
SAS® 9.2
Companion for Windows
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
SAS ® 9.2 Companion for Windows, Second Edition. Cary, NC: SAS Institute Inc.

SAS® 9.2 Companion for Windows, Second Edition
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-60764-482-8
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, May 2010
1st printing, May 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New ix

Overview ix

SAS Default Directory Path ix

Word Tip ix

Software Migration x

Support for Windows Versions x

Running SAS in Batch Mode x

SAS Disk Cleanup Handler Utility x

Recovery Information If SAS Does Not Start x

SAS Logging Facility xi

Remote Browsing xi

Reformatting SPSS Files xi

SAS Language Elements xi

P A R T 1 Running SAS under Windows 1

Chapter 1 � Getting Started 3
SAS: Exploiting the Power of Windows 4

Starting SAS 6

Files Used by SAS 12

Submitting SAS Code 23

Interrupting Your SAS Session 26

Running Windows or MS-DOS Commands from within SAS 26

Terminating a SAS Process 30

Ending Your SAS Session 30

Chapter 2 � Interacting with SAS under Windows 33
Overview of the SAS Interface 35

Working within Your SAS Session 37

Customizing Your SAS Session 58

Accessing Online Help and Documentation 73

Accessibility Features in SAS under Windows 77

Chapter 3 � Using the SAS Editors 85
Using the Enhanced Editor 86

Using the Program Editor 111

Chapter 4 � Using SAS Files 119
Introduction to SAS Files 120

Multi Engine Architecture 124

Using Data Libraries 127

Accessing SAS Files from Multiple SAS Sessions 136

iv

Using SAS Files from Other Versions with SAS 9.2 for Windows 137

Using SAS 9.2 Files with Previous Releases 141

Using Remote Host SAS Files in SAS 9.2 142

Reading BMDP, OSIRIS, and SPSS Files 142

Transferring SAS Files between Operating Environments 145

Accessing Database Files with SAS/ACCESS Software 145

Using the SAS ODBC Driver to Access SAS Data from Other Applications 146

Chapter 5 � Using External Files 147
About External Files 148

Referencing External Files 148

Accessing External Files with SAS Statements 158

Accessing External Files with SAS Commands 161

Advanced External I/O Techniques 162

Reading Data from the Communications Port 164

Chapter 6 � Managing SAS Output 167
Printing 168

Routing Procedure Output to a Web Browser 181

Routing Procedure Output and the SAS Log to a File 184

Using the SAS Logging Facility to Write Log Messages to the Windows Event
Viewer 186

Producing Graphics 186

Chapter 7 � Performance Considerations 197
Hardware Considerations 197

Windows Features That Optimize Performance 200

SAS Features That Optimize Performance 206

Network Performance Considerations 207

Advanced Performance Tuning Methods 208

P A R T 2 Using SAS with Other Windows Applications 213

Chapter 8 � Using Lotus Notes to Distribute SAS Data 215
Introduction to Using Lotus Notes with SAS 215

Populating a Lotus Notes Database Using the DATA Step and SCL Code 216

Chapter 9 � Using Windows System Tools with SAS 223
Introduction to Using Windows System Tools with SAS 223

Event Viewer Application Log 224

Performance Tools 228

Starting SAS as a Windows Service 234

Chapter 10 � Using OLE in SAS/AF Software 243
About OLE 244

SAS/AF Catalog Compatibility 244

Inserting an OLE Object in a FRAME Entry 244

v

Editing an OLE Object within a FRAME Entry 248

Invoking OLE Verbs 249

Using Linked OLE Objects 249

Converting OLE Objects 251

Automating OLE Objects and Applications 252

Using OLE Custom Controls (OCXs) in Your SAS/AF Application 259

Chapter 11 � Controlling SAS from Another Application Using OLE 267
Introduction to Automating SAS 267

Creating an Instance of SAS 267

Getting Feedback from the SAS Session 268

Examples of Automating SAS with OLE 269

Methods and Properties for Use with a SAS OLE Automation Object 270

Chapter 12 � Using Dynamic Data Exchange 275
Overview of Dynamic Data Exchange (DDE) 275

DDE Syntax within SAS 276

Referencing the DDE External File 276

DDE Examples 278

Chapter 13 � Using Unnamed and Named Pipes 285
Overview of Pipes 285

Using Unnamed Pipes 286

Using Named Pipes 288

Chapter 14 � Accessing External DLLs from SAS 297
Overview of Dynamic Link Libraries in SAS 297

The SASCBTBL Attribute Table 298

Special Considerations When Using External DLLs 303

Examples 312

Chapter 15 � Special Considerations for SAS/AF Programmers 317
Controlling the Appearance and Behavior of SAS 317

Controlling the Main SAS Window 317

Accessing External DLLs from SAS 320

Designing, Saving, and Loading Custom Toolbar Controls 321

Invoking SAS/AF Applications Automatically 321

Associating Your Own Logo and Icons with Your SAS/AF Application 321

Incorporating Electronic Mail into Your SAS/AF Application 322

P A R T 3 Features of the SAS Language for Windows 323

Chapter 16 � Data Set Options under Windows 325
SAS Data Set Options under Windows 325

Chapter 17 � SAS Commands under Windows 327
SAS Commands under Windows 328

vi

Chapter 18 � SAS Formats under Windows 379
SAS Formats under Windows 379

Writing Binary Data 379

Accessing User-Written Formats from Earlier Releases to SAS 9.2 380

Chapter 19 � SAS Functions and CALL Routines under Windows 389
SAS Functions and Call Routines under Windows 389

Chapter 20 � SAS Informats under Windows 419
SAS Informats under Windows 419

Reading Binary Data 419

Converting User-Written Informats from Earlier Releases to SAS 9.2 420

Chapter 21 � SAS Procedures under Windows 429
SAS Procedures under Windows 429

Chapter 22 � SAS Statements under Windows 449
SAS Statements under Windows 449

Chapter 23 � SAS System Options under Windows 473
SAS System Options under Windows 475

Displaying SAS System Option Settings 476

Changing SAS System Option Settings 476

Processing System Options That Are Set in Several Places 478

Summary of System Options for Windows 479

Chapter 24 � Length and Precision of Variables 591
Length and Precision of Variables under Windows 591

Numeric Variables 591

Character Variables 592

Chapter 25 � SAS Macro Facility under Windows 595
SAS Macro Facility under Windows 595

Automatic Macro Variables 595

Macro Statements 597

Macro Functions 598

Autocall Libraries 598

P A R T 4 Appendixes 601

Appendix 1 � SCL Methods for Automating OLE Objects 603
Summary of OLE Class Methods 603

Appendix 2 � Error Messages for SAS under Windows 613
Overview of SAS Error Messages 613

Return Codes and Completion Status 613

Accessing Files 614

Using SAS Features 615

vii

Using OLE 616

Using Networks 617

Resolving Internal Errors 617

Resolving Operating System and Windows Error Messages 618

Initialization and Termination Error Messages 619

Appendix 3 � Graphics Considerations 621
Using TrueType Fonts with SAS/GRAPH Software 621

Appendix 4 � Default Key Settings for Interactive SAS Sessions 623
Default Key Definitions under Windows 623

Keyboard Shortcuts within the SAS Main Window 624

Keyboard Shortcuts within the Enhanced Editor 626

Keyboard Shortcuts within Print Preview 629

Appendix 5 � SAS Disk Cleanup Handler 631
The SAS Disk Cleanup Handler Utility 631

Appendix 6 � Recommended Reading 635
Recommended Reading 635

Glossary 637

Index 649

viii

ix

What’s New

Overview
SAS under Windows enables you to complete your data and computation tasks in

SAS while integrating with the Windows applications that are already in place on your
desktop and within your enterprise. SAS supports information sharing through
Windows tools and techniques.

The following changes and enhancements are new in SAS under Windows:
� SAS Default Directory Path
� Word Tip
� Software Migration
� Support for Windows Version
� Running SAS In Batch Mode
� SAS Disk Cleanup Handler Utility
� Recovery Information If SAS Does Not Start
� SAS Logging Facility
� Remote Browsing
� Reformatting SPSS Files
� SAS Language Elements

SAS Default Directory Path
The default directory path where SAS is installed has changed. The C:\Program

Files\SAS directory is now the root location for all of the SAS products that you install.
In previous versions of SAS, the directory path was C:\Program Files\SAS\SAS X.X.
The directory path is now C:\Program Files\SAS\SASFoundation\9.2. This path
maps to the !SASROOT directory that is used in this document.

Word Tip
Information was added about Word Tips that help you understand abbreviations that

you add.

x What’s New

Software Migration

The following information was added and enhanced regarding the migration of SAS
software.

� Differences between 32–bit SAS for Windows and 64–bit SAS for Windows are
clarified.

� Short extensions are now included in Windows File Extensions and their
corresponding SAS Member Types table.

� References are now included in Using SAS Files from Other Versions with SAS 9.2
for Windows to the SAS Migration focus area at support.sas.com/migration.

� Starting with SAS 9.1, you can now use the MIGRATE procedure to migrate a SAS
library from a previous release. You are now warned not to use the CPORT and
CIMPORT procedures when you are regressing a SAS file to a previous release.

� New references to cross–release compatibility are included in the Migration focus
area at support.sas.com/migration.

Support for Windows Versions

The following are new:

� Windows Vista x64. Home editions are not supported.

� Windows 7 x64

� Windows Server 2008 EPIC (Itanium)

� Windows Server 2008 R2 EPIC (Itanium).

Windows NT, Windows 2000 Server, and Windows Server 2008 are not supported.

Running SAS in Batch Mode

Information about running SAS in batch mode was added to the document.

SAS Disk Cleanup Handler Utility

The SAS Disk Cleanup Handler Utility is new. The SAS Disk Cleanup Handler will
search for and clean any temporary files or directories that were generated by SAS. The
SAS Disc Cleanup Handler Utility cleans directories such as SAS Work and SAS_util
directories as well. SAS Disk Cleanup Handler is a COM hook into the Microsoft Disk
Cleanup Handler (cleanmgr.exe).

Recovery Information If SAS Does Not Start

Information has been added to the What If SAS Does Not Start? section to recover if
SAS does not start, if the screen appears and then disappears, or if SAS is very slow.

What’s New xi

SAS Logging Facility
Information about the SAS Logging Facility has been added to the document.

Remote Browsing
Information about remote browsing has been added to the document.

Reformatting SPSS Files
Information about reformatting SPSS files has been added to the document.

SAS Language Elements

Commands
The following SAS command was modified:
� The ICON command has two new arguments: ON and OFF.

Data Set Options
The following data set option is new:
� The SGIO data set option

Functions
Options FILE SIZE and DATE MODIFIED were added to the FINFO function .

Statements
The following statements was modified:
� The INFILE statement’s option TERMSTR values: CRLF, LF were modified. NL

was replaced with CR.

The range of the LRECL (record-length) option was changed to 1 – 1,073,741,823 for
the following statements:

� FILE
� FILENAME
� &INCLUDE
� INFILE

Macros
The automatic macro variable, SYSSCPL, has several new values. The SYSSCPL

variable returns the name of the specific Windows environment that you are using.

xii What’s New

System Options
The following system options are enhanced:
� Information was added to the MEMSIZE system option to specify the total amount

of memory that is available to each SAS session.
� Information was modified to the SASINITIALFOLDER system option to clarify the

open OPEN and CLOSE dialog boxes and current folder.

The following system options are new:
� APPEND
� INSERT
� PRIMARYPROVIDERDOMAIN
� PRNGETLIST

1

P A R T1

Running SAS under Windows

Chapter 1.Getting Started 3

Chapter 2.Interacting with SAS under Windows 33

Chapter 3.Using the SAS Editors 85

Chapter 4.Using SAS Files 119

Chapter 5.Using External Files 147

Chapter 6.Managing SAS Output 167

Chapter 7.Performance Considerations 197

2

3

C H A P T E R

1
Getting Started

SAS: Exploiting the Power of Windows 4
SAS Runs in Enterprise Environments 4

An Integral Part of Your Windows Editions 5

Compatible and Maintainable 5

Read and Write SAS Data Sets from Previous Releases 5

Use the Graphical Interface or the Command Line Interface 5
Starting SAS 6

Use SAS Interactively or in Batch Mode 6

Starting from the Start Menu 6

Starting from Custom Shortcuts or Program Items 6

Starting from the Run Dialog Box or a Command Prompt 7

Specifying the SAS Configuration File 7
Using the Run Dialog Box 7

Using the SAS Command from the Command Prompt 7

Starting from a SAS File 7

Submitting a Batch SAS Job 8

How to Submit a Batch SAS Job 8
The Status Window 8

Canceling a Batch Job 8

Windowing Procedures in a Batch Job 8

Starting the Program Editor When SAS Starts 8

Determining the Current Folder When SAS Starts 9
Sample SAS Session 9

What If SAS Does Not Start? 12

Files Used by SAS 12

Introduction to Files Used by SAS 12

SAS Configuration Files 12

Purpose of Configuration Files 12
The Default Configuration File 13

Specifying System Options in a Configuration File 13

Creating a Customized Configuration File 14

Starting SAS with an Alternate Configuration File 14

How SAS Finds and Processes Configuration Files 15
Processing Options Specified by Additional CONFIG Options 18

SAS Autoexec File 18

Introduction to the SAS Autoexec File 18

The Default Autoexec File 18

Locating a Renamed Autoexec File 19
Uses for the Autoexec File 19

Suppressing the Autoexec File 19

Profile Catalog 20

4 SAS: Exploiting the Power of Windows � Chapter 1

Introduction to the Profile Catalog 20
The Default Profile Catalog 20

Changing the Location of the Profile Catalog 20

Deleting the Profile Catalog 20

Work Data Library 21

Introduction to the Work Data Library 21
The Default Work Folder 21

Specifying the Location of the Work Data Library 21

Temporary Subfolders 21

Deleting the Work Folder 21

SAS Registry Files 22

SAS Default Folder Structure 22
Submitting SAS Code 23

Introduction to Submitting SAS Code 23

Submitting Code from the Enhanced Editor or Program Editor 23

Submitting Code from the SAS NOTEPAD Text Editor 23

Running SAS in Batch Mode 24
Submitting a Batch SAS Job 24

Submitting Code from the Clipboard 24

Submitting Code by Dragging and Dropping 25

Introduction to Submitting Code by Dragging and Dropping 25

Dragging Text from Other Windows 25
Dragging Files in an Interactive Session 25

Submitting Code Stored in Registered SAS File Types 26

Interrupting Your SAS Session 26

Running Windows or MS-DOS Commands from within SAS 26

Overview of Running Windows or MS-DOS Commands from within SAS 26

Running Windows Commands Using the X Statement or the X Command 27
Using a DATA Step to Issue Conditional Operating System Commands Conditionally 27

XWAIT System Option 28

XSYNC System Option 29

Comparison of the XWAIT and XSYNC System Options 29

Terminating a SAS Process 30
Ending Your SAS Session 30

SAS: Exploiting the Power of Windows

SAS Runs in Enterprise Environments
The Windows enterprise environment provides a flexible, easy-to-use working

environment by which you can integrate SAS into your enterprise solutions. The
following Windows environments are supported in SAS 9.2:

Getting Started � Compatible and Maintainable 5

Table 1.1 Supported Windows Editions for SAS 9.2

Chip Architecture Operating System Edition

x86, x86-64 (x64) Windows XP

Windows Server 2003

Windows Vista

Windows Vista

Windows Vista

Windows 7

Professional

Standard Edition

Business

Enterprise

Ultimate

Professional, Ultimate

x86, x86-64 (x64),
EPIC (Itanium)

Windows Server 2003

Windows Server 2003

Windows Server 2008

Windows Server 2008 R2

Enterprise Edition

DataCenter Server

Standare, Enterprise,
Datacenter

Standare, Enterprise,
Datacenter

Note: All other versions of Windows are not supported. �

An Integral Part of Your Windows Editions
SAS under Windows is designed to let you complete your data– and

computation-intensive tasks while integrating with the Windows applications that are
already in place on your desktop and within your enterprise. SAS supports information
sharing through the most powerful tools and techniques that Windows has to offer,
including

� OLE
� Dynamic Data Exchange (DDE)
� Open Database Connectivity (ODBC)
� e-mail system
� Lotus Notes
� pipes and named pipes
� the Windows clipboard.

Compatible and Maintainable

Read and Write SAS Data Sets from Previous Releases
SAS can read and write SAS data sets that were created by earlier releases of SAS.
However, in order to bridge the upgrades in the SAS catalog architecture and

differences in the operating environment structure, catalogs must be converted from
earlier formats (such as Release 8.2 under Windows) to SAS 9.2 format using the
transport procedures CPORT and CIMPORT.

Use the Graphical Interface or the Command Line Interface
You can still use the command line as you did in previous releases. However, you can

also use the graphical user interface (GUI) to issue commands. Most existing SAS

6 Starting SAS � Chapter 1

commands and windows are available through the GUI. In some cases, you select
operations through dialog boxes and various other GUI controls.

Starting SAS

Use SAS Interactively or in Batch Mode
When running SAS under Windows, you can start an interactive session to submit

programs and view the resulting output, or you can execute batch SAS jobs, and view
the output later.

By default, invoking SAS begins an interactive SAS session. If you have a SAS
program that you want to submit as a batch job, specify the SYSIN system option with
the name of the SAS program file when you invoke SAS.

When you start SAS in an interactive session for the first time, you are asked if you
want to learn some basic tasks by taking the Getting Started Tutorial. To start the
tutorial, click Start Tutorial. If you do not want to be prompted to take the tutorial,
select Don’t show this dialog box again. You can start the tutorial at any time by
selecting Help � Getting Started with SAS Software

Starting from the Start Menu
To start SAS from the Windows Start Menu:

1 Click Start.

2 Select Programs.

3 Select SAS.

4 Select SAS 9.2 .

Starting from Custom Shortcuts or Program Items
During installation, the Setup program automatically creates a program item in the

Start menu that you can use to start SAS. However, you can create multiple SAS items
within a folder to represent several differently configured SAS sessions. Also, if you
want SAS to start every time you start Windows, you can place a program item or
shortcut in the Startup folder. For information about creating shortcuts, see your
Windows documentation.

After you have created a shortcut to SAS, you can append system options to the SAS
command. To append system options:

1 Open the SAS Properties window and click the Shortcut tab.

2 In the Target field, append the system options to the SAS command. Remember
that double quotation marks are required around pathnames. For example,

"c:\program files\SAS\SASFoundation\9.2\sas.exe" -config "c:\mydir\sasv9.cfg"

Getting Started � Starting from a SAS File 7

Starting from the Run Dialog Box or a Command Prompt

Specifying the SAS Configuration File
If you start SAS by using a command line (either from the Run dialog box or the

Command Prompt window), you might want to specify the SAS configuration file
location through the CONFIG system option. Even if you use the default configuration
file SASV9.CFG, specify the file to ensure that SAS uses the configuration file that you
want. For more information about how SAS searches for the configuration file, see
“How SAS Finds and Processes Configuration Files” on page 15.

When the WORK and SASUSER system options are set, the Work and Sasuser data
libraries reside in the specified paths regardless of the path from which you invoke SAS.
For more information about the Sasuser data library, see “Profile Catalog” on page 20.
For more information about the Work data library, see “Work Data Library” on page 21.

Using the Run Dialog Box
To start an interactive session by using the Run dialog box

1 Select Start � Run

2 In the Open field, type the path and the exact name of the program file, including
the extension and options.

3 Click OK.

For example, if SAS is installed in the default folder c:\Program
Files\SAS\SASFoundation\9.2, you type c:\program
files\SAS\SASFoundation\9.2\sas.exe, and the options that you want to specify.

Using the SAS Command from the Command Prompt
You can start either an interactive SAS session or a batch SAS job by typing the

SAS command at the command prompt. For example, the following command starts an
interactive session, specifies the page size and line size, and indicates the location of the
SAS configuration file:

c:\program files\SAS\SASFoundation\9.2\sas.exe -ls 80 -ps 60
-config c:\program files\SAS\SASFoundation\9.2\sasv9.cfg

This command starts a batch SAS job in a similar manner:

c:\program files\SAS\SASFoundation\9.2\sas.exe
-sysin c:\mysas\programs\prog1.sas
-config c:\program files\SAS\SASFoundation\9.2\sasv9.cfg

Note: These examples are displayed on multiple lines because of space limitations.
When you enter a command from the command prompt, the command must be on one
line. �

Starting from a SAS File
There are two ways to start SAS from a SAS program file in Windows Explorer.
� Double-click on a SAS program file
� Right-click on a SAS program file and select the appropriate action.

8 Submitting a Batch SAS Job � Chapter 1

Submitting a Batch SAS Job

How to Submit a Batch SAS Job
There are several ways to submit a batch SAS job:

� Specify the SYSIN system option in the SAS command (issued from the command
prompt or from the Run dialog box) to specify the SAS program to submit.

� Right-click a file that has a .sas or .sasv7bpgm file extension. From the pop-up
menu, select Batch Submit.

� Use the Windows Explorer and drag your SAS program file icon (the file that
contains the SAS code) to the SAS.EXE file icon or shortcut.

The Status Window
When you run SAS in batch mode, SAS displays a Status window for the SAS job

that you submit. This window tells you the name of the SAS job that is running and
where your log and procedure output files are written. This window remains open until
the SAS job is complete.

If you do not want to see the status window while your batch SAS job is running,
invoke SAS with the ICON system option so that the status window becomes an icon
when your job is running. You can also minimize the status window by clicking the
Icon button when the window appears. The icon shows the busy cursor (usually an
hourglass) while the SAS job is running. The icon disappears when the job is complete.

Canceling a Batch Job
You can cancel a batch job by using either the keyboard or the mouse:

� press CTRL+BREAK
� click Cancel in the Status window.

Windowing Procedures in a Batch Job
You can run windowing procedures along with SAS/GRAPH, SAS/INSIGHT, and

SAS/ACCESS software, in a batch SAS job. When SAS reaches a point in your program
where interaction is required, it opens the main SAS window.

Starting the Program Editor When SAS Starts
The Enhanced Editor is the default editor that starts when you start SAS. If you

prefer to use the Program Editor, use one of the following methods to start the Program
Editor when SAS starts:

� Start SAS with the NOENHANCEDEDITOR system option:

sas.exe -noenhancededitor

� Disable the Enhanced Editor in the Edit tab of the Preferences dialog box.

For additional information, see “Switching from the Enhanced Editor to the Program
Editor” on page 111, “Edit Preferences” on page 61, and “ENHANCEDEDITOR System
Option” on page 511.

Getting Started � Sample SAS Session 9

Determining the Current Folder When SAS Starts
By default, SAS determines the current folder. SAS uses the current folder as the

location to read and write SAS files when you do not specify a different pathname.
SAS also searches the current folder, based on the following statements, for the

AUTOEXEC.SAS file or INITSTMT files. In this case, the path that the
SASINITIALFOLDER system option specifies is disregarded.

However, you can specify a pathname to use for the current folder by using the
SASINITIALFOLDER system option when you start SAS. Alternatively, you can use
the following rules to determine the current folder:

1 If you use a program item or shortcut to start SAS and if a path is specified in the
Windows Properties Shortcut tab (Start in field), SAS uses that path as the
current folder.

2 If you use a command to start SAS by using either the Run dialog box or a
command line and if the command contains a path to the SAS.EXE file, the
current folder is the path that you specify as part of the SAS command, regardless
of where Windows actually finds the SAS.EXE file.

3 If you use a command to start SAS and if you do not specify a path as part of the
SAS command, then the current folder is specified by the path from which you
issued the command.

If Windows cannot find the SAS.EXE file in the specified folder, the folder that is
specified in the SAS command still becomes the current folder and Windows searches
for the SAS.EXE file by using the Windows PATH environment variable.

For example, if you specify the following command, C:\MYSAS is the current folder,
regardless of whether the SAS.EXE file is actually in that folder:

c:\mysas\sas.exe -config c:\mysas\sasv9.cfg

For more information, see “Changing the SAS Current Folder” on page 39 and
“SASINITIALFOLDER System Option” on page 559.

Note: Do not confuse the current folder with the Work data library. For more
information about the Work data library, see “Work Data Library” on page 21. �

Sample SAS Session
This section illustrates
� invoking SAS from the Start menu
� submitting a sample SAS program
� examining the program output
� ending the SAS session.

You can invoke SAS from the Start menu by, selecting Programs � SAS � 9.2.
The following display shows the Enhanced Editor and Log windows with a sample

SAS program that is ready to be submitted. This program creates a SAS data set called
Oranges, which contains the results of a taste test on four varieties of oranges. The
program sorts the data set by the total test score and prints the data set.

10 Sample SAS Session � Chapter 1

Display 1.1 Submitting the Sample SAS Program

The following SAS code appears in the Enhanced Editor window:

ods rtf file="c:\em\oranges.rtf";
data oranges;

input variety $ flavor texture looks;
total=flavor+texture+looks;
cards;

navel 9 8 6
temple 7 7 7
valencia 8 9 9
mandarin 5 7 8
;
proc sort data=oranges;

by descending total;
run;
proc print data=oranges;

title ’Taste Test Results for Oranges’;
run;
ods rtf close;

Getting Started � Sample SAS Session 11

After you submit the program, the output appears in the Results Viewer window as
follows:

Display 1.2 Looking at the Program Output

The items in the SAS menu bar at the top of the main SAS window change, depending
on which window is active within the SAS session. In addition, you can access
window-specific pop-up menus, which offer the same menu choices. The pop-up menu in
the following display was generated by right-clicking in an Enhanced Editor window.

Display 1.3 Pop-up Menu in the Enhanced Editor Window

When you are ready to end your SAS session, double-click the SAS control menu (the
small icon in the upper-left corner of the main SAS window) or click the X (in the
upper-right corner) and click OK when the dialog box verifies your request.

Note: If you have disabled the Confirm Exit of SAS option in the Preferences
dialog box, your SAS session ends without asking if you are sure you want to end the

12 What If SAS Does Not Start? � Chapter 1

session. For more information about how to customize your SAS session, see “Setting
Session Preferences” on page 59. �

What If SAS Does Not Start?
If SAS does not start, the SAS log can contain error messages that explain the error.

Any error message that SAS issues before the SAS log is initialized is written to the
MSG window, if it is available, or to the SAS console log, which is a Windows file. Under
Windows Vista, the SAS console log is typically located in c:\Users\user-ID\AppData.
In all other Windows operating environments, the SAS console log is typically located in
c:\Documents and Settings\user-ID\Application Data. You can obtain the
location and filename for the SAS console log from the application event log. To open the
application event log, submit eventvwr from the Run dialog box and click Application.

If SAS does not start, if the screen appears and then disappears, or if SAS is very slow
to open, you might have a problem with a missing printer, a damaged printer driver, or
a failed network printer connection. Use the following steps to correct this problem:

1 Verify that the printers are linking to valid network servers. If the printers are
linking to invalid servers, then delete the printers by accessing Start � Settings �
Control Panel � Printers.

2 Download a new printer driver from the printer’s Web site and replace the current
driver with the new driver.

3 Rename profile2.SAS7bcat to profile2.old and rename profile.SAS7bcat to
profile.old at c:\Documents and Settings\user-ID\My Documents\My SAS
Files\9.2\.

4 Start SAS.

Files Used by SAS

Introduction to Files Used by SAS
SAS uses many files while it is running; however, some of these files are especially

important from a user’s perspective. These files include the
� SAS configuration files (SASVx.CFG by default, where x is the release number)
� SAS autoexec file (AUTOEXEC.SAS by default)
� user Profile catalog (Profile.sas7bcat)
� user printer Profile catalog (Profile2.sas7bcat)
� Work data library (“SAS Temporary Files” folder in your system’s designated

TEMP area)
� SAS Registry Files.

SAS Configuration Files

Purpose of Configuration Files
The SAS configuration file enables you to specify SAS system options that are used

to establish your SAS session. These system options indicate, among other things, the

Getting Started � SAS Configuration Files 13

location of your SAS Help and Documentation files as well as the location of message
files and the pathnames to SAS executable files. The SAS configuration file is
particularly important because it specifies the folders that are searched for the various
components of SAS products. You must have at least one configuration file in order for
SAS to initialize; you can have multiple configuration files that are all processed while
your SAS session begins. For a list of system options that you can use in your SAS
configuration file, see “Summary of System Options for Windows” on page 479. For
more information about system options, see Chapter 23, “SAS System Options under
Windows,” on page 473 and “SAS System Options” in SAS Language Reference:
Dictionary.

The Default Configuration File
In previous releases of SAS, the default configuration file was stored in the

!SASROOT folder. The !SASROOT folder is the folder in which you install SAS.
Starting with SAS 9, SAS creates two default configuration files during installation.
Both configuration files are named SASV9.CFG.

SAS stores one of these files in the !SASROOT folder and the other in the
!sasroot\nls\language-code folder. The language-code is a two-letter language code
that indicates the SAS default language.

The SASV9.CFG file that is located in the !SASROOT folder contains a CONFIG
system option that specifies the location of the configuration file for the SAS default
language. The default system options that are used to start SAS are specified in the
!sasroot\nls\language-code\SASV9.CFG file. For example, if SAS is installed in the
default folder and the default language is English, the SASV9.CFG file in the
!SASROOT folder contains
-config "c:\program files\SAS\SASFoundation\9.2\nls\en\sasv9.cfg".

SAS requires a configuration file, so you must use a SAS configuration file regardless
of whether you are using interactive or batch mode.

SAS uses the default configuration file if you start SAS by double-clicking a
registered SAS file type, such as .sas.

For more information about the !SASROOT folder, see “SAS Default Folder
Structure” on page 22.

Specifying System Options in a Configuration File
Any system option can be specified when you start SAS. It is often more convenient

to place frequently used system options in a configuration file. The syntax for specifying
system options in a SAS configuration file is discussed in “Syntax for System Options in
the SAS Invocation or SAS Configuration File” on page 477.

You can edit the default configuration file to add to or change the system option
settings, or you can create your own configuration file. “Creating a Customized
Configuration File” on page 14 discusses how to modify your configuration file.

Your configuration file is divided into two sections. The first section specifies system
options that are not updated by the SAS Setup application. The second section is used
by the setup application for updating information about where SAS software is
installed. The sections are divided by the following warning:

WARNING: INSTALL Application edits below this line. User
options should be added above this box comment.
INSTALL Application maintains and modifies the
following options; -SASAUTO, -SASHELP, -SASMSG
-PATH, and -MAPS. It also maintains and modifies
the following CONFIG variables with the -SET option;
INSTALL, USAGE, LIBRARY, SAMPSIO, SAMPSRC, SASCBT,

14 SAS Configuration Files � Chapter 1

and SASEXT01--SASEXT50. It preserves all lines above
the line containing ’DO NOT EDIT BELOW THIS LINE’.

The setup application deletes all data below this warning but does not affect the
options that are specified above it. The SET system option defines the following SAS
environment variables: SASROOT, SASEXT0, SASFOLDER, MYSASFILES, SASCFG,
SASAUTOS, SAMPSIO, SAMPSRC, EISIMAGE, and INSTALL. The setup application
appends the following system options below this warning: SASUSER, WORK,
HELPLOC, DMSEXP, APPLETLOC, TEXTURELOC, RESOURCESLOC,
JREOPTIONS, SASSCRIPT, SASHELP, MSG, and PATH.

CAUTION:
To avoid corrupting your configuration file, use a SAS text editor or an ASCII text editor to
edit your configuration file. The text editor that you choose to edit the configuration file
is important to preserve some of the special character formatting in the file. The
recommended method is to edit your configuration file by using a SAS text editor
(such as the Enhanced Editor) and save it by using the Save As dialog box. If you do
not use a SAS text editor, be sure to use another ASCII text editor (such as Windows
Notepad). Do not use a specialized editor such as the WordPad application or
Microsoft Word. Using such editors can insert carriage control characters into your
configuration file or corrupt the characters that are there. �

Creating a Customized Configuration File

When you install SAS, a SASV9.CFG file is created in the
!SASROOT\nls\language-code folder. The language-code is a two-letter language code
for the SAS default language. You can specify your own file to act as the configuration
file, thus overriding the default file, SASV9.CFG.

The filename that you choose must follow the file-naming conventions for the
Windows operating environment. The file extension must be .CFG.

When you use your own configuration file instead of the default configuration file,
you must add several required system options. For example, you must either use the
SET system option to define the environment variable, !SASROOT, or define SASROOT
as a Windows environment variable.

To ensure that all required system options are defined in your configuration file, copy
the default file (!SASROOT\nls\language-code\SASV9.CFG) and modify the copy instead
of creating your own file.

You can create a customized configuration file and name the file either SASV9.CFG
or .SASV9.CFG in your Windows user profile folder. During SAS invocation, SAS looks
for either of these files in the Windows user profile folder if the -CONFIG options are
not specified. Under Windows Vista, the path for Windows user profile folder is
c:\Users\user-ID\Documents\My SAS Files\9.2. In all other cases, the user profile
folder is c:\Documents and Settings\ user-ID\My Documents\My SAS Files\9.2.

Starting SAS with an Alternate Configuration File

When you use a file that is located in a different folder or that has a different name
as your default configuration file, you must tell SAS where to find the configuration file.
Use the CONFIG system option to specify the location of this configuration file. For
example, the Target field of the SAS Properties dialog box might contain

‘‘c:\program files\SAS\SASFoundation\9.2\sas.exe -config c:\mysas\mysasconfig.CFG’’

If SAS cannot find the configuration file, an error message is displayed, and SAS does
not initialize.

Getting Started � SAS Configuration Files 15

For more information about the CONFIG system option, see “Processing Options
Specified by Additional CONFIG Options” on page 18 and “CONFIG System Option” on
page 506.

How SAS Finds and Processes Configuration Files

When you invoke SAS, SAS automatically searches several locations for
configuration options that can affect your SAS session. SAS looks in the following areas
and processes them in this order:

SAS_SYS_CONFIG operation system environment variable
This environment variable, if defined, must resolve to a valid configuration file. In
a multi-user Windows system, this environment variable would most likely be
defined as a system environment variable (instead of as a user environment
variable) so that it is processed for all users on that system. Use the
SAS_USER_CONFIG user environment variable to specify a user-specific
configuration file.

files specified by CONFIG system options
In the SAS invocation command, you can specify one or more -CONFIG options
with the names of the configuration files that you want to use. You must include a
separate -CONFIG option for each file that you want to specify.

SASVx.CFG in the folder where SAS.EXE resides
SAS looks for a file that is named SASVx.CFG (x is the SAS version number) in
the folder that contains the SAS.EXE file only if you do not specify a -CONFIG
option at SAS invocation. This configuration file contains only a CONFIG system
option that specifies the configuration file for the SAS default language.

.SASVx.CFG in the Windows user profile folder
SAS looks for a file that is named .SASVx.CFG (x is the SAS version number) in
the Windows user profile folder only if you do not specify a -CONFIG option at
SAS invocation. Under Windows Vista and Windows Server 2008, the Windows
user profile folder is c:\Users\user-ID\Documents\My SAS Files\9.2. In all
other cases, the user profile folder is c:\Documents and Settings\ user-ID\My
Documents\My SAS Files\9.2.

SASVx.CFG in the Windows user profile folder
SAS looks for a file that is named SASVx.CFG (x is the SAS version number) in
the Windows user profile folder only if you do not specify a -CONFIG option at
SAS invocation. Under Windows Vista and Windows Server 2008, the Windows
user profile folder is c:\Users\user-ID\Documents\My SAS Files\9.2. In all
other cases, the user profile folder is c:\Documents and Settings\ user-ID\My
Documents\My SAS Files\9.2.

SASVx.CFG in the current folder
SAS looks for a file that is named SASVx.CFG (x is the SAS version number) in
the current folder only if you do not specify a -CONFIG option at SAS invocation.

SAS_USER_CONFIG operating system environment variable
This environment variable, if defined, must be a path to a valid SAS configuration
file. In a multi-user Windows system, this environment variable would likely be
defined as a user environment variable (instead of as a system environment
variable) so that it is processed only for the current user on that system. Use the
SAS_SYS_CONFIG system environment variable to specify a system-wide
configuration file.

16 SAS Configuration Files � Chapter 1

SAS_OPTIONS operating system environment variable
This environment variable, if defined, contains a string of option specifications for
any other SAS system options that you want to process each time that you invoke
SAS. For example, this environment variable might contain -obs 2m
-sasinitialfolder c:\myfolder -linesize max.

SAS invocation command line
You can specify additional system options in the command that you use to invoke
SAS. These system options always override option values that are set within any
of the configuration files.

If you start SAS from the Windows Start menu, the last configuration file to be
processed is the one that is specified in the Start menu shortcut for SAS. The options
that are specified in this configuration file override any options that have previously
been processed. By default, the Start menu shortcut specifies
-config !SASROOT\nls\language-code\SASVx.CFG

SAS uses the default configuration file if you start SAS by double-clicking on a
registered SAS file type, such as .sas or .sas7bpgm.

Getting Started � SAS Configuration Files 17

Figure 1.1 Order of Processing for SAS Configuration Files

Invoke SAS

Is the
SAS_SYS_CONFIG
environment variable

defined?

Are one
or more -CONFIG
options specified?

Is there a
SASVx.CFG file in the
folder where SAS.EXE

resides?

Is there a
.SASVx.CFG file in

the Windows user profile
folder?

Is there a
SASVx.CFG file in
the current folder?

Is the
SAS_USER_CONFIG
environment variable

defined?

Is the
SAS_OPTIONS

environment variable
defined?

Process the options that are specified
in the SAS invocation command.

Configuration processing is complete.

Process the file
specified by

SAS_SYS_CONFIG.

Process all files that
are specified in

-CONFIG options.

Process the
SASVx.CFG file in

the SAS.EXE folder.

Process the
.SASVx.CFG file in the

Windows user profile folder.

Process the
SASVx.CFG file in
the current folder.

Is there a
SASVx.CFG file in

the Windows user profile
folder?

Process the
SASVx.CFG file in the

Windows user profile folder.

Process the file that
is specified by

SAS_USER_CONFIG.

Process the options
that are specified in

SAS_OPTIONS.

Yes

Yes

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

18 SAS Autoexec File � Chapter 1

Processing Options Specified by Additional CONFIG Options

You can also specify additional –CONFIG options within any configuration file.
When SAS encounters a –CONFIG option, SAS immediately processes the options in
that named file and then returns to process the remainder of the current file. SAS
options that are encountered later in the processing always override those options that
are specified earlier. For example, if you specify -ICON in the file that is specified by
the SAS_SYS_CONFIG environment variable, and then –NOICON in the file that is
specified by the SAS_USER_CONFIG environment variable, the –NOICON option is
used. Since the options that you specify in the SAS invocation command are always
processed last, those option values will always override the option values that are
specified in configuration files. Figure 1.1 on page 17 illustrates the flow of the SAS
configuration file processing.

For more information about the CONFIG system option, see “CONFIG System
Option” on page 506.

SAS Autoexec File

Introduction to the SAS Autoexec File

The SAS autoexec file contains SAS statements that are executed immediately after
SAS initializes and before any user input is accepted. These SAS statements can be
used to invoke SAS programs automatically, set up certain variables for use during your
SAS session, or set system options.

Use a SAS text editor to create your autoexec file. The text editor that you choose to
create the autoexec file is important. The recommended method is to create the file by
using a SAS text editor (such as the Enhanced Editor window) and save it using the
Save As dialog box. If you do not use the SAS text editor, be sure to use another ASCII
text editor (such as Windows Notepad). Do not use a specialized editor such as the
WordPad application or Microsoft Word. Using such an editor can insert special
carriage control characters into your autoexec file that SAS cannot interpret when it
tries to execute the statements in the file.

The Default Autoexec File

Unlike the configuration file, a SAS autoexec file is not required in order to run SAS.
But, if you do have an autoexec file, the default name is AUTOEXEC.SAS. SAS uses
the following search order to find the AUTOEXEC.SAS file:

1 Search the current folder.

Note: For information on determining the current folder, see: “Determining the
Current Folder When SAS Starts” on page 9. �

2 Search the paths that are specified by the Windows PATH environment variable.

3 Search the root folder of the current drive.

4 Search the folder that contains the SAS.EXE file.

If an AUTOEXEC.SAS file is not present in one of these folders and if you did not
specify the -AUTOEXEC option on the command line or within any of your
configuration files, then SAS assumes that there is no autoexec file to process. For more
information, see “AUTOEXEC System Option” on page 496.

Getting Started � SAS Autoexec File 19

Locating a Renamed Autoexec File
You do not have to name your autoexec file AUTOEXEC.SAS, but if you name it

something else, you must use the AUTOEXEC system option to tell SAS where to find
the autoexec file. For example, you can specify the following option after the path
specification for the SAS.EXE file in the Target field of the SAS Windows shortcut:

-autoexec c:\mysasfiles\init.sas

If the specified autoexec file is not found, an error message is displayed, and SAS
terminates.

Uses for the Autoexec File
The autoexec file is a convenient way to execute a standard set of SAS program

statements each time that you invoke SAS. You can include OPTIONS, LIBNAME, or
FILENAME statements, or any other SAS statements and system options that you
want the system to execute each time you invoke a SAS session. For example, if you
want to specify a script file for SAS/CONNECT software, you can place the following
statement in the AUTOEXEC.SAS file:

filename rlink ’c:\program files\SAS\SASFoundation\9.2\connect\saslink\
startSession.scr’;

Or you can use the OPTIONS statement to set the page size and line size for your
SAS output and use several FILENAME statements to set up filerefs for commonly
accessed network drives, as in the following example:

options linesize=80 pagesize=60;
filename saledata ’f:\qtr1’;
filename custdata ’l:\newcust’;
filename invoice ’o:\billing’;

Other system options, in addition to the AUTOEXEC system option, provide ways to
send SAS information as it is initializing. These options are listed below in the order in
which they are processed:

1 CONFIG (at SAS invocation only)
2 AUTOEXEC
3 INITCMD
4 INITSTMT
5 SYSIN

For more information about the CONFIG, AUTOEXEC, INITSTMT, and SYSIN
system options, see “SAS System Options under Windows” on page 475. For more
information about the INITCMD system option, see SAS Language Reference:
Dictionary.

Suppressing the Autoexec File
If you have an AUTOEXEC.SAS file in your current folder, but you want to suppress

it, specify the NOAUTOEXEC option in the SAS command, as in the following example:

c:\program files\SAS\SASFoundation\9.2\sas.exe -noautoexec

20 Profile Catalog � Chapter 1

Profile Catalog

Introduction to the Profile Catalog
Each time that you invoke a SAS session, SAS checks the Sasuser data library for

your user Profile catalog (named Sasuser.Profile), which defines the start-up profile for
your SAS session, including key definitions, display configurations, and other personal
customizations. If you invoke SAS without accessing an existing Profile catalog, SAS
creates one with the default key definitions and window configuration.

If Sasuser.Profile does not exist and Sashelp.Profile (in the Sashelp data library) does
exist, SAS copies Sashelp.Profile to Sasuser.Profile before invoking a SAS session.

The Profile catalog is not re-created if it already exists. Any customizations (such as
key definitions or color modifications) that are defined during subsequent sessions are
stored in your Profile catalog in the specified folder.

The Default Profile Catalog
The default configuration file for SAS specifies the SASUSER system option as

follows:

Table 1.2 The Default SASUSER Locations for the Windows Operating
Environment

Windows Vista Windows XP, and Windows Server 2003

-sasuser "c:\Users\user-ID\
Documents\My SAS Files\9.2"

-sasuser "c:\Documents and
Settings\user-ID\My Documents\My SAS
Files\9.2"

Changing the Location of the Profile Catalog
Use the SASUSER system option to specify a location for the Profile catalog other

than the default (which is a folder named \My SAS Files\9.2). This option is useful if
you want to customize your SAS sessions when sharing a machine with other users or if
users are accessing SAS from a network.

The SASUSER system option takes the following form:

-SASUSER ("library-specification")

Parentheses () are used to specify multiple library-specifications, and quotes (") are
used when special characters and spaces are used in the library-specification.

If library-specification (which specifies a valid Windows pathname) does not exist,
SAS attempts to create it. For example, if you specify the following option, a Profile
catalog is created in a folder named MYUSER that resides in the root folder of the C:
drive:

-sasuser "c:\myuser"

For more information, see “SASUSER System Option” on page 560.

Deleting the Profile Catalog
When you delete your Profile catalog, you lose the key definitions, window

configurations, and option settings that you might have defined, as well as any other

Getting Started � Work Data Library 21

entries that you saved to your Profile catalog. In addition, any text that you stored in
NOTEPAD windows is erased. For this reason, it is a good idea to make a backup copy
of your Profile catalog after making significant modifications to your SAS session
settings.

Work Data Library

Introduction to the Work Data Library
SAS requires some temporary disk space during a SAS session. This temporary disk

space is called the Work data library. By default, SAS stores SAS files with one-level
names in the Work data library, and these files are deleted when you end your SAS
session. You can change the Work data library in which SAS files that have one-level
names are stored. For more information, see “Using the User Libref” on page 136.

The Default Work Folder
The default configuration file for SAS specifies the WORK system option to be a

folder in your system’s designated temporary area (as defined by the TEMP
environment variable). For example: !TEMP\SAS Temporary Files.

To determine TEMP environment variable, refer to the System Properties dialog box
that you access from the Control Panel.

For more information about using the Work data library and overriding the default
location, see “Using the Work Data Library” on page 135.

Specifying the Location of the Work Data Library
The WORK system option controls the location of the Work data library. You can

specify the WORK option in your SAS configuration file or when you invoke SAS.
Usually, you use the WORK option that is specified in the default configuration file.

Temporary Subfolders
Because you can run multiple SAS sessions at one time, SAS creates temporary

subfolders under the folder that you specify with the WORK option. These temporary
subfolders are created in the unique form _TDnnnnnnnnnn, where TD means
temporary folder and nnnnnnnnnn is the process ID for each SAS session. These
subfolders enable multiple SAS sessions to be invoked, each using the same
configuration file, and they prevent the Work folder from being shared. SAS creates any
temporary files that are required within each temporary folder. As with all temporary
files that are created in the Work data library during a SAS session, these temporary
folders are deleted when you end the SAS session. If SAS terminates abnormally, you
might need to delete the temporary files.

Deleting the Work Folder
If SAS terminates abnormally, determine whether the Work library was deleted. If

not, remove it by using Windows commands.

Note: Do not attempt to delete the Work folder while SAS is running. �

You can verify the location of the current Work folder by opening the Libraries folder
in the SAS Explorer window. Click the right mouse button on the Work folder and
select Properties from the pop-up menu.

22 SAS Registry Files � Chapter 1

SAS Registry Files
The SAS registry files are used to store information about the SAS session

applications. The registry entries can be customized by using the SAS registry editor or
by importing the registry files. To invoke the SAS registry editor, select Solutions �
Accessories � Registry Editor.

CAUTION:
Incorrect registry entries can corrupt your SAS registry. Registry customization is
generally performed by more advanced users who have experience and knowledge of
SAS and their operating environment. �

SAS Default Folder Structure
The SAS Setup program creates a number of subfolders during the installation

process. Understanding the organization of the SAS folders can help you to use SAS
more efficiently.

The root folder of SAS is the folder in which you install SAS. Within SAS, this folder
has the logical name !SASROOT. If you use the default provided by SAS, this folder is
c:\Program Files\SAS\SASFoundation\9.2. (The examples in this document assume
the !SASROOT folder is called c:\Program Files\SAS\SASFoundation\9.2.)

SAS creates a folder for shared components, such as the Enhanced Editor and
images, that are used by other SAS products. For SAS 8, the default path for shared
components is c:\Program Files\SAS Institute\Shared Files. For SAS 9 and 9.2,
the default path for shared files, if shared components are installed, is c:\Program
Files\SAS\Shared Files. If shared components are not installed, the default path is
c:\Program Files\SAS\SharedFiles. There is no blank space in the spelling of
SharedFiles.

One important subfolder of the !SASROOT folder is the CORE subfolder. The CORE
subfolder contains many subfolders, three of which are described here:

!SASROOT\CORE\RESOURCE
contains SAS resources such as fonts and images.

!SASROOT\CORE\SAMPLE
contains the SAS sample programs.

!SASROOT\CORE\SASINST
contains the installation process software.

For each SAS product that is installed, the following subfolders might be created (not
all products contain all of these folders):

!SASROOT\product\SASEXE
contains the SAS executable files.

!SASROOT\product\SASHELP
contains many specialized catalogs and files.

!SASROOT\product\SASMACRO
contains SAS autocall macro files.

!SASROOT\product\SASMSG
contains the SAS message files.

!SASROOT\product\SAMPLE
contains the Sample Library programs.

Getting Started � Submitting Code from the SAS NOTEPAD Text Editor 23

!SASROOT\product\SASTEST
contains Test Stream programs.

!SASROOT\product\SASMISC
contains miscellaneous external files shipped with the product.

Some products, such as SAS/CONNECT software, also have other subfolders that are
associated with them. For details about each product’s structure, see the specific SAS
product documentation.

For more information about how the SAS folders are configured at your site, contact
your on-site SAS support personnel.

Submitting SAS Code

Introduction to Submitting SAS Code
SAS under Windows provides several methods for you to submit your SAS programs

for processing. SAS supports a variety of work strategies, whether you run SAS
interactively or in batch, and in conjunction with other Windows programs or as a
stand-alone application.

Submitting Code from the Enhanced Editor or Program Editor
To submit SAS code that you have typed into the Enhanced Editor or Program

Editor window, you issue the SUBMIT command. SAS provides several ways to do this:
� Press F8 when the editor window is active.
� Click the Submit toolbar button.
� Enter submit in the command bar.
� From the Run menu, select Submit.

You can use the SUBTOP command from either the command line or the Run menu
to submit one or more lines of your SAS code. For more information, see “SUBTOP
Command” on page 355.

Submitting Code from the SAS NOTEPAD Text Editor
SAS allows you to submit SAS code that you have typed into the SAS NOTEPAD text

editor. NOTEPAD can be invoked by selecting Tools � Text Editor when the Enhanced
Editor is disabled. SAS provides several ways to submit the code in NOTEPAD:

� Click the Submit toolbar button.
� Enter submit in the command bar.
� From the menu, select Run � Submit.

24 Running SAS in Batch Mode � Chapter 1

Running SAS in Batch Mode

You can run SAS jobs in batch mode in the Windows operating environment. Place your
SAS statements in a file and submit them for execution along with the control
statements and system commands that are required at your site.

You can run windowing procedures, such as those that are associated with
SAS/GRAPH, SAS/INSIGHT, and SAS/ACCESS software in a batch SAS job.

Submitting a Batch SAS Job
When you run SAS in batch mode, a status window is displayed. The status window

displays the job that is running and also the location of the log and procedure output
files. The status window remains open until the SAS job is complete.

If you do not want to see the status window while your batch SAS job is running, use
the ICON system option to invoke the SAS System so that the status window becomes
an icon when your job is running. You can also minimize the status window by clicking
Icon when the window appears. The icon shows the busy pointer (usually an
hourglass) while the SAS job is running, and then disappears when the job is complete.
You can cancel a batch job either by pressing CTRL+BREAK or by clicking Cancel in
the status window

The maximum line length is 32767 bytes.
If you want to establish a permanent libref, then enable the STARTLIB system

option when you begin the batch job.
You can submit a batch SAS job by using the following methods:
� Specify the SYSIN system option in the SAS command (issued from the command

prompt or in the Run dialog box) and specify the SAS program to submit. For
example: C:\SAS\SAS.EXE -SYSIN C:\SAS\PROGRAMS\PROG1.SAS -CONFIG
C:\SAS\SASV9.CFG.

� Right click to select a file that has either a .SAS, .SS2, SS7, or .SASV7BPGM file
extension. From the pop-up menu, select Batch Submit with SAS 9.2.

� Select and drag your SAS program file icon (for the file that contains the SAS
code) in Windows Explorer, and drop the file on the SAS.EXE file icon or shortcut.

Submitting Code from the Clipboard
Using the Enhanced Editor or the Program Editor, you can submit SAS code that

you copied from another Windows application (such as an editor or word processor) or
from SAS Help and Documentation. When you copy text from another Windows
application, that text is stored in the Windows clipboard.

From the Run menu in the Enhanced Editor or from the Program Editor window,
select Submit clipboard. The code is submitted from the clipboard directly to SAS
(without appearing in the Enhanced Editor or in the Program Editor window). Notes
and results are sent to the SAS Log and to the Output window, respectively. You can
still issue the RECALL command (or press F4) to recall the submitted program into the
Enhanced Editor or into the Program Editor window.

You can also use the GSUBMIT command to submit SAS code that is stored in the
clipboard. For more information, see “GSUBMIT Command” on page 349.

Getting Started � Submitting Code by Dragging and Dropping 25

Submitting Code by Dragging and Dropping

Introduction to Submitting Code by Dragging and Dropping
You can drag SAS programs from other Windows applications onto an open SAS

session and submit them. You can also drag files that contain SAS code and drop them
on an open SAS session to submit them.

Dragging Text from Other Windows
If you drag text from another Windows application or SAS window to the Enhanced

Editor or the Program Editor window, that text is moved to the window by default. It is
not submitted until you press F8 or issue the SUBMIT command.

However, you can override this default action by right-clicking the text to select it
and then dragging it (if the application supports nondefault dragging). When you drop
the selection on the Enhanced Editor or the Program Editor window, a menu appears
and you can choose between moving the code or copying the code. The menu for the
Program Editor also enables you to submit the code.

Dragging Files in an Interactive Session
By using the My Favorite Folders window, you can access files that exist outside the

SAS environment. Files that contain SAS code can be dragged into your interactive SAS
session for execution. Access the My Favorite Folders window by using the View menu.

If you drop a file that contains SAS code on the Enhanced Editor window or on the
Program Editor window, that code is included in the window (but not submitted). If you
drop the file on the Log or Output window or on a minimized SAS session, the code is
automatically submitted.

When you minimize a SAS session, its icon appears on the Windows task bar. You
cannot drop a file onto the task bar. Instead, you can drag the file to the SAS icon on
the task bar and hold it there, without releasing the mouse button. After about one
second, the SAS window resumes its normal size. Then you can drop the file on the
open SAS session.

Dropping the file C:\MYPROG.SAS onto a window (other than the Enhanced Editor or
Program Editor windows) of an open SAS session is the same as issuing this command:

gsubmit "%include ’c:\myprog.sas’";

You can submit more than one file at a time by selecting a group of files that contain
SAS programs and then dropping them onto the open SAS session. The order in which
the programs are run when they are submitted as a group is determined by Windows.
Therefore, if order is important, you should drop each program file separately.

If SAS is busy when you drop a SAS program icon, the dropped file is ignored. The
only indication that the dropped file was ignored is a warning beep.

26 Submitting Code Stored in Registered SAS File Types � Chapter 1

Submitting Code Stored in Registered SAS File Types
During installation, the SAS Setup procedure registers certain file types with

Windows to invoke specified actions when you double-click those types of objects. For
example, files that have a file extension of .SAS are registered as SAS programs. These
registered file types are displayed in Windows with a special icon, as shown here:

When you double-click a file that has this extension (or that has this icon) SAS is
invoked and the contents of the file are included in the Enhanced Editor or Program
Editor window. The SAS code that is contained in the file is not processed until you
submit it (for example, by pressing F8 or by clicking the Submit tool). If you already
have a SAS session running, double-clicking a file begins a second SAS session; it does
not use the already-existing session.

SAS uses the default configuration file if you start SAS by double-clicking a
registered SAS file type, such as .sas or .sas7bpgm.

Interrupting Your SAS Session

You can click the circled exclamation point (!) in the toolbar or press CTRL+BREAK
to interrupt processing in your SAS session. Depending on what tasks SAS is
performing at the time of the interrupt, you can cancel submitted statements or cancel
an upload or download request. SAS prompts you with various choices (such as to
continue the interrupt or cancel it) in a dialog box.

Note: Depending upon what tasks are in progress when you interrupt your session,
SAS can require several seconds to stop processing. �

SAS also supports the common Windows methods of issuing interrupts: you can click
the Control menu icon and choose to close the application, or you can select Close from
the pop-up menu for SAS on the Windows Task Bar (or End Task from within the
Windows Task Manager). If you use either of these methods, SAS displays a dialog box
to allow you to verify your selection. Note that the task might not close until SAS has
completed processing.

Running Windows or MS-DOS Commands from within SAS

Overview of Running Windows or MS-DOS Commands from within SAS
You can execute Windows or MS-DOS commands from within SAS by using the X

statement or the X command. You can also use the CALL SYSTEM statement or the
SYSTASK statement from within a DATA step. Windows or MS-DOS commands can be
issued either asynchronously or synchronously. When you run a command as an
asynchronous task, the command executes independently of all other tasks that are
currently running. When you run a command as a synchronous task, the command
must complete before another task can run.

Getting Started � Using a DATA Step to Issue Conditional Operating System Commands Conditionally 27

To issue a command asynchronously, use either the SYSTASK statement with the
NOWAIT option or specify the NOXSYNC system option. To issue a command
synchronously, use either the SYSTASK statement with the WAIT option or specify the
XSYNC system option. For more information about running asynchronous commands
using the SYSTASK statement, see “SYSTASK Statement” on page 467.

Running Windows Commands Using the X Statement or the X Command
You can use the X statement or the X command to run Windows commands. The X

statement can be run outside of a DATA step. You can enter the X command in the
command bar or any SAS command line.

The X statement is similar to the X command in the SAS windowing environment.
The major difference between the two is that the X statement is submitted like any
SAS statement; however, the X command is issued as a windowing environment
command. This section uses the X statement in its examples, but the information
applies to the X command as well.

When you submit the X statement you exit your SAS session temporarily and gain
access to the Windows command processor. The X statement has the following syntax:

X <’command’>;

The optional command argument is used either to issue an operating system
command or to invoke a Windows application such as Notepad. This discussion
concentrates on using the X statement to issue operating system commands; however,
you should be aware that the X statement can also be used to invoke Windows
applications.

If you want to run only one operating system command, include the command as an
argument to the X statement. When you submit the X statement, the command is
executed, and you cannot issue any additional commands.

If you want to run several operating system commands, submit the X statement
without an argument. A command prompt appears where you can issue an unlimited
number of operating system commands. Remember, any environment variables you
define are not available to SAS. If you submit an X statement or command without a
command argument, type EXIT to return to your SAS session.

The X command is a global SAS statement; therefore, it is important to realize that
you cannot conditionally execute the X command. For example, if you submit the
following code, the X statement is executed:

data _null_;
answer=’n’;
if upcase(answer)=’y’ then

do;
x ’md c:\extra’;

end;
run;

In this case, the C:\EXTRA folder is created regardless of whether the value of
ANSWER is equal to ’n’ or ’y’.

Using a DATA Step to Issue Conditional Operating System Commands
Conditionally

If you want to issue operating system commands conditionally, use the CALL
SYSTEM routine, as in the following example:

options noxwait;
data _null_;

28 XWAIT System Option � Chapter 1

input flag $ name $8.;
if upcase(flag)=’Y’ then

do;
command=’md c:\’||name;
call system(command);

end;
datalines;

Y mydir
Y junk2
N mydir2
Y xyz
;

This example uses the value of the variable FLAG to conditionally create folders.
After the DATA step executes, three folders have been created: C:\MYDIR, C:\JUNK2,
and C:\XYZ. The C:\MYDIR2 folder is not created because the value of FLAG for that
observation is not Y.

For more information about the CALL SYSTEM routine, see “CALL SYSTEM
Routine” on page 391 and the section on the CALL SYSTEM routine in SAS Language
Reference: Dictionary.

XWAIT System Option
The XWAIT system option controls whether you have to type EXIT to return to your

SAS session after an X statement or X command has finished executing an MS-DOS
command. (The XWAIT system option is not used if an X statement is issued without a
command argument or if the X statement invokes a Windows application such as
Notepad.) This option and its negative form operate in the following ways:

XWAIT specifies that you must type EXIT to return to your SAS session.
This is the default value.

NOXWAIT specifies that the command processor automatically returns to the
SAS session after the specified command is executed. You do not
have to type EXIT.

If you issue an X statement or X command without a command argument, you must
type EXIT to return to your SAS session, even if NOXWAIT is in effect.

When a window created by an X statement is active, reactivating SAS without
exiting from the command processor causes SAS to issue a message box containing the
following message:

The X command is active. Enter EXIT at
the prompt in the X command window to
reactivate this SAS session.

If you receive this message box, click Command Prompt on the Windows Task Bar.
Enter the EXIT command from the prompt to close the window and return to your SAS
session.

Getting Started � Comparison of the XWAIT and XSYNC System Options 29

XSYNC System Option
The XSYNC system option specifies whether the operating system command you

submit executes synchronously or asynchronously with your SAS session. This option
and its negative form operate in the following ways:

XSYNC specifies that the operating system command execute synchronously
with your SAS session. That is, control is not returned to SAS until
the command has completed. You cannot return to your SAS session
until the command prompt session spawned by the CALL SYSTEM
statement, the X command, or the X statement is closed. This is the
default.

NOXSYNC specifies that the operating system command execute
asynchronously with your SAS session. That is, control is returned
immediately to SAS and the command continues executing without
interfering with your SAS session. With NOXSYNC in effect, you
can execute a CALL SYSTEM statement, an X command, or an X
statement and return to your SAS session without closing the
window spawned by the X command or X statement.

Specifying NOXSYNC can be useful if you are starting applications such as Notepad
or Excel from your SAS session. For example, suppose you submit the following X
statement:

x notepad;

If XSYNC is in effect, you cannot return to your SAS session until you close the
Notepad. But if NOXSYNC is in effect, you can switch back and forth between your
SAS session and the Notepad. The NOXSYNC option breaks any ties between your SAS
session and the other application. You can even end your SAS session; the other
application stays open until you close it.

Comparison of the XWAIT and XSYNC System Options
The XWAIT and XSYNC system options have very different effects. An easy way to

remember the difference is the following:

XWAIT means that the command prompt session waits for you to type EXIT
before you can return to your SAS session.

XSYNC means that SAS waits for you to finish with the other application
before you can return to your SAS session.

The various option combinations are summarized in Table 1.3 on page 29.

Table 1.3 Combining the XWAIT and XSYNC System Options

Options in Effect Result

XWAIT

XSYNC

The command prompt window waits for you to type EXIT before
closing, and SAS waits for the application to finish.

XWAIT

NOXSYNC

The command prompt window waits for you to type EXIT before
closing, and SAS does not wait for the application to finish.

30 Terminating a SAS Process � Chapter 1

Options in Effect Result

NOXWAIT

XSYNC

The command prompt window closes automatically when the
application finishes, and SAS waits for the application to finish.

NOXWAIT

NOXSYNC

The command prompt window closes automatically when the
application finishes, and SAS does not wait for the application to
finish.

Terminating a SAS Process
You can terminate a SAS process using several methods. A SAS server is a specific

type of SAS process.

Note: Before you terminate SAS using one of the following methods, you should try
to end the process using one of the methods described in “Ending Your SAS Session” on
page 30 or in the documentation for the SAS server. �

If the SAS process was instantiated as a Windows service, then you can terminate
the process using one of the following methods:

� at the command prompt, submit one of the following commands:
� net stop <service name>where service name is the name of the Windows

service.
� sc <server> stop <service name>where server is in the form

“\\ServerName” and service name is the name of the Windows service.

� in the Microsoft Management Console Services snap-in, select the service that you
want to terminate and select Stop.

To terminate a SAS process, use one of the following methods:
� At a command prompt submit

taskkill/pid <process ID>

where process ID is the SAS process ID. You can get this process ID from the
output of the tasklist command.

� in the Windows Task Manager, select the process and click End Process.

CAUTION:
Using the taskkill command or the Windows Task Manager to terminate a SAS process
might result in data loss or data corruption. �

Ending Your SAS Session
You can end your SAS session using several methods, including
� selecting Close from the control menu of the main SAS window
� selecting Cancel in the Status window. This window appears when you are

running in batch mode.
� double-clicking on the control menu of the main SAS window, or clicking on the X

in the upper-right corner of the main SAS window
� issuing the BYE or ENDSAS command from a SAS command line
� submitting an ENDSAS statement

Getting Started � Ending Your SAS Session 31

� closing the SAS session from the Task List by selecting the session process (the
process name differs depending on how you started SAS) and selecting End Task

� selecting Exit SAS from the File menu in the main SAS window menu bar

� selecting Exit from the File pop-up menu

� pressing the ALT+F4 accelerator-key combination that is defined by Windows.

If SAS terminates with errors the SAS log might contain error messages that explain
the failure. Any error message that SAS issues before the SAS log is initialized are
written to the MSG window if it is available or to the SAS console log, which is a
Windows file. Under Windows Vista, the Windows SAS console log is typically located
in c:\Users\user ID\AppData. Under all other Windows operating environments, the
SAS console log is typically located in c:\Documents and Settings\ user
ID\Application Data. You can obtain the location and filename for the SAS console
log from the Application Event Log. To open the application Event Log, submit
eventvwr from the Run dialog box and click Application.

32

33

C H A P T E R

2
Interacting with SAS under
Windows

Overview of the SAS Interface 35
The SAS Windowing Environment 35

Understanding Components of the Main SAS Window 35

Getting Help for the Main SAS Window 37

Working within Your SAS Session 37

Using the Docking View 37
Introduction to the Docking View 37

Docking and Undocking Windows 38

Resizing the Docking View 38

Minimizing and Restoring the Docking View 38

Enabling and Disabling the Docking View 38

Using the Window Bar 39
Using Menus 39

Changing the SAS Current Folder 39

What Is the Current Folder? 39

Interactively Selecting a New Current Folder 40

Using SAS Statements to Change the Current Folder 40
Issuing SAS Commands 41

Using Menus to Issue Commands 41

Using the Toolbar to Issue Commands 41

Using the Command Bar to Issue Commands 41

Using the Command Line to Issue Commands 42
Sending E-Mail Using SAS 42

Overview of Sending E-Mail 42

Initializing E-Mail 43

Using Your E-Mail Software to Send Mail 43

Using the SAS Send Mail Dialog Box 44

Sending the Contents of a Window by E-mail 45
Using the DATA Step or SCL to Send E-mail 46

Example of Sending E-Mail from the DATA Step 49

Example of Sending E-Mail Using SCL Code 51

Example of Sending E-Mail Using SMTP 52

Saving Windows to External Files 53
Clearing the Window and Filename 54

Defining Keys 54

Navigating with Microsoft IntelliMouse 55

Using the Clipboard 55

Selecting and Copying Text 56
Selecting and Copying in Nontext Windows 56

Pasting Bitmapped Information into Your SAS Session 57

Submitting SAS Code from the Clipboard 57

34 Contents � Chapter 2

Creating Text Highlighting and Special Characters 57
Special Character Attributes 57

Alternate ASCII Characters 58

Customizing Your SAS Session 58

Selecting Fonts 58

Setting Session Preferences 59
Introduction to Setting Session Preferences 59

Using the Preferences Dialog Box 59

General Preferences 60

View Preferences 61

Edit Preferences 61

Results Preferences 62
Web Preferences 62

Advanced Preferences 63

Customizing Your Windowing Environment with Commands 63

Customizing Window Positions 63

Changing the Window Colors 64
Customizing Your Windowing Environment with System Options 65

Changing the Size and Placement of the Main SAS Window 65

Changing the Title of Your SAS Session 66

Adding Help to the Help Menu 66

Minimizing Your SAS Session 66
Adding Applications to the Tools Menu 66

Setting the Initial Path For the Current Folder and the Paths Specified in the Open and
Save Dialog Boxes 67

Displaying a Custom Logo Screen during SAS Invocation 67

Adding User-Defined Icons to SAS 67

Enabling Web Enhancements in SAS 68
Customizing the Toolbar 68

Introduction to Customizing the Toolbar 68

Using the Customize Tools Dialog Box 68

Setting General Toolbar Preferences 68

Customizing a Toolbar 69
Adding a Tool to the Toolbar 70

Removing a Tool from the Toolbar 71

Customizing and Saving a Toolbar for Use with a Particular Application or Window 71

Resetting the Tools to the Default Settings 72

Examples of Useful Tools You Can Create 72
Accessing Online Help and Documentation 73

Using Microsoft HTML Help 73

Getting Help from the Command Bar 73

Getting Help in the Dialog Boxes 74

Getting Help for a SAS Product 74

Getting Help from the Help Menu 74
Getting to SAS Institute (and Other Web Sites) from within SAS 75

Viewing Output and Help in the SAS Remote Browser 75

What Is Remote Browsing? 75

Remote Browsing and Firewalls for General Users 76

Remote Browsing and Firewalls for System Administrators 76
Using Remote Browsing with ODS Output 76

Installing the Remote Browser Server 77

System Options for Remote Browsing 77

Accessibility Features in SAS under Windows 77

Introduction to Accessibility Features in SAS under Windows 77

Using the SAS Interface � Understanding Components of the Main SAS Window 35

Accessible Windows and Dialog Boxes 78
The ACCESSIBILITY System Option 79

Accessing the Standard or Fully Accessible User Interface 79

Using the Accessible Customize Tools Dialog Box 80

Using Accessible Properties Dialog Boxes 80

Enlarging Fonts 81
Enlarging Icons 81

Resizing the Docking View in the Main SAS Window 81

Sorting Window List Views by a Specific Column 82

Resizing the Detail Columns of a List View 82

Improving Access to Menus 82

Overview of the SAS Interface

The SAS Windowing Environment
The SAS windowing environment refers to the windows that open in the main SAS

window. You access the main SAS window when you start SAS from your PC or from a
terminal emulator.

Windows in client software that do not access the main SAS window, such as
Enterprise Guide, are documented in their product documentation. For more
information about Enterprise Guide, see the Help in Enterprise Guide.

Understanding Components of the Main SAS Window
The main SAS window contains all other SAS application windows. The main SAS

window is completely configurable, allowing you to use its features in a way that is
productive for you. The following display shows the main SAS window as it appears
when you first start SAS. This section briefly describes the features of the window.

Figure 2.1 The Main SAS Window

36 Understanding Components of the Main SAS Window � Chapter 2

The following are the primary components of the main SAS window:

menu bar
presents the menus available for the active SAS application window. As you
switch between application windows, the menu bar changes.

Similarly, the pop-up menus that appear when you click the right mouse button
inside an application window are customized for that window.

command bar
provides a way to quickly enter any SAS command. The command bar retains a
list of the commands that you enter.

To repeat a command that you previously issued, either type until the command
appears in the command bar or select the command from the list box and click the
check mark button. Pressing ENTER will also submit a command.

To switch the keyboard focus to the command bar, press F11 (the function key
defined as COMMAND FOCUS).

toolbar
provides quick access to the commands you perform most often. The toolbar is
completely configurable and can contain up to 30 tools.

You can associate different sets of tools with different SAS application windows.
When you create a tool, you specify the tool button, the commands associated with
the tool, Help text displayed on the status bar, and the tip text. The bitmap
browser provides images that you can use to represent your commands on the
toolbar.

windowing environment
contains a workspace to open windows within the main SAS window. Certain
windows, such as windows that are used for navigation, can dock to the left side of
the main SAS window when Docking view is enabled from the Preferences dialog
box. Windows that cannot dock to the main SAS window open to the right of the
docking area. In the above figure, the Log window, the Output window, the
Enhanced Editor window, and the docked windows are all part of the windowing
environment. For more information about using dockable windows, see “Using the
Docking View” on page 37.

window bar
is located at the bottom of the main SAS window and provides easy access to any
window within the main SAS window.

When a window opens, a button that represents that window is placed in the
window bar. Whenever you want access to a window, click the button for that
window. That window then becomes the active window.

You can load a file into an application by dragging a file to the window bar
button for the application (making the application the active window), and then
continue dragging the file into the application window.

The window bar can be enabled or disabled from either the Preferences dialog
box or the window bar pop-up menu.

status bar
contains a message area, the current folder for SAS, and the Enhanced Editor
insertion point position.

The message area displays Help text for menus and tools, as well as messages
that are specific to SAS application windows.

The current folder area displays the name of the current working folder. To
change the current folder, double-click the current folder area. For more
information, see “Changing the SAS Current Folder” on page 39.

The Enhanced Editor insertion point position displays the current line and
column when the Enhanced Editor is the active window.

Using the SAS Interface � Using the Docking View 37

The status bar can be enabled and disabled from the Preferences dialog box. The
message line, the current folder, and the insertion point position can be enabled
and disabled from either the Preferences dialog box or the status bar pop-up
menu. When the message line is disabled, messages appear in the active window.

Getting Help for the Main SAS Window
SAS provides help for the main SAS window using screen tips and status bar

messages.
For a description of a menu or a menu item:
1 Select the menu or menu item.
2 As the mouse pointer passes over the menu or menu item, a description of the

item appears in the message area of the status bar.

For toolbar help, place the mouse pointer over a button. A pop-up ScreenTip appears
below the mouse pointer and a longer description appears in the message area.

For help on other parts of the main SAS window, such as tabs, buttons, and the
status bar:

1 Place the mouse pointer over the item.
2 Hold the mouse pointer over the item for a few seconds. A pop-up ScreenTip

appears below the mouse pointer. When you place the mouse pointer over a
window bar button, the ScreenTip contains the window name.

To customize ScreenTip and status bar help text for commands available from the
toolbar see “Customizing the Toolbar” on page 68.

To enable or disable command bar or toolbar ScreenTips, you can use either the Show
ScreenTips on toolbars option in the Customize dialog box or type the TOOL TIP
command in the command bar.

All other ScreenTips can be enabled or disabled using the ScreenTip option in the
Preferences dialog box View tab or by using the WSCREENTIPS command. For more
information on enabling and disabling ScreenTips, see “Setting Session Preferences” on
page 59,“Customizing the Toolbar” on page 68, “WSCREENTIPS Command” on page
373, and “TOOLTIPS Command” on page 358.

Working within Your SAS Session

Using the Docking View

Introduction to the Docking View
The Docking View allows for easy navigation within the main SAS window. When

the docking view is enabled, windows that can be docked (integrated with the main SAS
window) such as the Explorer and the Results windows, appear on the left side of the
main SAS window. When you open an object from a docked window, the opened object
appears to the right of the docking area.

38 Using the Docking View � Chapter 2

Each docked window has a tab at the bottom of the docking area for easy access to
the window. When the number of docked windows is large enough so that you cannot
identify the tabs, a left and right arrow are displayed for you to navigate through the
docked windows.

Docking and Undocking Windows
To dock or undock individual windows:

1 Select the window to make it the active window.

2 Toggle the Docked menu item by selecting Window � Docked.

For information about setting docking view preferences, see “View Preferences” on
page 61. To use a command to dock and undock the docking view, see “WDOCKVIEW
Command” on page 362.

Resizing the Docking View
Docked windows cannot be individually moved or resized.
To enlarge or contract the docking area:

1 Place the mouse pointer over the split bar between the docking area and the
remaining portion of the main SAS window.

2 Press and hold down the left mouse button.

3 Move the mouse to the left or right to resize the docking area.

You can also resize the docking view by using the WDOCKVIEWRESIZE command.
For more information, see “Resizing the Docking View in the Main SAS Window” on
page 81 and “WDOCKVIEWRESIZE Command” on page 363.

Minimizing and Restoring the Docking View
To minimize a docked window, do one of the following:

� Right-click the window title and select Minimize.

� Type wdockviewminimize in the command bar.

To restore the docked window, do one of the following:

� Click the Docking view button on the window bar.

� Type wdockviewrestore in the command bar.

For more information, see “WDOCKVIEWMINIMIZE Command” on page 363 and
“WDOCKVIEWRESTORE Command” on page 364.

Enabling and Disabling the Docking View
To enable or disable the docking view, do one of the following:

� Type WDOCKVIEW in the command bar without any arguments to toggle the
docking view.

� Use the Preferences dialog box View tab:

1 SelectTools � Options � Preferences � View

2 Select (enable) or deselect (disable) the Docking view check box.

Using the SAS Interface � Changing the SAS Current Folder 39

Using the Window Bar
The window bar, similar to the Windows taskbar, is a reserved space at the bottom of

the main SAS window that is used to display a button for each opened window within
SAS, providing immediate access to any opened window. When you click a button in the
window bar, that window becomes the active window and appears on top of all other
windows. When you click the button for the active window, the window is minimized.

Each button on the window bar has a menu that is associated with it. To access the
menu, place the mouse pointer over the button and click the right mouse button.

You can enable and disable the window bar by using one of the following:
� the Preferences dialog box View tab

� the status bar pop-up menu

� the window bar pop-up menu
� typing wwindowbar in the command bar.

When you place the cursor over a window bar button, a ScreenTip pops up with the
name of the window, or for an editor, the name of the opened file. You enable
ScreenTips by using the Preferences dialog box or by typing wscreentips in the
command bar. For more information about enabling ScreenTips, see “View Preferences”
on page 61 and “WSCREENTIPS Command” on page 373.

By using drag-and-drop editing, you can use an application’s window bar button to
load a file into an application, such as the Enhanced Editor, that accepts file input. To
load a file:

1 Drag the file on top of the application’s button on the window bar, which makes
the application the active window.

2 Drag the file to the application window.
3 Release the mouse button to load the file into the application.

If you attempt to drop a file onto a windowbar button, SAS issues an error message.

Using Menus
You can access SAS commands, tools, and options by selecting them from the menus

at the top of the main SAS window or by using the pop-up menus within application
windows. The menus display options that are available to the active window. To access
a pop-up menu for a particular window, click the right mouse button anywhere within
the window. The pop-up menu that appears contains the menu items that are available
for that particular window.

Some SAS windows (such as the Explorer window) along with the main SAS window
can contain objects that have their own pop-up menus when you right-click an object.
For example, the command bar, the toolbar, and the status bar each have a pop-up
menu. In these windows, the pop-up menu is specific to the selected object.

Changing the SAS Current Folder

What Is the Current Folder?
The current folder is the operating environment folder to which many but not all of

the SAS commands and actions apply. The current folder is displayed in the status bar

40 Changing the SAS Current Folder � Chapter 2

at the bottom of the main SAS window. By default, SAS uses the folder that is
designated by the SASUSER system option in the SAS configuration file as the current
folder when you begin your SAS session. You can specify a different default current
folder by changing the Start In field that is available in the Properties tab for the SAS
program shortcut or by specifying the SASINITIALFOLDER system option during SAS
invocation. For more information, see “SASINITIALFOLDER System Option” on page
559.

Interactively Selecting a New Current Folder
There are two methods to interactively select a new folder. One method is:

1 Select Tools � Options � Change Current Folder

2 Select a folder from the Change Folder window.

Another method to change the SAS current folder during your SAS session is to
double-click the current folder in the status bar. Then use the Change Folder dialog box
(shown in the following display) to select a new current folder.

Display 2.1 The Change Folder Dialog Box

If you organize your files so that each project has its own folder, then this Change
Folder dialog box enables you to quickly switch between projects. As you select different
projects, the dialog box stores in the Folder list box the directories that you select.

Using SAS Statements to Change the Current Folder
You can change the current drive and folder by submitting the change directory (CD

or CHDIR) command with the X statement in SAS. SAS intercepts the change directory
command and then changes drive commands and changes its current folder.

For example, the following statements change the current folder for your SAS session
to the MYDATA folder and G:\SALES\JUNE folder, respectively:

x ’cd \mydata’;
x ’cd g:\sales\june’;

To change the current drive, you can submit a change drive command (the drive
letter followed by a colon) such as the following:

x ’a:’;

Using the SAS Interface � Issuing SAS Commands 41

Issuing SAS Commands

Using Menus to Issue Commands
Many commands are already assigned to menu items for the windows in which they

apply. For example, selecting the Run menu and then selecting Submit is the same as
typing submit in the command bar.

The items in the menu bar and pop-up menu vary depending on the active window.

Using the Toolbar to Issue Commands
When you start SAS, by default, the toolbar appears at the top of the main SAS

window. The toolbar provides a convenient way to issue commands that you use often.
The toolbar commands are specific for the active SAS window.

To submit a command by using the toolbar, click the tool button that represents the
command that you need.

To learn which tools perform what commands, position the mouse pointer over a tool
briefly to reveal the ScreenTip for that tool.

To undock the toolbar to use it in a separate window or to dock the window to the
main SAS window

1 Position the mouse pointer over the toolbar (not over a tool).

2 Press and hold down the right mouse button.

3 Select Docked.

You can add or change the tools that are defined in the toolbar and customize the
toolbar for an application. For more information, see “Customizing the Toolbar” on page
68.

Using the Command Bar to Issue Commands
The command bar, as shown in Figure 2.1 on page 35, is an integrated command line

that offers a central location from which you can type any SAS command, as long as the
command is valid for the active window. The command bar can also be undocked and
appear in a separate window. It can be moved anywhere on your desktop. If you type a
command that is not valid for the active window, an error message is displayed on the
status bar.

To move your insertion point position to the command bar, press F11.
SAS stores the commands that you type in the command bar from session to session,

and you can easily retrieve previously issued commands by selecting them from the
command list. The default number of commands to save is 15, but you can save from 0
to 50 commands. To change the number of commands to save in the command bar

1 Select Tools � Customize � Toolbars.

2 Press the up or down arrow in Number of commands saved.

By default, SAS stores the commands in the order of most frequently used. To store
commands in the order of most recently used

1 Select Tools � Customize � Toolbars.

2 Select Sort commands by most recently used.

You can also retrieve previously issued commands by using the AutoComplete
feature. When you start to type in the command bar, SAS completes the command that

42 Sending E-Mail Using SAS � Chapter 2

best matches the command that you are entering. When the command that you want
appears in the command bar, press ENTER. To enable AutoComplete

1 Select Tools � Customize.
2 Select Use AutoComplete.
3 Click OK.

To dock or undock the command bar
1 Position the mouse pointer over the command bar (the mouse pointer should not

be in the text field).
2 Press and hold down the right mouse button.
3 Select Docked.

To customize the command bar by using a command, see “COMMAND Command” on
page 333. For more information about the Customize Tools Toolbars tab, see “Setting
General Toolbar Preferences” on page 68.

Using the Command Line to Issue Commands
You can toggle the command line so that each window contains a command line.

Commands that you enter in a window apply only to that window. For example, the
INCLUDE command applies in the Enhanced Editor window, but not in the Log window.

To toggle the command line use the COMMAND command without arguments. You
can also select Command Line from the Preferences dialog box View tab.

For more information, see “Setting Session Preferences” on page 59 and “COMMAND
Command” on page 333.

Sending E-Mail Using SAS

Overview of Sending E-Mail
You can use SAS to send electronic mail either interactively (using a dialog box) or

programmatically (using SAS statements in a DATA step or SCL). SAS supports three
types of electronic mail interfaces:

� MAPI (Mail API, such as Microsoft Exchange, and Lotus Notes)
� VIM (Vendor Independent Mail, such as Lotus Notes)
� SMTP (Simple Mail Transfer Protocol).

You might need to install an e-mail client that supports one of these protocols before
you can use SAS e-mail support. Also, although you can use SAS to send messages, you
must use your e-mail program to view or read messages.

When you send mail interactively, SAS automatically includes the contents of the
active window as an attachment to your e-mail. Depending on the contents of the active
window, the attachment can be a text file (.TXT), a bitmap (.BMP), an HTML file
(.HTML), or an RTF file (.RTF).

SMTP is available only by using the FILENAME statement for e-mail. If you specify
SMTP as the e-mail system in the EMAILSYS system option and you are using an
e-mail dialog box, the MAPI e-mail system is used. For information about using SMTP,
see SAS Language Reference: Concepts as well as the FILENAME Statement, EMAIL
(SMTP) Access Method, and the EMAILHOST and EMAILPORT system options in SAS
Language Reference: Dictionary.

Using the SAS Interface � Sending E-Mail Using SAS 43

Initializing E-Mail
To send e-mail from within SAS, use the following system options that are

appropriate for your e-mail system in the SAS configuration file or when you invoke
your SAS session:

-EMAILSYS MAPI | VIM | SMTP
specifies which e-mail interface to use. By default, SAS uses MAPI. The SMTP
interface is available only when you send e-mail programmatically. SMTP is not
available when you use either your e-mail program native dialog box or the SAS
e-mail dialog box.

Note: The directory that contains the e-mail DLL file (for example,
MAPI32.DLL or VIM32.DLL) must be specified in your Windows PATH
environment variable. SAS will use the first e-mail DLL that it finds for the
interface that you specify. �

-EMAILDLG NATIVE | SAS
specifies whether to use the native e-mail interactive dialog box that is provided by
your e-mail application or the e-mail interface that is provided by SAS. SAS uses
the native dialog box by default.

-EMAILHOST SMTP server
specifies the domain name for the SMTP server that supports e-mail access for
your site. This option is necessary only if you are using the SMTP e-mail interface.

-EMAILAUTHPROTOCOL authorization protocol
specifies the authorization protocol to use in SMTP e-mail. The default
authorization protocol is LOGIN.

-EMAILID VIM e-mail login ID | MAPI profile | e-mail address
specifies either your VIM e-mail login ID, the MAPI profile that you use to access
the underlying e-mail system, or a fully qualified e-mail address if you are using
SMTP. If any of these values contain spaces, you must enclose them in double
quotation marks.

-EMAILPORT port number
specifies the port number to which the SMTP server is attached. This option is
necessary only if you are using the SMTP e-mail interface.

-EMAILPW “password”
specifies your e-mail login password, where password is the login password for
your login name. If password contains spaces, you must enclose the password in
double quotation marks.

For example, if your login ID is J.B. Smith and your password is rosebud, your
SAS invocation might look like this:

c:\sas\sas.exe -emailsys vim
-emailid "J.B. Smith"
-emailpw rosebud

Using Your E-Mail Software to Send Mail
The default value of the EMAILDLG system option is NATIVE, which enables you to

use your own e-mail software when you send e-mail interactively from within SAS. To
send e-mail by using your own e-mail software, do one of the following:

� Select File � Send Mail.
� Type DLGSMAIL in the command bar.

Your e-mail software provides the interface to send mail.

44 Sending E-Mail Using SAS � Chapter 2

Using the SAS Send Mail Dialog Box
If the value of the EMAILDLG system option is set to SAS, you can send electronic

mail by using the Send Mail dialog box that is provided by SAS, as shown in the display.
To send e-mail system by using the SAS Send Mail dialog box, select File � Send

Mail.

Display 2.2 Send Mail Dialog Box

The Send Mail dialog box contains the following fields:

To
the primary recipients of your e-mail. You must specify one or more e-mail
addresses that are valid for your mail system before you can send e-mail. Separate
multiple recipients with a semicolon (;).

Cc
the e-mail addresses of any users that you want to receive a copy of the mail that
you are sending. You can leave this field blank if you want. Separate multiple
recipients with a semicolon (;).

Bcc
specifies the recipients who will receive a copy of the e-mail. These addresses will
not be visible to those individuals in the TO and CC options.

Subject
the subject of your message. You can leave this field blank.

Note
the body of your message. You can copy text from SAS application windows or
other Windows applications and paste it here (using the CTRL+C and CTRL+V
accelerator key combinations). If your note text exceeds the window space that is
provided, you can scroll backward and forward by using the arrow keys, or you can
use the PgUp and PgDn keys.

Some e-mail systems currently limit the note length to 32K (or 32,768
characters). Text that you type in the Note area will automatically wrap at the
right side.

Using the SAS Interface � Sending E-Mail Using SAS 45

For large amounts of text, attach a text file as described below.

Attachments
icons and names of any files that you want to send with the message. You or the
recipient can open an attached file by double-clicking its icon, provided that its file
extension has a File Manager association with a Windows application (for
example, the .TXT extension might be associated with Notepad).

To open a file selection dialog box that you can use to select files to attach, click
Attach File.

To remove an attachment, select the file’s icon in the Attachments field and
click Remove.

Note: The attached files are sent as they exist on the disk; that is, if you edit a
file before attaching it to an e-mail message, the saved version of the file is sent
with the message. �

To verify whether the addresses that you specified in the To and Cc fields are valid,
click Check Names. If one or more of the addresses is ambiguous (that is, the mail
program cannot locate them in the address books) SAS displays an error message and
highlights the first ambiguous address.

Note that an ambiguous address is not necessarily invalid. It is possible to send mail
to recipients who are outside your immediate local-area-network (LAN) by using
gateways, even though the addresses might not be resolved by using Check Names.

Whether an address is considered invalid or ambiguous depends on the e-mail
program that you are using and on the configuration of your network. For example,
suppose you want to send e-mail to a colleague on the Internet. Your LAN might have a
gateway to the Internet that enables you to address the mail to JBrown@rhythm.com
at Internet (where at is the gateway directive keyword and Internet is the name of
a gateway on your LAN). Because your mail program uses the at keyword to direct
your message to the Internet gateway, the address is considered valid. However, when
you click Check Names, the address is considered ambiguous because the final
destination address cannot be resolved by using the local address book. You can still
click Send to send the message without an error.

Clicking Address invokes the address book facility for your e-mail program, provided
that the facility is accessible.

Sending the Contents of a Window by E-mail

When you send mail from within SAS, SAS automatically attaches to the e-mail the
contents of the active window. The type of file that SAS creates depends on the active
window:

Table 2.1 File Type for E-mail Messages (by Active Window)

File Type Active Window

.txt Log

Output

Enhanced Editor

Program Editor

.bmp Explorer

Graphics

Results

46 Sending E-Mail Using SAS � Chapter 2

File Type Active Window

.htm Results Viewer window and the output type is
HTML

.rtf Results Viewer window and the output type is
RTF

Using the DATA Step or SCL to Send E-mail
By using the EMAIL access method, you can use the DATA step or SCL to send

electronic mail from within SAS. This method has several advantages:
� You can use the logic of the DATA step or SCL to subset e-mail distribution based

on a large data set of e-mail addresses.
� You can automatically send e-mail upon completion of a SAS program that you

submitted for batch processing.
� You can direct output through e-mail based on the results of processing.
� You can send e-mail messages from within a SAS/AF FRAME application,

customizing the user interface.

In general, DATA step or SCL code that sends electronic mail has the following
components:

� a FILENAME statement that contains the EMAIL device-type keyword
� options that are specified in the FILENAME or FILE statement that indicate the

e-mail recipients, subject, and any attached files
� PUT statements that contain the body of the message
� PUT statements that contain special e-mail directives (of the form !EM_directive!)

that can override the e-mail attributes (TO, CC, BCC, SUBJECT, ATTACH) or
perform actions (such as SEND, ABORT, and NEWMSG).

To send e-mail by using the DATA step or SCL, you must be signed on to your e-mail
program.

The FILENAME statement syntax to send e-mail is

FILENAME fileref EMAIL ’address’ <email-options>;

where

fileref
is a valid fileref.

EMAIL
is the device-type keyword that indicates that you want to use e-mail.

’address’
is the valid destination e-mail address that you want to send mail to. You must
enclose the address in quotation marks. Specifying an address as a FILENAME
statement argument is optional if you specify the TO= e-mail option or the PUT
statement !EM_TO! directive, which will override an address specification.

email-options
can be any of the following:

Note: Each e-mail option can be specified only in a FILENAME statement that
overrides the corresponding SAS system option. �

EMAILID= e-mail login ID | MAPI profile | e-mail address
specifies your e-mail login ID, MAPI profile name or your SMTP e-mail
address that is used to access the underlying e-mail system. If you specify

Using the SAS Interface � Sending E-Mail Using SAS 47

MAPI in the EMAILSYS system option, specify your profile name. If the
value contains a space, enclose the name in double quotation marks. This
e-mail option can be specified in the FILENAME statement that overrides
the SAS system option.

EMAILPW=“password”
specifies your e-mail login password, where password is the login password
for your login name. If password contains a space, enclose it in double
quotation marks. This e-mail option can be specified in the FILENAME
statement that overrides the SAS system option.

EMAILSYS=MAPI | VIM | SMTP
SAS supports three types of e-mail interfaces:

MAPI
Mail API is the interface that is supported by Windows operating
environments, which is used by Microsoft Exchange. MAPI is the
default.

VIM
Vendor Independent Mail, such as Lotus Notes.

SMTP
Simple Mail Transfer Protocol.

TO=to-address
specifies the primary recipients of the e-mail. If an address contains more
than one word, you must enclose the address in double quotation marks. If
you want to specify more than one address, you must enclose the group of
addresses in parentheses and each address in double quotation marks. For
example, valid TO values are

to="John Smith"
to=("J. Callahan" "P. Sledge")

CC=cc-address
specifies the recipients who will receive a copy of the e-mail. If an address
contains more than one word, you must enclose the address in double
quotation marks. If you want to specify more than one address, you must
enclose the group of addresses in parentheses and each address in double
quotation marks. For example, valid CC values are

cc="John Smith"
cc=("J. Callahan" "P. Sledge")

BCC=bcc-address
specifies the recipients who will receive a copy of the e-mail. These addresses
will not be visible to those individuals in the TO and CC options. If an
address contains more than one word, you must enclose the address in double
quotation marks. If you want to specify more than one address, you must
enclose the group of addresses in parentheses and each address in double
quotation marks. For example, valid BCC values are

bcc="John Smith"
bcc=("J. Callahan" "P. Sledge")

SUBJECT=subject
specifies the subject of the message. If the subject text is longer than one
word (that is, it contains at least one blank space), you must enclose the text
in double quotation marks. You must also use quotation marks if the subject

48 Sending E-Mail Using SAS � Chapter 2

contains any special characters. For example, subject=Sales and
subject="June Report" are valid subjects.

ATTACH=filename.ext
ATTACH=(filename.ext <LRECL=record-length> <RECFM=record-format>)

filename.ext
specifies the full path and filename of one or more files to attach to the
message.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is
256. The value of record-length can range from 1 to 1,073,741,823
(1 gigabyte).

RECFM=record-format
controls the record format. The following values are valid under
Windows:

F indicates fixed format.

N indicates binary format and causes the file to be
treated as a byte stream.

P indicates print format.

V | D indicates variable format. This is the default.
If you want to attach more than one file or if you want to specify a record

length and record format, you must enclose the group of filenames in
parentheses and each filename in double quotation marks. For example,
valid values for file attachments are

attach=opinion.txt
attach=("june2004.txt" "july2004.txt")
attach=("home.html" recfm=v lrecl=372);

If your e-mail system is SMTP, see “FILENAME Statement, EMAIL
(SMTP) Access Method” in SAS Language Reference: Dictionary for
additional ATTACH arguments.

Options that you specify in a FILE statement override any corresponding options
that you specified in the FILENAME statement. In your DATA step, after using the
FILE statement to define your e-mail fileref as the output destination, use PUT
statements to define the body of the message. For an example of using e-mail options in
the FILE statement, see Example Code 2.2 on page 49.

You can also use PUT statements to specify e-mail directives that change the
attributes of your electronic message or perform actions with it. You can specify only
one directive in each PUT statement; each PUT statement can contain only the text
that is associated with the directive that it specifies. The following are the directives
that change your message attributes:

!EM_TO! addresses
replaces the current primary recipient addresses with addresses. If a single
address contains more than one word, you must enclose that address in quotation
marks. If you want to specify more than one address, you must enclose each
address in quotation marks and the group of addresses in parentheses.

!EM_CC! addresses
replaces the current copied recipient addresses with addresses. If you want to
specify more than one address, you must enclose each address in quotation marks
and the group of addresses in parentheses.

Using the SAS Interface � Sending E-Mail Using SAS 49

!EM_BCC! addresses
replaces the current copied recipient addresses with addresses. These recipients
are not visible to the !EM_TO! or !EM_CC! addresses. If you want to specify more
than one address, you must enclose each address in quotation marks and the
group of addresses in parentheses.

!EM_SUBJECT! ’subject’
replaces the current subject of the message with subject.

!EM_ATTACH! filename.ext
replaces the names of any attached files with filename.ext. If you want to specify
more than one file, you must enclose each filename in quotation marks and the
group of filenames in parentheses.

Here are the directives that perform actions:

!EM_SEND!
sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS sends the
message when it encounters the directive, and again at the end of the DATA step.
This directive is useful for writing DATA step programs that conditionally send
messages or use a loop to send multiple messages.

!EM_ABORT!
abends the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step. By default, SAS
sends a message for each FILE statement.

!EM_NEWMSG!
clears all attributes of the current message that were set by using PUT statement
directives.

Example of Sending E-Mail from the DATA Step
Suppose you want to share a copy of your SAS configuration file with your coworker

Jim, whose user ID is JBrown. The following example code shows how to send the file
with the DATA step.

Example Code 2.1 Sending a File with the DATA Step

filename mymail email "JBrown"
subject="My SASV9.CFG file"
attach="c:\sas\sasV9.cfg";

data _null_;
file mymail;
put ’Jim,’;
put ’This is my SAS configuration file.’;
put ’I think you might like the’;
put ’new options I added.’;

run;

The following example code sends a message and attaches a file to multiple
recipients, and specifies the e-mail options in the FILE statement instead of the
FILENAME statement.

Example Code 2.2 Attaching a File and Specifying Options in the FILE Statement

filename outbox email "Ron B";
data _null_;

50 Sending E-Mail Using SAS � Chapter 2

file outbox
/* Overrides value in */
/* filename statement */
to=("Ron B" "Lisa D")
cc=("Margaret Z" "Lenny P")
subject="My SAS output"
attach="c:\sas\results.out"
;
put ’Folks,’;
put ’Attached is my output from the SAS’;
put ’program I ran last night.’;
put ’It worked great!’;

run;

You can use conditional logic in the DATA step to send multiple messages and control
which recipients get which message. For example, suppose you want to send
customized reports to members of two different departments. The following example
code shows such a DATA step.

Example Code 2.3 Sending Customized Messages Using the DATA Step

filename reports email "Jim";
data _null_;

file reports;
length name dept $ 21;
input name dept;
/* Assign the TO attribute */
put ’!EM_TO!’ name;
/* Assign the SUBJECT attribute */
put ’!EM_SUBJECT! Report for ’ dept;
put name ’,’;
put ’Here is the latest report for ’ dept ’.’;
if dept=’marketing’ then

put ’!EM_ATTACH! c:\mktrept.txt’;
else /* ATTACH the appropriate report */

put ’!EM_ATTACH! c:\devrept.txt’;

/* Send the message. */
put ’!EM_SEND!’;
/* Clear the message attributes.*/
put ’!EM_NEWMSG!’;
/* Abort the message before the */
/* RUN statement causes it to */
/* be sent again. */
put ’!EM_ABORT!’;
cards;

Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting e-mail message, and its attachments, are dependent on the department to
which the recipient belongs.

Using the SAS Interface � Sending E-Mail Using SAS 51

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step. �

The following example code shows how to send a message and attach a file to
multiple recipients. It specifies the e-mail options in the FILENAME statement instead
of in the FILE statement. This method will override the values for the SAS system
options EMAILID, EMAILPW, and EMAILSYS.

Example Code 2.4 Overriding SAS System Options

filename outbox email "Ron B" emailsys=VIM
emailpw="mypassword" emailid="myuserid";
data _null_;
file outbox

/* Overrides value in */
/* filename statement */

to=("Ron B" "Lisa D")
cc=("Margaret Z" "Lenny P")
subject="My SAS output"
attach="c:\sas\results.out"
;

put ’Folks,’;
put ’Attached is my output from the SAS’;
put ’program I ran last night.’;
put ’It worked great!’;

run;

Example of Sending E-Mail Using SCL Code
The following example is the SCL code that generates a FRAME entry that is

designed for e-mail. The FRAME entry might look similar to the one shown in the
following display.

Display 2.3 An Example E-Mail FRAME Entry

The FRAME entry has objects that enable the user to type the following information:

MAILTO the user ID to send mail to.

COPYTO the user ID to copy (CC) the mail to.

52 Sending E-Mail Using SAS � Chapter 2

ATTACH the name of a file to attach.

SUBJECT the subject of the mail.

LINE1 the text of the message.

The following example code shows the FRAME entry that also contains SEND button
that invokes this SCL code (marked by the send label).

Example Code 2.5 Invoking SCL Code from a FRAME Entry

send:
/* set up a fileref */
rc = filename(’mailit’,’userid’,’email’);
/* if the fileref was successfully set up,

open the file to write to */
if rc = 0 then do;

fid = fopen(’mailit’,’o’);
if fid > 0 then do;
/* fput statements are used to

implement writing the mail and
the components such as subject,
who to mail to, etc. */

fputrc1= fput(fid,line1);
rc = fwrite(fid);
fputrc2= fput(fid,’!EM_TO! ’||mailto);
rc = fwrite(fid);
fputrc3= fput(fid,’!EM_CC! ’||copyto);
rc = fwrite(fid);
fputrc4= fput(fid,’!EM_ATTACH! ’||attach);
rc = fwrite(fid);
fputrc5= fput(fid,’!EM_SUBJECT! ’||subject);
rc = fwrite(fid);
closerc= fclose(fid);

end;
end;

return;
cancel:

call execcmd(’end’);
return;

Example of Sending E-Mail Using SMTP
The following examples show how you can send e-mail by using SMTP from a DATA

step and how you can send your ODS HTML output as HTML and not as an
attachment to your e-mail.

To use SMTP you need an SMTP e-mail server that you can access.
To configure SAS to use SMTP, add these system options to your configuration file:
� -emailsys SMTP
� -emailhost your.email.server.com
� -emailport 25.

Ask your system administrator for the location of your.email.server.com. Port 25 is
the most common port.

The following code uses the FILENAME statement and a DATA step to send e-mail:

filename mymail email from="yourid@email.com"
to="id1@.emailaddr.com" "id2@emailaddr.com")

Using the SAS Interface � Saving Windows to External Files 53

subject="Put Subject Here"
content_type="text/html";

data _null_;
file mymail;
put ’hello world’;

run;
quit;

You can also send an attachment by using the ATTACH e-mail option in the
FILENAME statement. Compress non-textual attachments such as SAS data sets,
bitmap files, and HTML files before using the ATTACH e-mail option.

You can also use SMTP to send HTML output without using an attachment:

filename temp1 email to=("yourid@email.com")
from="wileycoyote@acme.com"
subject="HTML OUTPUT"
content_type="text/html";

ods html body=temp1 style=default;
proc print data=sashelp.class;
run;
ods html close;

Saving Windows to External Files

You can save any text editor window, such as the Enhanced Editor window, the
Program Editor window, or other SAS windows, such as the Log, Output, or Results
Viewer windows to an external file.

To save the contents of the active window to a file:

1 Either click the Save button (the diskette) or select the File menu and select Save.
If you have previously saved the contents of this window to a file (and the filename
is part of the window title), SAS saves the contents to the file that you specified
previously. If you have not saved the window contents during this session, then
SAS displays the Save As dialog box.

If you have previously saved the window contents but now want to save the
window contents to a different file, type dlgsave in the command bar or select
File � Save As.

CAUTION:
Using Save instead of Save As from the File menu to save a file causes SAS to
overwrite or append the file. Always use Save As when you want to save the
contents of the editor to a new file. If you open a text file in the editor window,
whether you use the Open dialog box or the INCLUDE command, the editor
title bar displays the name of the file that you opened. When you select the File
menu and then the Save item, SAS overwrites or appends the file of that name
with the current contents of the editor. �

2 Select or name the file in which to store the window contents. You can also select a
file type from the Save file as type list. SAS saves most file types as plain text
and assigns different file extensions based on the type you select; the exception is
the RTF file type, which SAS saves in rich text format (RTF).

If you select a file type from the list, SAS remembers that selection and presents
it as the default type the next time that you save a new file in that window.

54 Clearing the Window and Filename � Chapter 2

Clearing the Window and Filename

To clear a SAS window of its contents and saved filename (if it has one), do one of
the following

� Press CTRL + E

� Select Clear All from the Edit menu

� Click the New (the blank page) button

� Select the File menu and select either New or New Program

� Type CLEAR in the command bar and press ENTER.

If the contents of the window have not been saved, SAS prompts you to save the
contents before it clears the window.

Defining Keys

To display the key definitions that are active for the SAS session (that is, the
DMKEYS entry in your Sasuser.Profile catalog), either type KEYS in the command bar
or select Tools � Options � Keys. These key definitions apply to the basic SAS
windows, such as the Enhanced Editor, Output, and Log windows. For a list of default
keys, see “Default Key Definitions under Windows” on page 623 and “Keyboard
Shortcuts within the Enhanced Editor” on page 626.

To define or redefine a key within SAS:

1 Click the mouse pointer in the Definition column across from the key or mouse
button that you want to define.

2 Type the command or commands that you want to associate with that key or
button.

The definition must be a valid SAS command or sequence of commands. When you
specify a sequence of commands, separate the commands with a semicolon (;). For
example, if you want to define the Ctrl + H key sequence to maximize a window and
recall the last submitted program, specify the following commands in the Definitions
column next to CTL H:

zoom; recall

SAS does not check the syntax of a command until it is used (that is, when the key is
pressed). If you misspell a command or type an incorrect command, you do not discover
your error until you use the key and receive an error message that indicates that the
command was unrecognized.

Key definitions are stored in your Sasuser.Profile catalog. SAS creates a Profile
catalog each time you invoke SAS with a different value for the SASUSER option.
Changes that you make to one Profile catalog are not reflected in any other catalog.
However, you can use the COPY command from the KEYS window or the CATALOG
procedure to copy key definition members to other Profile catalogs. For more
information, see the CATALOG procedure in Base SAS Procedures Guide.

Although SAS enables you to define any key that is listed in the KEYS window,
Windows reserves some keys for itself to maintain conformity among Windows
applications. These reserved keys are not shown in the KEYS window.

Other SAS products have their own key definitions. Use the menus in the specific
product window to access key definitions for specific products.

Using the SAS Interface � Using the Clipboard 55

Navigating with Microsoft IntelliMouse
SAS provides support for the Microsoft IntelliMouse. The IntelliMouse is a modified

mouse that includes a rotation wheel (wheel control) that enables new forms of
navigation. The IntelliMouse works within the SAS windows that use a vertical scroll
bar to scroll the window contents.

With the IntelliMouse, you can use the mouse to scroll instead of interacting with the
navigational controls in the SAS windows. To scroll with the IntelliMouse, you rotate
the wheel control forward or backward, which is equivalent to pressing the up arrow or
down arrow on the scroll bar.

The IntelliMouse also supports AutoScroll. To initiate AutoScroll, click the mouse
wheel and then move the mouse away from the origination point. The contents of the
window starts to scroll in the direction that you move the mouse. The farther away you
move the mouse from the origination point, the faster the contents scroll. Pressing a
key, clicking a mouse button, or rotating the mouse wheel terminate AutoScroll mode.

You can modify IntelliMouse settings through the Windows Control Panel mouse
settings. For more information about IntelliMouse, see the Microsoft documentation.

Using the Clipboard
The Windows clipboard enables you to exchange text and graphics between

applications. You can also submit SAS code that is stored on the clipboard. The
clipboard uses operating environment memory as an intermediate storage buffer for
exchanging text and graphics. With the clipboard, you can move text between

� windows within SAS

� SAS and other Windows applications

� two SAS sessions

� two SAS processes.

SAS communicates with the clipboard using these formats:

SAS text format
preserves the text and color attributes between SAS sessions. This format is
understood by SAS, but not by other Windows applications.

Windows text format
is understood by most Windows applications and is called the ANSI text format.

RTF text format
encapsulates text font and highlighting attributes when copying text between
applications that both support RTF format. SAS can cut and copy text in RTF
format; you cannot paste RTF text into a SAS window.

Unicode text format
is a universal text format that can represent all possible characters. The format is
also referred to as a wide-character format. For more information about this text
format, see your Microsoft documentation.

Windows bitmap format
is for graphics. This format is understood by most Windows applications and is
called the BITMAP format.

Windows metafile (WMF) format
is used in many SAS applications, such as the Graphics Editor in SAS/GRAPH
software, SAS/QC software’s ISHIKAWA procedure, and SAS/INSIGHT software.

56 Using the Clipboard � Chapter 2

The metafile format provides more information about the image than the bitmap
format and is sometimes called the PICTURE format.

DIB (Device Independent Bitmap) format
is used with color bitmap files. When a bitmap is stored in the DIB format, colors
correspond correctly from one device to another.

These formats enable you to copy text and SAS bitmapped information (for example,
from a graphic) to another application. You can also use the Print Screen and ALT+
Print Screen keys to copy information from your SAS session to the clipboard. Pressing
the Print Screen key places the entire display in bitmap form on the clipboard. Pressing
ALT+Print Screen places just the SAS session (including any menus and scroll bars) or
the active dialog box (if any) on the clipboard.

You can use the clipboard only if both the source and destination applications provide
support for the clipboard facility and for the format you are using. Note that whereas
some operating environments allow multiple paste buffers, SAS uses the Windows
clipboard, which is a single buffer.

Selecting and Copying Text
For windows that contain text, such as the Enhanced Editor, Notepad, Log, Output,

and KEYS windows, you can hold down either the left mouse button or ALT + the left
mouse button and drag the mouse to mark the area that you want to cut or copy.
Holding down the left mouse button when you are selecting multiple lines selects whole
lines of text. Holding down ALT + the left mouse button selects a rectangular block or
column of text. The text area is immediately marked in reverse video while you are
dragging the mouse. In text windows, you can scroll while you are dragging the mouse
by moving the mouse pointer beyond the border of the window in the direction that you
want to scroll. To extend the selection of a text area, use the SHIFT key + the left mouse
button. Release the mouse button when you have included all the text you want to copy.

To copy marked text to the clipboard, do one of the following:
� press Ctrl + C
� click the Copy button (the double document)
� select the Edit menu and then select Copy.

To paste text that is stored on the clipboard, position the insertion pointer in a text
area of a window and do one of the following:

� press Ctrl + V
� click the Paste button (the clipboard and document)
� select the Edit menu and then select Paste.

The text from the clipboard is pasted to the area that you indicate. If there is already
an area of selected text within the target window, the selected text is replaced with
contents of the clipboard. You can paste text only into SAS windows that accept text
input, such as the Enhanced Editor or the SAS Notepad.

Selecting and Copying in Nontext Windows
For windows such as SAS/GRAPH windows, an area is marked by a box, not by

reverse video. The box indicates that the area you are marking is in bitmap format.
After you finish marking an area, you can copy it to the clipboard. If the window you
are working in has no Edit pop-up menu, you can use the following key combinations to
perform the copy and paste functions:

CTRL+C copies the selection to the clipboard.

CTRL+V pastes the contents of the clipboard.

Using the SAS Interface � Creating Text Highlighting and Special Characters 57

Pasting Bitmapped Information into Your SAS Session

Some windows, such as the BUILD: DISPLAY window for FRAME entries in
SAS/AF software, allow you to paste bitmaps into the window. For more information,
see “Pasting an OLE Object from the Clipboard” on page 245.

Also, you can paste bitmaps into the SAS/GRAPH window to import graphics. For
more information, see “Importing Graphics from Other Applications” on page 190.

Submitting SAS Code from the Clipboard

SAS enables you to use the Windows clipboard to submit SAS code. This feature can
be used to copy or cut SAS code from another application, such as the Windows Notepad
or another text editor, and submit it to SAS for execution. This feature is also
convenient for submitting the sample programs that are available in SAS Help and
Documentation.

To submit SAS code that is stored on the clipboard, select the Run menu and then
select Submit clipboard when the Enhanced Editor window or the Program Editor
window is active. Alternatively, you can use the GSUBMIT command from the
command line, with the following syntax:

gsubmit buf=default

The GSUBMIT command can be used to submit SAS code that stored on the
clipboard even if the editor window is not the active window (or is closed). If you use
the GSUBMIT command often, you can define an icon for the command in the toolbar,
or assign the GSUBMIT command to a function key. For more information about how to
define buttons, see “Customizing the Toolbar” on page 68.

If you submit SAS code from the Windows clipboard while a procedure RUN group is
active, the submit will fail. You can submit this code by copying the code to a new
Enhanced Editor window and then submitting the code.

Creating Text Highlighting and Special Characters

Special Character Attributes

The SAS Notepad and SAS/AF applications let you use extended color and highlight
attributes for text. To access these attributes, press the ESC key and the appropriate
letter or number to toggle a color or attribute. With this feature, you can alter the color
or attributes of entire lines or individual words or letters. Valid colors and attributes,
as well as the keys that you use to implement them, are listed in Table 2.2 on page 57
and Table 2.3 on page 58. You can type the letters for the colors in either uppercase or
lowercase letters.

Table 2.2 Extended Color Key Sequences

Key Color Key Color

ESC+A gray ESC+B blue

ESC+C cyan ESC+G green

ESC+K black ESC+M magenta

ESC+N brown ESC+O orange

58 Customizing Your SAS Session � Chapter 2

Key Color Key Color

ESC+P pink ESC+R red

ESC+W white ESC+Y yellow

Table 2.3 Extended Attribute Key Sequences

Key Description

ESC+0 turns off all highlighting attributes.

ESC+2 turns on the underline attribute.

ESC+3 turns on the reverse-video attribute.

Alternate ASCII Characters
If you want to create alternate ASCII characters such as foreign language characters,

you can use the ALT key in combination with the ASCII character code. Use the
numeric keypad and press the Num Lock key to enter the character code. For a list of
ASCII character codes and instructions about how to use the ALT key sequences, see
your Microsoft documentation.

Customizing Your SAS Session

Selecting Fonts
To change the font for button text and descriptive text elements, use the

SYSGUIFONT system option either in the configuration file or at the command prompt
when you start SAS.

To choose a different font or point size for text in SAS windows, open the Fonts
dialog box by using the DLGFONT command or by selecting Tools � Options � Fonts

To change the font in the Enhanced Editor, select Tools � Options � Enhanced
Editor and click the Appearance tab.

The fonts that are available for SAS windows depend on the monospace fonts that
you have installed under Windows. For example, you might have the Courier font and
Lucida Console font available.

When you select a font or point size, the Font dialog box and the Enhanced Editor
Options dialog box display a sample of the font that you have selected. For more
information about selecting fonts for the Enhanced Editor, select Help � Using This
Window or press F1 when the Enhanced Editor is the active window.

When you install SAS, the Setup program automatically installs a TrueType font,
named SAS Monospace, that is designed specifically for use with SAS. This font, in
combination with the Sasfont display font, ensures that tabular output is formatted
properly whether you view it in the Output window, print it, or copy it to another
Windows application.

By default, SAS uses the SAS Monospace font to produce printed output. In addition,
any text that you cut, copy, or drag from a SAS window to paste into another Windows
application will be formatted with the SAS Monospace font.

You cannot use the Fonts item to select SAS/GRAPH fonts.

Using the SAS Interface � Setting Session Preferences 59

CAUTION:
Beware of changing certain display characteristics on low-resolution displays. If you
select large font sizes on some monitors, you might not be able to see all the text in
your SAS windows at one time. In windows that have no scroll bars, large font sizes
can hide some choices, causing them to be invisible. For these types of displays, large
font sizes are not recommended. This same problem can occur if you change the
Windows Appearance properties and select a thick window border. On low-resolution
displays, you should not use thick window borders. �

Setting Session Preferences

Introduction to Setting Session Preferences
You can configure your SAS session to accommodate the way that you like to work.

