nrow=1) # vector of sequence 1,2,3
rm <- matrix(1:9, nrow=3, byrow=TRUE) # 3x3 matrix
rq <- rm %*% t(rx) # matrix multiplication
print(rq)

endsubmit;

Figure 11.1 Output from SAS/IML and R

---------- SAS/IML Results -----------------

q

14
32
50

------------- R Results --------------------
[,1]

[1,] 14
[2,] 32
[3,] 50

Transfer between SAS and R Data Structures F 75

The printed output from R is automatically routed to the SAS/IML Studio output window, as shown
in Figure 11.1. As expected, the result of the computation is the same in R as in SAS/IML.

Transfer between SAS and R Data Structures

Many research statisticians take advantage of special-purpose functions and packages written in the
R language. To call an R function, the data must be accessible to R, either in a data frame or in an R
matrix. This section describes how you can transfer data and statistical results (for example, fitted
values or parameter estimates) between SAS and R data structures.

You can transfer data to and from the following SAS data structures:

� a SAS data set in a libref

� a SAS/IML matrix

� an IMLPlus DataObject

In addition, you can transfer data to and from the following R data structures:

� an R data frame

� an R matrix

Transfer from a SAS Source to an R Destination

The following table summarizes the frequently used methods that copy from a SAS source to an R
destination. Several of these modules and methods are used in the program in the next section. For
details of the transfer process and a full list of methods that transfer data, see the “Accessing R”
chapter in the online Help.

Table 11.1 Transferring from a SAS Source to an R Destination

Method or Module SAS Source R Destination

ExportDataSetToR SAS data set R data frame
ExportMatrixToR SAS/IML matrix R matrix
DataObject.ExportToR DataObject R data frame

As a simple example, the following program transfers a data set from the Sashelp libref into an
R data frame named df. The program then submits an R statement that displays the names of the
variables in the data frame.

76 F Chapter 11: Calling Functions in the R Language

run ExportDataSetToR("Sashelp.Class", "df");
submit / R;

names(df);
endsubmit;

The R names function produces the output shown in Figure 11.2.

Figure 11.2 Sending Data to R

[1] "Name" "Sex" "Age" "Height" "Weight"

Transfer from an R Source to a SAS Destination

You can transfer data and results from R data frames or matrices to a SAS data set, a DataObject,
or a SAS/IML matrix. The following table summarizes the frequently used methods that copy from
an R source to a SAS destination.

Table 11.2 Transferring from an R Source to a SAS Destination

Method or Module R Source SAS Destination

DataObject.AddVarFromR R expression DataObject variable
DataObject.CreateFromR R expression DataObject
ImportDataSetFromR R expression SAS data set
ImportMatrixFromR R expression SAS/IML matrix

The next section includes an example of calling an R analysis. Some of the results from the analysis
are then transferred into SAS/IML matrices and into variables in a DataObject.

The result of an R analysis can be a complicated structure. In order to transfer an R object via the
previously mentioned methods and modules, the object must be coercible to a data frame. (The R
object m can be coerced to a data frame provided that the function as.data.frame(m) succeeds.)
There are many data structures that can not be coerced into data frames. As the example in the next
section shows, you can use R statements to extract simpler objects and transfer the simpler objects.

Call an R Analysis from IMLPlus

The example in Chapter 4, “Calling SAS Procedures,” submits SAS statements to call the REG
procedure. The example performs a linear regression of the wind_kts variable by the min_pressure
variable of the Hurricanes data. The following program repeats the same analysis, but does it by
submitting statements to R:

Call an R Analysis from IMLPlus F 77

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");
dobj.GetVarData("wind_kts", w); /* Step 1 */
dobj.GetVarData("min_pressure", p);

/* send matrices to R */
run ExportMatrixToR(w, "Wind"); /* Step 2 */
run ExportMatrixToR(p, "Pressure");

print "-------------- In R ---------------"; /* Step 3 */
submit / R;

Model <- lm(Wind~Pressure, na.action="na.exclude") # 3a
ParamEst <- coef(Model) # 3b
Pred <- fitted(Model)
Resid <- residuals(Model)
print (ParamEst) # 3c

endsubmit;

print "----------- In SAS/IML -------------";
run ImportMatrixFromR(pe, "ParamEst"); /* Step 4 */
print pe[r={"Intercept" "min_pressure"}];

/* add variables to the DataObject */
dobj.AddVarFromR("R_Pred", "Pred"); /* Step 5 */
dobj.AddVarFromR("R_Resid", "Resid");
ScatterPlot.Create(dobj, "min_pressure", "R_Resid");

The output from this program is shown in Figure 11.3. The program consists of the following steps:

1. The GetVarData method of the DataObject class copies the data for the wind_kts and
min_pressure variables into SAS/IML vectors named w and p.

2. These vectors are sent to R by the ExportMatrixToR module. The names of the corresponding
R vectors that contain the data are Wind and Pressure.

3. The SUBMIT statement with the R option is used to send statements to R. Note that comments
in R begin with a hash mark (#, also called a number sign or a pound sign).

a) The lm function computes a linear model of Wind as a function of Pressure. The
na.action= option specifies how the model handles missing values (which in R are
represented by NA). In particular, the na.exclude option specifies that the lm function
should not omit observations with missing values from residual and predicted values.
This option makes it easier to merge the R results with the original data.

b) Various information is retrieved from the linear model and placed into R vectors named
ParamEst, Pred, and Resid.

c) The parameter estimates are printed in R, as shown in Figure 11.3.

4. The ImportMatrixFromR module transfers the ParamEst vector from R into a SAS/IML
vector named pe. This vector is printed by the SAS/IML PRINT statement.

78 F Chapter 11: Calling Functions in the R Language

5. The Pred and Resid vectors are added to the DataObject. The new variables are given the
names R_Pred and R_Resid. A scatter plot of the residual values versus the explanatory
variable is created, similar to Figure 6.1.

Figure 11.3 Calling an R Analysis

-------------- In R ---------------
(Intercept) Pressure
1333.354893 -1.291374

----------- In SAS/IML -------------

pe

Intercept 1333.3549
min_pressure -1.291374

Note that you cannot directly transfer the contents of the Model object. Instead, various R functions
are used to extract portions of the Model object, and those pieces are transferred.

As an alternative to steps 1 and 2, you can call the ExportToR method in the DataObject class. The
ExportToR method writes an entire DataObject to an R data frame. For example, after creating the
DataObject you could use the following statements to create an R data frame named Hurr:

dobj.ExportToR("Hurr");
submit / R;
Model <- lm(wind_kts~min_pressure, data=Hurr, na.action="na.exclude")

endsubmit;

The R language is case-sensitive so you must use the correct case to refer to variables in a data
frame.

The SUBMIT statement for R supports parameter substitution from SAS/IML matrices, just as it
does for SAS statements. For example, you can substitute the names of analysis variables into a
SUBMIT block by using the following statements:

YVar = "wind_kts";
XVar = "min_pressure";
submit XVar YVar / R;

Model <- lm(&YVar ~ &XVar, data=Hurr, na.action="na.exclude")
print (Model$call)

endsubmit;

Figure 11.4 shows the result of the print(Model$call) statement. The output shows that the
values of the YVar and XVar matrices were substituted into the SUBMIT block.

Figure 11.4 Parameter Substitutions in a SUBMIT Block

lm(formula = wind_kts ~ min_pressure, data = Hurr, na.action = "na.exclude")

Call R Packages and Graphics from IMLPlus F 79

Call R Packages and Graphics from IMLPlus

You do not need to do anything special to call an R package. Provided that an R package is installed,
you can call library(package) from inside a SUBMIT block to load the package. You can then
call the functions in the package.

Similarly, you do not need to do anything special to call R graphics. The graph appears in the
standard R graphics window.

The example in this section calls an R package and creates a graph in R.

In Chapter 6, “Adding Curves to Graphs,” you called the KDE procedure to compute a kernel
density estimate for the min_pressure variable in the Hurricanes data set. The following program
reproduces that analysis by calling functions in the KernSmooth package and creating a histogram
in R:

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");
dobj.GetVarData("min_pressure", p);
run ExportMatrixToR(p, "Pressure");

submit / R;
library(KernSmooth)
idx <-which(!is.na(Pressure)) # must exclude missing values (NA)
p <- Pressure[idx] # from KernSmooth functions
h = dpik(p) # Sheather-Jones plug-in bandwidth
est <- bkde(p, bandwidth=h) # est has 2 columns

hist(p, breaks="Scott", freq=FALSE, col="lightyellow") # histogram
lines(est) # kde overlay

endsubmit;

The program creates an R matrix Pressure from the data in the min_pressure variable. Because
the functions in the KernSmooth package do not handle missing values, the nonmissing values in
Pressure must be copied to a matrix p. The Sheather-Jones plug-in bandwidth is computed by
calling the dpik function in the KernSmooth package. This bandwidth is used in the bkde function
(in the same package) to compute a kernel density estimate.