For example:
� You can use the command bar in a separate, movable window.
� You can set preferences for scrolling behavior and window appearance.
� You can set a preferred Web browser to use when viewing Internet Web pages or

HTML output.

The following sections describe the Preferences dialog box and how to use these
settings to control your SAS session.

Using the Preferences Dialog Box
To customize your SAS session, open the Preferences dialog box in one of the

following ways:
� Type dlgpref in the command bar
� Select Tools � Options � Preferences

The Preferences dialog box contains tabs that separate the session settings into
categories. Click the tabs for each sheet to navigate to the settings that you want to
change, and then select the options that you want. When you are finished, click OK.

The settings that you select are saved from session to session in the Sasuser.Profile
catalog by their respective pages, except for the Results tab. The entries in the
Sasuser.Profile are GENWSAVE, VIEWWSAVE, EDITWSAVE, WEBWSAVE, and
ADVWSAVE. The Results tab settings are saved in the SAS registry, so they are not
moved to another machine when the Sasuser.Profile catalog is copied.

60 Setting Session Preferences � Chapter 2

Display 2.4 Preferences Dialog Box (showing the General tab)

General Preferences
The General tab enables you specify the general options that control how your SAS

session works. The following are the General options:

Recently used file list
specifies whether SAS retains a list of the files that you have accessed. If this
option is selected, you can specify in the entries field up to 30 files that you want
to retain. Show recently used file list on submenu specifies whether the
files will be displayed from the Recent Files submenu that you access from the
File menu. If Show recently used file list on submenu is not selected, the
files are displayed in the File menu. Each time that you access a file from an
editor window, the filename is added to the list.

Confirm exit
specifies whether you want SAS to prompt you for confirmation before you end
your SAS session.

Save settings on exit
specifies whether SAS should automatically save your settings when you exit your
SAS session.

Submit contents of file opened
specifies whether you want to submit the contents of all files that you open to SAS.

Mail current window as attachment
specifies whether the active window should be automatically included as an e-mail
attachment when you initiate electronic mail from within SAS. If you select this
option, then you can also specify whether the attachment should be formatted as
plain text or as RTF (rich text format, which retains font and color information).

Using the SAS Interface � Setting Session Preferences 61

View Preferences
The View tab lets you specify the options that control the appearance of your SAS

session. The View options include

Window
specifies whether your SAS windows contain scroll bars and a command line. You
can also enable or disable ScreenTips (the helpful hints that appear when you
position your mouse pointer over window controls).

Show
specifies whether to show certain aspects of the SAS interface, including the
following settings:

Docking View
specifies whether to enable the docking area so that windows that can be
docked appear on the left side of the main SAS window.

Window Bar
specifies whether to display the window bar at the bottom of the main SAS
window.

status bar
specifies which aspects of the status bar, if any, you want to have visible in
your session. Display message lines specifies whether to display the
message area of the status bar. Display current folder specifies whether
to display the SAS current folder area. Display cursor position specifies
whether to display the line and column position of the Enhanced Editor
insertion point.

Edit Preferences
The Edit tab controls options that affect the SAS text editors, including:

Overtype mode
specifies whether to insert text or type over on existing text when you type text in
a SAS application window. You can also toggle the overtype mode by pressing the
Insert key on your keyboard. Overtype mode is not available for the Enhanced
Editor.

Autosave every n minutes
specifies whether to automatically save the contents of the editor, and how often to
save it.

The Enhanced Editor contents are saved as Autosave of filename.$AS in the
operating environment Application Data folder. Under Windows Vista, the
pathname for the Application Data folder is c:\Users\ user ID\AppData. Under
all other Windows operating environments, the pathname for the Application Data
folder is c:\Documents and Settings\user ID\Application Data.

The Program Editor contents are saved to pgm.asv in the current active folder
so that you can recover your work in the event that your SAS session ends without
enabling you to save the contents of the editor.

Enable unmarking with navigation keys
enables you to unmark text by using the UP, DOWN, LEFT, and RIGHT
navigation keys.

Use Enhanced Editor
specifies whether the Enhanced Editor is the primary editor. If this check box is
not selected, the Program Editor opens when SAS starts.

62 Setting Session Preferences � Chapter 2

Results Preferences
The Results tab enables you to configure how you would like to view your program

output results. The Results tab options include the following:

Listing
specifies to display program output in the Output window.

HTML

Create HTML
specifies to display program output in HTML format.

Folder
specifies a folder to store HTML output files. You can either type a folder
name or click Browse to search for a folder. This setting is available only
when the Use WORK folder setting is not selected.

Use WORK folder
specifies to store HTML output files in the Work folder. The Work folder is a
temporary folder that is deleted when SAS closes.

Style
enables you to choose the appearance of the program output. For more
information about styles, see the TEMPLATE procedure in SAS Output
Delivery System: User’s Guide.

View results as they are generated
specifies whether to update the browser with the latest generated HTML output.

View results using
specifies a browser to view HTML program output. Internal browser is
available if Microsoft Internet Explorer is installed. When Internal browser is
selected, SAS displays HTML output using the Results Viewer.

If you select Preferred browser, your HTML output appears using the
browser that is specified by the Preferred browser - Other text field of the
Preferences dialog box Web tab.

Note: If you select Use default in the Preferences dialog box Web tab, your
output is displayed using the browser that is registered with Windows. �

Web Preferences
The Web tab enables you to specify your preferred Web browser for use within your

SAS session. These preferences are used whenever you issue the WBROWSE command
(either directly or by selecting a Help menu item or toolbar button that issues the
command). For more information, see “WBROWSE Command” on page 361. You can
specify the following Web options:

Preferred browser
specifies the preferred Web browser to use when accessing Web information from
within SAS. By default, SAS uses the browser that is installed on your system and
registered with Windows as the default browser. To use a browser other than the
default, select the Other radio button and either type a path to the Web browser
or click Browse to search for the path to the Web browser.

Start page
specifies the default Web page to which to navigate when invoking the web
browser within SAS. By default, the browser navigates to http://www.sas.com (the
SAS Institute home page on the World Wide Web).

Using the SAS Interface � Customizing Your Windowing Environment with Commands 63

Advanced Preferences
The Advanced tab enables you to specify options that can affect your SAS session,

including scrolling policy and other miscellaneous behavior. The Advanced options
include

Scrolling Options
specifies the number of lines that the Log and Output windows scroll when
information is written to them. The default value for the Log window is 8.

When you select Scroll page, the Output window will not display any lines
until an entire page is written.

When Scroll max is selected, no output will be written to the window until the
procedure is complete.

If Scroll lines is selected and the Output window is full, the Output window
scrolls the number of lines specified in the Scroll lines box. The default value is
0. If the value is 0, no output is written to that window while statements are
executing, thus providing the best performance.

Scrolling can increase the length of time that SAS takes to run your program.
The less that the Log and Output windows have to scroll, the faster your program
will run.

You can also set these values by using the Editor Options window or the
AUTOSCROLL command. For more information, see “AUTOSCROLL Command”
on page 329 and the SAS Help and Documentation.

Other
The following settings are miscellaneous options settings:

Hide cursor in non-input windows
specifies that the insertion point will not appear in windows that do not
require text input, such as some SAS/AF programs.

Disable scroll bar focus
specifies that the scroll bar does not become the selected window component
when you click it. This setting eliminates flashing problems that can occur in
some SAS applications.

Customizing Your Windowing Environment with Commands

Customizing Window Positions

In the default display configuration of an interactive session (shown in Figure 2.1 on
page 35) the main SAS window displays the Explorer and Results windows as docked
windows, and the Log, Enhanced Editor, and Output windows in the remaining SAS
workspace.

Using the Windows menu, you can position SAS windows in the same manner as
other Windows applications:

� Minimize (Restore) All Windows

� Cascade

� Tile Vertically

� Tile Horizontally

� Resize

64 Customizing Your Windowing Environment with Commands � Chapter 2

While the default configuration is sufficient for efficient SAS use, you can open more
windows for easy access and rearrange the windows within the main SAS window. For
example, you can keep the My Favorite Folders window open, but minimized, and the
windows arranged in a mosaic pattern so you can see all of them at once.

To accomplish this configuration

1 Open the My Favorite Folders by selecting View � My Favorite Folders

2 Select the minimize button in the window title bar for the My Favorite Folders
window

3 Select Windows � Tile Vertically

The following display shows the resulting main SAS window:

Display 2.5 Customized SAS Session

In addition, you can undock windows so that all windows can be positioned where
you want them or you can minimize the docking view. For more information about the
docking view, see “Using the Docking View” on page 37.

For a list of SAS commands used to control the appearance of the main SAS window,
see “SAS Commands That Control the Main SAS Window” on page 318.

Changing the Window Colors

Changing the color of window components is a shared responsibility of Windows and
SAS. You change the color of most standard window parts by changing the properties of
the Windows desktop. Several window element colors are controlled by SAS (such as
the color of error message text in the Log).

To change a window component that is controlled by SAS do one of the following

� Enter sascolor in the command bar

� Select Tools � Options � Colors

Use the SASCOLOR window to choose the colors for specific elements.
Close and reopen any active windows for new color settings to take effect.
For more information, see the SAS Help and Documentation for the SASCOLOR

window.

Using the SAS Interface � Customizing Your Windowing Environment with System Options 65

Customizing Your Windowing Environment with System Options
Several SAS system options are available to control the default windowing

environment within SAS. The most commonly used options are the following:

AWSDEF
specifies the location and dimensions of the main SAS window when SAS
initializes.

AWSTITLE
specifies the text for the main SAS window title bar.

HELPREGISTER
enables you to add Help to the main SAS window Help menu in order to access
custom Help. See “HELPREGISTER System Option” on page 521.

ICON
minimizes the SAS window when SAS initializes.

REGISTER
enables you to add applications to the main SAS window Tools menu so that you
can execute them by clicking their names.

SASINITIALFOLDER
specifies the pathnames to set for the current folder and the default folder for the
Open and Save As dialog boxes when SAS starts.

SPLASHLOC and NOSPLASH
specifies the pathname or the dynamic link library name of the logo screen that is
to appear at the start of a SAS session, or it specifies to suppress the logo screen.

USERICON
specifies user-defined icons to be incorporated into SAS/AF applications.

WEBUI
specifies to enable use of the pointer to select an object and a single click to invoke
the object’s default action.

These system options can be specified in your SAS configuration file or in the SAS
command when you start SAS from a command prompt. Some are also valid in an
OPTIONS statement. For details about the syntax of these options and about where
you can specify them, see “SAS System Options under Windows” on page 475. For a
comprehensive list of these options, see “SAS System Options That Control the Main
SAS Window” on page 317.

Changing the Size and Placement of the Main SAS Window
The AWSDEF system option enables you to control the placement and size of the

main SAS window when SAS initializes. If you want your SAS session always to occupy
the upper-left quarter of your screen, specify the following AWSDEF option in your SAS
configuration file:

-awsdef 0 0 50 50

For more information, see “AWSDEF System Option” on page 498.

66 Customizing Your Windowing Environment with System Options � Chapter 2

Changing the Title of Your SAS Session
By default, the main SAS title bar contains the text SAS. If you want a different

title, you can use the AWSTITLE system option. For example, to set the title to My SAS
Session, specify the following option in your SAS configuration file:

-awstitle "My SAS Session"

For more information, see “AWSTITLE System Option” on page 500.

Adding Help to the Help Menu
The HELPREGISTER system option enables you to access customized help from the

main SAS window Help menu. You can add up to 20 WinHelp (.hlp), HTML (.htm), or
Microsoft HTML Help (.chm) files to the Help menu. HELPREGISTER system option
arguments enable you to

� link to a topic within a Help file
� customize the text that appears in the Help menu
� customize the text that appears in the message line when you position the pointer

over the Help menu item.

Note: WinHelp (WinHlp32.exe) is no longer supported by Microsoft and is excluded
from Windows Vista. The preferred method is Microsoft HTML Help (.chm). �

To add multiple Help files to the Help menu, use multiple HELPREGISTER system
options either in your configuration file or at the command prompt when you start SAS.

The following example adds the Help file My Help.htm to the Help menu:

sas -helpregister "My Help" c:\mysashelp\myHelp.htm html

For more information, see “HELPREGISTER System Option” on page 521.

Minimizing Your SAS Session
The ICON system option causes SAS to be minimized at invocation. If you are

running a batch job, you might want to use this system option to save space on your
screen. For more information, see “ICON System Option” on page 524.

Adding Applications to the Tools Menu
The REGISTER system option enables you to add names of applications to the Tools

menu of the main SAS window. You can execute one of these applications by clicking its
name. The REGISTER system option takes as arguments a menu name and an
operating environment command or a path specification for an executable file. You can
also specify a working folder.

The following is an example that adds a command to print the contents of the SAS
folder:

-register "Contents of SAS"
"dir c:\program files\sas"

When you click Contents of SAS in the Tools menu, the output of the Windows DIR
command is displayed in a command prompt window.

The following is an example of adding an .EXE file to the menu along with a
specification of a working folder of C:\EXDATA:

-register "Excel" "excel.exe" "c:\exdata"

This action adds Excel to the menu. When you click Excel, the file EXCEL.EXE is
invoked.

Using the SAS Interface � Customizing Your Windowing Environment with System Options 67

The REGISTER system option is valid only as an invocation option (that is, in a SAS
configuration file or in the SAS invocation command). For more information, see
“REGISTER System Option” on page 553.

Setting the Initial Path For the Current Folder and the Paths Specified in
the Open and Save Dialog Boxes

If you want to start SAS with a current folder other than the default current folder,
use the SASINITIALFOLDER system option when you start SAS. The pathname that
you specify in the SASINITIALFOLDER option sets the initial current folder as well as
the initial pathname for the Open and Save As dialog boxes.

You can specify the SASINITIALFOLDER option either on the command line when
you start SAS or in a configuration file. For example, you might specify sas
-sasinitialfolder "c:\mySasFiles" to start SAS.

For more information, see “SASINITIALFOLDER System Option” on page 559.

Displaying a Custom Logo Screen during SAS Invocation
To display your own logo when SAS starts

1 Create the logo that you want to display and save it either as a Windows bitmap
(which has a .bmp file extension), or compile it as a resource and build it into a
dynamic link library.

2 When you invoke SAS, specify the -SPLASHLOC system option with the full
pathname of the file that contains your bitmap. If the bitmap is in a DLL, you
must specify the resource number as well. The default resource number is 1.

For example, if your logo is stored in C:\MYBMPS\SPLASH.BMP specify the following
SPLASHLOC system option:

-splashloc c:\mybmps\splash.bmp

If your logo is stored in C:\MYDLLS\OPENING.DLL as resource 101, you specify the
following SPLASHLOC system option:

-splashloc c:\mydlls\opening.dll 101

For more information, see “SPLASHLOC System Option” on page 571.

Adding User-Defined Icons to SAS
The USERICON system option enables you to add your own icons to SAS. These

icons can be used with SAS/AF and SAS/EIS applications. The syntax for the
USERICON system option is as follows:

-USERICON icon-resource-file number-of-icons

The icon-resource-file argument specifies the full path to a dynamic link library
(DLL) file that contains the user icons. The number-of-icons argument specifies the
number of icons found in the resource file. For example, the following system option
specifies that there are four icons located in an icon resource file named ICONS.DLL
found in the C:\JUNK folder:

-usericon c:\junk\icons.dll 4

The DLL that is used as the icon resource file must be created using the Win32
Software Development Kit (and must therefore be 32-bit). For more information about
how to build a resource file, refer to the documentation for the Microsoft Win32
Software Development Kit.

68 Customizing the Toolbar � Chapter 2

You can incorporate icons into your SAS/AF and SAS/EIS applications using a
FRAME entry. For more information, see “USERICON System Option” on page 582 and
refer to the SAS Help and Documentation for SAS/AF software and SAS/EIS software.

Enabling Web Enhancements in SAS
If you have Microsoft Internet Explorer 5.0 (IE) or greater installed, the WEBUI

system option enables some SAS windows, such as the SAS Explorer window, to work
like an IE web page where pointing to an object selects the object and a single
mouse-click invokes the default action.

To select a range of objects, press and hold down the SHIFT key, and point to the
first and last objects in the group.

To select multiple items, press and hold down the CTRL key, and point to individual
items in the group.

Customizing the Toolbar

Introduction to Customizing the Toolbar
SAS assigns several commonly used commands to the buttons for your convenience.

You can customize the toolbar settings to access commonly used commands or create a
toolbar with a specific application window. This section describes how to customize the
toolbar settings.

Using the Customize Tools Dialog Box
You customize all toolbar settings using the Customize tools dialog box. To open the

Customize Tools dialog box, do one of the following:
� Enter TOOLEDIT in the command bar.
� Select Tools � Customize

Use the Toolbars tab for general toolbar settings and the Customize tab to define
tools on the toolbar.

Setting General Toolbar Preferences
The Toolbars tab has settings to control the behavior and appearance of the

toolbar. Tool options include:

General
specifies button appearance and Help options. These options include:

Large icons
specifies whether to use the set of large buttons on the toolbar. This setting is
useful for high-resolution displays.

Show ScreenTips on toolbars
specifies whether to display a brief button description when you place the
pointer over the button.

Toolbars
specifies whether to display the toolbar and command bar. These options include:

Application Toolbar
specifies whether to display the toolbar for the active application.

Using the SAS Interface � Customizing the Toolbar 69

Command Bar
specifies to display the command bar and enable the options to use the
command bar.

When Use AutoComplete is selected, SAS stores commands that were
entered previously and completes the command once you start typing
the command.

Select Sort commands by most recently used to display commands in
the command bar list by the most recently entered command. If this
setting is not selected, the commands are ordered by the most frequently
used.

In Number of commands saved, type the number of commands to save in
the command bar list. Valid values range between zero and 50. The
default is 15.

When you have configured the Toolbars tab, either click Customize to complete
your customization or click OK to close the dialog box.

Customizing a Toolbar

The Customize tab, as shown in the following display, enables you to add, delete,
and modify commands on the toolbar.

Display 2.6 Customize Tab of the Customize Tools Dialog Box

The following explains each of the buttons (commands) and fields:

Open
Opens a toolbar file.

Save
Saves a toolbar file.

70 Customizing the Toolbar � Chapter 2

Restore
Restores a toolbar to the default settings.

Title
Displays the title text which appears in the title bar when the toolbar is undocked.

Add a tool
Adds a tool or a separator space to the toolbar. This tool has two parts. When you
click the left button a blank tool is added to the toolbar. When you click the down
arrow, you can select to add either a Blank tool or Separator. Windows that
define an action set (for example, Explorer) have a selection for Action.

Remove tool
Deletes the selected tool from the toolbar list.

Change icon
Opens the Bitmap Browser for you to select a new icon for the selected tool.

Move tool up
Moves a tool up one position in the toolbar list.

Move tool down
Moves a tool down one position in the toolbar list.

Cut
Deletes the selected icon from the toolbar list and places it in the clipboard.

Copy
Places a copy of the selected icon in the clipboard.

Paste
Copies an icon from the clipboard to the selected tool in the toolbar list.

Command
displays the command for the tool that is selected in the toolbar list. You can
modify the command in the Command box.

Help Text
displays the Help text that appears in the status bar message area when the
pointer is placed over the button in the toolbar. You modify the Help text in the
Help Text box.

Tip Text
displays the ScreenTip that appears under the button when the pointer is placed
over the button in the toolbar. You modify the tip text in the Tip Text box.

Toolbar list
lists the buttons, commands, Help text and separators that are defined in the
toolbar.

Adding a Tool to the Toolbar
To add a tool to the toolbar:

1 Do one of the following:
� Click the Add tool button to add a blank tool to the toolbar list. Enter a SAS

command in the Command box.
� For windows that have a set of predefined tools, such as the Explorer window

or the My Favorite Folders window, click the Add tool down arrow and select
Action. From the Add Action dialog box, select an action. This selection adds
a new action to the toolbar. You can enter multiple commands separated by
semicolons.

Using the SAS Interface � Customizing and Saving a Toolbar 71

� Click the Add tool down arrow and select Separator to add a separator to
the toolbar list.

2 Click the Bitmap Browser button to select an icon for the tool. When you have
selected an icon, click OK.

3 Type Help text in the Help Text box.
4 Type ScreenTip text in the Tip Text box.
5 Position the tool in the toolbar list by clicking the Move tool up and Move tool

down buttons.
6 When you are finished, click Save. In the Save Tools dialog box, type the library,

catalog, and toolbox name. Then click OK.

Display 2.7 Bitmap Browser Dialog Box

Removing a Tool from the Toolbar
To remove a tool from the toolbar:
1 Select the tool in the toolbar list that you want to remove.
2 Click Remove tool.
3 When you are finished, click Save.

Customizing and Saving a Toolbar for Use with a Particular Application or
Window

Before you add a command to a toolbar, ensure that the command is available from
a menu. Buttons are enabled only if the command is available from a menu, with the
exception of the Print and Copy commands, which are always enabled.

Use the following procedure to customize a toolbar to use with a particular
application or window:

1 Click in the application or window to make it the active window.
2 Customize the toolbar by adding and removing tools as described in previous

sections.
3 When you are finished customizing the toolbar, click Save. The Save Tools dialog

box appears (as shown in Display 2.8 on page 72).
4 SAS completes the libref, catalog, and entry fields. Select the Save tools for

window check box, where window is the active window, and then click OK.
When you select the Save tools for window check box, the toolbar is

associated with the particular application or window by using the same library,

72 Customizing and Saving a Toolbar � Chapter 2

catalog, and entry name as the PMENU entry for the application or window. SAS
first looks for toolbox entries in Sasuser.Profile before searching the application
catalog.

Display 2.8 Save Tools Dialog Box

If you save the toolbar so that it is associated with a particular application, SAS
automatically loads the tools when that application’s window is active.

You can use the TOOLLOAD command to load your custom toolbar manually. For
more information, see “TOOLLOAD Command” on page 357.

Resetting the Tools to the Default Settings
To restore a toolbar to its default settings, click Restore Defaults. SAS asks you to

confirm that you want to restore to the default tool settings. When you click Yes, the
tools are reset to their original settings (the settings that were in place when SAS was
installed).

If a SAS application defines a default toolbar for its application window, clicking the
Restore Defaults button restores the settings for that toolbar.

Examples of Useful Tools You Can Create
Suppose that you want to create a tool that opens the SAS Web page to the sample

programs for Base SAS when the Enhanced Editor is the active window. You would
perform the following steps:

1 Make the Enhanced Editor the active window.

2 In the Customize tab of the Customize Tools dialog box, click the Add tool toolbar
button. This action creates a template for a new tool in the list box.

3 In the Command field, type http://support.sas.com/techsup/sample/
base_samples.html.

In the Help Text field, type Sample programs for Base SAS on sas.com.

In the Tip Text field, type sas.com sample programs.

4 Click the Change icon button. From the Bitmap Browser dialog box, select a
bitmap that is appropriate for the sample programs on the SAS Web site and click
OK.

5 Use the Move tool up and the Move tool down buttons to position the tool in
the toolbar.

Using the SAS Interface � Getting Help from the Command Bar 73

6 Click the Save the toolbar button to save the tool with your default tool
configuration.

The following are some examples of other tools that you might find useful to create:

WPGM; CLEAR; INCLUDE C:\SAS\MYPROGRAM.SAS
includes a program that you use often into the Enhanced Editor window for editing.

WPGM; FILE C:\SAS\MYPROGRAM.SAS; CLEAR
saves a SAS program after you finish editing it and clears the Enhanced Editor
window.

WPGM; CLEAR; INCLUDE C:\SAS\MYPROGRAM.SAS; SUBMIT
includes and submits a SAS program that you use often.

WPGM; CLEAR; INCLUDE C:\SAS\SIGNON.SAS; SUBMIT
includes and submits a SAS program to sign on to a remote system. For example,
to sign on to a remote MVS session, the SIGNON.SAS program might contain

options comamid=tcp remote=mytso;
libname remtdata ’mylib.mydata.monthly’;
signon;

For more information about signing on to remote sessions, see the
SAS/CONNECT User’s Guide.

WPGM; CLEAR; INCLUDE C:\SAS\DOWNLOAD.SAS; SUBMIT
includes and submits a SAS program to download a data set from a remote
session. Assuming that you have already signed on to the remote session,
DOWNLOAD.SAS might contain:

proc download data=remtdata.june;
/* where libname ’remtdata’ is */
/* already defined */

run;

For more information about signing on to remote sessions, see the
SAS/CONNECT User’s Guide.

TOOLLOAD BAR SASUSER.PROFILE.MORTOOLS
loads a different toolbar that contains another collection of tools.

Accessing Online Help and Documentation

Using Microsoft HTML Help
SAS Help and Documentation uses Microsoft HTML Help for easy navigation,

indexing, and search capabilities. Microsoft Internet Explorer (IE) 5.00 and Microsoft
HTML Help 1.3 or above are required. No action is required to configure SAS to use
Microsoft HTML Help.

Getting Help from the Command Bar
You can get Help for the active window and SAS language elements by using the

HELP command in the command bar. The following table lists the HELP command
arguments and the resulting display in the SAS Help and Documentation.

74 Getting Help in the Dialog Boxes � Chapter 2

Table 2.4 Types of Help Available Using the Command Bar

Help Argument SAS Help and
Documentation Displays

Example

none help for the active window help

language element name and
type

help on the specified language
element

help libname statement

HELP how to use the HELP command help help

Getting Help in the Dialog Boxes
To access Help in a dialog box, click ? at the top of the dialog box, and then click the

item you want information about. A pop-up window appears with a definition for the
item. To close the pop-up window, click anywhere in the dialog box.

If a dialog box doesn’t have the ? button, look for a Help button or press F1.

Getting Help for a SAS Product
To access help information about the SAS product associated with the currently

active window, do one of the following:

� Click the Help button (the book with the question mark).

� Press the F1 function key.

� Select the Help menu and Using This Window. (For example, if you click the
Help button and the active window is a SAS/GRAPH window, the SAS Help and
Documentation displays help information about SAS/GRAPH software.)

Complete documentation for installed SAS products is available from the SAS
Products entry in the SAS Help and Documentation table of contents.

Getting Help from the Help Menu
The Help menu is always available within your SAS session. Here are descriptions

of the Help topics available from the Help menu:

Using this Window
Help information that is relevant to the active window. Selecting this topic is the
same as clicking the Help button or pressing the F1 key.

SAS Help and Documentation
tutorials and sample programs to help you learn how to use SAS, comprehensive
documentation for all products installed at your site, and information about
contacting SAS for additional support.

Getting Started with SAS Software
opens a tutorial that will help you get started with SAS.

Learning SAS Programming
open the SAS Online Tutor, if it is installed, to help you develop your SAS
programming skills. SAS Online Tutor is a separately licensed product.

Using the SAS Interface � Viewing Output and Help in the SAS Remote Browser 75

SAS on the Web
provides links to useful areas on the SAS Institute Web site, including technical
support, frequently asked questions, sending feedback to SAS, and the SAS home
page.

About SAS System
opens the About SAS System dialog box which provides software levels for SAS
and Windows, and your hardware information. You can also access SAS legal
information and site information. The System Info button opens the Microsoft
System Information window.

Getting to SAS Institute (and Other Web Sites) from within SAS
SAS is configured to launch your local Web browser to view HTML files. You can

invoke your Web browser several ways:
� Type a URL (uniform resource locator) in the command bar. SAS launches the

browser that you specified in the Preferences dialog box Web tab.
� Type wbrowse in the command bar. This action opens the browser to the SAS

home page or another default URL that you specify in the Preferences dialog box
Web tab. For more information, see “WBROWSE Command” on page 361.

Note that you can access web pages on the Internet (such as the SAS Institute home
page) only if your workstation is connected to a network that allows access.

Viewing Output and Help in the SAS Remote Browser

What Is Remote Browsing?
You can use remote browsing to view the following types of HTML documents in the

Web browser on your local computer:
� URLs that are specified in the WBROWSE command
� ODS output

By displaying ODS output locally with remote browsing, you have access to output
that requires browser plug-ins that are not available for Windows 64-bit servers.

A software agent that is called the remote browser server runs on your local
computer. When SAS needs to display HTML content, SAS connects to the remote
browser server and sends to the remote browser server the URL that references the
content. The remote browser server then passes the URL to your browser for display. If
the remote browser server is not running on your computer, SAS displays a dialog box
that contains the URL that you need to use to download the remote browser server.

Two system options are provided to configure remote browsing: HELPHOST and
HELPPORT. These options specify the host name and port number of the local
computer where HTML content is displayed. In most cases, these options do not need to
be set. HELPHOST defaults to the host name that is specified in the X11 DISPLAY
environment variable, and HELPPORT defaults to the standard port for the remote
browser server.

Remote browsing is supported on Windows 64-bit servers.

76 Viewing Output and Help in the SAS Remote Browser � Chapter 2

Remote Browsing and Firewalls for General Users
If your network has a firewall between desktop computers and the computer that is

hosting SAS, Web browsers cannot display Web pages from your SAS session. Usually,
this problem is indicated by a timeout or connection error from the Web browser. If you
receive a timeout or connection error, contact your system administrator.

Remote Browsing and Firewalls for System Administrators
To enable the display of Web pages when a firewall exists between desktop computers

and the computer that is hosting SAS, a firewall rule must be added that allows a Web
browser to connect to SAS. The firewall rule specifies a range of network ports for
which SAS remote browsing connections are allowed. Contact the appropriate system
administrator who can select and configure a range of network ports for remote
browsing. The range depends on the number of simultaneous SAS users. A value of
approximately three times the number of simultaneous SAS users should reserve a
sufficient number of network ports.

After the firewall rule is added, SAS must be configured to listen for network
connections in the network port range. Normally, SAS selects any free network port,
but the HTTPSERVERPORTMIN and the HTTPSERVERPORTMAX system options
limit the network ports that SAS selects. Add these system options to your SAS
configuration file. Set HTTPSERVERPORTMIN to the lowest port in the network
range. Set HTTPSERVERPORTMAX to the highest port in the network range. For
example, if the system administrator defined a network port range of 8000 to 8200, the
system options would be set as follows:

httpserverportmin=8000
httpserverportmax=8200

After these system options are set, desktop computers can display Web pages. If
there is an insufficient number of ports or if the system options are specified incorrectly,
a message appears in the SAS log.

For more information about these options, see HTTPSERVERPORTMIN= System
Option and HTTPSERVERPORTMAX= System Option in SAS Language Reference:
Dictionary.

Using Remote Browsing with ODS Output
The SAS Output Delivery System (ODS) can be used to generate graphical reports of

your SAS data. Remote browsing enables you to view your output directly from a SAS
session either in real time as the output is generated, or on demand from the Results
window.

Remote browsing displays ODS output in PDF and RTF formats. If your browser
does not have the appropriate plug-in for non-HTML data types, the browser displays a
dialog box rather than the output. This dialog box enables you to download the report
to your PC and view it using a local program, such as Excel for an XLS file.

The automatic display of ODS output (PDF and RTF formats) is turned off by
default. You can turn on the automatic display of ODS output by issuing the
AUTONAVIGATE command in the Results window.

Using the SAS Interface � Introduction to Accessibility Features in SAS under Windows 77

Installing the Remote Browser Server
You can install the remote browser server directly from your SAS session. If SAS is

unable to make a connection for remote browsing, SAS displays a dialog box that
contains the URL that you need to download the installer. Use this URL to download
and install the remote browser server. Do not exit SAS. To install the remote browser
server, follow these steps:

1 Type the URL that appears in the dialog box into your Web browser and press
ENTER.

2 After the download page is displayed, download the installer that is appropriate
for your computer.

3 Run the installer.
� In the Windows environment, the remote browser server is added to your

Startup items, so that the server will start whenever you log in. An icon is
displayed in your system tray to indicate that the remote browser server is
running.

� In the Linux environment, manually add the command rbrowser to the
start-up script for your windowing environment. The remote browser server will
run, but will be minimized initially.

System Options for Remote Browsing
After the remote browser server is running on your computer, you can run remote

browsing by specifying the HELPHOST and HELPPORT system options.
� The HELPHOST system option specifies the name of your host computer. If you do

not specify this option, then the host name that is specified in the X Windows
display is used. For more information, see “HELPHOST System Option” on page
518.

� The HELPPORT system option specifies the port number for the remote browser
server that is installed on your computer. For more information, see the
HELPPORT system option in the SAS Language Reference: Dictionary.

You can set these options in your configuration file, at SAS invocation, or during your
SAS session in either the OPTIONS statement or in the SAS System Options window.

Accessibility Features in SAS under Windows

Introduction to Accessibility Features in SAS under Windows
SAS under Windows includes the following accessibility and compatibility features

that improve the usability of SAS for users with disabilities. These features are related
to accessibility standards for electronic information technology adopted by the U.S.
Government under Section 508 of the U.S. Rehabilitation Act of 1973, as amended.

� “Accessible Windows and Dialog Boxes” on page 78 lists the accessible SAS
windows and dialog boxes.

� “The ACCESSIBILITY System Option” on page 79 explains how to use the
standard user interface and the fully accessible interface.

� To enhance the readability of SAS windows, see “Enlarging Fonts” on page 81 and
“Enlarging Icons” on page 81.

78 Accessible Windows and Dialog Boxes � Chapter 2

� You can use the keyboard, menus, and commands to access and modify the docking
view and the SAS Explorer list view. See the following:

� “Resizing the Docking View in the Main SAS Window” on page 81

� “Sorting Window List Views by a Specific Column” on page 82

� “Resizing the Detail Columns of a List View” on page 82

� If your accessibility aid has difficulty reading menus, see “Improving Access to
Menus” on page 82.

Accessible Windows and Dialog Boxes
In addition to the main SAS window, the following table lists the SAS windows and

dialog boxes that are compliant with Section 508 of the U.S. Rehabilitation Act of 1973:

Table 2.5 Accessible SAS Windows and Dialog Boxes

Window or Dialog Box Related Window or Dialog Box

About SAS System Legal Notices

Siteinfo

Change Folder none

Customize Tools, Customize tab Bitmap Browser

Open Tools

Save Tools

DDE Triplet in Clipboard none

Enhanced Editor Find

Replace

Run Keyboard Macro

Keyboard Macros

Assign Keys

Create Keyboard Macro

Edit Keyboard Macro

Import Keyboard Macros

Export Keyboard Macros

Add Abbreviation

Enhanced Editor Options

User Defined Keywords

SAS Extensions

Enhanced Editor Keys

Assign Keys

Explorer Find

New Library

Catalog Create

Explorer Options

Properties

Catalog

Using the SAS Interface � The ACCESSIBILITY System Option 79

Window or Dialog Box Related Window or Dialog Box

Export Wizard all subsequent dialog boxes

Find none

Font none

Import Wizard all subsequent dialog boxes

Libraries New Library

Modify Library

Log Log Options

My Favorite Folders none

NOTEPAD none

Open none

Output Output Options

Preferences none

Print

(Windows and Universal Print dialog boxes)

Page Setup

Print Abort

Print Preview

Print Setup

(Windows and Universal Print dialog boxes)

Program Editor none

Replace none

Results Results Properties

Rename

Save as Object

Templates and resulting dialog boxes

Results Viewer - SAS Output none

Run none

SAS System Options none

Save none

Send mail none

Windows none

The ACCESSIBILITY System Option

Accessing the Standard or Fully Accessible User Interface
The ACCESSIBILITY system option enables you to specify either the standard user

interface or the fully accessible user interface. The standard user interface enables
accessibility aids to read components of most of the windows and dialog boxes that are
listed in the previous section. The fully accessible user interface enables accessibility
aids to read components of all of the windows that are specified in the previous section.

80 The ACCESSIBILITY System Option � Chapter 2

The fully accessible user interface adds buttons to these dialog boxes so that all
commands and tabbed pages are accessible by using the keyboard:

� the Customize Tools dialog box Custom tab

� some SAS Properties dialog boxes.

You specify the ACCESSIBILITY system option either in your configuration file or at
the command prompt when you start SAS. Valid values for ACCESSIBILITY are

standard
specifies to use the preferred user interface that is not fully accessible. This is the
default.

extended
specifies to use the fully accessible user interface.

For more information, see “ACCESSIBILITY System Option” on page 492.

Using the Accessible Customize Tools Dialog Box

The Customize Tools dialog box Customize tab provides command buttons for file and
edit commands, such as Open a toolbar and Add tool. When you start SAS with the
ACCESSIBILITY system option set to extended, SAS adds a File Menu button and an
Edit Menu button to the Customize tab. These buttons enable you to use the keyboard
to issue the commands that are available from the File and Edit menus commands.

Display 2.9 The Accessible Customize Tools Dialog Box

Using Accessible Properties Dialog Boxes

When the ACCESSIBILITY system option is set to extended, the tabbed pages in
some SAS Property dialog boxes are accessible as buttons. You can press Ctrl + Page
Up and Ctrl + Page Down to navigate through the Properties dialog box.

Using the SAS Interface � Resizing the Docking View in the Main SAS Window 81

Display 2.10 An Accessible Properties Dialog Box

Enlarging Fonts
To make text easier to read, you can enlarge the font by using the Font dialog box

and the SYSGUIFONT system option.
To open the Font dialog box, type dlgfont in the command bar or select Tools �

Options � Fonts. Specify the font size in the Size box and click OK.
To enlarge fonts in button text and the descriptive text, such as the words Contents

of SAS Environment in the SAS Explorer window, use the SYSGUIFONT system
option either in the configuration file or at the command prompt when you start SAS.
The following SAS command uses the Times New Roman font with a font size of 16:

sas -sysguifont "times new roman" 16

Note: You might need to maximize the SAS window in order to allow space for large
fonts to be readable. �

Enlarging Icons
To enlarge icons, do the following
1 Select Tools � Customize
2 In the Toolbars tab, select Large icons.

Resizing the Docking View in the Main SAS Window
To resize the docking view by using the keyboard, press Alt + W + S or select

Window � Size Docking View. Alternatively, you can type wdockviewresize in the
command bar.

Use the following keyboard sequences to resize the docking view:
� Press the right arrow (->)or left arrow (<-)to move the split bar slightly to the

right or to the left.
� Press Ctrl + right arrow (->)or Ctrl + left arrow (<-)to move the split bar a

larger amount to the right or to the left.

82 Sorting Window List Views by a Specific Column � Chapter 2

� Press Home to move the split bar completely to the left.
� Press End to move the split bar completely to the right.
� Press Return to accept the docking view size.
� Press Esc to cancel all docking view resizing.

For more information, see “WDOCKVIEWRESIZE Command” on page 363.

Sorting Window List Views by a Specific Column
When a window contains a list view (such as SAS Explorer), you can sort the list by

the detail information that is associated with the list by using the Sort Columns dialog
box:

1 If the window is not already a list, select View � List

2 Type dlgcolumnsort in the command bar.
3 Select a column to sort.
4 Click Sort.
5 Click Close.

For more information, see “DLGCOLUMNSORT Command” on page 336.

Resizing the Detail Columns of a List View
You can resize the details columns in a List view by using the Column Settings

dialog box. You must display the details in order to do this action.
1 If the window is not already a list, select View � List

2 If the details are not already displayed, select View � Details

3 Type dlgcolumnsize in the command bar.
4 Select a column to resize.
5 Press TAB and type the pixel width that you want for the column.
6 Do one of the following:

� Click Apply to view the changes without closing the dialog box. Once you
have finished making your changes, press ENTER to close the dialog box.

� Click OK to apply the changes and close the dialog box.

The columns in the SAS System Options window cannot be resized.
For more information, see “DLGCOLUMNSIZE Command” on page 335.

Improving Access to Menus
Applications that provide custom icons to menu items can impede the readability of

menus by accessibility aids. When you specify the NOMENUICONS system option, SAS
does not include menu icons for all windows. When menu icons are excluded, menus
conform to the standard Windows menu structure.

You can specify the NOMENUICONS system option in the configuration file, at SAS
invocation, or by using the OPTIONS statement:

-MENUICONS | -NOMENUICONS

MENUICONS | NOMENUICONS

Using the SAS Interface � Improving Access to Menus 83

MENUICONS
specifies to include icons in menus.

NOMENUICONS
specifies not to include icons in menus.

For example, sas -nomenuicons starts SAS and excludes menu icons. In an
OPTIONS statement, you specify

options nomenuicons;

84

85

C H A P T E R

3
Using the SAS Editors

Using the Enhanced Editor 86
Enhanced Editor Features 86

Using the Enhanced Editor Window 87

Overview of the Enhanced Editor Window 87

Opening Files 88

Saving Files 88
Using Multiple Views of the Same File 89

Scrolling and Line Number Commands 89

Moving the Insertion Point 90

Selecting and Editing Text 91

Dragging Text 93

Finding and Replacing Text 93
Checking for Coding Errors 94

Using Automatic Indenting and Tabs 95

Bookmarking Lines 96

Using Abbreviations 96

Using Word Tips 97
Submitting Your Program 97

Obtaining the Filename and Full Path of Submitted Programs or Catalog Entries 98

Using Keyboard Shortcuts 100

Using Keyboard Macros 100

Using Collapsible Code Sections 102
Creating Your Own Keywords 104

Associating File Extensions with File Types 105

Setting Enhanced Editor Options 105

Opening the Enhanced Editor Options Window 105

General Editor Options 106

Appearance Options 107
Setting Appearance Options 108

Using Schemes 109

Using Keyboard Shortcuts to Customize the Enhanced Editor 109

Assigning Keyboard Shortcuts 109

Deleting Keyboard Shortcuts 110
Resetting Keyboard Shortcuts to the Enhanced Editor Defaults 110

Enabling and Disabling the Enhanced Editor 110

Using the Program Editor 111

Switching from the Enhanced Editor to the Program Editor 111

Opening Files 111
Using Line Numbers 112

Moving the Insertion Point 112

Using Tabs 112

86 Using the Enhanced Editor � Chapter 3

Understanding Line Breaks 113
Selecting Text 113

Deleting Text 114

Finding and Replacing Text 114

Dragging and Dropping Text 115

Drag Scrolling 116
Using Rich Text Format Text 116

Saving Files 117

Saving Program Editor Files Using Autosave 117

Understanding Unique Features of the Editor 117

Using the Enhanced Editor

Enhanced Editor Features
While retaining some familiar Program Editor features, the Enhanced Editor enables

you to
� use color-coding to identify SAS and SCL program elements as well as HTML and

XML document elements. Color-coding settings can be saved in a color scheme.
� create and format your own keywords.
� automatically indent the next line when you press ENTER.
� view the high-level flow of your SAS program or see each detailed statement by

expanding or contracting sections of SAS procedures, DATA steps, and macros.
� create macros that record and play back program editing commands by using the

keyboard macro recorder.
� create shortcuts for typing in text using abbreviations.
� bookmark lines of code for easy access to different sections of your program or

document.
� customize keyboard shortcuts for most Enhanced Editor commands.
� open multiple views of a files.
� access Help for the SAS language by placing the insertion point within the

language element name and pressing F1.

Using the SAS Editors � Using the Enhanced Editor Window 87

Using the Enhanced Editor Window

Overview of the Enhanced Editor Window
The parts of the Enhanced Editor window are shown in the following display:

Display 3.1 Enhanced Editor Window

margin Enhanced Editor
insertion point position

collapsed
code section

title bar

expanded
code section

ods rtf file=”c:\em\oranges.rtf”;
data oranges;
input variety $ flavor texture looks;
total=flavor+texture+looks
datalines;
navel 9 8 6
temple 7 7 7
valencias 8 9 9
mandarins 5 7 9
;
;

proc sort data=oranges;
 by descending total;
run;
 proc print data=oranges;
ods rtf close;

title bar
The title bar contains the Enhanced Editor icon and the name of the file. If the file
is new, the filename is Editor Untitledx, where x is a window number. An
asterisk (*) in the title bar indicates that any changes to the file have not been
saved.

expanded code section
An expanded code section displays all of the code within the code section. It is
indicated in the margin by the minus sign (-).

collapsed code section
A collapsed code section displays only the signature line of code (the line of code
that contains the keyword). It is indicated in the margin by the plus sign (+).

Enhanced Editor insertion point position
Part of the main SAS window, the Enhanced Editor insertion point position
displays the insertion point line and column position.

margin
You use the margin on the left side of the Enhanced Editor window to

� select one or more lines of text
� expand and collapse code sections
� display line numbers, code section brackets, and bookmarks.

You can move between Enhanced Editor windows by
� selecting an Enhanced Editor window
� typing wnextedit or wpgm in the command bar.

88 Using the Enhanced Editor Window � Chapter 3

Opening Files
The following table shows different methods of opening files in the Enhanced Editor.

Table 3.1 Opening Files

Actions Instructions

Open a new file Do one of the following:

� Type wedit in the command bar

� Select View � Enhanced Editor

� Click the New Program toolbar button

� Select File � New Program

Open an existing file by using the
Open dialog box

1 Open the Open dialog box by using one of the
following:

� Click the Open Program toolbar button

� Select File � Open Program

� Type fileopen in the command bar.*

2 Select the file.

3 Click Open.

Open multiple individual files by
using the Open dialog box

1 Hold down the Ctrl key.

2 Select the files.

3 Click Open.

Open an existing file, bypassing the
Open dialog box

Do one of the following:

� Type wedit "filename" in the command bar.

� Type fileopen "filename" in the command bar.*

Open multiple views of an opened file 1 Make the file the active window.

2 Select Window � New Window*

When you open multiple views of a file, changes that you
make in any view of the file are made simultaneously in all
views.

Append a file to an opened file 1 Make the file that is to be appended the active
window.

2 Select File � Append.

3 Select a folder and the file to append.

4 Click Open.

* The Enhanced Editor must be the active window.

Note: To change the default directory for the Open dialog box, either start SAS
using the SASINITIALFOLDER system option or change the current working directory.
For more information, see “SASINITIALFOLDER System Option” on page 559 and
“Changing the SAS Current Folder” on page 39. �

Saving Files
An asterisk (*) that appears in an Enhanced Editor window title bar indicates that

the editor contains text that has not been saved to disk. Enhanced Editor windows that

Using the SAS Editors � Using the Enhanced Editor Window 89

display the name Editor Untitledx in the title bar are new files that have never been
saved. The x indicates a window number.

To save the contents of the Enhanced Editor window, click the Save toolbar button
(the diskette). If the file is to be saved for the first time, the Save As dialog box opens
for you to name the file.

To save a file with a new name
1 Select File � Save As
2 Select a folder in the Save in field.
3 Type a filename in the File name field.
4 Select a file type from the Save as type field.
5 Click OK.

Note: To change the default directory for the Save dialog box, either start SAS using
the SASINITIALFOLDER system option or change the current working directory. For
more information, see “SASINITIALFOLDER System Option” on page 559 and
“Changing the SAS Current Folder” on page 39. �

If SAS ends unexpectedly, you can recover the contents of Enhanced Editor windows
if the autosave feature is selected in the Preferences dialog box. The Enhanced Editor
autosave files are saved in the operating environment Application Data folder with the
filename Autosave of filename.$AS, where filename is the name of the file. Under
Windows Vista, the pathname for the Application Data folder is
c:\Users\userid\AppData. Under all other Windows operating environments, the
pathname for the Application Data folder is c:\Documents and Settings\user
name\Application Data\SAS\EnhancedEditor. For example, the path to the autosave
file for MYPROGRAM.SAS in folder C:\TEMP would be

C:\Documents and Settings\myuserid\Application Data\SAS\EnhancedEditor
\Autosave of myprogram.$AS

SAS deletes autosave files when a file is saved, when the Enhanced Editor window
closes, or when a SAS session ends normally. If you have renamed a file and SAS ends
abnormally, you will find the autosaved file under the original filename.

For information about setting the autosave feature, see “Edit Preferences” on page 61
and “WAUTOSAVE Command” on page 360.

Using Multiple Views of the Same File
You can see different parts of the same file simultaneously by opening multiple views

of the same file. While you are working with multiple views, you are working with only
one file, not multiple copies of the same file.

To open multiple views of the same file:
1 Make the file the active window.
2 Select Window � New Window

The filename in the title bar is appended with a colon and a view number. For
example, myfile.sas:1 and myfile.sas:2.

Changes that you make to a file in one view, such as changing text or bookmarking a
line, occur in all views simultaneously. Actions such as scroll bar movement, text
selection, and expanding or contracting a section of code occur only in the active window.

Scrolling and Line Number Commands
The Enhanced Editor supports a limited number of scrolling and line number

commands that you might be familiar with from using the Program Editor. All
Enhanced Editor commands can be typed only from the command bar.

90 Using the Enhanced Editor Window � Chapter 3

The Enhanced Editor supports the following scrolling commands:

Table 3.2 Scrolling Commands

Command Description

UP Move one page toward the beginning of the file.

DOWN Move one page toward the end of the file.

LEFT Move one page to the left.

RIGHT Move one page to the right.

You can display line numbers either by selecting Show line numbers in the
Enhanced Editor Options dialog box or by typing nums in the command bar. To
suppress line numbers, either deselect Show line numbers or type nums again in the
command bar.

All line number commands begin with a colon (:). A space is not required between
the command and the number. The following line number commands are supported:

Table 3.3 Line Number Commands

Command Description Default
Value of
n

Maximum
Value
Allowed

Example

:In Insert n lines after the current
line.

1 9999 :I4

Inserts 4 lines after
the current line

:IAn Insert n lines after the current
line.

1 9999 :IA4

Inserts 4 lines after
the current line

:IBn Insert n lines before the current
line.

1 9999 :IB2

Inserts 2 lines
before the current
line

:Dn Delete n lines starting at the
current line.

1 9999 :D3

Deletes three lines,
starting with the
current line.

:Rn m Repeat the block of m lines,
starting with the current line, n
times. A space is required
between n and m.

1 9999 :R1 6

Repeats six lines,
starting with the
current line, one
time.

Moving the Insertion Point
The Enhanced Editor accepts numerous key sequences for moving the insertion

point, as shown in the following table. The key sequence Ctrl + G opens the Go To Line
dialog box. All other key sequences move the insertion point as defined.

Using the SAS Editors � Using the Enhanced Editor Window 91

Table 3.4 Key Sequences for Moving the Insertion Point

Use this key sequence... To move the insertion point....

Up arrow up one line

Down arrow down one line

Left arrow left by one character

Right arrow right by one character

Page Down down a page

Page Up up a page

Home to the beginning of the current line

Ctrl + Home or

Ctrl + Page Up

to the beginning of the document

End to the end of the current line

Ctrl + End or

Ctrl + Page Down

to the end of the document

Ctrl + up arrow toward the top of the file while scrolling up

Ctrl + down arrow toward the bottom of the file while scrolling down

Ctrl + right arrow to the start of the next word

Ctrl + left arrow to the start of the previous word

Ctrl +] to the matching parenthesis or bracket

Ctrl + G to a specific line number

Alt + up arrow to the first visible line

Alt + down arrow to the last visible line

Alt + right arrow to the next case change or word boundary

Alt + left arrow to the previous case change or word boundary

Shift + Tab backward to the previous tab stop

In addition to using key sequences, you can move the insertion point up by one page,
down by one page, to the left by one page and to the right by one page by using the UP,
DOWN, LEFT, and RIGHT commands in the command bar.

By default, when you click the mouse button past the end of a line, the insertion
point is placed after the last character in a line.

To enable the Enhanced Editor to place the insertion point past the end of a line:
1 Select Tools � Options � Enhanced Editor � General

2 Select the Allow cursor movement past end of line check box.
3 Click OK.

Selecting and Editing Text
Use the following mouse and keyboard shortcut actions to select and manipulate text.

92 Using the Enhanced Editor Window � Chapter 3

Table 3.5 Selecting Characters and Lines of Text

Text Selection Instructions

One or more lines of text using the margin 1 Click and hold down the left mouse button
in the margin on the first line of text that
you want to select.

2 Still holding down the left mouse button,
drag the mouse pointer within the margin
to the last line that you want to select.

3 Release the left mouse button.

Single or multiple characters, or whole lines of
text

1 Click and hold down the left mouse button
before the first character that you want to
select.

2 Still holding down the left mouse button,
drag the mouse pointer to the last
character that you want to select.

3 Release the left mouse button.

The following keyboard shortcuts are also available to select text.

Table 3.6 Keyboard Shortcuts to Select Text

To... Instructions

Extend a selection in a particular direction Press the Shift key and then press a directional
arrow.

Extend a selection one character at a time Press Shift + left arrow or right arrow

Unmark selected text Press any directional key

Copy selected text Press Ctrl + C or select Edit � Copy

Cut selected text Press Ctrl + X or select Edit � Cut

Paste from the clipboard Press Ctrl + V or select Edit � Paste

Move selected text 1 Place the mouse pointer over the selected
text.

2 Click and hold down the left mouse button.
The mouse pointer displays a vertical line.

3 Still holding down the left mouse button,
drag the selected text and place the
vertical line at the position where you
want to place the text.

4 Release the left mouse button.

Text that you select appears in reverse video.
For a complete list of selection keyboard shortcuts, see the Selection category in

“Keyboard Shortcuts within the Enhanced Editor” on page 626.

Note: In addition to using commands from the Edit menu, you can use editing
commands that are available from the pop-up menu when you click the right mouse
button in the Enhanced Editor window. �

Using the SAS Editors � Using the Enhanced Editor Window 93

Dragging Text
To move or copy text

1 Select the text, place the pointer over the selected text, and hold down the left
mouse button.

2 To move the text

a Drag the text to the location.
b Release the left mouse button.

3 To copy the text

a Press the Ctrl key.
b Drag the text to the desired location.
c Release the left mouse button.

To disable drag and drop editing

1 Select Tools � Options � Enhanced Editor � General

2 Clear the Drag and drop text editing check box and click OK.

Finding and Replacing Text
To find text

1 Open the Find dialog box by selecting Edit � Find

2 Supply the following information:

Find text
Type a text string to find. The initial value of this field is the last text string
that was used in a search.

Find in
Click the Find in box to specify whether to search in the code only, in the
comments only, or in both the code and comments.

Direction
Select either the Up or the Down option. Up specifies to search from the
insertion point position toward the beginning of the file. Down specifies to
search from the insertion point position toward the bottom of the file.

Match whole word only
Select the check box to specify that a match of the text must be a whole word
and not part of a word.

Match case
Select the check box to specify that upper and lowercase characters must
match exactly.

Regular expression search
Select the check box to specify that the text string is a regular expression. A
regular expression uses special characters as wildcards to search for a string
or substring. For a selection of special characters that you can use in regular
expressions, click the arrow that is located to the right of the Find text field.

3 Click Find Next.

To find and replace text

1 To search only within a subset of text, select the text.

2 Open the Replace dialog box by selecting Edit � Replace

94 Using the Enhanced Editor Window � Chapter 3

3 Supply the following information:

Find text
Type a text string to find and replace. The initial value of this field is the last
text string that was used in a search.

Replace with
Type the replacement string.

Find in
Click the Find in box to specify whether to search in the code only, in the
comments only, or in both the code and comments.

Direction
Select either the Up or the Down option. Up specifies to search from the
insertion point position toward the beginning of the file. Down specifies to
search from the insertion point position toward the bottom of the file.

Match whole word only
Select this check box to specify that any match of the text must be a whole
word and not part of a word.

Match case
Select this check box to specify that upper- and lowercase characters must
match exactly.

Regular expressions
Select this check box to specify that the text string includes a regular
expression. A regular expression uses special characters as wildcards to
search for a string or substring. For a selection of special characters that you
can use in regular expressions, click the right arrow that is located to the
right of the Find text field.

4 Click Find Next.
5 If the text is found, click one of the following:

� Replace to replace this single occurrence of the text with the replacement
string.

� Replace All to replace all occurrences of the text in the file with the
replacement string.

� Replace in Selection to replace all occurrences of the text that is within
selected text with the replacement string.

Checking for Coding Errors

To assist you in finding coding errors, the Enhanced Editor
� color-codes program elements, quoted strings, and comments.
� searches for ending brackets or parentheses when you press Ctrl +].
� searches for matching DO-END pairs when you press Alt + [.

See the following table for suggestions about finding coding errors.

Using the SAS Editors � Using the Enhanced Editor Window 95

Table 3.7 Hints about Finding Coding Errors

Code Error Type Instructions

Undefined or misspelled keywords In the Enhanced Editor Options dialog box Appearance
tab, set the file elements Defined keyword, User
defined keyword, and the Undefined keyword to
unique color combinations.

When SAS recognizes a keyword, the keyword changes to
the defined colors. You’ll be able to easily spot undefined
keywords by looking for the colors that you selected for
undefined keywords.

Unmatched quoted strings Look for one or more lines of the program that are the
same color.

Text following a quotation mark remains the same color
until the string is closed with a matching quotation mark.

Unmatched comments Look for one or more lines of the program that are the
same color.

Text that follows an open comment symbol (/*)remains
the same color until the comment is closed with a closing
comment symbol (*/).

Matching DO-END pairs Place the cursor within a DO-END block and press Alt + [.

The cursor moves first to the DO keyword. If one of the
keywords is not found, the cursor remains as positioned.

When both of the keywords exist, pressing Alt + [moves
the cursor between the DO-END keywords.

Matching parentheses or brackets Place the cursor on either side of the parenthesis or
bracket. Press Ctrl +].

The cursor moves to the matching parentheses or bracket.
If one is not found, the cursor remains as positioned.

Missing semi-colons (;) Look for keywords that appear in normal text.

For a list of the components that you can color-code, open the Enhanced Editor
Options dialog box. Select the Appearance tab. The components are listed in the File
elements box. For more information about defining colors for program components, see
“Setting Appearance Options” on page 108.

Using Automatic Indenting and Tabs
When you press ENTER, you automatically indent the next line by the amount of

space that the current line is indented. If you prefer not to use automatic indention:
1 Select Tools � Options � Enhanced Editor � General
2 In the Indention box, select None.

In addition to automatic indenting, you can indent by using the TAB key. Pressing
the TAB key moves the insertion point and any text to the right of the insertion point
by the amount of space that you specified in the Tab size field of the Enhanced Editor
Options dialog box.

Tab characters can be replaced by spaces either when you press the TAB key or when
you open a file. To insert spaces instead of tab characters when you press the TAB key,
select the Insert spaces for tabs check box. To replace tab characters with spaces
when you open a file, select the Replace tabs with spaces on file open check box.

96 Using the Enhanced Editor Window � Chapter 3

Note: Changing the tab size modifies tab settings to the new value in all Enhanced
Editor windows. �

Bookmarking Lines
When you bookmark a line, you create a line marker that is used to easily access

that line. A vertical rectangle in the margin indicates that the line is bookmarked.
Table 3.8 on page 96 shows the keyboard shortcuts that you can use with bookmarking.

Table 3.8 Keyboard Shortcuts for Bookmarking Lines

Action Keyboard Shortcuts

Bookmark a line Crtl + F2 on an unmarked line

Unmark a line Ctrl + F2 on a marked line

Go to the next bookmark F2

Go to the previous bookmark Shift + F2

Using Abbreviations
You can define a character string so that when you type it and then press the TAB

key or the ENTER key, the string expands to a longer character string. For example,
you could define the abbreviation myv6sasfiles, which would expand to
’c:\winnt\profiles\myid\personal\mysasfiles\v6’;. Abbreviations are actually macros
that insert one or more lines of text.

To create an abbreviation
1 Press Ctrl + Shift + A or select Tools � Add Abbreviation

2 In the Abbreviation field, type the name of the abbreviation.

3 In the Text to insert for abbreviation field, type the text that the
abbreviation will expand into.

4 Click OK.

To use an abbreviation, type the abbreviation. When an abbreviation is recognized, a
tooltip displays the expanded text. Press the TAB key or the ENTER key to accept the
abbreviation.

To modify an abbreviation
1 Press Ctrl + Shift + M or select Tools � Keyboard Macros � Macros.

2 Select the abbreviation from the list of current macros.

3 Click Edit.
4 Select the string in the Keyboard Macro Contents field.

5 Click Modify.
6 Type your modification in the Insert String dialog box and click OK.

7 Click OK in the Edit Keyboard Macros dialog box.

8 Click Close in the Macro dialog box.

To delete an abbreviation
1 Press Ctrl + Shift + M or select Tools � Keyboard Macros � Macros

2 Select the abbreviation from the list of Current Macros.

3 Click Delete.
4 Click Close.

Using the SAS Editors � Using the Enhanced Editor Window 97

Using Word Tips
You can use Word Tips to help in understanding the abbreviations that you add.
To use Word Tips, you must first add abbreviations.
1 Press Ctrl + Shift + A.
2 Add the abbreviation and corresponding text.
3 Click OK to accept, or click Cancel to discard.

Word tips will automatically appear as you type.
To accept a Word Tip, press Enter. To ignore the Word Tip, press ESC or continue

typing.
To recall a Word Tip:
Position the pointer so that it immediately follows the abbreviation.
Press Alt + F1.

Submitting Your Program
You can submit either a complete program or a specified number of lines of your

program, beginning with the first line.

Note: The maximum line length is 6K bytes. �

Submitting a Complete Program Instructions

When you open the program in the editor Select the Submit check box in the Open dialog
box.

From the Enhanced Editor Do one of the following:

� Click the Submit toolbar button

� Press F3 or F8

� Select Run � Submit

� Type submit in the command bar.

Use the SUBTOP command to submit either the first line or a specified number of
lines of a program.

Submitting Partial Programs Instructions

Only the top line of a program Do one of the following:

� Type subtop in the command bar.

� Select Run � Submit Top Line

A specified number of lines, beginning with the
first line

� In the command bar, type subtop n,
where n is the number of lines that you
want to submit.

� Select Run � Submit N Lines and
type the number of lines that you want to
submit.

98 Using the Enhanced Editor Window � Chapter 3

For more information, see “SUBTOP Command” on page 355.
The Enhanced Editor Options dialog box provides the Clear text on submit

setting for you to specify whether you want the contents of the Enhanced Editor
window to be cleared after you submit your program. For more information, see
“Setting Enhanced Editor Options” on page 105.

If a line of data in a DATALINES or CARDS statement is greater than 256
characters long, the data is read into one observation. You do not need to specify the
LRECL option in the FILENAME statement as you do when you submit a long line of
data using the Program Editor.

Obtaining the Filename and Full Path of Submitted Programs or Catalog
Entries

When you submit code or a catalog entry from the Enhanced Editor, the filename or
catalog entry name and their respective folders are placed in these environment
variables:

SAS_EXECFILEPATH
contains the full path of the submitted program or catalog entry. The full path
includes the folder and the filename.

SAS_EXECFILENAME
contains only the name of the submitted program or the catalog entry name.

You can then extract the filename and full path for use in your SAS programs.
After the following DATA step runs and the data is sorted, the PRINT procedure

includes the filename in the title and the full path in the footnote of the procedure
output. The results are shown in Display 3.2 on page 99.

data oranges;
input variety $ flavor texture looks;
total=flavor+texture+looks;

cards;
navel 9 8 6
temple 7 7 7
valencias 8 9 9
mandarins 5 7 9
;

proc sort data=oranges;
by descending total;

run;

proc print data=oranges;
title ’Taste Test Results for Oranges using File ’ %sysget(SAS_EXECFILENAME);
footnote ’The full path is ’ %sysget(SAS_EXECFILEPATH);
run;

Using the SAS Editors � Using the Enhanced Editor Window 99

The resulting output displays the filename in the title and the full path in the
footnote:

Display 3.2 Using an Environment Variable to Place a Filename in DATA Step Output

These environment variables are set only when code is submitted using the
Enhanced Editor in the Windows environment. They are not set when you submit SCL
code or when you submit code in a batch session.

However, when SAS is running in batch mode, you can obtain the full path (which
includes the filename) by submitting %sysfunc(getoption(SYSIN)). The following
macro can be used to obtain the full path in both a batch session and an interactive
session by using the Enhanced Editor:

%let execpath=" ";
%macro setexecpath;

%let execpath=%sysfunc(GetOption(SYSIN));
%if %length(&execpath)=0

%then %let execpath=%sysget(SAS_EXECFILEPATH);
%mend setexecpath;

%setexecpath;
%put &execpath;

You can also use the following %PUT macro statements to display the filename and
full path in the SAS log:

%put Submitted file path is %sysget(SAS_EXECFILEPATH).;
%put Submitted file name is %sysget(SAS_EXECFILENAME).;

CAUTION:
The values for these environment variables can be overwritten if subsequent programs are
submitted while an interactive procedure is active. The environment variables are set to
the last submitted program. If a program starts an interactive procedure and
subsequent programs are submitted while the interactive procedure is still active,
the environment variables are set to the filename and full path of the latest
submitted program. The filename and full path of the program that submitted the
interactive procedure are no long available. �

100 Using the Enhanced Editor Window � Chapter 3

Using Keyboard Shortcuts

The Enhanced Editor provides extensive keyboard shortcuts for the Enhanced Editor.
“Keyboard Shortcuts within the Enhanced Editor” on page 626 provides a complete list
of commands and their default keyboard shortcuts. The following table shows some of
the more useful keyboard shortcuts.

Table 3.9 Useful Keyboard Shortcuts

Keyboard Shortcut Task

Get help for a SAS procedure Press the mouse button and place the insertion
point within the procedure name and press F1

Add a new abbreviation CTRL + Shift + A

Toggle expand current line Alt + Num *

Collapse all code sections Alt + Ctrl + Number pad -

Expand all code sections Alt + Ctrl + Number pad +

Toggle marker on the current line Ctrl + F2

Go to the next marked line F2

Go to the previous marked line Shift + F2

Go to line Ctrl + G

Go to the beginning of the file Ctrl + Page Up

Go to the end of the file Ctrl + Page Down

Convert selected text to uppercase Ctrl + Shift + U

Convert selected text to lowercase Ctrl + Shift + L

For information about defining keyboard shortcuts, see “Using Keyboard Shortcuts to
Customize the Enhanced Editor” on page 109.

Using Keyboard Macros

A keyboard macro is a series of Enhanced Editor commands and instructions that
you group together as a single command to accomplish a task automatically. Instead of
manually performing a series of time-consuming, repetitive actions, you can create and
run a single macro. You run a macro from the Tools menu or by using a keyboard
shortcut. For information about defining a keyboard shortcut for using macros, see
“Using Keyboard Shortcuts to Customize the Enhanced Editor” on page 109.

You can create a macro by recording it from the Enhanced Editor window:

1 Start recording either by pressing Alt + Shift + R or by selecting Tools �
Keyboard Macros � Record New Macro

2 Execute the sequence of actions to accomplish the task.

3 Stop recording either by pressing Alt + Shift + R or by selecting Tools � Keyboard
Macros � Stop Recording

4 If you want, define a keyboard shortcut to run the macro. For information, see
“Using Keyboard Shortcuts to Customize the Enhanced Editor” on page 109.

Using the SAS Editors � Using the Enhanced Editor Window 101

An alternative way to create a macro is to add commands by using the Create
Keyboard Macro dialog box. To create the macro:

1 Open the Keyboard Macros dialog box by pressing Ctrl + Shift + M or by selecting
Tools � Keyboard Macros � Macros

2 Click Create to open the Create Keyboard Macro dialog box.
3 Type the name of the macro in the Keyboard macro name field.
4 Type a description of the macro in the Keyboard macro description field.
5 The Keyboard macro contents box lists the commands in the order in which

they will be executed.
To add a command, select the command from the Commands box and click the

Insert Selected Command button (the double arrow). Repeat this step until all
commands are listed in the Keyboard macro contents box.

You can reorder commands by selecting the command in the Keyboard macro
contents box and clicking the UP or DOWN arrows.

To delete a command, select the command and click Delete.
6 When all of the commands are present in the box and are ordered correctly, click

OK.
7 In the Keyboard Macros dialog box, click Close.

To run a macro, use a keyboard shortcut or
1 Select Tools � Keyboard Macros � Run Macro

2 In the Run Macro dialog box, select a macro and click Run.

To edit a macro
1 Open the Keyboard Macro dialog box by pressing Ctrl + Shift + M or by selecting

Tools � Keyboard Macros � Macros

2 Select a macro and click Edit to open the Edit Keyboard Macro dialog box.
3 To add a command, select a command from the Commands box and click the Insert

Selected Command button.
To modify a command, first ensure that you can modify the command by

selecting the command from the Keyboard macro contents box. If a command
can be modified, the Modify button is active. Click Modify to open a dialog box
that will enable you to modify the command.

To delete a command, select the command in the Keyboard macro contents
box and click Delete.

To reorder a command, select the command and click the up or down button.
4 When the commands are in the correct order, click OK.

To delete a macro
1 Press Ctrl + Shift + M or select Tools � Keyboard Macros � Macros

2 Select the macro and click Delete.
3 Click Yes in the Delete Macro dialog box.
4 Click Close.

This example lists the steps to create an RSUBMIT statement, an ENDRSUBMIT
statement, a blank line between these statements, and tabs by the amount that you
specified Tabs size field in the Enhanced Editor Options dialog box.

1 Select View � Enhanced Editor

2 Select Tools � Keyboard Macros � Record New Macro and click OK in the
message box.

102 Using the Enhanced Editor Window � Chapter 3

3 In the Enhanced Editor window:

a Press ENTER.
b Type rsubmit;
c Press ENTER.
d Press ENTER.
e Type endrsubmit;
f Press the UP arrow.
g Press the TAB key.
h Select Tools � Keyboard Macros � Stop Recording

The resulting macro contains the following commands:

Insert carriage return
Insert character [’r’]
Insert character [’s’]
Insert character [’u’]
Insert character [’b’]
Insert character [’m’]
Insert character [’i’]
Insert character [’t’]
Insert character [’;’]
Insert carriage return
Insert carriage return
Insert character [’e’]
Insert character [’n’]
Insert character [’d’]
Insert character [’r’]
Insert character [’s’]
Insert character [’u’]
Insert character [’b’]
Insert character [’m’]
Insert character [’i’]
Insert character [’t’]
Insert character [’;’]
Move cursor up
Insert character [’|’]

Keyboard macros can be shared by multiple users. You can import or export them to
or from a folder by using the Keyboard Macros dialog box. To open the dialog box, select
Tools � Keyboard Macros � Macros

To import a keyboard macro, click Import, select a folder from the Look in box and
a filename from the Filename box. Then click OK.

To export a keyboard macro, click Export, select a folder from the Look in field, type
a filename in the Filename box, and click OK.

Using Collapsible Code Sections

Collapsible code sections enable you to expand or collapse one or more sections of
code. A section begins with a step keyword, a comment, or spaces above a section word
or comment. A section ends with the next step keyword, a comment, or space above the
next section word or comment. Step keywords include the DATA statement, the PROC
statement, and the %MACRO statement. The signature line is the line in which the
step keyword appears.

An expanded section is indicated by a minus sign in the margin next to the signature
line. To collapse a section, click the minus sign.

Using the SAS Editors � Using the Enhanced Editor Window 103

A collapsed section is indicated by a plus sign in the margin, and the signature line
is the only line of code that is displayed. To expand a section, click the plus sign.

Display 3.3 The Enhanced Editor When Collapsible Code Segments Are Enabled

Brackets in the margin and a section line across the editor window mark the
beginning and end of a section. If you do not want to see either the brackets or the
section line, you can suppress them by using the Enhanced Editor Options dialog box.

To disable collapsible code sections, or brackets and lines, select Tools � Options �
Enhanced Editor � General and select the appropriate settings:

� Clear the Collapsible code sections check box to disable collapsible code
sections.

� Clear the Show section lines in text check box to disable section lines in the
editor.

� Clear the Show section brackets in margin check box to suppress section
brackets in the margin.

The following rules apply when you select and edit collapsed segments:
� Selecting a line from the margin that includes a collapsed segment includes all

text within the collapsed segment.
� Selecting a line of text by dragging the mouse over the text or by using the

keyboard selects only that line of text.
� Selecting text from above a collapsed section and into a collapsed signature line

copies text from the start of the selection to the end of the selection. The selection
includes any hidden lines above the signature line up to the end of the selection.

� Selecting text on a signature line down into another section marks text from the
beginning of the selection to the end of the selection and includes hidden text
below the signature line.

� Any keystroke on a signature line expands the section.
� Pasting into a signature line or section expands the section.
� Typing something above a section that affects the section, such as comments or

quotes, expands the section.
� Pressing ENTER at the beginning of a signature line adds code at the beginning of

the section.
� Pressing ENTER at the end of a signature line adds code at the end of the section.
� Selecting Undo will not undo the collapse and expand commands.

104 Creating Your Own Keywords � Chapter 3

� When you search for text and the text is found within a collapsed segment, the
segment expands.

� When text within a collapsed segment is to be replaced, the segment expands.
� When text within a collapsed segment is to be replaced and you select Replace

All, collapsed sections do not expand.

Creating Your Own Keywords
In addition to the many SAS program file elements that you can format within the

Enhanced Editor, you can create user-defined keywords for programming elements such
as SAS procedure statements, variables, and user-defined formats. The appearance of
user-defined keywords overrides the appearance of identical keywords that are defined
in the SAS language.

Use the following rules for naming keywords:
1 The first letter must be a letter (A, B, C, ... Z) or an underscore (_).
2 Subsequent characters can be letters, numeric digits (0, 1, ... 9) or underscores.
3 You can use uppercase or lowercase letters. Keywords are not case-sensitive.
4 Blanks are not allowed in keyword names.

To create and format user-defined keywords, use the Enhanced Editor Options dialog
box as follows:

1 Make an Enhanced Editor window the active window.
2 Select Tools � Options � Enhanced Editor

3 From the General tab, click User Defined Keyword.
4 Click Add.
5 Replace NewKeyword with your keyword.
6 Click OK.
7 Select the Appearance tab.
8 In the File elements box, select User defined keyword.
9 Select a font, foreground color, and background color.
10 Click OK.

To rename a keyword from the User Defined Keywords dialog box
1 Select the keyword.
2 Click Rename.
3 Rename the keyword.
4 Click OK.

To delete a keyword from the User Defined Keywords dialog box
1 Select the keyword.
2 Click Delete.
3 Click OK.

Using the SAS Editors � Setting Enhanced Editor Options 105

Associating File Extensions with File Types
The following table lists the default file extensions for the types of files that are

recognized by the Enhanced Editor.

Table 3.10 Default File Extensions Recognized by the Enhanced Editor

File Type Default File Extension

SAS Program File .sas

SCL Program File .scl

HTML Document .htm, .html, .xml

To associate other file extensions with SAS and SCL programs, and HTML and XML
documents, do the following:

1 Open the Enhanced Editor Options dialog box by selecting Tools � Options �
Enhanced Editor

2 Click the General tab.
3 Select a file type from the File type box.
4 Click File Extensions and then click Add.
5 Type the file extension and press ENTER.

To rename a file extension
1 Select the file extension.
2 Click Rename.
3 Type the new file extension and press ENTER.

To delete a file extension, select the file extension and click Delete.
To revert to the default file extensions, click Default.

Setting Enhanced Editor Options

Opening the Enhanced Editor Options Window
To open the Enhanced Editor Options window from the menu, ensure that an

Enhanced Editor window is the active window and select Tools � Options � Enhanced
Editor

106 Setting Enhanced Editor Options � Chapter 3

Display 3.4 Editor Options Dialog Box

.
Click the tabs that are located along the top of the dialog box to navigate to the

settings that you want to change, and then select the options that you want. When you
are finished, click OK.

General Editor Options
From the General tab you can specify the following options that control how the

Enhanced Editor works.

Allow cursor movement past end of line
specifies where the insertion point is positioned when you click the mouse pointer
after the last text character on a line. If it is selected, the insertion point is
positioned where you click the mouse pointer. If it is not selected, the insertion
point is positioned after the last text character on the line.

Drag and drop text editing
specifies whether selected text can be moved by using drag-and-drop editing. If it
is selected, selected text can be moved. If it is not selected, selected text cannot be
moved.

Show line numbers
specifies whether to display line numbers in the margin. When line numbers are
displayed, the current line number is red.

Strip Ctrl+Z characters
specifies to remove the Ctrl+Z end-of-file characters that might be included in files
that were created in a DOS editor.

File type
specifies the type of file to which tabs, indention, and collapsible code sections
apply. File types include HTML documents, SAS programs, SCL programs, and
text documents.

Using the SAS Editors � Setting Enhanced Editor Options 107

Tab size
specifies the number of spaces to indent.

Insert spaces for tabs
specifies whether to insert the space character or the tab character when you press
the TAB key. If it is selected, the space character is used. If it is not selected, the
tab character is used.

Replace tabs with spaces on file open
specifies whether to replace all tab characters in a file with the space character
when the file is opened.

Indention
specifies the type of indention to use. When None is selected, no indention is used.
When Automatic is selected, the next line is automatically indented by the same
amount of space that the previous line is indented.

Collapsible code sections
specifies whether to enable the expansion and contraction of code sections. If it is
selected, the collapsible code sections can be collapsed or expanded. If it is not
selected, all code appears in the editor window. The following settings are active
when the Collapsible code sections setting is selected:

� When Show section lines in text is selected, a line appears after each
section of text.

� When Show section brackets in margin is selected, brackets are
displayed around each section in the margin.

Clear text on submit
specifies whether to clear the contents of the Enhanced Editor window after you
submit a program for processing. If it is selected, the Enhanced Editor window is
cleared when you submit the program. If it is not selected, the program remains in
the editor window. If this setting is selected, you can recall the last submitted
program by using the F4 key.

User Defined Keywords
opens the User Defined Keywords dialog box that you use to create user-defined
keywords.

File Extensions
opens the SAS Extensions dialog box. Use the SAS Extensions dialog box to define
file extensions that are recognized by the Enhanced Editor.

Appearance Options
The following appearance options enable you to specify foreground and background

colors, and font styles for file elements. You can also create and save color schemes. For
more information about using these appearance options, see “Setting Appearance
Options” on page 108 and “Using Schemes” on page 109.

File type
specifies the type of file whose elements you want to color-code. You can color-code
file elements for SAS programs, SCL programs, HTML and XML documents, and
text documents. To color-code an XML document, select HTML Document. The
default is the file type of the file that you are editing at the time that you invoke
the Editor Options dialog box.

Scheme
is a name that represents a saved set of appearance options for the specified file
type.

108 Setting Enhanced Editor Options � Chapter 3

Name
specifies the name of the font for the scheme.

Size
specifies the font size for the scheme.

Script
lists the character sets available for the specified font. The character set that is
used by the default script is determined by the Windows regional options.

File elements
lists the elements of the specified file type that can be color-coded.

Foreground
specifies the text color that is to be applied to the selected file element.

Background
specifies the background color that is to be applied to the selected file element.

Font Style
specifies whether Normal, Bold, Italic, or Bold Italic font is to be applied to
the file element.

Underlined
specifies whether the file element is to be underlined.

Sample
displays a sample of the selected file element colors and font.

Setting Appearance Options
When you set appearance options, you set them for the elements of the file type that

you specified in the File type box. As you make your selections, the Sample box
displays your selected formatting. The formatting options that you specify are applied
to all opened Enhanced Editor windows of that file type. When you start SAS, the
formatting options that are applied to the Enhanced Editor files are the formatting
options that were in effect when the last SAS session ended.

To specify appearance options
1 Open the Editor Options window by selecting Tools � Options � Enhanced

Editor � Appearance

2 Select a file type from the File type box.
3 You can also select a saved formatting scheme from the Scheme box. For more

information about using schemes, see “Using Schemes” on page 109.
4 From the Name box, select a font.
5 From the Size box, select a font size.
6 From the Script box, select a script that is appropriate for the language that your

computer uses. The Default script is determined by the Windows regional options.
7 For each file element that you want to format

a Select a file element.
b Click in the Foreground box and select a color for the file element. To create

a custom color, select Custom and create a color from the Color dialog box.
c Click the Background box and select a color for the background of the file

element. To create a custom color, select Custom and create a color from the
Color dialog box.

Note: Changing the background color for Normal text changes the
Enhanced Editor window to the specified color. �

Using the SAS Editors � Using Keyboard Shortcuts to Customize the Enhanced Editor 109

d From the Font Style box, select Normal, Bold, Italic, or Bold Italic.
e If you want the element to be underlined, select the Underlined box.

8 Review your selections in the Sample box. Click on a file element in the sample to
see its color and font assignment. When you have finished formatting all file
elements, click OK.

Using Schemes
A scheme is a saved set of formatting options, such as font, font size, and script. You

can set your appearance options by selecting a file type and a scheme instead of setting
individual file elements. SAS provides several schemes which you can select from the
Scheme box. Schemes provided by SAS use the Default script.

To create a scheme
1 Select a file type from the File type box.
2 Select a font, font size, and a script.
3 For each file element, select a color for the foreground and background, a font

style, and the underlining option.
4 Click Save As and type a scheme name in the Save Scheme dialog box.
5 Click OK.

To modify a scheme
1 Click in the File type box and select a file type.
2 Click in the Scheme box and select a scheme.
3 Make the font and file element changes that you want.
4 Click Save As. The selected scheme name appears in the Scheme name entry box.
5 Click OK.

To delete a scheme
1 Click in the File type box and select a file type.
2 Click in the Scheme box and select the scheme name that you want to delete.
3 Click Delete.

Using Keyboard Shortcuts to Customize the Enhanced Editor
You can customize Enhanced Editor commands and keyboard macros by using the

Enhanced Editor Keys dialog box.

Assigning Keyboard Shortcuts
When you open the Enhanced Editor Keys dialog box, you can choose to view only

commands that have been assigned keyboard shortcuts, or you can view all commands.
To see only the commands that have assigned keyboard shortcuts, ensure that the Show
all commands check box is not selected. To see all commands, including the commands
that have no key assignment, check the Show all commands check box.

To assign keyboard shortcuts
1 Select Tools � Options � Enhanced Editor Keys

2 Select a category from the Categories box. Macros are listed in the User
Defined category.

3 Select a command from the Commands box. If a keyboard shortcut is already
defined for the command, it is displayed in the Keys column.

110 Enabling and Disabling the Enhanced Editor � Chapter 3

4 Click Assign keys.
5 Place the insertion point in the Press new shortcut key field.

6 Press a key sequence for the selected command. The sequence displays in the
Press new shortcut key field, and the assignment status for that key appears
at the bottom of the dialog box. If the value in the Currently assigned to field
is None, then no other command is assigned to this keyboard shortcut.

7 To assign the keyboard shortcut, click Assign.

Note: Assigning a keyboard shortcut to a key sequence that is assigned to
another command deletes the shortcut for that command. For example, if you
assign the Backspace key to the Add a new abbreviation command, pressing
the Backspace key displays the Add Abbreviation dialog box, and you can no
longer backspace by using the Backspace key. �

Deleting Keyboard Shortcuts
To delete a keyboard shortcut
1 Select Tools � Options � Enhanced Editor Keys.

2 Click Assign keys.

3 Select the category in the Categories box. Macros are listed in the User Defined
category.

4 Select the command in the Commands box.

5 Select the key sequence in the Keys currently assigned to command box.
6 Click Remove.

Resetting Keyboard Shortcuts to the Enhanced Editor Defaults
Resetting keyboard shortcuts to the default keyboard shortcuts deletes all macro

keyboard shortcuts. See “Keyboard Shortcuts within the Enhanced Editor” on page 626
for a list of the default keyboard shortcuts.

To reset keyboard shortcuts to the Enhanced Editor default keyboard shortcuts

1 Select Tools � Options � Enhanced Editor Keys.

2 Click Assign keys.
3 Click Reset All.

Enabling and Disabling the Enhanced Editor
By default, the Enhanced Editor is the active editor when you start SAS.
To disable the Enhanced Editor when you start SAS, use the

NOENHANCEDEDITOR system option. For more information, see
“ENHANCEDEDITOR System Option” on page 511. You can also enable or disable the
Enhanced Editor by using the Use Enhanced Editor setting in the Preferences dialog
box Edit tab or by using the wedit command. For more information, see “WEDIT
Command” on page 364.

When you disable the Enhanced Editor, the menu commands are not available. All
opened Enhanced Editor windows remain open, and you can open new Enhanced Editor
windows by using the View menu or the wedit command. If the Enhanced Editor is
disabled when you start SAS, the Enhanced Editor window does not open.

When the Enhanced Editor is enabled, the Text Editor command in the Tools menu
opens an Enhanced Editor window. When the Enhanced Editor is disabled, the Text
Editor command opens SAS NOTEPAD.

Using the SAS Editors � Opening Files 111

Using the Program Editor
The SAS text editor windows, Program Editor and NOTEPAD, work similarly to

other Windows editors. Therefore, you can edit your SAS code without learning how to
use a new text editor.

Switching from the Enhanced Editor to the Program Editor
If the Enhanced Editor is enabled when SAS starts, the Program Editor is disabled.

To start the Program Editor when SAS starts, disable the Enhanced Editor in one of the
following ways:

� Start SAS using the NOENHANCEDEDITOR system option.
� Disable the Enhanced Editor in the Preferences dialog box:

1 Select Tools � Options � Preferences � View.
2 Deselect the Use Enhanced Editor check box.
3 Click OK.

For more information about the NOENHANCEDEDITOR system option, see
“ENHANCEDEDITOR System Option” on page 511.

You can always access the Program Editor window from the View menu.

Opening Files
To open a file in the Program Editor:

1 With the editor window active, do one of the following:
� Click the Open toolbar button (the opened file folder)
� Type dlgopen in the command bar
� Select File and click Open

SAS displays the Open dialog box.
2 Use the Open dialog box to select the file you want to include. By default, SAS

looks for files with the .SAS file extension (which contain SAS code, by
convention). However, you can change the default by adjusting the Files of
type field. (If you change the selected file type, SAS will remember that selection
and present it as the default the next time that you open a file for that window
during the SAS session.)

Note: To change the default directory for the Open dialog box, either start SAS
using the SASINITIALFOLDER system option or change the current working
directory. For more information, see “SASINITIALFOLDER System Option” on
page 559 and “Changing the SAS Current Folder” on page 39. �

3 If the file that you are including contains SAS code that you want to submit, check
the Submit box before clicking OK.

Note: If you select Submit , it remains selected each time you use the Open
dialog box to open a file. You must deselect it if you do not want to submit the
contents of the file you want to open. �

You can also drag and drop a file into the Program Editor from the Windows Explorer
or the My Favorite Folders window. To drag and drop a file:

1 Open the source window.

112 Using Line Numbers � Chapter 3

2 Position the source window and the Program Editor window so that both are
visible.

3 In the source window, find and select the file you want to open; click and hold
down the left mouse button

4 Drag the file over the Program Editor window and release the left mouse button.

If you open a file with lines longer than 256 characters in the Program Editor
window, the lines are truncated unless you use the INCLUDE command with an
LRECL= value equal to the number of characters in the longest line, and you set either
the AUTOWRAP or AUTOFLOW command to ON. If you want to use the Open dialog
box to open a file with lines longer than 256 characters, use the FILENAME statement
to set up a fileref with the appropriate options and then use the fileref, enclosed in
double quotes, in the Filename field in the Open dialog box.

If you recall a SAS program that has more than 256 characters on a line into the
Program Editor, the Program Editor wraps the line on to the next line. A line that is
greater than 256 characters and wraps onto the next line is considered one line of code.

Using Line Numbers
If you are familiar with the SAS Program Editor window under other operating

systems, such as z/os, notice that line numbers are turned off by default under
Windows. You can type numbers on in the command bar to display line numbers in the
Program Editor window. You can also type nums to turn line numbers on and off.

You can also control line numbers using the Editor Options dialog box when the
Program Editor or NOTEPAD is the active window. To open the Editor Options dialog
box:

1 Type edop in the command bar or select Tools � Options � Program Editor

2 Select the Editing tab.

3 Select Display line numbers and click OK.

Moving the Insertion Point
The insertion point movement keys (arrow keys, PgUp, PgDn, and so on) function the

same way in SAS text windows as they do in other Windows applications.
Pressing the CTRL key with the left arrow (word left) or right arrow (word right)

causes the insertion point to move one word at a time. When advancing through text,
the word-left and word-right commands stop at the end of the text on a line and at the
beginning of the first word on a new line. You can move to the top of a file by pressing
CTRL+PgUp or to the bottom of a file by pressing CTRL+PgDn.

Pressing the Home key causes the insertion point to go to the beginning of the
current line unless the command line (not the command bar) is active in the active
window. Pressing the Home key when the command line is active causes the insertion
point to toggle between the current insertion point position in the text and the
command line. The F11 key moves the insertion point to the command bar. You can
toggle the command line on and off using the COMMAND command or by selecting
Command line in the Preferences dialog box General tab.

Using Tabs
Many text editors retain tab characters, while others expand tabs into space

characters. The SAS Program Editor window expands tabs into space characters.

Using the SAS Editors � Selecting Text 113

Pressing the TAB key inserts spaces and moves any text to the right of the insertion
point.

Understanding Line Breaks
Conceptually, line breaks are at the end of the line rather than at the beginning.

Pressing the ENTER key creates a line break. To delete a line break, press the
Backspace key at the beginning of a line or press the Delete key at the end of the line.

Selecting Text
You can use the mouse or the SHIFT key in combination with the insertion point

movement keys to select text. The marking of an area of text continues until you
release the mouse button or release the SHIFT key. To select all of the text in the active
window, select the Edit menu and then select Select All. The following are some
advanced text selection methods:

� Double-click a single word to select it. To select an entire line, hold down the
CTRL key as you click on the line you want.

� Use the ALT key as you hold down the mouse button and drag the mouse to select
a rectangular block (or column) of text (as illustrated below.)

� Use the SHIFT key in combination with the mouse button to select the text
between the current text insertion point and the position in the text where you
click. You can also use this technique to extend a text selection. (You can use this
feature only within the current page.)

If characters are selected and you start typing text, the marked area is replaced with
the new text. This action occurs even if you have moved the mouse pointer away from
the marked area. For information about marking and copying text with a mouse, see
“Using the Clipboard” on page 55.

To unmark text, click the left mouse button in the window. Alternatively, you can
unmark text by selecting Deselect from the Edit menu or you can press the ESC key.
Typing the WNAVKEYUNMARK ON in the command bar also enables unmarking with
the arrow navigational keys.

114 Deleting Text � Chapter 3

Deleting Text
The Delete key deletes the currently selected text, if there is any; otherwise, it

deletes the character to the right of the insertion point. To delete from the insertion
point to the end of the current line, press ALT+Delete. To delete from the insertion
point to the end of the current word, press CTRL+Delete. To delete from the insertion
point to the start of the current word, press CTRL+Backspace.

You can also use the Edit menu to delete text. To delete all text in the window, click
Clear All. To delete only selected text, click Clear. To delete selected text and copy
that text to the Windows clipboard, click Cut.

Finding and Replacing Text
To find text

1 Open the Find dialog box by selecting Edit � Find

2 Supply the following information:

Find text
Type a text string to find. The initial value of this field is the last text string
that was used in a search.

Direction
Select the Up or Down check box. Up specifies to search from the insertion
point position toward the beginning of the file. Down specifies to search from
the insertion point position toward the bottom of the file.

Match whole word only
Select the check box to specify that a match of the text must be a whole word
and not part of a word.

Match case
Select the check box to specify that upper- and lowercase characters must
match exactly.

3 Click Find Next.

To find and replace text

1 Open the Replace dialog box by selecting Edit � Replace

2 Supply the following information:

Find text
Type a text string to find and replace. The initial value of this field is the last
text string that was used in a search.

Replace with
Type the replacement string.

Direction
Select either the Up or Down check box. Up specifies to search from the
insertion point position toward the beginning of the file. Down specifies to
search from the insertion point position toward the bottom of the file.

Match whole word only
Select this check box to specify that any match of the text must be a whole
word and not part of a word.

Using the SAS Editors � Dragging and Dropping Text 115

Match case
Select this check box to specify that upper- and lowercase characters must
match exactly.

3 Click Find Next.

4 If the text is found, click one of the following:

� Replace to replace this single occurrence of the text with the replacement
string.

� Replace All to replace all occurrences of the text in the file with the
replacement string.

Dragging and Dropping Text
The following table lists the places from which you can drag text and to which you

can drop the selected text.

Table 3.11 Summary of Text Drag and Drop Possibilities

Text Source Text Destination

any SAS text window another SAS window that supports text editing
(such as the Program Editor window)

any SAS text window another Windows application that supports text
drag and drop

a Windows application that supports text drag
and drop

any SAS window that supports editing

Windows Explorer (text file item) any SAS window that supports editing

To drag and drop text from one window to another:

1 Arrange your windows, if necessary, so that both the source and target windows
are visible on the display.

Note: Instead of arranging your windows so that the target window is visible, the
target window will become the active window when you drag the selected text to
the target window’s button on the window bar. �

2 Select the desired text from the source window.

3 Click and hold the left mouse button with the pointer on the selected text.

4 With the mouse button still pressed, drag the text to the target window.

5 Move the insertion point to the position where you want to insert the text. (If you
plan to just submit the text as SAS code for processing, position the insertion point
anywhere in the window).

6 Release the mouse button. The text is either included at the point where you
positioned the insertion point, or it is submitted to SAS for processing. (The
default action depends on the type of the target window.)

You can override the default action of the drag and drop by initiating the drag and
drop using the right mouse button. This action is called nondefault drag and drop.
When you drag the selection to the target SAS window and release the mouse button,
SAS displays a popup menu to let you choose which action to perform.

Table 3.12 on page 116 is a summary of drag-and-drop actions available for the
possible target windows in SAS.

116 Drag Scrolling � Chapter 3

Table 3.12 Summary of Drag-and-Drop Actions

Data Target

Default

Action

Nondefault

Actions

text SAS text editor move move, copy, cancel

text PROGRAM

EDITOR

copy copy, submit, cancel

file SAS text editor not valid not valid

file PROGRAM

EDITOR

move copy, submit, cancel

file LOG, OUTPUT submit submit, cancel

The actions that occur when you drag text out of a SAS window into another
Windows application depend on the target application. In most cases, dragging and
dropping text between SAS and other applications actually moves the text from one
window to another (that is, the text is cut from one window and placed in the other).

You can change that behavior by applying a drag-modifier—a key you press while
you drag and drop. To copy text from one window to another (instead of moving it),
press and hold the CTRL key before and during the drag and drop. When you release
the mouse button to drop the text, release the CTRL key as well.

Drag Scrolling
While dragging text to a SAS text editor window, you can cause the target window to

scroll vertically or horizontally. This action lets you drop text in a window area that is
not currently visible.

Once you have selected the text and drag it to the SAS text editor window, pause
near the border of the SAS text editor window. The window scrolls in the direction of
that border. For example, to cause the target window to scroll down, drag the mouse
pointer just above the bottom border of the window and pause.

Drag scrolling only happens when you pause near the drop area border; it does not
occur if you drag quickly past the border.

Using Rich Text Format Text
When you copy text out of a SAS window to the clipboard and paste it into the

window of another application, the text retains all of the format information it had in
SAS (except for color) if the target window accepts RTF formatting. For example, the
Windows Notepad application does not preserve formatting, but Microsoft Wordpad and
many word processors do. The same is true when you drag text out of SAS and drop it
in another application window.

If the display font is Sasfont, any text that you copy out of SAS is formatted with the
SAS Monospace TrueType font. If your text has other highlighting attributes, such as
underline, those attributes are also transferred to the target window in the other
application (provided the target window supports rich text format (RTF)).

Using the SAS Editors � Understanding Unique Features of the Editor 117

Saving Files
To save the contents of the Program Editor window, click the Save toolbar button (the

diskette icon). If the file is to be saved for the first time, the Save As dialog box will
open for you to name the file.

To save a file with a new name:
1 Select File � Save As

2 Select a folder in the Save in field.
3 Type a filename in the Filename field.
4 Select a file type from the Save as type field.
5 Click OK.

Note: To change the default directory for the Save dialog box, either start SAS using
the SASINITIALFOLDER system option or change the current working directory. For
more information, see “SASINITIALFOLDER System Option” on page 559 and
“Changing the SAS Current Folder” on page 39. �

Saving Program Editor Files Using Autosave
To ensure that you do not lose any of your work in the Program Editor, SAS can

automatically save your files at an interval you specify. The interval can range from 0
(Autosave off) to 480 minutes. The default interval is 10 minutes.

The autosave file is saved as pgm.asv in the current folder or in the location specified
by the AUTOSAVELOC system option.

To enable or disable autosave and set the interval:
1 Select Tools � Options � Preferences � Edit tab

2 Select or deselect Autosave every.
3 Set the interval by typing a number between 1 and 480 in the minutes box.

You can also use the WAUTOSAVE command to enable, disable, and set the interval.
WAUTOSAVE INTERVAL=minutes will turn on autosave using minutes as the interval.

For more information on the Autosave feature, see “Edit Preferences” on page 61,
“WAUTOSAVE Command” on page 360, and “AUTOSAVELOC= System Option” in SAS
Language Reference: Dictionary.

Understanding Unique Features of the Editor
The following features of a SAS text editor window are different from the standard

features of other editors commonly used in the Windows environment:
� A SAS text editor window allows you to move the insertion point past the last

character entered on a line or past the last line of text entered.
� You can mark an area of text, move the mouse pointer away from the marked

area, and the marked text remains marked.
� You can unmark text by pressing the ESC key.
� You can use Shift + Tab to delete blank space characters back to the last tab stop.

118

119

C H A P T E R

4
Using SAS Files

Introduction to SAS Files 120
What Is a SAS File? 120

File Extensions for SAS Files 121

SAS Data Sets (Member Type: Data or View) 122

SAS Catalogs (Member Type: Catalog) 124

SAS Stored Compiled DATA Step Programs (Member Type: Program) 124
Access Descriptor Files (Member Type: Access) 124

Multi Engine Architecture 124

SAS Libraries 124

SAS Engines 125

What Is an Engine? 125

Types of Library Engines 125
Native Library Engines 125

Interface Library Engines 126

Rules for Determining the Engine 127

Using Data Libraries 127

Specifying a Libref 127
Assigning SAS Libraries Using the Graphical User Interface 128

Assigning SAS Libraries Using the LIBNAME Statement or Function 128

LIBNAME Statement Syntax 128

Assigning a Libref to a Single Folder 128

Assigning a Libref to the Working Folder 128
Assigning a Libref to Multiple Folders 129

Assigning Engines 129

Making Librefs Available When SAS Starts 129

Assigning Multiple Librefs and Engines to a Folder 130

Assigning SAS Libraries Using Environment Variables 130

Types of Environment Variables 130
Using a SAS Environment Variable as a Libref 131

Using Windows Environment Variables 131

Listing Libref Assignments 132

Listing Librefs Using the Explorer Window 132

Listing Librefs Using the LIBNAME Command 132
Listing Librefs Using the LIBNAME Statement 132

Clearing Librefs 132

SAS Explorer Window 132

LIBNAME Window 133

LIBNAME Statement 133
LIBNAME Function 133

Understanding How Multi-Folder SAS Libraries Are Accessed 133

Protocols for Accessing Folders 133

120 Introduction to SAS Files � Chapter 4

Input and Update Access 133
Output Access 134

Accessing Data Sets with the Same Name 134

Using the Sasuser Data Library 134

Using the Work Data Library 135

Using Temporary Files 135
Using an Environment Variable 136

Using the User Libref 136

Using Large Data Sets with Windows and NTFS 136

Accessing SAS Files from Multiple SAS Sessions 136

Using SAS Files from Other Versions with SAS 9.2 for Windows 137

Introduction to Using SAS Files from Other Versions with SAS 9.2 for Windows 137
Using Release 6.08 through Release 8.2 Data Sets 138

Using Release 6.03 and Release 6.04 SAS Data Sets 139

Converting Release 6.08 through Release 6.12 SAS Data Sets 139

Using Version 7 and 8 Catalogs in SAS 9.2 139

Converting Version 6 SAS Catalogs in SAS 9.2 140
Converting Release 6.08 SAS Catalogs to SAS 9.2 140

Converting Release 6.03 and Release 6.04 SAS Catalogs to SAS 9.2 141

Creating Release 6.08 through Release 6.12 Data Sets 141

Using SAS 9.2 Files with Previous Releases 141

Using Remote Host SAS Files in SAS 9.2 142
Reading BMDP, OSIRIS, and SPSS Files 142

BMDP Engine 142

BMDP Engine Examples 143

OSIRIS Engine 143

OSIRIS Engine Example 144

SPSS Engine 144
SPSS Engine Example 144

Reformatting SPSS Files 144

Transferring SAS Files between Operating Environments 145

Accessing Database Files with SAS/ACCESS Software 145

Using the SAS ODBC Driver to Access SAS Data from Other Applications 146

Introduction to SAS Files

What Is a SAS File?
SAS creates and uses a variety of specially structured files called SAS files. Although

Windows manages the file for SAS by storing it, the operating system cannot process it.
For example, you can list SAS files with the Windows Explorer, but SAS files must be
processed by SAS. SAS files are different from external files. While external files can be
processed by SAS statements and commands, they are not managed by SAS.

SAS files usually reside in SAS libraries. Under Windows, a SAS library is a named
collection of SAS files within one or more Windows folders that SAS can access. Each
SAS library has an access engine associated with it the first time that a file in the
library is accessed. The engine name specifies the access method that SAS uses to
process the files in the library. SAS libraries are described in detail in SAS Language
Reference: Concepts.

The various engines enable SAS to access different formats or versions of SAS files
and other vendors’ files. For this reason, SAS is said to have Multi Engine Architecture.
Multi Engine Architecture, combined with conversion utilities, provides access to SAS

Using SAS Files � File Extensions for SAS Files 121

9.2 files and SAS files created with previous releases of SAS (back to Version 5),
whether they were created under Windows or other operating environments. Multi
Engine Architecture also provides access to files created by other vendors’ products,
including database files.

The following sections highlight information you need in order to create and use SAS
files with the various engines under Windows.

File Extensions for SAS Files
SAS files are stored in SAS libraries and are referred to as members of a library.

Each member has a member type. SAS distinguishes between SAS files and external
Windows files in a folder by using unique file extensions. SAS assigns certain file
extensions to a general set of SAS member types. The following table lists the Windows
file extensions and their corresponding SAS member types for the V6, V7, V8, and V9
engines. For more information about engines, see “Multi Engine Architecture” on page
124. For more information about processing files from previous releases, see “Using
SAS Files from Other Versions with SAS 9.2 for Windows” on page 137.

Table 4.1 Windows File Extensions and their Corresponding SAS Member Types

V6 File
Extension

V7 and
Beyond File
Extensions

Short
Extentions

SAS Member
Type Description

.sas .sas none none SAS program

.ss2 .sas7bpgm ss7 Program stored program (DATA step)

.cfg (Version 8
and beyond)

none none configuration file

.lst .lst none none output file

.log .log none none log file

none .sas7baud st7 Audit audit file

.sd2 .sas7bdat sd7 Data data set

.sv2 .sas7bvew sv7 View data set view

.si2 .sas7bndx si7 Index data set index. Indexes are
stored as separate files but
are treated by SAS as
integral parts of the SAS
data file.

.sc2 .sas7bcat sc7 Catalog SAS catalog

.sa2 .sas7bacs sa7 Access access descriptor file

.sf2 .sas7bfdb sf7 FDB consolidation database file

.sm2 .sas7bmdb sm7 MDDB multi-dimensional database
file

none .sas7bdmd s7m DMDB data mining database file

none .sas7bitm sr7 Itemstor item store file

.su2 .sas7butl su7 Utility utility file

.sp2 .sas7bput sp7 PUtility permanent utility

122 SAS Data Sets (Member Type: Data or View) � Chapter 4

V6 File
Extension

V7 and
Beyond File
Extensions

Short
Extentions

SAS Member
Type Description

.stx none none none transport file

none .sas7bbak none none back up file

CAUTION:
Do not change the file extension of a SAS file; doing so can cause unpredictable results.
The file extensions assigned by SAS to SAS files are an integral part of how SAS
accesses these files. Also, you should not change the filename of a SAS file using
operating system commands. If you want to change the name of a SAS file, use the
DATASETS procedure or select the file in the SAS Explorer window or the My
Favorite Folders window and select Edit � Rename. �

Note: Do not delete files from your Work and Sasuser libraries during your SAS
session. SAS creates temporary utility files that you do not need to access directly but
that are necessary for processing SAS data.

If your SAS session ends abnormally, you might need to delete files outside SAS in
order to regain disk space. You can delete files in the Work library by using the
WORKINIT and the WORKTERM system options when you start SAS. For more
information, see “WORKINIT System Option” and “WORKTERM System Option” in
SAS Language Reference: Dictionary. �

SAS Data Sets (Member Type: Data or View)
SAS data set is an umbrella term for SAS data files and SAS data views, which are

both discussed here. This section provides a brief overview of the concept of SAS data
sets. For complete details, see the data sets section in SAS Language Reference:
Concepts.

Logically, a SAS data set consists of two types of information: descriptor information
and data values. The descriptor information includes such things as data set name,
data set type, data set label, and number of variables, as well as the names and labels
of the variables in the data set, their types (character or numeric), their length, their
position within a record, and their formats. For more information, see “CONTENTS
Procedure” on page 431.

The data values contain values for the variables. A SAS data set can be visualized as
a table consisting of rows of observations and columns of variable values. The following
table illustrates the SAS data set model.

Using SAS Files � SAS Data Sets (Member Type: Data or View) 123

Figure 4.1 SAS Data Set Model

SAS data files (member type: Data)
The SAS data file is probably the most frequently used type of SAS file. SAS data
files have a SAS member type of Data and are created in the DATA step and by
certain SAS procedures such as the RANK procedure in Base SAS software. SAS
data files have a file extension of .sas7bdat.

SAS defines two types of SAS data files, native and interface. Native data files
store data values and descriptor information, as described earlier, in files
formatted by SAS. These files are the SAS data sets you might be familiar with
from previous versions of SAS under other operating environments. In SAS under
Windows, native SAS data files can be indexed. The index is an auxiliary file that
you create to provide fast access to records within a SAS data file through a
variable or key. Indexes are stored as separate files but are treated by SAS as
integral parts of the SAS data file. To learn more about indexes, see SAS
Language Reference: Concepts.

The second type of data file is the interface SAS data file. These files store data
in a file formatted by other software. Examples of interface SAS data files are
BMDP, OSIRIS and SPSS files, which SAS can access as read-only files. For more
information, see “Reading BMDP, OSIRIS, and SPSS Files” on page 142.

SAS data views (member type: View)
SAS data views have a member type of View. They describe data values and tell
SAS where to find the values, but they do not contain the actual data values
themselves. SAS data views have a file extension of .sas7bvew.

Views can be native or interface. A native SAS data view is created with the
SQL procedure or with the DATA step and describes a subset or combination of
the data in one or more SAS data files or SAS data views. For information on SQL
views, see the Base SAS Procedures Guide. For information on DATA step views,
see SAS Language Reference: Concepts.

124 SAS Catalogs (Member Type: Catalog) � Chapter 4

Interface SAS data views contain descriptor information for data formatted by
other software products, for example, a database management system. You access
database views using the SAS/ACCESS LIBNAME statement. For more
information, see SAS/ACCESS Interface to PC Files: Reference and SAS/ACCESS
for Relational Databases: Reference.

SAS Catalogs (Member Type: Catalog)
A SAS catalog is a special type of SAS file that can contain multiple entries. You can

keep different types of entries in the same SAS catalog. For example, the
Sasuser.Profile catalog contains function key definitions, fonts for graphic applications,
some of your selections from the Preferences dialog box, and other information from
interactive windowing procedures. SAS catalogs have a file extension of .sas7bcat.

SAS Stored Compiled DATA Step Programs (Member Type: Program)
A stored compiled DATA step program is a SAS file that contains a DATA step

program that has been compiled and then stored in a SAS library. You can execute
compiled DATA step programs as needed, without having to recompile them. SAS
stored compiled DATA step programs have a file extension of .sas7bpgm.

Stored compiled programs are available for DATA step applications only. Your stored
programs can contain all SAS language elements except global statements. If you
include global statements in your source program, SAS stores the compiled program but
not the global statements, and does not display a warning message in the SAS log.

For more information about this type of SAS file, see SAS Language Reference:
Concepts.

Access Descriptor Files (Member Type: Access)
Descriptor files created by the SAS/ACCESS LIBNAME statement have a member

type of ACCESS and are used when creating interface SAS data views. Descriptor files
describe the data formatted by other software products supported by SAS. For more
information, see SAS/ACCESS for Relational Databases: Reference , SAS/ACCESS
Interface to PC Files: Reference and other available SAS/ACCESS documentation.

Multi Engine Architecture

SAS Libraries
All permanent and temporary SAS files are stored in SAS libraries. A SAS library is

a collection of SAS files that are stored in a physical location under the operating
system. Although the physical location in the operating system can contain files that
are not managed by SAS, only SAS files are considered part of the SAS library. Any
Windows folder can be treated as a SAS library.

To use a SAS library in your SAS session, you must assign a libref (library reference)
and an engine to the library. The libref is the name you use to refer to the data library
during a SAS session or job. You can create a libref from the Explorer window or you

Using SAS Files � SAS Engines 125

can programmatically define it with an environment variable or with the LIBNAME
statement or function. For information on using librefs in the Windows environment,
see “Using Data Libraries” on page 127. For a complete explanation of librefs, see SAS
Language Reference: Concepts.

The Explorer window provides an easy way to manage all of your SAS files, including
librefs. For information about working with SAS files in the Explorer window, see the
SAS Help and Documentation.

SAS Engines

What Is an Engine?
Engines, also called access methods, provide access to many formats of data, giving

SAS a Multi Engine Architecture. Engines apply only to SAS data sets.
The engine identifies the set of routines that SAS uses to access the files in the

library. With this architecture, data can reside in different types of files, including SAS
files and data formatted by other software products, such as database management
systems. By using the appropriate engine for the file type, SAS can write to or read
from the file. For some types of files, you need to tell SAS what engine to use. For
others, SAS automatically chooses the appropriate engine. For more details about
engines and Multi Engine Architecture, see SAS Language Reference: Concepts.

Engines are of two basic types, library and view. Library engines control access at
the SAS library level and can be specified in the LIBNAME statement or function. View
engines enable SAS to read SAS data views described by the DATA step, SQL procedure,
or SAS/ACCESS software. The use of SAS view engines is automatic because the name
of the view engine is stored as part of the descriptor portion of the SAS data set.

Types of Library Engines
SAS has two types of library engines: native and interface. These engines support

the SAS library model. Library engines perform several important functions, including
determining fundamental processing characteristics. For a more detailed description of
library engines, see SAS Language Reference: Concepts. For examples of using library
engines, see “Using Data Libraries” on page 127.

Native Library Engines
Native library engines are engines that access forms of a SAS file created and

maintained by SAS. Native library engines include the default engine, the compatibility
engine, and the transport engine. The following table lists the acceptable names (and
nicknames) for these engines.

Table 4.2 Native Library Engines

Engine Type Engine Names Description

default V9, BASE accesses SAS System 9, 9.1, and SAS 9.2 data
files

Version 8
compatibility

V8 accesses the Version 8 data files

Version 7
compatibility

V7 accesses Version 7 data files

126 SAS Engines � Chapter 4

Engine Type Engine Names Description

Release 6
compatibility

V6 accesses any data file created by Release 6.08
through Release 6.12. In 64-bit environments,
the V6 engine can read onlydata.

Release 6.12
compatibility

V612 accesses Release 6.12 data files

Release 6.03 and
Release 6.04
compatibility

V604 read-only access to data files created by Release
6.03 and Release 6.04

transport XPORT accesses transport files

When using the default engine, choose which name, V9 or BASE, that you use in
your SAS jobs considering future releases. If your application is intended for SAS 9.2
only, and you do not want to convert it to later releases, use the name V9. If, however,
you plan to convert your application to new releases of SAS, use the name BASE
because that refers to the latest default engine. Using the name BASE makes your
programs easy to convert. The engine name BASE does not refer to Base SAS software;
it refers to the base, or primary, engine. The BASE engine can be used with more than
the Base SAS software product.

This document uses the term default engine to refer to the V9 engine. The V9 engine
is the default engine for accessing SAS files under SAS 9.2 unless the default engine is
changed with the ENGINE system option. To see the value of the ENGINE system
option, do one of the following:

� Submit

proc options option=engine;
run;

� select Tools � Options � System to open the SAS System Options window. Then
select Files � SAS Files. The ENGINE system option displays the default engine
for SAS libraries.

Interface Library Engines

Interface library engines support access to other vendors’ files. These engines allow
read-only access to BMDP, OSIRIS, and SPSS files. You must specify as part of the
LIBNAME statement or function the name of the interface library engine that you
want. The following table lists the interface engine names:

Table 4.3 Interface Library Engines

Name Description

BMDP allows read-only access to BMDP files in a 32-bit operating environment

OSIRIS allows read-only access to OSIRIS files

SPSS allows read-only access to SPSS files

For more information about these engines, see “Reading BMDP, OSIRIS, and SPSS
Files” on page 142 and “ENGINE System Option” on page 509.

Using SAS Files � Specifying a Libref 127

Rules for Determining the Engine
If you do not specify an engine name in a LIBNAME statement or function, SAS

attempts to determine the engine (either the default or a compatibility engine) that
should be assigned to the specified data library libref. Under Windows, SAS looks at
the file extensions that exist in the given folder and uses the following rules to
determine which engine should be assigned to the libref:

� If the folder contains SAS data sets from only one of the supported native library
engines (not including XPORT), the libref is assigned to that engine.

� If there are no SAS data sets in the given folder, the libref is assigned to the
default engine.

� If the folder contains SAS data sets from more than one engine, it is called a mixed
mode library. The libref is then assigned to the default engine. A message is
printed in the SAS log informing you the libref is assigned to a mixed mode library.

Note: It is always more efficient to specify the engine name than to have SAS
determine the correct engine. �

You can use the ENGINE system option to specify the default engine that SAS uses
when it detects a mixed mode library or a library with no SAS files. By default, the
ENGINE option is set to V9. For more information, see “ENGINE System Option” on
page 509.

Using Data Libraries

Specifying a Libref
The libref is a label or alias that is assigned to a folder so that the storage location

(the full path, including drive and folder) is in a form that is recognized by SAS. It is a
logical concept describing a physical location, rather than something physically stored
with the file.

If a libref is created from within a SAS program, it exists only during the session in
which it is created. If a libref is created interactively, by using the New Library dialog
box, you can select Enable at Startup to make it a permanent libref.

A libref follows the same rules of syntax as any SAS name. See the SAS language
rules section in SAS Language Reference: Concepts for more information about SAS
naming conventions.

There are several ways to specify a libref:

� Use the New Library dialog box that is described in SAS Help and Documentation.

� Use the LIBNAME statement or function as described in “Assigning SAS Libraries
Using the LIBNAME Statement or Function” on page 128

� Define an environment variable as described in “Assigning SAS Libraries Using
Environment Variables” on page 130.