The hist function creates a histogram of the data in the p matrix, and the lines function adds the
kernel density estimate contained in the est matrix.

The R graphics window contains the histogram, which is shown in Figure 11.5. You can compare
the histogram and density estimate created by R with the IMLPlus graph shown in Figure 6.4.

80 F Chapter 11: Calling Functions in the R Language

Figure 11.5 R Graphics

Index

A

adding variables, 20
AddVar method, 20
AddVar.sx, 31
AddVarFromR method, 76
AddVars method, 20
APPEND statement, 20
AutoExec.sas, 14
Axes.sx, 55
axis view range, 57, 61

B

base class, 24, 37

C

case-sensitive, 7, 19
class, 6
client, 9, 11
color map, 66
ColorCodeObs module, 64
ColorCodeObsByGroups module, 66
CONCAT function, 51
concatenation operator , 53
continuous variables, see interval variables
coordinate system, 37
CopyServerDataToDataObject module, 18, 21,

32
Create method, 20
CREATE statement, 20
CreateFromFile method, 17
CreateFromR method, 76
CreateFromServerDataSet method, 17
creating a DataObject

from client data sets, 12, 17
from SAS/IML Matrices, 20
from server data sets, 13, 17

D

data views, 8
Data.sx, 17
DataObject class, 7

purpose, 9
DataObject methods

AddVar, 20

AddVarFromR, 76
AddVars, 20
Create, 20
CreateFromFile, 6, 17
CreateFromR, 76
CreateFromServerDataSet, 17
ExportToR, 75
GetVarData, 21, 38, 67
SetMarkerColor, 67
SetMarkerFillColor, 69
SetMarkerShape, 69
Sort, 6
WriteToFile, 18
WriteToServerDataSet, 19
WriteVarsToServerDataSet, 19

DataTable class, 17
DataView class, 24
DataView methods

SetWindowPosition, 24, 60
DELETE subroutines, 22
discrete variables, see nominal variables
dot notation, 6
DrawInset module, 53
DrawLegend module, 52
DrawLine method, 37
DrawSetPenColor method, 38
DrawSetPenStyle method, 37
DrawUseDataCoordinates method, 37
dynamically linked, 8, 11, 23

E

ENDSUBMIT statement, 19, 28
ExportDataSetToR module, 75
ExportMatrixToR module, 75
ExportToR method, 75

F

file extensions, 17, 18
Fit.sx, 35

G

GetPersonalFilesDirectory module, 18
GetVarData method, 21, 38, 67
Graphs.sx, 23

H

82 F Index

help, see online Help
HelpIHelp Topics, 4
histogram bin width, 60
Histogram class, 24
Histogram methods

Rebin, 62
Hurricanes data set, 12

I

IMLPlus
language, 1
programs, 5

IMLPlus keywords
colors, 66
declare, 6
line styles, 37
marker shapes, 70

ImportDataSetFromR module, 76
ImportMatrixFromR module, 76
in-memory data, 6, 7
insets, 49, 53
installation directory, 13
interval variables, 64

K

KDE procedure, 41

L

legends, 49, 52
LIBNAME statement, 14, 17
library, 16
librefs, 14

defining, 18
line styles, 37
LOC function, 67, 69

M

markers
color, 64, 66
hollow, 69
predefined shape, 70
shape, 68
size, 69

Markers.sx, 63
methods, 6
minor tick marks, 56
missing values

color, 66
not colored, 65

N

nominal variables, 66
nonprinting columns, 46

O

object-oriented, 6
objects, 6
OBS_ALL, 68
ODS statement, 44
ODS table name, 44
ODS.sx, 43
online Help, 4
opening

client data set, 12, 17
server data set, 13, 17

output data sets, 32
Output Delivery System (ODS), 43
output windows, 43

P

personal files directory, 13, 18
Plot methods

DrawLine, 37
DrawSetPenColor method, 38
DrawSetPenStyle method, 37
DrawUseDataCoordinates, 37
SetAxisLabel, 56
SetAxisMinorTicks, 56
SetAxisNumericTicks, 62
SetAxisTickAnchor, 56
SetAxisTickRange, 62
SetAxisTicks, 58
SetAxisTickUnit, 56
SetMarkerSize, 69
SetTitleText, 51
ShowAxisReferenceLines, 59
ShowTitle, 51

polylines, 38
predefined colors, 65
Proc.sx, 27
program windows, 6, 16
programming language, 1
programs