Note: You can eliminate the LIBNAME statement by directly specifying the drive
name and the DATA set name within quotes. An example follows:

data "d:\mydata";

�

128 Assigning SAS Libraries Using the Graphical User Interface � Chapter 4

Assigning SAS Libraries Using the Graphical User Interface
To assign librefs and specify engines using the graphical user interface (GUI), use

either the New Library toolbar button , the LIBASSIGN command, or Explorer to
open the New Library dialog box.

� From the toolbar, click the New Library icon.
� In the command bar, type either libassign or libname.

When the LIBNAME window opens, click the New toolbar button.
� Within Explorer

1 Select the Library folder.
2 Select File � New or right-click the Library folder and select New from the

menu.

Note: When a second Explorer window is open on the right side of the SAS
workspace, you can open the New Library dialog box if you right-click the
Libraries folder and select New. �

For more information about the New Library window and Explorer, see the SAS Help
and Documentation.

Assigning SAS Libraries Using the LIBNAME Statement or Function

LIBNAME Statement Syntax
You can use the LIBNAME statement or function to assign librefs and engines to

one or more folders, including the working folder. The examples in this section use the
LIBNAME statement. For information about the LIBNAME function, see SAS
Language Reference: Dictionary.

The LIBNAME statement has the following basic syntax:

LIBNAME libref <engine-name> ’SAS-data-library’

An explanation of all the arguments in this statement can be found in SAS Language
Reference: Dictionary.

Note: The words AUX, CON, NUL, LPT1 - LPT9, COM1 - COM9, and PRN are
reserved words under Windows. Do not use these reserved words as librefs. �

Assigning a Libref to a Single Folder
If you have SAS 9.2 data sets stored in the C:\MYSASDIR folder, you can submit

the following LIBNAME statement to assign the libref TEST to that folder:

libname test V9 ’c:\mysasdir’;

This statement indicates that the libref TEST accesses SAS 9.2 files stored in the folder
C:\MYSASDIR. Remember that the engine specification is optional.

Assigning a Libref to the Working Folder
The current working folder is shown in the status bar of the main SAS window. If

you want to assign the libref MYCURR to your current SAS working folder, use the
following LIBNAME statement:

Using SAS Files � Assigning SAS Libraries Using the LIBNAME Statement or Function 129

libname mycurr ’.’;

Assigning a Libref to Multiple Folders
If you have SAS files located in multiple folders, you can treat these folders as a

single SAS library by specifying a single libref and concatenating the folder locations,
as in the following example:

libname income (’c:\revenue’ ’d:\costs’);

This statement indicates that the two folders, C:\REVENUE and D:\COSTS, are to be
treated as a single SAS library. When you concatenate SAS libraries, SAS uses a
protocol for accessing the libraries, depending on whether you are accessing the
libraries for read, write, or update.

You can concatenate multiple libraries by specifying only their librefs, as in the
following example:

libname sales (income revenue);

This statement indicates that two libraries that are identified by librefs INCOME and
REVENUE are treated as a single SAS library whose libref is SALES.

For more information, see “Understanding How Multi-Folder SAS Libraries Are
Accessed” on page 133 and SAS Language Reference: Dictionary.

Note: The concept of library concatenation also applies when specifying system
options, such as the SASHELP and SASMSG options. For information about how to
specify multiple folders by using system options, see “Syntax for Concatenating
Libraries in SAS System Options” on page 478. �

Assigning Engines
If you want to use another access method, or engine, instead of the V9 engine, you

can specify another engine name in the LIBNAME statement. For example, if you want
to access only Version 6.12 SAS data sets from your SAS 9.2 session, you can specify the
V612 engine in the LIBNAME statement, as in the following example:

libname oldlib V612 ’c:\sas612’;

Another example is if you plan to share SAS files between SAS 9.2 under Windows
and Version 6 under Windows, use the V6 engine when assigning a libref to the SAS
library. Here is an example of specifying the V6 engine in a LIBNAME statement:

libname lib6 V6 ’c:\sas6’;

Remember that while SAS 9.2 can read Version 6 SAS data sets, Release 6 cannot
read SAS 9.2 data sets. For methods of regressing a SAS 9.2 data set to a version 6
data set, see information in the Migration focus area at
http:\\support.sas.com\migration\planning\files\regression.html.

For more information about using engine names in the LIBNAME statement, see
“Using SAS Files from Other Versions with SAS 9.2 for Windows” on page 137 and
“Reading BMDP, OSIRIS, and SPSS Files” on page 142. You can also see the LIBNAME
statement in SAS Language Reference: Dictionary.

Making Librefs Available When SAS Starts
Instead of assigning the same librefs each time that you start SAS, you can specify a

libref each time that SAS starts. In the New Library dialog box, select Enable at
startup. The libref is available as soon as SAS initializes. Libraries that are enabled at
startup are stored in the SAS Registry under the entry [CORE\OPTIONS\LIBNAMES].

130 Assigning SAS Libraries Using Environment Variables � Chapter 4

Assigning Multiple Librefs and Engines to a Folder
If a folder contains SAS files that were created by several engines, only those SAS

files that were created with the engine that is assigned to the given libref can be
accessed by using that libref. You can assign multiple librefs with different engines to a
folder. For example, the following statements are valid:

libname one V8 ’c:\mydir’;
libname two V9 ’c:\mydir’;

Data sets that are referenced by the libref ONE are created and accessed using the
compatibility engine (V8), whereas data sets that are referenced by the libref TWO are
created and accessed using the default engine (V9). You can also have multiple librefs
(using the same engine) for the same SAS library. For example, the following two
LIBNAME statements assign the librefs MYLIB and INLIB (both using the V9 engine)
to the same SAS library:

libname mylib V9 ’c:\mydir\datasets’;
libname inlib V9 ’c:\mydir\datasets’;

Because the engine names and the Windows pathnames are the same, the librefs
MYLIB and INLIB are identical and can be used interchangeably.

Assigning SAS Libraries Using Environment Variables

Types of Environment Variables
You can also assign a libref using environment variables instead of the LIBNAME

statement or function. An environment variable equates one string to another within
the Windows environment. SAS recognizes two kinds of environment variables:

� SAS environment variables
� Windows environment variables.

When you use a libref in a SAS statement, SAS resolves libref assignments in this
order:

1 a libref assigned by a LIBNAME statement, a LIBNAME function, or by using the
New Library dialog box, with the last assignment taking precedence

2 a libref assigned by a SAS environment variable
3 a libref assigned by a Windows environment variable.

For example, if the Windows environment variable TEMP is assigned to
C:\WINNT\TEMP and you use the following LIBNAME statement:

libname temp c:\public

the LIBNAME resolves to c:\public.
There are two ways of defining an environment variable to SAS:
� Use the SET system option. This option defines a SAS (internal) environment

variable.
� Issue a Windows SET command. This command defines a Windows (external)

environment variable. Alternatively under Windows, you can define environment
variables using the System Properties dialog box accessed from the Control Panel,
or by right-clicking My Computer and selecting Properties from the menu.

CAUTION:
You cannot assign engines to environment variables. If you use environment variables
as librefs, you must accept the default engine. �

Using SAS Files � Assigning SAS Libraries Using Environment Variables 131

The availability of environment variables makes it simple to assign resources to SAS
before invocation.

Using a SAS Environment Variable as a Libref
You can use the SET system option to define a SAS environment variable. For

example, if you store your permanent SAS data sets in the C:\SAS\MYSASDATA
folder, you can use the following SET option in the SAS command when you start SAS
or in your SAS configuration file to assign the environment variable TEST to this SAS
library:

-set test c:\sas\mysasdata

When you assign an environment variable, SAS does not resolve the environment
reference until the environment variable name is actually used. For example, if the
TEST environment variable is defined in your SAS configuration file, the environment
variable TEST is not resolved until it is referenced by SAS. Therefore, if you make a
mistake in your SET option specification, such as misspelling a folder name, you do not
receive an error message until you use the environment variable in a SAS statement.

Because Windows filenames can contain spaces or single quotation marks as part of
their names, you should enclose the name of the physical path in double quotation
marks when specifying the SET option. If you use the SET option in an OPTIONS
statement, you must use quotation marks around the filename. For complete syntax of
the SET system option, see “SET System Option” on page 561.

Any environment variable name that you use as a value for a system option in your
SAS configuration file must be defined as an environment variable before it is used. For
example, the following SET option must appear before the SASUSER option that uses
the environment variable TEST:

-set test "d:\mysasdir"
-sasuser "!test"

In the following example, environment variables are used with concatenated libraries:

-set dir1 "c:\sas\base\sashelp"
-set dir2 "d:\sas\stat\sashelp"
-sashelp (!dir1 !dir2)

Note that when you reference environment variables in your SAS configuration file or
in a LIBNAME statement in your SAS programs, you must precede the environment
variable name with an exclamation point (!).

It is recommended that you use the SET system option in your SAS configuration file
if you invoke SAS through a Windows shortcut.

Using Windows Environment Variables
You can execute a Windows SET command before invoking SAS to create a Windows

environment variable. You must define the environment variable before invoking SAS;
you cannot define environment variables for SAS use from a Command Prompt window
from within a SAS session.

SAS can recognize environment variables only if they have been assigned in the
same context that invokes the SAS session. You must define the environment variable
in the Windows AUTOEXEC.BAT file that runs when Windows starts (thus creating a
global variable), or define the variable in either a Command Prompt window from which
you then start SAS or from the System Properties dialog box.

If you define an environment variable in a Command Prompt window, and then start
SAS from the Start menu (or with another shortcut), SAS will not recognize the
environment variable.

132 Listing Libref Assignments � Chapter 4

The environment variables that you define with the SET command can be used later
within SAS as librefs. In the following example, the Windows SET command is used to
define the environment variables PERM and BUDGET:

SET PERM=C:\MYSASDIR
SET BUDGET=D:\SAS\BUDGET\DATA

Listing Libref Assignments

Listing Librefs Using the Explorer Window
If you are running SAS interactively, use the Explorer window to view the active

librefs. The Explorer window lists all the librefs that are active for your current SAS
session, along with the engine and the physical path for each libref. Any environment
variables that you have defined as librefs are listed, provided you have used them in
your SAS session. If you have defined an environment variable as a libref but have not
used it yet in a SAS program, the SAS Explorer window does not list it.

Listing Librefs Using the LIBNAME Command
In any SAS session, you can use the LIBNAME command to invoke the LIBNAME

window. The LIBNAME window lists the active libraries. Using the LIBNAME window,
you can view the contents of all your libraries.

Listing Librefs Using the LIBNAME Statement
The following LIBNAME statement writes the active librefs to the SAS log:

libname _all_ list;

Clearing Librefs
You can clear a libref by using one of the following methods:

� the SAS Explorer window

� the LIBNAME window
� the LIBNAME statement

� the LIBNAME function .

SAS automatically clears the association between librefs and their respective libraries
at the end of your job or session. If you want to associate the libref with a different SAS
library during the current session, you do not have to end the session or clear the libref.
SAS automatically reassigns the libref when you use it to name a new library.

SAS Explorer Window
To clear a libref by using the SAS Explorer window:

1 Right-click on the node of the libref that you want to clear.
2 Select Delete.

For more information about using the SAS Explorer window to manage libraries, see
The Little SAS Book or the SAS Help and Documentation.

Using SAS Files � Understanding How Multi-Folder SAS Libraries Are Accessed 133

LIBNAME Window
To clear a libref by using the LIBNAME window:
1 Issue the LIBNAME command in the command bar. The LIBNAME window opens.
2 Right-click on the node of the libref that you want to clear.
3 Select Delete.

LIBNAME Statement
To clear a libref by using the LIBNAME statement, submit a LIBNAME statement

using this syntax:

LIBNAME libref|_all_ <clear>;

If you specify a libref, only that libref is cleared. If you specify the keyword _all_, all
the librefs you have assigned during your current SAS session are cleared. (Maps,
Sasuser, Sashelp, and Work remain assigned.)

Note: When you clear a libref defined by an environment variable, the variable
remains defined, but it is no longer considered a libref, and it is not listed in the
Explorer window. You can use the variable in another LIBNAME statement to create a
new libref. �

LIBNAME Function
To clear a libref by using the LIBNAME function, the only argument to the function

is the libref:

libname(libref);

Understanding How Multi-Folder SAS Libraries Are Accessed

Protocols for Accessing Folders
When you use the concatenation feature to specify more than one physical folder for

a libref, SAS uses the following protocol for determining which folder is accessed:
� Input and update access
� Output access
� Accessing data sets with the same name.

The protocol illustrated by the following examples applies to all SAS statements and
procedures that access SAS files, such as the DATA, UPDATE, and MODIFY
statements in the DATA step and the SQL and APPEND procedures.

Input and Update Access
When a SAS file is accessed for input or update, the first SAS file found by that name

is the one that is accessed. For example, if you submit the following statements and the
file OLD.SPECIES exists in both folders, the one in the C:\MYSASDIR folder is printed:

libname old (’c:\mysasdir’,’d:\saslib’);
proc print data=old.species;
run;

The same would be true if you opened OLD.SPECIES for update with the FSEDIT
procedure.

134 Using the Sasuser Data Library � Chapter 4

Output Access
If the data set is accessed for output, it is always written to the first folder, provided

that the folder exists. If the folder does not exist, an error message is displayed. For
example, if you submit the following statements, SAS writes the OLD.SPECIES data set
to the first folder (C:\MYSASDIR), replacing any existing data set with the same name:

libname old (’c:\mysasdir’,’d:\saslib’);
data old.species;

x=1;
y=2;

run;

If a copy of the OLD.SPECIES data set exists in the second folder, it is not replaced.

Accessing Data Sets with the Same Name
One possibly confusing case involving the access protocols for SAS files occurs when

you use the DATA and SET statements to access data sets with the same name. For
example, suppose you submit the following statements and TEST.SPECIES originally
exists only in the second folder, D:\MYSASDIR:

libname test (’c:\sas’,’d:\mysasdir’);
data test.species;

set test.species;
if value1=’y’ then

value2=3;
run;

In this case, the DATA statement opens TEST.SPECIES for output according to the
output rules; that is, SAS opens a data set in the first of the concatenated libraries
(C:\SAS). The SET statement opens the existing TEST.SPECIES data set in the second
(D:\MYSASDIR) folder, according to the input rules. Therefore, the original
TEST.SPECIES data set is not updated; rather, two TEST.SPECIES data sets exist, one
in each folder.

Using the Sasuser Data Library
SAS automatically creates a SAS library with the libref Sasuser. This library

contains, among other SAS files, your user Profile catalog.
By default under Windows, the Sasuser libref points to the following folders:

Table 4.4 Folders for the Sasuser Libref

Windows Vista

Windows 7

C:\Users\user ID\Documents\My SAS Files\9.2

C:\Users\user ID\Documents\My SAS Files\9.2

Windows XP

Windows Server 2003

C:\Documents and Settings\user ID\My Documents\My
SAS Files\9.2

You can use the SASUSER system option to make the Sasuser libref point to a
different SAS library. If a Sasuser folder does not exist, SAS creates one. If you use a
folder other than the default folder, you can add the SASUSER system option to the
sasv9.cfg configuration file.

SAS stores other files besides the Profile catalog in the Sasuser folder. For example,
sample data sets are stored in this folder.

Using SAS Files � Using the Work Data Library 135

The Sasuser data library is always associated with the V9 engine. You cannot change
the engine associated with the Sasuser data library. If you try to assign another engine
to this data library, you receive an error message. Therefore, even if you have set the
ENGINE system option to another engine, any SAS files that are created in the Sasuser
data library are SAS 9.2 files.

For more information about your Profile catalog, see “Profile Catalog” on page 20.
For more information about the SASUSER system option, see “SASUSER System
Option” on page 560.

Using the Work Data Library

Using Temporary Files
The Work data library is the storage place for temporary SAS files. By default under

Windows, the Work data library is created as a subfolder of !TEMP\SAS Temporary
Files folder. This subfolder is named _TDnnnnnnnnnn, as discussed in “Work Data
Library” on page 21. Temporary SAS files are available only for the duration of the SAS
session in which they are created. At the end of that session, they are deleted
automatically. If SAS terminates abnormally, you might need to delete the temporary
files.

By default, any file that is not assigned a two-level name is automatically considered
to be a temporary file. A special libref of Work is automatically assigned to any
temporary SAS data sets created. For example, if you run the following SAS DATA step
to create the data set Sports, a temporary data set named Work.Sports is created:

data sports;
input @1 sport $10. @12 event $20.;
datalines;

volleyball co-recreational
swimming 100-meter freestyle
soccer team
;

If you display the SAS Explorer window now, you will see the Sports data set in the
Work folder.

You can display all the temporary data sets that are created during this session from:

� the SAS Explorer window. Double-click the Libraries folder icon and then
double-click the Work folder icon.

� the LIBNAME window. Type libname in the command bar and double-click the
Work folder icon.

The Work data library is always associated with the V9 engine. You cannot change
the engine associated with the Work data library. If you try to assign another engine to
this data library, you receive an error message. Therefore, even if you have set the
ENGINE system option to a different engine, any SAS files that are created in the
Work data library are SAS 9.2 files.

136 Using Large Data Sets with Windows and NTFS � Chapter 4

Using an Environment Variable
You can use an environment variable in your Work data library specification, similar

to the method illustrated earlier with the SASUSER system option. Use this technique
when you do not want to use the default location for your Work data library. You can
put something similar to the following in your SAS configuration file to set up an
environment variable to use for your Work data library:

-set myvar c:\ tempdir
-work !myvar

The SET option associates the MYVAR environment variable with the C:\TEMPDIR
folder. Then the WORK option tells SAS to use that folder for the Work data library.
When you exit your SAS session, the temporary folders and any files they contain are
removed.

Using the User Libref
Although by default SAS files with one-level names are temporary and are deleted

at the end of your SAS session, you can use the User libref to cause SAS files with
one-level names to be stored in a permanent SAS library. For example, the following
statement causes all SAS files with one-level names to be permanently stored in the
C:\MYSASDIR folder:

libname user ’c:\mysasdir’;

When you set the User libref to a folder as in the previous example and you want to
create or access a temporary data set, you must specify a two-level name for the data
set, with Work as the libref.

Alternatively, you can assign the User libref when you invoke SAS by using the USER
system option or by creating a Windows environment variable named USER. If you
have a Windows environment variable named USER, the USER libref is automatically
assigned when you invoke SAS. For more information about the USER system option,
see “USER System Option” on page 581 and SAS Language Reference: Dictionary.

Note: You can assign other engines to the User libref if you want the data sets that
are saved with one-level names to be stored in a format for use with other releases of
SAS. �

Using Large Data Sets with Windows and NTFS
If you run SAS under Windows using the Windows NT file system (NTFS), SAS

automatically takes advantage of the 64-bit file I/O features. Two terabytes is the
practical limit for physical and logical volumes using NTFS.

Accessing SAS Files from Multiple SAS Sessions
If you are running multiple SAS sessions, whether on a single machine or across a

network, you can have multiple access to the same SAS file when you are reading from
it.

If you have SAS/SHARE installed, the VIEWTABLE window and the FSEDIT or
FSVIEW windows allow multiple users to edit the same SAS file. When you edit a data
set using the VIEWTABLE window, you can set the editing mode to either Table Level
Edit Access or Row Level Edit Access. When you select Table Level Edit Access, only
you have access to the data set. Row Level Edit access allows multiple users to access

Using SAS Files � Introduction to Using SAS Files from Other Versions with SAS 9.2 for Windows 137

the same SAS file, but only one user can access and make changes to a single record
(observation) at a time.

To open a data set in the VIEWTABLE window, from the SAS Explorer window:
1 double-click the Libraries icon
2 double-click the library containing the data set
3 double-click the data set.

To edit the data set, select Edit � Edit Mode and then select either Table Level
Edit or Row Level Edit.

When you edit a data set using FSEDIT or FSVIEW, you can set the update mode to
either MEMBER or RECORD. When you select MEMBER mode, only you have access
to the data set. When you select RECORD mode, multiple users can write to the same
SAS file but only one user can update a single record (observation) at a time.

To open a data set using FSEDIT or FSVIEW:
1 type FSEDIT or FSVIEW in the command bar
2 double-click the library name in the Select a Member dialog box
3 double-click the data set name.

To edit the data set, select Edit � Update and then select either the MEMBER or
RECORD radio button.

The RSASUSER system option, described in “RSASUSER System Option” on page
555 allows you to share the Sasuser data library. If multiple users need update access
to common SAS data sets, use SAS/SHARE software.

For details about rules for multiple user access to the same data set and its
members, see the SAS Help and Documentation and SAS/SHARE User’s Guide.

Using SAS Files from Other Versions with SAS 9.2 for Windows

Introduction to Using SAS Files from Other Versions with SAS 9.2 for
Windows

SAS files that were created in Versions 8, 7, and 6 can be processed, with some
restrictions, without having to convert files to the SAS 9.2 format.

SAS 9.2 file formats are the same as Version 7 and 8 file formats with the exception
of a few new features. Table 4.5 on page 138 summarizes the actions that you need to
take in order to use SAS files from a previous release, if the files in the SAS library are
for the same release of SAS.

If you want to use SAS 9.2 to access catalogs that were created with earlier releases
of SAS for Windows, you might have to convert the catalogs from the earlier releases to
the SAS 9.2 format before you can use the catalogs in a SAS 9.2 program.

The following table provides information about data set and catalog conversion.

138 Using Release 6.08 through Release 8.2 Data Sets � Chapter 4

Table 4.5 Summary of Using Version 6, 7, and 8 Data Sets and Catalogs in SAS
9.2

Version or Release Data Sets Catalogs

Version 7 and 8 In 32-bit environments, no
action is necessary. SAS reads,
updates, and writes to Version
7 and Version 8 data sets.

In 64-bit environments there
are no updates to read and
write.

In 32-bit environments, no
action is necessary. SAS reads,
updates, and writes to Version
7 and Version 8 catalogs.

In 64-bit environments,
migrate to SAS 9 by using the
MIGRATE procedure with the
SLIBREF option.

Releases 6.08 - 6.12 The V6 engine is automatically
detected. In 32-bit
environments, no action is
necessary. SAS reads, updates,
and writes to Version 6 data
sets.

In 64-bit environments. SAS
can read a V6 data set but
cannot write to a V6 data set.

In 32-bit environments, SAS
can read a Version 6 catalog
but cannot write to it.

In 64-bit environments, convert
to SAS 9 by using the CPORT
and CIMPORT procedures.

Releases 6.03 and 6.04 Use the V604 engine to read
data. You cannot write to
Release 6.03 and 6.04 data sets.

not supported

As the table shows, in 32–bit environments, except for Release 6.04 and Release 6.03
data sets, Version 6 (32–bit environments) and Version 7 and 8 data sets do not need to
be converted to SAS 9.2 data sets in order for SAS 9.2 to read, update, and write to the
data sets. In 64–bit environments, the cross-environment data access (CEDA) facility
imposes some restrictions.

In 32–bit environments, Version 7 and 8 catalogs also do not need to be converted to
V9 catalogs. Only Version 6 SAS catalogs can be read. If a Version 6 catalog is to be
updated, you must convert it to a SAS 9.2 catalog.

The Migration focus area at http://support.sas.com/migration discusses in
detail how to use or convert SAS files that were created in Release 6.08 through Version
8. See the SAS/CONNECT User’s Guide for information about accessing Version 6 SAS
files if you use Remote Library Services to access SAS files on a server.

To use SAS files that were created under an operating environment other than
Windows, you will need to transport those files to the Windows environment. A
separate document, Moving and Accessing SAS Files, discusses transporting files from
one operating environment to another operating environment.

Using Release 6.08 through Release 8.2 Data Sets
If your SAS library contains SAS files from only a single release of SAS, such as

Release 6.12 or Version 8, SAS automatically determines the appropriate engine to use
for these SAS data sets. If your SAS files are in a mixed mode library that possibly
contains SAS data sets from multiple releases, you must specify the engine parameter
in the LIBNAME statement. The default engine is V9.

Using SAS Files � Using Version 7 and 8 Catalogs in SAS 9.2 139

For example, if you know that the ’c:\mydata’ SAS library contains only Version 6
files, the following SAS statements print a Version 6 SAS data set that is named
WINDATA.SALEFIGS created under Windows:

libname windata ’c:\mydata’;
proc print data=windata.salefigs;

title ’Sales Figures’;
run;

Where all SAS files in the library are Version 6 SAS files, you can omit the engine
parameter because SAS automatically detects the V6 engine.

Using the same example, suppose you are unsure of the file’s version or suppose you
know that the SAS library is a mixed mode library. In those cases, you must specify the
engine name in the LIBNAME statement in order to access the V6 files:

libname windata v6 ’c:\mydata’;
proc print data=windata.salefigs;

title ’Sales Figures’;
run;

Release 6.03 and Release 6.04 SAS files require a specific engine. For more
information, see “Using Release 6.03 and Release 6.04 SAS Data Sets” on page 139.

Using Release 6.03 and Release 6.04 SAS Data Sets
The V604 engine enables you to read from Release 6.03 and Release 6.04 SAS data

sets directly from your 32-bit Windows SAS 9.2 session. Release 6.03 and Release 6.04
SAS data sets are not compatible with the x64 64–bit environment and the Itanium
64–bit environment. (Remember that there is no difference between Release 6.03 and
Release 6.04 SAS data sets.) This feature is useful when you have SAS data sets that
you want to share between Release 6.04 for PCs and SAS 9.2 under Windows. The
V604 engine is supported only for SAS data sets (member type DATA). For example, if
you have a Release 6.04 SAS data set that is named MYLIB.FRUIT that you want to
print, you can submit the following statements from a SAS 9.2 session:

libname mylib v604 ’c:\sas604’;
proc print data=mylib.fruit;
run;

Converting Release 6.08 through Release 6.12 SAS Data Sets
You should convert your Version 6 SAS data sets to the SAS 9.2 format if you access

them often and do not need to read the files from Version 6. The data set format of SAS
9.2 is more efficient than the Version 6 format, and there are new SAS 9.2 features that
cannot be used unless the data sets are converted. You should migrate Release 6.12
libraries by using the MIGRATE procedure. For information about how to convert
libraries before 6.12, see Moving and Accessing SAS Files.

Note: For more information about conversion, you can access information from the
Migration focus area at: http://support.sas.com/migration �

Using Version 7 and 8 Catalogs in SAS 9.2
Because SAS 9.2 file formats are basically the same as Version 7 and 8 file formats, a

32–bit platform can read, update, and write to Version 7 and 8 catalogs without having
to convert them to SAS 9.2 catalogs.

140 Converting Version 6 SAS Catalogs in SAS 9.2 � Chapter 4

However, when SAS is running under 64–bit Windows operating environments, it
cannot read 32–bit catalogs.

Converting Version 6 SAS Catalogs in SAS 9.2
Because of the differences in the internal structures of the operating environments,

you can use the CPORT and CIMPORT procedures to convert Version 6 SAS catalogs
that were created under Windows to SAS 9.2 format before you can use the catalogs in
your SAS 9.2 session under Windows. Follow these steps:

1 Using the CPORT procedure in your Version 6 SAS session, create a transport file
that contains the SAS catalog to be converted.

2 Transfer the file (perhaps on a network or disk) to a location that your SAS 9.2
session can read.

3 Use the CIMPORT procedure from your SAS 9.2 session to read the transport file
and create a converted SAS catalog.

For information about using the CPORT and CIMPORT procedures, see Moving and
Accessing SAS Files and the Base SAS Procedures Guide.

There are other conversion methods. For information see Moving and Accessing SAS
Files.

Converting Release 6.08 SAS Catalogs to SAS 9.2
If you are converting directly from Release 6.08 to SAS 9.2, you can use the CPORT

procedure in Release 6.08 to create a transport file, and then use the SAS 9.2
CIMPORT procedure to convert the catalog to a SAS 9.2 catalog. However, the
HSERVICE and TOOLBOX catalog entries are not portable if you use CPORT from a
Release 6.08 session.

An alternative way to convert Release 6.08 catalogs is to use the C16PORT procedure
that is provided in Release 6.10 through Release 6.12. SAS provided the C16PORT
procedure to convert the 16-bit catalogs that were created with Release 6.08 under
Windows to a 32-bit format that SAS can use. You can use the C16PORT procedure
from within one of these earlier releases of SAS to create a catalog that can later be
read by SAS 9.2. (The C16PORT procedure is not available in SAS 9.2.)

To convert your SAS catalogs from Release 6.08 under Windows to SAS 9.2:
1 While in your Release 6.10, Release 6.11, or Release 6.12 session, use the

C16PORT procedure (described in the documentation for those releases) to create
a transport file that contains the SAS catalog from Release 6.08.

2 Transfer the file (perhaps on a network or by using binary FTP) to a location
where SAS 9.2 can read it.

3 Use the 9.2 CIMPORT procedure to read the transport file and create a converted
SAS V9.2 catalog.

If you want to convert a catalog that currently exists on another machine running
Release 6.08 for Windows, you must first transfer the file (perhaps on a network or by
using binary FTP) to a place where your SAS 9.2 session can read it.

The following example uses the C16PORT procedure in Release 6.12 to create a
transport file from the INLIB.CAT catalog, and then creates a Release 6.12 catalog
(OUTLIB.CAT) using the CIMPORT procedure.

/* Folder where catalog */
/* ’cat.sc2’ resides */

libname inlib ’c:\cat608’;

Using SAS Files � Using SAS 9.2 Files with Previous Releases 141

/* Folder where catalog */
/* ’cat.sc8’ will reside */

libname outlib ’c:\cat612’;
proc c16port file=’transprt’ c=inlib.cat;
run;

/* Move the transport file to a location where SAS can read it */
/* Once the file is accessible, run the following procedure. */

proc cimport infile=’transprt’ c=outlib.cat;
run;

The Release 6.12 SAS catalog can now be read by SAS 9.2. For information about the
CPORT and CIMPORT procedures, see the Base SAS Procedures Guide and Moving
and Accessing SAS Files.

Converting Release 6.03 and Release 6.04 SAS Catalogs to SAS 9.2
If you want to convert Release 6.04 SAS catalogs to their SAS 9.2 counterparts, see

Moving and Accessing SAS Files.

Creating Release 6.08 through Release 6.12 Data Sets
You might need to create Release 6.08 through Release 6.12 data sets from your SAS

session under Windows. This action is similar to reading Version 6 data sets in that you
use the V6 engine. For example, the following SAS statements use the V6 engine to
create a SAS data set named QTR1. The raw data are read from the external file that
is associated with the fileref MYFILE.

libname windata v6 ’c:\mydata’;
filename myfile ’c:\qtr1data.dat’;
data windata.qtr1;

infile myfile;
input saledate amount;

run;

Using SAS 9.2 Files with Previous Releases
Do not use the CPORT and CIMPORT procedures for regressing a SAS file to a

previous release. You will experience errors when you try to import the transport file.
For more information about transporting files, see Moving and Accessing SAS Files.

If a SAS 9 file is created under a 32–bit platform for Windows, then the file is fully
compatible in a Version 7 or 8 session as long as you do not use any new SAS 9 file
features that are not supported under Version 7 or 8. SAS 9 files are not supported
under Version 6 but are usable after regression to Version 6 format.

To learn about these compatibility issues and the best methods for regressing a SAS
9 file to a previous release, see “Using a SAS 9 File Under a Previous Version of SAS” in
the Migration focus area at http://support.sas.com/migration/planning/files/
regression.html.

142 Using Remote Host SAS Files in SAS 9.2 � Chapter 4

Using Remote Host SAS Files in SAS 9.2

In SAS 9.2, you can directly access SAS 9.2 data sets that were created on a remote
host under any previous version of SAS. For example, you might have a Version 5 SAS
data set under VSE or a Version 8 data set under UNIX. Alternatively, you can create a
transport data set and transport your file from the host to Windows.

A complete explanation of using remote host SAS files in SAS 9.2 can be found in
Moving and Accessing SAS Files. For cross-release compatibility, see the Migration
focus area at http://support.sas.com/migration

Reading BMDP, OSIRIS, and SPSS Files

SAS 9.2 provides three interface library engines that enable you to access external
data files directly from a SAS program: the BMDP, OSIRIS, and SPSS engines. These
engines are all read-only. Because they are sequential engines (that is, they do not
support random access of data), these engines cannot be used with the POINT= option
in the SET statement or with the FSBROWSE, FSEDIT, or FSVIEW procedures. When
using BMDP and OSIRIS engines, you can use PROC COPY or a DATA step to copy the
system file to a SAS data set and then perform these functions on the SAS data set.
When using the SPSS engine, PROC COPY or a DATA step will support the portable
file format. Also, because they are sequential engines, some procedures (such as the
PRINT procedure) give a warning message that the engine is sequential. With these
engines, the physical filename that is associated with a libref is an actual filename, not
a folder. This action is an exception to the rules concerning librefs.

You can also use the CONVERT procedure to convert BMDP, OSIRIS, and SPSS files
to SAS data files. For more information, see “CONVERT Procedure” on page 433.

BMDP Engine
The BMDP interface library engine enables you to read BMDP DOS files from the

BMDP statistical software package directly from a SAS program. The following sections
assume that you are familiar with the BMDP save file terminology.

To read a BMDP save file, you must issue a LIBNAME statement that explicitly
specifies that you want to use the BMDP engine:

LIBNAME libref BMDP <’filename’>;

In this form of the LIBNAME statement, libref is a SAS libref and filename is the
BMDP physical filename. If the libref appears previously as a fileref, you can omit
filename because the physical filename that is associated with the fileref is used. This
engine can read only BMDP save files created under DOS.

Because there can be multiple save files in a single physical file, you reference the
CODE= value as the member name of the data set within the SAS language. For
example, if the save file contains CODE=ABC and CODE=DEF and the libref is
MYLIB, you reference them as MYLIB.ABC and MYLIB.DEF. All CONTENT types are
treated the same. Therefore, even if member DEF is CONTENT=CORR, it is treated as
CONTENT=DATA.

If you know that you want to access the first save file in the physical file, or if there
is only one save file, you can refer to the member name as _FIRST_. This convention is
convenient if you do not know the CODE= value.

Using SAS Files � OSIRIS Engine 143

BMDP Engine Examples

In the following example, the physical file MYBMDP.DAT contains the save file ABC.
This example associates the libref MYLIB with the BMDP physical file, and then runs
the CONTENTS and PRINT procedures on the save file:

libname mylib bmdp ’mybmdp.dat’;
proc contents data=mylib.abc;
run;
proc print data=mylib.abc;
run;

The following example uses the LIBNAME statement to associate the libref MYLIB2
with the BMDP physical file. Then it prints the data for the first save file in the
physical file:

libname mylib2 bmdp ’mybmdp.dat’;
proc print dat=mylib2._first_;
run;

OSIRIS Engine
Because the Inter-University Consortium on Policy and Social Research (ICPSR)

uses the OSIRIS file format for distribution of its data files, SAS provides the OSIRIS
interface library engine to support ICPSR data users and to be compatible with PROC
CONVERT, which is described in “CONVERT Procedure” on page 433.

The read-only OSIRIS engine enables you to read OSIRIS data and dictionary files
directly from a SAS program. These files must be stored in EBCDIC format. This
action assumes that you downloaded the OSIRIS files from your host computer in
binary format. The following section assumes that you are familiar with the OSIRIS file
terminology. *

To read an OSIRIS file, you must issue a LIBNAME statement that explicitly
specifies you want to use the OSIRIS engine. In this case, the LIBNAME statement
takes the following form:

LIBNAME libref OSIRIS ’data-filename’ DICT=’dictionary-filename’;

In this form of the LIBNAME statement, libref is a SAS libref, data-filename is the
physical filename of the OSIRIS data file, and dictionary-filename is the physical
filename of the OSIRIS dictionary file. The dictionary-filename argument can also be an
environment variable name or a fileref. (Do not use quotation marks if it is an
environment variable name or fileref.) The DICT= option must appear because the
engine requires both files.

OSIRIS data files do not have member names. Therefore, you can use whatever
member name you like. You can use the same OSIRIS dictionary file with different
OSIRIS data files. Write a separate LIBNAME statement for each one.

The layout of an OSIRIS data dictionary is consistent across operating environments.
The reason is that the OSIRIS software does not run outside the z/OS environment, but
the engine is designed to accept an z/OS data dictionary on any other operating
environment under which SAS runs. It is important that the OSIRIS dictionary and
data files not be converted from EBCDIC to ASCII; the engine expects EBCDIC data.
There is no specific file layout for the OSIRIS data file. The file layout is controlled by
the contents of the OSIRIS dictionary file.

* See documentation provided by the Institute for Social Research for more information.

144 SPSS Engine � Chapter 4

OSIRIS Engine Example
In the following example, the data file is MYOSIRIS.DAT, and the dictionary file is

MYOSIRIS.DIC. The example associates the libref MYLIB with the OSIRIS files and
then runs PROC CONTENTS and PROC PRINT on the data:

libname mylib osiris ’myosiris.dat’
dict=’myosiris.dic’;

proc contents data=mylib._first_;
run;
proc print data=mylib._first_;
run;

SPSS Engine
The SPSS interface library engine enables you to read SPSS export files directly

from a SAS program. The SPSS export file must be created by using the SPSS
EXPORT command. *The SPSS engine is a read-only engine.

To read an SPSS export file you must issue a LIBNAME statement that explicitly
specifies that you want to use the SPSS engine. In this case, the LIBNAME statement
takes the following form:

LIBNAME libref SPSS <’filename’>;

In this form of the LIBNAME statement, the libref argument is a SAS libref, and
filename is the SPSS physical filename, including the file extension. If the libref
appears also as a fileref, you can omit filename because the physical filename that is
associated with the fileref is used. The SPSS native file format is not supported. Export
files can originate from any operating environment.

Because SPSS files do not have internal names, you can refer to them by any
member name that you like. (The example in this discussion uses _FIRST_ .)

Note: SPSS can have system-missing and user-defined missing data. When you use
the SPSS engine or PROC CONVERT, the missing values (user-defined or system) are
converted to system-missing values. User-defined missing values have to be recoded as
valid values. When the data set is converted, you can use PROC FORMAT to make the
translation. For example, –1 to .A and –2 to .B. �

SPSS Engine Example
The following example associates the libref MYLIB with the physical file

MYSPSS.POR in order to run PROC CONTENTS and PROC PRINT on the portable file:

libname mylib spss ’myspss.por’;
proc contents data=mylib._first_;
run;
proc print data=mylib._first_;
run;

Reformatting SPSS Files
SAS cannot use an SPSS file that contains a variable that has a numeric format

which has a larger number of decimal places than the width of the entire variable. For
example, if an SPSS file has a variable that has a width of 17 and also has 35 decimal

* See documentation provided by SPSS Inc. for more information.

Using SAS Files � Accessing Database Files with SAS/ACCESS Software 145

places, SAS will return errors when you try to run a DATA step on the file or when you
try to view it with the table viewer. To use the SPSS file with SAS, you must reformat
the variable.

You can reformat the variable by reducing the number of decimal spaces to a value
that fits within the width of the variable. In the following code, the statement
revision=cat(format,formatl,’.2’); converts the number of decimal spaces to 2.
This value reduces the number of decimal spaces so that it is not greater than the
width of the variable.

libname abc spss ’FILENAME.POR’;
proc contents data=abc._all_ out=new; run;
filename sascode temp;
data _null_; set new; file sascode;

if formatd > formatl then do;
revision=cat(format,formatl,’.2’);
put ’format’ +1 name +1 revision ’;’ ;
end;

run;
data temp; set abc._all_;

%inc sascode/source2;
run;

Note: The OPTIONS NOFMTERR statement does not allow SAS to use a data set
that has a DATA step or the table viewer. You must reformat numeric variables that
have a larger decimal space value than their width before you can use a DATA step or
the table viewer. �

Transferring SAS Files between Operating Environments

For complete information on transferring SAS files between operating environments,
see Moving and Accessing SAS Files.

Accessing Database Files with SAS/ACCESS Software
SAS/ACCESS software provides an interface between SAS and several database

management systems (DBMS) that run under Windows. The interface consists of three
procedures and an interface view engine, which can perform the following tasks:

LIBNAME statement
by assigning the engine to a specific database engine, the LIBNAME statement lets
you reference a DBMS object directly in a DATA step or SAS procedure, enabling
you to read from and write to a DBMS object a though it were a SAS data set.

SQL Procedure Pass-Through Facility
accesses data from several relational DBMSs, including Oracle and SQLServer.

interface view engine
enables you to use descriptor files in SAS programs to access DBMS data directly
and enables you to specify descriptor files in SAS programs to update, insert, or
delete DBMS data directly.

For more information about using SAS/ACCESS software under Windows, consult
SAS/ACCESS Interface to PC Files: Reference and other available SAS/ACCESS
documentation.

146 Using the SAS ODBC Driver to Access SAS Data from Other Applications � Chapter 4

Using the SAS ODBC Driver to Access SAS Data from Other Applications
The SAS ODBC driver is an implementation of the open database connectivity

(ODBC) standard that enables you to access, manipulate, and update SAS data sources.
These data sources can include SAS data sets, flat files, VSAM files, as well as data from
any database management system (DBMS) for which you have licensed SAS/ACCESS
software. For information about how to access data from other Windows applications
that comply with the ODBC standard, see the SAS Help and Documentation.

The SAS ODBC Driver accesses data by communicating with either a local or remote
(SAS/SHARE) SAS server session using the TCP/IP protocol. The TCP/IP protocol
enables users to access remote SAS servers on a variety of host platforms. A SAS
server is a SAS procedure (either PROC SERVER or PROC ODBCSERV) that runs in
its own SAS session; it accepts input and output requests from other SAS sessions and
from the SAS ODBC driver on behalf of the ODBC-compliant application. For remote
access to SAS data, a SAS server must be installed on the server machine, but not on
the client machine.

The SAS ODBC Driver is included with Base SAS. Remote server configurations that
use the SAS ODBC driver require that these SAS products be installed:

� Base SAS

� SAS/SHARE.

For details about installing and configuring the SAS ODBC Driver, see the
installation documentation for SAS under Windows. For more information on
configuring and using the SAS ODBC Driver, see SAS Drivers for ODBC: User’s Guide.

147

C H A P T E R

5
Using External Files

About External Files 148
Referencing External Files 148

Accessing External Files 148

Using a Fileref 149

Assigning File Shortcuts 149

Using the FILENAME Statement 149
Using Environment Variables 150

Using the SET System Option 151

Using the SET Command 151

Assigning a Fileref to a Directory 151

Assigning a Fileref to Concatenated Directories 153

Summary of Rules for Resolving Member-Name Syntax 153
Assigning a Fileref to Concatenated Files 154

Referencing External Files with Long Filenames 154

Referencing Files Using UNC Paths 154

Listing Fileref Assignments 155

Clearing Filerefs 155
Understanding How Concatenated Directories Are Accessed 155

Input 156

Output 156

Understanding How Concatenated Files Are Accessed 156

Input 156
Output 156

Using a Quoted Windows Filename 157

Using Reserved Operating System Physical Names 157

Using a File in Your Working Directory 158

Accessing External Files with SAS Statements 158

Using the FILE Statement 158
Using the INFILE Statement 159

Using the %INCLUDE Statement 160

Accessing External Files with SAS Commands 161

Using the FILE Command 161

Using the INCLUDE Command 161
Using the GSUBMIT Command 162

Advanced External I/O Techniques 162

Altering the Record Format 162

Appending Data to an External File 163

Determining Your Drive Mapping 163
Reading External Files with National Characters 164

Reading Data from the Communications Port 164

Communications Port Timeouts 165

148 About External Files � Chapter 5

Options that Relate to Communications Port Timeouts 166

About External Files
External files are files that contain data or text, such as SAS programming

statements, records of raw data, or procedure output. SAS can use these files, but they
are not managed by SAS.

SAS Language Reference: Concepts contains basic, platform-independent information
on external files.

For information on how to access external files containing transport data libraries,
see the SAS Customer Support Center Web page, http://support.sas.com.

Referencing External Files

Accessing External Files
To access external files, you must tell SAS how to find the files. Use the following

statements to access external files:

FILENAME
associates a fileref with an external file that is used for input or output.

FILE
opens an external file for writing data lines. Use the PUT statement to write lines.

INFILE
opens an external file for reading data lines. Use the INPUT statement to read
lines.

%INCLUDE
opens an external file and reads SAS statements from that file. (No other
statements are necessary.)

These statements are discussed in the section “SAS Statements under Windows” on
page 449, and in the SAS statements section in SAS Language Reference: Dictionary.

You can also specify external files in various SAS dialog box entry fields (for example,
as a file destination in the Save As dialog box), the FILENAME function, and in SAS
commands, such as FILE and INCLUDE.

Depending on the context, SAS can reference an external file by using:
� a fileref assigned with the FILENAME statement or function
� an environment variable defined with either the SET system option or the

Windows SET command
� a Windows filename enclosed in quotation marks
� member-name syntax (also called aggregate syntax)
� a single filename within quotation marks (a file in the working directory).

The following sections discuss these methods of specifying external files.
Because there are several ways to specify external files in SAS, SAS uses a set of

rules to resolve an external file reference and uses this order of precedence:
1 Check for a standard Windows file specification enclosed in quotation marks.
2 Check for a fileref defined by a FILENAME statement or function.

Using External Files � Using a Fileref 149

3 Check for an environment variable fileref.

4 Assume that the file is in the working directory.

In other words, SAS assumes that an external file reference is a standard Windows
file specification. If it is not, SAS checks to determine whether the file reference is a
fileref (defined by either a FILENAME statement, FILENAME function, or an
environment variable). If the file reference is none of these filerefs, SAS assumes it is a
filename in the working directory. If the external file reference is not valid for one of
these choices, SAS issues an error message indicating that it cannot access the external
file.

Using a Fileref
One way to reference external files is with a fileref. A fileref is a logical name

associated with an external file. You can assign a fileref with a File Shortcut in the SAS
Explorer window, the My Favorite Folders window, the FILENAME statement, the
FILENAME function, or you can use a Windows environment variable to point to the
file. This section discusses the different ways to assign filerefs and also shows you how
to obtain a listing of the active filerefs and clear filerefs during your SAS session.

Assigning File Shortcuts

In an interactive SAS session, you can use the SAS Explorer window or the My
Favorite Folders window to create filerefs. The SAS Explorer File Shortcuts folder
contains a listing of active filerefs. To create a new fileref from SAS Explorer:

1 Select the File Shortcuts folder and then select File � New

2 In the File Shortcut Assignment window, enter the name of the shortcut (fileref)
and the path to the SAS file that the shortcut represents.

3 You can also check Enable at Startup to reassign the shortcut for all subsequent
SAS sessions.

To assign a file shortcut using the My Favorite Folders window:

1 Open the folder that contains the file.

2 Position the cursor over the file, right mouse click and select Create File
Shortcut.

3 In the Create File Shortcut dialog box, type the name of the file shortcut and press
Enter or click OK.

You can then use these file shortcuts in your SAS programs.

Note: File Shortcuts are active only during the current SAS session. �

Using the FILENAME Statement

The FILENAME statement provides a means to associate a logical name with an
external file or directory.

Note: The syntax of the FILENAME function is similar to the FILENAME
statement. For information about the FILENAME function, see SAS Language
Reference: Dictionary. �

150 Using a Fileref � Chapter 5

The simplest syntax of the FILENAME statement is as follows:

FILENAME fileref “external-file”;

For example, if you want to read the file C:\MYDATA\SCORES.DAT, you can issue
the following statement to associate the fileref MYDATA with the file
C:\MYDATA\SCORES.DAT:

filename mydata "c:\mydata\scores.dat";

Then you can use this fileref in your SAS programs. For example, the following
statements create a SAS data set named TEST, using the data stored in the external
file referenced by the fileref MYDATA:

data test;
infile mydata;
input name $ score;

run;

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use these words as filerefs. �

You can also use the FILENAME, FILE, and INFILE statements to concatenate
directories of external files and to concatenate multiple individual external files into one
logical external file. These topics are discussed in “Assigning a Fileref to Concatenated
Directories” on page 153 and “Assigning a Fileref to Concatenated Files” on page 154.

The * and ? wildcards can be used in either the external filename or file extension for
matching input filenames. Use * to match one or more characters and the ? to match a
single character. Wildcards are supported for input only in the FILENAME and
INFILE statements, and in member-name syntax (aggregate syntax). Wildcards are not
valid in the FILE statement. The following filename statement reads input from every
file in the current directory that begins with the string wild and ends with .dat:

filename wild ’wild*.dat’;
data;

infile wild;
input;

run;

The following example reads all files in the current working directory:

filename allfiles ’*.*’;
data;

infile allfiles;
input;

run;

The FILENAME statement accepts various options that enable you to associate
device names, such as printers, with external files and to control file characteristics,
such as record format and length. Some of these options are illustrated in “Advanced
External I/O Techniques” on page 162. For the complete syntax of the FILENAME
statement, refer to “FILENAME Statement” on page 453.

Using Environment Variables
Just as you can define an environment variable to serve as a logical name for a SAS

library (see “Assigning SAS Libraries Using Environment Variables” on page 130), you
can also use an environment variable to refer to an external file. You can choose either
to define a SAS environment variable using the SET system option or to define a
Windows environment variable using the Windows SET command. Alternatively, you

Using External Files � Using a Fileref 151

can define environment variables using the System dialog box, accessed from the
Control Panel.

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use these words as environment variables. �

The availability of environment variables makes it simple to assign resources to SAS
before invocation. However, the environment variables you define (using the SET
system option) for a particular SAS session are not available to other applications.

Using the SET System Option
For example, to define a SAS environment variable that points to the external file

C:\MYDATA\TEST.DAT, you can use the following SET option in your SAS configuration
file:

-set myvar c:\mydata\test.dat

Then, in your SAS programs, you can use the environment variable MYVAR to refer
to the external file:

data mytest;
infile myvar;
input name $ score;

run;

It is recommended that you use the SET system option in your SAS configuration file
if you invoke SAS using the Windows Start menu.

Using the SET Command
An alternative to using the SET system option to define an environment variable is

to use the Windows SET command. For example, the Windows SET command that
equates to the previous example is

SET MYVAR=C:\MYDATA\TEST.BAT

You can also define SET commands by using System Properties dialog box that you
access from the Control Panel.

You must issue all the SET commands that define your environment variables before
you invoke SAS. If you define an environment variable in an MS-DOS window, and then
start SAS from the Start menu, SAS will not recognize the environment variable.

Assigning a Fileref to a Directory
You can assign a fileref to a directory and then access individual files within that

directory using member-name syntax (also called aggregate syntax).
For example, if all your regional sales data for January are stored in the directory

C:\SAS\MYDATA, you can issue the following FILENAME statement to assign the fileref
JAN to this directory:

filename jan "c:\sas\mydata";

Now you can use this fileref with a member name in your SAS programs. In the
following example, you reference two files stored in the JAN directory:

data westsale;
infile jan(west);
input name $ 1-16 sales 18-25

comiss 27-34;

152 Using a Fileref � Chapter 5

run;
data eastsale;

infile jan(east);
input name $ 1-16 sales 18-25

comiss 27-34;
run;

When you use member-name syntax, you do not have to specify the file extension for
the file you are referencing, as long as the file extension is the expected one. For
example, in the previous example, the INFILE statement expects a file extension of
.DAT. The following table lists the expected file extensions for the various SAS
statements and commands:

Table 5.1 Default File Extensions for Referencing External Files with
Member-Name Syntax

SAS Command or Statement SAS Window File Extension

FILE statement EDITOR .DAT

%INCLUDE statement EDITOR .SAS

INFILE statement EDITOR .DAT

FILE command EDITOR .SAS

FILE command LOG .LOG

FILE command OUTPUT .LST

FILE command NOTEPAD none

INCLUDE command EDITOR .SAS

INCLUDE command NOTEPAD none

For example, the following program submits the file C:\PROGRAMS\TESTPGM.SAS to
SAS:

filename test "c:\programs";
%include test(testpgm);

SAS searches for a filename TESTPGM.SAS in the directory C:\PROGRAMS.
If your file has a file extension different from the default file extension, you can use

the file extension in the filename, as in the following example:

filename test "c:\programs";
%include test(testpgm.xyz);

If your file has no file extension, you must enclose the filename in quotation marks,
as in the following example:

filename test "c:\programs";
%include test("testpgm");

To further illustrate the default file extensions SAS uses, here are some more
examples using member-name syntax. Assume that the following FILENAME
statement has been submitted:

filename test "c:\mysasdir";

The following example opens the file C:\MYSASDIR\PGM1.DAT for output:

file test(pgm1);

Using External Files � Using a Fileref 153

The following example opens the file C:\MYSASDIR\PGM1.DAT for input:

infile test(pgm1);

The following example reads and submits the file C:\MYSASDIR\PGM1:

%include test("pgm1");

These examples use SAS statements. SAS commands, such as the FILE and
INCLUDE commands, also accept member-name syntax and have the same default file
extensions as shown in Table 5.1 on page 152.

Another feature of member-name syntax is that it enables you to reference a
subdirectory in the working directory without using a fileref. As an example, suppose
you have a subdirectory named PROGRAMS that is located beneath the working
directory. You can use the subdirectory name PROGRAMS when referencing files
within this directory. For example, the following statement submits the program stored
in working-directory \PROGRAMS\PGM1.SAS:

%include programs(pgm1);

The next example uses the FILE command to save the contents of the active window
to working-directory \PROGRAMS\TESTPGM.DAT:

file programs(testpgm);

Note: If a directory name is the same as a previously defined fileref, the fileref takes
precedence over the directory name. �

Assigning a Fileref to Concatenated Directories
Member-name syntax is also handy when you use the FILENAME statement to

concatenate directories of external files. For example, suppose you issue the following
FILENAME statement:

filename progs ("c:\sas\programs",
"d:\myprogs");

This statement tells SAS that the fileref PROGS refers to all files stored in both the
C:\SAS\PROGRAMS and the D:\MYPROGS directories. When you use the fileref
PROGS in your SAS program, SAS looks in these directories for the member you
specify. When you use this concatenation feature, you should be aware of the protocol
SAS uses, which depends on whether you are accessing the files for read, write, or
update. For more information, see “Understanding How Concatenated Directories Are
Accessed” on page 155.

Summary of Rules for Resolving Member-Name Syntax
SAS resolves an external file reference that uses member-name syntax by using a

set of rules. For example, suppose your external file reference in a SAS statement or
command is the following:

progs(member1)

SAS uses the following set of rules to resolve this external file reference. This list
represents the order of precedence:

1 Check for a fileref named PROGS defined by a FILENAME statement.
2 Check for a SAS or Windows environment variable named PROGS.
3 Check for a directory named PROGS beneath the working directory.

The member name must be a valid physical filename. If no extension is given (as in
the previous example), SAS uses the appropriate default extension, as given in Table

154 Using a Fileref � Chapter 5

5.1 on page 152. If the extension is given or the member name is quoted, SAS does not
assign an extension, and it looks for the filename exactly as it is given.

Assigning a Fileref to Concatenated Files
You can specify concatenations of files when reading external files from within SAS.

Concatenated files consist of two or more file specifications (which might contain
wildcard characters) separated by blanks or commas. Here are some examples of valid
concatenation specifications:

� filename allsas ("one.sas", "two.sas", "three.sas");

� filename alldata ("test1.dat" "test2.dat" "test3.dat");

� filename allinc "test*.sas";

� %include allsas;

� infile alldata;

� include allinc;

When you use this concatenation feature, you should be aware of the protocol SAS
uses, which depends on whether you are accessing the files for read, write, or update.
For more information, see “Understanding How Concatenated Files Are Accessed” on
page 156.

Note: Do not confuse concatenated file specifications with concatenated directory
specifications, which are also valid and are illustrated in “Assigning a Fileref to
Concatenated Directories” on page 153. �

Referencing External Files with Long Filenames
SAS supports the use of long filenames. (For more information about valid long

filenames, see your Windows operating environment documentation.) You can use long
filenames whenever you specify a filename as an argument to a dialog box, command, or
any aspect of the SAS language.

When specifying external filenames with the SAS language, such as in a statement
or function, you should enclose the filename in double quotation marks to reduce
ambiguity (since a single quotation mark is a valid character in a long filename). When
you need to specify multiple filenames, enclose each filename in double quotation marks
and delimit the names with a blank space.

Here are some examples of valid uses of long filenames within SAS:
� libname abc "My data file";

� filename myfile "Bernie’s file";

� filename summer ("June sales" "July sales" "August sales");

� include "A really, really big SAS program";

Referencing Files Using UNC Paths
SAS supports the use of the Universal Naming Convention (UNC) paths. UNC

paths let you connect your computer to network devices without having to refer to a
network drive letter. SAS supports UNC paths to the extent that Windows and your
network software support them. In general, you can refer to a UNC path anywhere in
SAS where you would normally refer to a network drive.

UNC paths have the following syntax:

\\SERVER\SHARE\FOLDER\FILEPATH

where

Using External Files � Using a Fileref 155

SERVER
is the network file server name.

SHARE
is the shared volume on the server.

FOLDER
is one of the directories on the shared volume.

FILEPATH
is a continuation of the file path, which might reference one or more subdirectories.

For example, the following command includes a file from the network file server
ZAPHOD:

include "\\zaphod\universe\galaxy\stars.sas";

Listing Fileref Assignments
If you have assigned several filerefs during a SAS session and need to refresh your

memory as to which fileref points where, you can use either the SAS Explorer window
or the FILENAME statement to list all the assigned filerefs.

To use the SAS Explorer window to list the active filerefs, double-click on File
Shortcuts. The Explorer window lists all the filerefs active for your current SAS
session. Any environment variables you have defined as filerefs are listed, provided you
have used them in your SAS session. If you have defined an environment variable as a
fileref but have not used it yet in a SAS program, the fileref is not listed in the Explorer
window.

You can use the following FILENAME statement to write the active filerefs to the
SAS log:

filename _all_ list;

Clearing Filerefs
You can clear a fileref by using the following syntax of the FILENAME statement:

FILENAME fileref|_ALL_ <CLEAR>;

If you specify a fileref, only that fileref is cleared. If you specify the keyword _ALL_,
all the filerefs you have assigned during your current SAS session are cleared.

To clear filerefs using the SAS Explorer File Shortcuts:
1 select the File Shortcuts you want to delete. To select all File Shortcuts, select

Edit � Select All
2 press the Delete key or select Edit � Delete
3 Click OK in the message box to confirm deletion of the File shortcuts.

Note: You cannot clear a fileref that is defined by an environment variable. Filerefs
that are defined by an environment variable are assigned for the entire SAS session. �

SAS automatically clears the association between filerefs and their respective files at
the end of your job or session. If you want to associate the fileref with a different file
during the current session, you do not have to end the session or clear the fileref. SAS
automatically reassigns the fileref when you issue a FILENAME statement for the new
file.

Understanding How Concatenated Directories Are Accessed
When you associate a fileref with more than one physical directory, which file is

accessed depends upon whether it is being accessed for input or output.

156 Using a Fileref � Chapter 5

Input
If the file is opened for input or update, the first file found that matches the member

name is accessed. For example, if you submit the following statements, and the file
PHONE.DAT exists in both the C:\SAMPLES and C:\TESTPGMS directories, the one
in C:\SAMPLES is read:

filename test ("c:\samples","c:\testpgms");
data sampdat;

infile test(phone.dat);
input name $ phonenum $ city $ state $;

run;

Output
When you open a file for output, SAS writes to the file in the first directory listed in

the FILENAME statement, even if a file by the same name exists in a later directory.
For example, suppose you input the following FILENAME statement:

filename test ("c:\sas","d:\mysasdir");

Then, when you issue the following FILE command, the file SOURCE.PGM is
written to the C:\SAS directory, even if a file by the same name exists in the
D:\MYSASDIR directory:

file test(source.pgm);

Understanding How Concatenated Files Are Accessed
When you associate a fileref with more than one physical file, the behavior of SAS

statements and commands depends on whether you are accessing the files for input or
output.

Input
If the file is opened for input, data from all files are input. For example, if you issue

the following statements, the %INCLUDE statement submits four programs for
execution:

filename mydata ("qtr1.sas","qtr2.sas",
"qtr3.sas","qtr4.sas");

%include mydata;

Output
If the file is opened for output, data are written to the first file in the concatenation.

For example, if you issue the following statements, the PUT statement writes to
MYDAT1.DAT:

filename indata "dogdat.dat";
filename outdata ("mydat1.dat","mydat2.dat",

"mydat3.dat","mydat4.dat");
data _null_;

infile indata;
input name breed color;
file outdata;
put name= breed= color=;

run;

Using External Files � Using a Quoted Windows Filename 157

Using a Quoted Windows Filename
Instead of using a fileref to refer to external files, you can use a quoted Windows

filename. For example, if the file C:\MYDIR\ORANGES.SAS contains a SAS program
you want to invoke, you can issue the following statement:

%include "c:\mydir\oranges.sas";

When you use a quoted Windows filename in a SAS statement, you can omit the
drive and directory specifications if the file you want to reference is located in the
working directory. For example, if in the previous example the working directory is
C:\MYDIR, you can submit this statement:

%include "oranges.sas";

Using Reserved Operating System Physical Names
You can use several reserved names as quoted physical filenames. Reserved

operating system physical names enable you to do a variety of things, such as read data
directly from the communications port (such as COM1). The following table lists these
physical names and their corresponding device-type keywords:

Table 5.2 Reserved Windows Physical Names

Physical Name Device Type Use

COM1–COM9 COMMPORT Read/write from the communications port.

NUL DUMMY Discard data. This name is useful in testing
situations.

You can specify operating system physical names with or without a colon. For
example, you can specify either COM1: or COM1. For additional information, see your
Windows documentation.

The following example demonstrates how to capture data from an external device or
application that is transmitting data via a serial (RS-232C port).

options noxwait xsync;
data _null_;

if symget("sysscpl") = "XP_PRO" then
rc = system("mode COM1:9600,n,8,1,xon=on");

stop;
run;

filename commdata commport "COM1:";

data fruit;
keep num type;
infile commdata unbuffered;
file commdata;
put "ready";
input totrecs records $;
if totrecs = . or records ne "RECORDS" then

do;
file log;
put "ERROR: Unable to determine

number of records to read.";

158 Using a File in Your Working Directory � Chapter 5

stop;
end;

do i = 1 to totrecs;
input num type $;
output;
put "NEXT";

end;
stop;

run;

Note the use of the device-type keyword COMMPORT in the FILENAME statement
in this example. Because the access protocols for devices are slightly different from the
access protocols for files, you should always use the appropriate device-type keyword in
combination with the reserved physical name in the FILENAME statement. If you do
not use a device-type keyword, SAS defaults to using the access protocols for files, not
for devices.

For more information about available device-type keywords in the FILENAME
statement, see “SAS Statements under Windows” on page 449. “Reading Data from the
Communications Port” on page 164 discusses the access protocols for using a
communications port device.

Using a File in Your Working Directory
If you store the external files you need to access in your working directory and they

have the expected file extensions (see Table 5.1 on page 152), you can simply refer to the
filename, without quotation marks or file extensions, in a SAS statement. For example,
if you have a filename ORANGES.SAS stored in your working directory and ORANGES
is not defined as a fileref, you can submit the file with the following statement:

%include oranges;

Remember, though, that using this type of file reference requires that
� the file is stored in the working directory
� the file has the correct file extension
� the filename is not also defined as a fileref.

For more information about how to determine and change the SAS working directory,
see “Determining the Current Folder When SAS Starts” on page 9 and “Changing the
SAS Current Folder” on page 39.

Accessing External Files with SAS Statements
This section presents simple examples of using the FILE, INFILE, and %INCLUDE

statements to access external files. For more complex examples of using these
statements under Windows, see “Advanced External I/O Techniques” on page 162.

Using the FILE Statement
The FILE statement enables you to direct lines written by a PUT statement to an

external file.*

Using External Files � Using the INFILE Statement 159

Here is an example using the FILE statement. This example reads the data in the
SAS data set MYLIB.TEST and writes only those scores greater than 95 to the external
file C:\MYDIR\TEST.DAT:

filename test "c:\mydir\test.dat";
libname mylib "c:\mydata";
data _null_;

set mylib.test;
file test;
if score ge 95 then

put score;
run;

The previous example illustrates writing the value of only one variable of each
observation to an external file. The following example uses the _ALL_ option in the
PUT statement to copy all variables in the current observation to the external file if the
variable REGION contains the value west.

libname us "c:\mydata";
data west;

set us.pop;
file "c:\sas\pop.dat";
where region="west";
put _all_;

run;

This technique of writing out entire observations is particularly useful if you need to
write variable values in a SAS data set to an external file so that you can use your data
with another application that cannot read data in a SAS data set format.

Note: This example uses the _ALL_ keyword in the PUT statement. This code
generates named output, which means that the variable name, an equal sign (=), and
the variable value are all written to the file. For more information about named output,
see the description of the PUT statement in SAS Language Reference: Dictionary. �

The FILE statement also accepts several options. These options enable you to control
the record format and length. Some of these options are illustrated in “Advanced
External I/O Techniques” on page 162. For the complete syntax of the FILE statement,
see “FILE Statement” on page 451.

Note: The default record length used by the FILE statement is 256 characters. If
the data you are saving contains records that are longer than 256 characters, you must
use the FILENAME statement to define a fileref and either use the LRECL= option in
the FILENAME statement to specify the correct logical record length or specify the
LRECL= option in the FILE statement. For details about the LRECL= option, see
LRECL= in “FILE Statement” on page 451. �

Using the INFILE Statement

Use the INFILE statement to specify the source of data read by the INPUT
statement in a SAS DATA step. The INFILE statement is always used in conjunction
with an INPUT statement, which defines the location and type of data being read.

* You can also use the FILE statement to direct PUT statement output to the SAS log or to the same destination as procedure
output. For more information, see SAS Language Reference: Dictionary.

160 Using the %INCLUDE Statement � Chapter 5

Here is a simple example of the INFILE statement. This DATA step reads the
specified data from the external file and creates a SAS data set named SURVEY:

filename mydata "c:\mysasdir\survey.dat";
data survey;

infile mydata;
input fruit $ taste looks;

run;

You can use a quoted Windows filename instead of a fileref:

data survey;
infile "c:\mysasdir\survey.dat";
input fruit $ taste looks;

run;

The INFILE statement also accepts other options. These options enable you to
control the record format and length. Some of these options are illustrated in
“Advanced External I/O Techniques” on page 162. For the complete syntax of the
INFILE statement, see “INFILE Statement” on page 461.

Note: The default record length used by the INFILE statement is 256 characters. If
the data you are reading have records longer 256 characters, you must use the
FILENAME statement to define a fileref and either use the LRECL= option in the
FILENAME statement to specify the correct logical record length or specify the
LRECL= option in the INFILE statement. For details about the LRECL= option, see
LRECL= in “INFILE Statement” on page 461. �

Using the %INCLUDE Statement
When you submit an %INCLUDE statement, it reads an entire file into the current

SAS program you are running and submits that file to SAS immediately. A single SAS
program can have as many individual %INCLUDE statements as necessary, and you
can nest up to ten levels of %INCLUDE statements. Using the %INCLUDE statement
makes it easier for you to write modular SAS programs.

Here is an example that submits the statements stored in
C:\SAS\MYJOBS\PROGRAM1.SAS using the %INCLUDE statement and
member-name syntax:

filename job "c:\sas\myjobs";
%include job(program1);

The %INCLUDE statement also accepts several options. These options enable you to
control the record format and length. Some of these options are illustrated in
“Advanced External I/O Techniques” on page 162. For the complete syntax of the
%INCLUDE statement, see “%INCLUDE Statement” on page 459.

Note: The default record length used by the %INCLUDE statement is 256
characters. If the program you are reading has records longer 256 characters, you must
use the FILENAME statement to define a fileref and either use the LRECL= option in
the FILENAME statement to specify the correct logical record length or specify the
LRECL= option in the %INCLUDE statement. For details about the LRECL= option,
see LRECL= in “%INCLUDE Statement” on page 459. �

Using External Files � Using the INCLUDE Command 161

Accessing External Files with SAS Commands
This section illustrates how to use the FILE and INCLUDE commands to access

external files. Commands provide the same service as the Save As and Open dialog
boxes. The method that you use to access external files depends on the needs of your
SAS application and your personal preference.

Using the FILE Command
The FILE command has a different use than the FILE statement; the FILE

command writes the current contents of a window to an external file rather than merely
specifying, for example, a destination for PUT statement output in a DATA step.

For example, if you want to save the contents of the LOG window to an external
filename C:\SASLOGS\TODAY.LOG, you can issue the following FILE command from
the Command dialog box; however, the LOG window must be active:

file "c:\saslogs\today.log"

If you have already defined the fileref LOGS to point to the SASLOGS directory, you
can use the following FILE command:

file logs(today)

In this case, the file extension defaults to .log, as shown in Table 5.1 on page 152.
If you use the FILE command to attempt to write to an already existing file, a dialog

box enables you to replace the existing file, append the contents of the window to the
existing file, or cancel your request.

If you issue the FILE command with no arguments, the contents of the window are
written to the file that is referenced in the last FILE command. This action is useful if
you are editing a program and want to save it often. However, the dialog box that
prompts you about replacing or appending appears only the first time that you issue the
FILE command. Thereafter, unless you specify the filename in the FILE command, it
uses the parameters that you specified earlier (replace or append) without prompting
you.

Choosing Save As from the SAS main window File menu displays the Save As dialog
box. This dialog box performs the same function as the FILE command, but it is more
flexible in that it gives you more choices and is more interactive than the FILE
command. For more information, see “Saving Files” in “Saving Files” on page 88 and
“Using the Program Editor” on page 111.

The FILE command also accepts several options. These options enable you to control
the record format and length. Some of these options are illustrated in “Advanced
External I/O Techniques” on page 162. For the complete syntax of the FILE command,
see “FILE Command” on page 347.

Using the INCLUDE Command
The INCLUDE command, like the %INCLUDE statement, can be used to copy an

entire external file into the Editor window, the NOTEPAD window, or whatever window
is active. In the case of the INCLUDE command, however, the file is simply copied to
the window and is not submitted.

162 Using the GSUBMIT Command � Chapter 5

For example, suppose you want to copy the file C:\SAS\PROG1.SAS into the Editor
window. If you have defined a fileref SAMPLE to point to the correct directory, you can
use the following INCLUDE command from the Command dialog box (if the Editor is
the active window) to copy the member PROG1 into the Editor window:

include sample(prog1);

Another way to copy files into your SAS session is to use the Open dialog box. In
addition to copying files, the Open dialog box gives you other choices, such as invoking
the program that you are copying. The Open dialog box is the most flexible way for you
to copy files into the Editor window. For more information, see “Opening Files” in
“Using the Enhanced Editor” on page 86 and “Using the Program Editor” on page 111.

The INCLUDE command also accepts several arguments. These arguments enable
you to control the record format and length. Some of these arguments are illustrated in
“Advanced External I/O Techniques” on page 162. For the complete syntax of the
INCLUDE command, see “INCLUDE Command” on page 351.

Issuing the INCLUDE command with no arguments includes the that is file
referenced in the last INCLUDE command. If no previous INCLUDE command exists,
you receive an error message.

Using the GSUBMIT Command
The GSUBMIT command can be used to submit SAS statements that are stored in

the Windows clipboard. To submit SAS statements from the clipboard, use the following
command:

gsubmit buffer=default;

You can also use the GSUBMIT command to submit SAS statements that are
specified as part of the command. For more information about the GSUBMIT command,
see the SAS Help and Documentation.

Note: SAS statements in the Windows clipboard will not be submitted using the
GSUBMIT command if a procedure that you submitted using the Enhanced Editor is
still running.

You can copy the SAS statements to a new Enhanced Editor window and then submit
them. �

Advanced External I/O Techniques
This section illustrates how to use the FILENAME, FILE, and INFILE statements

to perform more advanced I/O tasks, such as altering the record format and length,
appending data to a file, using the DRIVEMAP device-type keyword to determine which
drives are available.

Altering the Record Format
Using the RECFM= option in the FILENAME, FILE, %INCLUDE, and INFILE

statements enables you to specify the record format of your external files. The following
example shows you how to use this option.

Usually, SAS reads a line of data until a carriage return and line feed combination
(’0D0A’x) are encountered or until just a line feed (’0A’x) is encountered. However,
sometimes data do not contain these carriage–control characters but do have
fixed-length records. In this case, you can specify RECFM=F to read your data.

Using External Files � Determining Your Drive Mapping 163

To read such a file, you need to use the LRECL= option to specify the record length
and the RECFM= option to tell SAS that the records have fixed-length record format.
Here are the required statements:

data test;
infile "test.dat" lrecl=60 recfm=f;
input x y z;

run;

In this example, SAS expects fixed-length records that are 60 bytes long, and it reads
in the three numeric variables X, Y, and Z.

You can also specify RECFM=F when your data contains carriage returns and line
feeds, but you want to read these values as part of your data instead of treating them
as carriage-control characters. When you specify RECFM=F, SAS ignores any carriage
controls and line feeds and simply reads the record length you specify.

Appending Data to an External File
Occasionally, you might not want to create a new output file, but rather append data

to the end of an existing file. In this case, you can use the MOD option in the FILE
statement as in the following example:

filename myfile "c:\sas\data";
data _null_;

infile myfile(newdata);
input sales expenses;
file myfile(jandata) mod;
put sales expenses;

run;

This example reads the variables SALES and EXPENSES from the external data file
C:\SAS\DATA\NEWDATA.DAT and appends records to the existing data file
C:\SAS\DATA\JANDATA.DAT.

If you are going to append data to several files in a single directory, you can use the
MOD option in the FILENAME statement instead of in the FILE statement. You can
also use the FAPPEND function or the PRINTTO procedure to append data to a file.
For more information, see the SAS functions section in SAS Language Reference:
Dictionary and the PRINTTO procedure in Base SAS Procedures Guide.

Determining Your Drive Mapping
You can use the DRIVEMAP device-type keyword in the FILENAME statement to

determine which drives are available for use.
You might use this technique in SAS/AF applications, where you could build selection

lists to let a user choose a hard drive. You could also use the DRIVEMAP keyword to
enable you to assign macro variables to the various available hard drives.

Using the DRIVEMAP device-type keyword in the FILENAME statement implies you
are using the fileref for read-only purposes. If you try to use the fileref associated with
the DRIVEMAP device-type keyword in a write or update situation, you receive an
error message indicating you do not have sufficient authority to write to the file.

Here is an example using this keyword:

filename myfile drivemap;
data mymap;

infile myfile;
input drive $;

164 Reading External Files with National Characters � Chapter 5

put drive;
run;

The information written to the SAS log looks similar to the information in Output 5.1.

Output 5.1 Drive Mapping Information

50 filename myfile drivemap;
51
52 data mymap;
53 infile myfile;
54 input drive $;
55 put drive;
56 run;
NOTE: The infile MYFILE is:

FILENAME=DRIVEMAP,
RECFM=V,LRECL=256

A:
C:
D:
J:
K:
L:
M:
N:
R:
S:
T:
U:
NOTE: 12 records were read from the infile MYFILE.

The minimum record length was 2.
The maximum record length was 2.

NOTE: The data set WORK.MYMAP has 12 observations
and 1 variables.

NOTE: The DATA statement used 2.04 seconds.

Reading External Files with National Characters

SAS under Windows, like most Windows applications, reads and writes character
data using ANSI character codes. In SAS 9.2, SAS does not provide the option to read
or write files using OEM character sets.

Characters such as the Â are considered national characters. Windows represents
each character with a hexadecimal number. If your external file was created with a
Windows editor (including applications such as WordPerfect) or in SAS, you do not need
to do anything special. Simply read the file using the FILENAME or FILE statements,
as you would normally do.

Reading Data from the Communications Port

You can read data directly from the communications (serial) port on your machine.
To set the serial communications parameters, use the port configuration tools in the
Windows Control Panel to set up the communications port. The communications
parameters you specify are specific to each data collection device.

After you invoke SAS, submit a FILENAME statement to associate a fileref with the
communications port, as in the following example:

filename test commport "com1:";

Using External Files � Communications Port Timeouts 165

This FILENAME statement defines the fileref TEST, uses the COMMPORT
device-type keyword that specifies you are going to use a communications port, and
specifies the COM1: reserved physical name.

Next, read the data from COM1: into a SAS data set using the TEST fileref. The
following DATA step reads in the data, 1 byte at a time, until SAS encounters an
end-of-file (the hexadecimal value of end-of-file is ’1a’x):

data acquire;
infile test lrecl=1 recfm=f unbuffered;
input i $;
/* Read until you find an end-of-file. */
if i=’1a’x then stop;

run;

The communications port can be accessed multiple times. However, while multiple
reads are allowed, only one user at a time can write to the port.

Two useful functions in data acquisition applications are SLEEP and WAKEUP.
These functions enable you to control when your program is invoked. For example, you
can use the WAKEUP function to start your program at exactly 2:00 a.m. For more
information about these two functions, see “SLEEP Function” on page 413 and
“WAKEUP Function” on page 415.

Communications Port Timeouts
By default, if you are reading from a communications port and a timeout occurs, an

end-of-file (EOF) is returned to the program. You can specify how communications port
timeouts are handled by using the COMTIMEOUT= option. The COMTIMEOUT=
option is valid in the FILENAME statement and must be used in conjunction with the
COMMPORT device-type keyword in the FILENAME statement.

The COMTIMEOUT= option accepts the following values:

EOF returns an end-of-file when a timeout occurs. This behavior is the
default. This behavior causes the current DATA step to terminate.

WAIT instructs the communications port to wait forever for data. This
value overrides the timeout. In this case, no record is returned to
the DATA step until data are available. This action can cause your
program to go into a loop, so use this value with caution.

ZERO does not wait if there is no incoming data.

Here is an example of a FILENAME statement specifying that a record length of 0
bytes be returned to the program when a timeout occurs:

filename test commport "com1" comtimeout=eof;
data test;

infile test length=linelen recfm=F eof=eof;
input @;

eof: if linelen ne 0 then input value;
else put ’Timeout reading from COM1:’;

run;

166 Options that Relate to Communications Port Timeouts � Chapter 5

Options that Relate to Communications Port Timeouts
These options relate to the communications port timeouts.

RMULTI specifies the multiplier, in milliseconds, that is used to calculate the
total timeout period for read operations. For each read operation,
this value is multiplied by the requested number of bytes to be read.

RCONST specifies the constant, in milliseconds, that is used to calculate the
total timeout period for read operations. For each read operation,
this value is added to the product of RMULTI and the requested
number of bytes.

WMULTI specifies the multiplier, in milliseconds, that is used to calculate the
total timeout period for write operations. For each write operation,
this value is multiplied by the number of bytes to be written.

WCONST specifies the constant, in milliseconds, that is used to calculate the
total timeout period for write operations. For each write operation,
this value is added to the product of the WMULTI member and the
number of bytes to be written.

RINT specifies the maximum time, in milliseconds, that is allowed to
elapse between the arrival of two characters on the communications
line.

167

C H A P T E R

6
Managing SAS Output

Printing 168
Introduction to Printing in SAS within the Windows Environment 168

Printing from within a SAS Window 168

Overview of Printing From Within a SAS Window 168

Setting Print Options 169

Windows That Can Be Printed 170
Printing a Window 170

Changing the Printer 171

Changing the Print Font 171

Setting Up the Printed Page 172

Print Options That Affect the Line Size and Page Size 175

Printing Line Numbers, Page Numbers, and in Color 175
Printing a Window as a Bitmap 176

Setting the Number of Copies to Print 176

Setting the Page Range to Print 176

Previewing Your Output Before You Print 176

How to Preview a Window 176
Features of the Print Preview Window 177

Print Preview Shortcut Keys 177

Using SAS Print Forms 177

Setting Print Options to Use Forms 177

Specifying the Current Print Form 178
Creating a Print Form 178

Printing with SAS Commands 179

Sending DATA Step Output to a Printer 179

Sending Printed Output to a File 179

Using the Print Dialog Box to Print to a File 179

Using the FILENAME Statement to Print to a File 180
Using the FILE Printer Option in Windows 180

Printing in Batch Mode 180

Default Printer Details 180

Canceling a Print Job 181

Routing Procedure Output to a Web Browser 181
Introduction to Routing Procedure Output to a Web Browser 181

Configuring Preferences for HTML Output 182

Using the Results Viewer Window 182

Configuring the Internal Browser 182

Using the Toolbar 183
Viewing HTML Files 183

Routing Procedure Output and the SAS Log to a File 184

Introduction to Routing Procedure Output and the SAS Log to a File 184

168 Printing � Chapter 6

Using the Save As Dialog Box 184
Using the PRINTTO Procedure 184

Using SAS System Options 185

Using the SAS Logging Facility to Write Log Messages to the Windows Event Viewer 186

Producing Graphics 186

Producing Graphics on Your Display 186
Printing Graphics 187

Using the SAS/GRAPH Generic (WINPxxx) Drivers 188

Using the SAS/GRAPH Native Printer Drivers 189

Printing and Previewing from the GRAPH Window 190

Choosing between a SAS/GRAPH Native Driver and the WINPxxx Driver 190

Importing Graphics from Other Applications 190
Pasting Graphics from the Windows Clipboard 191

Importing a Graphics File from within a SAS/GRAPH Window 191

Exporting Graphics for Use with Other Applications 192

Exporting a Graphic to a File from a SAS/GRAPH Window 192

Pasting Graphics from SAS/GRAPH into other Windows Applications 193
Creating CGM Files for Export to Other Applications 194

Creating WMF (Windows Metafile) Files for Export to Other Applications 195

Additional Resources 195

Printing

Introduction to Printing in SAS within the Windows Environment
By default, SAS under Windows uses Microsoft Windows print settings so that you

can manage your output in the same manner as you manage output from other
Windows applications. When you use Windows print settings, you use Windows
TrueType fonts and fonts that are supported by your printers.

You can also use Universal Printing with the Output Delivery System. In the
Windows environment, you enable Universal Printing by specifying the
UNIVERSALPRINT option and the UPRINTMENUSWITCH option. The information
in this section focuses on using Windows printing. For information about using
Universal Printing, see SAS Language Reference: Concepts and
“UPRINTMENUSWITCH System Option” on page 581.

For details about using Windows printing, see your Windows documentation.
“Producing Graphics” on page 186 discusses how to route graphics from your SAS
session to printers.

Printing from within a SAS Window

Overview of Printing From Within a SAS Window
Printing from SAS for Windows is much like printing in other Windows applications

where you print using a toolbar button or a dialog box. You specify printing options
using the Print, Print Setup, and Page Setup dialog boxes. As in other Windows
applications, you can preview a printed page using the preview facility.

Managing SAS Output � Printing from within a SAS Window 169

Setting Print Options
Use the Print dialog box to set the following print options:

� Change a printer destination

� Specify the window to print

� Print line numbers, page numbers, and in color

� Print as a bitmap

� Print to a file

� Print the contents of the clipboard

� Print multiple copies

� Print a range of pages or selected text

� Collate copies.

To access the Print dialog box, select File � Print

Display 6.1 The Print Dialog Box

Use the Print Setup dialog box to set the following print options:

� Change fonts

� Use Forms.

To access the Print Setup dialog box, select File � Page Setup

Display 6.2 The Print Setup Dialog Box

170 Printing from within a SAS Window � Chapter 6

Use the Page Setup dialog box to set the following print options:
� Change the paper size
� Change the paper source
� Specify the orientation (portrait or landscape)
� Set the margin sizes.

To access the Page Setup dialog box, select File � Page Setup

Display 6.3 Page Setup Dialog Box

You can specify document properties for the selected printer by selecting
File � Print � Properties

Windows That Can Be Printed
Not all SAS windows can be printed. To determine whether a SAS window can be

printed, make the window the active window. If the Print toolbar button or the Print
command in the File menu is active, the window can be printed.

The print output is a bitmap of the window if the Print toolbar button is active and
the Print command in the File menu is not. An example of a window that would be
printed as a bitmap is the SAS System Options window.

Printing a Window
To print the contents of a window, make the window the active window and do one of

the following:
� To print using the current print settings, click the Print toolbar button.
� To change the print options and then print, select File � Print and select your

printing options.

The Print dialog box might differ somewhat from what you see on your system,
depending on which Windows operating environment you use to run SAS, and on the
active SAS window.

Managing SAS Output � Printing from within a SAS Window 171

Changing the Printer
SAS consults these sources for default printer settings, in order of precedence:
1 the value of the SYSPRINT system option
2 the Windows default printer.

The destination printer is determined by the value of the SYSPRINT system option,
which is displayed in the Name box of the Print dialog box.

To change the printer:
1 Select File � Print.
2 Click in the Name list box and select a printer.

Using the SYSPRINT and PRTPERSISTDEFAULT system options, you can specify a
printer when you start SAS as shown in the following table:

Table 6.1 Specifying a Printer When You Start SAS

Printer Action

the Windows default printer Do not specify the SYSPRINT system option
when you start SAS.

a specific printer Start SAS with the SYSPRINT system option.

the printer specified in the previous SAS session Start SAS with the PRTPERSISTDEFAULT
system option each time you start SAS.

If both SYSPRINT and PRTPERSISTDEFAULT system options are specified when
SAS starts, the destination printer is determined by the value of the SYSPRINT system
option. For more information about these system options, see “SYSPRINT System
Option” on page 576 and “PRTPERSISTDEFAULT System Option” on page 551.

Alternatively, you can change the destination printer by using an OPTIONS
statement or by using the SAS System Options window. To change the printer using the
SAS System Options window:

1 Select Tools � Options � System.
2 Select the Log and procedure output control folder and then select the

Procedure output folder.
3 Double-click Sysprint.
4 Type a printer name as it appears in the Windows Printer folder in the New Value

box and click OK. The printer name is case-sensitive.

The information about the printer in the Print dialog box, the Status, Type, Where,
and Comment fields, displays information that is obtained from the Windows operating
environment.

Changing the Print Font
The print font options enable you to change the font, the font style, the point-size,

and the script. When you change the font size, SAS recalculates the maximum
LINESIZE and PAGESIZE values that are displayed in the Print Setup dialog box.

To specify a print font:
1 Select File � Print Setup � Font
2 Select Font, Font Style, and Size.
3 Click OK.

Note: SAS formats tabular and columnar reports assuming the use of a monospace
font. Use of a proportionally spaced font might produce improperly formatted reports. �

172 Printing from within a SAS Window � Chapter 6

Alternatively, you can change the font using the SYSPRINTFONT system option
when you start SAS, using an OPTIONS statement, or using the SAS System Option
window. Using the SYSPRINTFONT system options requires an exact match of the font
face-name and printer names.

To modify SYSPRINTFONT using the SAS System Option window,
1 Select Tools � Options � System.
2 Select the Log and procedure output control folder and then select the

Procedure output folder.
3 Right-click Sysprintfont and select Modify Value from the pop-up menu.
4 Type the font value in the New Value text box. Enclose the value in parentheses.
5 Click OK.

The following SYSPRINTFONT system option sets the font to Arial, bold, and italic
for the printer named "second-floor":

sas -sysprintfont="Arial" bold italic named "second-floor";

For more information, see “SYSPRINTFONT System Option” on page 578.

Setting Up the Printed Page
Setting up a page involves specifying the paper, the orientation of the paper, and the

margins. You can set up the page by using the Page Setup dialog box or by using
system options.

To open the Page Setup dialog box select File � Page Setup.
The following table describes the Page Setup dialog box options and their related

system options.

Table 6.2 Options for Setting Up a Printed Page

Page Setup Option Description Setting the Option Related System
Option

Orientation Specifies to print the
page vertically or
horizontally.

To print the page
vertically, select
Portrait.

To print the page
horizontally, select
Landscape.

ORIENTATION

Margins Specifies the amount
of space to leave blank
from the top, bottom,
left, and right edges of
the paper.

Type the number of
inches in the Left,
Right, Top, and
Bottom fields.

LEFTMARGIN,
RIGHTMARGIN,
TOPMARGIN,
BOTTOMMARGIN

Managing SAS Output � Printing from within a SAS Window 173

Page Setup Option Description Setting the Option Related System
Option

Paper size Specifies the size of
paper to print on. See
the table below for a
list of some paper
types.

Click the Size box
and select a paper size.

PAPERSIZE

Paper source Specifies the source of
the paper, such as a
printer tray, envelope
or manual feeder, or
specifies to
automatically select
the paper source.

Click the Source box
and select a paper
source.

PAPERSOURCE

Alternatively, you can set the page setup options using system options in the
OPTIONS statement or from the SAS System Options window. To set page setup
options from the SAS System Options window:

1 Select Tools � Options � System � Log and procedure output control � ODS
printing.

2 Place the cursor over the appropriate system option and double-click the right
mouse button.

3 Type a new value and click OK.

CAUTION:
Modifying print options by using the Windows printing dialog boxes might change the
values of SAS printing system options, which might cause unpredictable output. If you set
printing options using SAS system options such as LINESIZE and PAGESIZE, and
then use the Windows printing dialog boxes to set printing options, the SAS system
options are set to the values specified in the Windows print dialog boxes. �

Support for a particular paper size is printer dependent. The following is a list of
some paper size names:

LETTER Letter, 8-1/2-by-11-inch paper

LEGAL Legal, 8-1/2-by-14-inch paper

A4 A4 Sheet, 210-by-297-millimeter paper

CSHEET C Sheet, 17-by-22-inch paper

DSHEET D Sheet, 22-by-34-inch paper

ESHEET E Sheet, 34-by-44-inch paper

LETTERSMALL Letter Small, 8-1/2-by-11-inch paper

TABLOID Tabloid, 11-by-17-inch paper

LEDGER Ledger, 17-by-11-inch paper

STATEMENT Statement, 5-1/2-by-8-1/2-inch paper

EXECUTIVE Executive, 7-1/4-by-10-1/2-inch paper

A3 A3 sheet, 297-by-420-millimeter paper

A4SMALL A4 small sheet, 210-by-297-millimeter paper

A5 A5 sheet, 148-by-210-millimeter paper

174 Printing from within a SAS Window � Chapter 6

B4 B4 sheet, 250-by-354-millimeter paper

B5 B5 sheet, 182-by-257-millimeter paper

FOLIO Folio, 8-1/2-by-13-inch paper

QUARTO Quarto, 215-by-275-millimeter paper

10X14 10-by-14-inch paper

11X17 11-by-17-inch paper

NOTE Note, 8-1/2-by-11-inch paper

ENV_9 #9 Envelope, 3-7/8 by 8-7/8 inches

ENV_10 #10 Envelope, 4-1/8 by 9-1/2 inches

ENV_11 #11 Envelope, 4-1/2 by 10-3/8 inches

ENV_12 #12 Envelope, 4-3/4 by 11 inches

ENV_14 #14 Envelope, 5 by 11-1/2 inches

ENV_DL DL Envelope, 110 by 220 millimeters

ENV_C5 C5 Envelope, 162 by 229 millimeters

ENV_C3 C3 Envelope, 324 by 458 millimeters

ENV_C4 C4 Envelope, 229 by 324 millimeters

ENV_C6 C6 Envelope, 114 by 162 millimeters

ENV_C65 C65 Envelope, 114 by 229 millimeters

ENV_B4 B4 Envelope, 250 by 353 millimeters

ENV_B5 B5 Envelope, 176 by 250 millimeters

ENV_B6 B6 Envelope, 176 by 125 millimeters

ENV_ITALY Italy Envelope, 110 by 230 millimeters

ENV_MONARCH Monarch Envelope, 3-7/8 by 7-1/2 inches

ENV_PERSONAL 6-3/4 Envelope, 3-5/8 by 6-1/2 inches

FANFOLD_US U.S. Standard Fanfold, 14-7/8-by-11-inch paper

FANFOLD_STD-

_GERMAN

German Standard Fanfold, 8-1/2-by-12-inch paper

FANFOLD_LGL-

_GERMAN

German Legal Fanfold, 8-1/2-by-13-inch paper

Managing SAS Output � Printing from within a SAS Window 175

Print Options That Affect the Line Size and Page Size
The line size is the number of characters that can fit on one line. The page size is the

number of lines on a page. The line size and the page size that appear in the Print
Setup dialog box are automatically calculated based on these print options:

Table 6.3 Print Options That Affect The Line Size and Page Size

From the Print Setup
Dialog Box

From the Page Setup Dialog
Box

From the Font Dialog Box

� the printer � paper size

� paper source

� orientation

� margin settings

� font

� font style

� size

Although you cannot set the line size and page size from the dialog box, you can
adjust them by changing these print settings. The LINESIZE and PAGESIZE system
options also change when you modify these print options.

CAUTION:
Modifying print options by using the Windows printing dialog boxes might change the
values of SAS printing system options, which might cause unpredictable output. If you set
printing options using SAS system options such as LINESIZE and PAGESIZE, and
then use the Windows printing dialog boxes to set printing options, the SAS system
options are set to the values specified in the Windows print dialog boxes. �

Printing Line Numbers, Page Numbers, and in Color
Options for printing line numbers, page numbers, and in color are available in the

Additional Printing Options dialog box. To open this dialog box, click Options in the
Print dialog box.

The Options button is enabled only for windows that allow the printing of these
options.

It is not necessary for you to turn on line numbers in your window or specify the
NUMBER system option in order to print line numbers and page numbers. Color
printing is available when you print to a color printer and the window that you are
printing supports color printing.

176 Previewing Your Output Before You Print � Chapter 6

Printing a Window as a Bitmap
The following table lists the bitmap forms that are available and how to print them:

Table 6.4 Printing Bitmap Forms

Bitmap Form Print Dialog Box Selection

Print the active SAS window Select Print as bitmap

Print the SAS window 1 Select Print as bitmap

2 In the Contents of box, select AWS
windows (bitmap).

Print the entire screen 1 Select Print as bitmap

2 In the Contents of box, select
Entire screen(bitmap).

Fill an entire page with the bitmap Select Force Bitmaps to fill page

Setting the Number of Copies to Print
In the Print dialog box Number of copies box, you can either type in the number of

copies that you want or you can use the up and down arrows to select the number of
copies that you want. If your printer supports collation, the Collate box is active.

You can also set the number of copies to print by setting the COPIES system option
either in an OPTIONS statement or in the SAS System Options window.

To set the number of copies by using the SAS System Options window:
1 Select Log and procedure output control � ODS Printing.
2 Double-click Copies.
3 In the New Value box, type the number of copies and click OK.

Setting the Page Range to Print
Use these settings in the Print dialog box to select the pages that you want to print:
� To print all pages, select All.
� To print a range of pages:

� Select Pages.
� Type the beginning page in the from box.
� Type the ending page in the to box.

� To print only what you have selected in the window, select Selection. The
Selection option is available only when you have made a selection.

Previewing Your Output Before You Print

How to Preview a Window
To see how the contents of a window will appear as printed output:

1 Select the window you want to preview.
2 Select File � Print Preview

Alternatively, you can click the Print Preview toolbar button or type dlgprtpreview
in the command bar.

Managing SAS Output � Using SAS Print Forms 177

Features of the Print Preview Window
The following table lists the features of the Print Preview window.

Table 6.5 Features of the Print Preview Window

Task Action

Navigate through the pages Use Next or Previous

Zoom in or out Click Zoom or the page.

Determine the current page The status bar displays the current page and
total number of pages in the document.

Get help Click Help

Print the window Click Print

Close the Print Preview window Click Close

For a list of keyboard shortcuts that you can use in the Print Preview windows, see
“Keyboard Shortcuts within Print Preview” on page 629.

Print Preview Shortcut Keys
In the Print Preview window, you can navigate by using the following shortcut keys:

Key Action in Full Page Mode Action in Zoom Mode

PgDn Advance to next page Scroll down on current page

PgUp Go back to previous page Scroll up on current page

Ctrl+PgDn none Scroll right on current page

Ctrl+PgUp none Scroll left on current page

Ctrl+Home Go to first page Go to first page

Ctrl+End Go to last page Go to last page

Not all SAS windows support the Print Preview feature.

Using SAS Print Forms

Setting Print Options to Use Forms
To use a form to print from SAS:

1 Select File � Print Setup
2 Select the Use Forms check box.

If the Use Forms check box does not appear in the Print Setup dialog box, use the
PRTSETFORMS system option to enable it. For more information, see
“PRTSETFORMS System Option” on page 552.

When you print, SAS prints your output with the current print form.
To use forms in a batch SAS session, use the NOHOSTPRINT system option. When

NOHOSTPRINT is specified, the Use Forms check box is selected and SAS uses the line
size, page size, and font settings that are specified in your SAS form.

178 Using SAS Print Forms � Chapter 6

Specifying the Current Print Form
To specify a print form as the current print form, do one of the following:

� Type FORMNAME CLEAR in the command bar to use the default form.

� Type FORMNAME form-name in the command bar to use a specific form.

� Specify the FORMS system option in your SAS configuration file or in the SAS
System Options window.

To learn the name of the current form, issue the FORMNAME command with no
parameters. The form name is displayed in the message area of the status bar.

The FORMNAME command is not supported for all windows. If it is not supported,
SAS displays the following message in the status bar:

ERROR: Unrecognized command FORMNAME

Creating a Print Form
The FSFORM command opens the FORM window, in which you can define print

forms to use when you print SAS output. You can specify printer, page formats,
margins, fonts, and printer control language in a FORM entry.

SAS print forms are especially useful when you use the PRINT command from
within an interactive SAS session and when you print from SAS/AF windows.

To invoke the FORM window, issue the following command:

FSFORM catalog-name.form-name;

See the SAS Help and Documentation for more information about the FSFORM
command.

Although the majority of the frames in the FORM window are the same across all
operating environments, the first frame that you see after issuing the FSFORM
command is the Printer Selection frame, which lists the printers that you are able to use
under Windows. Display 6.4 on page 178 shows the default information for this frame.

To navigate through the FORM window frames for a printer:

1 Click a printer name or select a printer and press ENTER.

2 From the Tools menu, select Next Screen and Previous Screen to move through
the frames.

Display 6.4 Printer Selection Frame

The information in the Printer Selection frame is also site-dependent, so the printer
list at your site will be different from the one shown in Display 6.4 on page 178.

Managing SAS Output � Sending Printed Output to a File 179

The Printer Selection frame appears only when you create a new print form. After
you create a form, it is stored in your user profile catalog or in the catalog that was
specified with the FSFORM command (entry type FORM). The next time you modify
this form, the Printer Selection frame is skipped. You cannot return to the Printer
Selection frame from the second FORM window frame.

Printing with SAS Commands
If you prefer typing commands to using menus, you can use the PRINT or SPRINT

command to print the contents of the active window. The SPRINT command is not
available for all windows. For more information on these commands, refer to the SAS
Help and Documentation.

These SAS commands open the print dialog boxes:

Table 6.6 SAS Commands That Open Print Dialog Boxes

Command Dialog Box

DLGPRT Print

DLGPAGESETUP Page Setup

DLGPRTSETUP Print Setup

DLGPRTPREVIEW Print Preview

Sending DATA Step Output to a Printer
You can spool your DATA step output to a printer instead of to a file. Use the

FILENAME statement and the PRINTER device-type keyword to accomplish this
action, as in the following example:

filename myfile printer;
data _null_;

set sashelp.shoes;
file myfile;
where stores ge 25;
put _all_;

run;

In this example, the PRINTER device-type keyword specifies to print the output to
the printer that is specified in the SYSPRINT system option. For more information, see
“SYSPRINT System Option” on page 576.

Sending Printed Output to a File

Using the Print Dialog Box to Print to a File
You can send your printed output to a file by selecting the Print to File check box

in the Print dialog box, and then specifying the name of a file to print to. This action is
not the same as a Save operation; the resulting printer file contains all the printer
control language that is necessary to support whatever options you have chosen with
the Printer Setup dialog box, such as fonts and page orientation. In most cases, this
printer file is not readable with a text editor; it is meant only to be sent to the printer.

180 Printing in Batch Mode � Chapter 6

Using the FILENAME Statement to Print to a File
You can route printed output to a file by using the FILENAME statement, which is

useful for routing DATA step output. Here is an example:

filename myfile printer altdest=’c:\results.dat’;
data _null_;

set sashelp.shoes;
file myfile;
where stores ge 25;
put _all_;

run;

In this example, the output from the DATA step is routed to a file, yet still contains
all the printer control information that is necessary for you to use your printer to
produce formatted output.

Using the FILE Printer Option in Windows
Another method of sending printed output to a file is to direct the output to the

FILE: device instead of to a printer in the Windows printer Properties dialog box Ports
page. If you assign the FILE: device to a printer, Windows prompts you for a filename
each time that you print. When you send output to a file, the contents of the file are
overwritten if the file already exists. For more information about changing printer
properties, see your Windows documentation.

Printing in Batch Mode
When you run SAS jobs in batch mode, you do not have access to the Print and

Printer Setup dialog boxes, but you can still use the Windows printer. Use the
SYSPRINT system option to specify your default printer (and the SYSPRINTFONT
system option to specify your printer font, if you want) as described in “SYSPRINT
System Option” on page 576. For example, suppose your SAS configuration file contains
the following option:

-sysprint "f2hp5"

Then, your SAS program might contain the following statements:

filename myfile printer;
data _null_;

set sashelp.shoes;
file myfile;
where stores ge 25;
put _all_;

run;

When you submit your job, SAS uses the SYSPRINT printer specification to spool
your output from the DATA step to the Windows printer.

Default Printer Details
SAS looks for a default printer as follows (in order of precedence, first to last):
� the SYSPRINT system option value
� the Windows system default printer.

To see the value of the SYSPRINT system, open the Print Setup dialog box either by

Managing SAS Output � Introduction to Routing Procedure Output to a Web Browser 181

� selecting File � Print Setup

� entering DLGPRTSETUP in the command bar.

If you start SAS with the PRTPERSISTDEFAULT system option and not with the
SYSPRINT system option, SAS sets the SYSPRINT system option to the name of the
destination printer from the previous SAS session.

For information about changing the printer, see “Changing the Printer” on page 171.

Canceling a Print Job
You can cancel a print job while SAS is spooling a print file to a folder or to the

Windows Printer by clicking Cancel in the Print Abort dialog box. The Print Abort
dialog box appears only while SAS is spooling a print file to its destination. Small files
spool to a destination quickly and the Print Abort dialog box dismisses before you have
a chance to cancel the print job.

You can specify when you want to enable or suppress the Print Abort dialog box by
using the PRTABORTDLGS system option. See the following table for valid
PRTABORTDLGS values.

When to Display the Print Abort Dialog Box PRTABORTDLGS Value

Printing either to a file or to a printer BOTH

Never NEITHER

Only when printing to a file FILE

Only when printing to a printer PRINTER

For more information, see “PRTABORTDLGS System Option” on page 550.

Routing Procedure Output to a Web Browser

Introduction to Routing Procedure Output to a Web Browser
The Output Delivery System (ODS) can create your procedure output in HTML to be

viewed in any Web browser. The ODS system also has the ability to create RTF
procedure output. If you have Microsoft Internet Explorer 4.0 (IE) or later installed,
you can view HTML and RTF procedure output within the SAS main window by using
the Results Viewer. Viewing RTF procedure output also requires an RTF viewer, such
as Microsoft Word.

If you are not using IE, HTML procedure output is displayed in the preferred
browser that is specified in the Preferences dialog box Web sheet. Having IE installed
enables you to view the HTML output from within the main SAS window.

For more information about using the Output Delivery System, see SAS Output
Delivery System: User’s Guide.

182 Configuring Preferences for HTML Output � Chapter 6

Configuring Preferences for HTML Output
To create and view HTML output, you configure the Results and Web tabs of the

Preferences dialog box.
To open the Preferences dialog box, select Tools � Options � Preferences.
To configure the Results page of the Preferences dialog box:
1 Click on the Results tab.
2 Select the Create HTML check box.
3 Select where to save your HTML file. To save HTML files only while the current

SAS session is active, select the Use WORK folder check box. Saving HTML files
to a temporary folder is useful when you are testing a procedure and creating a
multitude of HTML files. For example, when you exit SAS, all temporary files are
deleted.

To save HTML files to a folder other than the Work folder, ensure that the Use
WORK folder check box is not selected. Then type a path in the Folder text box
or click on Browse to search for a folder.

4 Click in the Style box and highlight a style. The style defines colors and fonts to
display your output. You define styles by using the TEMPLATE Procedure in SAS
Output Delivery System: User’s Guide.

5 Select View results as they are generated to view the results immediately.
6 Under View results using, select Internal browser to view HTML output in

the Results Viewer or select Preferred browser to view the HTML output in the
Web browser specified on the Web tab. If you do not have Microsoft Internet
Explorer installed, you must select Preferred web browser.

To configure the Web page of the Preferences dialog box:
� Click on the Web tab.
� Choose which browser you want to use:

� Select the Use default browser radio button to view the HTML output in
the default browser that is configured in the Windows Registry. For
information about how to view the Windows Registry, see your Windows
documentation.

� Select the Other browser radio button to view HTML from a Web browser
other than the default browser. Then type the browser’s path and filename,
or click Browse to find the browser filename.

Using the Results Viewer Window

Configuring the Internal Browser
When you select Internal browser from the Results tab of the Preferences dialog

box, SAS uses the Results Viewer window to display HTML output that is created by
the Output Delivery System. You can open any HTML output that is listed in the
Results window or any HTML file that is located on your system.

Managing SAS Output � Using the Results Viewer Window 183

Using the Toolbar
The following toolbar buttons are available in the Results Viewer for HTML output:

Go Back
Select the left arrow button to cycle back through files that you opened in the
Results Viewer.

Go Forward
Select the right arrow button to move forward through files that you opened in the
Results Viewer.

Stop download
Select the traffic light button to stop loading a file.

Refresh content
Select the arrow circle button to reload the current file.

Cycle font
Select the double-A button to change the font size. Five font sizes are available.

Viewing HTML Files
You can view HTML procedure output by opening the file from the Results window.

If you want to see your procedure output as it is generated, set an option in the
Results tab of the Preferences dialog box:

1 Select Tools � Options � Preferences.

2 Select the Results tab.

3 Select View results as they are generated.

4 Click OK.

To open additional Results Viewer windows from the Results window:

1 Select the Results window.

2 Click on the output data set name with the right mouse button.

3 Select Open in New Window.

To open an HTML file that is on your system:

1 Make the Results Viewer window the active window.

2 Select the Open toolbar button.

3 Specify the HTML file in the Open dialog box.

4 Click OK.

To edit your HTML output:

1 From the Results window, click with the right mouse button on the output data set
name.

2 Select Edit Source.

3 Make changes to the HTML file.

4 Select the Save toolbar button.

5 Select the Refresh content toolbar button to view the updated HTML file in the
Results Viewer.

184 Routing Procedure Output and the SAS Log to a File � Chapter 6

Routing Procedure Output and the SAS Log to a File

Introduction to Routing Procedure Output and the SAS Log to a File
This section provides examples of the most common methods of routing SAS

procedure output and the SAS log to a file. Generally, this task is the same across
operating environments and is discussed in the SAS Help and Documentation.
However, the specification of external filenames and devices is system dependent. For
complete information about the various ways to reference external files, see
“Referencing External Files” on page 148.

You can route your SAS procedure output or the SAS log to a file in one of several
ways. The method that you choose depends on the method you use to run SAS, the
moment at which you make your decision to route the output or SAS log, and your
personal preference.

Some methods of sending SAS procedure output or the SAS log to a file include using
� the Save As dialog box, invoked either from the File menu, the pop-up menu for

the window that you want to save, or by typing DLGSAVE in the command bar.
� the FILE command.
� the PRINTTO procedure.
� various system options, including PRINT and ALTLOG.

Using the Save As Dialog Box
The easiest way to save the contents of the active window to a file is to select File �

Save As from the main SAS window, making sure that the active window (for example,
Log or Output) contains the output that you want to save. For more information about
the Save As dialog box, see “Saving Files” on page 88 within the Enhanced Editor or
“Saving Files” on page 117 within the Program Editor.

Using the PRINTTO Procedure
In batch SAS sessions, the SAS procedure output and the SAS log are written by

default to files named filename.LST and filename.LOG, respectively, where filename is
the name of your SAS job. For example, if your SYSIN file is MYPROG.SAS, the
procedure output file is named MYPROG.LST, and the log file is named MYPROG.LOG.
However, you can override these default filenames and send your output to any file that
you choose. For example, suppose that your job contains the following statements,
which assign the fileref MYOUTPUT to the file C:\SAS\FIRST.TXT. Then the PROC
PRINTTO statement tells SAS to send any upcoming SAS procedure output to the file
that is associated with MYOUTPUT.

filename myoutput ’c:\sas\first.txt’;
proc printto print=myoutput;
run;
data uspres;

input pres $ party $ number;
datalines;

Adams F 2
;
run;

Managing SAS Output � Using SAS System Options 185

proc print;
run;

Any PROC or DATA statements that follow these statements and that generate
output send their output to the C:\SAS\FIRST.TXT file, not to the default procedure
output file. If you want to return to the default file, issue an empty PROC PRINTTO
statement like the following example:

proc printto;
run;
data uspres2;

input pres $ party $ number;
datalines;

Lincoln R 16
Grant R 18
;
run;
proc print;
run;

Issuing these statements redirects the SAS procedure output to the default
destination (filename.LST). In this way, you can send the output and log from different
parts of the same SAS job to different files.

Note: If you route procedure output to a file, the resulting file can contain
carriage–control characters. To suppress these control characters when you include the
file in the Program Editor, set the RECFM= option to P in the FILENAME statement.
Note that this action affects the way the file is read into the Program Editor, not the file
itself. �

If you want to send the SAS log to a specific file, use the LOG= option instead of the
PRINT= option in the PROC PRINTTO statement. For more information about the
PRINTTO procedure, see “PRINTTO Procedure” on page 440 and Base SAS Procedures
Guide.

Note: When you use the PRINTTO procedure to route SAS procedure output or the
SAS log, the Status window does not reflect any rerouting of batch output but indicates
that it is routing the procedure output file and log to filename.LST and filename.LOG. �

Using SAS System Options
You can use SAS system options to route your SAS output or SAS log to a file. For

example, if you want to override the default behavior and send your procedure output
from a batch SAS job to the file C:\SASOUTPUT\PROG1.TXT, you can invoke SAS
with the following command:

SAS -SYSIN C:\SASPROGS\PROG1
-PRINT C:\SASOUTPUT\PROG1.TXT

This SAS command executes the SAS program PROG1.SAS and sends the procedure
output to the file C:\SASOUTPUT\PROG1.TXT. You can treat the SAS log similarly by
using the LOG system option instead of the PRINT system option. Two other related
system options, the ALTPRINT and ALTLOG options, are explained in “ALTPRINT
System Option” on page 493 and “ALTLOG System Option” on page 493.

Note: The Status window does reflect the PRINT and LOG system options values
when recording where the procedure output and log are being sent. �

186 Using the SAS Logging Facility to Write Log Messages to the Windows Event Viewer � Chapter 6

Using the SAS Logging Facility to Write Log Messages to the Windows
Event Viewer

The SAS 9.2 logging facility makes it possible to categorize, collect, and filter log
events and write them to a variety of output devices. The logging facility supports
problem diagnosis and resolution, performance and capacity management, and auditing
and regulatory compliance. The logging facility has following features:

� Log events are categorized using a hierarchical naming system that enables you to
configure logging at a broad or a fine-grained level.

� Log events can be directed to multiple output destinations, including files,
operating system facilities, databases, and client applications. For each output
destination, you can specify:

� the categories and levels of events to report
� the message layout, including the types of data to be included, the order of

the data, and the format of the data
� filters based on criteria such as diagnostic levels and message content

� Logging diagnostic levels can be adjusted dynamically without starting and
stopping processes.

� Performance-related events can be generated for processing by the Application
Response Measurement (ARM) 4.0 server.

The logging facility is used by most SAS server processes. You can also use the
logging facility within SAS programs.

For Windows, log messages can be written to the Windows event viewer.
For information about using the logging facility in your operating environment, see

SAS Logging: Configuration and Programming Reference

Producing Graphics

Producing Graphics on Your Display
In most cases, output is automatically displayed on your monitor when you run a

SAS/GRAPH procedure; it is not necessary to specify a SAS/GRAPH device driver.
Information about your graphics display is stored in a Windows information file and is
automatically used by SAS during an interactive SAS session.

Here is a simple example of how to produce a graphic:

data hat;
do x=-5 to 5 by .25;

do y=-5 to 5 by .25;
z=sin(sqrt(x*x+y*y));
output;

end;
end;

proc g3d data=hat;
plot y*x=z;
title ’Cowboy Hat with G3D’;

run;
quit;

Managing SAS Output � Printing Graphics 187

The following display shows the output for this program:

Display 6.5 Cowboy Hat Program Output

If you use the DEVICE= option in the GOPTIONS statement to route your graphics
to a hard-copy device, and then you want to return to using your monitor to display
graphics, you must specify a driver. Submit the following statement to display graphics
output on your monitor:

goptions device=win;

You should also use the WIN device driver to produce graphics on your display when
you run your SAS job in batch mode.

If you specify that your program output is to be displayed in HTML, your graphic is
converted to a .GIF file and stored in the same folder as your SAS data set. For more
information, see SAS Output Delivery System: User’s Guide.

Printing Graphics
You can use two methods to print output from SAS/GRAPH:
� Use the SAS/GRAPH generic driver with the Windows printer driver for your

device (supplied with Windows or with your output device). This method allows
SAS/GRAPH to send generic graphics commands to the Windows printer driver,
which then translates the commands to a format that the printer can use.

� Use a SAS/GRAPH printer driver to create a printer-specific graphics stream that
can be sent directly to the device. When you use a SAS/GRAPH printer driver,
SAS bypasses the Windows printer drivers and creates printer-ready output for
your device. The SAS/GRAPH printer driver is also called a SAS/GRAPH native
print driver, which means that the driver creates output by using the printer
language that is native to the target device. SAS/GRAPH printer drivers under
Windows are similar to those drivers used by SAS on mainframe and UNIX
operating environments.

After SAS prepares output for a printer (by using either Windows printer drivers or a
SAS/GRAPH printer driver), the output is sent to the Windows printer, which then
queues it for printing on the device of your choice. Figure 6.1 on page 188 illustrates
how you can use the two sets of printer drivers within SAS/GRAPH to produce output
for a given device.

188 Printing Graphics � Chapter 6

Figure 6.1 SAS/GRAPH Generic Printer Drivers Compared with SAS/GRAPH Native
Printer Drivers

The method that you choose depends on the output device that you are using. For
more information, see “Choosing between a SAS/GRAPH Native Driver and the
WINPxxx Driver” on page 190. You can control both graphics printing methods by using
either the Print and Print Setup dialog boxes or the SYSPRINT= option and the
GOPTIONS DEVICE= statement.

Using the SAS/GRAPH Generic (WINPxxx) Drivers
To print a graphic by using the SAS/GRAPH generic device drivers with the

Windows printer drivers:

1 From the File menu, select Print Setup and verify that the Printer field in the
Print Setup dialog box lists the correct Windows printer driver and port. You can
use the Print Setup dialog box to select any printer driver/port combinations that
you have installed. (To install new drivers and port combinations, you can use the
Add Printer Wizard in Windows.)

Alternatively, you can use the SYSPRINT system option to assign the
destination printer. For example,

options sysprint=’HP LaserJet III’;

Note that you can assign only printer driver names that have been previously
configured in Windows.

2 Run your SAS/GRAPH program with the following graphic options:

goptions device=winp xxx;

The value of WINPxxx you specify depends on the type of output device that you
use to print your graph:

WINPRTM
for black and white (monochrome) printers

WINPRTG
for gray scale printers

WINPRTC
for color printers

Managing SAS Output � Printing Graphics 189

WINPLOT
for plotters.

The orientation of graphics output is determined by the following:
� If you specify the ROTATE= graphic option, the output is oriented according to the

value that you specify for ROTATE. For example, suppose you specify

goptions rotate=landscape

Then the output is oriented as landscape, regardless of the settings in the Print
Setup dialog box.

� If you do not use the ROTATE= graphic option, the output is oriented according to
the settings in the Print Setup dialog box.

Note: Graphics printing is affected by the margins that are specified in the Page
Setup dialog box. If you modify the margins when printing graphics and your intention
is to keep the graphic proportional, you must change the top and bottom margins by the
same amount you change the left and right margins. �

Using the SAS/GRAPH Native Printer Drivers
SAS/GRAPH native drivers produce output in the native language of the target

device. Examples of SAS/GRAPH native drivers include:

PS produces Postscript output.

HPLJS3 produces output in the PCL5 language that is used by Hewlett
Packard LaserJet III printers.

HP7550 produces HPGL output that is used by Hewlett–Packard 7550
plotters.

After the SAS/GRAPH native printer driver has produced output in the native
language of the target device, SAS then routes the output to the device using the
Windows printer. SAS bypasses the Windows driver that is currently associated with
the target device, but it does respect the destination that is specified in the Print Setup
dialog box when deciding where to send the output.

To print a graph by using a SAS/GRAPH printer driver, run your SAS/GRAPH
program with the following graphic options:

goptions device=driver-name;

where driver-name is the name of a valid SAS/GRAPH device driver. Consider this
example,

goptions device=hplj5p3;

This statement formats the graph for the Hewlett Packard LaserJet Series V printer.
You can view the complete list of SAS/GRAPH drivers by submitting the PROC
GDEVICE statement.

To print a graph to a printer file (also called a graphics stream file, or GSF) instead
of directly to a printer, use the GSFNAME option in the GOPTIONS statement and use
a filename or a fileref to specify where you want the output. For example:

filename graphout "graphpic.prn";
goptions gsfname=graphout gsfmode=replace

device=hpljs2;

190 Importing Graphics from Other Applications � Chapter 6

Printing and Previewing from the GRAPH Window
You can preview a graph that you create and, at the same time, format it for optimal

display on the device of your choice. To preview the graph before you print it, run your
SAS/GRAPH program with the following GOPTIONS statement:

goptions targetdevice=driver-name;

where driver-name is either one of the WINPxxx drivers or a SAS/GRAPH native driver.
By specifying a target device, SAS/GRAPH can format the graph with colors and

attributes that are appropriate for the target printer. To print the graph after it is
displayed, select the File menu and then select Print.

Note: If you do not specify a target device before you create the graph, SAS/GRAPH
will prompt you (in the Print dialog box) for a device driver name when you attempt to
print the graph that you are previewing. (In most cases the WINPRTM or WINPRTC
driver is specified by default. The graph colors, orientation, and sizing might not be
optimal for the output device you specify. �

Choosing between a SAS/GRAPH Native Driver and the WINPxxx Driver
When deciding whether to use SAS/GRAPH native drivers or the WINPxxx series of

drivers, consider such factors as the device that you are using and the type of output
that you want to produce. Note the following specific considerations:

� If no Windows printer driver is available for your device, use a SAS/GRAPH native
driver.

� If you have a device for which there is no SAS/GRAPH native driver, use the
WINPxxx driver, if there is a Windows printer driver available for the device. In
cases where a new model of hard-copy device becomes available between releases
of SAS and the hardware vendor provides a new Windows driver that uses new
features of the device, you can use a WINPxxx driver to take advantage of those
features.

� If you want to use options such as HSIZE= or VSIZE= to customize the size
specifications used in your graph, using SAS/GRAPH native drivers usually
produces more reliable results.

� To use TrueType fonts in your SAS/GRAPH output, use one of the WINPxxx
drivers and specify the font just as you would specify one of the installed hardware
fonts for your printer. For more information about TrueType fonts, see “Using
TrueType Fonts with SAS/GRAPH Software” on page 621.

Importing Graphics from Other Applications
SAS/GRAPH lets you import bitmap and vector graphics that were created by other

software applications. SAS/GRAPH provides these benefits:
� You can create your graphic using another graphics editor, then import the graphic

into SAS/GRAPH to produce output on a specialized device.

� You can merge clip art and graphs from other applications with the graphs that
you create in SAS/GRAPH.

You can import bitmap graphics into these SAS windows:

� GRAPH window. The imported graphic becomes a new GRSEG entry in the
current catalog.

� Graphics Editor. The imported graphic becomes part of the current graph.
� Image editor window. The imported graphic becomes a new image.

Managing SAS Output � Importing Graphics from Other Applications 191

SAS provides two ways to import bitmap graphics into SAS/GRAPH:
� From the application that you used to create the graphic, copy the graphic to the

Windows clipboard; then switch to your SAS Session and paste the graphic into
the SAS/GRAPH window, as described in “Pasting Graphics from the Windows
Clipboard” on page 191.

� From the SAS/GRAPH window (or the Graphics Editor or Image Editor) import
the graphics file by using the Import Image dialog box, as described in “Importing
a Graphics File from within a SAS/GRAPH Window” on page 191.

To import vector graphics, use the GIMPORT procedure to import computer graphics
metafile (CGM) files. The imported files are stored as GRSEG catalog entries. This
method preserves the individual graphic objects in the imported graph, whereas the
other methods treat the imported graphic as a single (uneditable) bitmap. For more
information about PROC GIMPORT, see SAS/GRAPH: Reference.

Pasting Graphics from the Windows Clipboard
If the tool that you use to create the source graphics is a Windows application, then

you can use the Windows clipboard to copy the graphics to your SAS session as follows:
1 From the application that you used to create the graphic, select the graphic and

copy it to the clipboard using the copy procedures for your graphics tool.
2 Switch to your SAS session (or start your SAS session, if it is not already running).
3 With the SAS/GRAPH window active, select Paste from the Edit menu. The

graphic is pasted into the SAS/GRAPH window.

Importing a Graphics File from within a SAS/GRAPH Window
SAS/GRAPH provides import filters to translate graphics files that were created in

other applications to a format that you can use with SAS.
You can import graphics from other applications that produce files in any of the

formats that are shown in the following table:

Table 6.7 Graphics Import File Formats

Graphics File Format File Extension

Microsoft Windows bitmap BMP

Microsoft Windows metafile WMF

enhanced metafile EMF

Device independent bitmap DIB

JPEG format JPG

graphic interchange format (GIF) GIF

tag image file format (TIFF) TIF

PC Paintbrush PCX

Truevision Targa TGA

Encapsulated PostScript Interchange (EPSI) PS

Portable Network Graphics PNG

Photo CD image PCD

Portable Pixmap PBM

192 Exporting Graphics for Use with Other Applications � Chapter 6

Graphics File Format File Extension

X Window bitmap XBM

X Window dump XWD

To import bitmap graphics into SAS/GRAPH:
1 Make the GRAPH window the active window and then select Import Image from

the File menu.
2 Use the Import Image dialog box to select the source directory and graphics file.

The Format field must show the correct source format; the field indicates which
import filter SAS/GRAPH will use. You can have SAS automatically detect the file
format of the file to import by selecting AUTO as the format. Click OK.

Note: Automatic file format detection using AUTO does not detect the DIB,
EMF, and WMF file formats �

You can also include IMAGE catalog entries in your graphs. For information about
including IMAGE catalog entries, see SAS Help and Documentation.

Exporting Graphics for Use with Other Applications
SAS provides the following methods of exporting graphics created in SAS/GRAPH

for use with other word processing or desktop publishing packages, or for display on the
Internet or intranet:

� Export the graphics to a file from the GRAPH window, Graphics Editor, or Image
Editor, as described in “Exporting a Graphic to a File from a SAS/GRAPH
Window” on page 192.

� Pasting the contents of the Windows clipboard into the target application (as a
bitmap), as described in “Pasting Graphics from SAS/GRAPH into other Windows
Applications” on page 193.

� Create a computer graphics metafile (CGM) file for use with a specific graphics
package, using drivers that are included with SAS, as described in “Creating CGM
Files for Export to Other Applications” on page 194.

� Create a Windows metafile for use with another Windows application, as described
in “Creating WMF (Windows Metafile) Files for Export to Other Applications” on
page 195.

You can also use SAS/GRAPH to create GIF and VRML files for use with Web
browsers, PDF files for use with the Adobe Acrobat reader, and many other useful types
of graphics files. For more information about how to create these types of files, see
SAS/GRAPH: Reference and SAS/GRAPH in SAS Help and Documentation.

Exporting a Graphic to a File from a SAS/GRAPH Window
SAS/GRAPH provides export filters to translate graphics that were generated in

SAS/GRAPH into formats that you can use with other applications, such as spreadsheet
and desktop publishing programs.

Managing SAS Output � Exporting Graphics for Use with Other Applications 193

You can export graphics from SAS/GRAPH in any of the formats that are shown in
the following table:

Table 6.8 Graphics Export File Formats

Graphics File Format File Extension

Microsoft Windows bitmap BMP

Microsoft Windows metafile WMF

enhanced metafile EMF

Device independent bitmap DIB

JPEG format JPG

graphic interchange format (GIF) GIF

tag image file format (TIFF) TIF

Adobe PostScript PS

Encapsulated PostScript Interchange (EPSI) PS

Portable Network Graphics PNG

Portable Pixmap PBM

To export a graph from the GRAPH window:

1 Make the GRAPH window the active window and select Export Image from the
File menu.

2 In the Export Image dialog box, select the target file format.

3 Specify the directory and filename for the exported graphic. Click OK.

For more information about exporting graphics to a SAS IMAGE catalog entry from
the Image editor, see SAS Help and Documentation for SAS/GRAPH.

Pasting Graphics from SAS/GRAPH into other Windows Applications
A quick way to export graphics from SAS to another Windows application is to use

the Windows clipboard. When you copy information from SAS/GRAPH to the clipboard,
you can then paste that information into any application that accepts DIB, BMP or
WMF input.

To copy information from SAS/GRAPH to the clipboard:

1 From the GRAPH window, hold down the left mouse button and drag the mouse
over the portion of the graph that you want to copy. A selection box marks off the
selected area as you move the mouse. When you are finished, release the mouse
button.

If you do not select an area of the graph to copy, the next step will copy the
entire graph to the clipboard.

2 With the GRAPH window still active, press CTRL+C (or select Copy to Paste
Buffer from the Edit menu).

This action copies the graph to the clipboard. You can then return to the target
application and paste the graph (typically by using the Paste or Paste Special
options in the target Windows application). For more information about how to paste
information from the clipboard, see the documentation for the other Windows
application.

194 Exporting Graphics for Use with Other Applications � Chapter 6

Creating CGM Files for Export to Other Applications

You can export graphs from SAS/GRAPH to other graphics packages by using drivers
that were developed specifically for those packages. When you use computer graphics
metafiles (CGMs) as the medium of transport between packages, the graph retains its
separate components so that you can independently edit and size it. The editing
capabilities that you can use depend on the target graphics package.

To create a CGM from SAS/GRAPH, set GOPTIONS as follows:

filename fileref ’filename.cgm’;
goptions device=cgmxxxx gsfname=fileref

gsfmode=replace;

where CGMxxxx is the appropriate CGM driver for your target application, and
filename.CGM is the name of the file that you want to create. CGMOFML and
CGMOFMP are the recommended device drivers for all CGM output. If CGMOFML
and CGMOFMP are not adequate for the receiving software, then you can use the
devices in Table 6.9 on page 194. This table lists the graphics packages to which you
can export CGMs and the appropriate drivers to use.

The driver names that are marked with an asterisk (*) are already provided with
SAS 9.2. Some of the drivers have been disabled and are designated, in the table, by
the phrase, disabled in dgdevice catalog. To enable a device driver, do the following:

1 Point the library GDEVICE0 to a new location. For example:

LIBNAME GDEVICE0 ’directory’;

2 Use PROC CATALOG to copy some or all of the entries to the GDEVICE0 location.
For example:

PROC CATALOG C=SASHELP.DGDEVICE;
COPY OUT=GDEVICE0.DEVICES;
RUN;

For more information about how to use the CGM drivers and graphics packages, contact
SAS Institute’s Technical Support Division.

Table 6.9 CGM Drivers for Popular Graphics Packages

Package Suggested Driver

Aldus PageMaker CGMAPMA* (disabled in dgdevice catalog)

Aldus Persuasion CGMAPSA* (disabled in dgdevice catalog)

BPS 35 MM Express CGM35 (disabled in dgdevice catalog)

Borland Quattro Pro (Windows) CGMBQWC (disabled in dgdevice catalog)

Borland Quattro Pro (DOS) CGMBQA* (disabled in dgdevice catalog)

Frame Tech FrameMaker CGMFRCA* (disabled in dgdevice catalog)
CGMFRGA* (disabled in dgdevice catalog)
CGMFRMA* (disabled in dgdevice catalog)

Harvard Graphics 2.12 for DOS CGHHG (disabled in dgdevice catalog)

Harvard Graphics 3.0 for DOS CGMHG3A* (disabled in dgdevice catalog)

Harvard Graphics for Windows CGMHGWA* (disabled in dgdevice catalog)

ImageBuilder CGMIMG (disabled in dgdevice catalog)

Managing SAS Output � Additional Resources 195

Package Suggested Driver

Interleaf 5 CGMCILFC* (disabled in dgdevice catalog)
CGMGILFG* (disabled in dgdevice catalog)
CGMMILFM* (disabled in dgdevice catalog)

Lotus Ami Pro 3.0 CGMAM3C* (disabled in dgdevice catalog)

Lotus Freelance for DOS CGMFLALJ* (disabled in dgdevice catalog)
CGMFLAPL* (disabled in dgdevice catalog)
CGMFLAPT* (disabled in dgdevice catalog)

Lotus Freelance for Windows 2.0 CGMFL2C* (disabled in dgdevice catalog)

Lotus Freelance for Windows 1.0 CGMFLWA* (disabled in dgdevice catalog)

Lotus 1-2-3 4.0 CGM123C* (disabled in dgdevice catalog)

Lotus Office 97 CGMLT97L CGMLT97P

Microsoft Word for Windows 6.0 CGMMW6C* (disabled in dgdevice catalog)

Microsoft Word for Windows 2.0 CGMMWWC* (disabled in dgdevice catalog)

Microsoft PowerPoint CGMMPPA (disabled in dgdevice catalog)

Microsoft Office 97 CGMOF97L or CGMOFML, CGMOF97P or
CGMOFMP

Polaroid CI3000 CI3000 (disabled in dgdevice catalog)

WordPerfect 5.1 for DOS CGMWPCA (disabled in dgdevice catalog)
CGMWPCAP* (disabled in dgdevice catalog)
CGMWPGA (disabled in dgdevice catalog)
CGMWPGAP* (disabled in dgdevice catalog)
CGMWPMA (disabled in dgdevice catalog)
CGMWPMAP* (disabled in dgdevice catalog)

WordPerfect 5.2 for Windows CGMWPWA* (disabled in dgdevice catalog)

WordPerfect Presents for DOS CGMWPCA* (disabled in dgdevice catalog)
CGMWPGA* (disabled in dgdevice catalog)
CGMWPMA* (disabled in dgdevice catalog)

Zenographics Pixie CGMPIX (disabled in dgdevice catalog)

Creating WMF (Windows Metafile) Files for Export to Other Applications
To learn how to export WMF files from SAS/GRAPH software, contact SAS Institute’s

Technical Support Division and ask for information for your target software application.

Additional Resources
For full details about using SAS/GRAPH software, see SAS/GRAPH: Reference. For

further details about using graphics and fonts with SAS under Windows, see “Using
TrueType Fonts with SAS/GRAPH Software” on page 621.

196

197

C H A P T E R

7
Performance Considerations

Hardware Considerations 197
Processor Speed 198

Memory 198

Disk Space for I/O 199

Graphics Adapter 199

Windows Features That Optimize Performance 200
Controlling SAS Responsiveness 200

Overview of Controlling SAS Responsiveness 200

Optimizing Application Performance under Windows Vista 200

Optimizing Application Performance under Windows 7 200

Optimizing Application Performance under Windows XP 201

Optimizing Application Performance under Windows Server 2003 201
I/O Enhancements for Multiple Processors 201

Memory-Based Libraries 201

Memory-Based Libraries Overview 201

Setup Requirements for Using Memory-Based Libraries under Windows 2003 Servers and
Later 202

Setup Requirements for Using Memory-Based Libraries under Windows XP
Professional 203

Specifying the MEMLIB and MEMCACHE Options in 64-Bit Windows Environments 203

Specifying the Local Security Settings 204

Processing SAS Libraries as Memory-Based Libraries 204
Using a Memory-Based Library as a SAS File Cache 205

SAS Features That Optimize Performance 206

Network Performance Considerations 207

Advanced Performance Tuning Methods 208

Improving Performance of the SORT Procedure 208

SORTSIZE Option 208
TAGSORT Option 208

Choosing a Location for the Sorted File 208

Calculating Data Set Size 209

Increasing the Efficiency of Interactive Processing 211

Hardware Considerations

The following hardware factors might affect SAS performance:

� the processor speed

� the amount of physical memory that is available

198 Processor Speed � Chapter 7

� the amount of disk space that is available for I/O
� the graphics adapter.

Not all of these factors will apply to your particular configuration or to the way in
which you run SAS. Consult your system administrator for details.

Processor Speed
In general, a faster processor enables the computer to perform more operations per

second. The more operations that can be performed, the more performance will improve.
The amount of processor cache that is available also influences performance. More

processing cache will result in better performance.
The processor required to run SAS depends on the operating environment.
� In 32-bit environments, you must have a PC that contains an Intel or

Intel-compatible Pentium 4 class processor.
� In x64 64-bit environments, you must have an Intel64 or AMD64 processor.
� In Itanium 64-bit environments, you must have an Intel Itanium II processor.

Memory
In general, more physical memory will result in better performance. Systems that

have large amounts of available memory are capable of handling large amounts of data
without swapping. Swapping uses the temporary space on the hard drive to store the
data that could not be loaded into memory. However, memory is faster than the hard
drive in manipulating temporary files and other system operations. Consequently, the
more memory that is available, the less the hard drive will need to be accessed for these
types of operations.

The minimum amount of memory that is required depends on the operating
environment.

Table 7.1 Memory Requirements for 32–Bit Environments

Operating Environment Memory Requirements

Windows XP Professional 512 MB minimum (More memory is
recommended for improved performance.)

512 MB minimum of swap file space

Windows Vista and Windows 7 2 GB minimum (More memory is
recommended for improved performance.)

2 GB minimum of swap file space

Performance Considerations � Graphics Adapter 199

Table 7.2 Memory Requirements for 64–Bit Environments

Operating Environment Memory Requirements

Windows Server 2003 1 GB minimum (More memory is
recommended for improved performance.)

1 GB minimum of swap file space

Disk Space for I/O
An application uses I/O for data storage and data access. Therefore, faster I/O

results in faster overall performance. The three factors that influence I/O performance
are the disk controller and bus, the hard drive, and the hard drive configuration.

disk controller and bus
In general, hard drive disk controllers that use their memory buffers to cache data
have better throughput than conventional controllers. This configuration can
improve I/O performance.

The type of I/O controller can affect I/O performance. SCSI and EIDE
controllers generally offer higher bus speeds. A fast SCSI or EIDE bus used with
the appropriate SCSI or EIDE drive can offer improved performance over other
hard drives and controller types. Currently, SCSI controllers offer the best I/O
performance.

hard drive
Since SAS is heavily I/O oriented, access time and transfer rate are important to
system performance. SCSI and EIDE drives generally have faster access times
than MFM or IDE drives.

Low disk space or a heavily fragmented disk can hinder I/O performance. It is
recommended that you defragment your hard drive regularly to keep I/O
performance from degrading.

hard drive configuration
The hard drive configuration can have the greatest impact on I/O performance,
especially on large server systems. Generally, a RAID configuration has better I/O
performance than a non-RAID system. Consult your system administrator to
determine the appropriate configuration for your computer.

Graphics Adapter
Since some SAS features use a significant amount of graphics memory, the type of

graphics adapter that you use can make a difference in performance. Generally, if the
same amount of graphics memory is available, AGP adapters are faster than PCI
adapters. However, the type of adapter that you can use depends on your motherboard.

The amount of memory that is available on the adapter can impact the speed at
which graphics are rendered. More memory usually results in better performance.

200 Windows Features That Optimize Performance � Chapter 7

Windows Features That Optimize Performance

Controlling SAS Responsiveness

Overview of Controlling SAS Responsiveness
You can control the relative responsiveness of your SAS session by altering the

application performance level. Using Windows performance options, you can specify
which type of programs, interactive or background, receive more processor time. Use
these guidelines to determine the application performance level:

� If you are running SAS interactively and you want your session to have the best
response time, set the performance options for programs or applications.

� If you are running SAS in batch mode and you want your batch jobs to execute
more quickly, set the performance options for background services.

To analyze the performance of your SAS applications, you can specify SAS
performance counters within the Windows performance monitor. For more information,
see “Performance Tools” on page 228.

Optimizing Application Performance under Windows Vista
Under Windows Vista, follow these steps to optimize application performance:
1 Open the Control Panel.
2 Click System and Maintenance.
3 Select the System .
4 Click Advanced system settings task.
5 Select the Advanced tab.
6 In the Performance box, click Settings and then select the Advanced tab.
7 To optimize performance of an interactive SAS session, select Programs.
8 To optimize performance of a batch SAS session, select Background services.
9 Click OK.

Optimizing Application Performance under Windows 7
Under Windows 7, follow these steps to optimize application performance:
1 Open the Control Panel.
2 Click System and Security.
3 Select the System.
4 Click Advanced system settings task.
5 Select the Advanced tab.
6 In the Performance box, click Settings and then select the Advanced tab.
7 To optimize performance of an interactive SAS session, select Programs.
8 To optimize performance of a batch SAS session, select Background services.
9 Click OK.

Performance Considerations � Memory-Based Libraries 201

Optimizing Application Performance under Windows XP
Under Windows XP, follow these steps to optimize application performance:
1 Open the Control Panel.
2 Click System.
3 Select the Advanced tab.
4 In the Performance box, click Settings and then select the Advanced tab.
5 To optimize performance of an interactive SAS session, select Programs.
6 To optimize performance of a batch SAS session, select Background services.
7 Click OK.

Optimizing Application Performance under Windows Server 2003
Under Windows Server 2003, follow these steps to optimize application performance:
1 Open the Control Panel.
2 Click System.
3 Select the Advanced tab.
4 In the Performance box, click Settings.
5 To optimize performance of an interactive SAS session, select Programs in the

Processor Scheduling box.
6 To optimize performance of a batch SAS session, select Background services in

the Processor Scheduling box.
7 Click OK.

I/O Enhancements for Multiple Processors
If your PC has multiple processors, SAS uses symmetric multiprocessing (SMP) using

I/O enhancements. More read-ahead processing is done for procedures that have large
amounts of sequential data access on data that is stored on a Windows server. This
processing occurs more on systems that have extra processing power to serve Windows
and its disk cache.

The following is generally true in multiprocessing SMP environments:
� Machines that are used as servers for multiple applications perform best if they

are SMP-based.
� SAS/CONNECT remote computing environments perform best if they are

SMP-based.
� The supporting hardware in SMP boxes (RAID, RAM) generally help any

application to perform better.

Memory-Based Libraries

Memory-Based Libraries Overview
Using the MEMLIB and MEMCACHE options, you can create memory-based SAS

libraries. Depending on your operating environment, extended memory or conventional
memory is used to support these memory-based libraries.

Thirty-two bit processing in Windows operating environments uses 2 gigabytes (GB)
of physical memory for the operating environment, leaving 2 GB of physical memory

202 Memory-Based Libraries � Chapter 7

available for use by applications. When a PC or server has more than 4 GB of memory,
extended memory is defined as the memory that is above 4 GB, all of which is available
for use by applications. Extended memory can be used to support memory-based
libraries.

Some Windows operating environments do not support extended memory. In
operating environments where extended memory is not supported or installed, SAS
uses conventional memory to support the MEMLIB and MEMCACHE options.
Conventional memory is defined as the memory that is below 4 GB in 32-bit
environments and all of the memory in 64-bit environments.

Using memory-based libraries reduces I/O to and from disk, therefore improving SAS
performance. Memory-based libraries can be used in several ways:

� as storage for the Work library

� for processing SAS libraries that have a high volume of input and output

� as a cache for very large SAS libraries

Extended memory can be used to support memory-based libraries in 32-bit versions
of the Windows Server 2003 Family.

Conventional memory is used to support the MEMLIB and MEMCACHE system
options in these environments:

� 32-bit and 64-bit versions of Windows XP Professional

� 64-bit versions of the Windows Server 2003 Family

� Windows Vista

� Windows 7

The servers allow multiple processes to access memory-based libraries
simultaneously.

After you have completed the setup for your operating environment, you use the
MEMLIB and MEMCACHE system options and the MEMLIB option in the LIBNAME
statement to access memory-based libraries.

Setup Requirements for Using Memory-Based Libraries under Windows
2003 Servers and Later

The Windows 2003 memory manager can access up to 8 GB of physical RAM in the
Windows 2003 Enterprise Server and up to 32 GB of physical RAM in the Windows
2003 Datacenter Server.

To use extended memory under Windows 2003 Servers or above, ensure that your
operating environment meets the following requirements:

� Intel or Intel-compatible 32-bit processor (Pentium Pro or later).

� More than 4 GB of RAM; you might have better performance if you use 8 GB or
more.

� The parameter /PAE has been added to the server start-up line in the boot.ini file.

� SAS 9.2 for Windows.

Then follow these steps:

� Set the total amount of memory to be used for memory-based libraries by using
the MEMMAXSZ system option. See “MEMMAXSZ System Option” on page 534.

� Set the memory block size for memory-based libraries by using the MEMBLKSZ
system option. See “MEMBLKSZ System Option” on page 532.

SAS 9.2 for Windows uses the available memory to support the MEMLIB and
MEMCACHE options.

Performance Considerations � Memory-Based Libraries 203

CAUTION:
It is possible to exhaust system memory, and thus cause system failure. You can use the
MEMMAXSZ option to limit the amount of system memory that SAS allocates to the
MEMLIB and MEMCACHE options. �

Setup Requirements for Using Memory-Based Libraries under Windows XP
Professional

Windows XP Professional is limited to 4 GB of physical RAM. Memory-based
libraries are designed to optimize performance in server environments where more than
4 GB of physical memory is present. In these operating environments, conventional
memory is used to support the MEMLIB and MEMCACHE options. Specifying these
options in Windows XP Professional, Windows Vista, and Windows 7 environments
might or might not improve performance.

To use memory-based libraries under Windows XP Professional, Windows Vista, and
Windows 7 ensure that your operating environment meets the following requirements:

� Intel or Intel-compatible 32-bit processor (Pentium Pro or later)
� 4 GB of RAM
� SAS 9.2 for Windows

Then follow these steps:
� Set the total amount of memory for memory-based libraries by using the

MEMMAXSZ system option. See “MEMMAXSZ System Option” on page 534.

� Set the memory block size for memory-based libraries by using the MEMBLKSZ
system option. See “MEMBLKSZ System Option” on page 532.

SAS 9.2 for Windows uses the available memory to support the MEMLIB and
MEMCACHE options.

CAUTION:
It is possible to exhaust system memory, and thus cause system failure. You can use the
MEMMAXSZ option to limit the amount of system memory that SAS allocates to the
MEMLIB and MEMCACHE options. �

Specifying the MEMLIB and MEMCACHE Options in 64-Bit Windows
Environments

Sixty-four bit processing in Windows operating environments uses 16 terabytes (TB)
of virtual address space, so in these environments, extended memory is not needed.
SAS uses the conventional memory that is available to support the MEMLIB and
MEMCACHE options.

CAUTION:
It is possible to exhaust system memory, and thus cause system failure. You can use the
MEMMAXSZ option to limit the amount of system memory that SAS allocates for the
MEMLIB and MEMCACHE options. �

To use the MEMLIB and MEMCACHE options, ensure that the operating
environment meets the following requirements:

� Intel or Intel-compatible 64-bit processor (Itanium or later).
� Any 64-bit version of Windows.
� 4 GB of RAM or more; you might have better performance if you use more than 8

GB.
� SAS 9.2 for Windows.

204 Memory-Based Libraries � Chapter 7

Then follow these steps:
� Set the total amount of memory for memory-based libraries by using the

MEMMAXSZ system option. See “MEMMAXSZ System Option” on page 534.
� Set the memory block size for memory-based libraries by using the MEMBLKSZ

system option. See “MEMBLKSZ System Option” on page 532.

Specifying the Local Security Settings
In 32-bit environments starting with Windows XP Professional and above, the Lock

pages in memory security setting must be set, so that each user who is running SAS
has access to the extended memory. If a user does not have the correct permissions,
then SAS will issue a warning message to the log.

System administrators can set the local security settings through the Start Menu. To
set this value

1 Open the Control Panel.

2 Double click Administrative Tools.
3 Double click Local Security Policy. The Local Security Settings window will

open.
4 Double click Local Policies.

5 Double click User Rights Assignment.
6 Double click Lock pages in memory. The Local Security Policy Setting window

will open.
7 Click Add . The Select User or Groups window will open.

8 Select the user IDs or name of the group of users who need to run SAS with access
to the extended memory.

9 Click OK in the Select User or Groups window.
10 Click OK in the Local Security Policy window.

Note: In the Local Security Policy window, you might see two check boxes: the
Local Security Setting check box and the Effective Policy Setting check box. If the
Effective Policy Setting check box is not selected for the users that you added, you
will need to reboot your computer so that the new security settings will take
effect. �

Processing SAS Libraries as Memory-Based Libraries
SAS libraries that are well suited for memory-based processing have data that is

referenced or updated multiple times within a SAS session.
Using a Work library that is memory-based is beneficial for procedures such as

PROC SORT that write multiple times to large temporary files. To designate the Work
library as memory-based, specify the MEMLIB system option when you start SAS.

You designate a library as memory-based by using the MEMLIB option in the
LIBNAME statement. All librefs, including a libref to the Work directory, must have a
valid disk directory.

After the library is designated as memory-based, your SAS program needs to copy
the library from disk to memory. After processing the library in memory, the library
must be copied back to disk.

CAUTION:
Copy the library that is in memory to disk after processing is complete. If you do not, you
will lose any changes that were made to the library. The changes are lost when the
SAS session ends �

Performance Considerations � Memory-Based Libraries 205

The following example shows how to use the LIBNAME statement and the PROC
COPY statement to copy a library to and from memory.

/* Set up two librefs, one to the library in memory
and the other to the SAS library on disk. The library on
disk contains dataset1, dataset2, dataset3 and dataset4. */

libname inmemory ‘‘g:\memlib’’ memlib;
libname ondisk ‘‘g:\disk’’;

/* Copy dataset1, dataset2, dataset3, and dataset4 to memory */

proc copy in=ondisk out=inmemory;
run;

/* ...Assume dataset1 and dataset4 are updated */

/* Save the updated datasets back to disk */

proc copy in=inmemory out=ondisk;
select dataset1 dataset4;

run;

You can also copy a data set to memory by using a DATA statement, as shown in the
following example:

data ondisk.dataset1;
set inmemory.dataset1;

run;

For more information, see “MEMLIB System Option” on page 534 and the LIBNAME
Statement MEMLIB option“LIBNAME Statement” on page 464.

Using a Memory-Based Library as a SAS File Cache
A SAS file cache is most useful in multiple references of data. For example, a SAS

file cache improves performance in SAS programs that make multiple passes of the
data. SAS file caching improves performance in the following situations:

� Repeated read operations of a file while other files are being written. Writing to a
file clears the Windows file system (NTFS) cache.

� Repeated read operations of a file when Scatter Gather I/O is active. Scatter
Gather I/O operates outside the NTFS cache. Without the SAS file cache, there is
no data cache and all read operations access the disk.

To use memory as a SAS file cache, specify the MEMCACHE system option when you
start SAS or when you submit an OPTIONS statement. If you set MEMCACHE to 4,
SAS uses the memory to cache all files. If you set MEMCACHE to 1, only files that are
currently in memory are cached to memory. When you use the MEMCACHE system
option in the OPTIONS statement, you can control which data sets use the SAS file
cache, as shown in the following example.

/* Example of controlling cached files with the options statement */

/* Assume cachelib contains 2 data sets, ds1 and ds2. */
/* Also assume ds1 and ds2 are large enough that they cannot exist */
/* in the cache together. ds1 is read many times, so caching is */
/* desired. ds2 is accessed only once, so caching is of no */

206 SAS Features That Optimize Performance � Chapter 7

/* benefit. When you use the memcache option, ds1 is cached, and ds2 */
/* is not cached. */

libname cachelib "e:\tmp";

/* Turn on full caching */

options memcache = 4;

/* Read ds1 and place the data in the cache. This read operation could be a */
/* more useful read operation of the file in a real case. */

data _null_;
set cachelib.ds1;

run;

/* Change memcache setting to use the cache only for files that */
/* already exist in the cache. */

options memcache = 1;

/* Data from ds1 will come from the cache and ds2 will not be */
/* cached. */

proc sort data=cachelib.ds1 out=cachelib.ds2;
by j;

run;

/* Other access of ds1... */

/* All use of the cache can be ended with a memcache system */
/* option value of 0. */

options memcache = 0;

/* Neither ds1 or ds2 will access the cache. */

proc sort data=cachelib.ds1 out=cachelib.ds2;
by j;

run;

For more information about the MEMCACHE system option, see “MEMCACHE
System Option” on page 533. For more information about Scatter Gather I/O, see “SAS
Features That Optimize Performance” on page 206 and “SGIO System Option” on page
563.

SAS Features That Optimize Performance

The following are some additional features of SAS that you can control to improve
system performance and make efficient use of your computer’s resources. For additional
information about optimizing SAS performance, see the chapter on optimizing system
performance in SAS Language Reference: Concepts.

Performance Considerations � Network Performance Considerations 207

� Create SAS data sets instead of accessing flat ASCII files. SAS can access a SAS
data set more efficiently than it can read flat files.

Also, you should convert existing data sets that you use frequently to SAS 9.2
format.

� In your SAS code, use IF-THEN-ELSE conditional structures instead of multiple
IF-THEN structures. When one condition in the IF-THEN-ELSE structure is met,
control returns to the top of the structure (skipping the ELSE clause, which might
contain subsequent IF-THEN structures). With multiple IF-THEN structures,
each condition must be checked.

� When using arrays, make them _TEMPORARY_ if possible. This action requires
less memory and less time for memory allocation.

� Use programming structures that reduce file I/O, the most time-intensive aspect of
SAS processing. Some ideas for reducing file I/O are:

� Use the WHERE statement in a procedure to reduce extra data processing.
� Use indexed data sets to speed access to the desired observations.
� Use the SQL procedure to subset and group your data.

� Experiment with the value of the CATCACHE system option, which specifies the
number of SAS catalogs to keep open at one time. By default, no catalogs are
cached in memory (and CATCACHE is set to 0). Caching catalogs is an advantage
if one SAS application uses catalogs that are subsequently needed by another SAS
application. The second SAS application can access the cached catalog more
efficiently.

Note: Storing catalogs in memory can consume considerable resources. Use this
technique only if memory issues are not a concern. �

� Store your data sets in a compressed format (using the COMPRESS data set
option). This action can improve the performance of your SAS application, though
it might require more CPU time to decompress observations as SAS needs them.
The COMPRESS data set option is described in the data set options section of SAS
Language Reference: Dictionary.

� If you specify the Scatter-read/Gather-write system option, SGIO, SAS bypasses
intermediate buffer transfers when reading or writing data. SAS will read ahead
the number of pages specified by the BUFNO system option and place the data in
memory before it is needed. When the data is needed it is already in memory, and
is in effect a direct memory access. Different values for the BUFNO system option
should be tried for each SAS job to find the maximum performance benefit.

Scatter–read / gather–write is active only for SAS I/O opened in INPUT,
OUTPUT mode, and UPDATE mode if the access pattern is sequential. If any SAS
I/O files are opened in UPDATE or RANDOM mode, SGIO is inactive for that
process. Compressed and encrypted files can also be read ahead using
scatter-read/gather-write. For more information on the SGIO system option, see
“SGIO System Option” on page 563.

Network Performance Considerations
Under Windows, loading application DLL (dynamic link library) files from a network

drive can result in slower performance than loading the DLL files from a local drive.

208 Advanced Performance Tuning Methods � Chapter 7

Advanced Performance Tuning Methods
This section presents some advanced performance topics, such as improving the

performance of the SORT procedure and calculating data set size. Use these methods
only if you are an experienced SAS user and you are familiar with the way SAS is
configured on your machine.

Improving Performance of the SORT Procedure
Two options for the PROC SORT statement are available under Windows, the

SORTSIZE= and TAGSORT options. These two options control the amount of memory
the SORT procedure uses during a sort and are discussed in the next two sections. Also
included is a discussion of determining where the sorting process occurs for a given
data set and determining how much disk space you need for the sort. For more
information about the SORT procedure, see “SORT Procedure” on page 441.

SORTSIZE Option
The PROC SORT statement supports the SORTSIZE= option, which limits the

amount of memory available for PROC SORT to use.
If you do not use the SORTSIZE option in the PROC SORT statement, PROC SORT

uses the value of the SORTSIZE system option. If the SORTSIZE system option is not
set, PROC SORT uses the amount of memory specified by the REALMEMSIZE system
option. If PROC SORT needs more memory than you specify, it creates a temporary
utility file in your SAS Work directory to complete the sort.

The default value of this option is 64 megabytes (MB).

TAGSORT Option
The TAGSORT option is useful in single-threaded situations where there might not

be enough disk space to sort a large SAS data set. The TAGSORT option is not
supported for multi-threaded sorts.

When you specify the TAGSORT option, only sort keys (that is, the variables
specified in the BY statement) and the observation number for each observation are
stored in the temporary files. The sort keys, together with the observation number, are
referred to as tags. At the completion of the sorting process, the tags are used to
retrieve the records from the input data set in sorted order. Thus, in cases where the
total number of bytes of the sort keys is small compared with the length of the record,
temporary disk use is reduced considerably. However, you should have enough disk
space to hold another copy of the data (the output data set) or two copies of the tags,
whichever is greater. Note that although using the TAGSORT option can reduce
temporary disk use, the processing time might be much higher.

Choosing a Location for the Sorted File
Where the physical sort occurs for a given data set depends on how you reference

the data set name and whether you use the OUT= option in the PROC SORT
statement. You might want to know where the sort occurs if you think there might not
be enough disk space available for the sort.

When you sort a SAS data set, SAS creates a temporary utility file. If the sort uses
multiple threads, you can specify the location of the utility file by using the UTILLOC
system option. The default location for utility files is the Work data library. If two or
more locations are specified for the UTILLOC option, the second location is used as the

Performance Considerations � Calculating Data Set Size 209

location for the utility file. For sorts that use a single thread, the temporary utility file
is opened in the Work data library if there is not enough memory to hold the data set
during the sort. The utility file has a .sas7butl file extension. Before you sort, ensure
that your Work data library has room for this temporary utility file.

If you specify the OVERWRITE option in the PROC SORT statement, SAS replaces
the input data set with the sorted data set.

If you do not specify the OVERWRITE option in the PROC SORT statement, a
second file that has a .sas7butl file extension is created. If the sort completes
successfully, this file is renamed to the data set name of the file being sorted (with a
.sas7bdat file extension). The original data set is deleted after the sort is complete.
Before you sort a data set, be sure that you have space for this .sas7butl file.

Use the following rules to determine where the .sas7butl file and the resulting sorted
data set are created:

� If you omit the OUT= option in the PROC SORT statement, the data set is sorted
on the drive and in the directory or subdirectory where it is located. For example,
if you submit the following statements (note the two-level data set name), the
.sas7butl file is created on the C: drive in the MYDATA subdirectory:

libname mylib ’c:\sas\mydata’;
proc sort data=mylib.report;

by name;
run;

Similarly, if you specify a one-level data set name, the .sas7butl file is created in
your Work data library.

� If you use the OUT= option in the PROC SORT statement, the .sas7butl file is
created in the directory associated with the libref used in the OUT= option. If you
use a one-level name (that is, no libref), the .sas7butl file is created in the Work
data library. For example, in the following SAS program, the first sort occurs in
the SAS Work subdirectory, while the second occurs on the F: drive in the
JANDATA directory:

proc sort data=report out=newrpt;
by name;

run;
libname january ’f:\jandata’;
proc sort data=report out=january.newrpt;

by name;
run;

Calculating Data Set Size
In single-threaded environments, you always need free disk space that equals three

to four times the data set size. For example, if your data set takes up 1MB of disk
space, you need 3 to 4MB of disk space to complete the sort.

In multi-threaded environments, if you use the OVERWRITE option in the PROC
SORT statement, you need space equal to the data set size. If you do not specify the
OVERWRITE option, the space you need is equal to two times the data set size. For
more information about the OVERWRITE option, see the SORT procedure in Base SAS
Procedures Guide.

To estimate the amount of disk space that is needed for a SAS data set:

1 create a dummy SAS data set that contains one observation and the variables you
need

2 run the CONTENTS procedure using the dummy data set

210 Calculating Data Set Size � Chapter 7

3 determine the data set size by performing simple math using information from the
CONTENTS procedure output.

For example, for a data set that has one character variable and four numeric
variables, you would submit the following statements:

data oranges;
input variety $ flavor texture looks;
total=flavor+texture+looks;
datalines;

navel 9 8 6
;
proc contents data=oranges;

title ’Example for Calculating Data Set Size’;
run;

These statements generate the output shown in the following output:

Output 7.1 Example for Calculating Data Set Size with PROC CONTENTS

Example for Calculating Data Set Size 1

19:39 Wednesday, February 12, 2003

The CONTENTS Procedure

Data Set Name WORK.ORANGES Observations 1

Member Type DATA Variables 5

Engine V9 Indexes 0

Created Wednesday, October Observation Length 40

3, 2007 07:41:04

Last Modified Wednesday, October Deleted Observations 0

10, 2007 07:41:04

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 101

Obs in First Data Page 1

Number of Data Set Repairs 0

File Name C:\TEMP\SAS Temporary Files_TD246\oranges.sas7bdat

Release Created 9.0201B0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

2 flavor Num 8

4 looks Num 8

3 texture Num 8

5 total Num 8

1 variety Char 8

Performance Considerations � Increasing the Efficiency of Interactive Processing 211

The size of the resulting data set depends on the data set page size and the number
of observations. The following formula can be used to estimate the data set size:

number of data pages = 1 + (floor(number of obs / Max Obs per Page))
size = 1024 + (Data Set Page Size * number of data pages)

(floor represents a function that rounds the value down to the nearest integer.)
Taking the information shown in Output 7.1, you can calculate the size of the

example data set:
number of data pages = 1 + (floor(1/101))
size = 1024 + (4096 * 1) = 5120

Thus, the example data set uses 5,120 bytes of storage space.

Increasing the Efficiency of Interactive Processing
If you are running a SAS job using SAS interactively and the job generates

numerous log messages or extensive output, consider using the AUTOSCROLL
command to suppress the scrolling of windows. This action makes your job run faster
because SAS does not have to use resources to update the display of the LOG and
OUTPUT windows during the job. For example, issuing autoscroll 0 in the LOG
window causes the LOG window not to scroll until your job is finished. (For the
OUTPUT window, AUTOSCROLL is set to 0 by default.)

Minimizing the LOG window also might make your job run faster, especially if SAS
is generating numerous log messages.

212

213

P A R T2

Using SAS with Other Windows Applications

Chapter 8.Using Lotus Notes to Distribute SAS Data 215

Chapter 9.Using Windows System Tools with SAS 223

Chapter 10.Using OLE in SAS/AF Software 243

Chapter 11.Controlling SAS from Another Application Using OLE 267

Chapter 12.Using Dynamic Data Exchange 275

Chapter 13.Using Unnamed and Named Pipes 285

Chapter 14.Accessing External DLLs from SAS 297

Chapter 15.Special Considerations for SAS/AF Programmers 317

214

215

C H A P T E R

8
Using Lotus Notes to Distribute
SAS Data

Introduction to Using Lotus Notes with SAS 215
The NOTESDB Engine 215

Client Requirements 215

Populating a Lotus Notes Database Using the DATA Step and SCL Code 216

Creating New Notes Documents 216

SAS Statements to Interact with Notes 216
Syntax for Populating a Lotus Notes Database 216

Examples of Populating Lotus Notes Databases 218

Preparing SAS/GRAPH Output for a Notes Document 220

Using SAS with the NotesSQL ODBC Driver 221

Retrieving Information from Preexisting Notes Documents 221

Introduction to Using Lotus Notes with SAS

The NOTESDB Engine
SAS provides an access engine, NOTESDB, that enables client users to add new

Notes documents to an existing Notes database. This engine is compatible with Lotus
Notes client version 7.0.2 or later.

The NOTESDB access engine cannot create a new database and does not provide a
way to retrieve information from existing Notes documents. However, the NotesSQL
ODBC driver allows for retrieval of data from Notes databases. See “Retrieving
Information from Preexisting Notes Documents” on page 221 for these details.

Do not schedule a program using the NOTESDB engine as a batch job because the
server prompts for a password.

Client Requirements
The following are requirements for using Lotus Notes with SAS:
� A client version of Lotus Notes and a valid Notes user ID certification must be

installed on the machine that will be using the NOTESDB engine. However, Lotus
Notes does not have to be running in order for SAS to access it. You will be
prompted for a password to access the Notes server through SAS.

� The Lotus Notes directory must be in the system path. You update the system
path by adding to the PATH system environment variable in the Advanced tabbed
page of the System Properties dialog box.

216 Populating a Lotus Notes Database Using the DATA Step and SCL Code � Chapter 8

Populating a Lotus Notes Database Using the DATA Step and SCL Code

Creating New Notes Documents

SAS Statements to Interact with Notes
DATA step and SCL code that interacts with a Notes database has the following

components:
� a FILENAME statement that includes the NOTESDB device-type keyword
� PUT statements that contain data directives and the data to place in the Notes

database
� PUT statements that contain action directives to control when to send the data to

the Notes database.

Syntax for Populating a Lotus Notes Database
FILENAME fileref NOTESDB;

where:

fileref
is a valid fileref.

NOTESDB
is the device-type keyword that indicates that you want to use a Lotus Notes
database.

In your DATA step, use PUT statements that have data directives to define which
database you want to use and the data you want to send.

Note: Although the directives that you specify to access a Notes database are not
case-sensitive, the fields that you specify using those directives are. Also, only one
directive per PUT statement is permitted. Each directive should be delimited with an
exclamation point and surrounded with single quotes. �

Use these data directives to specify the database location and the data to add to the
database:

!NSF_SERVER! server-name
indicates the Notes server to access, where server-name represents a Lotus Notes
server. If you do not specify this directive, SAS uses your local system as the
source for the databases. If you specify this directive more than once, the server
that was specified in the most recent PUT statement is used.

Note: If you attempt to access a Notes server through SAS, you will be
prompted for your password to the server. �

!NSF_DB! database-filename
indicates the Notes database file to access. When accessing a database locally, SAS
looks for the database in the Notes data directory. If it is not found there, SAS

Using Lotus Notes with SAS � Creating New Notes Documents 217

searches the system path. Alternatively, you can specify the fully qualified path for
the database. You must specify a Notes database file that has this directive before
you can access a Notes database from SAS. If you specify this directive more than
once, the database that was specified in the most recent PUT statement is used.

!NSF_FORM! form-name
specifies the form that Notes should use when displaying the added note. If this
directive is not specified, Notes uses the default database form. If you specify this
directive more than once, the form that was specified in the most recent PUT
statement that has the !NSF_FORM! directive is used.

!NSF_ATTACH! filename
attaches a file to the added note. SAS looks for the file in the Notes data directory.
If it is not found there, SAS searches the system path. Alternatively, you can
specify the fully qualified path for the file. You can attach only one file in a single
PUT statement that has the !NSF_ATTACH! directive. To attach multiple files,
use separate PUT statements that have !NSF_ATTACH! directives for each file.

!NSF_FIELD! field-name!field value
adds the value to the field name specified. SAS detects the correct format for the
field and formats the data accordingly. Note that SAS extracts all line feeds or
carriage returns; you should not insert any of these control characters as they
affect the proper display of the document in Notes. Multiple PUT statements that
have the !NSF_FIELD! directive and the same field name will concatenate the
information in that field. Also, PUT statements that have no directives are
concatenated to the last field name submitted, or they are ignored if no PUT
statements that have !NSF_FIELD! directives have previously been submitted.

You can populate fields, which can be edited, of the following types:
� text
� numeric
� keywords.

You can add text which will be formatted by Lotus Notes. You can also add a
bitmap (in Windows bitmap format) using the following form:

!NSF_FIELD! field-name <bitmap-filename>

Use these action directives to perform actions on the Notes database:

!NSF_ADD!
immediately adds a document to the Notes database within the DATA step
program.

!NSF_ABORT!
indicates not to add the note when closing the data stream. By default, the driver
attempted to add a note at the end of a SAS program for every FILE statement
used.

!NSF_CLR_FIELDS!
clears all the field values that were specified by the !NSF_FIELD! directive. This
directive in conjunction with !NSF_ADD! facilitates writing DATA step programs
with loops that add multiple notes to multiple databases.

!NSF_CLR_ATTACHES!
clears all the field values that were specified by the !NSF_ATTACH! directive.
This directive in conjunction with !NSF_ADD! facilitates writing DATA step
programs with loops that add multiple notes to multiple databases.

Note: The contents of PUT statements that do not contain directives are
concatenated to the data that is associated with the most recent field value. �

218 Creating New Notes Documents � Chapter 8

Examples of Populating Lotus Notes Databases
The following example uses the Business Card Request database that is supplied by

Lotus Notes. This DATA step creates a new document in the database and supplies
values for all of its fields.

Example Code 8.1 Using the Business Card Request Database

01 filename reqcard NOTESDB;
02 data _null_;
03 file reqcard;
04 put ’!NSF_DB! examples\buscard.nsf’;
05 put ’!NSF_FIELD!Status! Order’;
06 put ’!NSF_FIELD!Quantity! 500’;
07 put ’!NSF_FIELD!RequestedBy! Systems’;
08 put ’!NSF_FIELD!RequestedBy_CN! Jane Doe’;
09 put ’!NSF_FIELD!NameLine_1! Jane Doe’;
10 put ’!NSF_FIELD!NameLine_2! Developer’;
11 put ’!NSF_FIELD!AddressLine_1! Software R Us’;
12 put ’!NSF_FIELD!AddressLine_2! 123 Silicon Lane’;
13 put ’!NSF_FIELD!AddressLine_3! Garner, NC 27123’;
14 put ’!NSF_FIELD!AddressLine_4! USA’;
15 put ’!NSF_FIELD!PhoneLine_1! (910) 777-3232’;
16 run;

Line 1 assigns a fileref by using the FILENAME statement to point to Notes instead
of to an ordinary file. NOTESDB is the device type for Lotus Notes. Line 3 uses the
assigned fileref to direct output from the PUT statement. Line 4 indicates which Notes
database to open. Lines 5 to 15 specify the field and the value for that field for the new
Notes document that is being created. Status is the field name and Order is the value
that is placed in the Status field for the particular document. Line 16 executes these
SAS statements. A new Notes document is created in the Business Card Request
database.

The next example uses each observation in the SALES data set to create a new
document in the qrtsales.nsf database and fills in the Sales, Change, and Comments
fields for the documents.

Example Code 8.2 Creating a New Document from a Data Set

01 data sasuser.sales;
02 length comment $20;
03 format comment $char20.;
04 input sales change comment $ 12-31;
05 datalines;
06 123472 342 Strong Increase
07 423257 33 Just enough
09 218649 4 Not high enough
09 ;
10 run;
11 filename sales NOTESDB;
12 data _null_;
13 file sales;
14 set sasuser.sales;
15 put ’!NSF_DB! qrtsales.nsf’;
16 put ’!NSF_FORM! Jansales’;
17 put ’!NSF_ADD!’;
18 put ’!NSF_FIELD!Sales !’ sales;

Using Lotus Notes with SAS � Creating New Notes Documents 219

19 put ’!NSF_FIELD!Change!’ change;
20 put ’!NSF_FIELD!Comments!’ comment;
21 put ’!NSF_CLR_FIELDS!’;
22 run;

Line 11 assigns a fileref by using the FILENAME statement to point to Notes instead
of to an ordinary file. NOTESDB is the device type for Lotus Notes. Line 13 uses the
assigned fileref to direct the output from the PUT statement. In line 15, the NSF_DB
data directive indicates which Notes database to open. Lines 18, 19, and 20 specify the
field and its value for the new Notes document that is being created. Sales is the field
name and sales is the value that is placed in the Status field for the particular
document. Line 22 executes these SAS statements. A new Notes document is created in
the Sales database.

Expanding on the Business Card Request database example, you can create multiple
Notes documents within a single DATA step or within SCL code by using action
directives as well as data directives. The following example shows how to create
multiple Notes documents within a single DATA step.

Example Code 8.3 Creating Multiple Notes Documents within a Single DATA Step

01 filename reqcard NOTESDB;
02 data _null_;
03 file reqcard;
04 put ’!NSF_DB!Examples\buscard.nsf’;
05 put ’!NSF_FIELD!Status! Order’;
06 put ’!NSF_FIELD!Quantity! 500’;
07 put ’!NSF_FIELD!RequestedBy!Systems’;
08 put ’!NSF_FIELD!RequestedBy_CN! Jane Doe’;
09 put ’!NSF_FIELD!NameLine_1! Jane Doe’;
10 put ’!NSF_FIELD!NameLine_2! Developer’;
11 put ’!NSF_FIELD!AddressLine_1! Software R Us’;
12 put ’!NSF_FIELD!AddressLine_2! 123 Silicon Lane’;
13 put ’!NSF_FIELD!AddressLine_3! Garner, NC 27123’;
14 put ’!NSF_FIELD!AddressLine_4! USA’;
15 put ’!NSF_FIELD!PhoneLine_1! (910) 555-3232’;
16 put ’!NSF_ADD!’;
17 put ’!NSF_CLR_FIELDS!’;
18 put ’!NSF_FIELD!Status! Order’;
19 put ’!NSF_FIELD!Quantity! 10’;
20 put ’!NSF_FIELD!RequestedBy! Research and Development’;
21 put ’!NSF_FIELD!RequestedBy_CN! John Doe’;
22 put ’!NSF_FIELD!NameLine_1! John Doe’;
23 put ’!NSF_FIELD!NameLine_2! Analyst’;
24 put ’!NSF_FIELD!AddressLine_1! Games Inc’;
25 put ’!NSF_FIELD!AddressLine_2! 123 Software Drive’;
26 put ’!NSF_FIELD!AddressLine_3! Cary, NC 27511’;
27 put ’!NSF_FIELD!AddressLine_4! USA’;
28 put ’!NSF_FIELD!PhoneLine_1! (910) 555-3000’;
29 run;

Line 1 assigns a fileref by using the FILENAME statement to point to Notes instead
of to an ordinary file. NOTESDB is the device type for Lotus Notes. Line 3 uses the
assigned fileref to direct the output from the PUT statement. Line 4 indicates which
Notes database to open. Lines 5 to 15 specify the field and the value for that field for
the new Notes document that is being created. Status is the field name and Order is
the value placed in the Status field for this particular document. Line 16 forces the

220 Preparing SAS/GRAPH Output for a Notes Document � Chapter 8

creation of a new Notes document. Line 17 clears the values for the fields that are used
with the !NSF_FIELD! data directives in the previous lines. Lines 18 to 28 specify the
field and the value for that field for the second Notes document that is being created.
Status is the field name and Order is the value placed in the Status field for the
second document. Line 29 executes these SAS statements. A second Notes document is
created in the Business Card Request database.

Only one !NSF_DB! data directive is issued in the preceding example. By default, the
second Notes document is created in the same database as the one referenced in the
!NSF_DB! data directive on line 4. In order to create the second Notes document in
another database, you would have to issue another !NSF_DB! data directive with the
new database filename before executing line 18. The key additions to this example are
the action directives on lines 16 and 17.

Note: All directives are not case sensitive. However, the values following the data
directives, such as form name and field name, are case sensitive. �

Preparing SAS/GRAPH Output for a Notes Document
SAS/GRAPH output can be passed to a Notes document through the NOTESDB

access engine. A slight variation of the syntax for the !NSF_FIELD! data directive
enables SAS/GRAPH output to be directed to a rich text format field in a Notes
document. The procedure is:

� Export the SAS/GRAPH output to a bitmap file format.
� Use the modified !NSF_FIELD! data directive syntax to assign the value of the

bitmap filename to an RTF field. Syntax is:

!NSF_FIELD! RTF-field-name < bitmap-filename

The following example uses the modified syntax.

Note: This example uses the Electronic Library sample database. �

Example Code 8.4 Exporting SAS/GRAPH Output into a Notes Document

01 filename myfile ’test1.bmp’;
02 goptions device=bmp gsfname=myfile gsfmode=replace;
03 title1 ’US Energy Consumption for 1955-1988’;
04 proc gplot data=3Dsampsio.energy1;
05 plot consumed*year / des=3D’D0319U01-1’;
06 run;
07 quit;

08 filename newdoc NOTESDB;
09 data _null_;
10 file newdoc;
11 put ’!NSF_DB!Examples\hrdocs.nsf’;
12 put ’!NSF_FIELD!Subject! US Energy Consumption’;
13 put ’!NSF_FIELD!Categories! Office Services’;
14 put ’!NSF_FIELD!Body! US Energy Consumption for 1955-1988’;
15 put ’!NSF_FIELD!Body<c:\usenergy.bmp’;
16 run;

Lines 1 to 6 contain code that is taken from the SAS/GRAPH samples by using a
sample data set to generate SAS/GRAPH output. Line 8 assigns a fileref by using the
FILENAME statement to point to Notes instead of to an ordinary file. NOTESDB is the

Using Lotus Notes with SAS � Retrieving Information from Preexisting Notes Documents 221

device type for Lotus Notes. Line 10 uses the assigned fileref to direct the output from
the PUT statement. Line 11 indicates which Notes database to open. Lines 12 to 14
specify the field and the value for that field for the new Notes document that is being
created. Subject is the field name and US Energy Consumption is the value that is
placed in the Subject field for this particular document. Line 15 indicates a display of
usenergy.bmp bitmap file in the Body field because the less than symbol (<) rather
than exclamation point (!) is used to separate the field value from the field name. Line
16 executes these SAS statements. A new Notes document is created in the Electronic
Library database.

In the preceding example, the Detailed field is an RTF field. When using RTF
fields, you can intersperse data and bitmaps.

Using SAS with the NotesSQL ODBC Driver
SAS also provides a SAS/ACCESS to ODBC pass-through engine that enables you to

retrieve information about existing Notes documents in a Notes database. You can
retrieve text fields only. Graphical data cannot be retrieved.

Note: You must have configured a Notes ODBC driver and data source. �

The following software is required:
� Lotus Notes Client Version 7.0.2 or later (32-bit only)
� ODBC Driver NotesSQL 3.02 (32–bit).

NotesSQL is an ODBC driver that is provided by Lotus. It can be downloaded
free of charge from http://www.lotus.com.

After you have the software, you must
1 Set up the NotesSQL ODBC driver.

Lotus provides a file (.nfs) that explains how to set up the driver.
2 Configure the ODBC data source.

You must complete the Lotus Notes ODBC 2.0 Setup screen. Add the
appropriate information to these fields:

Note: Examples are in parentheses. �

� Data Source name (buscard)
� Description (Test Notes Access)
� Server or Database name (c:\notes\data\buscard.nsf)
� NotesSQL Options Setup, which contains these fields:

� Max Length of Text Fields (254)
� Max Number of Tables (20)
� Max Number of Subqueries (20)
� Max Length of Rich Text Fields (512)
� SQL Statement Length (4096)
� Thread Timeout in seconds (60).

Click OK after you have completed the Setup screen.

Retrieving Information from Preexisting Notes Documents
The SAS/ACCESS to ODBC pass-through engine enables you to retrieve information

about existing Notes documents in a Notes database. Example Code 8.5 on page 222

222 Retrieving Information from Preexisting Notes Documents � Chapter 8

shows an example of how to use the DATA step to retrieve information from the
Business Card Request database.

Example Code 8.5 Using ODBC to Retrieve Information from Preexisting Notes Documents

01 proc sql;
02 connect to ODBC ("dsn=3Dbuscard");
03 create table sasuser.buscard as
04 select * from connection to
05 ODBC (select * from All_Requests_By_Organization);
06 disconnect from ODBC;

run;

Line 1 processes SQL statements to manipulate SQL views and tables. Line 2
connects to ODBC, which establishes a connection to Notes through the SAS/ACCESS
to ODBC driver and the NotesSQL ODBC driver by using the 3Dbuscard data source.
Lines 3, 4, and 5 create a table and sasuser.buscard from the data that is retrieved from
the Notes Business Card Request database table that is called
All_Requests_By_Organization. This is the default view that is assigned to the
Business Card Request database. Line 6 disconnects from ODBC and closes the
connection to the Notes database. Line 7 executes these SAS statements. A new data
set named buscard is created in the Sasuser library.

As another alternative, you can view the available tables within Notes databases by
using the SQL Query Window. The SQL Query Window, a component of SAS, is an
interactive interface that enables you to easily build queries without writing
programming statements. You can invoke it by issuing the QUERY command from the
command line.

For more information about PROC SQL, see Base SAS Procedures Guide.

223

C H A P T E R

9
Using Windows System Tools
with SAS

Introduction to Using Windows System Tools with SAS 223
Event Viewer Application Log 224

Accessing the Application Log Using Windows Vista 224

Accessing the Application Log Using Windows 7 224

Accessing the Application Log Using Windows Server 2003 224

Accessing the Application Log Using Windows XP 225
Viewing a SAS Event 225

Sending Messages to the Application Log Using a User-Written Function 225

Specifying the Function’s First Parameter 225

Examples of Using the User-Written Function to Write to the Event Log 226

Sending Messages to the Application Log Using LOGEVENT.EXE 227

Performance Tools 228
Why Use a Performance Monitor? 228

Starting the Windows Performance Monitors 228

Performance Counters and Objects 229

SAS Counters in the Performance and System Monitors 229

Selecting SAS Counters to Monitor 230
Examples of Monitoring the DATA Step, PROC SORT, and PROC SQL 230

Configuring the Performance Monitors 230

Examining the Performance between the DATA and PROC SORT Steps 231

Examining a PROC SQL Query 232

Starting SAS as a Windows Service 234
Overview of Starting SAS as a Windows Service 234

Starting the SAS Service Configuration Utility 234

Creating an Initialization File 234

Overview of the Initialization File 234

Creating an Initialization File Using the SAS Service Configuration Utility 235

Creating the Initialization (INI) File Using a Unicode Text Editor 238
Installing a SAS Service 240

Starting a SAS Service 242

Removing a SAS Service 242

Introduction to Using Windows System Tools with SAS

Advanced users and system administrators can start SAS by using Windows services
and monitor SAS by using Windows event logging and performance tools.

SAS supports logging of error messages to the Windows Event Viewer’s Application
Log. Abnormal termination of SAS tasks (such as an access violation) can be viewed in
the Application Log in addition to the SAS Log. Also, informational messages from

224 Event Viewer Application Log � Chapter 9

SAS/CONNECT software can be viewed in the Application Log. For more information,
see “Event Viewer Application Log” on page 224.

Using the Windows System Monitor under Windows XP and Windows Server 2003,
you can monitor your SAS sessions to obtain the information that you need to diagnose
problems and tune your session. For more information, see “Performance Tools” on page
228.

You can start SAS as a Windows service, which enables you to start SAS
automatically and to specify recovery procedures if SAS fails. For more information, see
“Starting SAS as a Windows Service” on page 234.

Event Viewer Application Log

Accessing the Application Log Using Windows Vista
To open the Application Log:

1 Open the Control Panel.

2 Select System and maintenance.

3 Under Administrative tools, select Event Viewer.

Note: Select Continue if you receive a message stating that Windows needs your
permission to continue. �

4 In the tree view, select Windows logs.

5 Select Application log.

Accessing the Application Log Using Windows 7
To open the Application Log:

1 Open the Control Panel.

2 Select System and security.

3 Under Administrative tools, select Event Viewer.

Note: Select Continue if you receive a message stating that Windows needs your
permission to continue. �

4 In the tree view, select Windows logs.

5 Select Application log.

Accessing the Application Log Using Windows Server 2003
Using Windows Server 2003, you access the Application Log from the Event Viewer

tree view:

1 Select Start � Settings � Control Panel.

2 Double-click Administrative Tools.

3 Double-click Event Viewer.

4 In the Tree view, select Application Log.

Using Windows Tools with SAS � Sending Messages to the Application Log Using a User-Written Function 225

An alternate method of starting the Event Viewer is to type eventvwr in the Run
dialog box and click OK.

Accessing the Application Log Using Windows XP
Using Windows XP, you access the Application Log from the Event Viewer tree view:

1 Select Start � Control Panel.

2 Double-click Administrative Tools.

3 Double-click Event Viewer.

4 In the Tree view, select Application Log.

An alternate method of starting the Event Viewer is to type eventvwr in the Run
dialog box and click OK.

Viewing a SAS Event
If a SAS task ends abnormally, information about the task is placed in the

Application Log. The Source column shows “SAS” as the event source. Messages from
SAS/CONNECT display “SAS Job Spawner” as the event source. Double-clicking a SAS
event opens the Event Properties window that contains information about the event.

Sending Messages to the Application Log Using a User-Written
Function

Specifying the Function’s First Parameter

SAS events can be sent to the Application Log by using a user-written function in
either SAS code or SAS Component Language (SCL). Input to the function is a specific
text string. This text string corresponds to the type of event and to the text string that
will appear in the Event Viewer:

yourfunction("type_of_event", "text_string");

The following table lists the types of events that are available for the first parameter.

Table 9.1 Types of SAS Events

Type of Event First Parameter Value

Error “ERROR”

Warning “WARNING”

Information “INFORMATION”

226 Sending Messages to the Application Log Using a User-Written Function � Chapter 9

Success Audit “SUCCESSAUDIT”

Failure Audit “FAILUREAUDIT”

Although the first parameter values that are displayed in the table are shown in
uppercase, mixed case is also allowed. The second parameter of the function is a string
that will appear in the Windows Event Viewer.

Examples of Using the User-Written Function to Write to the Event Log
In the following example, the existence of a semaphore file is checked before SAS

performs lengthy processing:

%macro pdata(file);
%let cmdstr = "dir &file";
options noxwait;
data _null_;

call system(&cmdstr);
run;
%put &sysrc = sysrc;
%put &file;
%if &sysrc=0 %then %do;

filename indata "&file";
/* Your data step code for this file. */
DATA a;

infile indata length=linelen;
length line $ 200;
input @1 line $ varying200. linelen;

PROC print;
run;

%end;
%else %do;

/* Log an Event of type Error. */
%let cmdstr = %str("The file &file did not exist

so no data step ran.");
%put &cmdstr;
DATA _null_;

x=ntlog("INFORMATION",&cmdstr);
run;

%end;
%mend;

%pdata(c:\config.syss)

The following is SCL code to write to the Application Log:

/* Build a frame and add a pushbutton. Change the Attribute
Name ‘‘name’’ to ‘‘object1’’. In the Source window, add the
following code. */
object1:

x=ntlog("INFORMATION", "This is an INFORMATION event.");
x=ntlog("WARNING", "This is a WARNING event.");
x=ntlog("ERROR", "This is an ERROR event.");

Using Windows Tools with SAS � Sending Messages to the Application Log Using LOGEVENT.EXE 227

x=ntlog("SUCCESSAUDIT", "This is a SUCCESSAUDIT event.");
x=ntlog("FAILUREAUDIT", "This is a FAILUREAUDIT event.");

return;

Sending Messages to the Application Log Using LOGEVENT.EXE
Using the Windows LOGEVENT.EXE utility that is provided by the Windows

Resource Kit, you can send your own information messages to the Application Log from
within SAS code.

In the following example, the existence of a semaphore file is checked before SAS
performs some lengthy processing.

%macro pdata(file);
%local cmdstr;
%let cmdstr = "dir &file";
options noxwait;
DATA _null_;

call system(&cmdstr);
run;
%if &sysrc=0 %then %do;

filename indata "&file";
/* Your data step code for this file. */
DATA a;

infile indata length=linelen;
length line $ 200;
input @1 line $ varying200. linelen;

PROC print;
run;

%end;
%else %do;

/* Log an Event of type Error. */
%let cmdstr = %bquote(c:\support\sasset2\logevent.exe -s E
"The file &file did not exist so no data step ran.");
DATA _null_;

%sysexec &cmdstr;
run;

%end;
%mend;

%pdata(c:\config.syss)

When you double-click the event in the Application Log, the Event Properties window
will display the message in the Description box.

228 Performance Tools � Chapter 9

Display 9.1 Displaying a User Message in The Event Detail Dialog Box

For information about LOGEVENT.EXE, see the documentation for the Windows
Resource Kit.

Performance Tools

Why Use a Performance Monitor?
The Windows performance monitors are useful for tuning and diagnosing problems

in your application or computer system. The monitors include System Monitor under
Windows XP, Windows Vista, Windows 7, and Windows Server 2003. By correlating the
information from SAS counters with other operating environment counters, you can
more easily troubleshoot performance problems.

For example, suppose that your SAS job appears not to be running. Perhaps the job
is performing a long and complicated DATA step that generates a very large data set on
a network drive. You can be certain that the job is still running by monitoring the Disk
WriteFile Bytes Written/Sec and Disk WriteFile Bytes Written Total counters.

Starting the Windows Performance Monitors
When you type perfmon in the Run dialog box, you open the Performance window

when you use Windows Vista, Windows 7, and Windows XP.
You can also access the Performance Monitor and the Performance window from the

Administrative Tools folder.

Using Windows Tools with SAS � SAS Counters in the Performance and System Monitors 229

Note: If you run SAS v9.1.3 or the 32-bit version of SAS 9.2 on a Windows x64
system, you will not be able to use the SAS performance counters. The reason for this is
that the Performance Montior (PERFMON) is a 64-bit application on Windows x64
systems, but SAS v9.1.3 and the 32-bit version of SAS 9.2 are 32-bit application and
run in compatibility mode. If you want to use the performance counters for 32-bit
versions of SAS on Windows x64 systems, then you will need to invoke the 32-bit
version of PerfMon after the 32-bit versions of SAS has been invoked. To invoke the
32-bit version of PerfMon, bring up a Windows Explorer and open the folder:
c:\Windows\SysWOW64 which contains the 32-bit applications. In this folder, you will
see the 32-bit version of PerfMon. Invoking this version of PerfMon will allow you to
see and use the 32-bit versions of SAS performance counters. �

Performance Counters and Objects
A counter is a piece of information that the system monitors. Performance objects

represent individual processes, sections of shared memory, and physical devices, such as
Memory and LogicalDisk. Counters are grouped by objects. For example, the Memory
object contains counters such as Available Bytes, Committed Bytes, and Page Faults/
sec. The Processor object has counters such as %Processor Time and %User Time.

By observing various system counters and application-defined counters, you can
determine performance problems. You can search for problems in your system and
isolate them to areas such as hardware, system software, or your application. For more
information about the System Monitor, see the Windows XP Resource Kit.

SAS Counters in the Performance and System Monitors
SAS includes the following application-defined counters in the SAS object:

Virtual Alloc’ed Memory
specifies the amount of committed virtual memory that SAS allocates through the
VirtualAlloc() API.

Disk ReadFile Bytes Read Total
specifies the total number of bytes that SAS reads from disk files through the
ReadFile() API.

Disk ReadFile Bytes Read/Sec
specifies the number of bytes that SAS reads per second from disk files through
the ReadFile() API.

Disk WriteFile Bytes Written Total
specifies the total number of bytes that SAS writes to disk files through the
WriteFile() API.

Disk WriteFile Bytes Written/Sec
specifies the number of bytes that SAS writes per second to disk files through the
WriteFile() API.

Disk SetFilePointer/Sec
specifies the number of times per second that SAS successfully calls the
SetFilePointer() API on disk files.

Memlib/Memcache Current Usage K
specifies in bytes the amount of Extended Server Memory that is currently in use.

Memlib/Memcache Peak Usage K
specifies in bytes the maximum amount of Extended Server Memory that is used
in the current SAS session.

230 Selecting SAS Counters to Monitor � Chapter 9

Selecting SAS Counters to Monitor
Use the following procedures to monitor SAS counters in your respective operating

environment:

Table 9.2 Procedure for Selecting SAS Counters

Using Windows XP

1 Start SAS.

2 Open the Performance window.

3 Click the Add (+) button.

4 From the Performance object list, select Process.

5 From the Instances list, select SAS.

6 For each counter that you want to monitor, select the counter from the list and click Add.

7 Click Close when you have completed selecting counters.

The performance monitor immediately collects and displays information about the
counters that you selected.

Multiple SAS counters can be monitored. You can see multiple instances monitored,
where each instance is a separate SAS process. SAS instances are listed in the form
SAS PID number. The PID number is the process identifier of the SAS session. You can
see a list of all processes by using the Task Manager.

Examples of Monitoring the DATA Step, PROC SORT, and PROC SQL

Configuring the Performance Monitors

Configure the Performance Monitor and the System Monitor for all examples as
follows:

1 Invoke SAS and the Performance Monitor or the System Monitor.

2 Open the Add Chart window or the Add Counters window and select the SAS
object.

3 Add these SAS counters:

� Disk ReadFile Bytes Read/Sec

� Disk WriteFile Bytes Written/Sec

� Disk SetFilePointer/Sec

4 Select the Process object.

5 Add these Process counters:

� %Processor Time

� %User Time

� %Privileged Time

6 Click Done or Close.

Using Windows Tools with SAS � Examining the Performance between the DATA and PROC SORT Steps 231

Examining the Performance between the DATA and PROC SORT Steps

To see the difference in performance between the DATA step and the PROC step,
submit this code:

options fullstimer;
/* Create a test data set with some random data. */

DATA a (drop=s);
do i = 1 to 500000;

x = ranuni(i);
y = x*2;
z = exp(x*y);
output;

end;
/* The sleep helps to delineate the subsequent */
/* sort in the Performance Monitor graph */
s = sleep(15);

run;
PROC sort data = a noduplicates;

by z y x i;
run;

After you submit this code, the Performance Monitor or System Monitor will
generate results similar to those results in Display 9.2 on page 231. You might have to
adjust the scale factor of the different counters.

Display 9.2 Performance of the DATA Step and the PROC SORT Step

The DATA step in the display shows that there is very little activity from Disk
ReadFile Bytes Read/Sec or Disk SetFilePointer/Sec. Notice that in the subsequent
PROC SORT output there is much more activity from these two counters. The output
indicates that the data set is being read (Disk Readfile Bytes Read/Sec) in order to be
sorted, and that a certain amount of random I/O is performed by the sort (Disk
SetFilePointer/Sec).

232 Examining a PROC SQL Query � Chapter 9

The pause in the activity is caused by the SLEEP function that follows the DATA
step. The Disk WriteFile Bytes Written/Sec counter is active in both the DATA step and
in the PROC SORT step.

Finally, you can correlate the counters from the Process object with the user and
system CPU times in your SAS log.

Examining a PROC SQL Query
To examine the performance of a PROC SQL query with an index, submit the

following code:

1 Submit the code in Step 1 and Step 2. Step 2 creates an index.

/* Step 1 */
/* Create a test data set with some random data. */
/* Do this twice - once with Step 2 and once */
/* without Step 2. */

libname sample ’c:\’;
DATA sample.a;

do i = 1 to 500000;
x = ranuni(i);
y = x*ranuni(i);
z = exp(y);
output;

end;
run;

/* Step 2 */
/* Create a simple index on variable x. */
/* Submit this step once. */

PROC DATASETS library = sample;
modify a;
index create x;
quit;

2 Clear the graph by selecting Clear Display from the Edit menu or the Clear
Display toolbar button.

3 Submit the code in Step 3 to see a graph such as Display 9.3 on page 233.

/* Step 3 */
/* Perform a query on the data. Do this twice - */
/* once with an index and once without an index */
/* The query should select about 50% of the */
/* observations in the data set. */

PROC SQL;
create table sample.yz as
select y,z

from sample.a
where x > 0.5;

quit;

To perform a PROC SQL query without an index:

1 Resubmit Step 1.

Using Windows Tools with SAS � Examining a PROC SQL Query 233

2 Clear the graph.
3 Resubmit Step 3 to see a graph such as Display 9.4 on page 233.

Display 9.3 Performance of PROC SQL Query with an Index

Display 9.4 Performance of PROC SQL Query without an Index

In Display 9.4 on page 233, the counters averaged under 10% on the scale, whereas
in Display 9.3 on page 233, several of the counters averaged more than 10%, and the
Disk WriteFile Bytes Written/Sec counter rose more than 25%. A higher value for these
counters implies good overall throughput for the operation.

Note that to make a valid comparison with the Performance Monitor graph or with
the System Monitor graph, you must ensure that the counters are using the same scale.
You can confirm the counters by observing the absolute values. The Average value for
Disk WriteFile Bytes Written/Sec in Display 9.3 on page 233 was 92528.953. Contrast
this value with the same counter in Display 9.4 on page 233, in which the Average
value was 47350.902. For this operation, bytes were written almost twice as fast when
the data set was indexed.

234 Starting SAS as a Windows Service � Chapter 9

Starting SAS as a Windows Service

Overview of Starting SAS as a Windows Service
Starting SAS as a Windows service enables you to start SAS automatically or

manually, define recovery procedures if SAS fails, and enable users to log on and log off
a PC without interrupting SAS. When SAS is defined to start manually, you can start
SAS either from an application by using the net start command or by using the
Windows Services dialog box.

The general process for configuring SAS as a Windows service is as follows:

1 Create an initialization (.INI) file.

2 Install the .INI file to register SAS as a Windows service.

3 If SAS is configured to start automatically, restart your machine. If SAS is
configured to start manually, you can start SAS either from an application or the
Services window in all Windows operating environments. For more information,
see “Starting a SAS Service” on page 242.

If you have multiple SAS configurations, you can create an initialization file for each
configuration.

SAS provides the SAS Service Configuration Utility (SAS SCU) to configure the
service and install the .INI file.

Starting the SAS Service Configuration Utility
To start the SAS SCU, do one of the following:

� Select Start � Programs � your-SAS-System-folder � SAS 9.2 License Renewal
& Utilities � SAS Service Configuration Utility

� From the SAS SCU directory, type sasservicemngr.exe. The default SAS SCU
directory is c:\Program Files\SAS\SASFoundation\ 9.2\core\sasscu.

Creating an Initialization File

Overview of the Initialization File
Before you can start SAS as a Windows Service, you need to configure and install an

initialization (.INI) file. The. INI file is a Unicode file that

� names the SAS service

� specifies if the service is to start automatically or manually

� defines paths to SAS and SAS working paths

� specifies the level of access that an application has to the SAS service

� names other Windows services that must be started before this service can be
started

� defines the actions that Windows is to complete if SAS fails to start as a service

� specifies whether the SAS service is a system account or a local account

� specifies whether the user can interact with the SAS desktop.

Using Windows Tools with SAS � Creating an Initialization File 235

You create the initialization file either by using the SAS SCU graphical user
interface (GUI) or by using a Unicode-capable text editor, such as Notepad. If you use
the SAS SCU GUI, you specify only the required values and the SAS SCU creates the
.INI file for you. If you use a text editor to create the .INI file, you must specify the SAS
service settings and their values. You must save the file as a Unicode file, not as an
ANSI or ASCII-encoded file. Table 9.4 on page 238 explains the settings that you
specify to create a SAS service .INI file with a text editor.

Creating an Initialization File Using the SAS Service Configuration Utility

Use the SAS Service Configuration Utility (SAS SCU) that is shown in the following
display to create the .INI file. After configuring the settings, click the Install/Save
File tab to save and install the .INI file.

Display 9.5 SAS Service Configuration Utility

To configure the INI file, select the following tab and modify the appropriate settings:

Install tab

Service Name
is the service name that is registered to Windows when the service is
installed. The service name is also the name that is used when a net start or
a net stop command is issued. This field is required. The default is
SASService.

Display Name
is the name of the service that is displayed to user-interface applications.
This field is required. The default is A SAS Service.

236 Creating an Initialization File � Chapter 9

Start Type
specifies whether the SAS service is started manually, automatically, or is
disabled. This field is required. The default is Manual. Manual specifies that
the service can be started by another process. Automatic specifies that the
service is started automatically during system startup. Disabled specifies
that the service cannot be started.

Service Path
contains both the directory path in which SAS is installed and also the SAS
command that is used to start the service. This field is required. For a new
installation, the default path is the SAS installation path, followed by the
command sas.exe -noterminal. If the SAS SCU has been installed
previously, the default path is c:\Program Files\SAS\SASFoundation\9.2\
followed by sas.exe -noterminal. The NOTERMINAL system option is
required. To start a SAS program as a service, add the SYSIN system option
followed by the program pathname and filename to the Service Path. To
select a service path, click ... (ellipse button).

Working Path
is the working path that is used by applications that use the SAS Service to
create directories, store files, and log information. This field is optional. The
default is the user’s profile directory. Under Windows Vista and Windows 7,
the user’s profile is located at c:\Users\user ID\Documents\My SAS
Files\9.2 Under all other Windows operating environments, the user profile
is located at c:\Documents and Settings\user ID\My Documents\My SAS
Files\9.2. To select a working path, click ... (ellipse button).

Dependencies
specifies one or more Windows services that must be started before this
service is started. If a dependent service is installed and enabled, the service
is started before this service is started. If a service is installed but disabled,
this service will not be started.

To specify dependencies, type one or more service names separated by the
pipe (|)character. For example, NetDDE|NetDDEdsdm.

Description
Type a description of the service. The description appears in the Windows
Services window.

Remove tab

Remove Existing Service
specifies the name of the installed SAS service that you want to remove.

Options tab

Error Control
determines the error severity if the SAS Service fails to start. Select one of
the following error controls:

Table 9.3

Error Control Description

Ignore The error is logged. Startup operations continue.

Normal The error is logged and a message is displayed. Startup
operations continue.

Using Windows Tools with SAS � Creating an Initialization File 237

Error Control Description

Severe The error is logged and startup operations continue by
using the last successfully installed INI file.

Critical An attempt to log the error is made. If the startup
operation is using the last known successful INI file,
startup operations fail. If the startup operation is not
using the last known successful INI file, it will attempt to
restart the service by using the last successful INI file.

Access
is the level of access that an application has to the SAS Service. When you
select an access level, such as Read, Write, or Execute, certain access type
settings are set to 1(TRUE) in the INI file. To further configure all access
types settings, select the appropriate boxes. For a description of access type
settings, see Table 9.4 on page 238. The access levels are

Read
enables an application to set the Interrogate, Query Configuration
and Query Status access type settings. Selecting this access level sets
the AccessInterrogate=, AccessQryCfg=, and AccessQryStatus= settings
in the .INI file to 1(TRUE).

Write
enables an application to set the Change Configuration access type.
Selecting this access level sets the AccessChgCfg= setting in the .INI file
to 1(TRUE).

Execute
enables an application to set the Interrogate, Pause/Continue, Start
Service, Stop Service, and Define Control access types. Selecting
this access level sets the AccessInterrogate=, AccessPauseCont=,
AccessStart=, AccessStop, and AccessUserDefCtrl= settings in the .INI
file to 1(TRUE).

Account tab

System Account
specifies that the service is shared for all users that log on to this machine.
To enable the service to interact with the user from the desktop, select Allow
this Service to interact with the Desktop. When you select System
Account, the ServiceStartName= setting in the INI file is set to LocalSystem.

This Account
specifies that the service is for a specific user only. When you select This
Account, type the account name in the box. Then type the password in the
Password and Confirm Password boxes.

Install/Save File tab

Install from file
Click the Install from file button to specify an initialization (INI) file to
install.

Save settings to file
Click the Save settings to file button to save the settings that you have
specified in the SAS Service Configuration Utility GUI to a file.

238 Creating an Initialization File � Chapter 9

Show file contents
Select the Show file contents box if you want to display the initialization
file that you want to install or save in the File Contents box.

About tab
displays the copyright information for the SAS Service Configuration Utility.

Creating the Initialization (INI) File Using a Unicode Text Editor
To create a SAS Service INI file by using any Unicode-capable text editor, such as

Notepad, create a new file in the editor and assign a valid value to each of the settings
in the following table. Type only one setting per line:

Table 9.4 SAS Service INI File Settings and Default Values

Setting Name Required Explanation Valid Values Defaults

Related
SAS SCU
Field

Service Name= Yes The SAS Service
name registered to
Windows.

Can contain up to 32
characters (/ and \ are not
valid). The name is not
case sensitive and it must
be contained in quotation
marks.

"SASService" Service
Name

Display Name= Yes The name of the
service that is
displayed to
user-interface
applications.

Can contain up to 256
characters, is not case
sensitive, and must be
contained in quotation
marks.

"A SAS Service" Display
Name

Binary
Pathname=

Yes Contains the directory
path in which the
SAS Service INI file is
installed, followed by
the SAS command to
start the service.

The pathname must be
contained in both brackets
and quotation marks.

["SAS
installation
path\sas.exe
-noterminal"]

Service Path

Start Type= Yes Specifies whether the
SAS Service is to
start manually or
automatically.

SERVICE_AUTO_ START

SERVICE_
DEMAND_START

SERVICE_DISABLED

SERVICE_
DEMAND_
START

Start Type

Dependencies= No Specifies Windows
services that must
be started before this
service is started.

One or more Windows
service names, separated
by the pipe (|) character.
Enclose dependences in
quotation marks.

none Dependencies

Description No A description of the
service

The description can
contain alphanumeric
characters and must be
enclosed in quotation
marks.

none Description

Using Windows Tools with SAS � Creating an Initialization File 239

Setting Name Required Explanation Valid Values Defaults

Related
SAS SCU
Field

WorkDir= No The directory used by
applications to store
files created and used
by the SAS Service.

The path to the working
directory must be
contained in quotation
marks.

"Under Windows
Vista and
Windows 7-
c:\Users\user
ID" or Under
Windows XP
and 2003 -
"c:\Documents
and Settings\
user ID"

Working
Path

ErrorControl= Yes Determines the error
severity if the SAS
Service fails to start.

SERVICE_ ERROR_
IGNORE

SERVICE_ ERROR_
NORMAL

SERVICE_ ERROR_
SEVERE

SERVICE_ ERROR_
CRITICAL

SERVICE_
ERROR_
NORMAL

Error
Control

Interactive= Yes Specifies whether the
service allows a user
to interact with the
SAS desktop.

1(TRUE)

0(FALSE)

0(FALSE) Interactive
Process

AccessChgCfg= Yes Modifies the SAS
Service configuration.

1(TRUE)

0(FALSE)

1(TRUE) Change
Configuration

Access
Interrogate=

Yes Requests that the
SAS Service
immediately update
its current status.

1(TRUE)

0(FALSE)

1(TRUE) Interrogate

Access
PauseCont=

Yes Pauses and resumes
the SAS Service.

1(TRUE)

0(FALSE)

1(TRUE) Pause/
Continue

AccessQryCfg= Yes Makes queries about
the SAS Service
configuration.

1(TRUE)

0(FALSE)

1(TRUE) Query
Configuration

AccessQry
Status=

Yes Queries Windows
about the status of
the SAS Service.

1(TRUE)

0(FALSE)

1(TRUE) Query
Status

AccessStart= Yes Starts the SAS
Service.

1(TRUE)

0(FALSE)

1(TRUE) Start Service

AccessStop Yes Stops the SAS
Service.

1(TRUE)

0(FALSE)

1(TRUE) Stop Service

AccessUser
DefCtrl=

Yes Specifies a
user-defined control
code.

1(TRUE)

0(FALSE)

1(TRUE) Define
Control

240 Installing a SAS Service � Chapter 9

Setting Name Required Explanation Valid Values Defaults

Related
SAS SCU
Field

ServiceStart
Name=

No The Windows user
account with proper
user rights to run the
SAS Service.

LocalSystem or Windows
account name

LocalSystem This Account

Password= No The Windows account
password.

an encrypted password none Password

When you create an .INI file by using a text editor and you want to specify
ServiceStartName for a specific user, the Windows account name must be of the format
domainname\username and you must include an encrypted password in the
PASSWORD setting name. You can use the PWENCODE procedure to create an
encrypted password. For example, the following PWENCODE procedure specifies mypw
as the input password:

proc pwencode in=’mypw’;
run;

The SAS log displays the encrypted password {sas001}bXlwdw==. You then specify
{sas001}bXlwdw== as the value for the Password= setting in your .INI file. An
encrypted password is necessary only if you specify Password= in an .INI file. In
comparison, when you create an .INI file by using the SAS SCU, you specify a text
password. The SAS SCU encrypts the password for you.

For more information about the PWENCODE procedure, see Base SAS Procedures
Guide.

Installing a SAS Service
When you have created the initialization file, you use the initialization file to install

SAS as a service. A SAS service can be installed either from the SAS SCU, from the
command prompt, or from within an application.

To install a SAS Service by using the SAS SCU:

1 Select the Install/Save File tab.

2 Select Install from file.

3 From the Open dialog box, select an INI file.

4 Click Open.

To install a SAS Service from the command prompt, ensure that both the SAS
Service Configuration Utility directory and the directory that contains the INI file are
accessible from your system path. From the command prompt type
sasservicemngr.exe path/filename.ini. When you install a SAS Service from the
command prompt, user messages are disabled.

Note: You can also install a service from the Install Tab for SAS SCU GUI. �

Using Windows Tools with SAS � Installing a SAS Service 241

When a SAS Service is installed from an application, the command to install the
service is sasservicemngr.exe path/filename.ini. The following table lists the
return codes that can be passed back to the calling application:

Table 9.5 Return Codes from Installing or Running a SAS Service

Numeric
Code

Error Code Description

0 SUCCESS The service has successfully
been installed.

5 ERROR_ACCESS_DENIED Access to the Service Control
Manager is denied.

6 ERROR_INVALID_HANDLE Error loading the Service
Control Manager.

25 ERROR_NOT_FULL_PATH_CREATED The full path could not be
created.

26 USER_CANCELED_INSTALL The user canceled the
installation.

30 SUCCESS_NO_REG_DIR The service was installed but
failed to register the working
directory.

35 ERROR_BINPATH_NOTFOUND The service file was not found,
no installation

40 ERROR_USER_CANCEL_NOSRVC The user canceled the
installation because an INI file
was not found.

50 ERROR_MISSING_FILE_ARGUMENT A required argument in the
INI file is missing.

51 ERROR_INVLAID_FILE_ARGUMENT An INI file argument contains
an incorrect value.

55 ERROR_OPENFILE The INI file could not be
opened.

60 ERROR_ITEMTOOLARGE A string value exceeds the
maximum character limit.

65 ERROR_PASSED_DECRYPT_FAILED The password could not be
decrypted.

87 ERROR_INVALID_PARAMETER A service parameter is
incorrect.

123 ERROR_INVALID_NAME The specified service name is
not valid.

1057 ERROR_INVALID_SERVICE_ACCOUNT The account name is incorrect
or does not exist.

1060 ERROR_SERVICE_DOES_NOT_EXIST The specified service does not
exist as an installed service.

1065 ERROR_DATABASE_DOES_NOT_EXIST The specified database does not
exist.

242 Starting a SAS Service � Chapter 9

Numeric
Code

Error Code Description

1072 ERROR_SERVICE_MARKED_FOR_DELETE The specified service has been
marked for deletion.

1073 ERROR_SERVICE_EXISTS A duplicate service name exists
on the network.

1078 ERROR_DUPLICATE_SERVICE_NAME A duplicate display name
exists on the network.

Starting a SAS Service
A SAS Service can be started automatically or manually. If the SAS Service is

configured to start automatically, the service starts when the system starts. If the SAS
Service is configured to start manually, the service can be started either from an
application by using the net start command or by using the Services dialog box.

To start a SAS Service using the Services dialog box:
� Under Windows Vista, select Start � Settings � Control Panel � System and

maintenance � Administrative tools � Services

Under Windows 7, select Start � Settings � Control Panel � System and
security � Administrative tools � Services

Under all other Windows operating environments, select Start � Settings �
Control Panel � Administrative Tools � Services

� From the Services list box, select the SAS service.
� Click Start.

Removing a SAS Service
A SAS Service can be removed as a Windows service from the SAS SCU or from the

command prompt.
To remove a SAS Service by using the SAS SCU:
1 Open the SAS SCU and click the Remove tab.
2 Select the SAS Service from the Remove Existing Services box.
3 Click Remove.
4 Select Yes to confirm the removal of the service from the Remove Service dialog

box.

To remove a SAS Service from the command prompt, type sasservicemngr.exe /
remove <servicename>.

243

C H A P T E R

10
Using OLE in SAS/AF Software

About OLE 244
SAS/AF Catalog Compatibility 244

Inserting an OLE Object in a FRAME Entry 244

Introduction to Inserting an OLE Object in a FRAME Entry 244

Inserting an OLE Object 245

Pasting an OLE Object from the Clipboard 245
Reading an OLE Object from an HSERVICE Entry 246

Inserting an OLE Object by Dragging It 246

Dragging OLE Objects During Run Time 247

Changing the Drag Action 247

Editing an OLE Object within a FRAME Entry 248

Invoking OLE Verbs 249
Using Linked OLE Objects 249

Updating a Linked Object with the Links Dialog Box 250

Updating a Linked Object Programmatically 251

Converting OLE Objects 251

Automating OLE Objects and Applications 252
Accessing Array Values Returned by the OLE Automation Server 253

Using Value Properties 254

Specifying Optional Parameters in OLE Server Methods 255

Creating an External OLE Automation Instance 255

Example: Populating a Microsoft Excel Spreadsheet with SAS Data 257
Using OLE Custom Controls (OCXs) in Your SAS/AF Application 259

Inserting an OLE Control in a FRAME Entry 260

Registering OLE Controls 260

Accessing OLE Control Properties 260

Accessing the OLE Control Properties Page 260

Accessing Properties Using SCL Code 261
Interacting with the OLE Control Using SCL Methods 261

Responding to OLE Control Events 262

Assigning SCL Code to an OLE Control Event 262

Retrieving Argument Values from Events 263

Example: Mapping OLE Control Events to SCL Code 263
Example: Subclassing an OLE Custom Control 264

Adding an Item to a Combo Box List 264

Finding an Item in a Combo Box 265

Retrieving the Text Value of the Control 265

244 About OLE � Chapter 10

About OLE

OLE is a means of integrating multiple sources of information from different
applications into a unified document. These objects can include text, graphics, charts,
sound, video clips, and much more.

OLE 1.0, which the SAS has supported since Release 6.08, allowed you to link and
embed OLE objects into SAS/AF FRAME entries and SAS/EIS applications. OLE 2.0,
which SAS 9.2 supports, provides many new features that you can use to enhance your
SAS/AF frames and SAS/EIS applications.

Note: SAS under Windows (and OLE 2.0 in general) still supports all the features
from OLE 1.0. �

SAS can function as an object container or client. The applications that create (and
update) the objects you place in a FRAME entry are known as servers. You can also use
SAS as a server from within other applications through OLE automation. For more
information, see Chapter 11, “Controlling SAS from Another Application Using OLE,”
on page 267 .

For more information about OLE in general, see the documentation for the Windows
operating environment. For descriptions of the error messages you might receive while
using OLE features in SAS/AF software, see “Using OLE” on page 616.

SAS/AF Catalog Compatibility

SAS/AF catalogs that contain OLE HSERVICE entries can be ported from Release
6.09 for Windows NT and Release 6.10 or later for Windows transparently, just by
assigning librefs to those catalogs in your SAS 9.2 session.

Note: SAS/AF catalogs created in SAS 9.2 that contain HSERVICE entries can be
ported back to Release 6.08 using the V608 option of the CPORT procedure, but the
features that are ported are limited to those features that are available in Release
6.08. �

HSERVICE entries must be used on the platform in which they were created. Any
OLE feature that you include in your SAS/AF applications using SAS under Windows
cannot be ported to another operating environment. (For portability purposes, all
variations of Microsoft Windows are considered a single platform.)

Inserting an OLE Object in a FRAME Entry

Introduction to Inserting an OLE Object in a FRAME Entry
SAS provides three items on the object Selection List to facilitate OLE:

OLE - Insert Object
inserts an OLE object as a new object of the type associated with a registered
server application, as an object created from an existing file, or as an OLE control.

OLE - Paste Special
pastes an OLE object to the FRAME entry from the Windows clipboard.

Using OLE in SAS/AF Software � Pasting an OLE Object from the Clipboard 245

OLE - Read Object
creates an object that references an existing HSERVICE entry in a SAS catalog.

These three items correspond to the three OLE classes in SAS/AF software: INSERT,
PASTE, and READOLE.

In addition to using the Selection List to insert objects, you can select and drag
objects from other Windows applications and drop them onto an open FRAME entry (in
BUILD mode, or during run time if the frame or work area object is registered as a
drop site for the SAS_DND_OLEOBJ representation).

Inserting an OLE Object
To insert an OLE object in a FRAME entry:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Scroll through the list of objects in the Selection List and select and hold down the
left mouse button on OLE - Insert Object.

3 Drag OLE - Insert Object to a position for the object in the FRAME entry.
Release the mouse button to place the object. The Insert Object dialog box appears.

4 Select the type of object that you want to insert. The list of objects that are
available to you depends on which OLE-capable applications are registered on
your system. Selecting a type of object will insert an object of that type into the
FRAME entry.

Alternatively, you can create an object from a file by clicking on Create from
File. The file you specify must have been created by one of the applications you
have available to supply OLE objects. For example, if you have Microsoft Excel
installed on your system, you can create an object from an Excel spreadsheet file.
You also have the option of making it a linked object (instead of embedded). For
more information about linked objects, see “Using Linked OLE Objects” on page
249.

When you have selected the type of object or filename to insert, click OK. SAS
inserts the object into the FRAME entry.

5 With the BUILD window active, select View � Properties Window

In the Properties windows, select the object and select Object Attributes.
Enter a name for the object entry in the Entry field. Two-level HSERVICE

names are allowed, defaulting to the current catalog. You can also change the
Name of the object. The HSERVICE entry is not created until you Save or End the
FRAME editing session.

Click OK.

Pasting an OLE Object from the Clipboard
To paste an OLE object from the Windows clipboard:

1 From another Windows application, copy or cut to the Windows clipboard the
object or data you want to include in your FRAME entry.

2 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

3 Scroll through the list of objects in the Selection List and select and hold down
with the left mouse key OLE - Paste Special. Drag OLE - Paste Special to
the frame. The Paste Special dialog box appears.

246 Reading an OLE Object from an HSERVICE Entry � Chapter 10

4 Select the type of OLE object you would like to insert based on the clipboard
contents. The object is determined by the application from which you copied the
data. (For example, you would typically paste Microsoft Word data as a Microsoft
Word object.)

5 If you want the OLE object to link to the data instead of embed the actual data in
the FRAME entry, choose Paste Link on the Paste Special dialog box. For more
information about linked objects, see “Using Linked OLE Objects” on page 249.

Note: If you paste data from a temporary source (such as a document that you
did not save), SAS will be unable to locate the data source when it attempts to link
to it later when it no longer exists. You should save your data file before copying it
to the Windows clipboard. �

6 After you select the type of object to paste, click OK. SAS pastes the object into the
FRAME entry.

7 Select View � Properties Window . Select the object from the Properties box
and click on Object Attributes.

8 Enter a name for the object entry in the Entry field. Two-level HSERVICE names
are allowed, defaulting to the current catalog. You can also change the Name of the
object. The HSERVICE entry is not created until you Save or End the FRAME
editing session.

Click OK.

Reading an OLE Object from an HSERVICE Entry
To read an existing OLE object stored as an HSERVICE entry in a SAS catalog:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Scroll through the list of objects in the selection list and select and drag OLE -
Read Object to the BUILD window.

3 With the cursor over the blank object, right mouse click and select Object
Attributes.

4 In the OLE-Read Object Attributes window, enter the name of the HSERVICE
entry in the Entry field. Two-level HSERVICE names are allowed, defaulting to
the current catalog. To use the Select window to find the entry, click on the arrow
next to the Entry field.

Click OK. SAS inserts the object in the FRAME entry, displaying a
representation of the object at the position you selected.

Note: You cannot change the name of an HSERVICE entry that you read in. If
you want to assign a different name to the HSERVICE entry, copy the HSERVICE
entry to a new name before you read the object. �

Inserting an OLE Object by Dragging It
To insert an OLE object into a FRAME entry by dragging and dropping it:

1 Create the object using the server application. For example, if you want to embed
a Microsoft Excel chart object into your FRAME entry, use Microsoft Excel to
create the object. Or, you can select an OLE object that is embedded in another
application.

2 With both SAS and the server application running, arrange the application
windows so that both the server application (with the object) and the SAS BUILD:
DISPLAY window (with the FRAME entry) are visible on the screen.

Using OLE in SAS/AF Software � Inserting an OLE Object by Dragging It 247

3 Select the object in the server application. Press the mouse button and drag the
object from the server application to the position in the FRAME entry where you
want to place the object. The cursor changes to a box with an arrow, indicating
that the FRAME entry is a valid place to drop the object. You do not need to draw
a region in the FRAME to insert the object. You can also use drag modifier keys,
as discussed in “Changing the Drag Action” on page 247 to control the drag and
drop behavior.

When you release the mouse button ("dropping" the object), SAS inserts the
object into the FRAME, automatically creating a name and an HSERVICE entry
for the OLE object. SAS displays a representation of the object at the position you
selected.

Dragging OLE Objects During Run Time
You can allow the dragging and dropping of OLE objects while your SAS/AF

application is running. To enable this action, you must register the OLE object type
with a valid drag and drop representation.

OLE objects must be registered with the SAS_DND_OLEOBJ representation. For
more information about registering objects for drag and drop, see the SAS/AF online
documentation for information about working with the FRAME application
development environment and for information about the Widget class.

Changing the Drag Action
By default, dragging an OLE object from another application into SAS moves the

object (unless the object is of a type that can only be read and not removed). You can
override this default action by using a drag modifier; a key press that indicates you
want to perform a different drop action:

� To copy an object from the server application, hold down the Ctrl key when you
drop the object on the target window. When you press the Ctrl key, the cursor
changes to an arrow with a box and a plus (+) sign.

� To create a link to the data in a SAS/AF FRAME entry, hold down the Ctrl and
Shift keys when you drop the object on the BUILD window. When you press the
Ctrl and Shift keys, the cursor changes to an arrow with a box and a plus (+) sign.
(This feature might vary based on the other application.) Remember not to paste a
linked object from a temporary source, because SAS cannot locate a data source
when it no longer exists.

Alternatively, you can initiate a nondefault drag and drop action (if the server
application supports it). Use the right mouse button to select the object and drag and
drop it into the FRAME entry. When you release the mouse button, SAS displays a
pop-up menu allowing you to select whether to move, copy, or link to the object. The
choices in the pop-up menu might vary among different types of OLE objects.

248 Editing an OLE Object within a FRAME Entry � Chapter 10

Editing an OLE Object within a FRAME Entry

One of the most impressive features of OLE 2.0 is visual editing–the ability to edit
an embedded object in-place, without explicitly changing to another application.

To activate visual editing for an OLE object in your FRAME entry at build time, click
the right mouse button and select Edit. To activate visual editing at run time, simply
double-click on the object. If the object’s application supports visual editing as a server
application, then the following occurs:

� The object’s representation in the FRAME entry changes to an editing session of
the actual object. The object’s borders might change to accommodate the tools
supplied by the server application.

� The SAS menu bar changes to accommodate the menu bar of the server
application. The File and Window menus remains the same, but the remainder of
the menu bar changes to the server application.

� If the server application normally provides any tools, such as toolbar icons or a
floating toolbox, those items also become available.

For example, Display 10.1 on page 248 shows a SAS/AF FRAME entry with a
Microsoft Word object activated.

Display 10.1 SAS/AF FRAME Entry with Word Object Activated

After this transformation, you can edit the object using all of the tools and menus
provided by the server application.

To end your visual editing session, click elsewhere inside the FRAME entry and
outside the object. SAS resumes control of the session, and returns to the default SAS
menus and tools.

Note:

1 The HSERVICE entry is automatically updated at the end of a visual editing
session only if the object has been saved previously (an HSERVICE entry has been
created for it). Otherwise, you must select Save (or End) from the File menu in
SAS/AF software to create the HSERVICE entry.

Also, if you modify the object during TESTAF mode and you want to save the
modifications in the HSERVICE entry, you must update the object’s contents by
selecting Update from the Locals menu before returning to BUILD mode.

2 If you move the OLE object within the FRAME entry during visual editing (in
BUILD mode), the object returns to its original position when you click outside of
it (ending the visual editing session). If you want to move the object to another
position in the FRAME entry, end the visual editing session and then move the
object region.

Using OLE in SAS/AF Software � Using Linked OLE Objects 249

3 Most OLE objects require that you double-click on them to activate them.
However, a few types of objects require only a single-click to activate them.

4 If you attempt to edit a linked object or an OLE object whose server application
does not support visual editing, the server application launches as a separate
instance and allows you to edit the object. This action is known as open editing
and is consistent with the behavior of linked objects and all OLE 1.0 objects.

�

Invoking OLE Verbs
Each OLE object (except OLE controls) has a default action that it performs when

you double-click on it. For many objects, the default action is Edit (invoking a visual
editing session for OLE 2.0 or an open editing session for linked objects and all OLE 1.0
objects). However, there are some objects for which the Edit action is secondary (for
example, a Media Clip object, where Play is the primary action). Also, many objects
have more than one action that they can perform, so they understand more than one
OLE verb. (Double-clicking on an OLE object in BUILD: DISPLAY mode does not
perform the default action, but double-clicking on the object in TESTAF mode does.)

To access the menu of OLE verbs for an OLE object in BUILD mode, click on the
object with the right mouse button. The name of the OLE object is located at the
bottom of the pop-up menu. In the cascading menu, there is a list of valid OLE verbs
for the object. Select a verb from this menu to perform that action. The default verb
appears first in the list of verbs.

For example, a Microsoft Excel object understands Edit (for visual editing) and Open
(for open editing). A Media Clip object understands Play and Edit.

You can also access the list of valid verbs by clicking on the Associated Verbs item
in the Object Attributes dialog box for the object. This list just contains the names of
the verbs; you cannot initiate the verbs from here. Again, the verb at the top of the list
is the default verb.

Using SCL, you can invoke any verb that a particular OLE object understands by
using the _EXECUTE_ method with the verb as an argument. For example, this code
would invoke the verb Play on the OLE object mediaobj:

call notify(’mediaobj’, ’_EXECUTE_’, ’Play’);

You can specify multiple verbs in a single call to _EXECUTE_. For more information
about the _EXECUTE_ method, see “_EXECUTE_” on page 606.

Using Linked OLE Objects

A linked OLE object contains information about the object’s server application and
points to the data file that resides on disk, but does not contain data for the object itself.
The object contains a static picture that represents the contents of the linked source.

Using the Links dialog box, you can specify to update a linked object:

� automatically, whenever you update the source file that the object points to. (You
must reload the FRAME entry before it reflects the change.)

� manually, by choosing Update Now in the Links dialog box or by using the
UPDATE method in SCL.

� manually, by pointing the object to a different source file using either the Links
dialog box or the _UPDATE_ method in SCL.

250 Updating a Linked Object with the Links Dialog Box � Chapter 10

Linked OLE objects that you include in a FRAME entry:

� support open editing only (as opposed to visual editing, described in “Editing an
OLE Object within a FRAME Entry” on page 248). When you double-click on the
object’s representation in the FRAME, the server application is invoked in a
separate window with the object’s data file open.

You can also update the data of a linked object by using the server application
to open the data file the object points to.

� must point to existing data files. If you change the location of a data file to which
an object is linked, you must update the links information for the object.

If you create a linked object using OLE - Paste Special, the data source that you
paste from must be permanent (you must have saved it to disk). If you create a linked
object from a temporary data source, SAS will be unable to locate the data to update
the object when the data source no longer exists.

Updating a Linked Object with the Links Dialog Box
To update the links information with the Links dialog box (shown in Display 10.2 on

page 250):

1 Click on the object with the right mouse button. A pop-up menu appears, with the
object type listed as the bottom menu item.

2 Click on the bottom menu item. A cascading menu containing valid OLE verbs for
the object appears.

3 Click Links. The Links dialog box appears, containing link information for all of
the linked objects in the FRAME entry. (If there are no linked objects in the
FRAME, then the Links item is disabled.)

4 Use the Links dialog box to change information about the object as necessary. For
example, if the data file resides in a different location, you can change the source
for the object link.

An alternate way to open the Links dialog box for a linked OLE object is to use the
DLGLINKS command from the command line. You can also use the _EXECUTE_
method in SCL to invoke the DLGLINKS command. For example:

call notify(’linkobj’,’_execute_’,’dlglinks’);

Display 10.2 Links Dialog Box

Using OLE in SAS/AF Software � Converting OLE Objects 251

Updating a Linked Object Programmatically
To change the source of a linked object programmatically with SCL, use the

UPDATE method to specify a new HSERVICE entry to associate with the object. The
UPDATE method for OLE objects accepts the name of an HSERVICE entry as a third
argument. (This method overrides the Widget class _UPDATE_ method.) For the
syntax of the OLE _UPDATE_ method, see “_UPDATE_” on page 611.

Converting OLE Objects

An OLE object can be associated with only one server application, but some OLE
objects can be converted for use with a different server application than the one that
created them.

You can convert an object by using the Convert dialog box (shown in Display 10.3 on
page 251). This dialog box lets you:

� change the object’s view from an icon to object content and vice-versa.

� change the object’s type from one server application to another. For example, you
can convert a Microsoft Excel object to a Lotus 1-2-3 object, provided that you have
the server application that can convert the object on your system. This type of
conversion is permanent.

� activate the object with a different server application than originally created it,
without altering the object type. For example, you can choose to activate a Lotus
1-2-3 object using Microsoft Excel as a server. This action allows you to edit the
object as if it were an Excel object. The object continues to be a Lotus 1-2-3 object.
All subsequent Lotus 1-2-3 OLE objects you create will use Excel as an OLE
server, unless you change the conversion settings again.

Display 10.3 Convert Dialog Box

To convert an OLE object within a SAS/AF FRAME entry:

1 Click on the object with the right mouse button.

2 At the bottom of the pop-up menu, select the object’s name (thus revealing the
cascading menu).

3 In the cascading menu, select Convert. The Convert dialog box appears, listing
the valid object types to which you can convert the selected object.

252 Automating OLE Objects and Applications � Chapter 10

4 If you want to actually convert the object to another type, select the desired target
object type and click OK.

If you want to toggle the object between icon view and content view, check
Display As Icon.

If you want to activate the object using another server, click on Activate as
and then select the server application to use.

5 Click OK.

An alternate way to open the Convert dialog box for an OLE object is to select the
object and issue the DLGCONVERT command on the command line. Also, you can use
the _EXECUTE_ method in SCL to invoke the DLGCONVERT command. For example:

call notify(’sheetobj’,’_execute_’,
’dlgconvert’);

Automating OLE Objects and Applications
Some Windows applications provide a scripting language that allows you to control

and update objects and external applications through automation. In SAS/AF software,
you can use SAS Component Language (SCL) for OLE automation. Using SCL code to
send instructions to the OLE object, you can update the object’s data based on a user’s
actions in your SAS/AF application.

In SAS/AF software, you can automate:
� OLE objects embedded in a FRAME entry, using the OLE class
� OLE objects linked to a FRAME entry, using the OLE class
� OLE applications not associated with a FRAME entry, using the OLE Automation

class.

Using SCL, you can communicate with any OLE object or application that supports
OLE automation as a server. In this communication, SAS acts as a client while the
automation application acts as a server. The server provides OLE automation objects,
which you can control with SCL code. Using SCL methods, you can send OLE methods
to the server for execution. You can also get and set the properties of the objects you
control. OLE automation servers can support multiple types of objects, each of which
can have a unique set of methods and properties. The SCL methods you can use are
listed in Table 10.1 on page 253 and described in detail in “Summary of OLE Class
Methods” on page 603.

Note: Do not confuse the SCL OLE automation methods (listed in the table) with
the methods provided by the OLE automation server. In SAS/AF software, the
COMPUTE and _DO_ SCL methods provide access to the methods supported by the
OLE automation server. Each OLE automation server supports different methods, but
you must always use the _COMPUTE_ or _DO_ method in SCL to invoke them. (You
can use subclassing to create new methods that encapsulate these methods, such as the
methods listed in this table.) �

Using OLE in SAS/AF Software � Accessing Array Values Returned by the OLE Automation Server 253

Table 10.1 OLE Automation Class Methods

OLE Automation Method Description

COMPUTE invokes a method supported by the OLE automation
server and returns a value

DO invokes a method supported by the OLE automation
server (with no return value)

_GET_PROPERTY_ retrieves the value of a property exposed by the OLE
automation server

_GET_REFERENCE_ID_ returns the reference identifier of an object provided
by the OLE automation server

_IN_ERROR_ returns an object’s ERROR status

NEW assigns an SCL identifier to an external instance of an
OLE automation server

_SET_PROPERTY_ sets the value of a property exposed by the OLE
automation server

Note: The return values and arguments passed between the automation server and
SAS using the OLE automation methods are passed by value, not by
reference–including those arguments that the server defines as pass-by-reference. The
arguments contain actual static values, not pointers to values that you can modify. �

Accessing Array Values Returned by the OLE Automation Server
Using SCL methods and the OLE automation server, SAS lets you
receive a single-dimensional array that is passed to SAS as an SCL list
send or receive multi-dimensional SCL arrays.