AddVar.sx, 31
Axes.sx, 55
Data.sx, 17
Fit.sx, 35
Graphs.sx, 23
Markers.sx, 63
ODS.sx, 43
Proc.sx, 27
R.sx, 73
Titles.sx, 49

Index F 83

PUTN function, 51

Q

querying data, 8

R

R language, 73
R.sx, 73
READ statement, 20, 40, 46
ReBin method, 62
REG procedure, 28, 32, 36

S

Saffir-Simpson intensity scale, 58
SAS library, 11
saving

data to a SAS library, 15, 19
data to the client, 14, 18

ScatterPlot class, 24
selecting observations, 24
selection rectangle, 24
server, 9, 11
server name, 13
SetAxisLabel method, 56
SetAxisMinorTicks method, 56
SetAxisNumericTicks method, 62
SetAxisTickAnchor method, 56
SetAxisTickRange method, 62
SetAxisTicks method, 58
SetAxisTickUnit method, 56
SetMarkerColor method, 67
SetMarkerFillColor method, 69
SetMarkerShape method, 69
SetMarkerSize method, 69
SetTitleText method, 51
SetWindowPosition method, 24, 60
show only selected observations, 70
ShowAxisReferenceLines method, 59
ShowTitle method, 51
SORT call, 38
SORT procedure, 41
SUBMIT statement, 19, 28

parameter substitution, 29, 78
R statements, 74

T

titles, 49, 51
Titles.sx, 49

U

Unicode characters, v
USE statement, 20, 40, 46

W

WriteToFile method, 18
WriteToServerDataSet method, 19
WriteVarsToServerDataSet method, 19

Your Turn

We welcome your feedback.

� If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

� If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	Introduction to SAS/IML Studio
	What Is SAS/IML Studio?
	Purpose of This Book
	Why Program in SAS/IML Studio?
	Features of IMLPlus Programs
	Understanding Classes, Objects, and Methods
	The DataObject Class
	Where Are the Data?

	Reading and Writing Data
	Introduction to Reading and Writing Data
	Use the GUI to Read a SAS Data Set
	Use the GUI to Write a SAS Data Set
	Use a Program to Read a SAS Data Set
	Use a Program to Write a SAS Data Set
	Use SAS/IML Matrices to Store Data
	Summary of Reading and Writing Data

	Creating Dynamically Linked Graphs
	Introduction to Creating Dynamically Linked Graphs
	Create a Scatter Plot and Histogram
	Select Observations
	Summary of Creating Graphs

	Calling SAS Procedures
	Introduction to Calling a SAS Procedure
	Create a Data Set for the Procedure
	Call a Procedure
	Substitute Values from SAS/IML Matrices

	Adding Variables to the DataObject
	Introduction to Adding Variables to a DataObject
	Add a Variable to a DataObject

	Adding Curves to Graphs
	Introduction to Adding Curves to Graphs
	Call a Procedure to Create Data for a Curve
	Draw a Reference Line
	Draw a Curve from Variables in the DataObject
	Draw a Curve from Variables in a Data Set or from a SAS/IML Matrix

	Reading ODS Tables
	Introduction to Reading ODS Tables
	Read Data from an ODS Table

	Adding Titles, Legends, and Insets
	Introduction to Adding Titles, Legends, and Insets
	Create Statistics for the Title and Legends
	Create a Title Based on an Analysis
	Create a Legend
	Create an Inset Based on an Analysis

	Adjusting Axes and Locations of Ticks
	Introduction to Adjusting Axes and Locations of Ticks
	Change Axes Properties and Tick Locations
	Set Nonuniform Tick Locations
	Adjust Tick Marks for a Histogram

	Changing the Color and Shape of Observation Markers
	Introduction to Changing the Color and Shape of Markers
	Color Markers to Represent Values of a Continuous Variable
	Color Markers to Represent Values of a Nominal Variable
	Color Markers That Satisfy a Criterion
	Change Marker Shapes
	Show Only Selected Observations

	Calling Functions in the R Language
	Introduction to Calling R Functions
	Submit R Statements
	Transfer between SAS and R Data Structures
	Transfer from a SAS Source to an R Destination
	Transfer from an R Source to a SAS Destination

	Call an R Analysis from IMLPlus
	Call R Packages and Graphics from IMLPlus

	Index