In this first example, the SCL code creates and populates a list box in a Microsoft
Excel worksheet and stores the contents of the list box in an SCL list:

list=makelist(); /* create the SCL list */
/* Add a Listbox in a worksheet */

call send(worksht, ’_COMPUTE_’, ’Listboxes’,
listbox);

call send(listbox, ’_DO_’, ’Add’, 20, 50,
40, 100);

call send(worksht, ’_COMPUTE_’, ’Listboxes’,
1, listone);

/* Fill the Listbox with a range of */
/* values from the worksheet */

call send(listone, ’_SET_PROPERTY_’,
’ListFillRange’, ’A1:A3’);

/* Get the contents of the Listbox */
call send(listone, ’_GET_PROPERTY_’,

’List’, list);

Using several SCL arrays, the following SCL code creates and populates another
Microsoft Excel worksheet:

Init:
/* Initialization */

254 Using Value Properties � Chapter 10

HostClass = loadclass(’sashelp.fsp.hauto’);

/* Instantiate the Excel object and make it visible */
call send (Hostclass, ’_NEW_’, ExcelObj, 0, ’Excel.Application’);
call send (ExcelObj, ’_SET_PROPERTY_’, ’Visible’, -1);

/* Get the Workbook Object, add a new Sheet and get the Sheet object */
call send (ExcelObj, ’_GET_PROPERTY_’, ’Workbooks’, WkBkObj);
call send (WkBkObj, ’_DO_’, ’Add’);
call send (ExcelObj, ’_GET_PROPERTY_’, ’ActiveSheet’, WkShtObj);

dcl char names{3,2) = (’Lucy’, ’Ricky’,
’Julliette’, ’Romeo’,
’Elizabeth’, ’Richard’);

/* Set the range to be A1:A4 and fill that range with names */
call send(WkShtObj, ’_COMPUTE_’, ’Range’, ’A1’, ’B3’, RangeObj);
call send(RangeObj, ’_SET_PROPERTY_’, ’Value’, names);

dcl num primes{2,4} = (1, 3, 5, 7,
11, 13, 17, 23);

/* Set the range to be A5:D6 and fill that range with ints values */
call send(WkShtObj, ’_COMPUTE_’, ’Range’, ’A5’, ’D6’, RangeObj);
call send(RangeObj, ’_SET_PROPERTY_’, ’Value’, primes);

dcl char totals{1,4} = (’=SUM(A5,A6)’,
’=SUM(B5,B6)’,
’=SUM(C5,C6)’,
’=SUM(D5,D6)’);

/* Set the range to be A1:A4 and fill that range with totals */
call send(WkShtObj, ’_COMPUTE_’, ’Range’, ’A7’, ’D7’, RangeObj);
call send(RangeObj, ’_SET_PROPERTY_’, ’Value’, totals);

dcl char vals{7,4};

call send(WkShtObj, ’_COMPUTE_’, ’Range’, ’A5’, ’D7’, RangeObj);
call send(RangeObj, ’_GET_PROPERTY_’, ’Value’, vals);

return;

Using Value Properties
OLE automation servers (including OLE custom controls) can designate one of their

properties or methods as a value property, which is used as the default property or
method when the automation code accesses an object provided by the server without
explicitly specifying a property or method name.

In SCL, you can access the value property of a server by specifying an empty string
in place of the property name when invoking _GET_PROPERTY_ or
_SET_PROPERTY_, or in place of the method name when using _DO_ or _COMPUTE_.
For example, if the Text property is the value property, then the following code:

call notify(’sascombo’, ’_set_property_’, ’’,
’An excellent choice’);

Using OLE in SAS/AF Software � Creating an External OLE Automation Instance 255

is equivalent to:

call notify (’sascombo’, ’_set_property_’,
’Text’, ’An excellent choice’);

Both the SAS ComboBox and SAS Edit controls (supplied with SAS) designate Text
as their value property.

Specifying Optional Parameters in OLE Server Methods
Some OLE server applications expose methods that have optional parameters. If you

do not specify a value for one or more of the parameters that a method supports, the
OLE server uses a default value for those parameters. Refer to the documentation for
the OLE server application you are using for information about which parameters are
optional.

SAS supports the use of optional parameters by letting you specify a SAS missing
value in place of the parameter you want to omit. The default missing value character
is a period (but that can be changed by using the MISSING system option).

For example, Microsoft Excel supports a ChartWizard method that accepts 11
arguments, most of which are optional. This SCL code invokes this method with all of
its arguments:

call send(chart, ’_DO_’, ’ChartWizard’, hcell,
-4098, 6, 1, 0, 0, 1,
"Automation at work!",
’Column’, ’Value’, ’Row’);

Here is the equivalent SCL code that omits the optional parameters (substituting the
missing value character):

call send(chart, ’_DO_’, ’ChartWizard’, hcell,
., ., ., ., ., .,
"Automation at work!",
., ., .);

Note: Your SCL code must still respect the position of the optional parameters when
invoking methods. When you specify a missing value character as an argument, it must
be in place of a parameter that is optional to the OLE server’s method. �

Creating an External OLE Automation Instance
External OLE Automation Instances can be for an application on your local machine

or an application on a remote machine. Before you can automate an external OLE
application, you must create an instance of the OLE Automation class. (This action is
not necessary when you automate objects that you embed or link in your FRAME entry,
because placing them in the FRAME entry creates the instance for you.) Unlike the
OLE class, the OLE Automation class is not derived from the Widget class and,
therefore, has no visual component to include in a FRAME entry. Instead, you must
load an instance of the HAUTO class (using the LOADCLASS function) in the SCL code
that drives the automation. For example:

hostcl=loadclass(’sashelp.fsp.hauto’);

After you create an instance of the OLE Automation class, you must associate the
new instance with an SCL object identifier (which you need to use when calling
methods with CALL SEND) and an OLE server application. To obtain the identifier,
use the _NEW_ method on the newly created instance of the OLE Automation class.

256 Creating an External OLE Automation Instance � Chapter 10

This example stores the object identifier in oleauto and associates the object with
Microsoft Excel (which has the identifier Excel.Application in the Windows registry)
on the local machine.

call send(hostcl, ’_NEW_’, oleauto, 0,
’Excel.Application’);

To create an instance of the OLE Automation class for a remote machine, the remote
machine must be configured to permit the user to start remote instances using
Distributed COM Configuration Properties (DCOMCNFG.EXE). The DCOMCNFG.EXE
is located in the \WINNT\SYSTEM32 folder. For more information on Distributed
COM Configuration Properties, see your Windows documentation. The following
example creates an instance of Microsoft Excel on a remote machine. Once created, the
method and property calls to that instance work as if it were on a local machine.

Init:
HostClass = loadclass(’sashelp.fsp.hauto’);
ExcelObj = 0;

/* Define the machine name and put it in a list */

machineName = ’\\Aladdin’;
inslist = makelist();
attrlist = makelist ();

rc = insertc (attrlist, machineName, -1, ’remoteServer’);
rc = insertl (inslist, attrlist, -1, ’_ATTRS_’);

/* Instantiate the Excel object and make it visible */

call send (HostClass, ’_NEW_’,ExcelObj, inslist,
’Excel.Application’);
call send (ExcelObj, ’_SET_PROPERTY_’, ’Visible’, -1);

return;

For more information about the _NEW_ method, see “_NEW_” on page 610.
After you create an instance of an OLE Automation object, you can automate that

object in much the same way you would automate an object that you have embedded or
linked in your frame. The following table notes some key differences between the types
of objects.

SAS OLE Objects SAS OLE Automation Objects

Are derived from the Widget class. Are derived from the Object class.

Have a visual component (the object you place in
the FRAME entry).

Have no visual component within the FRAME
entry.

Are created by placing the object in a region in
the FRAME entry (using drag and drop).

Are created by using the LOADCLASS
statement and the _NEW_ method in SCL.

Using OLE in SAS/AF Software � Example: Populating a Microsoft Excel Spreadsheet with SAS Data 257

SAS OLE Objects SAS OLE Automation Objects

Represent the specific type of data object (which
you choose) supported by the OLE server.

Represent the top-level application object
supported by the OLE server, which you then
might use to open objects of specific data types.

Allow you to call methods with CALL NOTIFY
by passing in the object name from the FRAME
entry.

Require you to call methods with CALL SEND,
passing in the object identifier returned by the
NEW, _GET_PROPERTY_, or _COMPUTE_
methods.

Example: Populating a Microsoft Excel Spreadsheet with SAS Data
The following table contains SCL code to populate a Microsoft Excel spreadsheet

with data from a SAS data set.

Table 10.2 SCL Code for Populating a Microsoft Excel Spreadsheet

Action SCL Code

Load an instance of the OLE
Automation class and invoke Excel.
Set the object to Visible so you can
see the automation in progress.

LAUNCHXL:

hostcl = loadclass(’sashelp.fsp.hauto’);
call send(hostcl, ’_NEW_’, excelobj, 0,
’Excel.Application’);
call send(excelobj, ’_SET_PROPERTY_’, ’Visible’, ’True’);
return;

Get the identifier for the current
Workbooks property and add a
worksheet. Then get the identifier
for the new worksheet.

CREATEWS:
call send(excelobj, ’_GET_PROPERTY_’, ’Workbooks’,
wbsobj);
call send(wbsobj, ’_DO_’, ’Add’);
call send(excelobj, ’_GET_PROPERTY_’, ’ActiveSheet’,
wsobj);

Open a SAS data set.
dsid=open(’sasuser.class’,’i’);

call set(dsid);
rc=fetch(dsid);
nvar=attrn(dsid, ’NVARS’);
nobs=attrn(dsid, ’NOBS’);

258 Example: Populating a Microsoft Excel Spreadsheet with SAS Data � Chapter 10

Action SCL Code

Traverse the data set and populate
the cells of the Excel worksheet
with its data, row by row.

do
col=1 to nvar;

call send(wsobj, ’_COMPUTE_’, ’Cells’,1,col,retcell);
var=varname(dsid,col);
call send(retcell,’_SET_PROPERTY_’, ’Value’,var);

end;
do while (rc ne -1);

do row = 1 to nobs;
do col = 1 to nvar;

r=row+1;
call send (wsobj, ’_COMPUTE_’, ’Cells’, r ,col,retcell);
if vartype(dsid,col) eq ’N’ then do;

varn=getvarn(dsid,col);
call send(retcell, ’_SET_PROPERTY_’, ’Value’ ,varn);

end;
else do;

varc=getvarc(dsid,col);
call send(retcell, ’_SET_PROPERTY_’, ’Value’ ,varc);

end;
end;
rc=fetch(dsid);

end;
end;
dsid=close(dsid);
return;

Close the worksheet and end the
Excel session. The _TERM_
method deletes the OLE
automation instance.

QUITXL:
call send(excelobj,’_GET_PROPERTY_’, ’ActiveWorkbook’,
awbobj);
call send(awbobj, ’_DO_’, ’Close’, ’False’);
call send(excelobj, ’_DO_’, ’Quit’);
call send(excelobj, ’_TERM_’);
return;

As you can see from this example, automating an application object requires some
knowledge of the object’s properties and methods. To help you decide which SCL
commands to use for an Excel automation object, you can use the Macro Recorder in
Excel to perform the task you want to automate, then look at the Visual Basic code that
is generated. It is then relatively simple to map the Visual Basic code to comparable
SCL statements and functions.

The following table shows some excerpts of Visual Basic code and their SCL
equivalents.

Using OLE in SAS/AF Software � Using OLE Custom Controls (OCXs) in Your SAS/AF Application 259

Table 10.3 Visual Basic Code Samples and Their SCL Equivalents

Visual Basic Code OLE Automation in SCL

Launch Excel and make it visible

Set excelobj = CreateObject("Excel.Application")
excelobj.Visible = True

hostcl = loadclass(’sashelp.fsp.hauto’);

call send (hostcl, ’_NEW_’, excelobj, 0,
’Excel.Application’);

call send (excelobj,’_SET_PROPERTY_’,
’Visible’,’True’);

Create a new worksheet

Dim wbsobj, wsobj As Object
Set wbsobj = excelobj.Workbooks
wbsobj.Add
Set wsobj = excelobj.ActiveSheet

call send(excelobj,’_GET_PROPERTY_’,
’Workbooks’, wbsobj);

call send(wbsobj, ’_DO_’, ’Add’);
call send(excelobj,’_GET_PROPERTY_’,

’ActiveSheet’, wsobj);

Set the value of a cell

wsobj.Cells(row + 1, col).Value
=var

r=row+1;
call send(wsobj,’_COMPUTE_’, ’Cells’, r, col,

retcell);
call send(retcell,’_SET_PROPERTY_’,

’Value’ ,var);

Close the Excel application object

excelobj.ActiveWorkbook.Close
("False")
excelobj.Quit

call send(excelobj,’_GET_PROPERTY_’,
’ActiveWorkbook’, awbobj);
call send(awbobj, ’_DO_’, ’Close’, ’False’);
call send(excelobj,’_DO_’, ’Quit’);
call send(excelobj,’_TERM_’);

Using OLE Custom Controls (OCXs) in Your SAS/AF Application
An OLE custom control is a special type of OLE object or collection of OLE objects

that has an interface to expose its own properties and methods. You can control these
objects through its graphical interface and with SCL code.

OLE custom controls differ from other OLE objects in these ways:

� They generate events based on user actions, which you can respond to in your
FRAME entry. Note that the object’s SCL label is not run by default when you
activate an OLE control.

� They assume ambient properties (such as color and font) based on the
environment in which they are used.

OLE controls are packaged in their own dynamic linked library (with a file extension
of OCX). Using SCL code, your FRAME entry can respond to events generated by the
OLE control (mouse clicks, key presses, and so on). The events exposed by OLE controls
vary among controls. For a list of events, see the documentation for the control you are
using. After inserting the control into the FRAME entry, you can view the event map
by selecting Object Attributes for the OLE control object and then Event Map.

Note: The OLE controls that SAS provides require 32-bit containers, which makes
them unusable with Windows applications that offer only 16-bit container support.
Also, because SAS is a 32-bit container, you cannot use 16-bit controls with it. �

260 Inserting an OLE Control in a FRAME Entry � Chapter 10

Inserting an OLE Control in a FRAME Entry
To insert an OLE control in a FRAME entry:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Double-click on OLE - Insert Object from the Selection List. The Insert Object
dialog box opens. You can also drag OLE - Insert Object from the Selection List
to the BUILD window. When you release the mouse button the Insert Object
dialog box opens.

3 Select the Create Control radio button to display a list of registered OLE custom
controls. If the OLE control you want to use is not listed here and you have it on
your system, you need to register the control (see “Registering OLE Controls” on
page 260).

4 Select the name of the OCX control you want to insert.

Registering OLE Controls
Before you can use any OLE control in Windows, the control must be registered with

Windows. SAS ComboBox and SAS Edit, the two OLE controls provided with SAS, are
automatically registered when you install SAS.

If you want to install other controls for use with SAS or other applications, you must
register the control with Windows (unless the control was installed by a process that
performed the registration for you). The OLE control will not be available from the
Insert Object dialog box until it is registered.

To register an OLE control:
1 Complete steps 1-4 as described in “Inserting an OLE Control in a FRAME Entry”

on page 260 to invoke the Insert Object dialog box with the list of registered
controls.

2 Click on Add Control to invoke the Browse file selection dialog box.
3 Use the dialog box to select the control (which usually has a file extension of OCX)

that you want to register.
When you click OK, the control is added to the list of registered controls in the

Insert Object dialog box.

Accessing OLE Control Properties
OLE controls have properties that you can set or retrieve using SCL methods. Some

controls make some of their properties available through a properties page, which lets
you set or retrieve the data interactively.

Accessing the OLE Control Properties Page
To invoke the properties page for a control, click on the right mouse button within

the control’s region in the BUILD: DISPLAY window and then select Properties from
the pop-up menu. The properties page for the control appears. Display 10.4 on page
261 shows an example of a properties page for an OLE control.

OLE controls provide a Properties verb, which you can use with the _EXECUTE_
method in SCL to bring up the Properties page for the control. Or, you can access the
pop-up menu for the control, then choose the cascading menu with the control’s name.
The Properties verb is available off that cascading menu.

Using OLE in SAS/AF Software � Interacting with the OLE Control Using SCL Methods 261

Display 10.4 An Example Properties Page

You can use the properties page to view or change settings for some of the exposed
properties.

Note that the control is not active (you cannot interact with its interface) while you
are in DISPLAY mode. The control becomes active in TESTAF mode.

Accessing Properties Using SCL Code
When you use OLE controls in a SAS/AF application, you can access the properties of

the control programmatically. Also, an OLE control might not expose all of its
properties in a properties page. You can access the properties of a control by using the
_SET_PROPERTY_ and _GET_PROPERTY_ methods.

Before you can access a property, you must know:
� the object label of the OLE control in your SAS/AF FRAME entry
� the name of the property you want to access
� the type of data that the property holds.

For example, suppose you have a combo box control named sascombo in your FRAME
entry, and you want to set the list style to simple (represented by the integer 1):

call notify (’sascombo’, ’_set_property_’,
’Style’, 1);

If you want to retrieve data from a property, you must use a variable that is of the
same type as the data you want to read. For example, if you want to learn what text
the user specified in the edit portion of a combo box, include the following code:

length text $ 200;
call notify (’sascombo’, ’_get_property_’,

’Text’, text);

Interacting with the OLE Control Using SCL Methods
OLE controls support methods that control their content and behavior. You use

either the _DO_ or _COMPUTE_ SCL methods to send a message to an OLE control
telling it to implement one of its methods.

� Use the _DO_ method in SCL when the OLE control method performs some action
but does not return a value. For example, the SAS ComboBox OLE control has a
method that clears all items from the list:

call notify(’sascombo’, ’_DO_’, ’Clear’);

262 Responding to OLE Control Events � Chapter 10

� Use the _COMPUTE_ method in SCL when the OLE control method returns a
value. You specify a variable in the SCL code that will contain the return value
when the method ends. For example, the SAS ComboBox OLE control has a
method that returns an item at a specified position in the list:

length item $ 80;
call notify(’sascombo’, ’_COMPUTE_’,

’GetItem’, 2, item);

When this call returns, item contains the text of the item at position 2 (the third
item in the list).

Responding to OLE Control Events
OLE controls generate events that you can respond to in your SCL code. You can

create a label in your SCL code for OLE events just like you do for SAS/AF events.

Assigning SCL Code to an OLE Control Event
To assign SCL code to run when an OLE control event occurs:

1 Select the OLE control object in the BUILD window.

2 Select Object Attributes from the pop-up menu for the object.

3 Select Event Map from the Object Attributes dialog box. The Event Map dialog
box appears (shown in Display 10.5 on page 262).

4 In the Event Map dialog box, select the event that you want to respond to using
SCL code.

5 Specify the SCL, FRAME, or PROGRAM source entry and (if applicable) the SCL
label where the event-handling code resides.

Note: You can specify the same SCL source entry that is stored with the FRAME
entry; however, in addition to compiling the code with the FRAME entry, you must
also compile the SCL entry outside of the FRAME context (outside of the BUILD:
SOURCE and BUILD: DISPLAY windows) in order for the event handler to
recognize the SCL label. It is more efficient to store event-handling code for OLE
controls in an SCL source entry that is not associated with a FRAME entry. �

Display 10.5 Event Map Dialog Box

Note: Many OLE controls include a LostFocus event, which they generate when the
control loses window focus. Because of the way that SAS/AF software communicates
with the control, mapping the LostFocus event sometimes has the effect of placing focus

Using OLE in SAS/AF Software � Responding to OLE Control Events 263

back on the control that just lost it. Although you can still respond to the LostFocus
event in your FRAME entry, this action might cause unusual focus behavior. �

Retrieving Argument Values from Events
Some OLE control events also include parameters you might find useful. For

example, the SAS ComboBox control generates a KeyPress event that also reports the
ASCII value of the key that was pressed. If a particular event passes an argument back
to the FRAME entry, the type of value returned is indicated in the Event Map dialog
box. A numeric value is indicated with an N; a character value is indicated with a C.

To retrieve the value returned by an OLE control event, you must define a method
(using the METHOD statement in SCL) in the event-handling code. In the argument
list for the METHOD statement, specify a variable of the type that you expect the OLE
control to return. This variable contains the value returned by the event. You can then
use that variable inside your event-handler.

For example, suppose you want to retrieve the value of the key that triggered the
KeyPress event in the SAS ComboBox control and then report it as an ASCII character.
The KeyPress event returns an integer that represents the ASCII value of the key
pressed. Your event-handling code would look like the following:

/* Label specified in Event Map dialog box */
KEYPRESS:

/* Define a method with an
integer argument */

method keyval 8;
/* Convert the integer to an

ASCII character */
keychar=byte(keyval);

put keychar=; /* Output the character */
endmethod;

Example: Mapping OLE Control Events to SCL Code
When mapping OLE control events, you can do one of the following:
� Map each event in the Event Map window to a different labeled section of SCL

code, with each piece of code performing different actions.
� Map all of the events in the Event Map window to a single labeled section of SCL

code, use the _GET_EVENT_ method to detect which event was triggered, and act
accordingly.

� Use a combination of these strategies by assigning one event (such as the Click
event) to SCL code that runs the object’s label (using the _OBJECT_LABEL_
method), and map the remaining events to a single label that uses the
_GET_EVENT_ method to determine the event and appropriate action. The
object’s label is not run by default for OLE controls.

The following example shows how to structure the SCL code when all events for an
OLE control are mapped to a single label, which in turn runs the object’s label to
determine the event and act accordingly:

length event $ 80;
/* All OLE control events are mapped to

this label */
RUNLABEL:

/* Call the object’s label */
call send(_self_, ’_OBJECT_LABEL_’);

return;

264 Responding to OLE Control Events � Chapter 10

/* This is the label of the OLE control */
OBJ1:

/* Determine the last event */
call notify(’obj1’, ’_GET_EVENT_’, event);
select (event);

when(’Click’) put ’Click received’;
when(’DblClick’) put ’DblClick received’;
otherwise put event=;

end;
return;

Example: Subclassing an OLE Custom Control
If you create SAS/AF applications that make frequent use of one or more OLE

custom controls, you might want to write your own methods to abstract the methods
that the control recognizes without having to specify the intermediate _DO_ and
COMPUTE methods in SCL.

You can write methods by creating a subclass of the OLE class and adding methods
to your derived class. When you insert the OLE control into your FRAME entry, be sure
to insert it as an instance of the new class that you define (instead of OLE - Insert
Object). The examples provided here contain sample code you can use to abstract the
methods of a control. They do not include details about how to create subclasses. For
information about creating subclasses of a SAS/AF class, see the online documentation
for SAS/AF software.

Adding an Item to a Combo Box List
You can use this method to add a new item to the list portion of the SAS ComboBox

control. The SAS ComboBox control uses zero-based numbering to indicate the positions
of the list items (the first item is at position 0, the second is at position 1, and so on).
The following method lets you specify the position numbers such that position 1 holds
the first item.

/* Add a new item to a ComboBox list. */
ADDITEM:
method text $200 row 8 rc 8;

/* adjust for zero-based index */
ocxrow = row-1;
call send(_self_, ’_COMPUTE_’, ’AddItem’,

text, ocxrow, rc);
if (rc = 0) then
MSG="ERROR: Could not add item to list.";

endmethod;

Assuming you mapped this code to a new method called ADD_ITEM, you would use
this syntax to add a new item to the control:

/* Adds ’Item 1’ at the first position */
/* in the control */

length success 8;
call notify(’sascombo’, ’ADD_ITEM’,

’Item 1’, 1, success);

Using OLE in SAS/AF Software � Responding to OLE Control Events 265

Finding an Item in a Combo Box
The following method finds the specified item and returns its position in the list. As

in the previous example, this method adjusts the position number to be one-based
instead of zero-based.

FINDITEM:
method text $200 row 8;
call send(_self_, ’_COMPUTE_’, ’FindItem’,

text, row);
row = row + 1; /* adjust for zero-based */

endmethod; /* index */

Assuming you mapped this code to the FIND_ITEM method, you would then use it as
in this example:

length position 8;
call notify(’sascombo’,’FIND_ITEM’,

’Lost Item’, position);

Retrieving the Text Value of the Control
Both the SAS ComboBox and SAS Edit controls have Text properties, which you can

access using the _GET_PROPERTY_ method with the property name. For easier and
more intuitive access from your OLE subclass, you can override the _GET_TEXT_
method and map it to this code:

GETTEXT:
method text $200;

call send(_self_, ’_GET_PROPERTY_’,
’Text’, text);

endmethod;

You would then access the Text property of a control the same way you access the
text of other SAS/AF widget objects:

length text $ 200;
call notify(’sasedit’, ’_GET_TEXT_’, text);

266

267

C H A P T E R

11
Controlling SAS from Another
Application Using OLE

Introduction to Automating SAS 267
Creating an Instance of SAS 267

Getting Feedback from the SAS Session 268

Examples of Automating SAS with OLE 269

Creating a SAS Automation Object 269

Determine Whether the SAS Session is Busy 269
Toggle the SAS Session between Visible and Invisible 269

Set the Main SAS Window Title of the SAS Session 269

Assign a SAS Library and Run a SAS Procedure 269

End the SAS Session 270

Methods and Properties for Use with a SAS OLE Automation Object 270

Command Method 270
QueryWindow Method 270

Quit Method 271

Submit Method 271

Top Method 272

Introduction to Automating SAS

SAS can perform as an OLE automation server. This means that you can use an
application that can act as an OLE automation controller (such as Visual Basic) to
create a SAS session and control it using the methods and properties that SAS makes
available.

Many Windows applications use Visual Basic or Visual Basic for Applications as the
scripting language for automation. All examples that are provided in this document use
Visual Basic, but you can achieve the same results with any application that can act as
an OLE automation controller.

Creating an Instance of SAS

To create an instance of SAS (that is, invoke a SAS session), you must create an
OLE object by using the SAS program identifier as it is listed in the Windows registry.
The SAS program identifier is SAS.Application. Here is a Visual Basic example that
instantiates (creates an instance of) a SAS session:

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")

268 Getting Feedback from the SAS Session � Chapter 11

This example sets the identifier OleSAS to the new SAS session. You can then use this
identifier to access the methods and properties that SAS makes available.

If you want to control an existing SAS automation object by using OLE automation,
you can use your automation controlling language. In Visual Basic, you can use the
following:

Dim OleSAS as Object
Set OleSAS = GetObject(,"SAS.Automation")

Note that this code does not create an instance of SAS if one does not already exist.
Also, the existing SAS session must have been created as an OLE automation object
(for example, using CreateObject in Visual Basic). You cannot use OLE automation to
control a SAS session you invoked by using another method (for example, by using the
Start menu).

Getting Feedback from the SAS Session
SAS provides two properties, RC and ResultString, that make it possible to pass

information from the SAS session that you are automating back to the application that
is controlling it. RC can contain a number; ResultString can contain a text string.

To set the values of these properties from within the SAS session, use the SETRC
function with this syntax:

error=SETRC("result-string", rc-number);

where result-string is the value to be assigned the ResultString property, and rc-number
is the value to be assigned to the RC property.

For example, you can use the Submit method to submit DATA step code that returns
an error code as part of its processing. You can then check the value of that error using
the RC or ResultString property. Here is a Visual Basic example of this:

Private Delcare Sub Sleep Lib ‘‘kernel32’’ (ByVal dwMilliseconds As Long)

Private Sub Command1_Click()
Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Submit("data _null_;

error=setrc(’Error string’, 2.0);
put error; run;")

Sleep 500
Do while x=0

If (OleSAS.Busy) then
Sleep 500

else
If (OleSAS.RC <> 0) Then

Response = MsgBox(OleSAS.ResultString,
vbOKOnly, "Error message is",
0, 0)

x=1
EndIf
Loop
End Sub

Controlling SAS from Another Application Using OLE � Assign a SAS Library and Run a SAS Procedure 269

Examples of Automating SAS with OLE

The following examples use Visual Basic as the scripting language to control SAS
with OLE automation. You can use any scripting language from any Windows
application that can act as an OLE automation controller.

Creating a SAS Automation Object
This Visual Basic code defines an object and creates an instance of SAS to associate

with that object.

Dim OleSAS As Object
Set OleSAS = CreateObject("SAS.Application")

Determine Whether the SAS Session is Busy
This Visual Basic code queries the SAS session (using the Busy property) to test

whether the session is busy processing code.

If (OleSAS.Busy) Then
Response = MsgBox("SAS Session is Busy",

vbOKOnly, "SAS Session", 0, 0)
Else

Response = MsgBox("SAS Session is Idle",
vbOKOnly, "SAS Session", 0, 0)

End If

Toggle the SAS Session between Visible and Invisible
This Visual Basic code hides or unhides the SAS session based on its current state.

OleSAS.Visible = false

Set the Main SAS Window Title of the SAS Session
This Visual Basic code assigns a title to the main SAS window of the SAS session

and then displays the title in a message box.

OleSAS.Title = "Automation Server"
Response = MsgBox(OleSAS.Title, vbOKOnly,

"Title Is", 0, 0)

Assign a SAS Library and Run a SAS Procedure
This Visual Basic code submits SAS code to the SAS session, assigning a SAS library

and running the INSIGHT procedure on sample data.

OleSAS.Submit("libname insamp
’c:\sas\insight\sample’;
proc insight data=insamp.drug;
run;")

270 End the SAS Session � Chapter 11

End the SAS Session
This Visual Basic code ends the SAS session provided that there are no other OLE

automation controllers making use of it.

OleSAS.Quit
Set OleSAS = Nothing

Methods and Properties for Use with a SAS OLE Automation Object
Once instantiated, the SAS OLE automation object supports these methods as well

as several properties:
� “Command Method” on page 270
� “QueryWindow Method” on page 270
� “Quit Method” on page 271
� “Submit Method” on page 271
� “Top Method” on page 272
� “Properties for Controlling a SAS Automation Object” on page 272

Command Method

Invokes a command as if it was entered from the SAS command line.

Syntax
Command(“sas-command”)

Details
By default, the active window receives the command. You can change which window
receives the command by changing the CommandWindow property.

Example

This Visual Basic code invokes a SAS session and opens the BUILD window:

Set OleSAS = CreateObject("SAS.Application")
OleSAS.Command("build")

QueryWindow Method

Queries whether a specified window exists within the SAS session.

Controlling SAS from Another Application Using OLE � Submit Method 271

Syntax
QueryWindow(“window-name”)

Details
QueryWindow returns either True or False based on whether the specified window is
open in the automated SAS session. If the window exists but is not visible,
QueryWindow still returns True.

The window name that you specify must match the exact spelling of the window
name in SAS. The window-name argument is not case sensitive.

Example

This Visual Basic code gets an existing SAS session and checks whether the BUILD
window is open. If the window is not open, this code invokes BUILD:

Dim OleSAS as Object
Set OleSAS = GetObject(,"SAS.Application")
If (Not OleSAS.QueryWindow("build")) Then

OleSAS.Command("build")
EndIf

Quit Method

Ends the SAS session.

Syntax
Quit

Details
If the automation controller that issues the Quit method is the only controller that is
using that particular SAS session, then the SAS session ends. If at least one other
automation process is still using the SAS session, then the session remains running.

Submit Method

Submits DATA step or procedure code for processing.

Syntax
Submit(“SAS-program-code”)

272 Top Method � Chapter 11

Details
The string of text that you specify as SAS-program-code can contain multiple SAS
statements separated by semicolons. The contents of the string are submitted to SAS
for processing.

Example

The following example references a data library and invokes a SAS/AF application:

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Visible = True
OleSAS.Submit("libname afapp ’f:\sas\afapp’;")
OleSAS.Command("af c=afapp.bigapp.main.frame")

Top Method

Brings the SAS session to the foreground.

Syntax
Top

Details
The Top method works only if the Visible property is set to True.

Example

The following example invokes a SAS session, makes it a visible window, and then
brings it to the foreground.

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Visible = True
OleSAS.Top

Properties for Controlling a SAS Automation Object

Specify various properties of the SAS automation object.

Controlling SAS from Another Application Using OLE � Properties for Controlling a SAS Automation Object 273

Properties and Descriptions
Busy

indicates whether SAS is idle or working (for example, running a procedure, DATA
step, and so on). This property is read only.

CommandWindow
sets the window (based on the window title) to receive commands you specify using
the Command method. The name you specify must match the spelling of the
window name exactly (though this property is not case sensitive). Once set, the
window receives subsequent commands you specify with the Command method
until CommandWindow is changed or set to Null (by specifying ""). If Null, which
is the default, the currently active window receives the command. This property is
read/write.

CommandWindowVisible
controls whether the window specified by the CommandWindow property is visible.
If set to False, the window specified by the CommandWindow property is set to
invisible. If the CommandWindow property is Null, this property has no effect.
This property is read/write.

ConfirmExit
controls the behavior of how SAS exits. A value of 0 means that no confirmation
box is displayed before SAS exits. A value of 1 means that a confirmation box is
displayed before SAS exits. A value of 2 selects the default action, which is
controlled by an alternative method that defines how SAS exits; for example, the
Preferences dialog box.

Height
sets the height, in pixels, of the SAS application window. This property is read/
write.

Parent
sets the name of the parent window that contains the SAS application window. If
you change this value to another window, the SAS application window resizes to fit
in the new frame. This property is read/write.

RC
returns the return code passed by a user function. You can set this property from
within the SAS session by using the SETRC function. This property is read-only
from the automation controller.

ResultString
returns a string passed by a user function. You can set this property from within
the SAS session by using the SETRC function. This property is read-only from the
automation controller.

Title
sets the main SAS window title. This property is read/write.

Visible
controls whether SAS is visible. This property is read/write.

Width
sets the width, in pixels, of the SAS application window. This property is read/
write.

X
sets the horizontal coordinate, in pixels, for the top left corner of the SAS
application window. This property is read/write.

274 Properties for Controlling a SAS Automation Object � Chapter 11

Y
sets the vertical coordinate, in pixels, for the top left corner of the SAS application
window. This property is read/write.

275

C H A P T E R

12
Using Dynamic Data Exchange

Overview of Dynamic Data Exchange (DDE) 275
DDE Syntax within SAS 276

Referencing the DDE External File 276

Using the DDE Triplet 277

Controlling Another Application Using DDE 278

DDE Examples 278
Using the X Command to Open a DDE Server 278

Using DDE to Write Data to Microsoft Excel 278

Using DDE to Write Data to Microsoft Word 279

Using DDE to Read Data from Microsoft Excel 279

Using DDE to Read Data from Microsoft Word 279

Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel 280
Using the NOTAB Option with DDE 281

Using the DDE HOTLINK 282

Using the !DDE_FLUSH String to Transfer Data Dynamically 283

Using Macro Variables to Issue DDE Commands 283

Reading Missing Data 284

Overview of Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is a method of dynamically exchanging information
between Windows applications. DDE uses a client/server relationship to enable a client
application to request information from a server application. SAS is always the client.
In this role, SAS requests data from server applications, sends data to server
applications, or sends commands to server applications.

You can use DDE with the DATA step, the SAS macro facility, SAS/AF applications,
or any other portion of SAS that requests and generates data. DDE has many potential
uses, one of which is to acquire data from a Windows spreadsheet or database
application.

Note: Many Windows programs, including SAS, now support OLE to facilitate
communication between applications. If you need to share data with an application that
supports OLE, you might prefer to use the OLE support that is built into SAS. For
more information, see “About OLE” on page 244. �

276 DDE Syntax within SAS � Chapter 12

DDE Syntax within SAS

To use DDE in SAS, issue a FILENAME statement with the following syntax:

FILENAME fileref DDE ’DDE-triplet’ <DDE-options>;

where:

fileref
is a valid fileref (as described in “Referencing External Files” on page 148).

DDE
is the device-type keyword that tells SAS you want to use Dynamic Data Exchange.

’DDE-triplet’
is the name of the DDE external file.

DDE-options
can be any of the following:

COMMAND
allows remote commands to be issued to DDE server applications. For more
information, see “Controlling Another Application Using DDE” on page 278.

HOTLINK
instructs SAS to use the DDE HOTLINK. For an example of using this
option, see “Using the DDE HOTLINK” on page 282.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

NOTAB
instructs SAS to ignore tab characters between variables. For an example of
using this option, see “Using the NOTAB Option with DDE” on page 281.

RECFM=record-format
controls the record format. The following are valid values under Windows:

F indicates fixed format.

N indicates binary format and causes the file to be treated
as a byte stream. If LRECL is not specified, by default
SAS reads 256 bytes at a time from the file.

P indicates print format.

V|D indicates variable format. This is the default.

CAUTION:
Use caution when using DDE with data values that are blank or missing. For sample code,
see “Reading Missing Data” on page 284. �

Referencing the DDE External File

When you define a fileref to use with DDE, the DDE-triplet argument refers to the
DDE external file.

Using DDE � Using the DDE Triplet 277

Using the DDE Triplet

The DDE triplet is application-dependent and is different for every application you
run. For information on an application’s DDE triplet, see the application’s
documentation.

The triplet takes the following form:

’application-name|topic!item’

where:

application-name
is the executable filename of the server application. For example, the
application-name for Microsoft Word is winword, and for Microsoft Excel it is
excel.

topic
is the topic of conversation (between SAS and the DDE server application). This is
typically the full path filename of the document or spreadsheet with which you
want to share data.

item
is the range of conversation specified between the client and server applications.
In spreadsheet applications, this is usually a range of cells. For document-based
applications (for example, Microsoft Word), the item is something that defines a
location in the document, such as a bookmark.

Valid values for all of these arguments vary depending on the server application. A
software application supporting DDE as a server should list acceptable values for the
triplet information in documentation supplied with the application.

Note: The server application must be started before trying to communicate with it
using DDE. Also, the DDE triplet format might differ among different applications and
among different versions of the same application. �

For example, in order to place text into a Microsoft Word document TESTDDE.DOC
located at C:\TEMP with a bookmark named NUMBER, you could use this code:

filename test dde ’winword|"c:\temp\testdde.doc"
!NUMBER’ notab;

The application-name is winword, the topic is "c:\temp\testdde.doc", and the
range is !NUMBER.

The following example assumes you are using Microsoft Excel 5.0 or greater.
Suppose you want to use SAS to populate the first four rows and two columns of the

Microsoft Excel spreadsheet named Sales Data stored in C:\EXCEL\SALES.XLS. You
would use the following code:

filename test dde ’Excel|c:\excel\
[Sales.xls]Sales Data!R1C1:R4C2’

The application-name is Excel, the topic is c:\excel\[Sales.xls] Sales Data,
and the range is R1C1:R4C2.

If your server application is able to copy the DDE-triplet to the Windows clipboard,
you can display the DDE-triplet in SAS. To do this, select the information in the server
application and copy it to the Windows Clipboard. Return to SAS and select Solutions
� Accessories � DDE triplet.

278 Controlling Another Application Using DDE � Chapter 12

Controlling Another Application Using DDE
DDE server applications support certain commands that you can issue by using a

DDE link to control the application. To use these commands, use the special topic name
SYSTEM in the DDE triplet and leave the item name blank. You can then use the
INPUT statement for input from an application and the PUT statement to issue
commands to the server application.

For those DDE server applications that do not recognize the SYSTEM topic name,
you can specify the COMMAND option in the FILENAME statement you use to define
the DDE link. When you specify the COMMAND option, you do not specify the item
name in the DDE triplet.

Note: With SAS/AF software and OLE automation, you can automate any Windows
application that supports OLE 2.0 as a server. For more information about using SAS
and OLE, see “Automating OLE Objects and Applications” on page 252. �

DDE Examples
This section provides several examples of using DDE with SAS under Windows.

These examples use Microsoft Excel and Microsoft Word as DDE servers, but any
application that supports DDE as a server can communicate with SAS.

Before you run these examples, you must first invoke Microsoft Excel and Microsoft
Word, and open the spreadsheet or document used in the example.

Note: DDE examples are included in the host-specific sample programs that you
access from the Help menu. �

Using the X Command to Open a DDE Server
A DDE server application can be opened using the X command within SAS code. The

XWAIT and XSYNC options must be turned off.

options noxwait noxsync;
x ’"c:\microsoft office\office\excel.exe"’;

Double quotation marks are required around the path if the path contains a space.
The single quotation marks are for the X command.

Using DDE to Write Data to Microsoft Excel
The first example sends data from a SAS session to an Excel spreadsheet. The

target cells are rows 1 through 100 and columns 1 through 3. To send the data, submit
the following program:

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 100 and columns 1 through 3 */
filename random dde

’excel|sheet1!r1c1:r100c3’;
data random;

file random;
do i=1 to 100;

x=ranuni(i);

Using DDE � Using DDE to Read Data from Microsoft Word 279

y=10+x;
z=x-10;
put x y z;

end;
run;

Using DDE to Write Data to Microsoft Word
This example sends a text string to a Microsoft Word document at a given bookmark.

Note the difference between using DDE with Microsoft Word and Microsoft Excel.

filename testit dde ’winword|"c:\temp\testing.doc"
!MARK’ notab;

data _null_;
file testit;
put ’This is a test.’;

run;

Note: If you are writing to Microsoft Word97, use Visual Basic commands such as
FileOpen.Name, FileSave, FileClose, and Insert. If the PUT statement contains a
macro that Word97 does not understand, you will see this message:

Ambiguous name detected: TmpDDE

�

Using DDE to Read Data from Microsoft Excel
You can also use DDE to read data from an Excel application into SAS, as in the

following example:

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 10 and columns 1 through 3 */
filename monthly
dde ’excel|sheet1!r1c1:r10c3’;

data monthly;
infile monthly;
input var1 var2 var3;

run;
proc print;
run;

Using DDE to Read Data from Microsoft Word
This example reads data from a Microsoft Word document at a given bookmark.

filename testit dde ’winword|"c:\temp\testing.doc"
!MARK’ notab;

libname workdir ’c:\temp’;

/* Get ready to read the first bookmark. */

280 Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel � Chapter 12

data workdir.worddata;
length wordnum $5;
infile testit;
input wordnum $;

run;

proc print;
run;

Using DDE and the SYSTEM Topic to Invoke Commands in an
Application Using Excel

You can issue commands to Excel or other DDE-compatible programs directly from
SAS using DDE. In the following example, the Excel application is invoked using the X
command; a spreadsheet called SHEET1 is loaded; data are sent from SAS to Excel for
row 1, column 1 to row 20, column 3; and the commands required to select a data range
and sort the data are issued. The spreadsheet is then saved and the Excel application
is terminated.

/* This code assumes that Excel */
/* is installed on the current */
/* drive in a directory called EXCEL. */

options noxwait noxsync;
x ’’’c:\microsoft office\office\excel.exe’’’;

/* Sleep for 60 seconds to give */
/* Excel time to come up. */

data _null_;
x=sleep(60);

run;

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 20 and columns 1 through 3 */

filename data
dde ’excel|sheet1!r1c1:r20c3’;

data one;
file data;
do i=1 to 20;

x=ranuni(i);
y=x+10;
z=x/2;
put x y z;

end;
run;

/* Microsoft defines the DDE topic */
/* SYSTEM to enable commands to be */
/* invoked within Excel. */

filename cmds dde ’excel|system’;

Using DDE � Using the NOTAB Option with DDE 281

/* These PUT statements are */
/* executing Excel macro commands */

data _null_;
file cmds;
put ’[SELECT("R1C1:R20C3")]’;
put ’[SORT(1,"R1C1",1)]’;
put ’[SAVE()]’;
put ’[QUIT()]’;

run;

Using the NOTAB Option with DDE
SAS expects to see a TAB character placed between each variable that is

communicated across the DDE link. Similarly, SAS places a TAB character between
variables when data are transmitted across the link. When the NOTAB option is placed
in a FILENAME statement that uses the DDE device-type keyword, SAS accepts
character delimiters other than tabs between variables.

The NOTAB option can also be used to store full character strings, including
embedded blanks, in a single spreadsheet cell. For example, if a link is established
between SAS and the Excel application, and a SAS variable contains a character string
with embedded blanks, each word of the character string is normally stored in a single
cell. To store the entire string, including embedded blanks in a single cell, use the
NOTAB option as in the following example:

/* Without the NOTAB option, column1 */
/* contains ’test’ and column2 */
/* contains ’one’. */

filename test
dde ’excel|sheet1!r1c1:r1c2’;

data string;
file test;
a=’test one’;
b=’test two’;
put a $15. b $15.;

run;

/* You can use the NOTAB option to store */
/* each variable in a separate cell. To */
/* do this, you must force a tab */
/* (’09’x) between each variable, as in */
/* the PUT statement. */
/* After performing this DATA step, column1*/
/* contains ’test one’ and column2 */
/* contains ’test two’. */

filename test
dde ’excel|sheet1!r2c1:r2c2’ notab;

data string;
file test;
a=’test one’;
b=’test two’;

282 Using the DDE HOTLINK � Chapter 12

put a $15. ’09’x b $15.;
run;

Using the DDE HOTLINK
If the HOTLINK option is specified, the DDE link is activated every time the data in

the specified spreadsheet range are updated. In addition, DDE enables you to poll the
data when the HOTLINK option is specified to determine whether data within the
range specified have been changed. If no data have changed, the HOTLINK option
returns a record of 0 bytes. In the following example, row 1, column 1 of the
spreadsheet SHEET1 contains the daily production total. Every time the value in this
cell changes, SAS reads in the new value and outputs the observation to a data set. In
this example, a second cell in row 5, column 1 is defined as a status field. Once the user
completes data entry, typing any character in this field terminates the DDE link:

/* Enter data into Excel SHEET1 in */
/* row 1 column 1. When you */
/* are through entering data, place */
/* any character in row 5 */
/* column 1, and the DDE link is */
/* terminated. */

filename daily
dde ’excel|sheet1!r1c1’ hotlink;

filename status
dde ’excel|sheet1!r5c1’ hotlink;

data daily;
infile status length=flag;
input @;
if flag ne 0 then stop;
infile daily length=b;
input @;

/* If data have changed, then the */
/* incoming record length */
/* is not equal to 0. */

if b ne 0 then
do;

input total $;
put total=;
output;

end;
run;

It is possible to establish multiple DDE sessions. The previous example uses two
separate DDE links. When the HOTLINK option is used and there are multiple cells
referenced in the item specification, if any one of the cells changes, then all cells are
transmitted.

Unless the HOTLINK option is specified, DDE is performed as a single one–time
data transfer. The values currently stored in the spreadsheet cells at the time that the
DDE is processed are values that are transferred.

Using DDE � Using Macro Variables to Issue DDE Commands 283

Using the !DDE_FLUSH String to Transfer Data Dynamically

DDE also enables you to program when the DDE buffer is dumped during a DDE
link. Normally, the data in the DDE buffer are transmitted when the DDE link is closed
at the end of the DATA step. However, the special string ’!DDE_FLUSH’ issued in a PUT
statement instructs SAS to dump the contents of the DDE buffer. This function allows
you considerable flexibility in the way DDE is used, including the capacity to transfer
data dynamically through the DATA step. The following example creates a Macro Sheet
in Microsoft Excel. Commands are then written to the Macro Sheet, which will rename
Sheet1 to NewSheet. After writing these commands, through the use of !DDE_FLUSH ,
the Excel Macro can be executed in the same DATA Step as it is written.

filename cmds dde ’excel|system’;
data _null_;
file cmds;
/* Insert an Excel Macro Sheet */
put ’[workbook.insert(3)]’;
run;

/* Direct the Output to the Newly created Macro Sheet */
filename xlmacro dde ’excel|macro1!r1c1:r5c1’ notab;

data _null_;
file xlmacro;
put ’=workbook.name("sheet1","NewSheet")’;
put ’=halt(true)’;
/* Dump the contents of the buffer, allowing us to both write and */
/* execute the macro in the same DATA Step */
put ’!dde_flush’;
file cmds;
/* Run Macro1 */
put ’[run("macro1!r1c1")]’;
put ’[error(false)]’;
/* delete the Macro Sheet */
put ’[workbook.delete("macro1")]’;
run;

Using Macro Variables to Issue DDE Commands

This example illustrates the use of a Macro Variable to issue a command to Microsoft
Excel. In the example, the Macro Variable, excelOne, is being used in place of the Excel
Workbook location C:\test.xls. Since macro triggers such as ampersands and
percents are treated as text within single quotes, a Macro quoting function must be
used. %STR is used to mask each individual apostrophe separately. Anytime you have
an unmatched apostrophe or parenthesis then it must be preceded by a percent sign
and since each apostrophe needs to be treated independently of each other the percents
are needed. Once %STR has hidden the apostrophe the macro variable &excelOne
resolves. %UNQUOTE is then used to remove what %STR has done and restores each
apostrophe around the resolved value leaving the result as:

’[open("C:\test.xls")]’

284 Reading Missing Data � Chapter 12

options mprint symbolgen;
filename cmds dde ’excel|system’;

%let excelOne=C:\test.xls;

data _null_;
file cmds;
put %unquote(%str(%’[open("&excelOne")]%’));
run;

Reading Missing Data
This example illustrates reading missing data from an Excel spreadsheet called

SHEET1. This example reads the data in columns 1 through 3 and rows 10 through 20.
Some of the data cells can be blank. Here is an example of what some of the data look
like:

...
10 John Raleigh Cardinals
11 Jose North Bend Orioles
12 Kurt Yelm Red Sox
13 Brent Dodgers
...

Here’s the code that can read these data correctly into a SAS data set:

filename mydata
dde ’excel|sheet1!r10c1:r20c3’;

data in;
infile mydata dlm=’09’x notab

dsd missover;
informat name $10. town $char20.

team $char20.;
input name town team;

run;
proc print data=in;
run;

In this example, the NOTAB option tells SAS not to convert tabs that are sent from
the Excel application into blanks. Therefore, the tab character can be used as the
delimiter between data values. The DLM= option specifies the delimiter character, and
’09’x is the hexadecimal representation of the tab character. The DSD option specifies
that two consecutive delimiters represent a missing value. The default delimiter is a
comma. For more information about the DSD option, see SAS Language Reference:
Dictionary. The MISSOVER option prevents a SAS program from going to a new input
line if it does not find values in the current line for all the INPUT statement variables.
With the MISSOVER option, when an INPUT statement reaches the end of the current
record, values that are expected but not found are set to missing.

The INFORMAT statement forces the DATA step to use modified list input, which is
crucial to this example. If you do not use modified list input, you receive incorrect
results. The necessity of using modified list input is not DDE specific. You would need
it even if you were using data in a CARDS statement, whether your data were blank- or
comma-delimited.

285

C H A P T E R

13
Using Unnamed and Named
Pipes

Overview of Pipes 285
Using Unnamed Pipes 286

Introduction to Unnamed Pipes 286

Unnamed Pipe Syntax 286

Using Redirection Sequences 287

Unnamed Pipe Example 287
Using Named Pipes 288

Introduction to Named Pipes 288

Named Pipe Syntax 288

Using the CALL RECONNECT Routine 290

Using Named Pipes in SCL 290

Named Pipe Examples 290
Simple Named Pipes: One Client Connected to One Server 290

One Server Connected to Several Clients 291

The NOBLOCK Option 293

The CALL RECONNECT Routine 295

Overview of Pipes

A pipe is a channel of communication between two processes. A process with a
handle to one end can communicate with another process that has a handle to the other
end. This means that you can use a specialized Windows application to provide
information to your SAS session or vice versa.

Pipes can be one-way or two-way. With a one-way pipe, one application can write
data only to the pipe while the other application reads from it. With a two-way pipe,
both applications can read and write data. There are two types of pipes:

unnamed pipe
handles one way communication. Also called an anonymous pipe (or simply pipe),
it is typically used to communicate between a parent process and a child process.
Within SAS, SAS is the parent process that invokes (and reads data from) a child
process.

named pipe
handles one-way or two-way communication between two unrelated processes.
That is, one process is not started by the other. In fact, it is possible to have two
applications communicating over a pipe on a network. You can use named pipes
within SAS to communicate with other applications or even with another SAS
session.

286 Using Unnamed Pipes � Chapter 13

Using Unnamed Pipes

Introduction to Unnamed Pipes
Unnamed pipes enable you to invoke a program outside of SAS and redirect the

program’s input, output, and error messages to SAS. This capability enables you to
capture data from a program external to SAS without creating an intermediate data file.

For unnamed pipes to work with Windows applications external to SAS, the
application program must read data from standard input (STDIN), write output to
standard output (STDOUT), and write errors to standard error (STDERR). These files
have numeric file handles associated with them, as follows:

File File Handle

STDIN 0

STDOUT 1

STDERR 2

When SAS captures STDERR from another application, the error messages are routed
by default to the SAS log. If you want to write to STDIN in another application, you
can use a PUT statement in a SAS DATA step. Because SAS can write to STDIN and
capture from STDOUT in the same application, unnamed pipes can be used to send data
to an external program, as well as to capture the output and error messages of the same
program. You can use redirection sequences to redirect STDIN, STDOUT, and STDERR.

When you start SAS from the Windows desktop, STDIN and STDOUT are not
available to your programs.

For more information, see “Using Redirection Sequences” on page 287 or your
Windows documentation.

Unnamed Pipe Syntax
To use an unnamed pipe, issue a FILENAME statement with the following syntax:

FILENAME fileref PIPE ’program-name’ option-list;

You can use the following arguments with this syntax of the FILENAME statement:

fileref
is any valid fileref, as described in “Referencing External Files” on page 148.

PIPE
is the device-type keyword that tells SAS you want to use an unnamed pipe.

Using Pipes � Unnamed Pipe Example 287

program-name
specifies the external Windows application program. This argument must fully
specify the pathname to the program, or the path to the directory containing the
program must be contained in the Windows PATH environment variable. This
argument can also contain program options. For example, you can specify the
following argument to indicate you want to invoke the STOCKMKT program on all
stocks:

’stockmkt.exe -all’

option-list
can be any of the options valid in the FILENAME statement, such as the LRECL=
or RECFM= options. For a complete list of options available for the FILENAME
statement under Windows, see “FILENAME Statement” on page 453.

Using Redirection Sequences
Any Windows application that accommodates standard input, output, and error

commands can use the unnamed pipe feature. Because many Windows system
commands use standard input, output, and error commands, you can use these
commands with unnamed pipes within SAS. Unless you specify otherwise, an unnamed
pipe directs STDOUT and STDERR to two different files. To combine the STDOUT and
STDERR into the same file, use redirection sequences. The following is an example that
redirects STDERR to STDOUT for the Windows DIR command:

filename listing pipe ’dir *.sas 2>&1’;

In this example, if any errors occur in performing this command, STDERR (2) is
redirected to the same file as STDOUT (1). This example demonstrates SAS ability to
capitalize on operating environment capabilities. This feature of redirecting file handles
is a function of the Windows operating system rather than of SAS.

Unnamed Pipe Example
In the following example, you use the unnamed pipes feature of SAS under Windows

to produce some financial reports. The example assumes you have a stand-alone
program that updates stock market information from a financial news bureau. You
need SAS to invoke a stock market report with the most recently created data from the
stock market program. The following is how you create and use the pipe within your
SAS session:

filename stocks pipe ’stockmkt.exe -all’ console=min;
data report;

infile stocks;
input stock $ open close change;

run;
proc print;

var stock open close change;
sum change;
title ’Stock Market Report’;

run;

In this example, the PIPE device-type keyword in the FILENAME statement
indicates that the fileref STOCKS is an unnamed pipe. The STOCKMKT.EXE reference
is the name of the stand-alone program that generates the stock market data. The
host-option CONSOLE=MIN indicates that the command prompt window that is opened

288 Using Named Pipes � Chapter 13

to run the STOCKMKT.EXE program is opened minimized. The INFILE statement
causes SAS to invoke the STOCKMKT.EXE program and read the data in the pipe from
it. The STOCKMKT.EXE program completes without you being aware that it has been
implemented (except for the command prompt window button on the Windows task
bar). Because the fileref STOCKS has already been defined as an unnamed pipe, the
standard output from STOCKMKT.EXE is redirected to SAS and captured through the
INFILE statement. The SAS program reads in the variables and uses the PRINT
procedure to generate a printed report. Any error messages generated by
STOCKMKT.EXE appear in the SAS log.

Using Named Pipes

Introduction to Named Pipes
The named pipes capability is one of the most powerful tools available in SAS under

Windows for communicating with other applications. The named pipes feature enables
bidirectional data or message exchange between applications on the same machine or
applications on separate machines across a network. The following figure illustrates
these two methods of communication.

Figure 13.1 Communication Using Named Pipes

The applications can be SAS sessions or other Windows applications. For example,
you can use the PRINTTO procedure to direct the results from SAS procedures to
another Windows application, using a named pipe. Therefore, you have the choice of
having multiple SAS sessions that communicate with each other or one SAS session
communicating with another Windows application.

Whether you are communicating between multiple SAS sessions or between a SAS
session and another Windows application that supports named pipes, the pipes are
defined in a client/server relationship. One process is defined as the server, while one or
more other processes are defined as clients. In this configuration, you can have multiple
clients send data to the server or the server send data to the various clients. Named
pipes enable you to coordinate processing between the server and clients using various
options.

Named Pipe Syntax
You can use a named pipe anywhere you use a fileref in SAS. To use a named pipe,

issue a FILENAME statement with the following syntax:

FILENAME fileref NAMEPIPE ’pipe-specification’ <named-pipe-options>;

Using Pipes � Named Pipe Syntax 289

You can use the following arguments with this syntax of the FILENAME statement:

fileref
is any valid fileref as described in “Referencing External Files” on page 148.

NAMEPIPE
is the device-type keyword that tells SAS you want to use a named pipe.

pipe-specification
is the name of the pipe.

This argument has two mutually exclusive syntaxes:

\\.\PIPE\pipe-name
indicates you are establishing a pipe on a single PC or defining a server pipe
across a network. The pipe-name argument specifies the name of the pipe.

\\server-name\PIPE\pipe-name
indicates you are establishing a client pipe over a network named-pipe server.
Remember to include the double backslash (\\) in this situation. The
pipe-name argument specifies the name of the client pipe. The server-name
argument specifies the name of the named-pipe server.

named-pipe-options
can be any of the following. The default value is listed first:

SERVER | CLIENT
indicates the mode of the pipe. SERVER is the default.

BLOCK | NOBLOCK
indicates whether the client or server is to wait for data to be read if no data
are currently available. BLOCK indicates to wait and is the default.
NOBLOCK indicates not to wait. Control is returned immediately to the
program if no data are available in the pipe. Writing to the pipe always
implies BLOCK.

BYTE | MESSAGE
indicates the type of pipe. BYTE is the default. The difference between a
BYTE pipe and a MESSAGE pipe is that a MESSAGE pipe includes an
encoded record length, whereas a BYTE pipe does not.

RETRY=seconds
indicates the amount of time the client or server is to wait to establish the
pipe. The minimum value for seconds is 10. This option allows time for
synchronization of the client and server. The default waiting period is 10
seconds.

There are two values for the seconds argument that indicate special cases:

-2 indicates that the client is to wait the amount of time defined by the server’s
RETRY= option. If this option is used, the SERVER must always be active or
the pipe connection fails.

-1 indicates that the client or the server is to wait indefinitely for the pipe
connection.

EOFCONNECT
is valid only when defining the server and indicates that if an end-of-file
(EOF) is received from a client, the server is to try to connect to the next
client.

290 Using the CALL RECONNECT Routine � Chapter 13

All of these options are consistent with terminology used in Windows
programmers’ reference guides such as those options provided with the Microsoft
Win32 SDK.

Using the CALL RECONNECT Routine
A special SAS CALL routine, CALL RECONNECT, enables the server to disconnect

the current client and try to connect to the next available client. Normally, a pipe
terminates when the client side of the pipe sends an end-of-file to the server. To break
the pipe connection at any time, the server SAS session can issue a CALL
RECONNECT statement. For an illustration of this routine, see “The CALL
RECONNECT Routine” on page 295.

Using Named Pipes in SCL
To establish named pipes using SCL code, you must use the FOPEN function to open

a file (or pipe) before you can access it. In doing so, you must specify the appropriate
open mode for both the client and server applications so that the two can communicate
over the pipe. Here is a summary of the different nodes you can use:

If the server accesses the pipe as... then the client must access it as...

I (input) O (output)

O (output) S (sequential)

U (update) O (output) or S (sequential)

Named Pipe Examples
The best way to understand named pipes is to examine several different examples

illustrating their use. In most of the examples in this section, the named pipe is
established between two SAS sessions. However, named pipes work between SAS and
other applications that support named pipes.

Simple Named Pipes: One Client Connected to One Server
The simplest named pipe configuration is one server connected to one client, as

shown in Figure 13.2 on page 290.

Figure 13.2 One Server Connected to One Client

Using Pipes � Named Pipe Examples 291

In the following example, a named pipe called WOMEN is established between two
SAS sessions. The server SAS session selectively sends data to the client SAS session.
You can start the server or the client first; one waits 30 seconds for the other to connect.

In the first SAS session, create a named pipe as a server:

/* Creates a pipe called WOMEN, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */

filename women namepipe ’\\.\pipe\women’
server retry=30;

/* This code writes three records into */
/* the named pipe called WOMEN. */

data class;
input name $ sex $ age;
file women;
if upcase(sex)=’F’ then

put name age;
datalines;

MOORE M 15
JOHNSON F 16
DALY F 14
ROBERTS M 14
PARKER F 13
;

In the second SAS session, you can use SAS statements to exchange data between
the two SAS sessions. For example, you can submit the following program from the
client session:

/* Creates a pipe called WOMEN, acting */
/* as a client. The client waits 30 */
/* seconds for a server to connect. */

filename in namepipe ’\\.\pipe\women’ client
retry=30;

data female;
infile in;
input name $ age;

proc print;
run;

The following program is another example of a single client and server. This example
illustrates using the PRINTTO procedure to direct results from the SUMMARY
procedure to another Windows application, using a named pipe called RESULTS:

filename results namepipe ’\\.\pipe\results’
server retry=60;

proc printto print=results new;
run;
proc summary data=monthly;
run;

One Server Connected to Several Clients
You can choose to have one server connected to several clients. In this case, the

named pipe configuration looks like the configuration shown in Figure 13.3 on page 292.

292 Named Pipe Examples � Chapter 13

Figure 13.3 One Server Connected to Several Clients

In this configuration, the data connection is initially between the server and the first
client. When this connection is terminated, the server connects to the second client, and
so on. The connection can return to the first client after the last client’s connection is
broken if your program is set up to do so.

You must use the EOFCONNECT option to cause the connection to move properly
from one client to the next. Here is an example of using the EOFCONNECT option
with one server SAS session and two clients. The clients can be on the same PC or on a
PC connected across a network.

In the first SAS session, submit the following statements:

/* Creates a pipe called SALES, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */
/* After the client has disconnected, */
/* this server SAS session tries to */
/* connect to the next available client */

filename daily namepipe ’\\.\pipe\sales’
server eofconnect retry=30;

/* This program reads in the daily */
/* sales figures sent from each client.*/

data totsales;
infile daily;
input dept $ item $ total;

run;

Using Pipes � Named Pipe Examples 293

In the second SAS session, submit the following statements:

/* Creates a pipe called SALES, acting */
/* as a client. The client waits forever */
/* for a server to connect. After the */
/* first client has disconnected, the */
/* second client connects with the server.*/
/* The first client is the TOYS dept. */

filename dept1 namepipe ’\\.\pipe\sales’
client retry=-1;

data toys;
input item $ total;
dept=’TOYS’;
file dept1;
put dept item total;
datalines;

DOLLS 100
MARBLES 10
BLOCKS 50
GAMES 60
CARS 40
;
/* The second client is the SPORTS dept.*/
/* These data could come from a separate */
/* SAS session. */

filename dept2 namepipe ’\\.\pipe\sales’
client retry=-1;

data sports;
input item $ total;
dept=’SPORTS’;
file dept2;
put dept item total;
datalines;

BALLS 30
BATS 65
GLOVES 15
RACKETS 75
FISHING 20
TENTS 115
HELMETS 45
;

The NOBLOCK Option
In the following example, the NOBLOCK option is used to specify that if no data are

available when the pipe is read, then the program should continue performing. If the
default value of BLOCK had been used, then the pipe would wait indefinitely until data
were found in the pipe. The EOFCONNECT option is used to tell the server that when
a client sends an end-of-file, the server can connect with a new client. The RETRY=
option tells the server to look for any new clients for 20 seconds while the client waits
indefinitely on a server. The clients can be on the same PC or on a PC connected across
a network. A server connects to one client at a time, and the clients queue in a serial
order waiting to connect to the server.

294 Named Pipe Examples � Chapter 13

In the first SAS session, submit the following statements:

/* Defines a named pipe called LINE. */
/* Use the NOBLOCK option to specify */
/* that if no data are available when */
/* the read is performed, then continue.*/
/* Use the EOFCONNECT option to tell */
/* the server to try to connect with a */
/* new client if an end-of-file is */
/* encountered. Use the RETRY= option */
/* to tell the server to look for any */
/* new clients for 20 seconds. */

filename data namepipe ’\\.\pipe\line’ server
noblock eofconnect retry=20;

/* This DATA step reads in all data */
/* from any clients connected to the */
/* named pipe called LINE. */

data all;
infile data length=len;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data. */

if len ne 0 then
do;

input machine $ width weight;
output;

end;
run;
proc print;
run;

Each of the following DATA steps below can be carried out on several PCs connected
across a network:

/* Defines a named pipe called LINE. */
/* The RETRY= option is set such that */
/* the clients wait forever until a */
/* server is available */
/* (that is, RETRY=-1). */
filename data namepipe ’\\.\pipe\line’

client retry=-1;
/* This is information from the */
/* first machine/client. */

data machine1;
file data;
input width weight;
machine=’LINE_1’;
put machine width weight;
datalines;

5.3 18.2
3.2 14.3
4.8 16.9
6.4 20.8
4.3 15.4

Using Pipes � Named Pipe Examples 295

6.1 19.5
5.6 18.9
;

/* This is information from the */
/* second machine/client. */

filename data namepipe ’\\.\pipe\line’
client retry=-1;

data machine2;
file data;
input width weight;
machine=’LINE_2’;
put machine width weight;
datalines;

4.3 17.2
5.2 18.4
6.8 19.9
3.4 14.5
5.3 18.6
4.1 17.1
6.6 19.5
;

The CALL RECONNECT Routine

The following example demonstrates how to set up a named pipe server to establish
a connection with two clients. (For this example, you need three active SAS sessions.)
In this example, the CALL RECONNECT routine is used to reconnect to the next client
on the named pipe if it has been at least 30 seconds since the previous client has sent
any data. Each client is a data entry operator, sending data to the server SAS session.

In the server SAS session, submit the following statements:

filename data namepipe ’\\.\pipe\orders’
server noblock eofconnect retry=30;

data all;
infile data length=len missover;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data */

if len ne 0 then
do;

input operator $ item $ quantity $;
if item=’’ or quantity=’’ then

delete;
else

output;
put operator= item= quantity=;

end;
/* If no data are being transmitted,*/
/* try reconnecting to the next */
/* available client. */

else
do;

/* Use the named pipe fileref */

296 Named Pipe Examples � Chapter 13

/* as the argument of */
/* CALL RECONNECT. */

call reconnect(’data’);
end;

run;

In the second SAS session, which is the first data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry1;
if _n_=1 then
do;

window entry_1
#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_1;
file data;
put ’ENTRY_1’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

In the third SAS session, which is the second data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry2;
if _n_=1 then
do;

window entry_2
#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_2;
file data;
put ’ENTRY_2’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

297

C H A P T E R

14
Accessing External DLLs from
SAS

Overview of Dynamic Link Libraries in SAS 297
The SASCBTBL Attribute Table 298

Syntax of the Attribute Table 298

ROUTINE Statement 299

ARG Statement 301

The Importance of the Attribute Table 302
Special Considerations When Using External DLLs 303

Using PEEKLONG Functions to Access Character String Arguments 303

Accessing External DLLs Efficiently 304

Grouping SAS Variables as Structure Arguments 305

Using Constants and Expressions as Arguments to MODULE 306

Specifying Formats and Informats to Use with MODULE Arguments 307
C Language Formats 307

FORTRAN Language Formats 307

PL/I Language Formats 308

COBOL Language Formats 308

$CSTRw. Format 309
$BYVALw. Format 310

Understanding MODULE Log Messages 311

Examples 312

Updating a Character String Argument 312

Passing Arguments by Value 313
Using PEEKCLONG to Access a Returned Pointer 314

Using Structures 314

Invoking a DLL Routine from PROC IML 315

Overview of Dynamic Link Libraries in SAS

Dynamic link libraries (DLLs) are executable files that contain one or more routines
written in any of several programming languages. DLLs are a mechanism for storing
useful routines that might be needed by many applications. When an application needs
a routine that resides in a DLL, it loads the DLL, invokes the routine, and unloads the
DLL upon completion. SAS provides routines and functions that let you invoke these
external routines from within SAS. You can access the DLL routines from the DATA
step, the IML procedure, and SCL code. You use the MODULE family of SAS call
routines and functions (including MODULE, MODULEN, MODULEC, MODULEI,
MODULEIN, and MODULEIC) to invoke a routine that resides in an external DLL.
This documentation refers to the MODULE family of call routines and functions
generically as the MODULE functions.

298 The SASCBTBL Attribute Table � Chapter 14

These are general steps for accessing an external DLL routine:

1 Create a text file that describes the DLL routine you want to access, including the
arguments it expects and the values it returns (if any). This attribute file must be
in a special format, as described in “The SASCBTBL Attribute Table” on page 298.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute
file you created.

3 In a DATA step or SCL code, use a call routine or function (MODULE,
MODULEN, or MODULEC) to invoke the DLL routine. The specific function you
use depends on the type of expected return value (none, numeric, or character).
(You can also use MODULEI, MODULEIN, or MODULEIC within a PROC IML
step.) The MODULE functions are described in “MODULE Function” on page 410.

CAUTION:
Only experienced programmers should access external DLLs. By accessing a function in
an external DLL, you transfer processing control to the external function. If done
improperly, or if the external function is not reliable, you might lose data or have to
reset your computer (or both). �

The SASCBTBL Attribute Table

Because the MODULE routine invokes an external function that SAS knows nothing
about, you must supply information about the function’s arguments so that the
MODULE routine can validate them and convert them, if necessary. For example,
suppose you want to invoke a routine that requires an integer as an argument. Because
SAS uses floating-point values for all of its numeric arguments, the floating-point value
must be converted to an integer before you invoke the external routine. The MODULE
routine looks for this attribute information in an attribute table referred to by the
SASCBTBL fileref.

The attribute table is a sequential text file that contains descriptions of the routines
you can invoke with the MODULE function. The function of the table is to define how
the MODULE function should interpret its supplied arguments when building a
parameter list to pass to the called DLL routine.

The MODULE routines locate the table by opening the file referred to by the
SASCBTBL fileref. If you do not define this fileref, the MODULE routines simply call
the requested DLL routine without altering the arguments.

CAUTION:
Using the MODULE functions without defining an attribute table can cause SAS to crash or
force you to reset your computer. You need to use an attribute table for all external
functions that you want to invoke. �

The attribute table should contain a description for each DLL routine you intend to
call (using a ROUTINE statement) plus descriptions of each argument associated with
the routine (using ARG statements).

Syntax of the Attribute Table
At any point in the attribute table file, you can create a comment using an asterisk

(*) as the first nonblank character of a line or after the end of a statement (following
the semicolon). You must end the comment with a semicolon.

Accessing External DLLs from SAS � Syntax of the Attribute Table 299

ROUTINE Statement
The following is the syntax of the ROUTINE statement:

ROUTINE name MINARG=minarg MAXARG=maxarg
<CALLSEQ=BYVALUE|BYADDR>
<STACKORDER=R2L|L2R>
<STACKPOP=CALLER|CALLED>
<TRANSPOSE=YES|NO> <MODULE=DLL-name>
<RETURNS=SHORT|USHORT|LONG|ULONG

|DOUBLE|DBLPTR|CHAR<n>>
<RETURNREGS=DXAX>;

The following are descriptions of the ROUTINE statement attributes:

ROUTINE name
starts the ROUTINE statement. You need a ROUTINE statement for every DLL
function you intend to call using the MODULE function. The value for name must
match the routine name or ordinal you specified as part of the ’module’ argument
in the MODULE function, where module is the name of the DLL (if not specified
by the MODULE attribute, described later) and the routine name or ordinal. For
example, to be able to specify KERNEL32,GetPath in the MODULE function call,
the ROUTINE name should be GetPath.

The name argument is case sensitive, and is required for the ROUTINE
statement.

MINARG=minarg
specifies the minimum number of arguments to expect for the DLL routine. In
most cases, this value will be the same as MAXARG; but some routines do allow a
varying number of arguments. This is a required attribute.

MAXARG=maxarg
specifies the maximum number of arguments to expect for the DLL routine. This
is a required attribute.

CALLSEQ=BYVALUE | BYADDR
indicates the calling sequence method used by the DLL routine. Specify BYVALUE
for call-by-value and BYADDR for call-by-address. The default value is BYADDR.

FORTRAN and COBOL are call-by-address languages; C is usually
call-by-value, although a specific routine might be implemented as call-by-address.

The MODULE routine does not require that all arguments use the same calling
method; you can identify any exceptions by using the BYVALUE and BYADDR
options in the ARG statement, described later in this section.

STACKORDER=R2L | L2R
indicates the order of arguments on the stack as expected by the DLL routine.
R2L places the arguments on the stack according to C language conventions. The
last argument (right-most in the call syntax) is pushed first, the next-to-last
argument is pushed next, and so on, so that the first argument is the first item on
the stack when the external routine takes over. R2L is the default value.

L2R places the arguments on the stack in reverse order, pushing the first
argument first, the second argument next, and so on, so that the last argument is
the first item on the stack when the external routine takes over. Pascal uses this
calling convention, as do some C routines.

STACKPOP=CALLER | CALLED
specifies which routine, the caller routine or the called routine, is responsible for
popping the stack (updating the stack pointer) upon return from the routine. The

300 Syntax of the Attribute Table � Chapter 14

default value is CALLER (the code that calls the routine). Some routines that use
Microsofts __stdcall attribute with 32-bit compilers, require the called routine to
pop the stack.

TRANSPOSE=YES | NO
specifies whether to transpose matrices with both more than one row and more
than one column before calling the DLL routine. This attribute applies only to
routines called from within PROC IML with MODULEI, MODULEIC, and
MODULEIN.

TRANSPOSE=YES is necessary when calling a routine written in a language
that does not use row-major order to store matrices. (For example, FORTRAN
uses column-major order.)

For example, consider this matrix with three columns and two rows:

columns
1 2 3

rows 1 | 10 11 12

2 | 13 14 15

PROC IML stores this matrix in memory sequentially as 10, 11, 12, 13, 14, 15.
However, FORTRAN routines will expect this matrix as 10, 13, 11, 14, 12, 15.

The default value is NO.

MODULE=DLL-name
names the executable module (the DLL) in which the routine resides. The
MODULE function searches the directories named by the PATH environment
variable. If you specify the MODULE attribute here in the ROUTINE statement,
then you do not need to include the module name in the module argument to the
MODULE function (unless the DLL routine name you are calling is not unique in
the attribute table). The MODULE function is described in “MODULE Function”
on page 410.

You can have multiple ROUTINE statements that use the same MODULE
name. You can also have duplicate ROUTINE names that reside in different DLLs.

RETURNS=SHORT | USHORT | LONG | ULONG | DOUBLE | DBLPTR |
CHAR<n>

specifies the type of value that the DLL routine returns. This value will be
converted as appropriate, depending on whether you use MODULEC (which
returns a character) or MODULEN (which returns a number). The possible return
value types are

SHORT
short integer

USHORT
unsigned short integer

LONG
long integer

ULONG
unsigned long integer

DOUBLE
double-precision floating point number

DBLPTR
a pointer to a double-precision floating point number (instead of using a
floating point register). Consult the documentation for your DLL routine to
determine how it handles double-precision floating point values.

Accessing External DLLs from SAS � Syntax of the Attribute Table 301

CHARn
pointer to a character string up to n bytes long. The string is expected to be
null-terminated and will be blank-padded or truncated as appropriate. If you
do not specify n, the MODULE function uses the maximum length of the
receiving SAS character variable.

If you do not specify the RETURNS attribute, you should invoke the routine
with only the MODULE and MODULEI call routines. You will get unpredictable
values if you omit the RETURNS attribute and invoke the routine using the
MODULEN/MODULEIN or MODULEC/MODULEIC functions.

The ROUTINE statement must be followed by as many ARG statements as you
specified in the MAXARG= option. The ARG statements must appear in the order that
the arguments will be specified within the MODULE routines.

ARG Statement
The syntax for each ARG statement is

ARG argnum NUM|CHAR <INPUT|OUTPUT|UPDATE>
<NOTREQD|REQUIRED> <BYADDR|BYVALUE> <FDSTART>
<FORMAT=format>;

Here are the descriptions of the ARG statement attributes:

ARG argnum
defines the argument number. This attribute is required. Define the arguments in
ascending order, starting with the first routine argument (ARG 1).

NUM | CHAR
defines the argument as numeric or character. This attribute is required.

If you specify NUM here but pass the routine a character argument, the
argument is converted using the standard numeric informat. If you specify CHAR
here but pass the routine a numeric argument, the argument is converted using
the BEST12 informat.

INPUT | OUTPUT | UPDATE
indicates the argument is either input to the routine, an output argument, or both.
If you specify INPUT, the argument is converted and passed to the DLL routine. If
you specify OUTPUT, the argument is not converted, but is updated with an
outgoing value from the DLL routine. If you specify UPDATE, the argument is
converted and passed to the DLL routine and updated with an outgoing value
from the routine.

You can specify OUTPUT and UPDATE only with variable arguments (that is,
no constants or expressions).

NOTREQD | REQUIRED
indicates whether the argument is required. If you specify NOTREQD, then
MODULE can omit the argument. If other arguments follow the omitted argument,
indicate the omitted argument by including an extra comma as a placeholder. For
example, to omit the second argument to routine XYZ, you would specify:

call module(’XYZ’,1,,3);

CAUTION:
Be careful when using NOTREQD; the DLL routine must not attempt to access the
argument if it is not supplied in the call to MODULE. If the routine does attempt to
access it, your system is likely to crash. �

The REQUIRED attribute indicates that the argument is required and cannot
be omitted. REQUIRED is the default value.

302 The Importance of the Attribute Table � Chapter 14

BYADDR | BYVALUE
indicates the argument is passed by reference or by value.

BYADDR is the default value unless CALLSEQ=BYVALUE was specified in the
ROUTINE statement, in that case BYVALUE is the default. Specify BYADDR
when using a call-by-value routine that also has arguments to be passed by
address.

FDSTART
indicates that the argument begins a block of values that is grouped into a
structure whose pointer is passed as a single argument. Note that all subsequent
arguments are treated as part of that structure until the MODULE function
encounters another FDSTART argument.

FORMAT=format
names the format that presents the argument to the DLL routine. Any SAS
Institute-supplied formats, PROC FORMAT-style formats, or SAS/TOOLKIT
formats are valid. Note that this format must have a corresponding valid informat
if you specified the UPDATE or OUTPUT attribute for the argument.

The FORMAT= attribute is not required, but is recommended, since format
specification is the primary purpose of the ARG statements in the attribute table.

CAUTION:
Using an incorrect format can produce invalid results or cause a system crash. �

The Importance of the Attribute Table
MODULE routines rely heavily on the accuracy of the information in the attribute

table. If this information is incorrect, unpredictable results can occur (including a
system crash).

Consider an example routine xyz that expects two arguments: an integer and a
pointer. The integer is a code indicating what action takes place. For example, action 1
means that a 20-byte character string is written into the area pointed to by the second
argument, the pointer.

Now suppose you call xyz using the MODULE routine but indicating in the attribute
table that the receiving character argument is only 10 characters long:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

Regardless of the value given by the LENGTH statement for the second argument to
MODULE, MODULE passes a pointer to a 10-byte area to the xyz routine. If xyz
writes 20 bytes at that location, the 10 bytes of memory following the string provided by
MODULE are overwritten, causing unpredictable results:

data _null_;
length x $20;
call module(’xyz’,1,x);
run;

The call might work fine, depending on which 10 bytes were overwritten. However, this
action might also cause you to lose data or cause your system to crash.

Also, note that the PEEKLONG and PEEKCLONG functions rely on the validity of
the pointers you supply. If the pointers are invalid, it is possible that SAS could crash.
For example, this code would cause a crash:

data _null_;
length c $10;

Accessing External DLLs from SAS � Using PEEKLONG Functions to Access Character String Arguments 303

/* trying to copy from address 0!!!*/
c = peekclong(0,10);

run;

Ensure that your pointers are valid when using PEEKLONG and PEEKCLONG.

Special Considerations When Using External DLLs

Using PEEKLONG Functions to Access Character String Arguments
Because the SAS language does not provide pointers as data types, you must use the

PIB4. format/informat to represent pointers. You can then use the SAS PEEKLONG
functions to access the data stored at these address values.

For example, suppose you have a routine named GetPath in a library named
SERVICES.DLL. It has two arguments, an integer function code and a pointer to a
pointer. The function code determines what action GetPath will take, and the second
argument points to a pointer that will be updated by GetPath to refer to a system
character string. The calling code in C might be

GetPath(1,&stgptr);
printf("GetPath indicates string is

’%s’.\n",stgptr);

Using MODULE, the corresponding attribute table entry would be

ROUTINE GetPath MINARG=2 MAXARG=2
MODULE=SERVICES;

ARG 1 NUM INPUT BYVALUE FORMAT=PIB4.;
ARG 2 NUM OUTPUT BYADDR FORMAT=PIB4.;

and could be invoked as follows:

call module(’GetPath’,1,stgptr);
put stgptr= stgptr=hex8.;

If the pointer value in STGPTR is 0035F780, STGPTR would actually be set to the
decimal value 3536768, which is the decimal equivalent of 0035F780. So the PUT
statement above would produce:

STGPTR=3536768 STGPTR=0035F780

However, you want the data at address 0035F780, not the value of the pointer itself. To
access that data, you need to use the PEEKCLONG function.

The PEEKCLONG function is given two arguments, a pointer via a numeric variable
(such as STGPTR above) and a length in bytes (characters). PEEKCLONG returns a
character string of the specified length containing the characters at the pointer location.

In the example, suppose that GetPath sets the second argument’s pointer value to
the address of the null-terminated character string C:\XYZ. You can access the
character data with:

call module(’SERVICES,GetPath’,1,stgptr);
length path $64;
path = peekclong(stgptr,64);
i = index(path,’00’x);
if i then substr(path,i)=’ ’;
/* path now contains the string */

304 Accessing External DLLs Efficiently � Chapter 14

The PEEKCLONG function copies 64 bytes starting at the location referred to by the
pointer in STGPTR. Because you need only the data up to the null terminator (but not
including it), you search for the null terminator with the INDEX function, then blank
out all characters including and after that point.

You can also use the $CSTR format in this scenario to simplify your code slightly:

call module(’SERVICES,GetPath’,1,stgptr);
length path $64;
path = put(peekclong(stgptr,64),$cstr64.);

The $CSTR format accepts as input a character string of a specified width. It looks for
a null terminator and pads the output string with blanks from that point.

For more information, see the PEEKLONG function in SAS Language Reference:
Dictionary and “$CSTRw. Format” on page 309.

Accessing External DLLs Efficiently
The MODULE routine reads the attribute table referenced by the SASCBTBL fileref

once per step (DATA step, PROC IML step, or SCL step). MODULE parses the table
and stores the attribute information for future use during the step. When you use a
MODULE function, SAS searches the stored attribute information for the matching
routine and module names. The first time you access a DLL during a step, SAS loads
the DLL and determines the address of the requested routine. Each DLL you invoke
stays loaded for the duration of the step, and is not reloaded in subsequent calls. All
modules and routines are unloaded at the end of the step. For example, suppose the
attribute table had the basic form:

* routines XYZ and BBB in FIRST.DLL;
ROUTINE XYZ MINARG=1 MAXARG=1 MODULE=FIRST;
ARG 1 NUM INPUT;
ROUTINE BBB MINARG=1 MAXARG=1 MODULE=FIRST;
ARG 1 NUM INPUT;
* routines ABC and DDD in SECOND.DLL;
ROUTINE ABC MINARG=1 MAXARG=1 MODULE=SECOND;
ARG 1 NUM INPUT;
ROUTINE DDD MINARG=1 MAXARG=1 MODULE=SECOND;
ARG 1 NUM INPUT;

and the DATA step looked like:

filename sascbtbl ’myattr.tbl’;
data _null_;

do i=1 to 50;
/* FIRST.DLL is loaded only once */
value = modulen(’XYZ’,i);
/* SECOND.DLL is loaded only once */
value2 = modulen(’ABC’,value);
put i= value= value2=;

end;
run;

In this example, MODULEN parses the attribute table during DATA step compilation.
In the first loop iteration (i=1), FIRST.DLL is loaded and the XYZ routine is accessed
when MODULEN calls for it. Next, SECOND.DLL is loaded and the ABC routine is
accessed. For subsequent loop iterations (starting when i=2), FIRST.DLL and
SECOND.DLL remain loaded, so the MODULEN function simply accesses the XYZ and
ABC routines. SAS unloads both DLLs at the end of the DATA step.

Accessing External DLLs from SAS � Grouping SAS Variables as Structure Arguments 305

Note that the attribute table can contain any number of descriptions for routines
that are not accessed for a given step. This process does not cause any additional
overhead (apart from a few bytes of internal memory to hold the attribute descriptions).
In the above example, BBB and DDD are in the attribute table but are not accessed by
the DATA step.

Grouping SAS Variables as Structure Arguments
A common need when calling external routines is to pass a pointer to a structure.

Some parts of the structure might be used as input to the routine, while other parts
might be replaced or filled in by the routine. Even though SAS does not have structures
in its language, you can indicate to MODULE that you want a particular set of
arguments grouped into a single structure. You indicate this structure by using the
FDSTART option of the ARG statement to flag the argument that begins the structure
in the attribute table. SAS gathers that argument and data (until encountering another
FDSTART option) into a single contiguous block, and passes a pointer to the block as an
argument to the DLL routine.

For example, consider the GetClientRect routine, which is part of the Win32 API in
USER32.DLL. This routine retrieves the coordinates of a window’s client area. This
process also requires the use of another routine, GetForegroundWindow, to get the
window handle for the window you want the coordinates from.

The C prototypes for these routines are

HWND GetForegroundWindow(VOID);
BOOL GetClientRect(HWND hWnd, LPRECT lprc);

In C, the code to invoke them is:

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT;

/* RECT is a structure variable */
.... /* other code */
/* Need the window handle first */
hWnd=GetForegroundWindow();
/* Function call, passing the address */
/* of RECT */
GetClientRect(hWnd, &RECT);

To call these routines using MODULE, you would use the following attribute table
entries:

routine GetForegroundWindow
minarg=0
maxarg=0
stackpop=called
module=USER32
returns=long;

routine GetClientRect
minarg=5
maxarg=5
stackpop=called
module=USER32;

306 Using Constants and Expressions as Arguments to MODULE � Chapter 14

arg 1 num input byvalue format=pib4.;
arg 2 num update fdstart format=ib4.;
arg 3 num update format=ib4.;
arg 4 num update format=ib4.;
arg 5 num update format=ib4.;

with the following DATA step:

filename sascbtbl ’sascbtbl.dat’;
data _null_;

hwnd=modulen(’GetForegroundWindow’);
call module(’GetClientRect’,hwnd,left,

top,right,bottom);
put left= top= right= bottom=;

run;

The use of the FDSTART option in the ARG statement for argument 2 indicates that
argument 2 and all subsequent arguments are to be gathered together into a single
parameter block.

The output in the log from the PUT statement would look like:

LEFT=2 TOP=2 RIGHT=400 BOTTOM=587

Using Constants and Expressions as Arguments to MODULE
You can pass any kind of expression as an argument to the MODULE functions. The

attribute table indicates whether the argument is for input, output, or update.
You can specify input arguments as constants and arithmetic expressions. However,

because output and update arguments must be able to be modified and returned, you
can pass only a variable for these parameters. If you specify a constant or expression
where a value that can be updated is expected, SAS issues a warning message pointing
out the error. Processing continues, but the MODULE routine cannot update a constant
or expression argument (meaning that the value of the argument you wanted to update
will be lost).

Consider these examples. Here is the attribute table:

* attribute table entry for ABC;
routine abc minarg=2 maxarg=2;
arg 1 input format=ib4.;
arg 2 output format=ib4.;

Here is the DATA step with the MODULE calls:

data _null_;
x=5;
/* passing a variable as the */
/* second argument - OK */
call module(’abc’,1,x);
/* passing a constant as the */
/* second argument - INVALID */
call module(’abc’,1,2);
/* passing an expression as the */
/* second argument - INVALID */
call module(’abc’,1,x+1);

run;

In the above example, the first call to MODULE is correct because the variable x is
updated with what the abc routine returns for the second argument. The second call to

Accessing External DLLs from SAS � Specifying Formats and Informats to Use with MODULE Arguments 307

MODULE is not correct because a constant is passed. MODULE issues a warning
indicating you have passed a constant, and MODULE passes a temporary area instead.
The third call to MODULE is not correct as an arithmetic expression is passed, causing
a temporary location from the DATA step to be used, and the returned value is lost.

Specifying Formats and Informats to Use with MODULE Arguments
You specify the SAS format and informat for each DLL routine argument by

specifying in the attribute table the FORMAT attribute in the ARG statement. The
format indicates how numeric and character values should be passed to the DLL
routine and how they should be read back upon completion of the routine.

Usually, the format you use corresponds to a variable type for a given programming
language. The following sections describe the proper formats that correspond to
different variable types in various programming languages.

C Language Formats

C Type SAS Format/Informat

double RB8.

float FLOAT4.

signed int IB4.

signed short IB2.

signed long IB4.

char * IB4. (32 bit SAS)

char * IB8 (x64 and Itanium SAS)

unsigned int PIB4.

unsigned short PIB2.

unsigned long PIB4.

char[w] $CHARw. or $CSTRw. (see “$CSTRw. Format”
on page 309)

Note: For information about passing character data other than as pointers to
character strings, see “$BYVALw. Format” on page 310. �

FORTRAN Language Formats

FORTRAN Type SAS Format/Informat

integer*2 IB2.

integer*4 IB4.

real*4 FLOAT4.

308 Specifying Formats and Informats to Use with MODULE Arguments � Chapter 14

FORTRAN Type SAS Format/Informat

real*8 RB8.

character*w $CHARw.

The MODULE routines can support FORTRAN character arguments only if they are
not expected to be passed by descriptor.

PL/I Language Formats

PL/I Type SAS Format/Informat

FIXED BIN(15) IB2.

FIXED BIN(31) IB4.

FLOAT BIN(21) RB4.

FLOAT BIN(31) RB8.

CHARACTER(w) $CHARw.

The PL/I descriptions are added here for completeness; this action does not
guarantee that you will be able to invoke PL/I routines.

COBOL Language Formats

COBOL Format

SAS

Format/Informat Description

PIC Sxxxx BINARY IBw. integer binary

COMP-2 RB8. double-precision
floating point

COMP-1 RB4. single-precision
floating point

PIC xxxx or Sxxxx Fw. printable numeric

PIC yyyy $CHARw. character

The following COBOL specifications might not properly match with the
Institute-supplied formats because zoned and packed decimal are not truly defined for
systems based on Intel architecture.

Accessing External DLLs from SAS � Specifying Formats and Informats to Use with MODULE Arguments 309

COBOL Format

SAS

Format/Informat Description

PIC Sxxxx DISPLAY ZDw. zoned decimal

PIC Sxxxx PACKED-DECIMAL PDw. packed decimal

The following COBOL specifications do not have true native equivalents and are
usable in conjunction with the corresponding S370Fxxx informat and format, which
allows for IBM mainframe-style representations to be read and written in the PC
environment.

COBOL Format SAS Format/Informat Description

PIC xxxx DISPLAY S370FZDUw. zoned decimal unsigned

PIC Sxxxx DISPLAY SIGN LEADING S370FZDLw. zoned decimal leading
sign

PIC Sxxxx DISPLAY SIGN LEADING
SEPARATE

S370FZDSw. zoned decimal leading
sign separate

PIC Sxxxx DISPLAY SIGN TRAILING
SEPARATE

S370FZDTw. zoned decimal trailing
sign separate

PIC xxxx BINARY S370FIBUw. integer binary unsigned

PIC xxxx PACKED-DECIMAL S370FPDUw. packed decimal unsigned

$CSTRw. Format
If you pass a character argument as a null-terminated string, use the $CSTRw.

format. This format looks for the last nonblank character of your character argument
and passes a copy of the string with a null terminator after the last nonblank character.
For example, given the attribute table entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$cstr10.;

you can use the following DATA step:

data _null_;
rc = module(’abc’,’my string’);
run;

The $CSTR format adds a null terminator to the character string my string before
passing it to the abc routine. This action is equivalent to the following attribute entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$char10.;

with the following DATA step:

data _null_;
rc = module(’abc’,’my string’||’00’x);
run;

310 Specifying Formats and Informats to Use with MODULE Arguments � Chapter 14

The first example is easier to understand and easier to use when using variable or
expression arguments.

The $CSTR informat converts a null-terminated string into a blank-padded string of
the specified length. If the DLL routine is supposed to update a character argument,
use the $CSTR informat in the argument attribute.

$BYVALw. Format

When you use a MODULE function to pass a single character by value, the argument
is automatically promoted to an integer. If you want to use a character expression in
the MODULE call, you must use the special format/informat called $BYVALw. The
$BYVALw. format/informat expects a single character and will produce a numeric
value, the size of which depends on w. $BYVAL2. produces a short, $BYVAL4. produces
a long, and $BYVAL8. produces a double. Consider this example using the C language:

long xyz(a,b)
long a; double b;
{
static char c = ’Y’;
if (a == ’X’)

return(1);
else if (b == c)

return(2);
else return(3);
}

In this example, the xyz routine expects two arguments, a long and a double. If the
long is an X, the actual value of the long is 88 in decimal. This value is because an
ASCII X is stored as hexadecimal 58, and this value is promoted to a long, represented
as 0x00000058 (or 88 decimal). If the value of a is X, or 88, a 1 is returned. If the
second argument, a double, is Y (which is interpreted as 89), then 2 is returned.

Now suppose that you want to pass characters as the arguments to xyz. In C, you
would invoke them as follows:

x = xyz(’X’,(double)’Z’);
y = xyz(’Q’,(double)’Y’);

This action occurs because the X and Q values are automatically promoted to ints (which
are the same as longs for the sake of this example), and the integer values
corresponding to Z and Y are cast to doubles.

To call xyz using the MODULEN function, your attribute table must reflect the fact
that you want to pass characters:

routine xyz minarg=2 maxarg=2 returns=long;
arg 1 input char byvalue format=$byval4.;
arg 2 input char byvalue format=$byval8.;

Note that it is important that the BYVALUE option appear in the ARG statement as
well. Otherwise, MODULEN assumes that you want to pass a pointer to the routine,
instead of a value.

Here is the DATA step that invokes MODULEN and passes it characters:

data _null_;
x = modulen(’xyz’,’X’,’Z’);
put x= ’ (should be 1)’;
y = modulen(’xyz’,’Q’,’Y’);
put y= ’ (should be 2)’;
run;

Accessing External DLLs from SAS � Understanding MODULE Log Messages 311

Understanding MODULE Log Messages
If you specify i in the control string parameter to MODULE, SAS prints several

informational messages to the log. You can use these messages to determine whether
you have passed incorrect arguments or coded the attribute table incorrectly.

Consider this example that uses MODULEIN from within the IML procedure. It uses
the MODULEIN function to invoke the changi routine (stored in theoretical
TRYMOD.DLL). In the example, MODULEIN passes the constant 6 and the matrix x2,
which is a 4x5 matrix to be converted to an integer matrix. The attribute table for
changi is as follows:

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following IML step invokes MODULEIN:

proc iml;
x1 = J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j] = i*10+j+3;
end;

end;
y1= x1;

x2 = x1;
y2 = y1;

rc = modulein(’*i’,’changi’,6,x2);
....

The ’*i’ control string causes the lines shown in Output 14.1 to be printed in the log.

Output 14.1 MODULEIN Output

---PARM LIST FOR MODULEIN ROUTINE--- CHR PARM 1 885E0AA8 2A69 (*i)

CHR PARM 2 885E0AD0 6368616E6769 (changi)

NUM PARM 3 885E0AE0 0000000000001840

NUM PARM 4 885E07F0

0000000000002C400000000000002E40000000000000304000000000000031400000000000003240

000000000000384000000000000039400000000000003A400000000000003B400000000000003C40

0000000000004140000000000080414000000000

---ROUTINE changi LOADED AT ADDRESS 886119B8 (PARMLIST AT 886033A0)--- PARM 1 06000000 <CALL-BY-VALUE>

PARM 2 88604720

0E0000000F00000010000000110000001200000018000000190000001A0000001B0000001C000000

22000000230000002400000025000000260000002C0000002D0000002E0000002F00000030000000

---VALUES UPON RETURN FROM changi ROUTINE--- PARM 1 06000000 <CALL-BY-VALUE>

PARM 2 88604720

140000001F0000002A0000003500000040000000820000008D00000098000000A3000000AE000000

F0000000FB00000006010000110100001C0100005E01000069010000740100007F0100008A010000

---VALUES UPON RETURN FROM MODULEIN ROUTINE--- NUM PARM 3 885E0AE0 0000000000001840

NUM PARM 4 885E07F0

00000000000034400000000000003F4000000000000045400000000000804A400000000000005040

00000000004060400000000000A06140000000000000634000000000006064400000000000C06540

0000000000006E400000000000606F4000000000

The output is divided into four sections.
1 The first section describes the arguments passed to MODULEIN.

The ’CHR PARM n’ portion indicates that character parameter n was passed. In
the example, 885E0AA8 is the actual address of the first character parameter to

312 Examples � Chapter 14

MODULEIN. The value at the address is hexadecimal 2A69, and the ASCII
representation of that value (’*i’) is in parentheses after the hexadecimal value.
The second parameter is likewise printed. Only these first two arguments have
their ASCII equivalents printed; the equivalents are printed because other
arguments might contain unreadable binary data.

The remaining parameters appear with only hexadecimal representations of
their values (NUM PARM 3 and NUM PARM 4 in the example).

The third parameter to MODULEIN is numeric, and it is at address 885E0AE0.
The hexadecimal representation of the floating point number 6 is shown. The
fourth parameter is at address 885E07F0, which points to an area containing all
the values for the 4x5 matrix. The *i option prints the entire argument; be careful
if you use this option with large matrices because the log might become quite large.

2 The second section of the log lists the arguments to be passed to the requested
routine and, in this case, changed. This section is important for determining if the
arguments are being passed to the routine correctly. The first line of this section
contains the name of the routine and its address in memory. It also contains the
address of the location of the parameter block that MODULEIN created.

The log contains the status of each argument as it is passed. For example, the
first parameter in the example is call-by-value (as indicated in the log). The
second parameter is the address of the matrix. The log shows the address, along
with the data to which it points.

Note that all the values in the first parameter and in the matrix are long
integers because the attribute table states that the format is IB4.

3 In the third section, the log contains the argument values upon return from
changi. The call-by-value argument is unchanged, but the other argument (the
matrix) contains different values.

4 The last section of the log output contains the values of the arguments as they are
returned to the MODULEIN calling routine.

Examples

Updating a Character String Argument
This example uses the Win32 routine GetTempPathA. This routine expects as an

argument a pointer to a buffer, along with the length of the buffer. GetTempPathA fills
the buffer with a null-terminated string representing the temporary path. Here is the C
prototype for the GetTempPathA routine:

DWORD WINAPI GetTempPathA
(DWORD nBufferLength, LPSTR lpBuffer);

Here is the attribute table:

routine GetTempPathA
minarg=2
maxarg=2
stackpop=called
returns=long;

arg 1 input byvalue format=pib4.;
arg 2 update format=$cstr200.;

Note that the STACKPOP=CALLED option is used; all Win32 service routines
require this attribute. The first argument is passed by value because it is an input

Accessing External DLLs from SAS � Passing Arguments by Value 313

argument only. The second argument is an update argument because the contents of
the buffer are to be updated. The $CSTR200. format allows for a 200-byte character
string that is null-terminated.

Here is the SAS code to invoke the function. In this example, the DLL name
(KERNEL32) is explicitly given in the call (because the MODULE attribute was not
used in the attribute file):

filename sascbtbl "sascbtbl.dat";
data _null_;
length path $200;
n = modulen(’*i’,

"KERNEL32,GetTempPathA", 199, path);
put n= path=;

run;

Note: KERNEL32.DLL is an internal DLL provided by Windows. Its routines are
described in the Microsoft Win32 SDK. �

The code produces these log messages:

NOTE: Variable PATH is uninitialized.
N=7 PATH=C:\TEMP

The example uses 199 as the buffer length because PATH can hold up to 200
characters with one character reserved for the null terminator. The $CSTR200.
informat ensures that the null-terminator and all subsequent characters are replaced
by trailing blanks when control returns to the DATA step.

Passing Arguments by Value
This example calls the Beep routine, part of the Win32 API in the KERNEL32 DLL.

Here is the C prototype for Beep:

BOOL Beep(DWORD dwFreq, DWORD dwDuration)

Here is the attribute table to use:

routine Beep
minarg=2
maxarg=2
stackpop=called
callseq=byvalue
module=kernel32;

arg 1 num format=pib4.;
arg 2 num format=pib4.;

Because both arguments are passed by value, the example includes the
CALLSEQ=BYVALUE attribute in the ROUTINE statement, so it is not necessary to
specify the BYVALUE option in each ARG statement.

Here is the sample SAS code used to call the Beep function:

filename sascbtbl ’sascbtbl.dat’;
data _null_;
rc = modulen("*e","Beep",1380,1000);

run;

The computer speaker beeps.

314 Using PEEKCLONG to Access a Returned Pointer � Chapter 14

Using PEEKCLONG to Access a Returned Pointer
The following example uses the lstrcat routine, part of the Win32 API in

KERNEL32.DLL. lstrcat accepts two strings as arguments, concatenates them, and
returns a pointer to the concatenated string. The C prototype is

LPTSTR lstrcat (LPTSTR lpszString1,
LPCTSTR lpszString2);

The following is the proper attribute table:

routine lstrcat
minarg=2
maxarg=2
stackpop=called
module=KERNEL32
returns=ptr;
arg 1 char format=$cstr200.;
arg 2 char format=$cstr200.;

To use lstrcat, you need to use the SAS PEEKCLONG function to access the data
referenced by the returned pointer. Here is the sample SAS program that accesses
lstrcat:

filename sascbtbl ’sascbtbl.dat’;
data _null_;

length string1 string2 conctstr $200;
length charptr $20;
string1 = ’This is’;
string2 = ’ a test!’;
charptr=modulec(’lstrcat’,string1,string2);
concatstr = peekclong(charptr,200);
put concatstr=;

run;

The following output appears in the log:

conctstr=This is a test!

Upon return from MODULEN, the pointer value is stored in RC. The example uses the
PEEKCLONG function to return the 200 bytes at that location, using the $CSTR200.
format to produce a blank-padded string that replaces the null termination.

For more information about the PEEKLONG functions, see the PEEKCLONG
function and the PEEKLONG function in SAS Language Reference: Dictionary.

Using Structures
“Grouping SAS Variables as Structure Arguments” on page 305 describes how to use

the FDSTART attribute to pass several arguments as one structure argument to a DLL
routine. Refer to that section for an example of the GetClientRect attribute table and C
language equivalent. This example shows how to invoke the GetClientRect function
after defining the attribute table.

The most straightforward method works, but generates a warning message about the
variables not being initialized:

filename sascbtbl ’sascbtbl.dat’;
data _null_;

hwnd=modulen(’GetForegroundWindow’);

Accessing External DLLs from SAS � Invoking a DLL Routine from PROC IML 315

call module(’GetClientRect’,hwnd,
left,top,right,bottom);

put _all_;
run;

To remove the warning, you can use the RETAIN statement to initialize the variables
to 0. Also, you can use shorthand to specify the variable list in the MODULEN
statement:

data _null_;
retain left top right bottom 0;
hwnd=modulen(’GetForegroundWindow’);
call module(’GetClientRect’,hwnd,

of left--bottom);
put _all_;
run;

Note that the OF keyword indicates that what follows is a list of variables, in this
case delimited by the double-dash. The output in the log varies depending on the active
window and looks something like the following:

HWND=3536768 LEFT=2 TOP=2 RIGHT=400
BOTTOM=587

Invoking a DLL Routine from PROC IML
This example shows how to pass a matrix as an argument within PROC IML. The

example creates a 4x5 matrix. Each cell is set to 10x+y+3, where x is the row number
and y is the column number. For example, the cell at row 1 column 2 is set to
(10*1)+2+3, or 15.

The example invokes several routines from the theoretical TRYMOD DLL. It uses the
changd routine to add 100x+10y to each element, where x is the C row number (0
through 3) and y is the C column number (0 through 4). The first argument to changd
indicates what extra amount to sum. The changdx routine works just like changd,
except that it expects a transposed matrix. The changi routine works like changd
except that it expects a matrix of integers. The changix routine works like changdx
except that integers are expected.

Note: A maximum of three arguments can be sent when invoking a DLL routine
from PROC IML. �

In this example, all four matrices x1, x2, y1, and y2 should become set to the same
values after their respective MODULEIN calls. Here are the attribute table entries:

routine changd module=trymod returns=long;
arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changdx module=trymod returns=long
transpose=yes;

arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;
routine changix module=trymod returns=long
transpose=yes;

arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

316 Invoking a DLL Routine from PROC IML � Chapter 14

Here is the PROC IML step:

proc iml;
x1 = J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j] = i*10+j+3;
end;

end;
y1= x1; x2 = x1; y2 = y1;
rc = modulein(’changd’,6,x1);
rc = modulein(’changdx’,6,x2);
rc = modulein(’changi’,6,y1);
rc = modulein(’changix’,6,y2);
print x1 x2 y1 y2;
run;

The following are the results of the PRINT statement:

X1
20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
X2
20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y1
20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y2
20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394

317

C H A P T E R

15
Special Considerations for SAS/
AF Programmers

Controlling the Appearance and Behavior of SAS 317
Controlling the Main SAS Window 317

SAS System Options That Control the Main SAS Window 317

SAS Commands That Control the Main SAS Window 318

Accessing External DLLs from SAS 320

Designing, Saving, and Loading Custom Toolbar Controls 321
Invoking SAS/AF Applications Automatically 321

Associating Your Own Logo and Icons with Your SAS/AF Application 321

Incorporating Electronic Mail into Your SAS/AF Application 322

Controlling the Appearance and Behavior of SAS
SAS under Windows provides SAS/AF programmers with extensive control over the

appearance and behavior of the main SAS window. You can:
� use SAS system options and windowing environment commands to control the

appearance of the main SAS window
� call external dynamic link libraries (DLLs) using the DATA step or SAS

Component Language (SCL) commands
� design, save, and load custom toolbar controls
� immediately invoke SAS/AF programs when you start SAS
� distribute the minimum subset of SAS files needed to run a particular SAS/AF

application
� associate your own logo and icons with your SAS/AF applications
� use SCL code to send electronic mail to other users
� invoke a web browser to view documents online.

Controlling the Main SAS Window
SAS system options and windowing environment commands make it possible to

change the appearance and behavior of the main SAS window so much that end users
might not recognize it as SAS.

SAS System Options That Control the Main SAS Window
The following table lists the system options that provide control over the main SAS

window.

318 SAS Commands That Control the Main SAS Window � Chapter 15

Table 15.1 SAS System Options for the Main SAS Window

Option Description

AWSCONTROL Remove system controls such as the title bar, system menu,
and minimize and maximize buttons from the main SAS
window.

AWSDEF Specify the location and dimensions of the main SAS window
when SAS initializes.

AWSMENU Specify whether to display the main SAS window menu bar.

AWSMENUMERGE Specify whether to embed menu items that are specific to
Windows in the main menus.

AWSTITLE Specify the text that appears in the title bar of the main SAS
window.

ICON Minimize the main SAS window at SAS initialization.

REGISTER Specify other Windows programs to be included as options on
the AWS File menu.

SASCONTROL Remove system controls and the minimize and maximize
buttons from SAS application windows.

SOLUTIONS Include or suppress the Solutions menu in the main menu.

SPLASH Specify whether the logo (splash screen) is displayed when
SAS starts.

SPLASHLOC Specify the location of the bitmap that contains the splash
screen you want to display when SAS starts.

TOOLSMENU Include or suppress the Tools menu in the main menu.

VIEWMENU Include or suppress the View menu in the main menu.

WEBUI Specifies whether the web enhancements that select objects by
pointing the mouse pointer and using a single mouse-click to
invoke the default action are enabled.

WINDOWSMENU Include or suppress the Window menu in the main menu.
WINDOWSMENU is valid only if NOAWSMENUMERGE is
specified.

SAS Commands That Control the Main SAS Window
Table 15.2 on page 318 lists the SAS commands that you can use to control the

appearance and behavior of the main SAS window.

Table 15.2 SAS Windowing Environment Commands for the Main SAS Window

Option Description

AWSMAXIMIZE Maximizes the main SAS window.

AWSMINIMIZE Minimizes the main SAS window.

AWSRESTORE Restores the main SAS window to its previous state.

COLOR Sets the color for various components of the application
windows.

Special Considerations � SAS Commands That Control the Main SAS Window 319

Option Description

COMMAND Controls the appearance of the command bar or dialog box.

DLGABOUT Invokes the About dialog box.

DLGCONVERT Invokes the Convert dialog box for a selected OLE object.

DLGCDIR Invokes the Change Folder dialog box.

DLGENDR Invokes the Exit SAS confirmation dialog box.

DLGFIND Invokes the Find dialog box.

DLGFONT Invokes the Fonts Selection dialog box.

DLGLIB Invokes the Libraries dialog box.

DLGLINKS Invokes the OLE Links dialog box.

DLGOPEN Invokes the Open dialog box for the Program Editor.

DLGPAGESETUP Invokes the Page Setup dialog box.

DLGPREF Invokes the Preferences dialog box.

DLGPRT Invokes the Print dialog box.

DLGPRTPREVIEW Invokes the Print Preview window.

DLGPRTSETUP Invokes the Print Setup dialog box.

DLGREPLACE Invokes the Replace dialog box.

DLGRUN Invokes the Run dialog box.

DLGSAVE Invokes the Save As dialog box.

DLGSMAIL Invokes the E-mail dialog box.

FILEOPEN Invokes the Open dialog box for the Enhanced Editor.

NEXTWIND Displays the next open SAS window.

PMENU Toggles the command lines on or off in the windowing
environment.

PREVWIND Display the previous open SAS window.

RESHOW Redisplays the SAS windows that are currently open.

TOOLCLOSE Closes the toolbox or toolbar.

TOOLEDIT Invokes the Customize dialog box for toolbars or tool boxes.

TOOLLARGE Toggles the size of the toolbar or toolbox buttons.

TOOLLOAD Opens the toolbox or toolbar with the specified configuration.

TOOLSWITCH Toggles whether the toolbar or toolbox associated with the
active window is automatically loaded.

TOOLTIPS Toggles the ToolTips on or off.

WATTACH Toggles whether the contents of the active window are attached
to e-mail that you send through SAS.

WDOCKVIEW Enables dockable windows.

WEDIT Invokes a new Enhanced Editor window.

WEMAILFMT Specifies the format (.RTF or .TEXT) of any text window you
attach to an e-mail message.

320 Accessing External DLLs from SAS � Chapter 15

Option Description

WHIDECURSOR Suppress display of the cursor.

WHSBAR Toggles the horizontal scroll bars on or off.

WINSERT Toggles the insert mode on or off.

WMENUPOP Enables or disables the pop-up menus in the SAS application
windows.

WMRU Specifies how many filenames to retain in the list under the
File menu.

WNEWTITLE Clears the contents of the active window and removes its title.

WNEXTEDIT Switches the active Enhanced Editor window to another
Enhanced Editor window.

WPOPUP Causes the pop-up menu for the active window to appear.

WSCREENTIPS Toggles the ScreenTips on or off.

WSTATUSLN Toggles the status bar on or off, and controls the area
proportions.

WUNDO Undoes the previous editing action.

WVSBAR Toggles the vertical scroll bars on or off.

WWINDOWBAR Displays the window bar at the bottom of the main SAS
window.

ZOOM Maximizes the active SAS application window.

Accessing External DLLs from SAS

You can access routines that reside in external dynamic link libraries (DLLs) by
using the SAS MODULE family of functions within a DATA step or SCL. This action
lets you access DLLs that you create or purchase; you can even access operating system
DLLs.

To access an external DLL, you must know:

� the name of the DLL

� the function name or ordinal

� a description of the function’s arguments

� a description of the return code.

CAUTION:
Only experienced programmers should access external DLLs. When you access an
external DLL, you are passing control of your computer from SAS to the DLL
function. If done improperly, or if the DLL function is unreliable, you might lose data
or have to reset your computer (or both). �

The general steps for accessing an external DLL routine are:

1 Create a text file that describes the DLL routine you want to access, including the
arguments it expects and the values it returns (if any). This attribute file must be
in a special format.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute
file you created.

Special Considerations � Associating Your Own Logo and Icons with Your SAS/AF Application 321

3 In a DATA step or SCL code, use MODULE, MODULEN, or MODULEC to invoke
the DLL routine. The specific function you use depends on the type of expected
return value (none, numeric, or character). (You can also use MODULEI,
MODULEIN, or MODULEIC within a PROC IML step.)

Note: The MODULE routines can be a flexible and powerful tool, especially when
used with the SASCBTBL file, SAS formats and informats, and other SAS routines. As
such, you should be extremely careful when invoking external routines; if done
improperly, you might lose data or have to reset your computer. �

For complete information about accessing DLLs from within SAS, see Chapter 14,
“Accessing External DLLs from SAS,” on page 297.

Designing, Saving, and Loading Custom Toolbar Controls

You can provide the users of your SAS/AF application with easy-to-use tools by
creating a custom toolbar configuration. You can assign these tools to represent any
windowing environment command. For complete information about creating and saving
custom toolbars, see “Customizing the Toolbar” on page 68.

If you distribute your SAS/AF application to other machines, be sure to include the
catalog entry that contains your custom tool configuration.

By default, tool switching is enabled, which allows the use of a custom toolbar in
your SAS/AF application. Tool switching can be disabled by issuing the TOOLSWITCH
OFF command.

Invoking SAS/AF Applications Automatically

SAS provides a system option, INITCMD, that lets you invoke SAS/AF programs
automatically. When you use this option, SAS does not create the PROGRAM EDITOR,
LOG, or OUTPUT windows but instead runs the SAS/AF applications and windowing
environment commands that you specify.

The general syntax of the INITCMD option is:

-INITCMD “af-command” <DM-command-1…DM-command-n>

where af-command is a command to start an AF application, and DM-command-1
through DM-command-n are any windowing environment commands.

For example, the following option specification starts a SAS/AF application and loads
a custom toolbar:

-initcmd "AF c=mylib.myapp.myfirst.frame;
toolload bar mylib.myapp.profile.toolbox"

For more information about the INITCMD system option, see SAS Language
Reference: Dictionary.

Associating Your Own Logo and Icons with Your SAS/AF Application

You can substitute your own logo screen and icons in place of those icons provided by
SAS.

322 Incorporating Electronic Mail into Your SAS/AF Application � Chapter 15

Note: These procedures involve creating resources for and building your own
dynamic link libraries (DLLs). For more information on creating DLLs, see the
Microsoft Win32 Software Development Kit. �

To display your own logo when SAS starts:
1 Create the logo you want to display and save it either as a Windows bitmap (which

has a BMP file extension), or compile it as resource and build it into a DLL.
2 When you invoke SAS, specify the SPLASHLOC option with the full pathname of

the file that contains your bitmap. If the bitmap is in a DLL, be sure to specify the
resource number as well. The default resource number is 1. For more information,
see “SPLASHLOC System Option” on page 571.

Your logo will display when you start SAS.
To use your own icons with your SAS/AF application:
1 Use the USERICON system option when you start SAS to specify the resource file

that contains the icons you want to include. You must use the Windows software
development tool to compile the resource file. For more information about the
USERICON option, see “USERICON System Option” on page 582.

2 Use SAS/AF software to create a FRAME entry.

3 Select the buttonStyle attribute of the push button to display an icon. You can
select the Large Icon from the iconStyle attributes of the push button to enlarge
the icon.

4 Click the ellipses for the value of the icon attribute for the push button to display
an icon. The Select Icon window will appear. Icon categories are displayed at the
top of the window. Click on the down arrow and then select the User Icons
category. The user-defined icons from your resource file will be displayed. Select
an icon for your push button.

Incorporating Electronic Mail into Your SAS/AF Application
You can associate SCL code with buttons and fields in a FRAME entry to create your

own interface to electronic mail. SAS provides methods to interface with VIM-, MAPI-,
and SMTP-compatible electronic mail programs.

Using SCL code, you can specify who should receive mail (TO, CC, and BCC), the
subject of the mail, the body of the message, and any files you want to attach to the
message. “Sending E-Mail Using SAS” on page 42 describes the e-mail functions that
SAS facilitates and contains examples of DATA step and SCL code.

323

P A R T3

Features of the SAS Language for Windows

Chapter 16.Data Set Options under Windows 325

Chapter 17.SAS Commands under Windows 327

Chapter 18.SAS Formats under Windows 379

Chapter 19.SAS Functions and CALL Routines under Windows 389

Chapter 20.SAS Informats under Windows 419

Chapter 21.SAS Procedures under Windows 429

Chapter 22.SAS Statements under Windows 449

Chapter 23.SAS System Options under Windows 473

Chapter 24.Length and Precision of Variables 591

Chapter 25.SAS Macro Facility under Windows 595

324

325

C H A P T E R

16
Data Set Options under Windows

SAS Data Set Options under Windows 325
SGIO Data Set Option 325

SAS Data Set Options under Windows
Data set options specify actions that apply only to a SAS data set. Using data set

options enables you to perform these actions:
� rename variables
� select the first or last n observations for processing
� drop variables from processing or from the output data set
� specify a password for a data set

SGIO Data Set Option

Activates the Scatter/Gather I/O feature for a data set.

Valid in: DATA steps and PROC steps

Syntax
SGIO= YES| NO

YES
specifies that SAS activate the scatter-read / gather-write feature for a SAS data set.
The scatter-read / gather-write feature remains active until your SAS session ends.

NO
specifies that SAS not activate the scatter-read/gather-write feature for the SAS data
set.

Details
You can specify the SGIO data set option for any SAS I/O file that is referenced within
your SAS code. If you want most of your SAS I/O to be processed with SGIO, then
specify the SGIO system option and disable SGIO (SGIO=no) for those data sets for
which you do not want SGIO to be active.

326 SGIO Data Set Option � Chapter 16

Comparisons
The SGIO data set option specifies that SAS process the data set by using SGIO. The
SGIO system option specifies that all data sets are processed by using SGIO.

Examples

Example 1: SGIO Option You can specify the SGIO data set option for any SAS I/O file
that is referenced in a SAS job. This example is a simple case for the DATA step:

data mike(sgio=yes);
input x y z;
datalines;

1 2 3
run;

Example 2: SGIO Option The following example is more complex:

data master(sgio=yes)
merge daily1(sgio=yes) daily2(sgio=no) daily3(sgio=yes)

... more SAS statements ...
run;

327

C H A P T E R

17
SAS Commands under Windows

SAS Commands under Windows 328
Commands Not Supported in the Windows Operating Environment 329

AUTOSCROLL Command 329

AWSMAXIMIZE Command 330

AWSMINIMIZE Command 330

AWSRESTORE Command 331
CAPS Command 331

COLOR Command 332

COMMAND Command 333

CUT Command 334

DLGABOUT Command 334

DLGCDIR Command 335
DLGCOLUMNSIZE Command 335

DLGCOLUMNSORT Command 336

DLGCONVERT Command 336

DLGENDR Command 337

DLGFIND Command 337
DLGFONT Command 337

DLGLIB Command 338

DLGLINKS Command 338

DLGOPEN Command 339

DLGPAGESETUP Command 341
DLGPREF Command 341

DLGPRT Command 341

DLGPRTPREVIEW Command 342

DLGPRTSETUP Command 343

DLGREPLACE Command 344

DLGRUN Command 344
DLGSAVE Command 344

DLGSMAIL Command 346

FILE Command 347

FILEOPEN Command 348

FILL Command 349
GSUBMIT Command 349

HOME Command 350

ICON Command 350

INCLUDE Command 351

PMENU Command 353
SAVE Command 353

STORE Command 354

SUBTOP Command 355

328 SAS Commands under Windows � Chapter 17

TOOLCLOSE Command 355
TOOLEDIT Command 356

TOOLLARGE Command 356

TOOLLOAD Command 357

TOOLSWITCH Command 358

TOOLTIPS Command 358
WATTACH Command 359

WATTENTION Command 360

WAUTOSAVE Command 360

WBROWSE Command 361

WCOPY Command 361

WCUT Command 362
WDOCKVIEW Command 362

WDOCKVIEWMINIMIZE Command 363

WDOCKVIEWRESIZE Command 363

WDOCKVIEWRESTORE Command 364

WEDIT Command 364
WEMAILFMT Command 365

WEXITSAVE Command 366

WFILE Command 366

WHIDECURSOR Command 367

WHSBAR Command 367
WINSERT Command 368

WMENUPOP Command 368

WMRU Command 369

WNAVKEYUNMARK Command 370

WNEWTITLE Command 370

WNEXTEDIT Command 371
WPASTE Command 371

WPGM Command 372

WPOPUP Command 372

WRTFSAVE Command 373

WSCREENTIPS Command 373
WSTATUSLN Command 374

WUNDO Command 375

WVSBAR Command 376

WWINDOWBAR Command 376

X Command 377
ZOOM Command 378

SAS Commands under Windows
During an interactive SAS session, you can issue commands from the command bar,

from the command line within a SAS window, from the keyboard, or from the toolbar.
SAS supports many commands that help you to navigate your session and accomplish
certain tasks. In many cases, the command is simply another way to invoke an action
that you can also accomplish by using the SAS menus and windows. However,
advanced users might find the supported commands to be a more efficient way to work.
Commands provide a more flexible way to accomplish a task if the parameters of your
task are different from what the SAS interface supports.

Most SAS windowing environment commands are described in the SAS Help and
Documentation. The commands that are described here have syntax or behavior that is
specific to the Windows operating environment.

Commands under Windows � AUTOSCROLL Command 329

For more information about issuing commands, see “Issuing SAS Commands” on
page 41.

Commands Not Supported in the Windows Operating Environment
The following SAS commands are not supported under Windows:

PCLEAR

PLIST

SCROLLBAR

SMARK

WDRAG

WGROW

WMOVE

WSHRINK

These commands are not supported under Windows because it is more efficient to use
Windows features. For example, the SCROLLBAR command and window sizing
commands are not needed in the Windows operating environment as scroll bars and
window sizing bars are an integral part of the graphical user interface.

AUTOSCROLL Command

Specifies how often the Log and Output windows scroll to display output.

Windows specifics: default values

Syntax
AUTOSCROLL <number-of-lines | PAGE | MAX>

Details
Under Windows, the default value for the AUTOSCROLL command in the OUTPUT
window is 0 (meaning that no output is written to that window while statements are
executing, which provides the best performance). The default value for the LOG
window is half the number of lines of the LOG window when SAS is started.

Scrolling can increase the length of time that SAS takes to run your program. The
less scrolling that the LOG and OUTPUT windows have to do, the faster that your
program will run.

You can also set scrolling options in the Preferences dialog box Advanced page.

330 AWSMAXIMIZE Command � Chapter 17

See Also

� “Setting Session Preferences” on page 59

� “AUTOSCROLL Command” in the SAS Help and Documentation

AWSMAXIMIZE Command

Maximizes the main SAS window.

Windows specifics: all

Syntax
AWSMAXIMIZE <ON | OFF>

no argument
toggles the main SAS window between the maximized and the restored state.

ON
maximizes the main SAS window. This option has the same effect as clicking on the
maximize button.

OFF
restores the main SAS window to its previous state.

Details
The AWSMAXIMIZE command allows you to enlarge the main SAS window to use the
complete Windows desktop.

AWSMINIMIZE Command

Minimizes the main SAS window.

Windows specifics: all

Syntax
AWSMINIMIZE <ON | OFF>

no argument
toggles the main SAS window between the minimized and the restored state.

ON
minimizes the main SAS window. This option has the same effect as clicking on the
minimize button.

Commands under Windows � CAPS Command 331

OFF
restores the main SAS window to its previous state.

AWSRESTORE Command

Restores the main SAS window to its previous state.

Windows specifics: all

Syntax
AWSRESTORE <ON | OFF>

no argument
toggles the main SAS window between the maximized and the restored state.

ON
restores the main SAS window to its previous state. This option has the same effect
as selecting Restore from the main SAS window’s title bar menu.

OFF
restores the main SAS window to its default state.

Details
You can use either the AWSRESTORE command or the AWSMAXIMIZE command to
toggle the main SAS window between maximized and its previous state.

CAPS Command

specifies whether to write uppercase characters.

Windows specifics: all

Syntax
CAPS

Details
The CAPS command changes the case for text not yet entered or for text modified in a
window.

Under Windows, characters are translated to uppercase when you move the cursor
off the line or when you press ENTER.

332 COLOR Command � Chapter 17

See Also

� “CAPS Command” in the SAS Help and Documentation

COLOR Command

specifies the color and highlighting of selected portions of a window.

Windows specifics: affected window components

Syntax
COLOR field-type <color | NEXT <highlight>>

field-type
specifies the area of the window or the type of text whose color is to be changed.

color
specifies a color for the window or for selected portions of the window.

NEXT
changes the color to the next available color. The value of NEXT is based on the most
recent color entered. The order of the colors depends on your monitor.

highlight
specifies the highlighting attribute.

Details
Under Windows, you cannot use the COLOR command to change the colors of the
following display components: border, menu bar, pop-up menu background, and title
bar. Use the Windows Control Panel to change the colors of these display components.

In addition, the HIGHLIGHT and BLINK highlight attributes are not supported for
any Windows window component.

See Also

� Other COLOR commands in the SAS Help and Documentation

Commands under Windows � COMMAND Command 333

COMMAND Command

Specifies the options for the command bar.

Windows specifics: valid options

Syntax
COMMAND <<WINDOW <“title”> | BAR

<SORT=MCU|MRU><FOCUS><MAX=max-commands><AUTOCOMPLETE |
NOAUTOCOMPLETE>> | CLOSE>

no arguments
toggles the command line on and off for the active window.

WINDOW <"title">
specifies to display the command bar as a separate window that can be moved
anywhere on the desktop. The "title" argument is optional and must be enclosed in
double quotes. When you specify title, the command window appears with title as the
title.

BAR
specifies to display the command bar in a stationary location, underneath the menu
bar.

SORT=MCU|MRU
specifies how you want SAS to sort the commands in the command bar drop-down
list. You can sort commands in the order that you most commonly use them (MCU)
or that you most recently used them (MRU).

You must specify the WINDOW or BAR argument in the command before
specifying the SORT argument.

FOCUS
specifies to place the window focus in the command bar.

MAX=max-commands
specifies the maximum number of commands to “remember” in the command bar
drop- down list. Valid values are 0 through 50.

You must specify the WINDOW or BAR argument in the command before
specifying the MAX argument.

AUTOCOMPLETE | NOAUTOCOMPLETE
specifies whether the command bar attempts to match the command that is being
typed with commands that were previously typed.

You must specify the WINDOW or BAR argument in the command before
specifying the SORT argument.

CLOSE
specifies to close the command bar.

Details
You can set some of these options by using the Customize Tools dialog box. However,
you can specify a title for the Command window only by using this command.

If you issue COMMAND FOCUS when the command bar is closed

334 CUT Command � Chapter 17

� The command bar is opened in the state that it was in before it was closed, either
docked to the main SAS window or undocked as a separate window.

� The window focus is placed in the command bar.

See Also

� “COMMAND Command” in the SAS Help and Documentation
� “Using the Command Bar to Issue Commands” on page 41
� “View Preferences” on page 61
� “DLGPREF Command” on page 341

CUT Command

Cuts selected text from a window.

Windows specifics: supported options

Syntax
CUT <LAST | ALL>

LAST
cuts the most recently marked text and unmarks all other marks when more than
one area of text is marked. To cut one area of text when more than one mark exists,
you must use either the LAST or the ALL argument.

ALL
cuts all current marks when more than one area of text is marked.

Details
The CUT command removes marked text from the current window and stores it in the
Windows clipboard.

Under Windows, the APPEND and BUFFER= options are not supported for the CUT
command.

See Also

� “CUT Command” in the SAS Help and Documentation
� “Using the Clipboard” on page 55
� “WCUT Command” on page 362

DLGABOUT Command

Opens the About SAS System dialog box.

Windows specifics: all

Commands under Windows � DLGCOLUMNSIZE Command 335

Syntax
DLGABOUT

Details
To access the About SAS System dialog box from the menus, select the Help menu and
then select About SAS System.

DLGCDIR Command

Opens the Change Folder dialog box.

Windows specifics: all

Syntax
DLGCDIR

Details
From the Change Folder dialog box, you can select a new working folder.

See Also

� “Changing the SAS Current Folder” on page 39
� “SASINITIALFOLDER System Option” on page 559

DLGCOLUMNSIZE Command

Opens the Columns Settings dialog box.

Windows specifics: all

Syntax
DLGCOLUMNSIZE

Details
When a SAS window contains a List view with details, you can specify the size of a
column in pixels using the Columns Settings dialog box. An example of a window that
can be a List view is the SAS Explorer window.

336 DLGCOLUMNSORT Command � Chapter 17

See Also

� “Resizing the Detail Columns of a List View” on page 82

DLGCOLUMNSORT Command

Opens the Sort Columns dialog box.

Windows specifics: all

Syntax
DLGCOLUMNSORT

Details
When a SAS window contains a List view, you can sort the columns using the Sort
Columns dialog box. An example of a window that can be a List view is the SAS
Explorer window.

See Also

� “Sorting Window List Views by a Specific Column” on page 82

DLGCONVERT Command

Opens the Convert dialog box.

Windows specifics: all

Syntax
DLGCONVERT

Details
You can use this command from the SAS/AF BUILD window with an OLE object
selected. The Convert dialog box lets you convert the selected OLE object from one type
to another, with the available types depending on what the OLE server application
supports for that object.

See Also

� “Converting OLE Objects” on page 251

Commands under Windows � DLGFONT Command 337

DLGENDR Command

Opens the Exit dialog box.

Windows specifics: all

Syntax
DLGENDR

Details
The Exit dialog box prompts you to confirm that you want to exit SAS. If you select OK in
the dialog box, the SAS session ends. If Confirm exit is not selected in the Preferences
dialog box General tabbed page, SAS closes when you enter the DLGENDR command.

See Also

� “Setting Session Preferences” on page 59

DLGFIND Command

Opens the Find dialog box.

Windows specifics: all

Syntax
DLGFIND

Details
The Find dialog box allows you to search for text strings.

See Also

� “DLGREPLACE Command” on page 344

DLGFONT Command

Opens the Fonts dialog box.

Windows specifics: all

338 DLGLIB Command � Chapter 17

Syntax
DLGFONT

Details
The Fonts Selection dialog box allows you to dynamically change the SAS windowing
environment font.

DLGLIB Command

Opens the Libraries dialog box.

Windows specifics: all

Syntax
DLGLIB

Details
The Libraries dialog box lets you define or modify SAS libraries. The DLGLIB
command is supported for compatibility with previous releases.

You can use the SAS Explorer window to browse or assign SAS libraries.

See Also

� SAS Help and Documentation for more information about using the SAS Explorer
window to manage SAS libraries

DLGLINKS Command

Opens the Links dialog box.

Windows specifics: all

Syntax
DLGLINKS

Details
The DLGLINKS command opens the Links dialog box, allowing you to update a linked
object.

Commands under Windows � DLGOPEN Command 339

See Also

� “Using Linked OLE Objects” on page 249

DLGOPEN Command

Opens the Open dialog box for the default editor.

Windows specifics: all

Syntax
DLGOPEN <LONGFILTER=“filters” | FILTER=’filters’ <REPLACE> ><SUBMIT |

NOSUBMIT> <IMPORT> <VERIFY> <ALTCMD=’command’>

no arguments
opens the Open dialog box with the default settings

LONGFILTER=“filters” | FILTER=’filters’
LONGFILTER=“filters” specifies one or more file filters to use as search criteria for
displaying files in the Open dialog box. The first filter in the argument list is the
default filter and is used as the search criteria. All of the filters in the argument list
are added to the list of filters in the Files of type: combo box. To search for
additional file types, you would select another filter from the Files of type: combo
box.

You must enclose the filter list in double quotation marks. Note that you can
specify long filenames that include spaces and single quotes. Separate each filter
that you specify with a vertical bar (|). For example, if you specify

dlgopen longfilter="*.text|*.Bob’s work|*.*XX"

the dialog box displays all files in the current folder that have .text as their file
extension, and the dialog box adds *.text, *.Bob’s work and *.XX to the Files of
type: combo box.

Note: When you are using the DLGOPEN command in the DM statement, do not
use single quotation marks as part of a longfilter. The DM statement requires single
quotation marks around the command it submits. A single quotation mark in the
longfilter indicates to the DM statement the end of the command. �

FILTER=’filters’ specifies one or more file filters to use as search criteria for
displaying files in the Open dialog box. The first filter in the argument list is the
default filter and is used as the search criteria. All of the filters in the argument list
are added to the list of filters in the Files of type: combo box. To search for
additional file types, you would select another filter from the Files of type: combo
box. You must enclose the filter list quotation marks. Separate multiple lists with a
space. For example, if you specify

dlgopen filter=’*.bak *.txt’

the dialog box displays all files in the current folder that have a .BAK file extension,
and adds both *.BAK and *.TXT to the Files of Type: combo box.

Note: The difference between LONGFILTER=“filters” and FILTER=’filters’ is the
use of spaces and quotation marks. Use LONGFILTER=“filters” if filters contain

340 DLGOPEN Command � Chapter 17

spaces and single quotation marks. If you use FILTER=’filters’, filters cannot contain
spaces and single quotation marks. �

REPLACE
replaces the filter list with the specified filters instead of concatenating the list with
the default filters. This option is valid only when you specify the LONGFILTER= or
FILTER= argument as well. For example, the command

dlgopen longfilter="*.txt" replace

will load the Files of type: box with the *.TXT specification (instead of the
default file types).

SUBMIT | NOSUBMIT
specifies whether the Submit check box is checked when the dialog box opens. By
default, the Submit check box (which indicates that the contents of the opened file
should be immediately submitted as a SAS program) is not checked. To automatically
submit a file when it is opened, select Submit contents of file opened from the
Preferences dialog box General page.

IMPORT
invokes the Import dialog box, allowing you to import graphics files into your SAS
session. For more information on importing graphics, see “Importing a Graphics File
from within a SAS/GRAPH Window” on page 191.

VERIFY
verifies whether the active window contains a File menu with an Open item. If it
does, the Open dialog box invokes the Open item command instead of invoking the
default INCLUDE command.

The VERIFY argument is not valid when specified with ALTCMD or IMPORT.

ALTCMD=’command’
specifies a command to be applied to the file that is selected from the Open dialog
box. For example, the command

dlgopen altcmd=’x’ longfilter="*.bat"

allows you to select a DOS batch file, which is then run in a DOS shell. The
INCLUDE command is the default command.

Details

The Open dialog box enables you to open files in the default editor. The default editor is
determined from the Use Enhanced Editor option on the Preferences dialog box Edit
tabbed page. If this option is selected, the Enhanced Editor is the default editor.
Otherwise, the Program Editor is the default editor.

To access the Open dialog box from the menus, select the File menu and then select
Open.

See Also

� “Opening Files” on page 111

� “Setting Session Preferences” on page 59

� “Importing Graphics from Other Applications” on page 190

� “FILEOPEN Command” on page 348

Commands under Windows � DLGPRT Command 341

DLGPAGESETUP Command

Opens the Page Setup dialog box.

Windows specifics: all

Syntax
DLGPAGESETUP

Details
The Page Setup dialog box allows you to define page attributes such as paper size,
source, orientation, and margins.

See Also

� “Setting Up the Printed Page” on page 172

DLGPREF Command

Opens the Preferences dialog box.

Windows specifics: all

Syntax
DLGPREF

Details
The Preferences dialog box allows you to configure your SAS session to accommodate
the way that you like to work.

See Also

� “Setting Session Preferences” on page 59

DLGPRT Command

Opens the Print dialog box.

Windows specifics: all

342 DLGPRTPREVIEW Command � Chapter 17

Syntax
DLGPRT <NOSOURCE | ACTIVEBITMAP | SCREENBITMAP | AWSBITMAP |

CLIPBITMAP | CLIPTEXT | ALTCMD=’command’ | BITMAPONLY |
NODISPLAY | VERIFY>

no argument
prints the active window with the default print settings.

ACTIVEBITMAP
suppresses the Print dialog box and prints the active window as a bitmap.

ALTCMD=’command’
uses the Print dialog box to issue a command other than PRINT.

AWSBITMAP
suppresses the Print dialog box and prints the main SAS window as a bitmap.

BITMAPONLY
allows only bitmap printing from the Print dialog box.

CLIPBITMAP
suppresses the Print dialog box and prints the contents of the Windows clipboard as
a bitmap.

CLIPTEXT
suppresses the Print dialog box and prints the contents of the Windows clipboard as
text.

NODISPLAY
suppresses the Print dialog box and prints using the default settings.

NOSOURCE
prevents the user from specifying a source (application window) from which to print.

SCREENBITMAP
suppresses the Print dialog box and prints the entire screen as a bitmap.

VERIFY
checks whether the active application window supports text printing (whether the
File menu contains a Print item). If it does not, the Print dialog box allows only
bitmap printing.

Details
The Print dialog box allows you to print the contents of the active window.

See Also

� “Printing from within a SAS Window” on page 168

DLGPRTPREVIEW Command

Invokes the Print Preview window.

Windows specifics: all

Commands under Windows � DLGPRTSETUP Command 343

Syntax
DLGPRTPREVIEW <VERIFY>

VERIFY
checks whether the active application window supports printing (that is, whether the
File menu contains a Print item). If it does not, the Print Preview window will not
be displayed. You can still print these windows as bitmaps. Preview the output by
issuing the DLGPRT VERIFY command and then clicking Preview.

Details
Not all SAS application windows support the Print Preview feature.

See Also

� “Previewing Your Output Before You Print” on page 176
� “Printing” on page 168

DLGPRTSETUP Command

Opens the Print Setup dialog box or programmatically sets printer settings.

Windows specifics: all

Syntax
DLGPRTSETUP <ORIENT=PORTRAIT | LANDSCAPE > <NODISPLAY>

ORIENT=PORTRAIT | LANDSCAPE
sets the default page orientation for the current printer. The orient parameter is to
support backward compatibility of SAS. The preferred method to specify the
orientation is with the ORIENTATION system option.

NODISPLAY
suppresses the display of the Print Setup dialog box. This option is intended to be
used only when you use other options to explicitly set printer settings.

Details
The Print Setup dialog box allows you to name the printer to which you want to print,
specify that you want to use SAS forms to print, and to access dialog boxes that control
how SAS prints information, such as paper orientation, margins, and fonts.

See Also

� “Changing the Printer” on page 171
� “Changing the Print Font” on page 171
� “Setting Up the Printed Page” on page 172

344 DLGREPLACE Command � Chapter 17

DLGREPLACE Command

Opens the Replace dialog box.

Windows specifics: all

Syntax
DLGREPLACE

Details
The Replace dialog box allows you to find a text string and replace it with another text
string.

See Also

� “DLGFIND Command” on page 337

DLGRUN Command

Opens the Run dialog box.

Windows specifics: all

Syntax
DLGRUN

Details
The Run dialog box allows you to start another application from within SAS. For
example, if you typed excel.exe in the Command line: field of the Run dialog box,
Microsoft Excel would open.

DLGSAVE Command

Opens the Save As dialog box.

Windows specifics: all

Commands under Windows � DLGSAVE Command 345

Syntax
DLGSAVE <LONGFILTER=“filters” | FILTER=’filters’ <REPLACE>> <EXPORT>

<NOPROMPT> <VERIFY> <ALTCMD=’command’>

no arguments
opens the Save As dialog box with the default settings.

LONGFILTER=“filters” | FILTER=’filters’
LONGFILTER=“filters” specifies one or more file filters to use as search criteria for
displaying files in the Save as dialog box. The first filter in the argument list is the
default filter and is used as the search criteria. All of the filters in the argument list
are added to the list of filters in the Files of type: combo box. To search for
additional file types, you would select another filter from the Files of type: combo
box.

You must enclose the filter in double quotation marks. Note that you can specify
long filename extensions that include spaces and single quotes, and each filter that
you specify must be separated by a vertical bar (|). For example, if you specify

dlgsave longfilter="*.text|*.Bob’s work|*.**XX"

the dialog box displays all files in the current folder that have .TEXT as their file
extension, and the dialog box adds *.text, *.Bob’s work, and *.**XX to the Files of
type: combo box.

Note: When you are using the DLGSAVE command in the DM statement, do not
use single quotation marks as part of a longfilter. The DM statement requires single
quotation marks around the command it submits. A single quotation mark in the
longfilter indicates to the DM statement the end of the command. �

FILTER=’filters’ specifies one or more file filters to use as search criteria for
displaying files in the Open dialog box. The first filter in the argument list is the
default filter and is used as the search criteria. All of the filters in the argument list
are added to the list of filters in the Files of type: combo box. To search for
additional file types, you would select another filter from the Files of type: combo
box. You must enclose the filter list in quotation marks. Separate multiple lists with
a space. For example, if you specify

dlgsave filter=’*.bak *.txt’

the dialog box displays all files in the current folder that have a .BAK file extension,
and the dialog box adds both *.BAK and *.TXT to the Files of type: combo box.

Note: The difference between LONGFILTER=“filters” and FILTER=’filters’ is that
with LONGFILTER=“filters” you can use spaces and quotes in the filters, where in
FILTER=’filters’ you cannot use spaces and quotes. �

REPLACE
replaces the filter list with the specified filters instead of concatenating the list with
the default filters. This option is valid only when you specify the LONGFILTER= or
FILTER= arguments as well. For example, the command

dlgsave longfilter="*.txt" replace

will load the Files of type: combo box with only the *.TXT specification (instead
of the default file types).

EXPORT
invokes the Export dialog box, allowing you to export graphics files from your SAS
session. For more information about the Export dialog box, see “Exporting Graphics
for Use with Other Applications” on page 192.

346 DLGSMAIL Command � Chapter 17

NOPROMPT
does not prompt the user to replace or append an existing file.

VERIFY
verifies whether the active window contains a File menu with a Save item. If it does,
the Save As dialog box invokes the Save item instead of the default FILE command.

The VERIFY argument is not valid when specified with ALTCMD or EXPORT.

ALTCMD=’command’
specifies the command to be applied to the file that is selected from the Save As
dialog box. For example, the command

dlgsave altcmd=’prtfile’

sets the file selected from the Save As dialog box as the current print file. The FILE
command is the default command.

Details
The Save As dialog box lets you save the contents of the active window to a file. To
access the Save As dialog box from the menus, select the File menu and then select
Save As.

See Also

� The Enhanced Editor section, “Saving Files” on page 88
� The Program Editor section, “Saving Files” on page 117

DLGSMAIL Command

Opens the Send Mail dialog box.

Windows specifics: all

Syntax
DLGSMAIL

Details
The DLGSMAIL command opens the e-mail dialog box based on the value of the
EMAILDLG system option. If the value of the EMAILDLG option is sas, the
DLGSMAIL opens the Send Mail dialog box. If the value of the EMAILDLG option is
native, the DLGSMAIL opens the MAPI-compliant e-mail dialog box.

See Also

� “Sending E-Mail Using SAS” on page 42
� “WEMAILFMT Command” on page 365
� “EMAILDLG System Option” on page 508

Commands under Windows � FILE Command 347

FILE Command

Writes the contents of the current window to an external file.

Windows specifics: valid options

Syntax
FILE file-specification <ENCODING=’encoding-value’><portable-options>

<host-options>

file-specification
specifies a valid Windows external file specification, such as a fileref, a file shortcut, a
Windows filename that is enclosed in quotation marks, an environment variable, or
an unquoted filename that resides in the current directory.

ENCODING=’encoding-value’
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the current
session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

portable-options
specifies one or more portable options, which are documented under the FILE
command in SAS Help and Documentation.

host-options

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8192. The maximum is 1 megabyte.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

RECFM=record-format
controls the record format. Under Windows, the following values are valid:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

348 FILEOPEN Command � Chapter 17

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

V|D indicates variable format. This is the default.

Details
The FILE command writes the entire contents of the active window to an external file
without removing text from the window.

If you do not specify a file-specification, then SAS uses the filename from the previous
FILE or INCLUDE command. In this case, SAS first asks you if you want to overwrite
the file. If you have not issued any FILE or INCLUDE commands, you receive an error
message indicating no default file exists.

In the Enhanced Editor, if the filename is eight characters or less, the file extension
of .SAS is appended to file-specification. No extension is appended for a file-specification
longer than eight characters.

See Also

� “FILE Command” in the SAS Help and Documentation
� ENCODING System Option in SAS National Language Support (NLS): Reference

Guide
� “Referencing External Files” on page 148
� “Using the FILE Command” on page 161
� For an example of using some of these options, see “Advanced External I/O

Techniques” on page 162.

FILEOPEN Command

Opens the Open dialog box for the Enhanced Editor or opens a file in the Enhanced Editor.

Windows specifics all

Syntax
FILEOPEN <“file specification”>

“file specification”
specifies a valid Windows path, filename, and file extension. If the file resides in the
current working folder, the path is not required.

Details
The Open dialog box opens if you do not include a file-specification on the FILEOPEN
command. If the FILEOPEN command does include a file-specification, the Open dialog
box is bypassed and the file opens in the Enhanced Editor. You must include single or
double quotation marks around the specified file.

Commands under Windows � GSUBMIT Command 349

Note: To open a file in the Program Editor, use the DLGOPEN command. �

See Also

� “Opening Files” on page 111
� “DLGOPEN Command” on page 339

FILL Command

Specifies the fill character.

Windows specifics: default character

Syntax
FILL fill-character

fill-character
specifies the character to be used to fill out a line.

Details
The fill characters are placed beginning at the current cursor position. Under Windows,
the default fill character is an underscore (_).

See Also

� “FILL Command-line Command” in the SAS Help and Documentation

GSUBMIT Command

Submits SAS code stored in the Windows clipboard.

Windows specifics: valid value for paste-buffer-name

Syntax
GSUBMIT BUF=paste-buffer-name | “SAS-statement-1;...SAS-statement-n;”

Details
Under Windows, if the paste-buffer-name argument is specified, it must be DEFAULT.
The Windows clipboard is the default paste buffer.

SAS statements in the Windows clipboard will not be submitted using the GSUBMIT
command if a procedure that you submitted using the Enhanced Editor is still running.

350 HOME Command � Chapter 17

You can copy the SAS statements to a new Enhanced Editor window and then submit
them.

See Also

� “Using the GSUBMIT Command” on page 162

HOME Command

Moves the cursor position from the current position to the home position.

Windows specifics: keyboard equivalent

Syntax
HOME

Details
Under Windows, the HOME command is equivalent to the HOME key on your
keyboard, which moves your cursor between the last cursor position and the home
position in the window. If the Command line displays in the window, the home position
is the Command line.

You can also define a function key to execute the CURSOR command, which positions
the cursor at the home position in the window but has no toggle effect.

See Also

� “HOME Command” in the SAS Help and Documentation

ICON Command

Minimizes the active window.

Windows specifics: all

Syntax
ICON <ALL>, <ON>, <OFF>

no argument
specifies that the active window be minimized.

ALL
specifies that all windows except the main SAS window be minimized.

Commands under Windows � INCLUDE Command 351

ON
specifies that the active window be minimized.

OFF
specifies that the active window be restored to its previous state.

Details

If the window bar is active, the ICON command minimizes windows to the window bar.
Otherwise, windows are minimized to the application workspace.

The ICON command (no options) works as a toggle.

Note: Do not confuse this command with the ICON system option, which minimizes
the main SAS window. �

See Also

� “ICON Command” in the SAS Help and Documentation

INCLUDE Command

Copies the entire content of an external file into the current window.

Windows specifics: valid options

Syntax

INCLUDE file-specification <ENCODING=’encoding-value’><portable-options>
<host-options>

file-specification
specifies a valid Windows external file specification, such as a fileref, a file shortcut, a
Windows filename that is enclosed in quotation marks, an environment variable, or
an unquoted filename that resides in the current directory.

ENCODING=’encoding-value’
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

portable-options
specifies one or more portable options, which are documented under the INCLUDE
command in SAS Help and Documentation.

352 INCLUDE Command � Chapter 17

host-options

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

NOTABS
is used only in the context of Dynamic Data Exchange. This option enables you to
use nontab character delimiters between variables. For more information on this
option, see “Using the NOTAB Option with DDE” on page 281.

RECFM=record-format
controls the record format. Under Windows, the following values are valid:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

V|D indicates variable format. This value is the default.

Details
The INCLUDE command copies the entire contents of an external file into the active
window.

If you do not specify a file-specification, then SAS uses the filename from the previous
FILE or INCLUDE command. If you have not issued any FILE or INCLUDE
commands, you receive an error message indicating no default file exists.

In the Enhanced Editor, if the filename is eight characters or less, the file extension
of .SAS is appended to file-specification. No extension is appended for a file-specification
longer than eight characters.

See Also

� “INCLUDE Command” in the SAS Help and Documentation
� “ENCODING System Option” in SAS National Language Support (NLS): Reference

Guide
� “Referencing External Files” on page 148
� “Using the INCLUDE Command” on page 161

Commands under Windows � SAVE Command 353

� For an example of using some of these options, see “Advanced External I/O
Techniques” on page 162.

PMENU Command

Toggles the command line in the SAS application windows on and off.

Windows specifics: command behavior

Syntax

PMENU <ON | OFF>

no argument
toggles the command lines on and off.

ON
turns the command lines off.

OFF
turns the command lines on.

Details

Under the Windows operating environment, the menus are always enabled. Use can
use either the PMENU command or the COMMAND command to specify whether you
want the command line to display in SAS windows.

See Also

� “PMENU Command” in the SAS Help and Documentation

� “COMMAND Command” on page 333

� “WMENUPOP Command” on page 368

SAVE Command

Writes the entire contents of the Enhanced Editor, Program Editor, Log, Output, Notepad, and Keys
windows to a catalog entry.

Syntax

SAVE <catalog-entry><ATTR> <TABS> <APPEND | REPLACE>

354 STORE Command � Chapter 17

(no argument)
writes the contents of the window to the catalog entry that was most recently
specified in a COPY or SAVE command during the current SAS session.

catalog-entry
specifies the four-level name.

ATTR
stores attributes with the entry.

TABS
compresses spaces as tabs during storage instead of storing the file with the default
spacing.

APPEND
appends the contents of the window to the contents of the catalog entry. When it is
specified, this catalog entry becomes the default until another catalog entry is
specified.

REPLACE
replaces the contents of the catalog entry with the contents of the window. Once
specified, this replacement becomes the default until another catalog entry is
specified.

STORE Command
Copies selected text or graphics to the Windows clipboard.

Windows specifics: valid options; not supported by the Enhanced Editor

Syntax
STORE <LAST | ALL>

LAST
copies only the most recently marked text and unmarks all other marks when more
than one area of text is marked. To store one area of text when more than one mark
exists, you must use either the LAST or ALL argument.

ALL
stores all current marks when more than one area of text has been marked.

Details
The STORE command copies marked text or graphics in the active window and stores
the copy in the Windows clipboard.

The APPEND and BUFFER= options are not supported under Windows for the
STORE command.

See Also

� “STORE Command” in the SAS Help and Documentation
� “Using the Clipboard” on page 55

Commands under Windows � TOOLCLOSE Command 355

SUBTOP Command

Submits the first n lines of a SAS program for processing.

Windows specifics: valid in the Enhanced Editor and the Program Editor

Syntax
SUBTOP <n>

no argument
specifies to submit only the top line of the program for processing.

n
specifies to submit the first n lines of the program for processing.

Details
When the Clear text on submit check box is selected in the Enhanced Editor
Options dialog box, all of the submitted lines are deleted from the window when you
issue the SUBTOP command.

See Also

� “Submitting Your Program” on page 97

TOOLCLOSE Command

Closes the application toolbar or toolbox.

Windows specifics: all

Syntax
TOOLCLOSE

Details
Use the TOOLCLOSE command to close the toolbar or toolbox.

356 TOOLEDIT Command � Chapter 17

TOOLEDIT Command

Opens the Customize Tools dialog box.

Windows specifics: all

Syntax
TOOLEDIT <library.catalog.entry>

no argument
edits the currently loaded set of tools.

library.catalog.entry
specifies the TOOLBOX entry you want to edit.

Details
The TOOLEDIT command invokes the Customize Tools dialog box with the TOOLBOX
entry specified by library.catalog.entry. If a TOOLBOX entry is not specified, the
currently loaded set of tools is used.

See Also

� “Customizing the Toolbar” on page 68

TOOLLARGE Command

Toggles the size of the toolbar or toolbox buttons.

Windows specifics: all

Syntax
TOOLLARGE <ON | OFF>

no argument
toggles the size of the toolbar or toolbox buttons between large and normal.

ON
sets the size of the toolbar or toolbox buttons too large.

OFF
sets the size of the toolbar or toolbox buttons to normal.

Details
The TOOLLARGE command toggles the size of the toolbar buttons between normal and
large. You might find the large buttons easier to use with high-resolution displays.

Commands under Windows � TOOLLOAD Command 357

See Also

� “Resetting the Tools to the Default Settings” on page 72

TOOLLOAD Command

Loads a specific toolbox.

Windows specifics: all

Syntax
TOOLLOAD <WINDOW> <BOX | BAR> <libref.catalog.member>

no arguments
loads the toolbar for the active window. The tools are displayed as a toolbar or
toolbox, depending on the setting in the Customize tools dialog box.

WINDOW
associates the toolbox entry you specify with the active window, so that the particular
set of tools that you load apply only to that window. This association lasts until you
close the window. If you reopen the window later, the window will revert to its
default toolbar.

If the WINDOW option is not specified on the TOOLLOAD command, the toolbar
or toolbox that is loaded applies to all windows that do not have a specific toolset
definition stored for them in the Sasuser.Profile catalog. Such specific toolsets must
be named to match the window. For example, the Explorer window toolset is named
Sasuser.Profile.Explorer. If the WINDOW option is not specified, the toolset
definition will persist throughout the current SAS session regardless of how many
times a particular window is closed and reopened.

BOX | BAR
controls whether the icons are displayed as a toolbox in a separate window or as a
toolbar integrated with the main SAS window.

libref.catalog.member
specifies the catalog entry to load. TOOLBOX is the default catalog entry type.

Details
After the TOOLLOAD command is processed, the specified toolbox is the active toolbox.

See Also

� “Customizing and Saving a Toolbar for Use with a Particular Application or
Window” on page 71

358 TOOLSWITCH Command � Chapter 17

TOOLSWITCH Command

Toggles the tool switching feature on and off.

Windows specifics: all

Syntax
TOOLSWITCH ON | OFF

ON
automatically loads the toolbar (if one is defined) for the active window.

OFF
uses the default toolbar (Sasuser.Profile.Toolbox) for all windows unless you explicitly
load another one.

Details
The TOOLSWITCH command allows you to switch between a toolbar defined for the
active window and the SAS default toolbar.

See Also

� “Setting Session Preferences” on page 59
� “TOOLEDIT Command” on page 356

TOOLTIPS Command

Toggles the Tooltips feature.

Windows specifics: all

Syntax
TOOLTIPS <ON | OFF>

no argument
toggles the Tooltips feature on and off.

ON
turns the Tooltips feature on.

OFF
turns the Tooltips feature off.

Details
Tooltips are the helpful cues that appear over toolbar or toolbox buttons, (and over some
other controls in the main SAS window) as you position the mouse pointer over them.

Commands under Windows � WATTACH Command 359

The TOOLTIPS command specifies whether the Tooltips text is displayed when you
move the cursor over an icon in the toolbox or some other control. If you do not specify
ON or OFF, the TOOLTIPS command toggles the text on and off, depending on the
current setting.

Note: Do not confuse Tooltips with ScreenTips. ScreenTips display helpful cues for
the status bar, the window bar, and tabs in the main SAS window. �

See Also

� “WSCREENTIPS Command” on page 373

WATTACH Command

Toggles whether the contents of the active window are attached to an electronic mail message that
you initiate using SAS.

Windows specifics: all

Syntax
WATTACH <ON | OFF>

no argument
toggles the attach mode on and off

ON
specifies to attach the active window

OFF
specifies to not attach the active window

Details
If you specify ON, the contents of the active window are sent as an attached file. For
text windows, the format is either text or RTF (as determined by the WEMAILFMT
command or the Preferences dialog box settings). Graphic windows are sent as
Windows bitmap (BMP) files.

You can also toggle this setting in the Preferences dialog box General page.

See Also

� “Sending E-Mail Using SAS” on page 42
� “WEMAILFMT Command” on page 365
� “Setting Session Preferences” on page 59

360 WATTENTION Command � Chapter 17

WATTENTION Command

Displays the Tasking Manager window, which allows you to select which SAS process to terminate.

Windows specifics: all

Syntax
WATTENTION

Details
The WATTENTION command allows you to select a SAS process to terminate. This
action is the equivalent of pressing CTRL + Break.

WAUTOSAVE Command

Controls how often SAS automatically saves work in the SAS editor windows.

Windows specifics: all

Syntax
WAUTOSAVE <<ON | OFF> INTERVAL=minutes>

no arguments
turns the autosave feature on and resets the autosave timer (so that work will
automatically be saved after the defined time interval).

ON | OFF
specifies to turn the autosave feature on or off.

INTERVAL=minutes
saves work every certain number of minutes. The default interval is 10 minutes.
Specify the interval as an integer.

Details
Use the WAUTOSAVE command if you want SAS to automatically save your work more
often or less often than the default interval of every 10 minutes. SAS saves the
Program Editor contents to ’pgm.asv’ in the current working folder or in the folder
specified by the AUTOSAVELOC system option. Contents of the Enhanced Editor
windows are saved to the operating environment temporary folder with the filename of
’Autosave of filename.$AS’. You can also set the autosave feature in the Preferences
dialog box Edit page.

Commands under Windows � WCOPY Command 361

See Also

� “Setting Session Preferences” on page 59
� “AUTOSAVELOC System Option” in SAS Language Reference: Dictionary

WBROWSE Command

Opens the web browser specified in the preferences dialog box.

Windows specifics: all

Syntax
WBROWSE <“URL”>

no argument
invokes the preferred web browser as defined in the Preferences dialog box Web page.

URL
specifies a URL (Uniform Resource Locator) which contains the server and path
information needed to find a document on the Internet or on a local intranet.

Details
By default, the WBROWSE command invokes the default web browser, which displays
SAS Institute’s home page (Support.sas.com). If you specify a URL then that location is
displayed instead. Note that you must enclose the URL in double quotations. The
default page the web browser opens can be changed in the Preferences dialog box Web
page.

See Also

� “Setting Session Preferences” on page 59

WCOPY Command

Copies the marked contents of the active window to the Windows clipboard.

Windows specifics: all

Syntax
WCOPY

Details
WCOPY is intended to be used with the toolbar commands. When you enter the
WCOPY command and the active window is a text window, the active window’s menu is

362 WCUT Command � Chapter 17

searched for a COPY item. If there is a COPY item, the marked contents is copied to
the Windows clipboard. If there is no COPY item, WCOPY will execute the STORE
command.

See Also

� “STORE Command” on page 354

WCUT Command

Moves the marked contents of the active window to the Windows clipboard.

Windows specifics: all

Syntax
WCUT

Details
WCUT is intended to be used with the toolbar commands and is valid only when the
active window is an editor window, such as the PROGRAM EDITOR window. When you
enter the WCUT command, the active window’s menu is searched for a CUT item. If
there is a CUT item, the marked contents of the active window are moved to the
Windows clipboard. If there is no CUT item, WCUT will execute the CUT command.

See Also

� “CUT Command” on page 334

WDOCKVIEW Command

Toggles the Docking View on and off.

Windows specifics: all

Syntax
WDOCKVIEW <ON | OFF>

no argument
toggles the Docking View on and off.

ON
turns the Docking View on.

Commands under Windows � WDOCKVIEWRESIZE Command 363

OFF
turns the Docking View off

Details
The Docking View allows for easy navigation within the main SAS window. When the
Docking View is enabled, windows that can be docked (integrated with the main SAS
window) such as the SAS Explorer and Results windows, display on the left side of the
main SAS window. When you click on an item in a docked window that opens another
window, such as the output from a procedure listed in the Results window, the window
opens on the right side of the main SAS window. You navigate between docked windows
using tabs.

See Also

� “Using the Docking View” on page 37
� “Setting Session Preferences” on page 59

WDOCKVIEWMINIMIZE Command

Minimizes the Docking View window.

Windows specifics: all

Syntax
WDOCKVIEWMINIMIZE

Details
WDOCKVIEWMINIMIZE minimizes the Docking View window.

See Also

� “WDOCKVIEWRESTORE Command” on page 364
� “Using the Docking View” on page 37

WDOCKVIEWRESIZE Command

Start Resize mode for moving the Docking View split bar.

Windows specifics: all

Syntax
WDOCKVIEWRESIZE

364 WDOCKVIEWRESTORE Command � Chapter 17

Details
When you type WDOCKVIEWRESIZE in the command bar, SAS starts a resize mode.
In Resize mode, you can move the Docking View split bar either by using the mouse or
by using the left and right arrow keys on the keyboard. When you press the Ctrl key
followed by either the left or right arrow keys, the amount of space that the split bar
moves is increased. To end Resize mode, press Enter.

You can also start the Docking View Resize mode by typing Alt + W + S or by
selecting Window � Size Docking View

See Also

� “Resizing the Docking View in the Main SAS Window” on page 81

WDOCKVIEWRESTORE Command

Restores the Docking View window from the task bar.

Windows specifics: all

Syntax
WDOCKVIEWRESTORE

Details
WDOCVIEWRESTORE restores the Docking View window to the left side of the main
SAS window.

See Also

� “WDOCKVIEWMINIMIZE Command” on page 363

� “Using the Docking View” on page 37

WEDIT Command

Opens an Enhanced Editor window and also enables or disables the Enhanced Editor.

Windows specifics: all

Syntax
WEDIT <“filename”> <USE|NOUSE>

Commands under Windows � WEMAILFMT Command 365

no argument
opens an Enhanced Editor window.

“filename”
specifies the name of a file to open in the Enhanced Editor. The filename should be in
double quotation marks. If specified, filename must be the first argument.

USE
specifies to enable the Enhanced Editor and to open an Enhanced Editor window.

NOUSE
specifies to disable the Enhanced Editor. An Enhanced Editor window is not opened.

Details
When you use the WEDIT command to enable the Enhanced Editor, the Use Enhanced
Editor check box is selected in the Edit page of the Preferences dialog box. Similarly,
when you use the WEDIT command to disable the Enhanced Editor, the Use Enhanced
Editor check box is deselected.

See Also

� “Setting Session Preferences” on page 59

� “Using the Enhanced Editor” on page 86

WEMAILFMT Command

Specifies the format to use when attaching the contents of a text window to an electronic mail
message.

Windows specifics: all

Syntax
WEMAILFMT TEXT|RTF

TEXT
attaches the contents of the current SAS text window as a plain text file.

RTF
attaches the contents of the current SAS text window as a rich text format (RTF) file.

Details
If the current SAS window contains graphics, the contents of the windows are

automatically attached as a Windows bitmap file.
When you use the WEMAILFMT command, the Mail current window as

attachment check box is updated in the General tabbed page of the Preferences dialog
box.

366 WEXITSAVE Command � Chapter 17

See Also

� “Sending E-Mail Using SAS” on page 42
� “WATTACH Command” on page 359
� “DLGSMAIL Command” on page 346

WEXITSAVE Command

Toggles saving your settings when you exit SAS.

Window specifics: all

Syntax
WEXITSAVE <ON | OFF>

no argument
toggles the saving of your settings when you exit SAS.

ON
saves your settings when you exit SAS.

OFF
does not save your settings when you exit SAS.

Details
You can also toggle this setting in the Preferences dialog box General page.

See Also

� “Setting Session Preferences” on page 59

WFILE Command

Saves the contents of the active window.

Windows specifics: all

Syntax
WFILE

Details
The WFILE command saves the contents of the active window to a file.

Commands under Windows � WHSBAR Command 367

See Also

� Enhanced Editor section “Saving Files” on page 88

� Program Editor section “Saving Files” on page 117

WHIDECURSOR Command

Suppresses the display of the cursor in SAS windows that do not allow text input.

Windows specifics: all

Syntax
WHIDECURSOR <ON | OFF>

no argument
toggles between hiding and displaying the cursor.

ON
hides the cursor.

OFF
displays the cursor.

Details
The WHIDECURSOR command inhibits the display of the default text cursor in
windows that do not allow text input, such asSAS/EIS and SAS/AF software. You can
also toggle the WHIDECURSOR setting in the Preferences dialog box Advanced page.

See Also

� “Setting Session Preferences” on page 59

WHSBAR Command

Toggles the horizontal scroll bars on and off.

Windows specifics: all

Syntax
WHSBAR <ON | OFF>

no argument
toggles the horizontal scroll bars on and off.

368 WINSERT Command � Chapter 17

ON
displays the horizontal scroll bars.

OFF
hides the horizontal scroll bars.

Details
You can also toggle this setting in the Preferences dialog box View page.

See Also

� “Setting Session Preferences” on page 59

WINSERT Command

Toggles insert mode on and off.

Windows specifics: all

Syntax
WINSERT <ON | OFF>

no argument
toggles the insert mode on and off.

ON
enables the insert mode.

OFF
enables the overstrike mode.

Details
You can also toggle this setting by pressing the INSERT key on your keyboard or by
modifying the Overtype mode option in the Preferences dialog box Edit tabbed page.

See Also

� “Setting Session Preferences” on page 59

WMENUPOP Command

Toggles the pop-up menus in the SAS application windows on and off.

Windows specifics: all

Commands under Windows � WMRU Command 369

Syntax
WMENUPOP <ON | OFF>

no argument
toggles the pop-up menus on and off.

ON
turns the pop-up menus on.

OFF
turns the pop-up menus off.

Details
By default, the pop-up menus are on. You can access the pop-up menu for a window by
clicking the right mouse button inside the window client area.

When used with the -NOAWSMENU system option, this command makes all menu
selections unavailable to the user. This technique can be useful when developing
SAS/AF applications in which you want to restrict the actions of the end user.

See Also

� “AWSMENU System Option” on page 499

� “PMENU Command” on page 353

� “WPOPUP Command” on page 372

WMRU Command

Retains the names of the most recently used files in the File menu.

Windows specifics: all

Syntax
WMRU <<ON> <NUM=number-of-filenames><CASCADE>>| <OFF>

no arguments
toggles the file list on and off.

ON NUM=number-of-filenames
turns the file list on and maintains number-of-filenames filenames in the list. The
number-of-filenames argument can be an integer from 1 to 30. If you omit
number-of-filenames, the last number specified for the most recently used files is used.

CASCADE
specifies that the most recently used files list can be accessed from the File menu
Recent Files submenu.

OFF
turns the file list off.

370 WNAVKEYUNMARK Command � Chapter 17

Details
When you open or save a file using the Open or Save As dialog boxes, SAS adds the
filename to the recently used file list in the File menu or the Recent Files submenu.
You can open a recently used file in a SAS editor window by making the editor the
active window and selecting its name from the File menu or the Recent Files
submenu. By default, SAS retains four filenames in the list.

You can also configure these settings in the Preferences dialog box General page.

See Also

� “Setting Session Preferences” on page 59

WNAVKEYUNMARK Command

Toggles the setting for enabling unmarking of text using navigational keys.

Windows specifics: all

Syntax
WNAVKEYUNMARK <ON | OFF>

no argument
toggles the Enable unmarking with navigation keys setting on and off.

ON
turn the Enable unmarking with navigation keys setting on.

OFF
turns the Enable unmarking with navigation keys setting off.

Details
You can access the Enable unmarking with navigation keys setting by selecting
Tools � Options � Preferences � Edit.

When the Enable unmarking with navigation keys setting is selected, you can
unmark text by using the up, down, left, and right navigation keys.

See Also

� “Setting Session Preferences” on page 59

WNEWTITLE Command

Clears the contents of the active window and removes its title.

Windows specifics: all

Commands under Windows � WPASTE Command 371

Syntax
WNEWTITLE

Details
When you save the contents of a SAS window to a file, SAS assigns the filename as the
title of the window. You can use the WNEWTITLE command to clear the active window
and remove that title (reverting to Untitled).

If used in the LOG or OUTPUT window, this command clears the contents of the
window and changes the name to Untitled. If this command is used in the Program
Editor window, SAS prompts you to save the contents of the window before clearing it
and removing the title. If this command is used in the Enhanced Editor window, SAS
opens a new, untitled, Enhanced Editor window.

WNEXTEDIT Command

Toggles between all Enhanced Editor windows that are currently open.

Windows specifics: all

Syntax
WNEXTEDIT

Details
You can use the WNEXTEDIT command to move between Enhanced Editor windows.

See Also

� “WPGM Command” on page 372

WPASTE Command

Pastes the contents of the Windows clipboard into the active window.

Windows specifics: all

Syntax
WPASTE

372 WPGM Command � Chapter 17

Details
WPASTE is intended to be used with the toolbar commands. When you enter the
WPASTE command, the active window’s menu is searched for a PASTE item. If there is
a PASTE item and the clipboard contains text, WPASTE will execute as if you selected
PASTE from the menu. If there is no PASTE item, WPASTE will execute the PASTE
command.

See Also

� “PASTE Command” in the SAS Help and Documentation

WPGM Command

Changes the active window to the editor window that was most recently edited.

Windows specifics: all

Syntax
WPGM

Details
The behavior of the WPGM command depends on the setting of the Use Enhanced
Editor check box. The check box is available from the Edit tab in the Preferences
dialog box. If the Use Enhanced Editor check box is selected and you issue the
WPGM command, the active window becomes the Enhanced Editor window that was
most recently edited. If the Use Enhanced Editor check box is not selected, the active
window becomes the Program Editor.

Issuing the WPGM command repeatedly displays the open Enhanced Editor windows
in the order of the most recently edited window to the least recently edited.

See Also

� “WNEXTEDIT Command” on page 371

WPOPUP Command

Causes the pop-up menus for a window to appear.

Windows specifics: all

Syntax
WPOPUP

Commands under Windows � WSCREENTIPS Command 373

Details
You can access the pop-up menu for a window by clicking the right mouse button inside
the window client area. By default under Windows, this command is associated with
the right mouse button.

See Also

� “WMENUPOP Command” on page 368

WRTFSAVE Command

Saves the contents of the current text window to an RTF file.

Windows specifics: all

Syntax
WRTFSAVE “filename” <NOPROMPT>

filename
is a required argument and can include a file path. If you specify a filename without a
path, the file is saved in the current SAS working folder. The WRTFSAVE command
does not automatically append the .RTF file extension. If you want the resulting
filename to end in .RTF, be sure to include it as part of the filename that you specify.

NOPROMPT
specifies that if a file with the same filename already exists, that file will be
overwritten without prompting you with a confirmation dialog box.

Details
The WRTFSAVE command saves the contents of the active window in .RTF format. The
contents of the active window must be text. This command performs the same action as
the Save As dialog box when you select .rtf from the Save file as type list.
However, WRTFSAVE saves the file without displaying an intermediate dialog box.

Note: The WRTFSAVE command does not work with the enhanced editor. �

WSCREENTIPS Command

Toggles the ScreenTips on and off.

Windows specifics: all

Syntax
WSCREENTIPS <ON | OFF>

374 WSTATUSLN Command � Chapter 17

no argument
toggles the ScreenTips on and off.

ON
displays helpful cues for the status bar, window bar and tabs within the main SAS
window.

OFF
turns off the ScreenTips.

Details
ScreenTips are the helpful cues that appear over the status bar, window bar and tabs in
the main SAS window as you position the mouse pointer over them.

The WSCREENTIPS command specifies whether the ScreenTips text is displayed
when you move the cursor over the status bar, window bar, or tabs in the main SAS
window.

Note: Do not confuse ScreenTips with ToolTips. ToolTips display helpful cues for
tools. You can also toggle the ScreenTips setting in the Preferences dialog box View
page. �

See Also

� “TOOLTIPS Command” on page 358

� “Setting Session Preferences” on page 59

WSTATUSLN Command

Toggles the status bar on and off, and specifies the area proportions.

Windows specifics: all

Syntax
WSTATUSLN <ON | OFF> <ALL | MSG<=percent-msg> |

CDIR<=percent-cdir><CURPOS>>

no arguments
toggles the status bar on and off.

The first argument is optional, but if you specify it, you must include it before the
second group of options:

ON
displays the status bar in its most recent active state. If the status bar includes a
message area, the message lines in the SAS application windows are disabled. ON is
the default setting.

Commands under Windows � WUNDO Command 375

OFF
turns off the status bar. This action enables the message lines in the SAS application
windows.

The second group of arguments is also optional. Note that specifying these options
without specifying the ON option first does not automatically turn the status bar on if it
is currently off.

ALL
includes both the message area and the current folder areas on the status bar. If you
do not specify the MSG and CDIR options with percentage values, the status bar
proportions revert to the most recent settings. ALL is the default setting.

MSG<=percent-msg>
includes the message area as part of the status bar. If you specify this option without
the CDIR option, the message area occupies the entire status bar. If you specify a
percentage with this option and with the CDIR option, the message area occupies the
proportion of the line that you specify.

CDIR<=percent-cdir>
includes the current folder as part of the status bar. If you specify this option
without the MSG option, the current folder area occupies the entire status bar. If you
specify a percentage with this option and with the MSG option, the current folder
area occupies the proportion of the line that you specify.

CURPOS
includes the Enhanced Editor cursor position (line and column) in the status bar
when the Enhanced Editor is the active window.

Details
The WSTATUSLN command specifies whether the status bar of the active window is on
or off and specifies the proportions of the status bar that the message area and the
current folder area occupy. You can also toggle the status bar in the Preferences dialog
box View page.

Example

To display a status bar that is evenly divided between the message display and the
current folder display, issue the following command:

wstatusln on msg=50 cdir=50

See Also

� “Setting Session Preferences” on page 59

WUNDO Command

Undoes the last CUT, COPY, or PASTE toolbar action.

Windows specifics: all

376 WVSBAR Command � Chapter 17

Syntax
WUNDO

Details
When you enter the WUNDO command, the active window’s menu is searched for an
undo item. If there is an undo item, WUNDO will execute as if you selected UNDO from
the menu. If there is no undo item, WUNDO will execute the UNDO command. Some
windows might not have an undo command.

WVSBAR Command
Toggles the vertical scroll bars on and off.

Windows specifics: all

Syntax
WVSBAR <ON | OFF>

no argument
toggles the vertical scroll bars on and off.

ON
displays the vertical scroll bars.

OFF
hides the vertical scroll bars.

Details
You can also toggle this setting in the Preferences dialog box View page.

See Also

� “Setting Session Preferences” on page 59

WWINDOWBAR Command
Toggles the window bar on and off.

Windows specifics: all

Syntax
WWINDOWBAR <ON | OFF>

Commands under Windows � X Command 377

no argument
toggles the window bar on or off.

ON
displays the window bar in the main SAS window.

OFF
does not display the window bar in the main SAS window.

Details
If the window bar is on, it displays at the bottom of the main SAS window just above
the status bar. SAS windows minimize to the window bar. You can bring a window to
the front by clicking on the window’s button in the window bar. To open a file in an
open application, such as one of the editors, you drag the file to the application’s button
in the window bar (which brings the application to the front) and then drag the file to
the application’s window. When the window bar is off, SAS windows minimize to small
title bars.

You can also turn the window bar on and off using the Preferences dialog box View
page.

See Also

� “Customizing Your Windowing Environment with Commands” on page 63

� “Setting Session Preferences” on page 59

X Command

Enters operating environment mode or allows you to submit a Windows command without ending
your SAS session.

Windows specifics: valid values for command syntax

Syntax
X <’command ’>;

no argument
open a DOS command window.

command
specifies the command that you want to execute.

Details
This form of the X command issues one command. The command is passed to the
operating environment and executed. If errors occur, the appropriate error messages
are displayed.

378 ZOOM Command � Chapter 17

See Also

� “X Command” in the SAS Help and Documentation
� “Running Windows or MS-DOS Commands from within SAS” on page 26
� “XCMD System Option” on page 586
� “XSYNC System Option” on page 588
� “XWAIT System Option” on page 589

ZOOM Command

Maximizes the active window.

Windows specifics: all

Syntax
ZOOM <ON | OFF>

ON
maximizes the active window.

OFF
returns the active window to the default size.

Details
When you maximize one application window, the SAS windowing environment enters a
maximized mode. As you switch between active windows, each window you select will
be maximized. When you restore one of the application windows to its original size, all
windows are restored.

See Also

� “ZOOM Command” in the SAS Help and Documentation

379

C H A P T E R

18
SAS Formats under Windows

SAS Formats under Windows 379
Writing Binary Data 379

Accessing User-Written Formats from Earlier Releases to SAS 9.2 380

HEXw. Format 380

$HEXw. Format 381

IBw.d Format 381
PDw.d Format 383

PIBw.d Format 384

RBw.d Format 385

ZDw.d Format 386

SAS Formats under Windows
A SAS format is an instruction or template that SAS uses to write data values. Most

SAS formats are described completely in SAS Language Reference: Dictionary. The
formats that are described here have behavior that is specific to Windows.

Many of the SAS formats that have details specific to the Windows operating
environment are used to write binary data. In using these formats, it is important that
you understand the concepts that are presented in “Writing Binary Data” on page 379.

If you have formats that you created for use in earlier releases of SAS, see “Accessing
User-Written Formats from Earlier Releases to SAS 9.2” on page 380 for information
about how to convert those formats for use with SAS 9.2.

Writing Binary Data
IBM mainframes, Hewlett Packard 9000, and most other UNIX systems store bytes

in one order, called big-endian. Intel-based, or IBM compatible microcomputers and the
VAX and Alpha computers manufactured by Compaq store bytes in a different order
called byte-reversed, or little-endian.

Binary data stored in one order cannot be read by a computer that stores binary data
in the other order without additional processing taking place. When you are designing
SAS applications, try to anticipate how your data will be read and choose your formats
and informats accordingly.

SAS provides two sets of informats for reading binary data and corresponding
formats for writing binary data.

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

380 Accessing User-Written Formats from Earlier Releases to SAS 9.2 � Chapter 18

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS
programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage
systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then on the microcomputer you run another SAS program that
uses the PIBw.d informat to read the data. The data are read correctly because both of
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

Accessing User-Written Formats from Earlier Releases to SAS 9.2
Version 6.12, 7, and 8 formats (catalogs) are readable in SAS 9 on 32–bit SAS for

Windows. If you are on 64–bit SAS for Windows, you must use PROC CPORT and
CIMPORT to convert. For more information on PROC CPORT and CIMPORT see Base
SAS Procedures Guide.

If you are on 32–bit SAS for Windows, and you want to migrate a SAS library, PROC
MIGRATE is the recommended method.

Note: User-defined formats are stored as catalog entries. �

HEXw. Format

Converts real binary (floating-point) values to hexadecimal values.

Category numeric
Width range: 1–16
Default width: 8
Alignment: left
Windows specifics: native floating–point representation
See: HEXw. in SAS Language Reference: Dictionary

Syntax
HEXw.

Formats under Windows � IBw.d Format 381

w
specifies the width of the output field. When you specify a w value of 1 through 15,
the real binary number is truncated to a fixed-point integer before being converted to
hexadecimal notation. When you specify 16 for the w value, the floating-point value
of the number is used; in other words, the number is not truncated.

See Also

� “$HEXw. Format” on page 381
� “HEXw. Informat” on page 421

$HEXw. Format

Converts character values to hexadecimal values.

Category character
Width range: 1–32767
Default width: 4
Alignment: left
Windows specifics: ASCII character–encoding system
See: $HEXw. in SAS Language Reference: Dictionary

Syntax
$HEXw.

w
specifies the width of the output field.

Details
The $HEXw. format is like the HEXw. format in that it converts a character value to
hexadecimal notation, with each byte requiring two columns. Under Windows, the
$HEXw. format produces hexadecimal representations of ASCII codes for characters.

See Also

� “HEXw. Format” on page 380
� “$HEXw. Informat” on page 422

IBw.d Format

Writes values in integer binary (fixed-point) format.

Category numeric

382 IBw.d Format � Chapter 18

Width range: 1–8

Default width: 4

Decimal range: 0–10

Alignment: left

Windows specifics: native floating-point representation

See: IBw.d in SAS Language Reference: Dictionary

Syntax
IBw.d

w
specifies the width of the output field in bytes (not digits).

d
specifies a scaling factor. When you specify a d value, the IBw.d format multiplies
the number by 10d, and then applies the integer binary format to that value.

Details
The IBw.d format converts a double-precision number and writes it as an integer
binary (fixed-point) value. Integers are stored in integer-binary (fixed-point) form.

For more information about microcomputer fixed-point values, see the Intel developer
Web site.

Examples

Example 1: Processing a Positive Number If you format 1.0 as the double-precision
number, it is stored as an integer:

01 00 00 00 00 00 00 00

(Remember, Windows stores binary data in byte-reversed order.) The value written
depends on the w value you specify.

If you specify the IB4. format, you receive the following value:

01 00 00 00

If you specify the IB2. format, you receive the following value:

01 00

Example 2: Processing a Negative Number If you try to format −1 with the IB4.
format, you receive the following value:

FF FF FF FF

If you specify the IB2. format, you receive the following value:

FF FF

Example 3: Processing a Number That Is Too Large to Format When a numeric value
is too large to format, the result is largest integer value that can be stored in four bytes,
which is 2,147,483,647.

Formats under Windows � PDw.d Format 383

In the following code

data a;
x = 9999999999999999999;
y = put(x, IB8.);
put y = hex16.;

run;

SAS returns the hexadecimal representation of 2147483647

y=FFFFFFFFFFFFFF7F

See Also

� “IBw.d Informat” on page 422

� “Writing Binary Data” on page 379

PDw.d Format

Writes values in packed decimal data.

Category numeric

Width range: 1–16

Default width: 1

Decimal range: 1–31

Alignment: left

Windows specifics: How the values are interpreted as negative or positive

See: PDw.d in SAS Language Reference: Dictionary

Syntax

PDw.d

w
specifies the width of the output field in bytes (not digits).

d
specifies a scaling factor. When you specify a d value, the PDw.d format multiplies
the number by 10d, and then applies the packed decimal format to that value.

Details

The PDw.d format writes double-precision numbers in packed decimal format. In
packed decimal data, each byte contains two digits. The w value represents the number
of bytes, not the number of digits. The value’s sign is in the uppermost bit of the first
byte (although the entire first byte is used for the sign).

384 PIBw.d Format � Chapter 18

Examples

Example 1: Processing a Positive Number If you format 1143.0 using the PD2.
format, you receive the following value:

00 43

If you specify PD4., you receive the following value:

00 00 11 43

Example 2: Processing a Negative Number If you format −1143.0 using the PD2.
format, you receive the following value:

80 43

If you specify the PD4. format, you receive the following value:

80 00 11 43

Example 3: Processing a Number That Is Too Large To Format When a numeric value
is too large to format, as in this example

data a;
x = 1e308;
y = put(x, PD16.2);
put y = hex16.;

run;

the result is

y=0099999999999999

See Also

� “PDw.d Informat” on page 423
� “Writing Binary Data” on page 379

PIBw.d Format

Writes values in positive integer-binary (fixed-point) format.

Category numeric
Width range: 1–8
Default width: 1
Decimal range: 0–10
Alignment: left
Windows specifics: native byte-swapped integers
See: PIBw.d in SAS Language Reference: Dictionary

Syntax
PIBw.d

Formats under Windows � RBw.d Format 385

w
specifies the width of the output field in bytes (not digits).

d
specifies a scaling factor. When you specify a d value, the PIBw.d format multiplies
the number by 10d, and then applies the positive integer binary format to that value.

Details
The PIBw.d format converts a fixed-point value to an integer binary value. If the
fixed-point value is negative, the PIBw.d format writes the integer representation for −1.

For more information about microcomputer fixed-point values, see the Intel developer
Web site.

Examples

Example 1: Processing a Number That Is Too Large To Format When a numeric value
is too large to format, the result is the largest integer value that can be stored in four
bytes, which is 2,147,483,647.

In the following code

data a;
x = 9999999999999999999;
y = put(x, PIB8.);
put y = hex16.;

run;

SAS returns the hexadecimal representation of 2147483647

y=0000E8890423C78A

See Also

� “PIBw.d Informat” on page 424
� “Writing Binary Data” on page 379

RBw.d Format

Writes values real-binary (floating-point) format.

Category numeric
Width range: 2–8
Default width: 4
Decimal range: 0–10
Alignment: left
Windows specifics: native floating–point representation
See: RBw.d in SAS Language Reference: Dictionary

Syntax
RBw.d

386 ZDw.d Format � Chapter 18

w
specifies the width of the output field.

d
specifies a scaling factor. When you specify a d value, the RBw.d format multiplies
the number by 10d, and then applies the real binary format to that value.

Details
The RBw.d format writes numeric data in real binary (floating-point) notation. Numeric
data for scientific calculations are commonly represented in floating-point notation.
(SAS stores all numeric values in floating-point notation.) A floating-point value
consists of two parts: a mantissa that gives the value and an exponent that gives the
value’s magnitude.

Real binary is the most efficient format for representing numeric values because SAS
already represents numbers this way and no conversion is needed.

For more information about Windows floating-point notation, see the Intel developer
Web site.

Examples

Example 1: Processing a Number That Is Too Large To Format When a numeric value
is too large to format, as in this example

data a;
x = 1e308;
y = put(x, RB8.2);
put y = hex16.;

run;

the result is

y=0000000000D1FFFF

See Also

� “RBw.d Informat” on page 425

� “Writing Binary Data” on page 379

ZDw.d Format

Writes zoned decimal data.

Category numeric

Width range: 1–32

Default width: 1

Decimal range: 1–10

Alignment: left

Formats under Windows � ZDw.d Format 387

Windows specifics: Last byte includes the sign.
See: ZDw.d in SAS Language Reference: Dictionary

Syntax
ZDw.d

w
specifies the number of bytes (not the number of digits).

d
specifies the number of digits to the right of the decimal point in the numeric value.

Details
The ZDw.d format writes zoned decimal data. This method is also known as an
overprint trailing numeric format. In the Windows operating environment, the last byte
of the field contains the sign information of the number. The following table gives the
conversion for the last byte.

Digit ASCII Character Digit ASCII Character

0 { −0 }

1 A −1 J

2 B −2 K

3 C −3 L

4 D −4 M

5 E −5 N

6 F −6 O

7 G −7 P

8 H −8 Q

9 I −9 R

Examples

Example 1: Processing a Number That Is Too Large To Format When a numeric value
is too large to format, as in this example

data a;
x = 1e308;
y = put(x, ZD32.2);
put y = hex16.;

run;

the result is a sequence of 39s:

y=3939393939393939

388 ZDw.d Format � Chapter 18

See Also

� “ZDw.d Informat” on page 426

389

C H A P T E R

19
SAS Functions and CALL
Routines under Windows

SAS Functions and Call Routines under Windows 389
BYTE Function 390

CALL SOUND Routine 390

CALL SYSTEM Routine 391

COLLATE Function 393

DINFO Function 394
DOPEN Function 395

DOPTNAME Function 396

DOPTNUM Function 397

FDELETE Function 397

FEXIST Function 398

FILEEXIST Function 398
FILENAME Function 399

FILEREF Function 400

FINFO Function 400

FOPTNAME Function 404

FOPTNUM Function 406
LIBNAME Function 407

MCIPISLP Function 408

MCIPISTR Function 409

MODULE Function 410

PEEKLONG Function 412
RANK Function 413

SLEEP Function 413

TRANSLATE Function 414

WAKEUP Function 415

SAS Functions and Call Routines under Windows
A SAS function returns a value from a computation or system operation. SAS CALL

routines are used to alter variable values or perform other system functions. Most SAS
functions and CALL routines are completely described in the SAS functions and CALL
routines portion of SAS Language Reference: Dictionary. The functions and CALL
routines that are described here have syntax or behavior specific to the Windows
operating environment.

390 BYTE Function � Chapter 19

BYTE Function

Returns one character in the ASCII collating sequence.

Category: Character

Windows specifics: Uses the ASCII code sequence

See: BYTE Function in SAS Language Reference: Dictionary

Syntax
BYTE(n)

n
specifies an integer that represents a specific ASCII character. The value of n can
range from 0 to 255.

Details
If the BYTE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 1.

Because Windows is an ASCII system, the BYTE function returns the nth character
in the ASCII collating sequence. The value of n can range from 0 to 255.

Any programs using the BYTE function with characters above ASCII 127 (the
hexadecimal notation is ’7F’x) can return a different value when used on a PC from
another country as characters above ASCII 127 are national characters and they vary
from country to country.

CALL SOUND Routine

Generates a sound with a specific frequency and duration.

Category: Special

Windows specifics: all

Syntax
CALL SOUND(frequency,duration);

frequency
specifies the sound frequency in terms of cycles per second. The frequency must be at
least 20 and no greater than 20,000.

duration
specifies the sound duration in milliseconds. The default is -1.

Functions and CALL Routines under Windows � CALL SYSTEM Routine 391

Example

Example 1: Producing a Tone The following statement produces a tone of frequency
523 cycles per second (middle C) lasting 2 seconds:

data _null_;
call sound(523,2000);

run;

CALL SYSTEM Routine

Submits an operating system command or a Windows application for execution.

Category: Special
Windows specifics: command must be a valid Windows command
See: CALL SYSTEM Routine in SAS Language Reference: Dictionary

Syntax
CALL SYSTEM(command);

command
can be any of the following:

� an operating system command enclosed in quotes or the name of a Windows
application that is enclosed in quotes.

� an expression whose value is an operating system command or the name of a
Windows application.

� the name of a character variable whose value is an operating system command
or the name of a Windows application.

Details
If you are running SAS interactively, the command executes in a command prompt
window. By default, you must type exit to return to your SAS session.

Note: The CALL SYSTEM function is not available if SAS is started with
NOXCMD. �

Comparison
The CALL SYSTEM routine is similar to the X command. However, the CALL
SYSTEM routine is callable and can therefore be executed conditionally.

The values of the XSYNC and XWAIT system options affect how the CALL SYSTEM
routine works.

392 CALL SYSTEM Routine � Chapter 19

Examples

Example 1: Executing Operating System Commands Conditionally If you want to
execute operating system commands conditionally, use the CALL SYSTEM routine:

options noxwait;
data _null_;

input flag $ name $8.;
if upcase(flag)=’Y’ then

do;
command=’md c:\’||name;
call system(command);

end;
datalines;

Y mydir
Y junk2
N mydir2
Y xyz
;

This example uses the value of the variable FLAG to conditionally create directories.
After the DATA step executes, three directories have been created: C:\MYDIR,
C:\JUNK2, and C:\XYZ. The directory C:\MYDIR2 is not created because the value of
FLAG for that observation is not Y.

The X command is a global SAS statement. Therefore, it is important to realize that
you cannot conditionally execute the X command. For example, if you submit the
following code, the X statement is executed:

data _null_;
answer=’n’;
if upcase(answer)=’y’ then

do;
x ’md c:\extra’;

end;
run;

In this case, the directory C:\EXTRA is created regardless of whether the value of
ANSWER is equal to ’n’ or ’y’.

Example 2: Obtaining a Directory Listing You can use the CALL SYSTEM routine to
obtain a directory listing:

data _null_;
call system(’dir /w’);

run;

In this example, the /W option for the DIR command instructs Windows to print the
directory in the wide format instead of a vertical list format.

See Also

� “X Command” on page 377

� “XSYNC System Option” on page 588

� “XWAIT System Option” on page 589

Functions and CALL Routines under Windows � COLLATE Function 393

COLLATE Function

Returns an ASCII collating sequence character string.

Category: Character
Windows specifics: Uses the ASCII code sequence
See: COLLATE Function in SAS Language Reference: Dictionary

Syntax
COLLATE (start-position<,end-position>)|(start-position<,,length>)

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

length
specifies the number of characters in the returned collating sequence.

Details
The COLLATE function returns a string of ASCII characters that range in value from 0
to 255. The string that is returned by the COLLATE function begins with the ASCII
character that is specified by the start-position argument. If the end-position argument
is specified, the string returned by the COLLATE function contains all the ASCII
characters between the start-position and end-position arguments. If the length
argument is specified instead of the end-position argument, then the COLLATE
function returns a string that contains a value for length. The returned string ends, or
truncates, with the character having the value 255 if you request a string length that
contains characters exceeding this value.

The default length of the return string value is 200 characters. To return a length of
201 to 256 ASCII characters, use a format such as $256 for the return string variable or
explicitly define the variable’s length, such as length y $260.

Any programs using the COLLATE function with characters above ASCII 127 (the
hexadecimal notation is ’7F’x) can return a different value when used on a PC from
another country. Characters above ASCII 127 are national characters and they vary
from country to country.

Examples

Example 1: Returning an ASCII String Using the Return Variable Default String
Length In this example, the return code variable y uses the default return string
length of 200. Therefore, the COLLATE function returns 200 characters of the collating
sequence.

data _null_;
y = collate(1,256);

394 DINFO Function � Chapter 19

put y;
run;

Example 2: Returning an ASCII String Larger Than the Default Return Variable String
Length By formatting the return code variable to a length greater than 256, the
COLLATE function returns 256 characters of the collating sequence.

data _null_;
format y $260.;
y = collate(1,256);
put y;

run;

Example 3: Returning an ASCII String of a Specific Length In this example, the return
code variable y uses a return string length of 56, and the COLLATE function returns
the first 56 characters of the collating sequence.

data _null_;
y = collate(,,56);
put y;

run;

DINFO Function

Returns information about a directory.

Category: External Files
Windows specifics: directory pathname is the only information available
See: DINFO Function in SAS Language Reference: Dictionary

Syntax
DINFO(directory-id, info-item)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

info-item
specifies the information item to be retrieved. DINFO returns a blank if the value of
info-item is invalid.

Details
Directories that are opened with the DOPEN function are identified by a directory–id.
Use DOPTNAME to determine the names of the available system–dependent directory
information items. Use DOPTNUM to determine the number of directory information
items available.

Under Windows, the only info-item that is available is Directory, which is the
pathname of directory-id. If directory-id points to a list of concatenated directories, then
Directory is the list of concatenated directory names.

Functions and CALL Routines under Windows � DOPEN Function 395

Example of Obtaining Directory Information
data a;
rc=filename("tmpdir", "c:");
put "rc = 0 if the directory exists: " rc=;
did=dopen("tmpdir‘‘);
put did=;
numopts=doptnum(did);
put numopts=;
do i = 1 to numopts;

optname = doptname(did,i);
put i= optname=;
optval=dinfo(did,optname);
put optval=;

end;
run;

Output 19.1 The SAS Log Displays the Directory Information

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.03 seconds
cpu time 0.00 seconds

446 data a;
447 rc=filename("tmpdir", "c:");
448 put "rc = 0 if the directory exists: " rc=;
449 did=dopen("tmpdir");
450 put did=;
451 numopts=doptnum(did);
452 put numopts=;
453 do i = 1 to numopts;
454 optname = doptname(did,i);
455 put i= optname=;
456 optval=dinfo(did,optname);
457 put optval=;
458 end;
459 run;
rc = 0 if the directory exists: rc=0
did=1
numopts=1
i=1 optname=Directory
optval=C:\TEMP\elimal
NOTE: The data set WORK.A has 1 observations and 6 variables.
NOTE: DATA statement used (Total process time):

real time 0.08 seconds
cpu time 0.04 seconds

460 proc printto; run;

See Also

� “DOPEN Function” on page 395

DOPEN Function

Opens a directory and returns a directory identifier value.

Category: External Files

396 DOPTNAME Function � Chapter 19

Windows specifics: fileref can be assigned by using an environment variable
See: DOPEN Function in SAS Language Reference: Dictionary

Syntax
DOPEN(“fileref”)

fileref
specifies the fileref that is assigned to the directory.

Details
DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions. If the directory could not be opened, DOPEN returns 0. The directory to be
opened must be identified by a fileref.

DOPTNAME Function

Returns the name of a directory information item.

Category: External Files
Windows specifics: directory is the only item available
See: DOPTNAME Function in SAS Language Reference: Dictionary

Syntax
DOPTNAME(directory-id, nval)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

nval
specifies the sequence number of the option.

Details
Under Windows, the only directory information item that is available is Directory,
which is the pathname of directory-id. The nval, or sequence number, of Directory is 1.
If directory-id points to a list of concatenated directories, then Directory is the list of
concatenated directory names.

Example

For an example of using DOPTNAME, see “Example of Obtaining Directory
Information” on page 395.

Functions and CALL Routines under Windows � FDELETE Function 397

DOPTNUM Function

Returns the number of information items that are available for a directory.

Category: External Files

Windows specifics: directory is the only item available
See: DOPTNUM Function in SAS Language Reference: Dictionary

Syntax
DOPTNUM(directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details
Under Windows, only one information item is available for a directory. The name of the
item is Directory; its value is the pathname or list of pathnames for directory-id, and its
sequence number is 1. Since only one information item is available for a directory, this
function will return a value of 1.

Example

For an example of the DOPTNUM function, see “Example of Obtaining Directory
Information” on page 395.

FDELETE Function

Deletes an external file or an empty directory.

Category: External Files
Windows specifics: fileref can be assigned by using an environment variable
See: FDELETE Function in SAS Language Reference: Dictionary

Syntax
FDELETE(“fileref”)

fileref
specifies the fileref that is assigned to the external file or directory. The fileref cannot
be associated with a list of concatenated filenames or directories. If the fileref is
associated with a directory, the directory must be empty. You must have permission

398 FEXIST Function � Chapter 19

to delete the file. Under Windows, fileref can be an environment variable. The fileref
or the environment variable that you specify must be enclosed in quotation marks.

Details
FDELETE returns 0 if the operation was successful, and a non-zero number if it was
not successful.

FEXIST Function

Verifies the existence of an external file by its fileref.

Category: External Files
Windows specifics: fileref can be assigned with an environment variable
See: FEXIST Function in SAS Language Reference: Dictionary

Syntax
FEXIST(“fileref”)

fileref
specifies the fileref that is assigned to an external file. Under Windows, fileref can
also be an environment variable. The fileref or the environment variable that you
specify must be enclosed in quotation marks.

Details
FEXIST returns 1 if the external file that is associated with fileref exists, and 0 if the
file does not exist.

Example

For an example of using the FINFO function, see “Example of Obtaining File
Information” on page 401.

FILEEXIST Function
Verifies the existence of an external file by its physical name.

Category: External Files
Windows specifics: filename can be assigned with an environment variable
See: FILEEXIST Function in SAS Language Reference: Dictionary

Syntax
FILEEXIST(“filename”)

Functions and CALL Routines under Windows � FILENAME Function 399

filename
specifies a fully qualified physical filename of the external file. In a DATA step,
filename can be a character expression, a string in quotation marks, or a DATA step
variable. In a macro, filename can be any expression.

Under Windows, filename can also be an environment variable. The filename or
environment variable that you specify must be enclosed in quotation marks.

Note: The FILEEXIST function can also verify a directories existence. �

Details
FILEEXIST returns 1 if the external file exists and 0 if the external file does not exist.

FILENAME Function

Assigns or deassigns a fileref for an external file, directory, or output device.

Category: External Files
Windows specifics: device types and host options
See: FILENAME Function in SAS Language Reference: Dictionary

Syntax
FILENAME (“fileref”, “filename” <,device-type<,host-options<,dir-ref>>>)

fileref
in a DATA step, specifies the fileref to assign to the external file. In a macro (for
example, in the %SYSFUNC function), fileref is the name of a macro variable
(without an ampersand) whose value contains the fileref to assign to the external file.
(See SAS Language Reference: Dictionary for details.)

Under Windows, fileref can also be a Windows environment variable. The fileref or
the environment variable that you specify must be enclosed in quotation marks.

filename
specifies the external file. Specifying a blank filename clears the fileref that was
previously assigned.

Under Windows, the filename differs according to the device type. Table 5.2 on
page 157 shows the information that is appropriate to each device. The filename that
you specify must be enclosed in quotation marks.

device-type
specifies type of device or the access method that is used if the fileref points to an
input or output device or location that is not a physical file. It can be any one of the
devices that are listed in FILENAME statement device-type argument on page 454.
DISK is the default device type.

host-options
are options that are specific to Windows. You can use any of the options that are
available in the FILENAME statement. See the FILENAME statement
host-option-list on page 455.

400 FILEREF Function � Chapter 19

dir-ref
specifies the fileref that is assigned to the directory in which the external file resides.

Details
FILENAME returns a value of 0 if the operation was successful, and a non-zero number
if the operation was not successful.

Example

For an example of using the FILENAME function, see “Example of Obtaining File
Information” on page 401.

FILEREF Function

Verifies that a fileref has been assigned for the current SAS session.

Category: External Files
Windows specifics: the fileref argument can specify a Windows environment variable
See: FILEREF Function in SAS Language Reference: Dictionary

Syntax
FILEREF(“fileref”)

fileref
specifies the fileref to be validated. Under Windows, fileref can also be a Windows
environment variable. The fileref or the environment variable that you specify must
be enclosed in quotation marks.

Details
A negative return code indicates that the fileref exists but the physical file associated
with the fileref does not exist. A positive value indicates that the fileref is not assigned.
A value of zero indicates that the fileref and external file both exist.

Example

For an example of using the FILEREF function, see “Example of Obtaining File
Information” on page 401.

FINFO Function

Returns the value of an information item for an external file.

Category: External Files

Functions and CALL Routines under Windows � FINFO Function 401

Windows specifics: available info-items
See: FINFO Function in SAS Language Reference: Dictionary

Syntax
FINFO(file-id, info-item)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

info-item
specifies the name of the file information item to be retrieved. This item is a
character value. Info-item is either a variable that contains a file information name
or the file information name that has been enclosed in quotation marks.

info-item for disk files can be one of these file information items:
� Create Time: ddmmmyyyy:hh:mm:ss

Note: The Create Time date/time information item will be localized to the
site’s locale. The date/time format might appear slightly different in the locale. �

� Last Modified: ddmmmyyyy:hh:mm:ss
� Filename
� File size (bytes)
� RECFM
� LRECL

info-item for pipe files can be one of these file information items:
� Unnamed pipe access device
� PROCESS
� RECFM
� LRECL

Details
The FINFO function returns the value of a system-dependent information item for an
external file that was previously opened and assigned a file-id by the FOPEN function.
FINFO returns a blank if the value given for info-item is invalid.

Example of Obtaining File Information
data a;

/* Does fileref "curdirfl" exist? No = 0 */

rc=fexist ("curdirfl");
put;
put "Fileref curdirfl exist? rc should be 0 (no); " rc=;

/* assign fileref */

rc=filename("curdirfl", "c:\tmp333");

402 FINFO Function � Chapter 19

/* RC=0 indicates success in assigning fileref */

put "Fileref assigned - rc should be 0; " rc=;
rc=fexist ("curdirfl");

/* Does file which "curdirfl" points to exist? No = 0 */
/* Assigning a fileref doesn’t create the file. */

put "File still doesn’t exist - rc should be 0; " rc=;
rc=fileref ("curdirfl");

/* Does fileref "curdirfl" exist? */
/* Negative means fileref exists, but file does not */
/* Positive means fileref does not exist */
/* Zero means both fileref and file exist */

put "Fileref now exists - rc should be negative; " rc=;
put;

/* Does the file that the fileref points to exist? Should be no. */

if (fileexist ("./tmp333")) then
/* if it does, open it for input */

do;
put "Open file for input";
fid=fopen ("curdirfl", "i") ;

end;
else /* most likely scenario */

do;
put "Open file for output";
fid=fopen ("curdirfl", "o");

end;

/* fid should be non-zero. 0 indicates failure. */
put "File id is: " fid=;
numopts = foptnum(fid);
put "Number of information items should be 6; " numopts=;
do i = 1 to numopts;
optname = foptname (fid,i);
put i= optname=;
optval = finfo (fid, optname);
put optval= ;
end;
rc=fclose (fid);
rc=fdelete ("curdirfl");
put "Closing the file, rc should be 0; "
rc=; run;

Functions and CALL Routines under Windows � FINFO Function 403

Output 19.2 The Resulting SAS Log

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.36 seconds
cpu time 0.00 seconds

291 data a;
292
293 /* Does fileref "curdirfl" exist? No = 0 */
294
295 rc=fexist ("curdirfl");
296 put;
t297 put "Fileref curdirfl exist? rc should be 0 (no); " rc=;
298
299 /* assign fileref */
300
301 rc=filename("curdirfl", "c:\tmp333");
302
303 /* RC=0 indicates success in assigning fileref */
304
305 put "Fileref assigned - rc should be 0; " rc=;
306 rc=fexist ("curdirfl");
307
308 /* Does file which "curdirfl" points to exist? No = 0 */
309 /* Assigning a fileref doesn’t create the file. */
310
311 put "File still doesn’t exist - rc should be 0; " rc=;
312 rc=fileref ("curdirfl");
313
314 /* Does fileref "curdirfl" exist? */
315 /* Negative means fileref exists, but file does not */
316 /* Positive means fileref does not exist */
317 /* Zero means both fileref and file exist */
318
319 put "Fileref now exists - rc should be negative; " rc=;
320 put;
321
322 /* Does the file that the fileref points to exist? Should be no. */
323
324 if (fileexist ("./tmp333")) then
325 /* if it does, open it for input */
326 do;
327 put "Open file for input";
328 fid=fopen ("curdirfl", "i") ;
329 end;
330 else /* most likely scenario */
331 do;
332 put "Open file for output";
333 fid=fopen ("curdirfl", "o");
334 end;

404 FOPTNAME Function � Chapter 19

335
336 /* fid should be non-zero. 0 indicates failure. */
337 put "File id is: " fid=;
338 numopts = foptnum(fid);
339 put "Number of information items should be 6; " numopts=;
340 do i = 1 to numopts;
341 optname = foptname (fid,i);
342 put i= optname=;
343 optval = finfo (fid, optname);
344 put optval= ;
345 end;
346 rc=fclose (fid);
347 rc=fdelete ("curdirfl");
348 put "Closing the file, rc should be 0; "
349 rc=; run;

Fileref curdirfl exist? rc should be 0 (no); rc=0
Fileref assigned - rc should be 0; rc=0
File still doesn’t exist - rc should be 0; rc=0
Fileref now exists - rc should be negative; rc=-20006

Open file for output
File id is: fid=1
Number of information items should be 6; numopts=6
i=1 optname=Filename
optval=c:\tmp333
i=2 optname=RECFM
optval=V
i=3 optname=LRECL
optval=256
i=4 optname=File Size (bytes)
optval=0
i=5 optname=Last Modified
optval=13Mar2007:13:12:23
i=6 optname=Create Time
optval=13Mar2007:13:12:23
Closing the file, rc should be 0; rc=0
NOTE: The data set WORK.A has 1 observations and 6 variables.
NOTE: DATA statement used (Total process time):

real time 0.12 seconds
cpu time 0.09 seconds

350 proc printto; run;

See Also

� “FOPEN Function” in SAS Language Reference: Dictionary

FOPTNAME Function

Returns the name of an information item for an external file.

Category: External Files
Windows specifics: available information items
See: FOPTNAME Function in SAS Language Reference: Dictionary

Syntax
FOPTNAME(file-id, nval)

Functions and CALL Routines under Windows � FOPTNAME Function 405

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the number of the file information item to be retrieved. The following table
shows the values that nval can have for single and concatenated files under Windows
operating environments.

nval Single File Pipe Files Concatenated Files

1 Filename Unnamed pipe access
device

Filename

2 RECFM PROCESS RECFM

3 LRECL RECFM LRECL

4 LRECL

Details
FOPTNAME returns a blank if an error occurred.

Example: File Attributes When Using the Pipe Device Type
The following example creates a data set that contains the name and value attributes
that are returned by the FOPTNAME function when you are using pipes:

data fileatt;
filename mypipe pipe ’dir’;
fid=fopen("mypipe","s");
/* fid should be non---zero. 0 indicates failure */
put "File id is: " fid=;
numopts=foptnum(fid);
put "Number of information items should be 4; " numopts=;
do i=1 to numopts;

optname=foptname(fid,i);
put i= optname=;
optval=finfo(fid,optname);
put optval=;

end;

rc=fclose(fid);
run;

406 FOPTNUM Function � Chapter 19

Output 19.3 The SAS LOG Displays Pipe File Information

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.03 seconds
cpu time 0.01 seconds

6 data fileatt;
7 filename mypipe pipe ’dir’;
8 fid=fopen("mypipe","s");
9 /* fid should be non-zero. 0 indicates failure */
10 put "File id is: " fid=;
11 numopts=foptnum(fid);
12 put "Number of information items should be 4; " numopts=;
13 do i=1 to numopts;
14 optname=foptname(fid,i);
15 put i= optname=;
16 optval=finfo(fid,optname);
17 put optval=;
18 end;
19
20 rc=fclose(fid);
21 run;
File id is: fid=1
Number of information items should be 4; numopts=4
i=1 optname=Unnamed Pipe Access Device
optval=
i=2 optname=PROCESS
optval=dir
i=3 optname=RECFM
optval=V
i=4 optname=LRECL
optval=256
NOTE: The data set WORK.FILEATT has 1 observations and 6 variables.
NOTE: DATA statement used (Total process time):

real time 9.64 seconds
cpu time 1.16 seconds

22 proc printto; run;

FOPTNUM Function

Returns the number of information items that are available for a file.

Category: External Files

Windows specifics: information items available

See: FOPTNUM Function in SAS Language Reference: Dictionary

Syntax

FOPTNUM(file-id)

file-id
specifies the identifier that was assigned when the file was opened, generally, by the
FOPEN function.

Functions and CALL Routines under Windows � LIBNAME Function 407

Details
Six information items are available for files:

� Filename
� RECFM
� LRECL
� File Size (bytes)
� Last Modified
� Create Time

These information items are available for pipes:
� Unnamed pipe access device
� PROCESS
� RECFM
� LRECL

FOPTNUM returns the following values:

For files: 6

For pipes: 4

Example

For an example of the FOPTNUM functions, see “Example of Obtaining File
Information” on page 401.

LIBNAME Function

Assigns or clears a libref for a SAS library.

Category: SAS File I/O
Windows specifics: behavior of the ’ ’libref (a space between single quotation marks)
See: LIBNAME Function in SAS Language Reference: Dictionary

Syntax
LIBNAME(libref<,SAS-data-library<,engine<,options>>>)

libref
specifies the libref that is assigned to a SAS library. Under Windows, the value of
libref can be an environment variable.

SAS-data-library
specifies the physical name of the SAS library that is associated with the libref.

engine
specifies the engine that is used to access SAS files opened in the data library.

options
names one or more options honored by the specified engine, delimited with blanks.

408 MCIPISLP Function � Chapter 19

Details
If the LIBNAME function returns a 0, then the function was successful. However, you
could receive a non-zero value, even if the function was successful. A non-zero value is
returned if an error, warning, or note is produced. To determine whether the function
was successful, look through the SAS Log and use the following guidelines:

� If a warning or note was generated, then the function was successful.
� If an error was generated, then the function was not successful.

Under Windows, if you do not specify a SAS-data-library or if you specify a
SAS-data-library as ’ ’(a space between single quotation marks) or ’’(no space between
single quotation marks), SAS deassigns the libref.

MCIPISLP Function

Causes SAS to wait for a piece of multimedia equipment to become active.

Category: Special

Windows specifics: all

Syntax
MCIPISLP(number-of-seconds)

number-of-seconds
specifies the number of seconds you want SAS to wait. This number must be an
integer.

Details
The MCIPISLP function is especially useful when you have used the MCIPISTR
function to open a piece of equipment, but you know it is going to take a few seconds for
the equipment to be ready.

The number-of-seconds argument must be an integer and represents how many
seconds you want to wait. The return value is the number of seconds slept.

The MCIPISLP function can be used in the DATA step and in SCL code.

Example

This example uses both the MCIPISTR and MCIPISLP functions to play a CD and a
video. The PUT statements display the return values of these functions. This display
allows you to see in the SAS log whether there was a problem with any of your
equipment.

data _null_;
/* Open a CD player. */
msg=mcipistr("open cdaudio alias mytunes");
put msg=;
/* Wait one second for the CD player */

Functions and CALL Routines under Windows � MCIPISTR Function 409

/* to become active. */
slept=mcipislp(1);
/* Begin playing your favorite tunes */
/* from the beginning of the CD. */
msg=mcipistr("play mytunes");
put msg=;
/* Now open a video file. */
msg=mcipistr("open c:\movies\amovie.avs

alias myshow");
put msg=;
/* Begin the show and wait for it to */
/* complete. */
msg=mcipistr("play myshow wait");
put msg=;
/* When the show is complete, */
/* close the instance. */
msg=mcipistr("close myshow");
put msg=;
/* Stop and close the instance of the CD */
/* player. */
msg=mcipistr("stop mytunes");
put msg=;
msg=mcipistr("close mytunes");
put msg=;

run;

See Also

� “MCIPISTR Function” on page 409

MCIPISTR Function

Submits an MCI string command to a piece of multimedia equipment.

Category: Special
Windows specifics: all

Syntax
MCIPISTR(MCI-string-command)

MCI-string-command
is any valid SAS string; a character variable, a character literal enclosed in quotes,
or other character expression.

Details
The MCIPISTR function submits an MCI (Media Control Interface) string command.

You can use MCI to control many types of multimedia equipment, such as CD
players, mixers, videodisc players, and so on. Windows provides MCI support. For more

410 MODULE Function � Chapter 19

information about valid MCI string commands, refer to the Windows multimedia SDK
documentation in the MSDN Library and your MCI-compliant device documentation.

The return value is a string that contains return information from the MCI string
command. Examples of return information include "invalid instance" and "1".

Note: Not all MCI commands supply return codes that are usable from SAS. �

The MCIPISTR function can be used in the DATA step and in SCL code.

Example

To use a CD player, you could submit the following statements in your DATA step:

msg=mcipistr("open cdaudio alias cd");
msg=mcipistr("play cd");
msg=mcipistr("stop cd");
msg=mcipistr("close cd");

See Also

� “MCIPISLP Function” on page 408

MODULE Function

Calls a specific routine or module that resides in an external dynamic link library (DLL).

Category: External Routines

Windows specifics: all

Syntax
CALL MODULE(<cntl>,module,arg-1,arg-2. . . ,arg-n);

num=MODULEN(<cntl>,module,arg-1,arg-2…,arg-n);

char=MODULEC(<cntl>,module,arg-1…,arg-2,arg-n);

Note: The following functions permit vector and matrix arguments; you can use
them within the IML procedure. �

CALL MODULEI <cntl>,modulearg-1,arg-2. . . ,arg-n);

num=MODULEIN(<cntl>,module,arg-1,arg-2. . .,arg-n)

char=MODULEIC(<cntl>,module,arg-1,arg-2. . .,arg-n);

cntl
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULE function and to the requested DLL routine before and
after the DLL routine is called. You can use this option to help
diagnose problems that are caused by incorrect arguments or

Functions and CALL Routines under Windows � MODULE Function 411

attribute tables. If you specify the I option, the E option is
implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
MODULE function generates is "Invalid argument to function,"
which is usually not enough information to determine the cause of
the error.

Sx uses x as a separator character to separate field definitions. You
can then specify x in the argument list as its own character
argument to serve as a delimiter for a list of arguments that you
want to group together as a single structure. Use this option only
if you do not supply an entry in the SASCBTBL attribute table. If
you do supply an entry for this module in the SASCBTBL
attribute table, you should use the FDSTART option in the ARG
statement in the table to separate structures.

H provides brief help information about the syntax of the MODULE
routines, the attribute file format, and the suggested SAS formats
and informats.

For example, the control string ’*IS/’ specifies that parameter lists be printed
and that the string ’/’ is to be treated as a separator character in the argument list.

module
is the name of the external module to use, specified as a DLL name and the routine
name or ordinal value, separated by a comma. The module must reside in a dynamic
link library (DLL) and it must be externally callable. For example, the value
’KERNEL32,GetProfileString’ specifies to load KERNEL32.DLL and to invoke the
GetProfileString routine. Note that while the DLL name is not case sensitive, the
routine name is based on the restraints of the routine’s implementation language, so
the routine name is case sensitive.

If the DLL supports ordinal-value naming, you can provide the DLL name followed
by a decimal number, such as ’XYZ,30’.

You do not need to specify the DLL name if you specified the MODULE attribute
for the routine in the SASCBTBL attribute table, as long as the routine name is
unique (that is, no other routines have the same name in the attribute file).

You can specify module as a SAS character expression instead of as a constant;
most often, though, you will pass it as a constant.

arg-1, arg-2, ...arg-n
are the arguments to pass to the requested routine. Use the proper attributes for the
arguments (numeric arguments for numeric attributes and character arguments for
character attributes).

CAUTION:
Be sure to use the correct arguments and attributes. Using incorrect arguments or
attributes for a DLL function can cause SAS, and possibly your operating system,
to fail. �

Details
The MODULE functions execute a routine module that resides in an external (outside
SAS) dynamic link library with the specified arguments arg-1 through arg-n.

The MODULE call routine does not return a value, while the MODULEN and
MODULEC functions return a number num or a character char, respectively. Which
routine you use depends on the expected return value of the DLL function that you
want to execute.

412 PEEKLONG Function � Chapter 19

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULE
functions that permit vector and matrix arguments. Their return values are still scalar.
You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.
The MODULE function builds a parameter list by using the information in arg-1 to

arg-n and by using a routine description and argument attribute table that you define
in a separate file. Before you invoke the MODULE routine, you must define the fileref
of SASCBTBL to point to this external file. You can name the file whatever you want
when you create it.

This way, you can use SAS variables and formats as arguments to the MODULE
function and ensure that these arguments are properly converted before being passed to
the DLL routine.

See Also

� “The SASCBTBL Attribute Table” on page 298

PEEKLONG Function

Stores the contents of a memory address in a numeric variable on 32-bit and 64-bit platforms.

Category Special
Windows specifics: all
See: PEEKLONG Function and PEEKCLONG Function in SAS Language Reference:
Dictionary

Syntax
PEEKLONG(address<,length)>

address
specifies a character expression that is the memory address.

length
specifies the length of the character data.

Details
CAUTION:

The PEEKLONG functions can directly access memory addresses. Improper use of the
PEEKLONG functions can cause SAS, and your operating system, to fail. Use the
PEEKLONG functions only to access information that is returned by one of the
MODULE functions. �

The PEEKLONG function returns a value of length length that contains the data that
start at memory address address.

The variations of the PEEKLONG functions are

PEEKCLONG accesses character strings.

PEEKLONG accesses numeric values.

Usually, when you need to use one of the PEEKLONG functions, you will use
PEEKCLONG to access a character string.

Functions and CALL Routines under Windows � SLEEP Function 413

RANK Function

Returns the position of a character in the ASCII collating sequence.

Category: Character

Windows specifics: Uses the ASCII sequence

See: RANK Function in SAS Language Reference: Dictionary

Syntax
RANK(x)

x
is a character expression that contains a character in the ASCII collating sequence.
If the length of x is greater than 1, you receive the rank of the first character in the
expression.

Details
Because Windows uses the ASCII character set, the RANK function returns an integer
that represents the position of a character in the ASCII collating sequence.

Note: Any program that uses the RANK function with characters above ASCII 127
(the hexadecimal notation is ’7F’x) is not portable because these characters are
national characters and they vary from country to country. �

SLEEP Function

Suspends execution of a SAS DATA step for a specified period of time.

Category: Special

Windows specifics: all

See: SLEEP Function in SAS Language Reference: Dictionary

Syntax
SLEEP(n<,unit>)

n
specifies the number of seconds that you want to suspend execution of a DATA step.
The n argument is a numeric constant that must be greater than or equal to 0.
Negative or missing values for n are invalid.

414 TRANSLATE Function � Chapter 19

unit
specifies the unit of seconds, as a power of 10, which is applied to n. For example, 1
corresponds to a second, and .001 to a millisecond. The default value is 1.

Details
The SLEEP function suspends execution of a DATA step for a specified number of
seconds. When the SLEEP function uses the default unit value, a pop-up window
appears that indicates how long SAS is going to sleep.

The return value of the n argument is the number of seconds slept. The maximum
sleep period for the SLEEP function is 46 days.

When you submit a program that calls the SLEEP function, the SLEEP window
appears telling you when SAS is going to wake up. You can inhibit the SLEEP window
by starting SAS with the NOSLEEPWINDOW system option. Your SAS session
remains inactive until the sleep period is over. To cancel the call to the SLEEP
function, use the CTRL+BREAK attention sequence.

You should use a null DATA step to call the SLEEP function; follow this DATA step
with the rest of the SAS program. Using the SLEEP function in this manner enables
you to use the CTRL+BREAK attention sequence to interrupt the SLEEP function and
to continue with the execution of the rest of your SAS program.

Example

The following example tells SAS to delay the execution of the program for 12 hours
and 15 minutes:

data _null_;
/* argument to sleep must be expressed in seconds */
slept= sleep((60*60*12)+(60*15));

run;
data monthly;

/*... more data lines */
run;

See Also

� “SLEEPWINDOW System Option” on page 563

TRANSLATE Function

Replaces specific characters in a character expression.

Category: Character
Windows specifics: Required syntax; pairs of to and from arguments are optional
See: TRANSLATE Function in SAS Language Reference: Dictionary

Syntax
TRANSLATE(source,to-1,from-1 <,…to-n,from-n>)

Functions and CALL Routines under Windows � WAKEUP Function 415

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.

Details
Under Windows, you do not have to provide pairs of to and from arguments. However, if
you do not use pairs, you must supply a comma as a place holder.

WAKEUP Function

Specifies the time a SAS DATA step continues execution.

Category: Special
Windows specifics: all

Syntax
WAKEUP(until-when)

until-when
specifies the time when the WAKEUP function allow execution to continue.

Details
Use the WAKEUP function to specify the time a DATA step continues to execute. The
return value is the number of seconds slept.

The until-when argument can be a SAS datetime value, a SAS time value, or a
numeric constant, as explained in the following list:

� If until-when is a datetime value, the WAKEUP function sleeps until the specified
date and time. If the specified date and time have already passed, the WAKEUP
function does not sleep, and the return value is 0.

� If until-when is a time value, the WAKEUP function sleeps until the specified
time. If the specified time has already passed in that 24-hour period, the
WAKEUP function sleeps until the specified time occurs again.

� If the value of until-when is a numeric constant, the WAKEUP function sleeps for
that many seconds before or after the next occurring midnight. If the value of
until-when is a positive numeric constant, the WAKEUP function sleeps for
until-when seconds past midnight. If the value of until-when is a negative numeric
constant, the WAKEUP function sleeps until until-when seconds before midnight.

Negative values for the until-when argument are allowed, but missing values are not.
The maximum sleep period for the WAKEUP function is approximately 46 days.

416 WAKEUP Function � Chapter 19

When you submit a program that calls the WAKEUP function, the SLEEP window
appears telling you when SAS is going to wake up. You can inhibit the SLEEP window
by starting SAS with the NOSLEEPWINDOW system option. Your SAS session
remains inactive until the waiting period is over. If you want to cancel the call to the
WAKEUP function, use the CTRL + BREAK attention sequence.

You should use a null DATA step to call the WAKEUP function; follow this DATA
step with the rest of the SAS program. Using the WAKEUP function in this manner
enables you to use the CTRL+BREAK attention sequence to interrupt the waiting
period and continue with the execution of the rest of your SAS program.

Examples

Example 1: Delaying Program Execution until a Specified Date or Time The code in this
example tells SAS to delay execution of the program until 1:00 p.m. on January 1, 2004:

data _null_;
slept=wakeup(’01JAN2004:13:00:00’dt);

run;
data compare;

/* ...more data lines */
run;

The following example tells SAS to delay execution of the program until 10:00 p.m.:

data _null_;
slept=wakeup("22:00:00"t);

run;
data compare;

/* ...more data lines */
run;

Example 2: Delaying Program Execution until a Specified Time Period after
Midnight The following example tells SAS to delay execution of the program until
35 seconds after the next occurring midnight:

data _null_;
slept=wakeup(35);

run;
data compare;

/* ...more data lines */
run;

Example 3: Using a Variable as an Argument to the WAKEUP Function This example
illustrates using a variable as the argument of the WAKEUP function:

data _null_;
input x;
slept=wakeup(x);
datalines;

1000
;
data compare;

input article1 $ article2 $ rating;
/* ...more data lines */

run;

Because the instream data indicate that the value of X is 1000, the WAKEUP
function sleeps for 1,000 seconds past midnight.

Functions and CALL Routines under Windows � WAKEUP Function 417

See Also

� “SLEEPWINDOW System Option” on page 563

418

419

C H A P T E R

20
SAS Informats under Windows

SAS Informats under Windows 419
Reading Binary Data 419

Converting User-Written Informats from Earlier Releases to SAS 9.2 420

Converting Version 6 User-Written Informats 420

Converting Version 5 User-Written Informats 421

SAS Informats under Windows

A SAS informat is an instruction or template that SAS uses to read data values into
a variable. Most SAS informats are described completely in SAS Language Reference:
Dictionary. The informats that are described here have behavior that is specific to SAS
under Windows.

Many of the SAS informats that have details specific to the Windows operating
environment are used to read binary data. In using these informats, it is important that
you understand the concepts that are presented in “Reading Binary Data” on page 419.

If you have informats that you created for use in earlier releases of SAS, see
“Converting User-Written Informats from Earlier Releases to SAS 9.2” on page 420 for
information about how to convert those informats for use with SAS 9.2.

Reading Binary Data

IBM mainframes, Hewlett Packard 9000, and most other UNIX systems store bytes
in one order, called big-endian. Intel-based, or IBM compatible microcomputers and the
VAX and Alpha computers manufactured by Compaq store bytes in a different order
called byte-reversed, or little-endian.

Binary data stored in one order cannot be read by a computer that stores binary data
in the other order without additional processing taking place. When you are designing
SAS applications, try to anticipate how your data will be read and choose your formats
and informats accordingly.

SAS provides two sets of informats for reading binary data and corresponding
formats for writing binary data.

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS

420 Converting User-Written Informats from Earlier Releases to SAS 9.2 � Chapter 20

programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage
systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then on the microcomputer you run another SAS program that
uses the PIBw.d informat to read the data. The data are read correctly because both
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

Converting User-Written Informats from Earlier Releases to SAS 9.2
You must convert Release 6.04, Release 6.06, and Release 6.08 user-written

informats and formats to their SAS 9.2 counterparts before you can use them in a
SAS 9.2 program. The only exception to this rule is user-written informats and formats
created by Release 6.08 or later under Windows; these informats and formats can be
read directly from your Windows SAS session. *

Converting Version 6 User-Written Informats
You can convert Release 6.04, 6.06, and 6.08 SAS catalogs that contain user-written

informats and formats by using one of the following methods:

Converting Release 6.04 catalogs
use the CNTLOUT= option in the PROC FORMAT statement in Release 6.04 to
create an output data set, and then use the CNTLIN= option in the PROC
FORMAT statement in SAS 9.2 to create the SAS 9.2 informats or formats. You
must use the V604 engine in your SAS 9.2 session to read the data set. This
method also works for converting from Release 6.06 or Release 6.08.

Converting Release 6.06 or Release 6.08 catalogs
use the CPORT and CIMPORT procedures to convert the informats and formats.
For more information about the CPORT and CIMPORT procedures, see Base SAS
Procedures Guide. This method works for converting from Release 6.06 or Release
6.08 only; it does not work for converting from Release 6.04.

* However, it is recommended that you use PROC CPORT and PROC CIMPORT to convert older Windows catalogs that
contain user-written informats and formats to SAS 9.2 if you no longer need to use them in previous releases.

Informats under Windows � HEXw. Informat 421

Converting Version 5 User-Written Informats
You must also convert Version 5 user-written informats and formats to their SAS 9.2

counterparts before you can use them in a SAS 9.2 program. (This implies that you are
not only converting these files, but are also transferring them from a remote operating
system to your PC). You can convert them using one of the following methods:

� Use the V5TOV6 procedure on the remote operating environment to convert the
informats and formats to Version 6 format. This implies that the remote operating
environment has access to Version 6 SAS software. Then, transport the converted
informats and formats (as binary files) to your Windows operating environment
and use the CIMPORT procedure to complete the conversion.

Note: The V5TOV6 procedure is not available in SAS 9.2. You must use this
procedure in Release 6 of SAS. �

� Use the SAS Global Forum supplemental procedure FMTLIB under Version 5 on
the remote operating environment to create an output data set, transport that
data set to your PC, and then use the CNTLIN= option in the PROC FORMAT
statement in SAS 9.2 to create the SAS 9.2 informats or formats.

HEXw. Informat

Converts hexadecimal positive binary values to fixed-point or floating-point binary values.

Category numeric

Width range: 1–16

Default width: 8

Alignment: left

Windows specifics: native floating-point representation

See: HEXw. Informat in SAS Language Reference: Dictionary

Syntax

HEXw.

w
specifies whether the input represents an integer (fixed-point) or a real
(floating-point) binary number. When you specify a w value of 1 through 15, the
input hexadecimal value represents an integer binary number. When you specify 16
for the w value, the input hexadecimal value represents a floating-point value.

Details

The HEXw. informat expects input that is not byte-reversed, not in Windows form.
(The IB, PIB, and RB informats for binary numbers expect the bytes to be reversed.)
You can use the HEXw. informat to read hexadecimal literals from SAS programs that
were created in another environment.

422 $HEXw. Informat � Chapter 20

See Also

� “$HEXw. Informat” on page 422
� “HEXw. Format” on page 380

$HEXw. Informat

Converts hexadecimal data to character data.

Category character
Width range: 1–32767
Default width: 2
Alignment: left
Windows specifics: ASCII character-encoding system
See: $HEXw. Informat in SAS Language Reference: Dictionary

Syntax
$HEXw.

w
specifies width of the input value.

Details
The $HEXw. informat is like the HEXw. informat in that it reads values in which each
hexadecimal character occupies 1 byte. Use the $HEXw. informat to encode
hexadecimal information into a character variable when your input data are limited to
printable characters. The conversion is based on the ASCII character set.

See Also

� “HEXw. Informat” on page 421
� “$HEXw. Format” on page 381

IBw.d Informat

Reads integer binary (fixed-point) values.

Category numeric
Width range: 1–8
Default width: 4
Decimal range: 0–10
Windows specifics: native floating-point representation
See: IBw.d Informat in SAS Language Reference: Dictionary

Informats under Windows � PDw.d Informat 423

Syntax
IBw.d

w
specifies the width of the input field.

d
specifies the power of 10 by which to divide the input value. SAS uses the d value
even if the input data contain decimal points.

Details
For integer binary data, the high-order bit is the value’s sign: 0 for positive values, 1
for negative. Negative values are represented in twos-complement notation. If the
informat includes a d value, the data value is divided by 10d.

Using the IBw.d informat requires you to understand twos complements and
byte-swapped data format.

For more information about microcomputer fixed-point values, see Intels developer
Web site.

Comparison of IB and PIB
The IBw.d informat and the PIBw.d informat give you different results. The IBw.d
informat processes both positive and negative numbers and it uses the high-order bit as
the sign bit. In contrast, the PIBw.d informat is used only for positive numbers and it
does not look for a sign bit. As an example, suppose your data contain the following
two-byte (byte-swapped) value:

01 80

When you read this value using the IB2. informat, the informat looks for the sign
bit, sees that it is on, and reads the value as −32,767. However, if you read this value
with the PIB2. informat, no sign bit is used, and the result is 32,769.

Example

Suppose that your data contain the following 6-byte (byte-swapped) value:

64 00 00 00 00 00

If you read this value using the IB6. informat, it is read as the fixed-point value
100.0. Now suppose that your data contain the following (byte-swapped) value:

01 80

Because the sign bit is set, the value is read as −32,767.

See Also

� “IBw.d Format” on page 381
� “Reading Binary Data” on page 419

PDw.d Informat
Reads packed decimal data.

424 PIBw.d Informat � Chapter 20

Category numeric
Width range: 1–16
Default width: 1
Decimal range: 0–31
Windows specifics: How values are interpreted as negative or positive
See: PDw.d Informat in SAS Language Reference: Dictionary

Syntax
PDw.d

w
specifies the width of the input field.

d
specifies the power of 10 by which to divide the input value. If the data contain
decimal points, then SAS ignores the d value.

Details
In packed decimal data, each byte contains two digits. The value’s sign is in the first bit
of the first byte (although the entire first byte is used for the sign). Although it is
usually impossible to key in packed decimal data directly from a terminal, many
programs write packed decimal data. The decimal range is 1 through 31.

Example

Suppose your data contain the following packed decimal number:

80 00 11 43

If you use the PD4. informat, this value is read as the double-precision value
−1143.0. Similarly, the following value is read as 1500.0:

00 00 15 00

See Also

� “PDw.d Format” on page 383
� “Reading Binary Data” on page 419

PIBw.d Informat

Reads positive integer-binary (fixed-point) values.

Category numeric
Width range: 1–8
Default width: 1
Decimal range: 0–10

Informats under Windows � RBw.d Informat 425

Windows specifics: native byte-swapped integers
See: PIBw.d Informat in SAS Language Reference: Dictionary

Syntax
PIBw.d

w
specifies the width of the input field.

d
specifies the power of 10 by which to divide the input value. SAS uses the d value
even if the input data contain decimal points.

Details
Positive integer binary values are the same as integer binary (see the informat “IBw.d
Informat” on page 422), except that all values are treated as positive. Thus, the
high-order bit is part of the value rather than the value’s sign.

Comparison of PIB and IB
The PIBw.d informat and the IBw.d informat give you different results, and you should
differentiate carefully between these two informats. The IBw.d informat processes both
positive and negative numbers and uses the high-order bit as the sign bit. In contrast,
the PIBw.d informat is used only for positive numbers and it does not look for a sign bit.
As an example, suppose your data contain the following two-byte (byte-swapped) value:

01 80

When you read this value using the IB2. informat, the informat looks for the sign
bit, sees that it is on, and reads the value as −32,767. However, if you read this value
with the PIB2. informat, no sign bit is used, and the result is 32,769.

Example

Suppose your data contain the following one-byte value:

FF

If you read this value using the PIB1. informat, it is read as the double-precision
value 255.0. Using this informat requires you to understand twos complements and
byte-swapped data format.

See Also

� “PIBw.d Format” on page 384
� “Reading Binary Data” on page 419

RBw.d Informat
Reads real-binary (floating-point) data.

426 ZDw.d Informat � Chapter 20

Category numeric
Width range: 2–8
Default width: 4
Decimal range: 0–10
Windows specifics: native floating-point representation
See: RBw.d Informat in SAS Language Reference: Dictionary

Syntax
RBw.d

w
specifies the width of the input field.

d
specifies the power of 10 by which to divide the input value. SAS uses the d value
even if the input data contain decimal points.

Details
The RBw.d informat reads numeric data that are stored in microcomputer real binary
(floating-point) notation. Numeric data for scientific calculations are often stored in
floating-point notation. (SAS stores all numeric values in floating-point notation.) A
floating-point value consists of two parts: a mantissa that gives the value and an
exponent that gives the value’s magnitude. It is usually impossible to key in
floating-point binary data directly from a terminal, but many programs write
floating-point binary data.

See Also

� “RBw.d Format” on page 385
� “Reading Binary Data” on page 419

ZDw.d Informat

Reads zoned decimal data.

Category numeric
Width range: 1–32
Default width: 1
Decimal range: 1–10
Windows specifics: Last byte includes the sign
See: ZDw.d Informat in SAS Language Reference: Dictionary

Syntax
ZDw.d

Informats under Windows � ZDw.d Informat 427

w
specifies the width of the input field.

d
specifies the power of 10 by which to divide the input value. If the data contain
decimal points, then SAS ignores the d value.

Details
This method is also known as an overprint trailing numeric format. Under Windows,
the last byte of the field contains the sign information of the number. The following
table gives the conversion for the last byte:

Digit

ASCII

Character Digit

ASCII

Character

0 { −0 }

1 A −1 J

2 B −2 K

3 C −3 L

4 D −4 M

5 E −5 N

6 F −6 O

7 G −7 P

8 H −8 Q

9 I −9 R

See Also

� “ZDw.d Format” on page 386

428

429

C H A P T E R

21
SAS Procedures under Windows

SAS Procedures under Windows 429
CATALOG Procedure 429

CIMPORT Procedure 430

CONTENTS Procedure 431

CONVERT Procedure 433

CPORT Procedure 435
DATASETS Procedure 436

OPTIONS Procedure 437

PMENU Procedure 439

PRINTTO Procedure 440

SORT Procedure 441

SAS Procedures under Windows

Base SAS procedures enable you to perform statistical computations, create reports,
and manage your data. Most of the Base SAS procedures are described in Base SAS
Procedures Guide. The procedures described here have syntax or behavior that is
specific to Windows.

CATALOG Procedure

Manages entries in SAS catalogs.

Windows specifics: FILE= option in the CONTENTS statement

See: CATALOG Procedure in Base SAS Procedures Guide

Syntax
PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref;>

Note: This is a simplified version of the CATALOG procedure syntax. For the
complete syntax and its explanation, see the CATALOG procedure in Base SAS
Procedures Guide. �

430 CIMPORT Procedure � Chapter 21

fileref
names a file specification that is specific to the Windows operating environment.

Details
The CATALOG procedure manages entries in SAS catalogs.

The FILE= option in the CONTENTS statement of the CATALOG procedure accepts
a file specification that is specific to the Windows operating environment. If an
unquoted file specification is given in the FILE= option, but no FILENAME statement,
SET system option, or Windows environment variable is used to define the file
specification, the file is named file-specification.LST and is stored in the working
directory. For example, if MYFILE is not a fileref defined by the FILENAME statement,
the SET system option, or a Windows environment variable, and you submit the
following statements, the file MYFILE.LST, containing the list of contents for
Sasuser.Profile, is created in your working directory:

proc catalog catalog=sasuser.profile;
contents file=myfile;

run;

CIMPORT Procedure
Restores a transport file created by the CPORT procedure.

Windows specifics: Name and location of transport file
See: CIMPORT Procedure in Base SAS Procedures Guide

Syntax
PROC CIMPORT destination=libref| < libref.>member-name <option(s)>;

Note: This is a simplified version of the CIMPORT procedure syntax. For the
complete syntax and its explanation, see the CIMPORT procedure in Base SAS
Procedures Guide. �

destination
identifies the file(s) in the transport file as a single SAS data set, single SAS catalog,
or multiple members of a SAS library.

libref | <libref.>member-name
specifies the name of the SAS data set, catalog, or library to be created from the
transport file.

Details
The CIMPORT procedure imports a transport file that was created (exported) by the
CPORT procedure.

Coupled with the CPORT procedure, the CIMPORT procedure enables you to move
catalogs and data sets from one operating environment to another.

Note: PROC CIMPORT processes a file generated by PROC CPORT, not a transport
file generated by the XPORT engine. �

Procedures under Windows � CONTENTS Procedure 431

Note: You can use the MIGRATE procedure, beginning with SAS 9.1, to migrate a
SAS library from a previous release. �

When you use the CIMPORT procedure under Windows, remember the following:
� The value of the INFILE= option can be a fileref defined in a FILENAME

statement, a quoted Windows pathname, or an environment variable.
� If you omit the INFILE= option and have not defined the reserved fileref SASCAT,

SAS tries to read from a file named SASCAT.DAT in your working directory. If no
file by that name exists, the following error message is issued and the procedure
terminates, assuming that C:\SAS has been defined as the working directory:

ERROR: Physical file does not exist, C:\SAS\SASCAT.DAT

� If you have not transferred the file created by PROC CPORT in binary format,
PROC CIMPORT cannot read the file, and you receive the following message:

ERROR: Given transport file is bad.

See Also

� “CPORT Procedure” on page 435
� The MIGRATE procedure and cross-release compatibility at http://support/

sas.com/migration and the Base SAS Procedures Guide.

CONTENTS Procedure

Prints descriptions of the contents of one or more SAS library files.

Windows specifics: Engine/Host Dependent Information output
See: CONTENTS Procedure in Base SAS Procedures Guide

Syntax
PROC CONTENTS <option(s)>;

option(s)
For an explanation of the available options, see the CONTENTS procedure in Base
SAS Procedures Guide.

Details
The CONTENTS procedure shows the contents of a SAS set and prints the directory of
the SAS library.

While most of the printed output generated by the CONTENTS procedure is the
same across all operating environments, the Engine/Host Dependent Information
output depends on both the operating environment and the engine. The following
example output shows the Engine/Host Dependent Information that is generated for the
V9 engine from these statements:

DATA SCHOOL;
INPUT NAME $ Y GRADE CLASS $ ID;

432 CONTENTS Procedure � Chapter 21

DATALINES;
PHIL 1 85 MATH 234107589
ROBERTO 1 90 ENGLISH 190873452
CAROL 2 70 MATH 257902348
THOMAS 2 71 ENGLISH 234567823
JUANITA 3 98 FRENCH 876345290
CEDRIC 3 75 HISTORY 231987222
MARIA 4 89 PE 87654321
;
PROC CONTENTS DATA=SCHOOL OUT=SCHOUT(DROP=CRDATE MODATE);

TITLE ’SCHOOL DATASET’;
RUN;

Output 21.1 Engine/Host Dependent Information from PROC CONTENTS Using the V9 Engine

SCHOOL DATASET 07:52 Wednesday, October 17, 2007 1

The CONTENTS Procedure

Data Set Name WORK.SCHOOL Observations 7

Member Type DATA Variables 5

Engine V9 Indexes 0

Created Wednesday, October 17, 2007 00:39:17 Observation Length 40

Last Modified Wednesday, October 17, 2007 00:39:17 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_32

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 101

Obs in First Data Page 7

Number of Data Set Repairs 0

File Name C:\DOCUME~1\sasusr1\LOCALS~1\Temp\SAS Temporary Files_TD1904\school.sas7bdat

Release Created 9.9901B0

Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len

4 CLASS Char 8

3 GRADE Num 8

5 ID Num 8

1 NAME Char 8

2 Y Num 8

The engine name (V9) is listed in the header information. The Engine/Host
Dependent Information describes attributes of the data set, such as the data set page
size and the maximum number of observations per page. For more information about
how to interpret the data set size information, see “Calculating Data Set Size” on page
209.

Procedures under Windows � CONVERT Procedure 433

See Also

� the section on starting with SAS data sets in Step-by-Step Programming with Base
SAS Software

CONVERT Procedure

Converts BMDP, OSIRIS system files and SPSS export files to SAS data sets.

Windows specifics: All

Syntax

PROC CONVERT product-specification <option(s)>

product-specification
is required and can be one of the following:

BMDP=fileref <(CODE=code CONTENT=content-type)>
converts into a SAS data set the first member a BMDP save file created under
DOS. Here is an example:

filename save ’c:\myidr\bmdp.dat’;
proc convert bmdp=save;
run;

If you have more than one save file in the BMDP file referenced by the fileref
argument, you can use two options in parentheses after fileref. The CODE= option
lets you specify the code of the save file you want, and the CONTENT= option lets
you give the content of the save file. For example, if a file with CODE=JUDGES
has a content of DATA, you can use the following statement:

filename save ’c:\mydir\bmdpl.dat’;
proc convert bmdp=save(code=judges

content=data);
run;

OSIRIS=fileref
specifies a fileref for the OSIRIS file to be converted into a SAS data set. If you
use this product specification, you must also use the DICT= option, which specifies
the OSIRIS dictionary to use.

SPSS=fileref
specifies a fileref for the SPSS export file to be converted into a SAS data set. The
SPSS export file must be created by using the SPSS EXPORT command from any
operating environment.

option-list

DICT=fileref
specifies a fileref of the dictionary file for the OSIRIS file. The DICT= option is
valid only when used with the OSIRIS product specification.

434 CONVERT Procedure � Chapter 21

FIRSTOBS=n
gives the number of the observation where the conversion is to begin. This option
enables you to skip over observations at the beginning of the OSIRIS or SPSS/PC
system file.

OBS=n
specifies the number of the last observation to convert. This option enables you to
exclude observations at the end of the file.

OUT= SAS-data-set
names the SAS data set created to hold the converted data. If the OUT= option is
omitted, SAS still creates a Work data set and automatically names it DATAn, just
as if you omitted a data set name in a DATA statement. If it is the first such data
set in a job or session, SAS names it DATA1, the second is DATA2, and so on. If
the OUT= option is omitted or if you do not specify a two-level name (including a
libref) in the OUT= option, the converted data set is stored in your Work data
library and by default it is not permanent.

Details
The CONVERT procedure converts a BMDP or OSIRIS system file or an SPSS export
file to a SAS data set. It produces one output data set, but no printed output. The new
data set contains the same information as the input system file; exceptions are noted in
“Output Data Sets” on page 434. The BMDP, OSIRIS and SPSS engines provide more
extensive capabilities.

Because the BMDP, OSIRIS and SPSS products are maintained by other companies
or organizations, changes can be made that make the system files incompatible with the
current version of PROC CONVERT. SAS upgrades PROC CONVERT only to support
changes that are made to these products when a new version of SAS is available.

Missing Values If a numeric variable in the input data set has either no value or a
system missing value, PROC CONVERT assigns it a missing value.

Output Data Sets This section describes the attributes of the output SAS data set for
each product-specification value.

CAUTION:
Ensure that the translated names are unique. Variable names can sometimes be
translated by SAS. To ensure the procedure works correctly, be sure your variables
are named in such a way that translation results in unique names. �

BMDP output Variable names from the BMDP save file are used in the SAS data set,
but nontrailing blanks and all special characters are converted to underscores in the
SAS variable names. The subscript in BMDP variable names, such as x(1), becomes
part of the SAS variable name, with the parentheses omitted: X1. Alphabetic BMDP
variables become SAS character variables of corresponding length. Category records
from BMDP are not accepted.

OSIRIS Output For single-response variables, the V1-V9999 name becomes the SAS
variable name. For multiple-response variables, the suffix Rn is added to the variable
name, where n is the response. For example, V25R1 is the first response of the
multiple-response variable V25. If the variable after V1000 has 100 or more responses,
responses above 99 are eliminated. Numeric variables that OSIRIS stores in character,
fixed-point binary, or floating-point binary mode become SAS numeric variables.
Alphabetic variables become SAS character variables; any alphabetic variable of length
greater than 200 is truncated to 200. The OSIRIS variable description becomes a SAS
variable label, and OSIRIS print formats become SAS formats.

Procedures under Windows � CPORT Procedure 435

SPSS Output SPSS variable names and variable labels become variable names and
labels without change. SPSS alphabetic variables become SAS character variables.
SPSS blank values are converted to SAS missing values. SPSS print formats become
SAS formats, and the SPSS default precision of no decimal places becomes part of the
variables’ formats. SPSS value labels are not copied. DOCUMENT data are copied so
that PROC CONTENTS can display them.

Comparison
The CONVERT procedure is closely related to the BMDP, OSIRIS and SPSS interface
library engines. (In fact, the CONVERT procedure uses these engines.) For example,
the following two sections of code provide identical results:

� filename myfile ’myspss.por’;
proc convert spss=myfile out=temp;
run;

� libname myfile spss ’myspss.por’;
data temp;

set myfile._first_;
run;

However, the BMDP, OSIRIS and SPSS engines have more extensive capabilities
than PROC CONVERT.

See Also

� “Reading BMDP, OSIRIS, and SPSS Files” on page 142

CPORT Procedure

Writes SAS data sets and catalogs into a special format in a transport file.

Windows specifics: Name and location of transport file

See: CPORT Procedure in Base SAS Procedures Guide

Syntax
PROC CPORT source-type=libref| <libref.>member-name<option(s)>;

Note: This version is a simplified version of the CPORT procedure syntax. For the
complete syntax and its explanation, see the CPORT procedure in Base SAS Procedures
Guide. �

libref
specifies the name and location of the file to be transported.

Details
The CPORT procedure writes SAS data sets, SAS catalogs, or SAS libraries to
sequential file formats (transport files). Use PROC CPORT with the CIMPORT
procedure to move files from one environment to another.

436 DATASETS Procedure � Chapter 21

The value of the FILE= option can be a fileref defined in a FILENAME statement, a
quoted Windows pathname, or an environment variable.

If you do not use the FILE= option and have not defined the reserved fileref SASCAT,
a file named SASCAT.DAT is created in your working directory.

Note: You can use the MIGRATE procedure, beginning with SAS 9.1, to migrate a
SAS library from a previous release. �

See Also

� “CIMPORT Procedure” on page 430
� “Transferring SAS Files between Operating Environments” on page 145
� The MIGRATE procedure and cross-release compatibility at http://support/

sas.com/migration

DATASETS Procedure

Lists, copies, renames, and deletes SAS files and also manages indexes for and appends SAS
data sets in a SAS library.

Windows specifics: Directory information; CONTENTS statement output
See: DATASETS Procedure in Base SAS Procedures Guide

Syntax
PROC DATASETS <options(s)>;

CONTENTS<options(s)>;

option(s)
This version is a simplified version of the DATASETS procedure syntax. For the
complete syntax, see the DATASETS procedure in Base SAS Procedures Guide.

Details
The DATASETS procedure is a utility procedure that manages your SAS files.

The SAS library information that is displayed in the SAS log by the DATASETS
procedure depends on the operating environment and the engine. The following
example SAS log shows the information (for the V9 engine) that the DATASETS
procedure generates under Windows.

Procedures under Windows � OPTIONS Procedure 437

Output 21.2 SAS Library Information from PROC DATASETS

PROC DATASETS library=work;

Directory

Libref WORK

Engine V9

Physical Name C:\DOCUME~1\sasusr\LOCALS~1\Temp\SAS Temporary Files_TD2663

File Name C:\DOCUME~1\sasusr\LOCALS~1\Temp\SAS Temporary Files_TD2663

Member File

Name Type Size Last Modified

1 GSEG CATALOG 54272 17MAR2003:13:20:23

2 HAT DATA 46080 17MAR2003:13:20:20

3 SASGOPT CATALOG 5120 17MAR2003:13:20:21

The output shows you the libref, engine, and physical name that are associated with
the library, as well as the names and other properties of the SAS files that are
contained in the library.

The CONTENTS statement in the DATASETS procedure generates the same Engine/
Host Dependent Information as the CONTENTS procedure.

See Also

� “CONTENTS Procedure” on page 431
� the section about modifying data set names and variable attributes in Step-by-Step

Programming with Base SAS Software

OPTIONS Procedure

Lists the current values of all SAS system options.

Windows specifics: Host options
See: OPTIONS Procedure in Base SAS Procedures Guide

Syntax
PROC OPTIONS <options(s)>;

option(s)
This version is a simplified version of the OPTIONS procedure syntax. For the
complete syntax and its explanation, see the OPTIONS procedure in Base SAS
Procedures Guide.

Details
The OPTIONS procedure lists the current settings of the SAS system options.

The options displayed by the OPTIONS procedure that are not operating
environment specific (session and configuration) are the same for every operating

438 OPTIONS Procedure � Chapter 21

environment, although the default values can differ slightly. However, the
environment-specific options displayed by this procedure are different for each
operating environment. The following display shows some sample operating
environment options for the Windows environment, as generated by this code:

proc options host;
run;

Output 21.3 Windows Operating Environment Options Displayed by PROC OPTIONS

Host Options:

ACCESSIBILITY=STANDARD

Enable Extended Accessibility

ALTLOG= Specifies the destination for a copy of the SAS log

ALTPRINT= Specifies the destination for a copy of the SAS procedure output file

AUTHPROVICERDOMAIN=

Authentication providers associated with domain suffixes

AUTHSERVER= Specify the authentication server or domain.

AUTOEXEC= Specifies the autoexec file to be used

AWSCONTROL=(SYSTEMMENU MINMAX TITLE)

Used to customize the appearance for the SAS AWS. Valid parameters are:

TITLE/NOTITLE SYSTEMMENU/NOSYSTEMMENU MINMAX/NOMINMAX

AWSDEF=(0 0 79 79)

Specify the initial size and position of the SAS AWS. This should be

specified as follows: 0 0 100 100

AWSMENU Show the main window’s (AWS) menu.

AWSMENUMERGE Add host specific menu items to the main window’s (AWS) menu.

...

NOTE: PROCEDURE OPTIONS used:(Total process time)

real time 0.01 seconds

cpu time 0.01 seconds

The option values listed are examples. The output of PROC OPTIONS depends on
many things. Some option values depend on what method you use to run SAS. For
example, the default line size under the SAS windowing environment is 75 lines on a
VGA display, while it is 132 lines in batch mode. Also, the way you have set up your
process affects the default values of system options. For example, the default value of
the SASAUTOS= option depends on where you store your autocall macros.

Using PROC OPTIONS, you can check the values of all system options. If you want
more information about a particular operating environment option, refer to “SAS
System Options under Windows” on page 475 or Using SAS Software in Your Operating
Environment in the SAS Help and Documentation.

See Also

� “SAS System Options under Windows” on page 475

Procedures under Windows � PMENU Procedure 439

PMENU Procedure

Defines menu facilities for windows created with SAS software.

Windows specifics: ACCELERATE= option accepted for several key combinations
See: PMENU Procedure in Base SAS Procedures Guide

Syntax
PROC PMENU <CATALOG=< libref.>catalog> <DESC ’entry-description’>;

ITEM command <option(s)>;
ITEM ’menu-item’ <option(s)>;

ACCELERATE=name-of-key;

This version is a simplified version of the PMENU procedure syntax. For the
complete syntax, see the PMENU procedure in Base SAS Procedures Guide.

ACCELERATE=name-of-key
defines a key sequence that can be used instead of selecting an item. When you press
the key sequence, it has the same effect as selecting the item from the menu bar or
menu.

Under Windows, the ACCELERATE= option in the ITEM statement is accepted
only for the following key combinations:

� Ctrl + A (Select All)
� Ctrl + C (Copy)
� Ctrl + F (Find)
� Ctrl + N (New)
� Ctrl + O (Include)
� Ctrl + P (Print)
� Ctrl + S (File)
� Ctrl +V (Paste)
� Ctrl +X (Cut).
� Ctrl + Z (Undo)
� Del (Clear)

Details
The PMENU procedure defines menus that can be used in DATA step windows, macro
windows, SAS/AF and SAS/FSP windows, or in any SAS application that enables you to
specify customized menus.

If you want your program to be portable between Windows and OS/2, you can use the
following alternate key combinations:

� Ctrl+Insert
� Shift+Insert
� Alt+Backspace
� Shift+Delete.

If you use these alternate key combinations in your SAS program, the Edit menu
shows the standard key combination; however, you can use either the standard or
alternate key combination to activate the menu item.

440 PRINTTO Procedure � Chapter 21

PRINTTO Procedure

Defines destinations for SAS procedure output and the SAS log.

Windows specifics: Valid values for file-specification; UNIT= option
See: PRINTTO Procedure in Base SAS Procedures Guide

Syntax
PROC PRINTTO <option(s)>;

Note: This version is a simplified version of the PRINTTO procedure syntax. For
the complete syntax and its explanation, see the PRINTTO procedure in Base SAS
Procedures Guide. �

option(s)

LOG=file-specification
PRINT=file-specification

can be
� a fileref defined in a FILENAME statement or function. To send SAS output

or log directly to the printer, use a FILENAME statement or function with
the PRINTER device-type keyword.

� a quoted Windows pathname
� an alphanumeric text string. The destination filename is

file-specification.LOG or file-specification.LST and it is stored in the current
directory.

� a SAS or Windows environment variable

UNIT=nn
sends your SAS procedure output to the file FTnnF001.LST, where nn represents
the UNIT= value, which can range from 1 to 99. The file is located in the SAS
working directory.

Details
The PRINTTO procedure defines destinations for SAS procedure output and for the
SAS log.

Examples

Example 1: Redirecting SAS Log Output The following statements redirect any SAS
log entries that are generated after the RUN statement to an output file with a fileref of
TEST, which is associated with the LPT1: device:

filename test printer ’lpt1:’;
proc printto log=test;
run;

When these statements are issued, a dialog box is opened that informs you PROC
PRINTTO is running. All SAS log entries are redirected to the TEST output file as

Procedures under Windows � SORT Procedure 441

specified; however, they are not printed on the LPT1: device until the output file is
closed, either by redirecting the SAS log entries back to the default destination or to
another file.

The following statements send any SAS log entries that are generated after the RUN
statement to the external file associated with the fileref MYFILE:

filename myfile ’c:\mydir\mylog.log’;
proc printto log=myfile;
run;

Example 2: Redirecting SAS Procedure Output The following statements send any
SAS procedure output to a file named MYPRINT.LST in your working directory
(assuming that MYPRINT is not a previously defined fileref or environment variable):

proc printto print=myprint;
run;

The following statements send any SAS procedure output to the printer port, which
is usually defined by the system as LPT1:

proc printto print=’lpt1:’;
run;

Example 3: Restoring the Output Destinations to the Default The following
statements (including a PROC PRINTTO statement with no options) redirect the SAS
log and procedure output to the original default destinations:

proc printto;
run;

SORT Procedure

Sorts observations in a SAS data set by one or more variables, then stores the resulting sorted
observations in a new SAS data set or replaces the original data set.

Windows specifics: Sort utilities available; SORTSIZE= and TAGSORT statement options
See: SORT Procedure in Base SAS Procedures Guide

Syntax
PROC SORT <option(s)> <collating-sequence-option>;

Note: This version is a simplified version of the SORT procedure syntax. For the
complete syntax and its explanation, see the SORT procedure in Base SAS Procedures
Guide �

SORTSIZE=memory-specification
specifies the maximum amount of memory available to the SORT procedure. For
further explanation of the SORTSIZE= option, see the following Details section.

TAGSORT
stores only the BY variables and the observation number in temporary files. When
you specify TAGSORT, the sort is a single-threaded sort. Do not specify TAGSORT if

442 SORT Procedure � Chapter 21

you want SAS to use multiple threads to sort. For details about TAGSORT option,
see the following Details section.

Details
The SORT procedure sorts observations in a SAS data set by one or more character or
numeric variables, either replacing the original data set or creating a new, sorted data
set. By default under Windows, the SORT procedure uses the ASCII collating sequence.

The SORT procedure uses the sort utility specified by the SORTPGM system option.
Sorting can be done by SAS, your database, or the Windows SyncSort utility. You can
use all the options available to the SAS sort utility, such as the SORTSEQ and
NODUPKEY options. For a complete list of all options available, see the list of sort
options in the See Also section.

SORTSIZE= Option
Under Windows, you can use the SORTSIZE= option in the PROC SORT statement to
limit the amount of memory that is available to the SORT procedure. This option might
reduce the amount of swapping SAS must do to sort the data set. If PROC SORT needs
more memory than you specify, it creates a temporary utility file to store the data in.
The SORT procedure’s algorithm can swap data more efficiently than Windows can.

The syntax of the SORTSIZE= option is as follows:

SORTSIZE=memory-specification

where memory-specification can be one of the following:

n specifies the amount of memory in bytes.

nK specifies the amount of memory in 1-kilobyte multiples.

nM specifies the amount of memory in 1-megabyte multiples.

The default SAS configuration file sets this option to 64MB using the SORTSIZE=
system option.

You can override the default value of the SORTSIZE= system option by specifying a
different SORTSIZE= value in the PROC SORT statement, or by submitting an
OPTIONS statement that sets the SORTSIZE= system option to a new value.

The SORTSIZE= option is also discussed in “Improving Performance of the SORT
Procedure” on page 208.

TAGSORT Option
The TAGSORT option in the PROC SORT statement is useful in sorts when there
might not be enough disk space to sort a large SAS data set. When you specify
TAGSORT, the sort is a single-threaded sort. Do not specify TAGSORT if you want the
SAS to use multiple threads to sort.

When you specify the TAGSORT option, only sort keys (that is, the variables
specified in the BY statement) and the observation number for each observation are
stored in the temporary files. The sort keys, together with the observation number, are
referred to as tags. At the completion of the sorting process, the tags are used to
retrieve the records from the input data set in sorted order. Thus, in cases where the
total number of bytes of the sort keys is small compared with the length of the record,
temporary disk use is reduced considerably. You should have enough disk space to hold
another copy of the data (the output data set) or two copies of the tags, whichever is
greater. Note that while using the TAGSORT option can reduce temporary disk use, the
processing time can be much higher. However, on PCs with limited available disk

Procedures under Windows � SORT Procedure 443

space, the TAGSORT option can allow sorts to be performed in situations where they
would otherwise not be possible.

Creating Your Own Collating Sequences
If you want to provide your own collating sequences or change a collating sequence that
has been provided for you, use the TRANTAB procedure to create or modify translate
tables. For more information about the TRANTAB procedure, see SAS National
Language Support (NLS): Reference Guide. When you create your own translate tables,
they are stored in your Sasuser.Profile catalog and they override any translate tables by
the same name that are stored in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the Sasuser.Profile catalog to the HOST catalog. Then all users can access
the new or modified translate table. �

If you want to see the names of the collating sequences stored in the HOST catalog
(using the SAS Explorer), submit the following statement:

dm ’catalog sashelp.host’ catalog;

Alternatively, you can select the View menu, select the Libraries item, then
double-click on the Sashelp library, and then double-click on the HOST catalog. In
batch mode, you can use the following statements to generate a list of the contents of
the HOST catalog:

proc catalog catalog=sashelp.host;
contents;

run;

Entries of type TRANTAB are the collating sequences.
If you want to see the contents of a particular translate table, use the following

statements:

proc trantab table=table-name;
list;

run;

The contents of the collating sequence are displayed in the SAS log.

Using Syncsort for Windows

Introduction to Using SyncSort with SAS If you have SyncSort installed at your site,
you can use Syncsort as an alternative sorting algorithm to the database sort or the
SAS sort. SAS determines which sort to use by the values that are set for the
SORTPGM, SORTCUT, and SORTCUTP system options.

The SyncSort installation process adds the SyncSort directory to the Windows PATH
statement. As long as the SyncSort directory is included in the Windows PATH
statement, SAS is able to launch SyncSort. SyncSort is developed by Syncsort, Inc.

Setting SyncSort as the Sort Algorithm To always sort using the SyncSort sort
routine, the value of the SORTPGM system option must be HOST. To set this option,
submit the following OPTIONS statement:

options sortpgm=host;

444 SORT Procedure � Chapter 21

Note: The SORTPGM option can also be set from the SAS System Options window,
in the SAS configuration file, or during SAS invocation. This example shows how to
specify the SORTPGM system option at invocation or in the SAS configuration file:

-sortpgm host

�

Sorting Based on Size or Observations The sort routine that SAS uses can be based
on either the number of observations in a data set or on the size of the data set. When
the SORTPGM option is set to BEST, SAS uses the first available and pertinent sorting
algorithm based on this order of precedence:

� database sort utility

� host sort utility
� SAS sort utility

If sorting is not to be done by the database, SAS looks at the values for the
SORTCUT and SORTCUTP options to determine which sort to use.

The SORTCUT option specifies the number of observations above which SyncSort is
used instead of the SAS sort. The SORTCUTP option specifies the number of bytes in
the data set above which SyncSort is used.

If SORTCUT and SORTCUTP are set to zero, SAS uses the SAS sort routine. If you
specify both options and either condition is met, SAS uses SyncSort.

When the following OPTIONS statement is in effect, the SyncSort routine is used
when the number of observations is 501 or greater:

options sortpgm=best sortcut=500;

Here, the SyncSort routine is used when the size of the data set is greater than 40M:

options sortpgm=best sortcutp=40M;

For more information about these sort options, see “SORTPGM System Option” on
page 569, “SORTCUT System Option” on page 565 and “SORTCUTP System Option” on
page 566.

Changing the Location of SyncSort Temporary Files By default, SyncSort uses the
location that is specified in the -WORK option for temporary files. To change the
location of SyncSort temporary files, specify a new location by using the SORTDEV
option. Here is an example:

options sortdev="c:\temp\sortsync";

For more information about the SORTDEV options, see “SORTDEV System Option”
on page 567.

Procedures under Windows � SORT Procedure 445

Passing Options to SyncSort Use the SORTANOM option to specify the options that
you want to use for SyncSort:

Table 21.1 SORTANOM Options for SyncSort

Task SORTANOM Option

Run in multi-call mode instead of single-call
mode

SORTANOM=b

Print statistics in the SAS log about the sorting
process

SORTANOM=t

Print in the SAS log the commands that have
been passed to Syncsort

SORTANOM=v

Multiple options can be specified by concatenating the options:

options sortdev=btv;

For more information about the SORTANOM option, see “SORTANOM System
Option” on page 564.

Passing Parameters to SyncSort Use the SORTPARM option to pass Syncsort options
to SyncSort. Enclose the options in quotations marks as in this OPTIONS statement:

options sortparm="SyncSort-options";

For information about the SORTPARM option, see “SORTPARM System Option” on
page 568. See the SyncSort documentation for a description of the SyncSort options.

Specifying the SORTSEQ= Option with a Host Sort Utility
The SORTSEQ= option enables you to specify the collating sequence for your sort. For
a list of valid values, see the SORT procedure in Base SAS Procedures Guide.

CAUTION:
If you are using a host sort utility to sort your data, then specifying the SORTSEQ= option
might corrupt the character BY variables if the sort sequence translation table and its
inverse are not one-to-one mappings. The translation table must map each character to
a unique weight, and the inverse table must map each weight to a unique character
variable. �

If your translation tables are not one-to-one mappings, then you can use one of the
following methods to perform your sort:

� create a translation table that maps one-to-one. When you create a translation
table that maps one-to-one, you can easily create a corresponding inverse table by
using the TRANTAB procedure. If your table is not mapped one-to-one, then you
will receive the following note in the SAS log when you try to create an inverse
table:

NOTE: This table cannot be mapped one to one.

For more information, see the TRANTAB procedure in SAS National Language
Support (NLS): Reference Guide.

� use the SAS sort. You can specify the SAS sort by using the SORTPGM system
option. For more information, see “SORTPGM System Option” on page 569.

� specify the collation order options of your host sort utility. See the documentation
for your host sort utility for more information.

446 SORT Procedure � Chapter 21

� create a view with a dummy BY variable. For an example, see “Example: Creating
a View with a Dummy BY Variable” on page 446.

Note: After using one of these methods, you might need to perform subsequent BY
processing using either the NOTSORTED option or the NOBYSORTED system option.
For more information about the NOTSORTED option, see the BY statement in SAS
Language Reference: Dictionary. For more information about the NOBYSORTED
system option, see the BYSORTED system option in SAS Language Reference:
Dictionary. �

Example: Creating a View with a Dummy BY Variable The following code is an
example of creating a view using a dummy BY variable:

options no date nostimer ls-78 ps-60;
options sortpgm=host msglevel=i;

data one;
input name $ age;
datalines;
anne 35
ALBERT 10
JUAN 90
janet 5
bridget 23
BRIAN 45
;

run;

data oneview / view=oneview;
set one;
name1=upcase(name);

run;

proc sort data=oneview out=final(drop=name1);
by name1;

run;

proc print data=final;
run;

The output is the following:

Output 21.4 Creating a View with a Dummy BY Variable

The SAS System
Obs name age
1 ALBERT 10
2 anne 35
3 BRIAN 45
4 bridget 23
5 janet 5
6 JUAN 90

Procedures under Windows � SORT Procedure 447

See Also

� TRANTAB Procedure” in SAS National Language Support (NLS): Reference Guide

� “SORTANOM System Option” on page 564
� “SORTCUT System Option” on page 565
� “SORTCUTP System Option” on page 566
� “SORTDEV System Option” on page 567
� “SORTPARM System Option” on page 568
� “SORTPGM System Option” on page 569

� “SORTSIZE System Option” on page 569
� “Improving Performance of the SORT Procedure” on page 208

448

449

C H A P T E R

22
SAS Statements under Windows

SAS Statements under Windows 449
ABORT Statement 449

ATTRIB Statement 450

FILE Statement 451

FILENAME Statement 453

FOOTNOTE Statement 459
%INCLUDE Statement 459

INFILE Statement 461

LENGTH Statement 463

LIBNAME Statement 464

SYSTASK Statement 467

TITLE Statement 469
WAITFOR Statement 470

X Statement 471

SAS Statements under Windows

A SAS statement is a directive to SAS that either requests that SAS perform a
certain operation or provides information to the system that might be necessary for
later operations.

All SAS statements are described in SAS Language Reference: Dictionary.
Statements that are described here have syntax and usage that are specific to Windows.

ABORT Statement

Stops executing the current DATA step, SAS job, or SAS session.

Valid in: a DATA step

Windows specifics: Action of the ABEND and RETURN options; maximum value of
condition-code

See: ABORT Statement in SAS Language Reference: Dictionary

Syntax
ABORT <ABEND | RETURN> <n>;

450 ATTRIB Statement � Chapter 22

ABEND
causes abnormal termination of the current SAS job or session for the current
process. Further action is based on how your operating environment and site treat
jobs that end abnormally.

RETURN
causes the immediate normal termination of the current SAS job or session. A
condition code is returned indicating an error if a job ends abnormally.

n
allows you to specify a condition code that SAS returns to its calling program. The
value of n must be an integer. Return codes 0 - 6 and those values greater than 997
are used by SAS.

Details
The ABORT statement causes SAS to stop processing the current DATA step.

The ABEND and RETURN options both terminate the SAS process, job, or session.

See Also

� “Return Codes and Completion Status” on page 613

ATTRIB Statement

Associates a format, informat, label, and length with one or more variables.

Valid in: a DATA step
Windows specifics: length specification
See: ATTRIB Statement in SAS Language Reference: Dictionary

Syntax
ATTRIB variable-list-1 attribute-list-1…<variable-list-n attribute-list-n>;

Note: Here is a simplified explanation of the ATTRIB statement syntax. For the
complete syntax and its explanation, see the ATTRIB statement in SAS Language
Reference: Dictionary. �

attribute-list

LENGTH=<$>length
specifies the length of the variables in variable-list. Under Windows, the length
you can specify for a numeric variable ranges from 3 to 8 bytes.

Details
Using the ATTRIB statement in the DATA step permanently associates attributes with
variables by changing the descriptor information of the SAS data set that contains the
variables.

Statements under Windows � FILE Statement 451

FILE Statement

Specifies the current output file for PUT statements.

Valid in: a DATA step
Windows specifics: Valid values for file specification; valid values for encoding-value; valid
options for host-option-list
See: FILE Statement in SAS Language Reference: Dictionary

Syntax
FILE file-specification<ENCODING=’encoding-value’><option-list> <host-option-list>;

file-specification
can be any of the file specification forms discussed in “Referencing External Files” on
page 148.

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use them as filenames. �

ENCODING=’encoding-value’
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the current
session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

host-option-list
names external I/O statement options that are specific to the Windows operating
environment. They can be any of the following:

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

BLOCK | NOBLOCK
is used only in the context of named pipes. This option indicates whether the
client is to wait if no data is currently available. BLOCK is the default value.

BYTE | MESSAGE
is used only in the context of named pipes. This option indicates the type of pipe.
BYTE is the default value.

COMMAND
is used only in the context of Dynamic Data Exchange (DDE). This option enables
you to issue a remote command for applications that do not use the SYSTEM topic
name. For more information, see “Referencing the DDE External File” on page 276
and “Controlling Another Application Using DDE” on page 278.

EOFCONNECT
is used only in the context of named pipes and is valid only when defining the
server. This option indicates that if an end-of-file (EOF) character is received from
a client, the server should try to connect to the next client.

452 FILE Statement � Chapter 22

HOTLINK
is used only in the context of Dynamic Data Exchange (DDE). For a complete
description and an example of using this option, see “Using the DDE HOTLINK”
on page 282.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

Alternatively, you can specify a logical record length value by using the
LRECL= system option.

MOD
specifies that output should be appended to an existing file.

NOTAB
is used only in the context of Dynamic Data Exchange (DDE). This option enables
you to use non-tab character delimiters between variables. For more information
about this option, see “Using the NOTAB Option with DDE” on page 281.

RECFM=record-format
controls the record format. The following values are valid under Windows:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

V | D indicates variable format. This format is the default.
The S370 values are valid with z/OS types of files only. That is, files that are

binary, have variable-length records, and are in EBCDIC format. If you want to
use a fixed-format z/OS, first copy it to a variable-length, binary z/OS file.

RETRY=seconds
is used only in the context of named pipes. This option specifies how long a named
pipe client should wait for a busy pipe. The minimum (and default) value for
seconds is 10.

SERVER | CLIENT
is used only in the context of named pipes. This option specifies the mode of a
named pipe. The default value is SERVER.

TERMSTR=
specifies the end-of-line character for the file. Use this option to share files
between the UNIX and Windows operating environments. Valid values are:

CRLF
Carriage return line feed. Use TERMSTR=CRLF to write Windows formatted
files. CRLF is the default.

Statements under Windows � FILENAME Statement 453

LF
Line feed. Use TERMSTR=LF to write UNIX formatted files.

NL
New line. Use TERMSTR=NL to write UNIX formatted files.

Details
The FILE statement routes the output from the PUT statement to either the same
external file to which procedure output is written or to a different external file.

If the FILE statement includes the ENCODING argument and the reserved filerefs
LOG or PRINT as the file-specification, SAS issues an error message. The ENCODING
value in the FILE statement overrides the value of the ENCODING system option.

See Also

� “Named Pipe Examples” on page 290 for examples of using some of these options
� “DDE Examples” on page 278 for examples of using some of these options

FILENAME Statement

Associates a SAS fileref with an external file or a logical file device.

Valid in: anywhere in a SAS program
Windows specifics: Valid values for access-method; valid values for device-type; valid
filenames for external-file; valid values for encoding; valid options in host-option-list
See: FILENAME Statement in SAS Language Reference: Dictionary

Syntax
FILENAME fileref <device-type> ’external-file’

<ENCODING=’encoding-value’><host-option-list>;

FILENAME fileref device-type <’external-file’>
<ENCODING=encoding-value><host-option-list>;

FILENAME fileref <device-type> (’directory-1’<,…directory-n’>)
<ENCODING=encoding-value><host-option-list>;

Note: This version is a simplified version of the FILENAME statement syntax. For
the complete syntax and its explanation, see the FILENAME statement in SAS
Language Reference: Dictionary. �

fileref
is any valid fileref, as discussed in “Using a Fileref” on page 149.

For examples of using filerefs in member-name syntax (also called aggregate
syntax), see “Assigning a Fileref to a Directory” on page 151. For a discussion of the
rules SAS uses when accessing files through filerefs, see “Understanding How
Concatenated Directories Are Accessed” on page 155.

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use them as filerefs. �

454 FILENAME Statement � Chapter 22

device-type
enables you to read and write data from devices rather than files. The following
values are valid:

CATALOG
reads a SAS catalog as an external flat file.

COMMPORT
reads data from and writes data to a communications port.

DDE
reads data from and writes data to another application using Dynamic Data
Exchange. For more information, see “DDE Syntax within SAS” on page 276.

DISK
reads data from and writes data to a disk file. Under Windows, DISK is the
default for device-type.

DRIVEMAP
displays information about the available hard drives (local and networked).

DUMMY
specifies a null output device. This value is especially useful in testing situations.

EMAIL
lets you send electronic mail programmatically from SAS. For more information,
see “Sending E-Mail Using SAS” on page 42.

FTP
lets you access information on other machines using TCP/IP. You must have TCP/
IP software and a WINSOCK.DLL installed on your local machine. You must also
be able to connect to a machine that can function as an FTP server. For more
information about using the FTP access method, see the FILENAME statement in
SAS Language Reference: Dictionary.

NAMEPIPE
writes data to a named pipe. For more information, see “Using Named Pipes” on
page 288.

NOTESDB
writes data to a Lotus Notes database. For more information, see “Populating a
Lotus Notes Database Using the DATA Step and SCL Code” on page 216.

PIPE
writes data to an unnamed pipe. For more information, see “Using Unnamed
Pipes” on page 286.

PLOTTER
indicates that you are accessing a plotter. Windows printing is not used. This
device-type keyword is used solely in conjunction with SAS/GRAPH software.

PRINTER
indicates that you are accessing a printer file or device. By default, output is
routed through Windows printing when you use this device-type keyword. For
more information about altering your default printer, see the system option
“SYSPRINT System Option” on page 576.

SOCKET
lets you read and write information over a TCP/IP socket. You must have TCP/IP
software and a WINSOCK.DLL installed on your local machine. The SOCKET
access method uses the nonblocking method of issuing socket requests. For more

Statements under Windows � FILENAME Statement 455

information about using the SOCKET access method, see the FILENAME
statement and FILENAME function in SAS Language Reference: Dictionary.

TEMP
creates a temporary file that exists only as long as the filename is assigned. The
temporary file can be accessed only through the logical name and is available only
while the logical name exists. A physical pathname is never shown to the user. If
a physical pathname is specified, an error is returned. Files that are manipulated
by the TEMP device can have the same attributes and behave identically to DISK
files.

TERMINAL
only useful with output, causes output to be sent to the SAS Message Log window.
For an example of specifying a device type in the FILENAME statement, see

“Advanced External I/O Techniques” on page 162.

Note: The TAPE device-type keyword (documented in SAS Language Reference:
Dictionary) is not applicable to the Windows operating environment. If you use the
TAPE device-type keyword in your SAS program under Windows, you will receive an
error message. Also, while the DISK device-type keyword is accepted under
Windows, it is ignored because disk files are the default under Windows. �

external-file
can be any valid Windows file specification that is enclosed in quotes. (for more
information, see “Referencing External Files” on page 148).

ENCODING=’encoding-value’
specifies the encoding to use when reading from or writing to the external file. The
value for ENCODING= indicates that the external file has a different encoding from
the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external file,
SAS transcodes the data from the session encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

host-option-list
names external I/O statement options that are specific to Windows. They can be any
of the following:

ALTDEST=filename
is for use only with the PRINTER device type. Filename specifies a file destination
to write to when you direct output to the fileref. Although the output is written to
disk and not to the printer, the output is still formatted by using the printer driver
that is associated with the printer that you specified with the external-file
argument. For example,

filename groupHP printer
"HP LaserJet 4si, 1st floor"
altdest=

"C:\My SAS Files\Printer output\out.prn";

uses the printer driver that is associated with the named printer (an HP LaserJet
4si) to create the output in out.prn. No output is actually sent to the printer
when you use this fileref.

BAUD=
sets the baud rate. The value for baud-rate depends on your communications
hardware. It must be an integer. This host option is valid only if you specify the
COMMPORT device-type keyword.

456 FILENAME Statement � Chapter 22

BITS=
sets the transmission bits. Values are 5 through 8. This host option is valid only
when you specify the COMMPORT device-type keyword.

Note: For the 8250 serial port, invalid combinations are 5 data bits with 2 stop
bits and 6, 7, or 8 data bits with 1.5 stop bits. �

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

BLOCK | NOBLOCK
is used only in the context of named pipes. This option indicates whether the
client is to wait if no data is currently available. BLOCK is the default value.

BYTE | MESSAGE
is used only in the context of named pipes. This option indicates the type of pipe.
BYTE is the default value.

COMMAND
is used only in the context of Dynamic Data Exchange (DDE). This option enables
you to issue a remote command for applications that do not use the SYSTEM topic
name. For more information, see “Referencing the DDE External File” on page 276
and “Controlling Another Application Using DDE” on page 278.

COMTIMEOUT=value
controls how a communications port timeout is handled. A timeout occurs when no
data is available at the communications port for a period of time, usually
60 seconds. The COMTIMEOUT= option can have the following values:

EOF returns an end-of-file (EOF) character when a timeout occurs.
This behavior is the default. The EOF character causes the
current DATA step to terminate.

WAIT instructs the communications port to wait forever for data.
This value overrides the timeout. In this case, no record is
returned to the DATA step until data are available. This action
can cause your program to go into an infinite loop, so use this
value with caution.

ZERO returns a record length of 0 bytes when a timeout occurs.
However, the DATA step does not terminate; it simply tries to
read data again.

This host-option is valid only if you specify the COMMPORT device-type
keyword.

CONSOLE=state
specifies the state of the DOS window when an application is opened using pipes.
Valid states are:

MAX opens the DOS window maximized

MIN opens the DOS window minimized

NORMAL opens the DOS window using the default for the machine.

This host-option is valid only if you specify the PIPE keyword.

DROPNULL=
is used to discard null bytes when they are received. The valid values are

ON specifies to discard null bytes when they are received.

Statements under Windows � FILENAME Statement 457

OFF specifies not to discard null bytes when they are received. OFF
is the default value.

This host option is valid only if you specify the COMMPORT device-type
keyword. For example:

filename portin commport ’com1:’ dropnull=off;

EOFCONNECT
is used only in the context of named pipes and is valid only when you are defining
the server. This option indicates that if an end-of-file (EOF) character is received
from a client, the server should try to connect to the next client.

FLOW=
controls the transmission control flow. Values are: XONXOFF, DTRDSR, or
RTSCTS. This host option is valid only if you specify the COMMPORT device-type
keyword.

HOTLINK
is used only in the context of Dynamic Data Exchange (DDE). For a complete
description and an example of how to use this option, see “Using the DDE
HOTLINK” on page 282.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

Alternatively, you can specify a logical record length value by using the
LRECL= system option.

MOD
specifies that output should be appended to an existing file.

NOTAB
is used only in the context of Dynamic Data Exchange (DDE). This option enables
you to use nontab character delimiters between variables. For more information
about this option, see “Using the NOTAB Option with DDE” on page 281.

PARITY=
sets the parity check bit. Values are NONE, ODD, EVEN, MARK, or SPACE. This
host option is valid only if you specify the COMMPORT device-type keyword.

RECFM=record-format
controls the record format. The following values are valid under Windows:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. N is not valid for the PIPE or the NAMEPIPE
device types. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

458 FILENAME Statement � Chapter 22

V | D indicates variable format. This format is the default.
The S370 values are valid with z/OS types of files only. That is, files that are

binary, have variable-length records, and are in EBCDIC format. If you want to
use a fixed-format z/OS file, first copy it to a variable-length, binary z/OS file.

RETRY=seconds
is used only in the context of named pipes. This option specifies how long a named
pipe client should wait for a busy pipe. The minimum (and default) value for
seconds is 10.

RCONST=seconds
specifies the initial read time-out value in 0.001 of a second (1000 = 1 second). The
default is 8 seconds. This host-option is valid only if you specify the COMMPORT
device-type keyword.

RMULTI= seconds
specifies the subsequent read time-out value in 0.001 of a second (1000 = 1 second).
This host-option is valid only if you specify the COMMPORT device-type keyword.

SERVER | CLIENT
is used only in the context of named pipes. This option specifies the mode of a
named pipe. The default value is SERVER.

STOP=
sets the stop bit. Values are ONE, TWO, ONEHALF. This host option is valid only
if you specify the COMMPORT device-type keyword.

Note: For the 8250 serial port, invalid combinations are 5 data bits with 2 stop
bits and 6, 7, or 8 data bits with 1.5 stop bits. �

WCONST=seconds
specifies the initial time-out value in 0.001 of a second (1000 = 1 second). This
host option is valid only if you specify the COMMPORT device-type keyword.

WMULTI=seconds
specifies the subsequent time-out value in 0.001 of a second (1000 = 1 second).
This host option is valid only if you specify the COMMPORT device-type keyword.

Details
The FILENAME statement temporarily associates a valid SAS name with an external
file or an output device. An external file is a file created and maintained in the
Windows operating environment from which you need to read data.

Example

Example 1: Referencing External Files You can reference external files from a
concatenated list of files or directories. The wildcard character * can be used in the
FILENAME statement:

filename read (’c:\myfiles*.*’,’c:\myotherfiles\abc.dat’);
data new;
infile read;
input;
run;

Statements under Windows � %INCLUDE Statement 459

See Also

� “Advanced External I/O Techniques” on page 162

FOOTNOTE Statement

Prints up to ten lines of text at the bottom of the procedure output.

Valid in: anywhere in a SAS program

Windows specifics: Maximum length of footnote

See: FOOTNOTE Statement in SAS Language Reference: Dictionary

Syntax
FOOTNOTE <n> <’text’ | “text”>;

n
specifies the relative line to be occupied by the footnote.

text
specifies the text of the footnote in single or double quotation marks.

Details
The FOOTNOTE statement takes effect when the step or RUN group with which it is
associated executes. Once you specify a footnote for a line, SAS repeats the same
footnote on all pages until you cancel or redefine the footnote for that line.

The maximum footnote length under Windows is 256 characters. If the specified
footnote is greater than the LINESIZE system option, the footnote is truncated to the
line size.

%INCLUDE Statement

Includes and executes SAS statements and data lines.

Valid in: anywhere in a SAS program

Windows specifics: source, if a file specification is used; valid options for encoding-value
and host-options

See: %INCLUDE Statement in SAS Language Reference: Dictionary

Syntax
%INCLUDE source </<ENCODING=’encoding-value’><host-options>>;

460 %INCLUDE Statement � Chapter 22

Note: This version is a simplified version of the %INCLUDE statement syntax. For
the complete syntax and its explanation, see the %INCLUDE statement in SAS
Language Reference: Dictionary. �

source
describes the location of the information you want to access. The two possible sources
are a file specification or internal lines. Under Windows, an asterisk (*) cannot be
used to specify keyboard entry. The file specification can be any of the file
specification forms discussed in “Referencing External Files” on page 148.

Note: When using member-name syntax and the member name contains a
leading digit, enclose the member name in quotation marks. If the member name
contains a macro variable reference, use double quotation marks. �

ENCODING=’encoding-value’
specifies the encoding to use when reading from the specified source. The value for
ENCODING= indicates that the specified source has a different encoding from the
current session encoding.

When you read data from the specified source, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

host-options
consists of statement options that are valid under Windows. Remember to precede
the options list with a forward slash (/). The following options are available under
Windows:

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

BLOCK | NOBLOCK
is used only in the context of named pipes. This option indicates whether the
client is to wait if no data is currently available.

BYTE | MESSAGE
is used only in the context of named pipes. This option indicates the type of pipe;
BYTE is the default value.

EOFCONNECT
is used only in the context of named pipes and is valid only when defining the
server. This option indicates that the server should try to connect to the next
client if an end-of-file (EOF) character is received from a client.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

NOTAB
is used only in the context of Dynamic Data Exchange. This option enables you to
use non-tab character delimiters between variables. For more information about
this option, see “Using the NOTAB Option with DDE” on page 281

Statements under Windows � INFILE Statement 461

RECFM=record-format
controls the record format. The following values are valid under Windows:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

V|D indicates variable format. This format is the default.
The S370 values are valid with files laid out as z/OS files only—that is, files that

are binary, have variable-length records, and are in EBCDIC format. If you want
to use a fixed-format z/OS file, first copy it to a variable-length, binary z/OS file.

Details
When you execute a program that contains the %INCLUDE statement, SAS executes
your code, including any statements or data lines that you bring into the program with
%INCLUDE.

INFILE Statement

Specifies an external file to read with an INPUT statement.

Valid in: a DATA step
Windows specifics: Valid values for encoding-value, file-specification, and host-options
See: INFILE Statement in SAS Language Reference: Dictionary

Syntax
INFILE file-specification <ENCODING=’encoding-value’><options> <host-options>;

file-specification
identifies the source of input data records, usually an external file. The
file-specification argument can be any of the file specification forms that are
discussed in “Referencing External Files” on page 148. The reserved fileref CARDS
enables the INFILE statement to reference instream data.

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use them as filerefs. �

ENCODING=’encoding-value’
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

462 INFILE Statement � Chapter 22

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

host-options
names external I/O statement options that are specific to the Windows operating
environment. They can be any of the following:

BLKSIZE= block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

BLOCK | NOBLOCK
is used only in the context of named pipes. This option indicates whether the
client is to wait if no data is currently available. The default value is BLOCK.

BYTE | MESSAGE
is used only in the context of named pipes. This option indicates the type of pipe.
The default value is BYTE.

EOFCONNECT
is used only in the context of named pipes and is valid only when defining the
server. This option indicates that if an end-of-file (EOF) character is received from
a client, the server should try to connect to the next client.

HOTLINK
is used only in the context of Dynamic Data Exchange (DDE). For a complete
description and an example of using this option, see “Using the DDE HOTLINK”
on page 282.

IGNOREDOSEOF
is used in the context of I/O operations on variable record format files. When this
option is specified, any occurrence of ^Z is interpreted as character data and not as
an end-of-file marker.

LRECL=record-length
specifies the record length (in bytes). Under Windows, the default is 256. The
value of record-length can range from 1 to 1,073,741,823 (1 gigabyte).

NOTAB
is used only in the context of Dynamic Data Exchange (DDE). This option enables
you to use nontab character delimiters between variables. For more information
about this option, see “Using the NOTAB Option with DDE” on page 281.

RECFM=record-format
controls the record format. The following are valid values under Windows:

F indicates fixed format.

N indicates binary format and causes the file to be treated as a
byte stream. If LRECL is not specified, by default SAS reads
256 bytes at a time from the file.

P indicates print format.

S370V indicates the variable S370 record format (V).

S370VB indicates the variable block S370 record format (VB).

S370VBS indicates the variable block with spanned records S370 record
format (VBS).

Statements under Windows � LENGTH Statement 463

V | D indicates variable format. This format is the default.
The S370 values are valid with z/OS types of files only. That is, they are valid

in files that are binary, have variable-length records, and are in EBCDIC format.
If you want to use a fixed-format z/OS file, first copy it to a variable-length, binary
z/OS file.

RETRY=seconds
is used only in the context of named pipes. This option specifies how long a named
pipe client should wait for a busy pipe. The minimum (and default) value for
seconds is 10.

SERVER | CLIENT
is used only in the context of named pipes. This option specifies the mode of a
named pipe. The default value is SERVER.

TERMSTR=
specifies the end-of-line character for the file. Use this option to share files
between the UNIX and Windows operating environments. The following are valid
values under Windows:

CRLF
Carriage return line feed. Use TERMSTR=CRLF to read Windows or DOS
formatted files. CRLF is the default.

LF
Line feed. Use TERMSTR=LF to read UNIX formatted files.

CR
Carriage Return. Use TERMSTR=CR to read MAC/APPLE formatted files.

Details
If the INFILE statement includes the ENCODING argument and CARDS, CARDS4,
DATALINES, or DATALINES4 as the file-specification, then SAS issues an error
message. The ENCODING value in the INFILE statement overrides the value of the
ENCODING system option.

Examples

Example 1: Referencing External Files You can reference external files from a
concatenated list of files or directories. The wildcard character * can be used in the
INFILE statement:

data new;
infile (’c:\myfiles*.*’,’c:\myotherfiles\abc.dat’);
input;
run;

See Also

� “Named Pipe Examples” on page 290 for examples of using some of these options
� “DDE Examples” on page 278 for examples of using some of these options.

LENGTH Statement
Specifies the number of bytes SAS uses to store numeric variables.

464 LIBNAME Statement � Chapter 22

Valid in: a DATA step
Windows specifics: Valid numeric variable lengths; valid values for length; valid values for
n
See: LENGTH Statement in SAS Language Reference: Dictionary

Syntax
LENGTH <variable-1><…variable-n> <$> <length> <DEFAULT=n>;

length
Under Windows, can range from 3 to 8 bytes for numeric variables.

DEFAULT=n
changes the default number of bytes used for storing the values of newly created
numeric variables from 8 to the value of n. Under Windows, the value of n can range
from 3 to 8 bytes.

Details
The LENGTH statement specifies the number of bytes SAS is to use for storing values
of variables in each data set being created.

CAUTION:
Any length less than 8 bytes can result in a loss of precision for the value of the variable.
�

See Also

� “Length and Precision of Variables under Windows” on page 591

LIBNAME Statement

Associates a libref with a SAS library and lists file attributes for a SAS library.

Valid in: anywhere in a SAS program
Windows specifics: Valid values for engine; specifications for SAS-data-library
See: LIBNAME Statement in SAS Language Reference: Dictionary

Syntax
LIBNAME libref <engine>’(’SAS-data-library-1’ <,…’SAS-data-library-n’>)’

<MEMLIB>, <FILELOCKWAIT>;

LIBNAME libref _ALL_ LIST;

LIBNAME libref _ALL_ CLEAR;

Note: This version is a simplified version of the LIBNAME statement syntax. For
the complete syntax and its explanation, see the LIBNAME statement in SAS
Language Reference: Dictionary. �

Statements under Windows � LIBNAME Statement 465

libref
is any valid libref, as documented in SAS Language Reference: Dictionary.

engine-name
is one of the following library engines supported under Windows:

V9 accesses SAS System 9, SAS 9.1, and SAS 9.2 data sets. You can
use the nickname BASE for this engine.

V8 accesses Version 8, Release 8.1, and Release 8.2 data sets.

V7 accesses Version 7 data sets.

V6 accesses Release 6.08 through Release 6.12 data sets.

V604 accesses Release 6.03 and Release 6.04 data sets.

Note: The V604 engine enables you to read from Release 6.03
and Release 6.04 SAS data sets directly from your 32-bit Windows
SAS 9.2 session. Release 6.03 and Release 6.04 SAS data sets are
not compatible with the x64 64–bit environment and the Itanium
64–bit environment. �

XML generates an XML document from a SAS data set.

XPORT accesses transport format files.

BMDP accesses BMDP data files in a 32–bit operating environment.

OSIRIS accesses OSIRIS data files.

SPSS accesses SPSS export files.
For more information about these engines, see “Multi Engine Architecture” on

page 124 and the discussion of engines in SAS Language Reference: Dictionary.

SAS-data-library
is the physical name of a SAS library under Windows. It must be a valid Windows
pathname or an environment variable that is set to a valid Windows pathname. You
can concatenate several Windows directories to serve as a single SAS library. When
you specify multiple libraries, use parentheses around the first and last library
pathnames. For more information about concatenated SAS libraries, see
“Understanding How Multi-Folder SAS Libraries Are Accessed” on page 133.

MEMLIB
specifies to use extended server memory for this library. For more information about
using extended memory, see “Memory-Based Libraries” on page 201.

FILELOCKWAIT=n
specifies the number of seconds SAS will wait for a locked file to become available to
another process. If the locked file is released before the number of seconds specified
by n, then SAS locks the file for the current process and continues. If the file is still
locked when the number of seconds has been reached, then SAS writes a "Locked
File" error to the log and the DATA step fails.
Interaction: Specifying the FILELOCKWAIT= option can have an adverse effect on

one or more SAS/SHARE server and client sessions that are waiting for the
release of a SAS file that is locked by another process. One or more wait
conditions could lead to failed processes for a SAS/SHARE server and clients.

To prevent the possibility of a failed SAS/SHARE process, you can set
FILELOCKWAIT=0, which cancels the amount of time that a SAS/SHARE server
and clients would wait for the release of a locked file. Canceling the wait time
would prevent a failed process. For more information, see the
“FILELOCKWAITMAX= System Option” on page 511, and see the section about

466 LIBNAME Statement � Chapter 22

predefining a server library by using the LIBNAME statement in the
SAS/SHARE User’s Guide.

Range: 0 – 600
Default: 0

Details
The LIBNAME statement associates a libref with a permanent SAS library. It can also
be used to list the file attributes of a SAS library. (The LIBNAME statement is also
used to clear a libref. For more information, see “Clearing Librefs” on page 132.)

Note: The words AUX, CON, NUL, PRN, LPT1 - LPT9, and COM1 - COM9 are
reserved words under Windows. Do not use them as librefs. �

Associating Librefs Use one of the following forms of the LIBNAME statement to
associate a libref or an engine with a SAS library:

LIBNAME libref <engine> ’SAS-data-library’

LIBNAME libref <engine> (’SAS-data-library-1’ <,…’SAS-data-library-n’)>;

Use quotation marks when SAS-data-library is a physical path. Quotation marks are
not needed when you concatenate librefs.

You can use the same arguments with these forms of the LIBNAME statement as
shown in the LIBNAME statement syntax.

Listing Data Library Attributes With the LIST option, you can use the LIBNAME
statement to list attributes of SAS libraries. Output 22.1 shows the results of the
following LIBNAME statement:

libname sashelp list;

Output 22.1 Data Library Attributes Listed by the LIBNAME Statement

5 libname sashelp list;
1 libname sashelp list;
NOTE: Libref= SASHELP

Scope= Kernel
Levels= 27
-Level 1-

Engine= V9
Physical Name= C:\Program Files\SAS\SASFoundation\9.2\nls\en\SASCFG
File Name= C:\Program Files\SAS\SASFoundation\9.2\nls\en\SASCFG
-Level 2-

Engine= V9
Physical Name= C:\Program Files\SAS\SASFoundation\9.2\core\sashelp
File Name= C:\Program Files\SAS\SASFoundation\9.2\core\sashelp

. . .

-Level 27-
Engine= V9
Physical Name= C:\Program Files\SAS\SASFoundation\9.2\webhound\sashelp
File Name= C:\Program Files\SAS\SASFoundation\9.2\webhound\sashelp

2 run;

Statements under Windows � SYSTASK Statement 467

See Also

� “LIBNAME Statement” in SAS Output Delivery System: User’s Guide

� “LIBNAME Statement” in SAS Language Interfaces to Metadata

� “LIBNAME Statement” in SAS XML LIBNAME Engine: User’s Guide

� “LIBNAME Statement” in SAS/ACCESS for Relational Databases: Reference

� “Using Data Libraries” on page 127

SYSTASK Statement

Executes, lists, or terminates asynchronous tasks.

Valid in: anywhere in a SAS program

Windows specifics: all

Syntax
SYSTASK COMMAND “operating system command”

<WAIT | NOWAIT>
<TASKNAME=taskname>
<MNAME=name-var>
<STATUS=stat-var>
<SHELL<=“shell-command”>>;

SYSTASK LIST <_ALL_ | taskname> <STATE> <STATVAR>;

SYSTASK KILL taskname < taskname...>;

COMMAND
executes the operating system command

LIST
lists either a specific active task or all of the active tasks in the system.

KILL
forces the termination of the specified task(s).

operating system command
specifies the name of a Windows command (including any command-specific options).
Enclose the command in either single or double quotation marks. If the command
options require quotes, repeat the quotes. For example:

systask command "find ""my text"" c:\mydir\myfile.sas"

Note: The operating system command that you specify cannot require input from
the keyboard. �

WAIT | NOWAIT
determines whether SYSTASK COMMAND suspends execution of the current SAS
session until the task has completed. NOWAIT is the default. For tasks that are
started with the NOWAIT argument, you can use the WAITFOR statement when
necessary to suspend execution of the SAS session until the task has finished.

468 SYSTASK Statement � Chapter 22

TASKNAME=taskname
specifies a name that identifies the task. Task names must be unique among all
active tasks. A task is active if it is running, or if it has completed and has not been
waited for using the WAITFOR statement. Duplicate task names generate an error in
the SAS log. If you do not specify a task name, SYSTASK will automatically generate
a name. If the task name contains a blank character, enclose the task name in quotes.

MNAME=name-var
specifies a macro variable in which you want SYSTASK to store the task name that
it automatically generated for the task. If you specify both the TASKNAME option
and the MNAME option, SYSTASK copies the name you specified with TASKNAME
into the variable that you specified with MNAME.

STATUS=stat-var
specifies a macro variable in which you want SYSTASK to store the status of the
task. Status variable names must be unique among all active tasks.

SHELL<=“shell-command”>
specifies that the operating system command should be executed with the operating
system shell command. If you specify a shell-command, SYSTASK uses the shell
command that you specify to invoke the shell; otherwise, SYSTASK uses the default
shell. Enclose the shell command in quotes.

ALL
specifies all active tasks in the system.

STATE
specifies to display the status of the task, which can be Start Failed, Running, or
Complete.

STATVAR
specifies to display the status variable associated with the task. The status variable
is the variable that you assigned with the STATUS option in the SYSTASK
COMMAND statement.

Details
SYSTASK allows you to execute operating system-specific commands from within your
SAS session or application. Unlike the X statement, SYSTASK runs these commands as
asynchronous tasks, which means that these tasks execute independently of all other
tasks that are currently running. Asynchronous tasks run in the background, so you
can perform additional tasks while the asynchronous task is still running.

For example, to copy a SAS program, you might use this statement:

systask command "copy myprog.sas myprog1.sas"
taskname="copyfile" status=copystat;

The return code from the copy command is saved in the macro variable COPYSTAT.

Note: Windows command output is not written to the SAS log. �

Program steps that follow the SYSTASK statements in SAS applications usually
depend on the successful execution of the SYSTASK statements. Therefore, syntax
errors in some SYSTASK statements will cause your SAS application to end.

There are two types of tasks that can be run with SYSTASK:

Task
All tasks started with SYSTASK COMMAND are of type Task. For these tasks, if
you do not specify STATVAR or STATE, then SYSTASK LIST displays the task
name, type, and state, and the name of the status macro variable. To terminate
tasks of type Task, use SYSTASK KILL.

Statements under Windows � TITLE Statement 469

SAS/CONNECT Process
Tasks started from SAS/CONNECT with the SIGNON statement or command, and
RSUBMIT statement are of type SAS/CONNECT Process. To display SAS/
CONNECT processes, use the LISTTASK statement to display the task name, type,
and state. To terminate a SAS/CONNECT process, use the KILLTASK statement.
For information on SAS/CONNECT processes, see SAS/CONNECT User’s Guide.

Note: The preferred method for displaying any task (not just SAS/CONNECT
processes) is to use the LISTTASK statement instead of SYSTASK LIST.

The preferred method for ending a task is using the KILLTASK statement in
place of SYSTASK KILL. �

The SYSRC macro variable contains the return code for the SYSTASK statement.
The status variable that you specify with the STATUS option contains the return code
of the process started with SYSTASK COMMAND. To ensure that a task executes
successfully, you should monitor both the status of the SYSTASK statement and the
status of the process that is started by the SYSTASK statement.

If a SYSTASK statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, there might be insufficient resources to
complete a task, or the SYSTASK statement can contain syntax errors. With the
SYSTASK KILL statement, if one or more of the processes cannot be terminated,
SYSRC is set to a non-zero value.

When a task is started, its status variable is set to NULL. You can use the status
variables for each task to determine which tasks failed to complete. Any task whose
status variable is NULL did not complete execution. See WAITFOR for more
information about the status variables.

Unlike the X statement, you cannot use the SYSTASK statement to start a new
interactive session.

See Also

� “WAITFOR Statement” on page 470
� “X Statement” on page 471

TITLE Statement

Specifies title lines for SAS output.

Valid in: anywhere in a SAS program
Windows specifics: Maximum length of the title
See: TITLE Statement in SAS Language Reference: Dictionary

Syntax
TITLE <n> <’text’ | “text”>;

n
specifies the relative line that contains the title line.

’text’ | “text”
specifies text that is enclosed in single or double quotation marks.

470 WAITFOR Statement � Chapter 22

Details
The TITLE statement specifies title lines to be printed on procedure output files and
other SAS output. A TITLE statement takes effect when the DATA or PROC step or
RUN group with which it is associated executes. Once you specify a title for a line, it is
used for all subsequent output until you cancel the title or define another title for that
line.

Under Windows, the maximum title length is 256 characters. If the specified title is
greater than the LINESIZE system option, the title is truncated to the line size.

WAITFOR Statement

Suspends execution of the current SAS session until the specified tasks finish executing.

Valid in: anywhere in a SAS program
Windows specifics: all

Syntax
WAITFOR<_ANY_ | _ALL_> taskname <taskname...><TIMEOUT=seconds>;

taskname
specifies the name of the task(s) that you want to wait for. See “SYSTASK
Statement” on page 467 for information about task names. The task name(s) that
you specify must match exactly the task names assigned through the SYSTASK
COMMAND statement. You cannot use wildcards to specify task names.

ANY | _ALL_
suspends execution of the current SAS session until either one or all of the specified
tasks finishes executing. The default setting is _ANY_, which means that as soon as
one of the specified task(s) completes executing, the WAITFOR statement will finish
executing.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session. If you do not specify the TIMEOUT option, WAITFOR will
suspend execution of the SAS session indefinitely.

Details
The WAITFOR statement suspends execution of the current SAS session until the
specified task(s) finish executing or until the TIMEOUT interval (if specified) has
elapsed. If the specified task was started with the XWAIT option, then the WAITFOR
statement ignores that task.

For example, the following statements start three different SAS jobs and suspend the
execution of the current SAS session until those three jobs have finished executing:

systask command "sas myprog1.sas" taskname=sas1;
systask command "sas myprog2.sas" taskname=sas2;

Statements under Windows � X Statement 471

systask command "sas myprog3.sas" taskname=sas3;
waitfor _all_ sas1 sas2 sas3;

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, the WAITFOR statement can contain syntax
errors. If the number of seconds specified with the TIMEOUT option elapses, then the
WAITFOR statement finishes executing, and SYSRC is set to a non-zero value if

� you specify a single task that does not finish executing
� you specify more than one task and the _ANY_ option (which is the default

setting), but none of the tasks finishes executing
� you specify more than one task and the _ALL_ option, and any one of the tasks

does not finish executing.

Any task whose status variable is still NULL after the WAITFOR statement has
executed did not complete execution.

See Also

� “SYSTASK Statement” on page 467
� “X Statement” on page 471
� “XWAIT System Option” on page 589

X Statement

Runs an operating system command or a Windows application from within a SAS session.

Valid in: anywhere in a SAS program
Windows specifics: Valid values for command
See: X Statement in SAS Language Reference: Dictionary

Syntax
X <’command’>;

no argument
places you in a Command prompt session, with an operating system prompt. Here
you can execute Windows commands in the context of SAS working directory. There
are some things that you cannot do from the Command prompt in this situation, such
as define environment variables for use by your SAS session. (Environment variables
must be defined before you invoke SAS). Type EXIT at the Command prompt and
press ENTER to return to your SAS session.

command
specifies a Windows command or a Windows application. This argument can be
anything you can specify at a DOS prompt (including the SAS command). Therefore,
you can use the X statement to execute Windows applications. The command can be
enclosed in quotes, but this syntax is not required.

The command is passed to Windows and executed in the context of the working
directory. If errors occur, the appropriate error messages are displayed.

472 X Statement � Chapter 22

By default, you must type EXIT to return to your SAS session after the command
has completed execution. Also by default, if you execute a Windows application such
as Notepad, you must close the application before you can return to your SAS
session. Specify NOXWAIT in an OPTIONS statement if you do not want to have to
type EXIT. With NOXWAIT in effect, as soon as the command finishes execution,
control is returned to your SAS session. Note, however, that if you execute a
Windows application with the X statement, specifying NOXWAIT does not let you
return to your SAS session until you close the application.

Another system option, XSYNC, controls whether you have to wait for the
command to finish executing before you can return to your SAS session. If you
specify NOXSYNC, you can start a Windows application with the X statement and
return to your SAS session without closing the application. For additional details
about these two system options, see “XWAIT System Option” on page 589 and
“XSYNC System Option” on page 588.

Details
The X statement issues a host command from within a SAS session when you run SAS
in windowing mode. SAS executes the X statement immediately.

Under Windows, you can issue the X statement without the command argument.
There are other ways of running operating environment commands besides the X

statement (and the X command) under Windows.

See Also

� “X Command” on page 377
� “XSYNC System Option” on page 588
� “XWAIT System Option” on page 589
� “CALL SYSTEM Routine” on page 391
� The %SYSEXEC statement in “Macro Statements” on page 597
� “Running Windows or MS-DOS Commands from within SAS” on page 26
� “Adding Applications to the Tools Menu” on page 66

473

C H A P T E R

23
SAS System Options under
Windows

SAS System Options under Windows 475
Restricted Options 476

Displaying SAS System Option Settings 476

Changing SAS System Option Settings 476

Syntax for System Options in the SAS Invocation or SAS Configuration File 477

Syntax for Concatenating Libraries in SAS System Options 478
Syntax for System Options in the OPTIONS Statement 478

Processing System Options That Are Set in Several Places 478

Summary of System Options for Windows 479

ACCESSIBILITY System Option 492

ALTLOG System Option 493

ALTPRINT System Option 493
APPEND System Option 494

AUTHPROVIDERDOMAIN System Option 495

AUTHSERVER System Option 496

AUTOEXEC System Option 496

AWSCONTROL System Option 497
AWSDEF System Option 498

AWSMENU System Option 499

AWSMENUMERGE System Option 500

AWSTITLE System Option 500

BUFNO System Option 501
BUFSIZE System Option 502

CATCACHE System Option 503

CLEANUP System Option 504

COMDEF System Option 505

CONFIG System Option 506

DEVICE System Option 506
ECHO System Option 507

EMAILDLG System Option 508

EMAILSYS System Option 509

ENGINE System Option 509

ENHANCEDEDITOR System Option 511
FILELOCKWAITMAX= System Option 511

FILTERLIST System Option 512

FONT System Option 513

FONTALIAS System Option 514

FONTSLOC System Option 515
FORMCHAR System Option 515

FULLSTIMER System Option 516

HELPHOST System Option 518

474 Contents � Chapter 23

HELPINDEX System Option 518
HELPLOC System Option 520

HELPREGISTER System Option 521

HELPTOC System Option 522

HOSTPRINT System Option 524

ICON System Option 524
INITSTMT System Option 525

INSERT System Option 525

JREOPTIONS System Option 526

LINESIZE System Option 527

LOADMEMSIZE System Option 528

LOG System Option 529
MAPS System Option 530

MAXMEMQUERY System Option 531

MEMBLKSZ System Option 532

MEMCACHE System Option 533

MEMLIB System Option 534
MEMMAXSZ System Option 534

MEMSIZE System Option 535

MSG System Option 536

MSGCASE System Option 537

MSYMTABMAX System Option 538
MVARSIZE System Option 539

NEWS System Option 540

NUMKEYS System Option 540

NUMMOUSEKEYS System Option 541

OBS System Option 542

PAGENO System Option 542
PAGESIZE System Option 543

PAPERTYPE System Option 544

PATH System Option 545

PFKEY System Option 546

PRIMARYPROVIDERDOMAIN= 548
PRINT System Option 548

PRNGETLIST System Option 549

PRTABORTDLGS System Option 550

PRTPERSISTDEFAULT System Option 551

PRTSETFORMS System Option 552
REALMEMSIZE System Option 552

REGISTER System Option 553

RESOURCESLOC System Option 554

RSASUSER System Option 555

RTRACE System Option 556

RTRACELOC System Option 556
SASAUTOS System Option 557

SASCONTROL System Option 558

SASHELP System Option 559

SASINITIALFOLDER System Option 559

SASUSER System Option 560
SCROLLBARFLASH System Option 561

SET System Option 561

SGIO System Option 563

SLEEPWINDOW System Option 563

SORTANOM System Option 564

System Options under Windows � SAS System Options under Windows 475

SORTCUT System Option 565
SORTCUTP System Option 566

SORTDEV System Option 567

SORTNAME System Option 568

SORTPARM System Option 568

SORTPGM System Option 569
SORTSIZE System Option 569

SPLASH System Option 570

SPLASHLOC System Option 571

STIMEFMT System Option 572

STIMER System Option 573

SYSGUIFONT System Option 574
SYSIN System Option 575

SYSPARM System Option 576

SYSPRINT System Option 576

SYSPRINTFONT System Option 578

TOOLDEF System Option 580
UPRINTMENUSWITCH System Option 581

USER System Option 581

USERICON System Option 582

VERBOSE System Option 583

WEBUI System Option 584
WINDOWSMENU System Option 584

WORK System Option 585

XCMD System Option 586

XMIN System Option 587

XSYNC System Option 588

XWAIT System Option 589

SAS System Options under Windows

SAS system options control many aspects of your SAS session, including output
destinations, the efficiency of program execution, and the attributes of SAS files and
data libraries. System options can be specified various ways: in the SAS command, in a
SAS configuration file, using PROC OPTLOAD or the DMOPTLOAD command (PROC
OPTLOAD and the DMOPTLOAD command load options settings that were previously
saved in a SAS data set). in an OPTIONS statement (either in a SAS program or in a
SAS autoexec file), in the SAS System Options window, or in SCL programs. “Summary
of System Options for Windows” on page 479 gives specific information about where
each SAS system option can be specified.

Once a system option is set, it affects all subsequent DATA and PROC steps in a
program or SAS session until it is respecified. For example, the CENTER system option
affects all subsequent output from a program, regardless of the number of steps in the
program.

Some SAS system options have the same effect (and usually the same name) as data
set or statement options. For example, the BUFSIZE system option is analogous to the
BUFSIZE= data set option. In the case of overlapping options, SAS uses the following
rules of precedence:

� data set option values (highest precedence)

� statement option values (precedence over system options)

� system option values (lowest precedence).

476 Restricted Options � Chapter 23

Restricted Options
Restricted options are system options whose values are determined by the site

administrator. You cannot override restricted options. The following system options in
the Windows environment are restricted. For more information about restricted
options, see “Restricted Options” in the SAS Language Reference: Dictionary.

COMDEF
FILELOCKWAITMAX
MEMCACHE
MEMLIB
PATH
RESOURCESLOC
SASCONTROL
SGIO
TOOLDEF

Displaying SAS System Option Settings
SAS system options are set to the default values. To display the settings of the SAS

system options in the SAS log, use the OPTIONS procedure. For example, the following
statement produces a list of options, one option per line, with a brief explanation of
what each option does:

proc options; run;

You can specify the SHORT option in the PROC OPTIONS statement to produce a
list of option settings with no explanation of the options. For more information, see the
OPTIONS procedure in Base SAS Procedures Guide.

In an interactive SAS session, the SAS System Options window displays the settings
of many SAS system options, including the invocation and configuration options. You
cannot edit these options from the Options window. To open the SAS System Options
window, enter Tools � Options � System, or type options in the command area and
submit the command.

Changing SAS System Option Settings
There are several ways to specify values for SAS system options:
� as part of the command that invokes SAS
� as part of a SAS configuration file that is processed when SAS initializes
� in a Windows environment variable (SAS_OPTIONS) that is processed when SAS

initializes
� using PROC OPTLOAD or the DMOPTLOAD command to load a previous set of

option values saved to a SAS DATA set.
� as part of the OPTIONS statement from within your SAS session
� using the interactive SAS System Options window
� within SCL or SAS/AF programs, using the OPTSETC and OPTSETN SCL

functions.

System Options under Windows � Syntax for System Options in the SAS Invocation or SAS Configuration File 477

Some system options can be specified only when a SAS session or process is initialized
(starts up), while other options can be changed as needed during your SAS session.

It is important to remember the differences in syntax between specifying a system
option in the SAS command when you start SAS or in the SAS configuration file, and
specifying a system option in the OPTIONS statement. The syntax for these situations
is different, and if you use the wrong syntax, SAS generates an error message. For
information on the OPTIONS statement, see SAS Language Reference: Dictionary.

Syntax for System Options in the SAS Invocation or SAS Configuration
File

When you specify a system option at initialization, it must be preceded by a hyphen
(-). For on or off options, just list the keyword corresponding to the appropriate setting.
For example, the following command invokes SAS and indicates that SAS output should
not be centered:

c:\sas\sas.exe -nocenter

For options that take a value, do not use an equal sign; follow the option name with
a space and then the value. For example, the following SAS command invokes SAS
with a line length of 132:

c:\sas\sas.exe -linesize 132

Physical names (that is, directory names or filenames) should be enclosed in double
quotation marks when you use them in the SAS command or in the SAS configuration
file. The quotation marks are especially necessary when the file or pathname that you
are specifying contains a space or single quotation mark character, which are valid
characters in Windows filenames. For example, the following SAS command invokes
SAS and indicates that autocall macros are stored in the C:\SAS\CORE\SASMACRO
directory:

c:\sas\sas.exe -sasautos "c:\sas\core\sasmacro"

Double quotation marks are also needed when an option value contains ’=’, as shown
in this example:

c:\sas\sas.exe -set fruit "navel=orange"

To specify more than one option in the SAS command, simply separate each option
with a space. For example, the following SAS command combines the three options
shown previously in this section:

c:\sas\sas.exe -linesize 132 -nocenter
-sasautos "c:\sas\core\sasmacro"

The SAS configuration file must contain only option settings; it cannot contain SAS
statements. The file can contain SAS comments. For example, a configuration file
named MySASConfig.CFG can contain these option specifications (among others):

-nocenter
-noxwait
-pagesize 60

All SAS system options can appear in a SAS configuration file. For more information
on SAS configuration files, see “SAS Configuration Files” on page 12.

478 Syntax for Concatenating Libraries in SAS System Options � Chapter 23

Syntax for Concatenating Libraries in SAS System Options
To provide more flexibility for storing SAS files across different drives, such as

multiple logical drives on your hard disk or on a network, SAS lets you concatenate
SAS libraries. The concept of concatenation within SAS means that you can specify
multiple drives or directories when you specify certain system options in the SAS
configuration file or in the SAS command. To specify concatenated directories, specify
the directory names inside parentheses, enclose each directory name in double
quotation marks, and separate the directory names with spaces.

One practical use of concatenation is the storage of SAS help catalogs. If you want to
partition your SAS products among two or more directories, simply specify these
multiple directories with the SASHELP option in the SAS configuration file, as in the
following example:

-sashelp ("c:\sas\core\sashelp"
"d:\sas\stat\sashelp")

Syntax for System Options in the OPTIONS Statement
You can specify many SAS system options in an OPTIONS statement at any point

within a SAS session. The options are set for the duration of the SAS session or until
you change them with another OPTIONS statement or load a previously saved set of
option values using PROC OPTLOAD or the DMOPTLOAD command. For more
information about the OPTIONS statement, see SAS Language Reference: Dictionary.

When you specify a system option in the OPTIONS statement, do not precede the
option name with a hyphen (-). Also, for system options that take a value, use an equal
sign (=), not a space. For example, the following statement specifies that output is not
to be labeled with a date and that the line size should be 132:

options nodate linesize=132;

Physical names (that is, directory names or filenames) must be enclosed in quotation
marks when used in the OPTIONS statement. For example, the following OPTIONS
statement indicates that autocall macros are stored in the C:\SAS\CORE\SASMACRO
directory:

options sasautos="c:\sas\core\sasmacro";

Any file specification that is not enclosed in quotation marks in the OPTIONS
statement is assumed to be a logical name, that is, a fileref or an environment variable
name. If no logical name is found, SAS issues an error message.

Not all system options can be specified in the OPTIONS statement. To find out
whether a system option can be specified in the OPTIONS statement, look up the option
name in Table 23.1 on page 480, which summarizes all SAS system option information,
including where you can specify the options or use PROC OPTIONS

option=optname define;
run;

.

Processing System Options That Are Set in Several Places
When the same system option is set in more than one place, the most recent

specification is used. Therefore, the SAS System Options window or OPTIONS

System Options under Windows � Summary of System Options for Windows 479

statement takes precedence over the SAS autoexec file; the SAS autoexec file takes
precedence over the SAS command; and the SAS command takes precedence over the
SAS configuration file and environment variable settings.

Summary of System Options for Windows
Table 23.1 on page 480 lists all the system options available to SAS users under the

Windows operating environment. Many of these options have no system-dependent
behavior and are described completely in SAS Language Reference: Dictionary. Others
are available only under Windows and are completely described here. Some system
options are described here and in SAS Language Reference: Dictionary.

Note: Some system options in SAS Language Reference: Dictionary indicate that the
system option can have additional operating environment information and to refer to
the SAS documentation for your operating environment. If such a system option is not
described in SAS Companion for Windows, the system option is to be used as described
in SAS Language Reference: Dictionary. �

Use the following legend to determine where to find more information on a system
option:

Access SAS/ACCESS for Relational Databases: Reference.

AppSrv SAS Intelligence Platform: Application Server Administration Guide

ARM SAS Interface to Application Response Measurement (ARM):
Reference.

CAM Communications Access Methods for SAS/CONNECT and
SAS/SHARE.

Comp indicates that the option is completely described in this section.

Conn SAS/CONNECT User’s Guide.

DQ System Options in SAS Data Quality Server: Reference.

DST Encryption in SAS.

Log SAS Logging: Configuration and Programming Reference

LR SAS Language Reference: Dictionary.

Macro SAS Macro Language: Reference.

Meta SAS Language Interfaces to Metadata

NLS SAS National Language Support (NLS): Reference Guide.

Share SAS/SHARE User’s Guide.

SPDE SAS Scalable Performance Data Engine: Reference.

Web indicates that the option is described in documentation posted on
the SAS Web site (support.sas.com).

480 Summary of System Options for Windows � Chapter 23

Table 23.1 Summary of SAS System Options

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

ACCESSIBILITY STANDARD X X Comp

ALTLOG arg NOALTLOG X X Comp

ALTPRINT arg NOALTPRINT X X Comp

APPEND none X X X X LR

APPLETLOC none X X X X LR

ARMAGENT none X X X X ARM

ARMLOC ARMLOG.LOG X X X X ARM

ARMSUBSYS ARM_NONE X X X X ARM

AUTHPROVIDER-
DOMAIN

AUTHPP X X LR,
Comp

AUTHSERVER local and trusted servers X X X X Comp

AUTOEXEC arg AUTOEXEC.SAS if file is
available; otherwise none

X X Comp

AUTOSAVELOC none X X X X LR

AUTOSIGNON NOAUTOSIGNON X X X X Conn

AWSCONTROL TITLE SYSTEMMENU
MINMAX

X X X X Comp

AWSDEF arg 80% of display height and
width

X X X X Comp

AWSMENU AWSMENU X X X X Comp

AWSMENUMERGE AWSMENUMERGE X X X X Comp

AWSTITLE arg none X X Comp

BINDING arg DEFAULT X X X X LR

BOMFILE BOMFILE X X X X NLS

BOTTOMMARGIN 0.000IN X X X X LR

BUFNO arg 1 X X X X LR,
Comp

BUFSIZE arg 0 X X X X LR,
Comp

BYERR BYERR X X X X LR

BYLINE BYLINE X X X X LR

BYSORTED BYSORTED X X X X LR

CAPS NOCAPS X X X X LR

CARDIMAGE NOCARDIMAGE X X X X LR

CATCACHE arg 0 X X LR,
Comp

System Options under Windows � Summary of System Options for Windows 481

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

CBUFNO arg 0 X X X X LR

CENTER CENTER X X X X LR

CGOPTIMIZE 3 X X X X LR

CHARCODE NOCHARCODE X X X X LR

CLEANUP CLEANUP X X X X LR,
Comp

CMDMAC NOCMDMAC X X X X Macro

CMPLIB arg none X X X X LR

CMPMODEL BOTH X X X X LR

CMPOPT arg NOEXTRAMATH

NOMISSCHECK

NOPRECISE

NOGUARDCHECK

NOFUNCDIFFERENCING

X X X X LR

COLLATE NOCOLLATE X X X X LR

COLORPRINTING COLORPRINTING X X X X LR

COMAMID arg TCP X X X Conn,
Share,
CAM

COMAUX1 arg none X X CAM

COMAUX2 arg none X X CAM

COMDEF arg BOTTOM CENTER X X Comp

COMPRESS arg NO X X X X LR

CONFIG arg !sasroot\SASV9.CFG X X Comp

CONNECTPERSIST YES X X Conn

CONNECTREMOTE arg none X X X X Conn

CONNECTSTATUS CONNECTSTATUS X X X X Conn

CONNECTWAIT CONNECTWAIT X X X X Conn

COPIES arg 1 X X X X LR

CPUCOUNT arg 1 X X X X LR

CPUID CPUID X X LR

DATASTMTCHK arg COREKEYWORDS X X X X LR

DATE DATE X X X X LR

DATESTYLE MDY X X X X LR

DBCS NODBCS X X NLS

DBCSLANG NODBCSLANG X X NLS

482 Summary of System Options for Windows � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

DBCSTYPE WINDOWS X X NLS

DBIDIRECTEXEC NODBIDIRECTEXEC X X X X Access

DBSLICEPARM THREADED_APPS, 2 X X X X Access

DBSRVTP NONE X X Access

DEFLATION 6 X X X X LR

DMSEXP NODMSEXP X X LR

DMSPGMLINESIZE 136 X X LR

DETAILS NODETAILS X X X X LR

DEVICE arg none X X X X LR,
Comp

DFLANG arg ENGLISH X X X X NLS

DKRICOND arg ERROR X X X X LR

DKROCOND arg WARN X X X X LR

DLDMGACTION FAIL for batch mode;
REPAIR for interactive
mode

X X X X LR

DMR NODMR X X LR,
Conn

DMS DMS X X LR

DMSLOGSIZE arg 99999 X X LR

DMSOUTSIZE arg 99999 X X LR

DMSSYNCHK NODMSSYNCHK X X X X LR

DQLOCALE arg none X X X X DQ

DQOPTIONS none X X DQ

DQSETUPLOC arg none X X X X DQ

DSNFERR DSNFERR X X X X LR

DTRESET NODTRESET X X X X LR

DUPLEX arg NODUPLEX X X X X LR

ECHO arg NOECHO X X Comp

ECHOAUTO NOECHOAUTO X X LR

EMAILAUTH
PROTOCOL arg

NONE X X LR

EMAILDLG arg NATIVE X X Comp

EMAILFROM NOEMAILFROM X X X X LR

EMAILHOST arg LOCALHOST X X LR

EMAILID arg none X X LR

System Options under Windows � Summary of System Options for Windows 483

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

EMAILPORT arg 25 X X LR

EMAILPW arg none X X LR

EMAILSYS arg MAPI X X Comp

ENCODING WLATIN1 X X NLS

ENGINE arg V9 X X LR,
Comp

ENHANCEDEDITOR ENHANCEDEDITOR X X Comp

ERRORABEND NOERRORABEND X X X X LR

ERRORBYABEND NOERRORBYABEND X X X X LR

ERRORCHECK arg NORMAL X X X X LR

ERRORS arg 20 X X X X LR

EXPLORER NOEXPLORER X X LR

FILELOCKWAITMAX 600 X X Comp

FILESYNC SAS X X LR

FILTERLIST arg none X X Comp

FIRSTOBS arg 1 X X X X LR

FMTERR FMTERR X X X X LR

FMTSEARCH arg Work Library X X X X LR

FONT arg Sasfont 8 X X X X Comp

FONTALIAS arg varies X X Comp

FONTEMBEDDING FONTEMBEDDING X X X X LR

FONTRENDERING FREETYPE-POINTS X X X X LR

FONTSLOC arg !sasroot\core\resource X X LR,
Comp

FORMCHAR arg (see SASV9.CFG) X X X X LR,
Comp

FORMDLIM arg none X X X X LR

FORMS arg DEFAULT X X X X LR

FULLSTIMER NOFULLSTIMER X X X X Comp

GSTYLE GSTYLE X X X X LR

GWINDOW GWINDOW X X X X LR

HELPADDR none X X X X Web

HELPBROWSER REMOTE X X X X LR

HELPENCMD HELPENCMD X X LR

HELPHOST NULL X X X X LR

484 Summary of System Options for Windows � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

HELPINDEX arg /help/common.hlp/index.txt,
/help/common.hlp/
keywords.htm,
common.hhk

X X Comp

HELPLOC arg ("!sasuser\classdoc"

"!sasroot\core\help"

"!sasroot\nls\en\help")

X X LR,
Comp

HELPPORT 0 X X X X LR

HELPREGISTER arg none X X Comp

HELPTOC arg /help/helpnav.hlp/config.txt
/help/common.hlp/toc.htm
common.hhc

X X Comp

HOSTPRINT HOSTPRINT X X X X Comp

HTTPSERVERPORTMAX 0 X X LR

HTTPSERVERPORTMIN 0 X X LR

IBUFNO 0 X X X X LR

IBUFSIZE 0 X X X X LR

ICON NOICON X X X X Comp

IMPLMAC NOIMPLMAC X X X X Macro

INITCMD arg none X X LR

INITSTMT arg none X X LR,
Comp

INSERT none X X X X LR

INTERVALDS X X X X LR

INVALIDDATA arg a period (.) X X X X LR

IPADDRESS NOIPADDRESS X X CONN

JPEGQUALITY 75 X X X X LR

JREOPTIONS See SASV9.CFG X X Comp

LABEL LABEL X X X X LR

LAST arg _NULL_ X X X X LR

LEFTMARGIN arg 0.000IN X X X X LR

LINESIZE arg varies X X X X LR,
Comp

LOADMEMSIZE 0 X X Comp

LOCALE ENGLISH_UNITEDSTATES X X X X NLS

LOCALELANGCHG NOLOCALELANGCHG X X NLS

LOG arg filename.LOG in batch
mode

X X Comp

System Options under Windows � Summary of System Options for Windows 485

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

LOGAPPLNAME= none X X Log

LOGCONFIGLOC= none X X Log

LOGPARM WRITE: BUFFERED
ROLLOVER

X X LR

LRECL 256 X X X X LR

Macro Macro X X Macro

MAPS arg !sasroot\maps X X X X LR,

Comp

MAUTOLOCDISPLAY NOMAUTOLOC
DISPLAY

X X X X Macro

MAUTOSOURCE MAUTOSOURCE X X X X Macro

MAXMEMQUERY 0 X X X X Comp

MAXSEGRATIO 75 X X X X SPDE

MCOMPILE MCOMPILE X X X X Macro

MCOMPILENOTE none X X X X Macro

MEMBLKSZ 16 MB X X Comp

MEMCACHE 0 X X X X Comp

MEMLIB NOMEMLIB X X Comp

MEMMAXSZ 2G X X Comp

MEMSIZE 100663296 X X Comp

MERGENOBY NOWARN X X X X LR

MERROR MERROR X X X X Macro

METAAUTORESOURCES none X X Meta

METACONNECT none X X X X Meta

METAENCRYPTALG arg SASPROPRIETARY X X Meta

METAENCRYPT
LEVEL

CREDENTIALS X X Meta

METAID X X Meta

METAPASS none X X X X Meta

METAPORT see SASV9.CFG X X X X Meta

METAPROFILE none X X Meta

METAPROTOCOL BRIDGE X X X X Meta

METAREPOSITIORY see SASV9.CFG X X X X Meta

METASERVER see SASV9.CFG X X X X Meta

METASPN= none X X X X Meta

METAUSER none X X X X Meta

486 Summary of System Options for Windows � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

MEXECNOTE NOMEXECNOTE X X X X Macro

MEXECSIZE 65536 X X X X Macro

MFILE NOMFILE X X X X Macro

MINDELIMITER none X X X X Macro

MINOPERATOR NOMINOPERATOR X X X X Macro

MINPARTSIZE 16777216 X X SPDE

MISSING arg a period (.) X X X X LR

MLOGIC NOMLOGIC X X X X Macro

MLOGICNEST NOMLOGICNEST X X X X Macro

MPRINT NOMPRINT X X X X Macro

MPRINTNEST NOMPRINTNEST X X X X Macro

MRECALL NOMRECALL X X X X Macro

MREPLACE MREPLACE X X X X Macro

MSG arg !sasroot\core\sasmsg X X Comp

MSGCASE NOMSGCASE X X Comp

MSGLEVEL arg N X X X X LR

MSTORED NOMSTORED X X X X Macro

MSYMTABMAX arg 4,194,304 bytes X X X X Comp,
Macro

MULTENVAPPL NOMULTENVAPPL X X X LR

MVARSIZE arg 4,096 bytes X X X X Comp,
Macro

NETENCRYPT NONETENCRYPT X X X X DST

NETENCRYPT
ALGORITHM arg

none X X X X DST

NETENCRYPT
KEYLEN arg

0 X X X X DST

NEWS arg none X X LR,
Comp

NLSCOMPATMODE NONLSCOMPAT-
MODE

X X NLS

NOTES NOTES X X X X LR

NUMBER NUMBER X X X X LR

NUMKEYS arg varies X X Comp

NUMMOUSEKEYS arg 3 X X Comp

OBJECTSERVER NOOBJECTSERVER X X LR

System Options under Windows � Summary of System Options for Windows 487

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

OBS arg MAX X X X X LR,
Comp

ORIENTATION arg PORTRAIT X X X X LR

OVP NOOVP X X X X LR

PAGEBREAKINITIAL NOPAGEBREAK
INITIAL

X X LR

PAGENO arg 1 X X X X LR,
Comp

PAGESIZE arg varies X X X X LR,
Comp

PAPERDEST arg none X X X X LR

PAPERSIZE arg LETTER X X X X LR

PAPERSOURCE arg none X X X X LR

PAPERTYPE arg Plain X X X X LR,
Comp

PARM arg none X X X X LR

PARMCARDS arg FT15F001 X X X X LR

PATH arg !sasroot\core\sasexe X X Comp

PDFACCESS PDFACCESS X X X X LR

PDFASSEMBLY NOPDFASSEMBLY X X X X LR

PDFCOMMENT NOPDFCOMMENT X X X X LR

PDFCONTENT NOPDFCONTENT X X X X LR

PDFCOPY PDFCOPY X X X X LR

PDFFILLIN PDFFILLIN X X X X LR

PFKEY arg WIN X X Comp

PDFPAGELAYOUT DEFAULT X X X X LR

PDFPAGEVIEW DEFAULT X X X X LR

PDFPASSWORD xxxxxxxx X X X LR

PDFPRINT HRES X X X X LR

PDFSECURITY NONE X X X X LR

PRINT arg filename.LST in batch mode X X Comp

PRIMARYPROVIDERDOMAIN PRIMPD= X X LR

PRINTERPATH arg none X X X X LR

PRINTINIT NOPRINTINIT X X LR

PRINTMSGLIST PRINTMSGLIST X X X X LR

PRNGETLIST PRNGETLIST X X Comp

488 Summary of System Options for Windows � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

PRTABORTDLGS BOTH X X X X Comp

PRTPERSIST
DEFAULT

NOPRTPERSIST
DEFAULT

X X Comp

PRTSETFORMS PRTSETFORMS X X X X Comp

QUOTELENMAX QUOTELENMAX X X X X LR

REALMEMSIZE 0 X X Comp

REGISTER arg none X X Comp

REPLACE REPLACE X X X X LR

RESOURCESLOC arg see SASV9.CFG X X Comp

REUSE arg NO X X X X LR

RIGHTMARGIN arg 0.000 IN X X X X LR

RSASIOTRANSERROR RSASIOTRANSERROR X X X X NLS

RSASUSER NORSASUSER X X LR,
Comp

RTRACE none X X Comp

RTRACELOC arg none X X X X Comp

S arg 0 X X X X LR

S2 arg 0 X X X X LR

S2V arg 0 X X X X LR

SASAUTOS arg SASAUTOS X X X X Comp,
Macro

SASCMD none X X X X Conn

SASCONTROL SYSTEMMENU MINMAX X X X X Comp

SASFRSCR #LN00003 Conn

SASHELP arg see SASV9.CFG X X LR,
Comp

SASINITIALFOLDER none X X Comp

SASMSTORE arg none X X X X Macro

SASSCRIPT arg see SASV9.CFG X X X X Conn

SASUSER arg see SASV9.CFG X X LR,
Comp

SCROLLBARFLASH NOSCROLLBAR
FLASH

X X X X Comp

SECPACKAGE NEGOTIATE X X Comp

SECPACKAGELIST KERBEROS, NTLM X X Comp

SEQ arg 8 X X X X LR

SERROR SERROR X X X X Macro

System Options under Windows � Summary of System Options for Windows 489

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

SET arg none X X X X Comp

SETINIT NOSETINIT X X LR

SGIO NOSGIO X X Comp

SHARESESSIONCNTL= SERVER X X X X Share

SIGNONWAIT SIGNONWAIT X X X X Conn

SKIP arg 0 X X X X LR

SLEEPWINDOW SLEEPWINDOW X X Comp

SOLUTIONS SOLUTIONS X X LR

SORTANOM none X X X X Comp

SORTCUT 0 X X X X Comp

SORTCUTP 0 X X X X Comp

SORTDEV the same location as
-WORK

X X X X Comp

SORTDUP arg PHYSICAL X X X X LR

SORTEQUALS SORTEQUALS X X X X LR

SORTNAME none X X X Comp

SORTPARM none X X X X Comp

SORTPGM BEST X X X X Comp

SORTSEQ arg none X X X X NLS

SORTSIZE arg 64M X X X X LR,
Comp

SORTVALIDATE NOSORTVALIDATE X X X X LR

SOURCE SOURCE X X X X LR

SOURCE2 NOSOURCE2 X X X X LR

SPDEINDEXSORTSIZE 33554432 X X X X SPDE

SPDEMAXTHREADS 0 X X SPDE

SPDESORTSIZE 33554432 X X X X SPDE

SPDEUTILLOC none X X SPDE

SPDEWHEVAL COST X X SPDE

SPLASH SPLASH X X Comp

SPLASHLOC none X X Comp

SPOOL NOSPOOL X X X X LR

SQLCONSTDATETIME SQLCONSTDATETIME X X X X LR

SQLMAPPUTTO NONE X X X X ACCESS

SQLREDUCEPUT DBMS X X X X LR

SQLREDUCEPUTOBS 0 X X X X LR

490 Summary of System Options for Windows � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

SQLREDUCEPUTVALUES 0 X X X X LR

SQLREMERGE SQLREMERGE X X X X LR

SQLUNDOPOLICY REQUIRED X X X LR

SSLCERTISS none X X X X DST

SSLCERTSERIAL none X X X X DST

SSLCERTSUBJ none X X X X DST

SSLCLIENTAUTH NOSSLCLIENTAUTH X X X X DST

SSLCRLCHECK NOSSLCRLCHECK X X X X DST

SSPI NOSSPI X X X X AppSrv

STARTLIB STARTLIB X X LR

STEPCHKPT NOSTEPCHKPT X X LR

STEPCHKPTLIB WORK X X LR

STEPRESTART NOSTEPRESTART X X LR

STIMEFMT M X X X X Comp

STIMER STIMER X X X X Comp

SUMSIZE arg 0 X X X X LR

SVGCONTROLBUTTONS NOSVGCONTROLBUTTONS X X X X LR

SVGHEIGHT INITIAL X X X X LR

SVGPRESERVEASPECTRATIO ELEMENT X X X X LR

SVGTITLE none X X X X LR

SVGVIEWBOX none X X X X LR

SVGWIDTH none X X X X LR

SVGX none X X X X LR

SVGY none X X X X LR

SYMBOLGEN NOSYMBOLGEN X X X X Macro

SYNTAXCHECK SYNTAXCHECK X X X X LR

SYSGUIFONT arg display setting X X Comp

SYSIN arg none X X Comp

SYSPARM arg none X X X X Comp,
Macro

SYSPRINT arg default system printer X X X X Comp

SYSPRINTFONT arg none X X X X LR,
Comp

SYSRPUTSYNC NO X X Conn

TBUFSIZE arg 0 X X X X Conn,
CAM

System Options under Windows � Summary of System Options for Windows 491

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

TCPPORTFIRST arg 0 X X X X Conn,
CAM

TCPPORTLAST arg 0 X X X X Conn,
CAM

TERMINAL TERMINAL X X LR

TERMSTMT none X X LR

TEXTURELOC none X X X X LR

THREADS THREADS X X X X LR

TOOLDEF arg TOP RIGHT X X Comp

TOOLSMENU TOOLSMENU X X LR

TOPMARGIN arg 0.000 IN X X X X LR

TRAINLOC none X X LR

TRANTAB arg none X X X X NLS

UNIVERSALPRINT NOUNIVERSAL
PRINT

X X LR

UPRINTMENU
SWITCH

NOUPRINTMENU
SWITCH

X X Comp

UPRINTCOMPRESSION UPRINTCOMPRESSION X X X X LR

USER arg none X X X X LR,
Comp

USERICON arg none X X Comp

UTILLOC arg WORK X X LR

UUIDCOUNT arg 100 X X X X LR

UUIDGENDHOST arg none X X LR

V6CREATEUPDATE

arg

ERROR X X LR

VALIDFMTNAME arg LONG X X X X LR

VALIDVARNAME arg V7 X X X X LR

VARLENCHK WARN X X X X LR

VERBOSE NOVERBOSE X X Comp

VIEWMENU VIEWMENU X X LR

VNFERR VNFERR X X X X LR

WEBUI NOWEBUI X X Comp

WINDOWSMENU NOWINDOWSMENU X X X X Comp

WORK arg !TEMP\SAS Temporary
Files

X X LR,
Comp

WORKINIT WORKINIT X X LR

492 ACCESSIBILITY System Option � Chapter 23

Options
Specification Default Value

SAS
invo-

cation

Config-
uration

file

SAS
System
Options
window

OPTIONS
statement See

WORKTERM WORKTERM X X X X LR

XCMD XCMD X X Comp

XMIN NOXMIN X X X X Comp

XSYNC XSYNC X X X X Comp

XWAIT XWAIT X X X X Comp

YEARCUTOFF arg 1920 X X X X LR

ACCESSIBILITY System Option

Enables the accessibility features on the Customize Tools dialog box.

Default: STANDARD
Valid in: configuration file, SAS invocation
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
Windows specifics: all

Syntax
-ACCESSIBILITY STANDARD | EXTENDED

STANDARD
specifies that the standard Customize Tools dialog box and Properties dialog boxes
are enabled.

EXTENDED
specifies that the accessibility features are enabled in the Customize Tools dialog box
and for some Properties dialog boxes.

Details
When the ACCESSIBILITY option is set to EXTENDED, the Customize Tools Custom
tabbed page and some SAS Properties dialog boxes are modified for accessibility.

The Customize tab contains two additional buttons, File Menu and Edit Menu.
These menu buttons enable accessibility to the commands that are available using the
toolbar buttons.

The tabs in these dialog boxes are buttons in order to enable some of the SAS
Properties dialog boxes for accessibility. Using the Ctrl + Page Up and Ctrl + Page
Down keys, you can access all parts of these Properties dialog boxes.

When this system option is set to EXTENDED, you can toggle between the overstrike
cursor and the insert cursor. The insert cursor is the default since some accessibility
utilities expect the insert cursor.

System Options under Windows � ALTPRINT System Option 493

ALTLOG System Option

Specifies a destination for a copy of the SAS log.

Default: NOALTLOG
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES, LOGCONTROL
Windows specifics: destination must resolve to a valid Windows path or filename

Syntax
-ALTLOG destination

-NOALTLOG

ALTLOG destination
specifies a destination for a copy of the SAS log. The destination argument can be a
valid Windows pathname or filename (including device names) or an environment
variable associated with a pathname. If you specify only a pathname, the copy is
placed in a file in the specified directory, with a name of filename.LOG, where
filename is the name of your SAS job. If you are running SAS interactively and
specify only a pathname, the log is written to a file named SAS.LOG within that path.

NOALTLOG
specifies that the SAS log is not copied.

Details
The ALTLOG system option specifies a destination to which a copy of the SAS log is
written. Use the ALTLOG system option to capture log output for printing.

To send the SAS log to a printer other than the default printer, use a valid Windows
printer name for the destination value.

When SAS is started with the OBJECTSERVER and NOTERMINAL system options
and no log is specified, SAS discards all log and alternate log messages.

Note: ALTLOG replaces the following system options from earlier versions of SAS:
LDISK, LPRINT, and LTYPE. �

See Also

� “Routing Procedure Output and the SAS Log to a File” on page 184
� in SAS Language Reference: Concepts.

ALTPRINT System Option

Specifies the destination for the copies of the output files from SAS procedures.

Default: NOALTPRINT

494 APPEND System Option � Chapter 23

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: destination must resolve to a valid Windows pathname or filename

Syntax
-ALTPRINT file-specification

-NOALTPRINT

ALTPRINT file-specification
specifies the destination for a copy of the SAS procedure output file. The
file-specification argument can be a valid Windows pathname or filename (including
device names) or an environment variable associated with a pathname. If you specify
only a pathname, the copy is placed in a file in the specified directory, with a name of
filename.LST, where filename is the name of your SAS job. If you are running SAS
interactively and specify only a pathname, the filename is SAS.

NOALTPRINT
does not create a copy of the SAS procedure output file.

Details
The ALTPRINT system option specifies the destination for the copies of output files
from SAS procedures. Use the ALTPRINT system option to capture procedure output
for printing.

To send the procedure output to a printer other than the default printer, use a valid
Windows printer name for the destination value.

Note: ALTPRINT replaces the following system options form earlier versions of
SAS: PDISK, PPRINT, and PTYPE. �

See Also

� “Routing Procedure Output and the SAS Log to a File” on page 184
� “Printing” on page 168

APPEND System Option

Used when SAS starts, appends the specified value at the end of the specified system option.

Default: none
Valid in: configuration file, SAS invocation
PROC OPTIONS GROUP= ENVFILES
Windows specifics: all

Syntax
-APPEND system-option argument

System Options under Windows � AUTHPROVIDERDOMAIN System Option 495

system-option
can be FMTSEARCH, HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, SET,
SASHELP, or SASSCRIPT.

argument
specifies a new pathname or an environment setting that you want to append to the
current value of system-option. The following example shows that a library is being
appended to the FMTSEARCH option:

-set APFMTLIB ‘‘SASEnvironment/SASFormats’’
-append fmtsearch APFMTLIB

Details
By default, if you specify the FMTSEARCH, HELPLOC, MAPS, MSG, SASAUTOS,
SET, SASSCRIPT, or SASHELP system option more than one time, the last value that
is specified is the value that SAS uses. If you want to add pathnames to the pathnames
that were already specified by one of these options, you must use the APPEND system
option to add the new pathname. For example, if you entered the following SAS
command, the only location that SAS will look for help files is c:\app2\help, and the
output of PROC OPTIONS will show only C:\app2\help:

sas -helploc ‘‘c:\app1\help’’ -helploc ‘‘c:\app2\help’’

If you want SAS to look in both locations for help files, you must use the APPEND
option:

sas -helploc ‘‘c:\app1\help’’ -append helploc ‘‘c:\app2\help’’

For the value of the HELPLOC option, PROC OPTIONS will now show

(‘‘c:\app1\help’’ ‘‘c:\app2\help’’)

See Also

� See the Append system option in the SAS Language Reference: Dictionary to
append a value to a system option after SAS starts.

AUTHPROVIDERDOMAIN System Option

Associates a domain suffix with an authentication provider.

Valid in: configuration file, SAS invocation
Alias: AUTHPD
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES
See: AUTHPROVIDERDOMAIN in SAS Language Reference: Dictionary

Syntax
AUTHPROVIDERDOMAIN <provider: domain>

AUTHPROVIDERDOMAIN <(provider-1: domain-1<, ...provider: domain-n>)>

496 AUTHSERVER System Option � Chapter 23

AUTHSERVER System Option
Specifies the authentication domain server to search for secure server logins.

Default: local and trusted servers
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES
Windows specifics: all

Syntax
-AUTHSERVER <“ ”| ’domain-name’ | ’.’>

AUTHSERVER <“ ”| ’domain-name’ | ’.’>

“ ”
specifies to search the local server first, and then search trusted servers for a valid
user login.

’domain-name’
specifies a specific domain-name to search for a valid user login. Single
quotation-marks are required.

’.’
specifies to search only the local server for a valid user login. Single quotation-marks
are required.

Details
The AUTHSERVER system option specifies which servers to search to validate user
logins.

Comparisons
You use the AUTHSERVER system option to specify a single authentication domain.
You use the AUTHPROVIDERDOMAIN system option to specify multiple
authentication providers and the associated domains.

See Also

� “AUTHPROVIDERDOMAIN System Option” on page 495

AUTOEXEC System Option
Specifies the SAS autoexec file.

System Options under Windows � AWSCONTROL System Option 497

Default: AUTOEXEC.SAS, if the file is available; otherwise, none

Valid in: configuration file, SAS invocation

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: file-specification must be a valid Windows filename

Syntax
-AUTOEXEC file-specification

-NOAUTOEXEC

AUTOEXEC file-specification
specifies the SAS autoexec file to be used instead of the default AUTOEXEC.SAS file.
The file-specification argument can be a valid Windows filename or an environment
variable associated with a pathname. For more information on the SAS autoexec file,
see “SAS Autoexec File” on page 18.

NOAUTOEXEC
indicates that no SAS autoexec file is processed, even if one exists.

Details
The AUTOEXEC system option specifies the autoexec file. The autoexec file contains
SAS statements that are executed automatically when you invoke SAS or when you
start another SAS process. The autoexec file can contain any valid SAS statements. For
example, you can include LIBNAME statements for SAS libraries you access routinely
in SAS sessions.

If no AUTOEXEC.SAS file is found, the default value for this option is
NOAUTOEXEC.

See Also

� “SAS Autoexec File” on page 18

AWSCONTROL System Option

Specifies whether the main SAS window includes a title bar, a system/control menu, and
minimize/maximize buttons.

Default: TITLE SYSTEMMENU MINMAX

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

498 AWSDEF System Option � Chapter 23

Syntax
-AWSCONTROL <TITLE | NOTITLE><SYSTEMMENU | NOSYSTEMMENU

><MINMAX | NOMINMAX>

AWSCONTROL= <TITLE | NOTITLE><SYSTEMMENU |
NOSYSTEMMENU><MINMAX | NOMINMAX>

AWSCONTROL
specifies to display the title bar, the system menu, and the minimize and maximize
buttons on the main SAS window.

TITLE | NOTITLE
specifies whether to display the title bar on the main SAS window. If NOTITLE is
specified, the system menu and the minimize and maximize buttons are
automatically omitted as well.

SYSTEMMENU | NOSYSTEMMENU
specifies whether to display the system menu on the title bar of the main SAS
window. If NOSYSTEMMENU is specified, the minimize and maximize buttons are
also omitted.

MINMAX | NOMINMAX
specifies whether to display the minimize and maximize buttons on the title bar of
the main SAS window.

Details
The AWSCONTROL system option controls only the main SAS window, not the
windows that are contained inside the main SAS window. The SASCONTROL system
option controls those SAS process windows.

This system option is intended for use by SAS/AF programmers to customize the
interface of their applications.

See Also

� “SASCONTROL System Option” on page 558

AWSDEF System Option

Specifies the location and dimensions of the main SAS window when SAS initializes.

Default: 80% of the display height and width
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-AWSDEF row-percent-position column-percent-position height-percent width-percent

System Options under Windows � AWSMENU System Option 499

AWSDEF=row-percent-position column-percent-position height-percent width-percent

row-percent-position and column-percent-position
specify screen percentages that control the position of the upper-left corner of the
main SAS window. For example, if you specify 50 for each of these values, the
upper-left corner of the SAS window is positioned in the center of your display.

The valid range of values for these parameters is 0 through 95.

height-percent and width-percent
specify screen percentages that control the size of the main SAS window. For
example, if you specify 100 for each of these values, the SAS window occupies your
entire display. If you specify 50 for each of these values, the SAS window occupies
half of your display.

The valid range of values for these parameters is 40 through 100.

Details
The AWSDEF system option specifies the location and dimensions of the main SAS
window when SAS initializes. For an example of how to use the AWSDEF system
option, see “Changing the Size and Placement of the Main SAS Window” on page 65.

AWSMENU System Option

Specifies whether to display the menu bar in the main SAS window.

Default: AWSMENU

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-AWSMENU | -NOAWSMENU

AWSMENU | NOAWSMENU

AWSMENU
specifies to display the menu bar in the main SAS window.

NOAWSMENU
specifies to omit the menu bar in the main SAS window.

Details
The AWSMENU system option is intended for use by SAS/AF programmers to
customize the interface of their applications.

500 AWSMENUMERGE System Option � Chapter 23

AWSMENUMERGE System Option

Specifies whether to embed menu items that are specific to Windows in the main menus.

Default: AWSMENUMERGE

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-AWSMENUMERGE | -NOAWSMENUMERGE

AWSMENUMERGE | NOAWSMENUMERGE

AWSMENUMERGE
specifies to embed the menu items that are specific to Windows.

NOAWSMENUMERGE
specifies to not embed the menu items that are specific to Windows.

Details
The AWSMENUMERGE system option determines whether the menu items that are
specific to the Windows operating environment are included in the main SAS window
menus.

This system option is used by SAS/AF programmers to customize the interface of
their applications. If SAS is started in batch mode, SAS sets this system option to
NOAWSMENUMERGE.

See Also

� “WINDOWSMENU System Option” on page 584

AWSTITLE System Option

Replaces the default text in the main SAS title bar.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

System Options under Windows � BUFNO System Option 501

Syntax
-AWSTITLE “title-text”

“title-text”
specifies the text that appears in the title bar of the main SAS window. The text
must be enclosed in either single or double quotation marks.

Details
The AWSTITLE system option allows you to replace the default text in the title bar of
the main SAS window with the title that you specify.

This system option is intended for use by SAS/AF programmers to customize the
interface of their applications.

BUFNO System Option

Specifies the number of buffers to be allocated for processing SAS data sets.

Default: 1

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES, PERFORMANCE

Windows specifics: Default value

See: BUFNO System Option in SAS Language Reference: Dictionary

Syntax
-BUFNO n | nK | nM | nG | hexX | MIN | MAX

BUFNO= n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
buffers, a value of .782k specifies 801 buffers, and a value of 3m specifies 3,145,728
buffers.

For values greater than 1G, use the nM option or specify MAX.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 buffers.

MIN
sets the number of buffers to 0, and requires SAS to use the default value of 1.

502 BUFSIZE System Option � Chapter 23

MAX
sets the number of buffers to 2,147,483,647.

Details
The number of buffers is not a permanent attribute of the data set; it is valid only for
the current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.
Using BUFNO= can improve execution time by limiting the number of input/output

operations that are required for a particular SAS data set. The improvement in
execution time, however, comes at the expense of increased memory consumption.

Under Windows, the maximum number of buffers that you can allocate is determined
by the amount of memory available. To request that SAS allocate the number of buffers
based on the number of pages for the data set, use the SASFILE statement.

See Also

� “BUFSIZE System Option” on page 502

� “SASFILE Statement” in SAS Language Reference: Dictionary.

� The chapter on optimizing system performance in SAS Language Reference:
Concepts.

BUFSIZE System Option

Specifies the permanent buffer page size for output SAS data sets.

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES, PERFORMANCE

Windows specifics: Valid values for n

See: BUFSIZE System Option in SAS Language Reference: Dictionary

Syntax
-BUFSIZE n | nK | nM | nG | hexX | MAX

BUFSIZE=n | nK | nM | nG | hexX | MAX

n | nK | nM | nG
specifies the buffer page size in multiples of 1; 1,024 (kilobytes); 1,048,576
(megabytes), and 1,073,741,824 (gigabytes), respectively. You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a value of
8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

System Options under Windows � CATCACHE System Option 503

hexX
specifies the buffer page size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the buffer page size to 45 bytes.

MAX
sets the buffer page size to 2,147,483,647 bytes.

Details
The BUFSIZE system option enables you to specify the permanent buffer page size for
output SAS data sets. Under Windows, the value can range from 512 bytes to
2,147,483,647 bytes. Using the default value of 0 optimizes the buffer page size by
enabling the engine to pick a value depending on the size of the observation.

Experienced users might want to vary the value of the BUFSIZE system option if you
are trying to maximize memory usage or the number of observations per page.

See Also

� “BUFNO System Option” on page 501
� The chapter about optimizing system performance in SAS Language Reference:

Concepts.

CATCACHE System Option

Specifies the number of SAS catalogs to keep open.

Default: 0
Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Windows specifics: Valid values for n
See: CATCACHE System Option in SAS Language Reference: Dictionary

Syntax
-CATCACHE n | nK | MIN | MAX

n | nK
specifies the number of open-file descriptors to keep in cache memory in multiples of
1 (n) or 1,024 (nK). You can specify decimal values for the number of kilobytes. For
example, a value of 8 specifies 8 open-file descriptors, a value of .782k specifies 801
open-file descriptors, and a value of 3k specifies 3,072 open-file descriptors.

If n > 0, SAS places up to that number of open-file descriptors in cache memory
instead of closing the catalogs.

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

MAX
sets the number of open-file descriptors that are kept in cache memory to 32,767.

504 CLEANUP System Option � Chapter 23

Details
By using the CATCACHE system option to specify the number of SAS catalogs to keep
open, you can avoid the repeated opening and closing of the same catalogs.

If SAS is running on a z/OS server and the MINSTG system option is in effect, SAS
sets the value of CATCACHE to 0.

See Also

� The chapter about optimizing system performance in SAS Language Reference:
Concepts.

CLEANUP System Option

Specifies how to handle an out-of-resource condition.

Default: CLEANUP
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING
Windows specifics: behavior when running in batch mode
See: CLEANUP System Option in SAS Language Reference: Dictionary

Syntax
-CLEANUP | -NOCLEANUP

CLEANUP | NOCLEANUP

CLEANUP
specifies that during the entire session, SAS attempts to perform automatic,
continuous clean-up of resources that are not essential for execution. Nonessential
resources include those resources that are not visible to the user (for example, cache
memory) and are visible to the user (for example, the KEYS windows).

CLEANUP does not prompt you for any out-of-resource condition except for out-of-
disk-space conditions. If you do not want to be prompted for out-of-disk-space
conditions, use the CLEANUP option in conjunction with the NOTERMINAL option.

NOCLEANUP
specifies that SAS allow the user to choose how to handle an out-of-resource
condition. When NOCLEANUP is in effect and SAS cannot execute because of a lack
of resources, SAS automatically attempts to clean up resources that are not visible to
the user (for example, cache memory). However, resources that are visible to the user
(for example, the KEYS windows) are not automatically cleaned up. Instead, SAS
prompts you before attempting to regain resources.

Details
The CLEANUP system option indicates whether you are prompted with a menu of
items to clean up when SAS encounters an out-of-resource condition.

System Options under Windows � COMDEF System Option 505

If you specify NOCLEANUP and are prompted for input, you can select Continuous
on every menu except the out-of-disk-space menu. If you choose Continuous, the
CLEANUP option is turned on and you are not prompted again in out-of-resource
conditions, unless SAS runs out of disk space.

COMDEF System Option

Specifies the location where the SAS Command window is displayed.

Default: BOTTOM CENTER
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-COMDEF TOP | CENTER | BOTTOM

<LEFT | CENTER | RIGHT>

TOP | CENTER | BOTTOM
specifies the vertical position of the SAS Command window. The default value is
BOTTOM.

LEFT | CENTER | RIGHT
specifies the horizontal position of the SAS Command window. The default value is
CENTER.

Details
You must specify a vertical position first. You do not have to specify a horizontal
position, but if you omit it, CENTER is used.

Note: The SAS Command window is positioned with respect to your entire display,
not to the main SAS window. Also, the COMDEF system option applies only when the
command bar is not docked to the main SAS window. �

See Also

� “Setting Session Preferences” on page 59
� “Using the Command Bar to Issue Commands” on page 41

506 CONFIG System Option � Chapter 23

CONFIG System Option

Specifies the configuration file that is used when initializing or overriding the values of SAS
system options.

Default: !sasroot\SASV9.CFG

Valid in: configuration file, SAS invocation

Category: System administration: Installation

PROC OPTIONS GROUP= INSTALL

Windows specifics: all

Syntax
-CONFIG file-specification

file-specification
specifies the filename of the SAS configuration file that you want to use, or a
Windows environment variable that resolves to a valid filename. The file-specification
must be a valid Windows filename. If file-specification contains spaces, it must be
enclosed in quotation marks.

Details
The CONFIG system option specifies the complete filename of your configuration file.
This file contains SAS options that are executed automatically whenever SAS is
invoked. SAS supplies a default configuration file, but you can create your own
configuration file and store it in a location you choose.

See Also

� “SAS Configuration Files” on page 12

DEVICE System Option

Specifies a device driver for graphics output for SAS/GRAPH software.

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Alias: -DEV

Category: Graphics: Driver settings

PROC OPTIONS GROUP= GRAPHICS

Windows specifics: Valid values for device-driver-name; default value

See: DEVICE System Option in SAS Language Reference: Dictionary

System Options under Windows � ECHO System Option 507

Syntax
-DEVICE device-driver-name

DEVICE=device-driver-name

device-driver-name
specifies the name of a device driver for graphics output.

Details
To see the list of device drivers that are available under Windows, you can use the
GDEVICE procedure. If you are using the SAS windowing environment, submit the
following statements:

proc gdevice catalog=sashelp.devices;
run;
quit;

If you want to write the device list to the SAS log, submit the following statements:

proc gdevice catalog=sashelp.devices nofs;
list _all_;

run;
quit;

Your site might have defined additional device catalogs referenced by the GDEVICE0
libref. See your on–site SAS support personnel for more information.

See Also

� “GDEVICE Procedure” in SAS/GRAPH: Reference

ECHO System Option

Specifies a message to be echoed to the SAS log while initializing SAS.

Default: NOECHO

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: all

Syntax
-ECHO “message” | -NOECHO

ECHO “message”
specifies the text of the message to be echoed to the SAS log. The text must be
enclosed in single or double quotation marks if the message is more than one word.
Otherwise, quotation marks are not needed.

508 EMAILDLG System Option � Chapter 23

NOECHO
specifies that no messages are to be echoed to the SAS log.

Details
Messages that result from errors in the autoexec file are printed in the SAS log
regardless of how the ECHO system option is set.

Example

For example, you can specify the following:

-echo "SAS System under Windows
is initializing."

The message appears in the LOG window as SAS initializes.

See Also

� “ECHOAUTO System Option” in SAS Language Reference: Dictionary
� The SAS Log in SAS Language Reference: Concepts.

EMAILDLG System Option

Specifies whether to use the native e-mail dialog box provided by your e-mail application or the
e-mail dialog box provided by SAS.

Default: NATIVE
Valid in: configuration file, SAS invocation
Category: Environment control: E-mail
PROC OPTIONS GROUP= E-MAIL
Windows specifics: all

Syntax
-EMAILDLG NATIVE | SAS

NATIVE
specifies to use the e-mail dialog box provided by your e-mail system vendor. You can
use the native dialog box with SAS only if the e-mail system supports the MAPI
interface.

SAS
specifies to use the e-mail dialog box provided by SAS.

Details
The EMAILDLG system option specifies whether to use the native e-mail interactive
dialog box provided by your e-mail application or the e-mail interface provided by SAS.
SAS uses the native dialog box by default.

System Options under Windows � ENGINE System Option 509

See Also

� “Sending E-Mail Using SAS” on page 42

EMAILSYS System Option
Specifies the e-mail protocol to use for sending electronic mail.

Default: MAPI
Valid in: configuration file, SAS invocation
Category: Environment control: Email
PROC OPTIONS GROUP= EMAIL
Windows specifics: all

Syntax
-EMAILSYS MAPI | VIM | SMTP

MAPI
specifies to use the Messaging Application Program Interface (MAPI) electronic mail
interface. This value is the default.

VIM
specifies to use the Vendor Independent Mail (VIM) electronic mail interface.

SMTP
specifies to use the Simple Mail Transfer Protocol e-mail interface.

Details
SAS supports three types of protocols: MAPI (such as Microsoft Exchange), Vendor
Independent Mail (VIM—such as Lotus Notes) and SMTP. The default value is MAPI. If
you specify SMTP, you must also specify and configure the EMAILHOST and
EMAILPORT system options. SMTP is available only when you are sending e-mail
programmatically. SMTP is not available using either your e-mail program native
dialog box or the SAS e-mail dialog box.

See Also

� “Sending E-Mail Using SAS” on page 42
� From SAS Language Reference: Dictionary

� “EMAILID System Option”
� “EMAILPW System Option”
� “EMAILAUTHPROTOCOL System Option”

� “The SMTP E-mail Interface” in SAS Language Reference: Concepts.

ENGINE System Option
Specifies the default access method to use for SAS libraries.

510 ENGINE System Option � Chapter 23

Default V9
Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Window specifics: valid values

Syntax
-ENGINE engine-name

engine-name
can be one of the following under Windows:

BASE | V9
specifies the default SAS engine for SAS System 9 files.

BMDP
specifies the engine for BMDP data files.

OSIRIS
specifies the engine for OSIRIS data files.

SPSS
specifies the engine for SPSS data files.

V8
specifies the SAS engine all Version 8 files.

V7
specifies the SAS engine for all Version 7 files.

V6
specifies the default engine for Releases 6.08 - 6.12. The V6 engine is supported
only in 32–bit operating environments.

V604
specifies the default engine for Release 6.04 and Release 6.03.

XML
specifies the default engine for XML files.

XPORT
specifies the transport engine.

Details
The default engine is used when a SAS library points to an empty directory or a new
file. For information about SAS/SHARE and SAS/ACCESS engines, see their respective
documentation.

See Also

� “Types of Library Engines” on page 125
� SAS Language Reference: Concepts
� SAS/ACCESS for Relational Databases: Reference

System Options under Windows � FILELOCKWAITMAX= System Option 511

� Communications Access Methods for SAS/CONNECT and SAS/SHARE

ENHANCEDEDITOR System Option

Specifies whether to enable the Enhanced Editor during SAS invocation.

Default: ENHANCEDEDITOR
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-ENHANCEDEDITOR | -NOENHANCEDEDITOR

ENHANCEDEDITOR
specifies to enable the Enhanced Editor during SAS invocation.

NOENHANCEDEDITOR
specifies not to enable the Enhanced Editor during SAS invocation.

Details
By default, the Enhanced Editor is enabled when you start SAS. If you do not want the
Enhanced Editor enabled when you start SAS, use the NOENHANCEDEDITOR system
option.

See Also

� “WEDIT Command” on page 364

FILELOCKWAITMAX= System Option

Sets an upper limit on the amount of time that SAS will wait for a locked file.

Default: 600
Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Windows specifics all

Syntax
FILELOCKWAITMAX =wait-time

512 FILTERLIST System Option � Chapter 23

wait-time
specifies the amount of time, in seconds, that SAS will wait for a locked file to
become available.

Interaction: Specifying the FILELOCKWAITMAX= system option can have an
adverse effect on one or more SAS/SHARE server and client sessions that are
waiting for the release of a SAS file that is locked by another process. One or more
wait conditions could lead to failed processes for a SAS/SHARE server and clients.

To prevent the possibility of a failed SAS/SHARE process, you can specify
FILELOCKWAITMAX=0, which cancels the amount of time that a SAS/SHARE
server and clients would wait for the release of a locked file. Canceling the wait
time would prevent a failed process.

Range: 0 - 600

Default: 600

Details
The FILELOCKWAITMAX= system option enables you to limit or turn off the amount
of time SAS will wait for a locked file. SAS uses the FILELOCKWAIT= LIBNAME
option to wait for the file to become available. Using the FILELOCKWAITMAX=
system option, an administrator can limit or turn off this behavior. Normally, SAS
returns an error if the file it attempts to access is locked. If you set
FILELOCKWAITMAX= to 0, SAS fails immediately after encountering a locked file.
This option is used primarily by a system administrator.

See Also

� FILELOCKWAIT= option in the “LIBNAME Statement” on page 464

FILTERLIST System Option

Specifies an alternative set of file filter specifications to use for the Open and Save As dialog
boxes.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-FILTERLIST “filter1 | filter2|... | filter-n”

filter1...filter n
specifies one or more strings of text separated by a “|” and enclosed in double
quotation marks, such as “*.Bob’s work | SAS*.*” Note that you can specify long
filename extensions that include spaces and single quotation marks.

System Options under Windows � FONT System Option 513

Details
All filters in the FILTERLIST are added to the application specified filter list displayed
in the Files of type box in the Open dialog box and in the Save as type box in the
Save As dialog box. The first filter in the FILTERLIST becomes the default filter. The
FILTERLIST must be enclosed in double quotation marks.

See Also

� “DLGOPEN Command” on page 339
� “DLGSAVE Command” on page 344

FONT System Option

Specifies a font to use for SAS windows.

Default: Sasfont 8
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-FONT “font-name” <BOLD | NORMAL><REGULAR |

ITALIC><font-size><character-set>

FONT=“font-name” <BOLD | NORMAL><REGULAR | ITALIC>
<font-size><character-set>

“font-name”
specifies the name of the font for text in the SAS windowing environment. This name
must be a valid font name (for example, “SAS Monospace” or “Courier”). The
font-name argument must be enclosed in double quotation marks. This argument is
required.

BOLD | NORMAL
specifies the weight of the font. The default is NORMAL.

REGULAR | ITALIC
specifies the style of the font. The default is REGULAR.

font-size
specifies the font size to use for printing. This value must be an integer from 1 to
7200, inclusive. If you omit this argument, SAS uses the last selected size unless
there is no previous size, in that case 8 is used.

character-set
specifies the character set to use. The default is “Western.” Some possible valid
values are Western, Central European, Cyrillic, Greek, Turkish, Arabic, Baltic, and
Thai. If the font does not support the specified character set, the default character

514 FONTALIAS System Option � Chapter 23

set is used. If the default character set is not supported by the font, the font’s default
character set is used.

Details
Valid font names are shown in the Fonts folder. To open the Font folder, type font in the
Run dialog box. For example, you can use the following option with the SAS command:

-font "sas monospace bold" 12

SAS displays output best with a monospace (fixed-pitch) font. If you use a
proportional (variable pitch) font, text can display incorrectly. If you specify a point-size
that is not valid for a font, SAS uses the closest point size for the font you specify.

See Also

� “SYSGUIFONT System Option” on page 574
� “SYSPRINTFONT System Option” on page 578

FONTALIAS System Option

Assigns a Windows font to one of the SAS fonts.

Default: varies (see table in “Details” on page 514)
Valid in: configuration file, SAS invocation
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS
Windows specifics: all

Syntax
-FONTALIAS “SAS-font” “host-specific-font”

“SAS-font”
specifies the SAS font you want to replace. The name of the font must be enclosed in
double quotation marks.

“host-specific-font”
specifies the Windows font that you want to assign. The name of the font must be
enclosed in double quotation marks.

Details
Use the FONTALIAS system option for each font that you want to override.

The default font aliases for Windows are as follows:

SAS font Windows font

Times Times New Roman

Helvetica Arial

Courier Courier New

System Options under Windows � FORMCHAR System Option 515

SAS font Windows font

Symbol Symbol

Script Script

AvantGarde Arial

Bookman Times New Roman

Schoolbook Times New Roman

Palatino Times New Roman

Dingbats Symbol

Example

The system option -fontalias "Times" "Courier New" tells SAS to use Courier
New wherever the Times SAS font is requested.

FONTSLOC System Option
Specifies the location of the SAS fonts that are loaded during the SAS session.

Default: !sasroot\core\resource
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all
See: FONTSLOC System Option in SAS Language Reference: Dictionary

Syntax
-FONTSLOC directory-specification

directory-specification
specifies the directory that contains the SAS fonts that are loaded during the SAS
session. If directory-specification contains spaces, it must be enclosed in quotation
marks.

Details
The directory must be a valid Windows pathname.

FORMCHAR System Option
Specifies the default output formatting characters.

516 FULLSTIMER System Option � Chapter 23

Default: (see the SAS configuration file)
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
Windows specifics: Valid values for formatting-characters

See: FORMCHAR System Option in SAS Language Reference: Dictionary

Syntax
-FORMCHAR “formatting-characters”

FORMCHAR=“formatting-characters”

formatting-characters
specifies any string or list of strings of characters up to 64 bytes long. If fewer than
64 bytes are specified, the string is padded with blanks on the right. The character
string must be enclosed in double quotation marks.

Details
Formatting characters are used to construct tabular output outlines and dividers for
various procedures, such as the CALENDAR, FREQ, and TABULATE procedures. If
you omit formatting characters as an option in the procedure, the default specifications
given in the FORMCHAR= system option are used. Note that you can also specify a
hexadecimal character constant as a formatting character. When you use a hexadecimal
constant with this option, SAS interprets the value of the hexadecimal constant as
appropriate for the Windows environment.

The configuration file shipped with SAS contains two FORMCHAR system option
specifications, with one of them commented out. The default FORMCHAR uses the
characters in the SAS Monospace and Sasfont fonts. If you use a code page other than
the standard code pages, comment out the FORMCHAR system option that shipped
with SAS and use the other FORMCHAR system option.

Note: Note: To ensure that row and column separators and boxed tabular reports
will be printed legibly when using the standard forms characters, you must use these
resources:

� the SAS Monospace or the SAS Monospace Bold font
� a printer that supports TrueType fonts

�

FULLSTIMER System Option

Specifies whether to write all available system performance statistics to the SAS log.

Default: NOFULLSTIMER
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

System Options under Windows � FULLSTIMER System Option 517

Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: all

Syntax
-FULLSTIMER | -NOFULLSTIMER

FULLSTIMER | NOFULLSTIMER

FULLSTIMER
specifies that SAS write to the SAS log a complete list of computer resources that
were used for each step and for the entire SAS session.

NOFULLSTIMER
specifies that SAS not write a complete list of computer resources to the SAS log.
NOFULLSTIMER is the default.

Details
The FULLSTIMER system option specifies whether all the performance statistics of
your computer system that are available to SAS are written to the SAS log.

This system option gives you time-elapsed statistics if you have not turned off the
STIMER option. If you turn off the STIMER option, the FULLSTIMER option does not
generate time statistics.

If you need statistics on tasks such as the SAS windowing environment (statistics for
the windowing environment are available only when SAS terminates), you should use
the “ALTLOG System Option” on page 493 to specify the destination for a copy of the
SAS log. If you specify the FULLSTIMER system option before you end your SAS
session, you can view statistics for the SAS windowing environment at the destination
that you specified.

The following is an example of the statistics that the SAS log displays when the
FULLSTIMER option is on:

NOTE: There were 5 observations read from the data set MYSAS.DEPART1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.96 seconds
user cpu time 0.01 seconds
system cpu time 0.15 seconds
Memory 83k
OS Memory 4648k

FULLSTIMER displays the following statistics:

Table 23.2 Description of FULLSTIMER Statistics

Statistic Description

Real-Time the amount of time spent to process the SAS job. Real-time is
also referred to as elapsed time.

User CPU Time the CPU time spent to execute SAS code.

System CPU Time the CPU time spent to perform operating system tasks (system
overhead tasks) that support the execution of SAS code

518 HELPHOST System Option � Chapter 23

Statistic Description

Memory the amount of memory required to run a step.

OS Memory the maximum amount of memory that a step requested from the
System.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real-time in your FULLSTIMER output. �

For example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

Since CPU1 can run a thread at the same time that CPU2 runs a separate thread for
the same SAS process, you can theoretically consume 2 CPU seconds in 1 second of
real-time.

Comparisons
The FULLSTIMER system option specifies whether all of the available performance
statistics are written to the SAS log. The STIMER system option specifies whether
time-elapsed statistics for DATA steps or PROC steps are written to the SAS log.

See Also

� “STIMER System Option” on page 573
� The section optimizing system performance in SAS Language Reference: Concepts.
� The SAS Log in SAS Language Reference: Concepts.

HELPHOST System Option

Specifies the name of the computer where the remote browsing system is to be displayed.

Default: NULL
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, VMS_SAS_OPTIONS DCL symbol, or SASV9_OPTIONS environment variable
See: HELPHOST in SAS Language Reference: Dictionary

Details
The value of HELPHOST is based on the address of the computer running the remote
desktop client. If you are logged into a host, then you will receive an error message.

HELPINDEX System Option

Specifies one or more index files for the SAS Help and Documentation.

System Options under Windows � HELPINDEX System Option 519

Default: /help/common.hlp/index.txt, /help/common.hlp/keywords.htm, common.hhk

Valid in: configuration file, SAS invocation

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

Windows specifics: HTML-HELP-index-pathname

Syntax
-HELPINDEX <(> “index-pathname-1” < “ index-pathname-2” “index-pathname-n”)>

index-pathname
specifies the partial pathname for the index that is to be used by SAS Help and
Documentation. index-pathname must be a valid Windows pathname. Pathname
must be enclosed in quotation marks. When you specify more than one pathname,
separate the pathnames with a space and enclose the list of pathnames in
parentheses.

The index-pathname can be any or all of the following:

/help/applet-index-filename
specifies the partial pathname of the index file that is to be used by the SAS Help
and Documentation Java applet under a UNIX environment. applet-index-filename
must have a file extension of .txt, and it must reside in a path that is specified by
the HELPLOC system option. The default is /help/common.hlp/index.txt.

See the default index file for the format that is required for an index file.

/help/accessible-index-filename
specifies the partial pathname of an accessible index file that is to be used by SAS
Help and Documentation under UNIX, OpenVMS, or z/OS environments. An
accessible index file is an HTML file that can be used by Web browsers.
accessible-index-filename must have a file extension of .htm and it must reside in a
path that is specified by the HELPLOC system option. The default pathname is /
help/common.hlp/keywords.htm.

See the default index file for the format that is required for an index file.

HTML-Help-index-pathname
specifies the pathname of the Microsoft HTML Help index that is to be used by
SAS Help and Documentation under Windows environments. The default
pathname is common.hhk. For information about creating an index for Microsoft
HTML Help, see your Microsoft HTML Help documentation.

Details
Use the HELPINDEX option if you have a customized index that you want to use
instead of the index that SAS supplies. If you use one configuration file to start SAS
under more than one operating environment, you can specify all of the partial
pathnames in the HELPINDEX option. The order of the pathnames is not important,
although only one pathname of each type can be specified.

When the HELPINDEX option specifies a pathname for UNIX, OpenVMS, or z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname that is specified in the HELPLOC option. If the
HELPLOC option contains more than one pathname, each path is searched for the
specified index.

520 HELPLOC System Option � Chapter 23

For example, when the value of HELPINDEX is /help/common.hlp/myindex.htm
and the value of HELPLOC is /u/myhome/myhelp, the complete path to the index is /
u/myhome/myhelp/common.hlp/myindex.htm.

See Also

� “HELPLOC System Option” on page 520

HELPLOC System Option

Specifies the location of Help files that are used to view SAS Help and Documentation using
Microsoft HTML Help.

Default: (“!MYSASFILES\classdoc” “!sasroot\nls\en\help” “!sasroot\core\help”)

Valid in: configuration file, SAS invocation

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

Windows specifics: valid values for pathname

Syntax

-HELPLOC <(> "pathname-1" <"pathname-2" "pathname-n")>

pathname
specifies one or more directory pathnames in which SAS Help and Documentation
files are located. Pathname must be a valid Windows pathname that contains the
installed Microsoft HTML Help files. Pathnames must be enclosed in quotation
marks. When more than one pathname is specified, use parentheses around the list
of pathnames.

Details

Specifying a value for the HELPLOC system option causes SAS to insert that value at
the start of a concatenated list of values. This action enables you to access the help for
your site without losing access to SAS Help and Documentation.

The default folders !MYSASFILES\classdoc and !sasroot\core\help are used for SAS/
AF application Help and SAS Help and Documentation, respectively.

Example The following command contains two specifications of HELPLOC:

sas -helploc "c:\app1\help" -helploc "c:\app2\help"

The value of the system option is of the following form:

("c:\app2\help" "c:\app1\help" "!sasuser\classdoc" "!sasroot\nls\en\help"
"!sasroot\core\help")

System Options under Windows � HELPREGISTER System Option 521

HELPREGISTER System Option

Registers help files to access from the main SAS window Help menu.

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Help
PROC OPTIONS GROUP= HELP
Windows specifics: all

Syntax
-HELPREGISTER “menu string” help file location <“help string”> <topic><CHM | HLP

| HTML>

“menu string”
is the text string that appears in the Help menu.

help file location
specifies the folder and the filename in which the help file is located. The help file
location can be omitted if the file resides in a folder that is specified by the
HELPLOC system option. The help file location can be truncated with !sasroot. If
help file location includes blank spaces, it must be enclosed in quotation marks.

“help string”
is the text that appears in the status bar when a user places the mouse over the
menu string.

topic
is the topic within the help file that displays when you select menu string from SAS
help menu. For HTML files, the topic is the anchor (preceded by #) within the
document. For CHM files, the topic is the page within the CHM file. For HLP files,
topic is the keyword in the file for which WinHelp searches. If topic includes blank
spaces, it must be enclosed in quotation marks.

CHM
specifies an HtmlHelp CHM file on the local system or network.

HLP
specifies a WinHelp file on the local system or network.

HTML
specifies an HTML file on the local file system or network, or a valid URL.

Details
Use the HELPREGISTER system option to add up to 20 help files that you would like
available from the main SAS window Help menu. All strings containing spaces must be
enclosed in double quotation marks. Optional arguments can be omitted by replacing
them with a single period (.) or empty double quotation marks (“”) . If no further
argument is necessary, no place-holder is required.

To add multiple Help files to the Help menu, use multiple HELPREGISTER system
options either in the configuration file or at the command prompt when you start SAS.

522 HELPTOC System Option � Chapter 23

Examples

Example 1: HTML Pages and URLs

sas -helpregister ‘‘SAS Institute Inc’’ http://www.sas.com
’’SAS’s homepage on the web‘‘ . html

sas -helpregister ‘‘Local HTML Doc’’ c:\mypage.htm
‘‘My own help’’ middle

Example 2: HTML Help Files (.CHM)

sas -helpregister ‘‘My CHM file’’ \\server\share\HelpStuff.chm .
‘‘InternalFile.htm’’

sas -helpregister ‘‘SAS Windows Companion’’ host.chm .
‘‘/host.hlp/chostfutil.htm’’

Example 3: WinHelp Files (.HLP)

sas -helpregister ‘‘A WinHelp File’’ c:\somefile.hlp
‘‘simply an .hlp file’’

sas -helpregister ‘‘WinHelp with a Topic’’ c:\somefile.hlp .
‘‘My Topic’’

See Also

� “Adding Help to the Help Menu” on page 66

HELPTOC System Option

Specifies the table of contents files for the SAS Help and Documentation.

Default: /help/helpnav.hlp/config.txt /help/common.hlp/toc.htm common.hhc

Valid in: configuration file, SAS invocation

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

Windows specifics: HTML-Help-TOC-pathname

Syntax
-HELPTOC <(> “TOC-pathname-1” <“TOC-pathname-2” “TOC-pathname-3”)>

TOC-pathname
specifies a partial pathname for the table of contents that is to be used by SAS Help
and Documentation. The TOC-pathname must be a valid Windows pathname.
Pathnames must be enclosed in quotation marks. When more than one pathname is
specified, use parentheses around the list of pathnames.

System Options under Windows � HELPTOC System Option 523

The TOC-pathname can be any or all of the following:

/help/applet-TOC-filename
specifies the partial pathname of the table of contents file that is to be used by the
SAS Help and Documentation Java applet under a UNIX environment.
applet-TOC-filename must have a file extension of .txt, and it must reside in a
path that is specified by the HELPLOC system option. The default pathname is
/help/helpnav.hlp/config.txt.

See the default table of contents file for the format that is required for an index
file.

/help/accessible-TOC-filename
specifies the partial pathname of an accessible table of contents file that is to be
used by SAS Help and Documentation under UNIX, OpenVMS, or z/OS
environments. An accessible table of contents file is an HTML file that can be used
by Web browsers. accessible-TOC-filename must have a file extension of .htm and
it must reside in a path that is specified by the HELPLOC system option. The
default pathname is /help/common.hlp/toc.htm.

See the default table of contents file for the format that is required for a table of
contents.

HTML-Help-TOC-pathname
specifies the complete pathname to the Microsoft HTML Help table of contents
that is to be used by SAS Help and Documentation in Windows environments. The
default pathname is common.hhc. For information about creating an index for
Microsoft HTML Help, see your Microsoft HTML Help documentation.

Details
Use the HELPTOC option if you have a customized table of contents that you want to
use instead of the table of contents that SAS supplies. If you use one configuration file
to start SAS under more than one operating environment, you can specify all of the
partial pathnames in the HELPTOC option. The order of the pathnames is not
important, although only one pathname of each type can be specified.

When the HELPTOC option specifies the pathname for UNIX, OpenVMS, and z/OS
operating environments, SAS determines the complete path by replacing /help/ in the
partial pathname with the pathname that is specified in the HELPLOC option. If the
HELPLOC option contains more than one pathname, each path is searched for the table
of contents.

For example, when HELPTOC is /help/common.hlp/mytoc.htm and the value of
HELPLOC is /u/myhome/myhelp, the complete path to the table of contents is /u/
myhome/myhelp/common.hlp/mytoc.htm.

See Also

� “HELPLOC System Option” on page 520

524 HOSTPRINT System Option � Chapter 23

HOSTPRINT System Option

Specifies that the Windows Print Manager is to be used for printing.

Default: HOSTPRINT
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
Windows specifics: all

Syntax
-HOSTPRINT | -NOHOSTPRINT

HOSTPRINT | NOHOSTPRINT

HOSTPRINT
specifies to use Windows printing. HOSTPRINT is the default.

NOHOSTPRINT
specifies to use SAS forms for printing.

Details
Use the NOHOSTPRINT option to use forms for printing in a batch SAS session. When
you specify NOHOSTPRINT, the Use Forms check box is selected in the Print Setup
dialog box, and SAS uses the line size, page size, and font values that are specified in
your SAS form.

See Also

� “Setting Print Options to Use Forms” on page 177

ICON System Option

Minimizes the SAS window.

Default: NOICON
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Option
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-ICON | -NOICON

System Options under Windows � INSERT System Option 525

ICON | NOICON

ICON
specifies to minimize the main SAS window immediately.

NOICON
restores the main SAS window immediately.

Details
If you put the ICON system option in the SAS command or the SAS configuration file,
SAS is minimized upon initialization. If you submit the ICON system option in an
OPTIONS statement, SAS is immediately minimized. This action is equivalent to
clicking on the minimize button.

This system option is especially useful for obtaining a minimized SAS session as soon
as you start Windows. For example, the ICON system option could be specified in the
SAS command as follows:

c:\sas\sas.exe -icon

INITSTMT System Option

Specifies a SAS statement to be executed after any statements in the autoexec file and before any
statements from the SYSIN= file.

Default: none
Valid in: configuration file, SAS invocation
Alias: IS
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES
Windows specifics: statement must end a DATA or PROC step if you use the Enhanced
Editor
See: INITSTMT= System Option in SAS Language Reference: Dictionary

Syntax
INITSTMT ’statement’

’statement’
specifies any SAS statement or statements. The value of statement must end a DATA
or PROC step if you use the Enhanced Editor.

INSERT System Option

Used when SAS starts, inserts the specified value at the beginning of the specified system option.

526 JREOPTIONS System Option � Chapter 23

Default: none
Valid in: configuration file, SAS invocation
PROC OPTIONS GROUP= ENVFILES
Windows specifics: all

Syntax
-INSERT system-option argument

system-option
can be FMTSEARCH, HELPLOC, MAPS, MSG, SAMPLOC, SET, SASSCRIPT,
SASAUTOS, or SASHELP.

argument
specifies a new pathname or an environment setting that you want to insert at the
front of the current value of system-option. The following example shows that a
library is being inserted before the FMTSEARCH option:

-set APFMTLIB ‘‘SASEnvironment/SASFormats’’
-insert fmtsearch APFMTLI

Details
By default, if you specify the FMTSEARCH, HELPLOC, MAPS, MSG, SAMPLOC, SET,
SASSCRIPT, SASAUTOS, or SASHELP system option more than one time, the last
specification is the one that SAS uses. If you want to insert additional pathnames in
front of the search paths that have already been specified by one of these options, you
must use the INSERT system option to add the new pathname. For example, if you
entered the following SAS command, the only location that SAS will look for help files
is c:\app2\help, and the output of PROC OPTIONS will only show c:\app2\help:

sas -helploc ‘‘c:\app2\help’’

If you want SAS to look in both the current path for help files and in c:\app2\help and
if you want SAS to search c:\app2\help first, then you must use the INSERT option:

sas -insert helploc ‘‘c:\app2\help’’

If your current path for help files is !sasroot\nls\en\help, then for the value of the
HELPLOC option, PROC OPTIONS will now show

(‘‘c:\app2\help’’ ‘‘!sasroot\nls\en\help’’)

See Also

� See the Insert system option in the SAS Language Reference: Dictionary to insert
a value to a system option after SAS starts.

JREOPTIONS System Option

Identifies Java Runtime Environment (JRE) options for SAS.

Default: -Djava.security.policy=<pathname\filename> -Dsas.jre=(private | public)
-Dsas.jre.home=!sasroot\pathname -Djava.ext.dirs=pathname\filename

System Options under Windows � LINESIZE System Option 527

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP EXECMODES
Windows specifics: all

Syntax
-JREOPTIONS (-JRE-option-1 <-JRE-option-n>)

JREOPTIONS (-JRE-option-1 <-JRE-option-n>)

-JRE-option
specifies one or more Java Runtime Environment options. JRE options must begin
with a hyphen (-). Use a space to separate multiple JRE options. Valid values for
JRE-option depend on your installation’s Java Runtime Environment. For
information about JRE options, see your installation’s Java documentation.

Details
The set of JRE options must be enclosed in parentheses. If you specify multiple
JREOPTIONS system options, SAS appends JRE options to JRE options that are
currently defined. Incorrect JRE options are ignored. To define the classpath, use the
Djava.class.path option.

Examples

� -jreoptions (-verbose)

� -jreoptions (-Djava.class.path= "c:\my
java\classes\myclasses.jar";c:\java2\classes2\classes2.jar
-oss600k)

LINESIZE System Option

Specifies the line size of SAS Log and Output windows.

Default: Varies depending on display settings
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output
PROC OPTIONS GROUP= LOG_LISTCONTROL
Windows specifics: Default value
See: LINESIZE System Optionin SAS Language Reference: Dictionary

Syntax
-LINESIZE n | MIN | MAX

LINESIZE=n | MIN| MAX

528 LOADMEMSIZE System Option � Chapter 23

n
specifies the line size in characters. Valid values range between 64 and 256.

MIN
sets the line size to 64 characters.

MAX
sets the line size to 256 characters.

Details
The default values are based on the printer resolution and printer font so that
generated reports print correctly.

CAUTION:
Modifying print options by using the Windows printing dialog boxes can change the values
of SAS printing system options, which might cause unpredictable output. If you set
printing options using SAS system options such as LINESIZE and PAGESIZE, and
then use the Windows printing dialog boxes to set printing options. The SAS system
options are set to the values that are specified in the Windows print dialog boxes. �

See Also

� “PAGESIZE System Option” on page 543
� In the SAS Language Reference: Dictionary:

� “ORIENTATION System Option”
� “PAGESIZE System Option”.

LOADMEMSIZE System Option

Specifies a suggested amount of memory needed for executable programs loaded by SAS.

Default: 0
Valid in: configuration file, SAS invocation
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
Windows specifics: all

Syntax
-LOADMEMSIZE n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the memory size in multiples of 1; 1,024 (kilobytes); 1,048,576 (megabytes),
and 1,073,741,842 (gigabytes), respectively. You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8
bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

System Options under Windows � LOG System Option 529

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the amount of memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit on the total amount of
memory that can be used.

MAX
specifies that the maximum amount of memory for executable programs is limited
only by the amount of memory available.

Details
When LOADMEMSIZE is set to 0, the memory that is used for executable programs
that are loaded by SAS is limited only by the amount of system memory available. If
LOADMEMSIZE is set to 1, executable programs are purged from memory when they
are no longer in use.

For values of two or greater, SAS first checks the amount of memory that is available
for SAS executable programs. If the total amount of memory that is available is greater
than the value of LOADMEMSIZE, SAS purges the SAS loaded executable programs
that are not in use until the memory that is used is less than the value of the
LOADMEMSIZE option, or until there are no other SAS loaded executable programs
that can be purged. If all executable programs have been purged and more memory is
needed, additional system memory is used as long as it is available.

LOG System Option

Specifies a destination for a copy of the SAS log when SAS is running in batch mode.

Default: filename.LOG in batch mode, where filename is the name of your SAS job
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES, LOGCONTROL
Windows specifics: destination must be a valid Windows filename

Syntax
-LOG “destination” | -NOLOG

LOG “destination”
specifies the destination for the SAS log. The destination argument can be a valid
Windows pathname or filename (including device names such as LPT1) or an
environment variable that is associated with a pathname. If you specify only a
pathname, the log file is created in the specified directory with the default name of
filename.LOG, where filename is the name of your SAS job.

NOLOG
routes each log message to a message box, where one message is displayed per
message box.

530 MAPS System Option � Chapter 23

Details
The LOG system option specifies a destination for a copy of the SAS log when running
in batch mode.

This system option is valid only in batch mode.
When you are running SAS interactively, the log is sent to the LOG window in batch

mode. The log is sent to a file named filename.LOG that is located in the current SAS
directory, where filename is the name of your SAS job. You can use the LOG system
option to specify an alternate destination.

To disable the display of the SAS log, use the NOTERMINAL system option.
When SAS is started with the OBJECTSERVER and NOTERMINAL system options

and no log is specified, SAS discards all log messages.
When SAS is started with the OBJECTSERVER and NOTERMINAL system options

active, and no log is specified, SAS discards all log and alternate log messages.
Using directives in the value of the LOG system option enables you to control when

logs are open and closed and how they are named, based on real-time events, such as
time, month, day of week. For a list of directives see the LOGPARM= system option in
the SAS Language Reference; Dictionary.

If you start SAS in batch mode or in server mode and if the LOGCONFIGLOC=
option is specified, logging is done by the SAS logging facility. The traditional SAS log
option LOGPARM= is ignored. The traditional SAS log option LOG= is applied only
when the %S{App.Log} conversion character is specified in the logging configuration file.
For more information, see SAS Logging Facility in SAS Logging: Configuration and
Programming Reference.

See Also

� “TERMINAL System Option” in SAS Language Reference: Dictionary
� “LOGPARM System Option” in SAS Language Reference: Dictionary.
� “The SAS Log” in SAS Language Reference: Concepts.

MAPS System Option

Specifies the name of the SAS library that holds the SAS/GRAPH map data sets.

Default: !sasroot\maps
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS
Windows specifics: default value and location-of-maps must resolve to a valid Windows
pathname
See: MAPS System Option in SAS Language Reference: Dictionary

Syntax
-MAPS location-of-maps

MAPS=location-of-maps

System Options under Windows � MAXMEMQUERY System Option 531

location-of-maps
specifies a libref, a valid Windows pathname, or an environment variable associated
with a pathname. Remember that a pathname is only to the directory or subdirectory
level. If the pathname contains spaces, enclose the pathname in quotation marks.

MAXMEMQUERY System Option

Specifies the limit on the maximum amount of memory that is allocated for procedures.

Default: 0
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
Windows specifics: all

Syntax
-MAXMEMQUERY n | nK | nM | nG | hexX | MIN | MAX

MAXMEMQUERY= n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the limit in multiples of 1; 1,024 (kilobytes); 1,048,576 (megabytes), and
1,073,741,842 (gigabytes), respectively. You can specify decimal values for the number
of kilobytes, megabytes, or gigabytes. For example, a value of 8 specifies 8 bytes, a
value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the amount of memory to 45 bytes.

MIN
sets the amount of memory to the minimum setting, which is 0 bytes. This value
indicates that there is no limit on the total amount of memory that can be used by
each procedure.

MAX
sets the amount of memory to the maximum setting, which is 2,147,483,647 bytes.

Details
Some SAS procedures use the MAXMEMQUERY option to specify the largest block of
virtual memory that SAS can request at one time. By contrast, the MEMSIZE option
places a limit on the total amount of virtual memory that SAS dynamically allocates at
any time. This virtual memory is supported by a combination of real memory and
paging space. The operating environment begins paging when the amount of virtual
memory that is required exceeds the real memory that is available. To prevent paging
and the associated performance problems, the MAXMEMQUERY and MEMSIZE
system options should be set to a subset of real memory.

532 MEMBLKSZ System Option � Chapter 23

MEMBLKSZ System Option

Specifies the memory block size for memory-based libraries for Windows operating environments.

Default: 16 MB

Valid in: configuration file, SAS invocation

Category: System administration: Memory

PROC OPTIONS GROUP MEMORY

Windows specifics: all

Syntax

-MEMBLKSZ n | nK | nM |nG | nT | hexX

n | nK | nM | nG | nT
specifies the memory block size in multiples of 1; 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); and 1,099,511,627,776 (terabytes),
respectively. You can specify decimal values for the number of kilobytes, megabytes,
gigabytes, or terabytes. For example, a value of 8 specifies 8 bytes, a value of .782k
specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the memory block size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the memory block size to 45 bytes.

Details

Beginning with Windows 2000, multiple processes can be run simultaneously in
memory. The value of the MEMBLKSZ system option is the amount of memory that is
initially allocated. Additional memory can be allocated in the same memory allocation
size that is specified in the MEMBLKSZ option, up to the amount of memory that is
specified in the MEMMAXSZ option. For example, if MEMBLKSZ is 2M, additional
memory can be allocated in 2M blocks.

When memory-based libraries are using extended memory, this value is also used to
determine the amount of the process address space that is used to access the extended
memory.

Note: Specifying a value that is too large could adversely affect performance.

� Specifying a value that is too large could adversely affect overall system
performance. Try different values for the MEMBLKSZ option to determine the
value that gives the best system performance.

� If you are using extended memory in 32-bit environments, then specifying a value
that is too large could adversely affect SAS performance. A smaller value might be
optimal. A good starting point is 64K; however, try different values for the
MEMBLKSZ option to determine the value that gives the best SAS performance.

�

System Options under Windows � MEMCACHE System Option 533

See Also

� “Memory-Based Libraries” on page 201

� “MEMMAXSZ System Option” on page 534

MEMCACHE System Option

Specifies to use the memory-based libraries as a SAS file cache.

Default: 0

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

Windows specifics: all

Syntax
-MEMCACHE 0 | 1 | 4

MEMCACHE= 0 | 1 | 4

0
specifies memory cache is off.

1
specifies not to add any new files to the cache. Reads and writes to files already in
the cache continue as if MEMCACHE is on.

4
specifies memory cache is on. Memory is used as a SAS file cache.

Details
When the MEMCACHE system option is 4 or 1, SAS file cache places data in memory
as it is processed. This data is then available for future references by SAS. Files in the
cache are kept until SAS is shut down, caching is terminated, or more space is required
for new files. Memory is reclaimed on a least recently used basis. Cached data is
written to permanent storage. You can control which SAS libraries use the cache by
using the MEMCACHE system option in the OPTIONS statement. Memory usage can
be monitored using the performance tools.

See Also

� “Memory-Based Libraries” on page 201

� “MEMLIB System Option” on page 534

534 MEMLIB System Option � Chapter 23

MEMLIB System Option

Specifies to process the Work library as a memory-based library.

Default: NOMEMLIB
Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Windows specifics: all

Syntax
-MEMLIB | -NOMEMLIB

MEMLIB
specifies to use memory for the Work libraries.

NOMEMLIB
specifies not to use memory.

Details
When the MEMLIB system option is specified, the Work library is processed in memory.
Files are kept in memory until SAS is terminated or the files are deleted. You can
monitor memory usage by using the performance tools.

See Also

� “Memory-Based Libraries” on page 201
� “LIBNAME Statement” on page 464
� “MEMCACHE System Option” on page 533
� “Performance Tools” on page 228

MEMMAXSZ System Option

Specifies the maximum amount of memory to allocate for using memory-based libraries in
Windows operating environments.

Default: 2G
Valid in: configuration file, SAS invocation
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
Windows specifics: all

Syntax
-MEMMAXSZ n | nK | nM |nG | nT | hexX

System Options under Windows � MEMSIZE System Option 535

n | nK | nM | nG | nT
specifies the amount of memory to allocate in multiples of 1; 1,024 (kilobytes);
1,048,576 (megabytes); 1,073,741,824 (gigabytes); and 1,099,511,627,776 (terabytes),
respectively. You can specify decimal values for the number of kilobytes, megabytes,
gigabytes, or terabytes. For example, a value of 8 specifies 8 bytes, a value of .782k
specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory to allocate as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by an X. For example, the value
2dx sets the amount of memory to 45 bytes.

Details
The MEMMAXSZ system option specifies the total amount of memory that SAS can use
for memory-based libraries. You can monitor the memory by using the performance
tools.

CAUTION:
Specifying a value that is too large can adversely affect overall system performance. Try
different values for the MEMMAXSZ option to determine the value that gives the
best system performance. �

See Also

� “Memory-Based Libraries” on page 201
� “MEMBLKSZ System Option” on page 532
� “MEMLIB System Option” on page 534
� “MEMCACHE System Option” on page 533

MEMSIZE System Option

Specifies the limit on the amount of virtual memory that can be used during a SAS session.

Default: 0
Valid in: configuration file, SAS invocation
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
Windows specifics: valid values

Syntax
-MEMSIZE n | nK | nM | nG | nT |hexX | MAX

n | nK | nM | nG | nT
specifies the limit in bytes, kilobytes (1024 bytes), megabytes (1,048,576 bytes),
gigabytes (1,073,741,824 bytes), or terabytes (1,099,511,627,776 bytes). For example,

536 MSG System Option � Chapter 23

a value of 0.25G is equivalent to 268,435,456 bytes, and 16.5M is equivalent to
17,301,504 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hexadecimal characters (0–9, A-F), and
then followed by an X. For example, 0F00000x sets the value of the MEMSIZE option
to 15,728,640 bytes, which is equivalent to a value of 0x

MAX
specifies the largest reasonable value dependent on the amount of physical memory
and paging space available at the time that SAS is started.

Details
The MEMSIZE system option specifies the total amount of memory available to each
SAS session. A value that is too low will result in out-of-memory conditions.

A numeric value of 0 (or 0x) is equivalent to the option value MAX.
If an unreasonably small numeric value is specified (for example 6K) the setting of

the MEMSIZE option will be silently increased to a minimum reasonable value that
will allow SAS to start and have basic functionality.

If a numeric value greater than 4,294,967,295 is specified on a 32-bit version of SAS,
the setting of the value will be silently reduced to 4,294,967,295.

Numeric values greater than 9,223,372,036,854,775,807 bytes will be rejected as
invalid, and will prevent SAS from starting.

SAS does not automatically reserve or allocate the amount of memory that you
specify in the MEMSIZE system option. SAS will use only as much memory as it needs
to complete a process. For example, a DATA step might require only 20M of memory, so
even though MEMSIZE is set to 500M, SAS will use only 20M of memory.

While your SAS jobs are running, you can monitor the effect of larger memory
settings by using system monitoring tools.

Note: Setting MEMSIZE to MAX is reasonable only if consumers of large amounts
of memory are not likely to become active after SAS has started. As an example, if
multiple instances of SAS are running concurrently, and all of these instances are
started with a MEMSIZE value of MAX, one or more of these instances can encounter
out of memory conditions, or, the operating system can run out of available paging
space. �

MSG System Option

Specifies the library that contains the SAS error messages.

Default: !sasroot\core\sasmsg
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: Valid values for library-specification

Syntax
-MSG library-specification

System Options under Windows � MSGCASE System Option 537

library-specification
can be a Windows logical name (including search strings) or pathname. Do not
include a filename. If the pathname contains spaces, you must enclose the pathname
in quotation marks.

Details
The MSG system option specifies the name of the library for SAS error messages.

MSGCASE System Option

Specifies whether notes, warnings, and error messages that are generated by SAS are displayed
in uppercase characters.

Default: NOMSGCASE
Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: all

Syntax
-MSGCASE | -NOMSGCASE

MSGCASE
specifies that messages are displayed in uppercase characters.

NOMSGCASE
specifies that messages can include uppercase and lowercase characters.
NOMSGCASE is the default.

Details
Specifies whether notes, warnings, and error messages that are generated by SAS are
displayed in uppercase characters. The setting of the MSGCASE option does not affect
user-generated messages and source lines.

See Also

� The SAS Log in SAS Language Reference: Concepts.

538 MSYMTABMAX System Option � Chapter 23

MSYMTABMAX System Option

Specifies the maximum amount of memory available to the macro variable symbol table(s).

Default: 4194304 bytes (4 MB)
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Macro: SAS macro
PROC OPTIONS GROUP= MACRO
Windows specifics: Default value
See: MSYMTABMAX in SAS Macro Language: Reference

Syntax
-MSYMTABMAX n | nK | nM | nG |nT | hexX | MIN | MAX

MSYMTABMAX=n | nK | nM | nG | nT |hexX | MIN | MAX

n | nK | nM | nG | nT
specifies the amount of memory that is available in multiples of 1; 1,024 (kilobytes);
1,048,576 (megabytes); 1,072,741,824 (gigabytes); and 1,099,511,627,776 (terabytes),
respectively. You can specify decimal values for the number of kilobytes, megabytes,
gigabytes, or terabytes. For example, a value of 8 specifies 8 bytes, a value of .782k
specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory that is available as a hexadecimal value. You must
specify the value beginning with a number (0–9), followed by an X. For example, the
value 2dx sets the amount of memory to 45 bytes.

MIN
sets the amount of memory that is available to the minimum setting, which is 0.
This value causes all macro variables to be written to disk.

MAX
sets the amount of memory that is available to the maximum setting.

Details
After the MSYMTABMAX value is reached, SAS writes any additional macro variables
to disk.

System Options under Windows � MVARSIZE System Option 539

MVARSIZE System Option

Specifies the maximum size for in-memory macro variables.

Default: 4096 bytes
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Macro: SAS macro
PROC OPTIONS GROUP= MACRO
Windows specifics: Default value
See: MVARSIZE System Option in SAS Macro Language: Reference

Syntax
-MVARSIZE n | nK | hexX | MIN | MAX

MVARSIZE=n | nK | hexX | MIN | MAX

n | nK
specifies the maximum macro variable size in multiples of 1 or 1,024 (kilobytes),
respectively. You can specify decimal values for the number of kilobytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a
value of 3k specifies 3,072 bytes.

hexX
specifies the maximum macro variable size as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by an X. For example, the value
2dx sets the maximum macro variable size to 45 bytes.

MIN
sets the macro variable size to the minimum setting, which is 0 bytes. This value
causes all macro variables to be written to disk.

MAX
sets the macro variable size to the maximum setting, which is 65,534 bytes.

Details
The MVARSIZE system option specifies the maximum size for macro variables that are
stored in memory. If the size of the macro variable is larger than the maximum value
that is specified, variables are written out to disk.

The value of the MVARSIZE system option can affect system performance. Before
you specify the value for production jobs, run tests to determine the optimum value.

540 NEWS System Option � Chapter 23

NEWS System Option

Specifies a file that contains messages to be written to the SAS log.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Valid values for file-specification

See: NEWS System Option in SAS Language Reference: Dictionary

Syntax
-NEWS file-specification

file-specification
specifies an external file. The value for file-specification can be a valid Windows
pathname or shortcut name. If the pathname contains spaces, you must enclose the
pathname in quotation marks.

Details
The NEWS file can contain information for users, including news items about SAS. The
contents of the NEWS file are displayed in the SAS log immediately after the SAS
header.

NUMKEYS System Option

Controls the number of available function keys.

Default: number of function keys on the keyboard

Valid in: configuration file, SAS invocation

Category: Input control: Data processing

PROC OPTIONS GROUP= INPUTCONTROL

Windows specifics: all

Syntax
-NUMKEYS number-of-keys

number-of-keys
specifies the number of active keyboard function keys.

System Options under Windows � NUMMOUSEKEYS System Option 541

Details
When SAS initializes, it queries your machine to determine the number of keyboard
function keys. You can override this setting by specifying a different value with the
NUMKEYS system option.

Example

If you specify the following system option, SAS displays 10 function keys in the
KEYS window:

-numkeys 10

NUMMOUSEKEYS System Option

Specifies the number of mouse buttons SAS displays in the KEYS window.

Default: 3 buttons
Valid in: configuration file, SAS invocation
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
Windows specifics: all

Syntax
-NUMMOUSEKEYS number-of-buttons

number-of-buttons
specifies the number of mouse buttons, ranging from 0 to 3. If number-of-buttons is 0
or 1, the KEYS windows lists no mouse buttons (because the left, and in this case the
only, mouse button is reserved by SAS). If number-of-buttons is 2, the KEYS window
lists the right mouse button (RMB), as well as Ctrl + right mouse button and Shift +
right mouse button. If number-of-buttons is 3, the KEYS window lists both the right
mouse button and the middle mouse button.

Details
Unless you specify the NUMMOUSEKEYS system option, SAS assumes that three
mouse buttons are available. If you have a one- or two-button mouse and want the
KEYS window to reflect this configuration, specify the NUMMOUSEKEYS system
option in your SAS configuration file.

542 OBS System Option � Chapter 23

OBS System Option

Specifies when to stop processing observations or records.

Default: MAX

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

Windows specifics: Valid range

See: OBS System Option in SAS Language Reference: Dictionary

Syntax
-OBS n | nK | nM | nG | nT |hexX | MIN | MAX

OBS=n | nK | nM | nG | nT |hexX | MIN | MAX

n | nK | nM | nG | nT
specifies a number to indicate when to stop processing, with n being an integer.
Using one of the letter notations results in multiplying the integer by a specific
value. That is, specifying K (kilo) multiplies the integer by 1,024, M (mega)
multiplies by 1,048,576, G (giga) multiplies by 1,073,741,824, T (tera) multiplies by
1,099,511,627,776. You can specify a decimal value for n when it is used to specify a
K, M, G, or T value. For example, a value of 20 specifies 20 observations or records, a
value of .782k specifies 801 observations or records, and a value of 3m specifies
3,145,728 observations or records.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8X in order to specify the
decimal equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to indicate when to stop processing to 0.

MAX
sets the number to indicate when to stop processing to 2,147,483,647. On 64–bit
systems, MAX is 9,223,372,036,854,775,807. MAX is the default.

PAGENO System Option

Resets the page number.

Default: 1

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

System Options under Windows � PAGESIZE System Option 543

Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
Windows specifics: Valid values for n; syntax
See: PAGENO System Option in SAS Language Reference: Dictionary

Syntax
-PAGENO n | nK | nM | nG | hexX | MIN | MAX

PAGENO=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the page number in multiples of 1(n); 1,024 (nK); 1,048,576 (nM); and
1,073,741,824 (nG), respectively. You can specify a decimal value for n when it is
used to specify a K, M, G, or T value. For example, a value of 8 sets the page number
to 8, a value of .782k sets the page number to 801, and a value of 3k sets the page
number to 3,072.

hexX
specifies the page number as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets the
page number to 45.

MIN
sets the page number to the minimum number, which is 1.

MAX
sets the page number to the maximum number, which is 2,147,483,647.

Details
The PAGENO system option specifies a beginning page number for the next page of
output that SAS produces.

PAGESIZE System Option

Specifies the number of lines that compose a page of SAS output.

Default: Varies depending on your display settings
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output
PROC OPTIONS GROUP= LOG_LISTCONTROL
Windows specifics: Default value
See: PAGESIZE System Option in SAS Language Reference: Dictionary

Syntax
-PAGESIZE n | MIN | MAX

544 PAPERTYPE System Option � Chapter 23

PAGESIZE=n | MIN | MAX

n
specifies the number of lines that compose a page.

MIN
sets the number of lines that compose a page to the minimum setting, which is 15.

MAX
sets the number of lines that compose a page to the maximum setting, which is
32,767.

Details
Under Windows, the default values are based on the printer resolution and printer font
so that generated reports print correctly.

CAUTION:
Modifying print options by using the Windows printing dialog boxes might change the
values of SAS printing system options, which might cause unpredictable output. If you set
printing options using SAS system options such as LINESIZE and PAGESIZE, and
then use the Windows printing dialog boxes to set printing options, the SAS system
options are set to the values that are specified in the Windows print dialog boxes. �

See Also

� “LINESIZE System Option” on page 527

PAPERTYPE System Option

Specifies to a printer the type of paper to use for printing.

Default: PLAIN
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS printing
PROC OPTIONS GROUP= ODSPRINT
Windows specifics: valid values
See: PAPERTYPE= System Option in SAS Language Reference: Dictionary

Syntax
-PAPERTYPE PLAIN | STANDARD | GLOSSY | TRANSPARENCY |

printer-defined-value

PAPERTYPE= PLAIN | STANDARD | GLOSSY | TRANSPARENCY |
printer-defined-value

PLAIN
specifies to use plain paper.

System Options under Windows � PATH System Option 545

STANDARD
specifies to use the standard paper for the printer.

GLOSSY
specifies to use glossy paper.

TRANSPARENCY
specifies to use transparent paper.

printer-definded-value
specifies a paper type that is defined by the printer.

Details
See your printer documentation for the paper types that your printer can use.

PATH System Option

Specifies one or more search paths for SAS executable files.

Default: !sasroot\core\sasexe
Valid in: configuration file, SAS invocation
Category: System administration: Installation
PROC OPTIONS GROUP= INSTALL
Windows specifics: all

Syntax
-PATH <(>“directory-specification-1” <“directory-specification-n”)>

directory-specification
specifies the path to search. The value directory-specification must be a valid
Windows pathname or an environment variable associated with a pathname. If the
pathname contains spaces, it must be enclosed in quotation marks. If you specify
more than one directory-specification, enclose the list of directory-specification in
parentheses.

Details
The PATH option identifies the search paths for SAS executable files. You can specify
multiple PATH options to define the search order. The paths are searched in the order
in which SAS encounters them; therefore, specify at the front of the list the paths for
the products that you run most frequently.

546 PFKEY System Option � Chapter 23

PFKEY System Option

Specifies which set of function keys to designate as the primary set of function keys.

Default: WIN
Valid in: configuration file, SAS invocation
Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL
Windows specifics: all

Syntax
-PFKEY PRIMARY | ALTERNATE | SAA | WIN

PRIMARY
maps F1 through F12 to the mainframe primary settings for PF1 through PF12 and
Shift + F1 through Shift + F12 to PF13 through PF24. The right mouse button
(RMB) is mapped to MB2. If you have only 10 function keys, F11, F12, Shift + F11,
and Shift + F12 are not available and are not shown in the KEYS window.

Here are the primary mainframe key definitions:

PC Key

Mainframe

Definition Key

Mainframe

Definition

F1 mark Shift + F1 help

F2 smark Shift + F2 zoom

F3 unmark Shift + F3 zoom off; submit

F4 cut Shift + F4 pgm; recall

F5 paste Shift + F5 rfind

F6 store Shift + F6 rchange

F7 prevwind Shift + F7 backward

F8 next Shift + FF8 forward

F9 pmenu Shift + F9 output

F10 command Shift + F10 left

F11 keys Shift + F11 right

F12 undo Shift + F12 home

RMB zoom off; submit

System Options under Windows � PFKEY System Option 547

ALTERNATE
maps F1 through F12 to the alternate mainframe key settings. That is, F1 through
F12 maps to PF13 through PF24. The result is that F1 through F12 are equivalent
to Shift + F1 through Sift + F F12. The right mouse button (RMB) is mapped to
MB2. If you have only 10 function keys, F11 and F12 are unavailable and are not
shown in the KEYS window. F13 through F24 are mapped to F1 through F12 if your
keyboard has only 12 function keys instead of 24.

Here are the alternate mainframe key definitions:

PC Key

Mainframe

Definition Key

Mainframe

Definition

F1 help F7 backward

F2 zoom F8 forward

F3 zoom off; submit F9 output

F4 pgm; recall F10 left

F5 rfind F11 right

F6 rchange F12 home

RMB zoom off; submit

SAA
maps F1 through F12 to the IBM SAA values for CUAPF1 through CUAPF12 and
Shift + F1 through Shift + F12 to CUAPF13 through CUAPF24. The right mouse
button (RMB) is mapped to MB2. If you have only 10 function keys, F11, F12, Shift +
F11, and Shift + F12 are unavailable and are not shown in the KEYS window.

Note: SAA stands for System Application Architecture, which is a framework for
application development and is used across IBM systems. CUA (Common User
Access) is a part of SAA that defines the user interface and components that should
be identical across applications. �

Here are the IBM SAA key definitions:

PC Key

Mainframe

Definition Key

Mainframe

Definition

F1 help Shift + F1 cut

F2 keys Shift + F2 paste

F3 zoom off; submit Shift + F3 store

F4 home Shift + F4 mark

F5 pgm; recall Shift + F5 unmark

F6 zoom Shift + F6 smark

F7 backward Shift + F7 left

F8 forward Shift + F8 right

F9 prevcmd Shift + F9 rfind

F10 pmenu Shift + F10 rchange

F11 command Shift + F11 undo

548 PRIMARYPROVIDERDOMAIN= � Chapter 23

PC Key

Mainframe

Definition Key

Mainframe

Definition

F12 cancel Shift + F12 next

RMB zoom off; submit

WIN
specifies to use the default key definitions for SAS under Windows. WIN is the
default.

Details
Use the PFKEY system option when you do not want the default key definitions for
SAS under Windows but instead want to use other key mappings (for example, the
mappings used by SAS under z/OS).

Note that the function key values shown in the previous key map tables are for the
Base SAS windows only. Other windowing SAS products, such as SAS/AF software,
have other key definitions.

If you do not specify the PFKEY system option, or if you specify an invalid value,
SAS loads the default Windows key definitions. For a list of key definitions, open the
KEYS window by typing keys in the command bar.

PRIMARYPROVIDERDOMAIN=

Specifies the domain name of the primary authentication provider.

Valid in: configuration file, SAS invocation

Alias: PRIMPD=

Category: Environment control: Initialization and operation

PROC OPTIONS GROUP= EXECMODES

See: PRIMARYPROVIDERDOMAIN= System Option

PRINT System Option

Specifies a destination for SAS output when running in batch mode.

Default: filename.LST in batch mode, where filename is the name of your SAS job

Valid in: configuration file, SAS invocation

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: all

System Options under Windows � PRNGETLIST System Option 549

Syntax
-PRINT destination | -NOPRINT

PRINT destination
specifies the destination for the SAS procedure output file. The destination argument
can be a valid Windows pathname or filename (including device names) or an
environment variable associated with a pathname. If you specify a pathname and it
contains spaces, it must be enclosed in quotation marks. If you specify only a
pathname, the procedure output file is created in the specified directory, with the
default name of filename.LST, where filename is the name of your SAS job.

NOPRINT
suppresses the creation of the SAS procedure output file.

Details
The PRINT system option specifies the destination to which SAS output is written when
executing SAS programs in modes other than the interactive windowing environment.

The PRINT system option is valid only in batch mode.
When SAS is running interactively, the procedure output file is sent to the OUTPUT

window; when SAS is running in batch mode, output is sent to a file named
filename.LST, where filename is the name of your SAS job. You can use the PRINT
option to specify an alternate destination.

PRNGETLIST System Option

specifies whether printers that are attached to the system are recognized.

Default: PRNGETLIST
Valid in: configuration file, SAS invocation
Category: LISTCONTROL
PROC OPTIONS GROUP= LISTCONTROL
Windows specifics: all

Syntax
PRNGETLIST | NOPRNGETLIST

PRNGETLIST
specifies that SAS recognizes printers that are attached to the system

NOPRNGETLIST
specifies that SAS does not recognize printers that are attached to the system

Details
The PRNGETLIST option specifies that SAS recognizes all printers that are attached to
the system. NOPRNGETLIST specifies that SAS does not recognize the printers that

550 PRTABORTDLGS System Option � Chapter 23

are attached to the system. NOPRNGETLIST can be used by SAS technical support as
an alternative to advising users to delete all the printers on their system.
NOPRNGETLIST can also be used when SAS is started by the object spawner in order
to avoid the performance penalty of discovering printers and their capabilities

PRTABORTDLGS System Option

Specifies when to display the Print Abort dialog box.

Default: BOTH

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax

-PRTABORTDLGS BOTH | NEITHER | FILE | PRINTER

PRTABORTDLGS = BOTH | NEITHER | FILE | PRINTER

BOTH
specifies to display the Print Abort dialog box when you are printing either to a file
or to the printer.

NEITHER
specifies not to display the Print Abort dialog box when you are printing either to a
file or to the printer.

FILE
specifies to display the Print Abort dialog box only when you are printing to a file.

PRINTER
specifies to display the Print Abort dialog box only when you are printing to the
printer.

Details

The Print Abort dialog box appears only while SAS is spooling a print job to its
destination. Use the NEITHER value to suppress the Print Abort dialog box.

See Also

� “Canceling a Print Job” on page 181

System Options under Windows � PRTPERSISTDEFAULT System Option 551

PRTPERSISTDEFAULT System Option

Specifies to use the same destination printer from SAS session to SAS session.

Default: NOPRTPERSISTDEFAULT
Valid in: configuration file, SAS invocation
Category: Log and procedure output control: ODS printing
PROC OPTIONS GROUP= ODSPRINT
Windows specifics: all

Syntax
-PRTPERSISTDEFAULT | -NOPRTPERSISTDEFAULT

PRTPERSISTDEFAULT
specifies to use the same destination printer from SAS session to SAS session.

NOPRTPERSISTDEFAULT
specifies to use the default printer.

Details
Typically, when you start SAS, SAS sets the value of the SYSPRINT system option
(which specifies the destination printer) to be the Windows default printer. When you
start SAS by using the PRTPERSISTDEFAULT system option, SAS sets the value of
the SYSPRINT system option to be the destination printer of the last SAS session that
was started by using PRTPERSISTDEFAULT.

To use the same destination printer from SAS session to SAS session, you must use
the PRTPERSISTDEFAULT system option each time that you start SAS. If you start
SAS by using both the SYSPRINT system option and PRTPERSISTDEFAULT system
option, the destination printer is the value that is specified by the SYSPRINT system
option.

See Also

� “SYSPRINT System Option” on page 576
� “Printing” on page 168

552 PRTSETFORMS System Option � Chapter 23

PRTSETFORMS System Option

Specifies whether to include the Use Forms check box in the Print Setup dialog box.

Default: PRTSETFORMS
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-PRTSETFORMS | -NOPRTSETFORMS

PRTSETFORMS | NOPRTSETFORMS

PRTSETFORMS
specifies to include the Use Forms check box in the Print Setup dialog box.

NOPRTSETFORMS
specifies to exclude the Use Forms check box from the Print Setup dialog box.

Details
Use the NOPRTSETFORMS system option to suppress the Use Forms check box in the
Print Setup dialog box.

See Also

� “Using SAS Print Forms” on page 177

REALMEMSIZE System Option

Specifies the amount of real memory SAS can expect to allocate.

Default: 0
Valid in: configuration file, SAS invocation
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY
Windows specifics: valid values

Syntax
-REALMEMSIZE n | nK | nM | nG | hexX | MIN | MAX

System Options under Windows � REGISTER System Option 553

n | nK | nM | nG
specifies the amount of memory to reserve in multiples of 1; 1,024 (kilobytes);
1,048,576 (megabytes); and 1,073,741,824 (gigabytes), respectively. The value of n
can be a decimal value. For example, a value of 8 specifies 8 bytes, a value of .782k
specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes. Under 32-bit
operating environments, the largest value that you can specify is 4294967295 (4G–1).

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the amount of memory to 45 bytes.

MIN
specifies a value of 0 which indicates that the memory usage is determined by SAS
when SAS starts.

MAX
specifies to set the memory size to the largest permissible value.

Details
Some SAS procedures use the REALMEMSIZE option to specify how much virtual
memory the procedure can allocate and use without inducing excessive page swapping.
By contrast, the MEMSIZE option places a limit on the total amount of virtual memory
that SAS dynamically allocates at any time. This virtual memory is supported by a
combination of real memory and paging space. The operating environment begins
paging when the amount of virtual memory that is required exceeds the real memory
that is available. To prevent paging and the associated performance problems, the
REALMEMSIZE and MEMSIZE options should be set to a subset of real memory.

Comparisons
The REALMEMSIZE option is similar to the SORTSIZE option. The REALMEMSIZE
option affects multiple procedures. The SORTSIZE option only affects the SORT
procedure.

REGISTER System Option

Adds an application to the Tools menu in the main SAS window.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-REGISTER ’menu-name’ ’command’ <’working-directory’>

554 RESOURCESLOC System Option � Chapter 23

’menu-name’
specifies the name you want to appear in the menu. The menu-name must be
enclosed in quotation marks.

’command’
specifies the command you want to execute. The command argument can either be a
.EXE, .COM, or .BAT file, or it can be an operating environment command such as
the DIR command. The command must be enclosed in quotation marks.

’working-directory’
specifies the working directory to use for the application. This argument is optional.
Read your application’s documentation to see whether the application requires a
working directory specification. The working-directory must be enclosed in quotation
marks.

Details
You can add up to eight commands to the Tools menu in the main SAS window. If your
menu name or command does not include blanks or special characters, you can omit the
quotation marks. For more information about adding commands to the list, see “Adding
Applications to the Tools Menu” on page 66.

RESOURCESLOC System Option

Specifies a directory location of the files that contain SAS resources.

Default: !sasroot\core\resource
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-RESOURCESLOC <(>’directory-specification-1’ < ’directory-specification-n’)>| “.”

’directory-specification’
specifies a directory location of the files that contain SAS resources. If
directory-specification contains spaces, it must be enclosed in quotation marks. If you
specify more than one directory-specification, enclose the list in parenthesis.

“.”
specifies that the current working folder is to be the default directory for the location
of the files that contain SAS resources.

Details
SAS resources are dynamic link libraries that contain icons, strings, and fonts that are
used by SAS. The types of files that reside in the RESOURCESLOC directory are font
files (.fon, .ttf) and dynamic link libraries (.dll).

System Options under Windows � RSASUSER System Option 555

You can specify multiple RESOURCESLOC options to define a search order.

RSASUSER System Option

Controls whether members of the Sasuser data library can be opened for update or for read-only
access.

Default: NORSASUSER

Valid in: configuration file, SAS invocation

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Network considerations

See: RSASUSER System Option in SAS Language Reference: Dictionary

Syntax

-RSASUSER | -NORSASUSER

RSASUSER
limits access to the Sasuser data library to read-only access in environments where
all users share the Sasuser library.

NORSASUSER
enables a user to open a file in the Sasuser library for update access, thus preventing
users from sharing members of the Sasuser data library. Update access to the
Sasuser library requires exclusive rights to the data library member. NORSASUSER
is the default value.

Details

Specifying RSASUSER enables a group of users to share Sasuser data library members
by enabling all users to have read-only access to members. For example, if RSASUSER
is in effect, each user can open the Sasuser.Profile catalog for read-only access, enabling
other users to concurrently read from the Profile catalog. However, no user can write
information out to the Profile catalog; you receive an error message if you try to do so.

Specifying RSASUSER in a SAS session affects only that session’s access to files. To
enable a group of users to share members in the Sasuser data library, the system
administrator should set RSASUSER in the network version of the SAS configuration
file, which is shared by all users who share the Sasuser data library.

If you specify RSASUSER but no Profile catalog exists in the Sasuser data library,
the Profile catalog is created in the Work data library.

Whether the RSASUSER system option is useful depends on how SAS is being used.
While the RSASUSER system option is extremely useful when users must share
information (such as the Profile catalog) stored in the Sasuser data library, it is not
useful if these same users are using SAS/ASSIST software. SAS/ASSIST software
requires update access to the Sasuser data library.

556 RTRACE System Option � Chapter 23

RTRACE System Option

Produces a list of resources that are read or loaded during a SAS session.

Default: NONE
Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: all

Syntax
-RTRACE ALL | NONE

ALL
specifies to list all the file resources used in a given SAS session.

NONE
specifies not to list the file resources.

Details
Use the RTRACE and the RTRACELOC system options to create a file that lists the
resources SAS uses.

See Also

� “RTRACELOC System Option” on page 556
� The SAS Log in SAS Language Reference: Concepts.

RTRACELOC System Option

Specifies the pathname of the file to which the list of resources that are read or loaded during a
SAS session is written.

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: all

Syntax
-RTRACELOC filename | pathname\filename

System Options under Windows � SASAUTOS System Option 557

filename | pathname\filename
specifies a valid Windows filename or a pathname and a filename in which to store
the file resource information. If the filename or the pathname contains spaces,
enclose the name in quotation marks. If pathname is not specified, the file resource
information is stored in the current directory.

Details
You can use the RTRACELOC and the RTRACE system options to determine which
resources SAS uses.

See Also

� “RTRACE System Option” on page 556

SASAUTOS System Option

Specifies the autocall macro library.

Default: SASAUTOS

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

Macro: SAS macro

PROC OPTIONS GROUP= ENVFILES

MACRO

Windows specifics: Valid values for library-specification

See: SASAUTOS System Option in SAS Macro Language: Reference

Syntax
-SASAUTOS <(>"library-specification-1"…<"library-specification-n")>

SASAUTOS=<(>"library-specification-1"…<"library-specification-n")>

“library-specification-1”… “library-specification-n”
specifies one or more valid Windows pathnames or environment variables that are
associated with pathnames. Remember that a pathname is only to the directory or
subdirectory level. Windows pathnames must be enclosed in quotation marks if you
are using the OPTIONS statement or if the pathname contains spaces. If you specify
only one library specification, the parentheses are optional. The value for
library-specification must resolve to a valid Windows pathname.

Details
The SASAUTOS system option specifies the SAS autocall macro library or libraries.

558 SASCONTROL System Option � Chapter 23

See Also

� “SASAUTOS System Option” on page 599

� SAS Macro Language: Reference.

SASCONTROL System Option

Specifies whether the SAS application windows include system/control menus and minimize/
maximize buttons.

Default: SYSTEMMENU MINMAX

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-SASCONTROL SYSTEMMENU | NOSYSTEMMENU <MINMAX | NOMINMAX>

-SASCONTROL <SYSTEMMENU | NOSYSTEMMENU> MINMAX | NOMINMAX

SASCONTROL=SYSTEMMENU | NOSYSTEMMENU <MINMAX | NOMINMAX>

SASCONTROL=<SYSTEMMENU | NOSYSTEMMENU> MINMAX | NOMINMAX

SYSTEMMENU
specifies to display the system/control menu in the windows that are contained in the
main SAS window.

NOSYSTEMMENU
specifies to omit the system/control menu and the minimize, maximize, and close
buttons from the title bar in the windows that are contained in the main SAS window.

MINMAX
specifies to display the minimize and maximize buttons in the windows that are
contained in the main SAS window.

NOMINMAX
specifies to omit the minimize and maximize buttons from the windows that are
contained in the main SAS window.

Details
The SASCONTROL system option affects the windows contained inside the main SAS
window, but not the main SAS window itself (which is controlled by the AWSCONTROL
system option).

The SASCONTROL system option is intended for use by SAS/AF programmers to
customize the interface of their applications.

System Options under Windows � SASINITIALFOLDER System Option 559

See Also

� “AWSCONTROL System Option” on page 497

SASHELP System Option

Specifies the directory or directories to be searched for SAS default forms, device lists,
dictionaries, and other entries in the Sashelp catalog.

Default: !sasroot\SAS product\sashelp, !sascfg\sascfg
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: Valid values for library-specification
See: SASHELP System Option in SAS Language Reference: Dictionary

Syntax
-SASHELP ("library-specification-1"…<"library-specification-n")>

“library-specification-1”… “library-specification-n”
specifies one or more valid Windows pathnames or environment variables that are
associated with pathnames. Remember that a pathname applies only to the directory
or subdirectory level. The value for library-specification must resolve to a valid
Windows pathname. If the pathname contains spaces, it must be enclosed in
quotation marks.

Details
The SASHELP system option is set during the installation process and normally is not
changed after installation.

Note that products and their corresponding files can be split across multiple drives
and directories. The library-specification argument can be a Windows pathname or an
environment variable associated with a pathname.

SASINITIALFOLDER System Option

Changes the working folder and the default folders for the Open and Save As dialog boxes to the
specified folder after SAS initialization is complete.

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: all

560 SASUSER System Option � Chapter 23

Syntax
-SASINITIALFOLDER newfolder

newfolder
specifies the path to the current working folder and the default folders for the Open
and Save As dialog boxes. If newfolder contains spaces, it must be enclosed in
quotation marks.

Details
SAS determines the locations for AUTOEXEC or INITSTMT files before the
SASINITIALFOLDER system option is processed. To ensure that SAS can determine
the location of these files, place them in a folder other than the folder that is specified
by the SASINITIALFOLDER system option.

If you do not specify the SASINITIALFOLDER system option, SAS determines the
current folder by default. SAS uses the Sasuser folder as the default folder for the Open
and Save As dialog boxes.

The current working folder is set according to information in “Determining the
Current Folder When SAS Starts” on page 9.

SASUSER System Option
Specifies the name of the Sasuser library.

Default: c:\Users\userid\Documents\My SAS Files\9.2 for Windows Vista,
Windows 7, and Windows Server 2008
c:\Documents and Settings\userid\My Documents\My SAS Files\9.2 for

Windows XP, and Windows Server 2003
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: Valid values for library-specification; syntax

Syntax
-SASUSER (“library-specification-1”…<“library-specification-n”>)

“library-specification-1”… “library-specification-n”
specifies one or more valid Windows pathnames or environment variables that are
associated with pathnames for a SAS library. Remember that a pathname applies
only to the directory or subdirectory level. If you list only one library specification,
the parentheses are optional. The value for library-specification must resolve to a
valid Windows pathname.

Details
The SASUSER system option specifies the SAS library that contains a user’s Profile
catalog. The default value for SASUSER is defined in the SAS configuration file, which

System Options under Windows � SET System Option 561

you can change when you install SAS. If you do not use the SASUSER system option
when you invoke SAS (either in the configuration file or as part of the SAS command),
the Sasuser library is set to be equal to the Work library, which is temporary.

See Also

� “Profile Catalog” on page 20
� “Using the Sasuser Data Library” on page 134

SCROLLBARFLASH System Option

Specifies whether to allow the mouse or keyboard to focus on a scroll bar.

Default: NOSCROLLBARFLASH
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-SCROLLBARFLASH | -NOSCROLLBARFLASH

SCROLLBARFLASH | NOSCROLLBARFLASH

SCROLLBARFLASH
specifies to enable mouse and keyboard focus on the scroll bars.

NOSCROLLBARFLASH
specifies to disable mouse and keyboard focus on the scroll bars.

Details
Under certain conditions, the cursor can flash if you select a scroll bar using the mouse
or the keyboard. You can turn off the flashing cursor using the NOSCROLLBARFLASH
system option. You can also use the Preferences dialog box Advanced page to disable
the flashing cursor by selecting Disable scroll bar focus.

See Also

� “Setting Session Preferences” on page 59

SET System Option

Defines a SAS environment variable.

Default: none

562 SET System Option � Chapter 23

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Values intended to represent files or paths must be valid under
Windows

Syntax
-SET SAS-variable “value” | (“value-1”…<“value-n”>)

SET=SAS-variable “value” | (“ value-1”…<“value-n”>)

SAS-variable
specifies the environment variable to define.

value
specifies the value or set of values to assign to the environment variable. If value is a
pathname that contains spaces, enclose value in quotation marks.

Details
This action is analogous to defining a Windows environment variable with the Windows
SET command. One way to use the SET system option is to set up environment
variables that represent commonly used external files. For example, the following code
defines an environment variable for the sample source library:

-set sampsrc (!sasroot\base\sample
!sasroot\stat\sample
!sasroot\graph\sample)

When you refer to SAMPSRC as a library name during your SAS session, SAS
automatically assigns the library with the directories listed. Note that !sasroot is also a
SAS environment variable that represents the root directory of your SAS installation,
and is typically assigned in the SAS configuration file.

Environment variables only can be used as a libref if you use the SET system option
at SAS invocation and not in an OPTIONS statement.

If you specify SET on the command line when you start SAS, the variable will be set
only for that SAS session. To set an environment variable for repeated use, either add
the SET system option to your configuration file or create a Windows environment
variable.

Note: The words AUX, CON, NUL, LPT1 - LPT9, COM1 - COM9, and PRN are
reserved words under Windows. Do not use CON or NUL as environment variable
names. �

See Also

� “Assigning SAS Libraries Using Environment Variables” on page 130

� “Using Environment Variables” on page 150

System Options under Windows � SLEEPWINDOW System Option 563

SGIO System Option

Activates the Scatter/Gather I/O feature.

Default: NOSGIO
Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Windows specifics: all

Syntax
-SGIO | -NOSGIO

SGIO
specifies to activate the scatter–read / gather–write feature. The scatter–read /
gather–write feature remains active until your SAS session ends.

NOSGIO
specifies not to activate the scatter-read/gather-write feature.

Details
The SGIO system option greatly improves I/O performance for SAS I/O files (data sets,
catalogs, indexes, utility files, and other I/O files) when the PC has a large amount of
RAM. Scatter-read / gather-write bypasses intermediate buffer transfers between
memory and disk.

When SGIO is active, SAS uses the number of buffers that are specified by the
BUFNO system option to transfer data between disk and RAM. I/O performance
usually improves as the value for the BUFNO increases. Try different values of the
BUFNO system option to tune each SAS job or DATA step.

The scatter-read / gather-write feature is active only for SAS I/O files that
� contain a 4K-multiple pagesize (for example, 4096 or 8192) on 32–bit systems
� contain a 8K-multiple pagesize (for example, 8192 or 16384) on 64-bit systems
� were not created by using Version 6 of SAS
� are accessed sequentially.

If an I/O file does not meet these criteria, SGIO is inactive for that file even though
the SGIO option is specified.

See Also

� “BUFNO System Option” on page 501
� “SAS Features That Optimize Performance” on page 206

SLEEPWINDOW System Option

Enables or disables the SLEEP window.

564 SORTANOM System Option � Chapter 23

Default: SLEEPWINDOW

Valid in: configuration file, SAS invocation

Category: Environment control, Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-SLEEPWINDOW | -NOSLEEPWINDOW

SLEEPWINDOW
specifies to display the SLEEP window.

NOSLEEPWINDOW
specifies not to display the SLEEP window.

Details
The SLEEP window appears when the SLEEP function or the WAKEUP function
suspends the execution of a DATA step. The SLEEP window displays the time that
remains before the DATA step begins running.

See Also

� “SLEEP Function” on page 413

� “WAKEUP Function” on page 415

SORTANOM System Option

Specifies certain options for the SyncSort utility.

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

Windows specifics: all

Syntax
-SORTANOM option(s)

SORTANOM=option(s)

System Options under Windows � SORTCUT System Option 565

option(s)
can be one or more of the following:

b
tells SyncSort to run in multi-call mode instead of single-call mode.

t
prints statistics about the sorting process in the SAS log.

v
prints all of the commands that are passed to the SyncSort utility in the SAS log.

See Also

� “Passing Options to SyncSort” on page 445
� The documentation for SyncSort for Windows.

SORTCUT System Option

Specifies the number of observations above which SyncSort is used instead of the SAS sort
program.

Default: 0
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT
Windows specifics: all

Syntax
-SORTCUT n | nK | nM | nG | hexX | MIN | MAX

SORTCUT=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of observations in multiples of 1 (n); 1,024 (nK); 1,048,576 (nM);
and 1,073,741,824 (nG), respectively. You can specify decimal values for n when it is
used to specify a K, M, or G value. For example, a value of 8 specifies 8 observations,
a value of .782k specifies 801 observations, and a value of 3m specifies 3,145,728
observations.

hexX
specifies the number of observations as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 observations.

MIN
specifies 0 observations.

MAX
specifies 2,147,483,647 observations.

566 SORTCUTP System Option � Chapter 23

Details
When you specify SORTPGM=BEST and SAS determines that the database sort utility
is not to be used, SAS uses the value of the SORTCUT and SORTCUTP options to
determine whether to use SyncSort or the SAS sort. If the data set to be sorted is
larger than the number of bytes (or kilobytes or megabytes) that you specify with
SORTCUTP, SyncSort is used instead of the SAS sort program. The value that you
specify must be less than or equal to 2,147,483,647 bytes. If both SORTCUT and
SORTCUTP are either not defined or are set to 0, the SAS sort is used. If you specify
both options and either condition is true, SAS uses SyncSort.

See Also

� “SORTCUTP System Option” on page 566
� “SORTPGM System Option” on page 569
� “Sorting Based on Size or Observations” on page 444

SORTCUTP System Option

Specifies the number of bytes above which SyncSort is used instead of the SAS sort program.

Default: 0
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT
Windows specifics: all

Syntax
-SORTCUTP n | nK | nM | nG | hexX | MIN | MAX

SORTCUTP=n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the number of bytes in multiples of 1; 1,024 (kilobytes); 1,048,576
(megabytes); and 1,073,741,824 (gigabytes), respectively. You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a value of
8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the number of bytes as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 bytes.

MIN
specifies 0 bytes.

MAX
specifies 2,147,483,647 bytes.

System Options under Windows � SORTDEV System Option 567

Details
When you specify SORTPGM=BEST and SAS determines that the database sort utility
is not to be used, SAS uses the value of the SORTCUTP and SORTCUT options to
determine whether to use SyncSort or the SAS sort. If the data set to be sorted is
larger than the number of bytes (or kilobytes or megabytes) that you specify with
SORTCUTP, SyncSort is used instead of the SAS sort program. The value that you
specify must be less than or equal to 2,147,483,647 bytes. If both SORTCUTP and
SORTCUT are either not defined or are set to 0, the SAS sort is used. If you specify
both options and either condition is true, SAS uses SyncSort.

The following equation computes the number of bytes to be sorted:
number of bytes= ((length-of-obs) + (length-of-all-keys)) * number-of-obs

See Also

� “SORTPGM System Option” on page 569
� “SORTCUT System Option” on page 565
� “Sorting Based on Size or Observations” on page 444

SORTDEV System Option

Specifies the pathname used for temporary files created by the SyncSort utility.

Default: same location as -WORK, which is set in the configuration file
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT
Windows specifics: all

Syntax
-SORTDEV “pathname”

SORTDEV =“pathname”

“pathname”
specifies a valid Windows pathname.

Details
The SORTDEV option specifies an alternative pathname for temporary files created by
the SyncSort utility. The pathname must be enclosed in quotation marks.

See Also

� “WORK System Option” on page 585
� “Passing Parameters to SyncSort” on page 445

568 SORTNAME System Option � Chapter 23

SORTNAME System Option

Specifies the name fo the host sort utility

Default: none

Valid in: configuration file, SAS invocation, SASV9_OPTIONS environment variable,
OPTIONS statement

PROC OPTIONS GROUP= SORT

WINDOWS specifics: all

Syntax
SORTNAME=“host-sort-utility-name”

-SORTNAME host-sort-utility-name

Details
The SORTNAME= option specifies the name of the default host sort utility. You can
specify syncsort.

See Also
“SORTPGM System Option” on page 569

SORTPARM System Option

Specifies parameters for the SyncSort utility.

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure options

PROC OPTIONS GROUP= SORT

Windows specifics: all

Syntax
SORTPARM=“SyncSort-parameters”

-SORTPARM “SyncSort-parameters”

SyncSort-parameters
specifies any parameters that you want to pass to the SyncSort utility. Enclose
SyncSort- parameters in quotation marks.

System Options under Windows � SORTSIZE System Option 569

Details
See the SyncSort for Windows documentation for a description of SyncSort- parameters.

SORTPGM System Option

Specifies the sort utility that is used in the SORT procedure.

Default: BEST
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT
Windows specifics: all

Syntax
-SORTPGM SAS | BEST | HOST

SORTPGM = SAS | BEST | HOST

SAS
tells SAS to sort by using the SAS sort routine.

BEST
tells SAS to determine the best sort routine to sort the data: a database sort, the
SAS sort, or SyncSort. When SAS determines that the sort is not to be done by the
database, SAS looks at the values for both SORTCUT and SORTCUTP. If they both
are set to zero, the SAS sort is used. If both options are set and either condition is
met, SAS uses the SyncSort routine.

HOST
tells SAS to sort by using SyncSort for Windows.

See Also

� “SORT Procedure” on page 441
� “SORTCUT System Option” on page 565
� “SORTCUTP System Option” on page 566

SORTSIZE System Option

Specifies the amount of memory available to the SORT procedure.

Default: 64M
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

570 SPLASH System Option � Chapter 23

Category: Sort: Procedure options
System administration: Memory

PROC OPTIONS GROUP= MEMORY
SORT

Windows specifics: Default value
See: SORTSIZE System Option in SAS Language Reference: Dictionary

Syntax
-SORTSIZE n | nK | nM | nG | hexX | MIN | MAX

SORTSIZE= n | nK | nM | nG | hexX | MIN | MAX

n | nK | nM | nG
specifies the amount of memory in multiples of 1; 1,024 (kilobytes); 1,048,576
(megabytes); and 1,073,741,824 (gigabytes) respectively. You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a value of
8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets the
amount of memory to 45 bytes.

MIN
specifies the minimum amount of memory available.

MAX
specifies the maximum amount of memory available.

Details
By default, this option is set to the maximum amount of memory available. The
SORTSIZE system option can reduce the amount of swapping SAS must do to sort the
data set. If PROC SORT needs more memory than you specify, it creates a temporary
utility file in your Saswork directory in which to store the data. The SORT procedure’s
algorithm can swap unneeded data more efficiently than Windows can.

Comparisons
The SORTSIZE option is similar to the REALMEMSIZE option. SORTSIZE only affects
the SORT procedure. REALMEMSIZE affects multiple procedures.

See Also

� “SORT Procedure” on page 441
� “Improving Performance of the SORT Procedure” on page 208

SPLASH System Option
Specifies whether to display the splash screen (logo screen) when SAS starts.

System Options under Windows � SPLASHLOC System Option 571

Default: SPLASH

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-SPLASH | -NOSPLASH

-SPLASH ON | -SPLASH OFF

SPLASH or SPLASH ON
specifies to display the logo screen when SAS initiates.

NOSPLASH or SPLASH OFF
specifies to not display the logo screen when SAS initiates.

Details
The SPLASH system option displays the SAS logo screen when SAS initiates.

You can specify a custom splash screen to display with the SPLASHLOC system
option.

See Also

� “SPLASHLOC System Option” on page 571

SPLASHLOC System Option

Specifies the location of the splash screen bitmap that appears when SAS starts.

Default: none

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-SPLASHLOC DLL-name <res-number> | BMP-filename

DLL-name
specifies the dynamic link library (DLL) where your customized logo and copyright
screen reside.

572 STIMEFMT System Option � Chapter 23

res-number
specifies the resource number connected with the dynamic link library (DLL) name.

BMP-filename
specifies the path and name of a stand-alone Windows bitmap (BMP) file to use as a
splash screen.

Details
You can create a bitmap resource (a customized logo and copyright screen) and build it
into a dynamic link library (DLL). The DLL that you use must be 32-bit if you are
running a 32–bit version of SAS or it must be 64–bit if you are running a 64–bit version
of SAS (that is, created using the libraries from the Microsoft Platform SDK). If you
specify a DLL-name without a resource number (res-number), the default resource
number is 1.

Alternatively, you can specify the path and name of a stand-alone Windows bitmap
(BMP) file to use as a splash screen. The path must be a valid Windows pathname. If
the pathname contains spaces, it must be enclosed in quotation marks.

STIMEFMT System Option

Specifies the format to use for displaying the time on STIMER output.

Default: M

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

Windows specifics: all

Syntax
-STIMEFMT S | M | H | SECONDS | MINUTES | HOURS

STIMEFMT=S | M | H | SECONDS | MINUTES | HOURS

S, SECONDS
specifies that SAS software display the STIMER output as seconds.

M, MINUTES
specifies that SAS software display the STIMER output as minutes:seconds

H, HOURS
specifies that SAS software display the STIMER output as hours:minutes:seconds.

Details
The STIMEFMT system option specifies the format to use to display STIMER output as
either seconds, minutes:seconds, or hours:minutes:seconds.

System Options under Windows � STIMER System Option 573

See Also

� The SAS Log in SAS Language Reference: Concepts.

STIMER System Option

Writes a subset of system performance statistics to the SAS log.

Default: STIMER
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: Reported statistics

Syntax
-STIMER | -NOSTIMER

STIMER | NOSTIMER

STIMER
writes real-time and CPU time to the SAS log.

NOSTIMER
does not write real-time and CPU time to the SAS log.

Details
The STIMER system option prints to the SAS log the amount of time it took for SAS to
complete a DATA step or procedure task.

The following is an example of STIMER output:

real time 0.96 seconds
cpu time 0.01 seconds

STIMER displays the following statistics:

Table 23.3 Description of STIMER Statistics

Statistic Description

Real-Time the amount of time spent to process the SAS job. Real-time is
also referred to as elapsed time.

CPU Time the total time spent to execute your SAS code and spent to
perform system overhead tasks on behalf of the SAS process.
This value is the combination of the user CPU and system CPU
statistics from FULLSTIMER.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real-time in your STIMER output. �

574 SYSGUIFONT System Option � Chapter 23

For example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

Since CPU1 can run a thread at the same time that CPU2 runs a separate thread for
the same SAS process, you can theoretically consume 2 CPU seconds in 1 second of
real-time.

Comparisons
The STIMER system option specifies whether a subset of all the performance statistics
of your operating environment that are available to SAS are written to the SAS log.
The FULLSTIMER system option specifies whether all of the available performance
statistics are written to the SAS log.

See Also

� “FULLSTIMER System Option” on page 516
� The chapter on optimizing system performance in SAS Language Reference:

Concepts.

SYSGUIFONT System Option

Specifies a font to use for the button text and the descriptive text.

Default: depends upon display settings
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-SYSGUIFONT "font-name" < font-size>

“font-name”
specifies the name of the font for text in screen and dialog box text elements. This
name must be a valid font name (for example, “Times New Roman” or “Courier”) that
matches the name of the font as it is installed on your system. The font-name must
be enclosed in double quotation marks, and is a required argument.

font-size
specifies the font size to use for the window text. If you omit font-size, SAS uses the
default.

Details
The SYSGUIFONT system option controls the font size of the text for screen text and
dialog box text elements. Use the FONT system option to change the fonts for the

System Options under Windows � SYSIN System Option 575

window contents. You might need to maximize the SAS window in order to allow space
for large fonts to be readable.

See Also

� “FONT System Option” on page 513
� “Selecting Fonts” on page 58

SYSIN System Option

Specifies a batch mode source file.

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
Windows specifics: Valid values for file-specification

Syntax
-SYSIN file-specification | -NOSYSIN

SYSIN file-specification
specifies to start SAS and submit the file in batch mode. The value of
file-specification must be a valid Windows filename.

NOSYSIN
specifies to start SAS in batch mode, but do not submit any files. This option is useful
for testing your SAS autoexec file; after your autoexec file is processed, SAS exits.

Details
The SYSIN system option specifies a file containing a SAS program. This option
indicates to SAS that you are executing in noninteractive mode and can be specified
only in the SAS invocation.

576 SYSPARM System Option � Chapter 23

SYSPARM System Option

Specifies a character string that can be passed to SAS programs.

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Valid values and syntax for characters

See: SYSPARM System Option in SAS Macro Language: Reference

Syntax

-SYSPARM <“>characters<”>

SYSPARM=<“>characters<”>

characters
writes the character string in all uppercase.

“characters”
preserves the case of the character string.

Details

The SYSPARM system option specifies a character string that can be passed to SAS
programs.

The character string specified can be accessed in a SAS DATA step by the
SYSPARM() function or anywhere in a SAS program by using the automatic macro
variable referenced by &SYSPARM.

SYSPRINT System Option

Specifies a destination printer for printing SAS output.

Default: Default system printer

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

Windows specifics: all

System Options under Windows � SYSPRINT System Option 577

Syntax
-SYSPRINT “printer-name”<“destination”>

SYSPRINT=“printer-name”<“destination”>

“printer-name”
specifies the name of the printer as it is installed under Windows (for example,
“Charlie’s HP LaserJet”). You can find the list of installed printers on your system by
selecting the Printers item in the Windows Control Panel. The printer-name must be
enclosed in double quotation marks.

“destination”
specifies a filename to write the print file to disk. If specified, then all printer output
generated by SAS is routed to this file, overwriting any existing file with the same
name. Even though the output is not sent directly to a printer, it is still formatted
using the printer driver associated with printer-name. The destination must be
enclosed in double quotation marks.

Details
The SYSPRINT system option specifies the destination of a printer where you want to
print your SAS output.

If you select a different printer by using the Print Setup dialog box, the value of the
SYSPRINT system option (shown by PROC OPTIONS) reflects that selection.

If you do not specify the SYSPRINT system option or the PRTPERSISTDEFAULT
system option, the printer-name and destination arguments use the default system
printer value.

If PRTPERSISTDEFAULT is specified when SAS starts, the value of SYSPRINT
persists from SAS session to SAS session. If both SYSPRINT and
PRTPERSISTDEFAULT are specified when SAS starts, the value of SYSPRINT is the
printer specified by SYSPRINT.

CAUTION:
Modifying print options by using the Windows printing dialog boxes can change the values
of SAS printing system options. If you set printing options using SAS system options
such as SYSPRINT, and then use the Windows printing dialog boxes to set printing
options, the SAS system options are set to the values specified in the Windows print
dialog boxes. �

See Also

� “Printing” on page 168
� “PRTPERSISTDEFAULT System Option” on page 551
� “SYSPRINTFONT System Option” on page 578

578 SYSPRINTFONT System Option � Chapter 23

SYSPRINTFONT System Option

Specifies the font to use when SAS is printing to the current default printer.

Default: none
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
Windows specifics: all
See: SYSPRINTFONT System Option in SAS Language Reference: Dictionary

Syntax
-SYSPRINTFONT (“font-name” <BOLD | NORMAL><REGULAR |

ITALIC><character-set> <point-size> <NAMED “printer-name” | UPRINT=
“printer-name” | DEFAULT | ALL>)

SYSPRINTFONT=“font-name” <BOLD | NORMAL><REGULAR |
ITALIC><character-set> <point-size> <NAMED “printer-name” | UPRINT=
“printer-name” | DEFAULT | ALL>

“font-name”
specifies the name of the font to use for printing. This name must be a valid font
name (for example, “SAS Monospace” or “Courier”) that matches the name of the font
as it is installed on your system. The font-name must be enclosed in double quotation
marks, and is a required argument.

BOLD | NORMAL
specifies the weight of the font. The default is NORMAL.

REGULAR | ITALIC
specifies the style of the font. The default is REGULAR.

character-set
specifies the character set to use for printing. The default is “Windows”. Valid values
are Western, Central European, Cyrillic, Greek, Turkish, Arabic, Baltic, and Thai. If
the font does not support the specified character set, the default character set is
used. If the default character set is not supported by the font, the font’s default
character set is used.

point-size
specifies the point size to use for printing. This value must be an integer from 1 to
7200, inclusive. If you omit this argument, SAS uses 10 points.

NAMED “printer-name”
updates the font information for the named printer in the Sasuser.Profile2 catalog.
The printer name must exactly match the name shown in the Print Setup dialog box
(except that the printer name is not case sensitive). The printer-name must be
enclosed in double quotation marks. This keyword is optional.

UPRINT=“printer-name”
specifies a Universal Printer to which these settings apply. UPRINT is valid only for
printers that are listed in the SAS registry. The printer-name must exactly match

System Options under Windows � SYSPRINTFONT System Option 579

the name shown in the Print Setup dialog box, except that the printer name is not
case sensitive. If the Universal Prints is more than one word, printer-name must be
enclosed in single or double quotation marks. The quotation marks are stored with
the printer-name.

DEFAULT
specifies the default font information for the printer used by the -SYSPRINT system
option in the Sasuser.Profile2 catalog.

ALL
updates the font information for all installed printers in the Sasuser.Profile2 catalog.
This keyword is optional.

Details
The SYSPRINTFONT system option sets the font to use when SAS is printing to the
current default printer (which might be specified in the SYSPRINT system option) or to
the printer identified with the optional keywords NAMED or ALL. This information is
stored in the Sasuser.Profile2 catalog.

Enclose the SYSPRINTFONT option arguments in parenthesis when you specify the
option in a configuration file, on the command line, or in the SAS System Options
window. Parenthesis are not required if you specify the SYSPRINTFONT system option
in the OPTIONS statement.

If you use SYSPRINTFONT with either the DEFAULT or no keyword and later use
the SYSPRINT system option or the Print Setup dialog box to change the current
default printer, then the font used with the current default printer will be

1 The font specified in Sasuser.Profile2 for the given printer, if any.

2 The font specified with SYSPRINTFONT, if the specified font exists on the printer.

3 If there is no font defined for the printer in Sasuser.Profile2, and SYSPRINTFONT
doesn’t specify a valid font for the printer, and the current display font is scalable,
then SAS will use the display font to print.

4 If the current display font is not scalable, SAS will use 10-point SAS Monospace.

5 If the SAS Monospace font is not available, SAS will use the printer’s default font
to print.

Note: To ensure that row and column separators and boxed tabular reports will be
printed legibly when using the standard forms characters, you must use these
resources: �

� the SAS Monospace or the SAS Monospace Bold font

� a printer that supports TrueType fonts

Examples

Example 1: Specifying a Font to the Default Printer This example specifies to use the
12-point SAS Monospace font on the default printer:

-sysprintfont ("SAS Monospace" 12)

Example 2: Specifying a Font to a Named Printer This example specifies to use
10-point Courier New on the printer named HP LaserJet IIIsi Postscript, attached to
LPT1:. Note that the name given for the printer is how it appears in the Print Setup
dialog box in SAS:

-sysprintfont ("Courier New" named
"HP LaserJet IIIsi Postscript on LPT1:")

580 TOOLDEF System Option � Chapter 23

Example 3: Specifying a Font to a Universal Printer on the SAS command line This
example specifies the Albany AMT font for the PDF Universal Printer:

sysprintfont=(’courier’ 11 uprint=’PDF’)

See Also

� “SYSPRINT System Option” on page 576

TOOLDEF System Option

Specifies the Toolbox display location.

Default: TOP RIGHT

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax

-TOOLDEF TOP | CENTER | BOTTOM <LEFT | CENTER | RIGHT>

TOP | CENTER | BOTTOM
specifies the vertical position of the Toolbox. The default value is TOP.

LEFT | CENTER | RIGHT
specifies the horizontal position of the Toolbox. The default value is RIGHT.

Details

The TOOLDEF system option specifies where the Toolbox is located within your display
when it is viewable.

You must specify a vertical position first. You do not have to specify a horizontal
position, but if you omit it, RIGHT is used.

Note: The Toolbox is positioned with respect to your entire display, not to the main
SAS window. This option has no effect if you are using the toolbar instead of the
Toolbox. �

See Also

� “Customizing a Toolbar” on page 69

� “Using the Toolbar to Issue Commands” on page 41

System Options under Windows � USER System Option 581

UPRINTMENUSWITCH System Option

Enables the universal print commands in the File menu.

Default: NOUPRINTMENUSWITCH

Valid in: configuration file, SAS invocation

Category: Log and procedure output control: ODS printing

PROC OPTIONS GROUP= ODSPRINT

Windows specifics: all

Syntax
-UPRINTMENUSWITCH | -NOUPRINTMENUSWITCH

UPRINTMENUSWITCH
specifies that the print commands in the File menu invoke the Universal Printing
dialog boxes.

NOUPRINTMENUSWITCH
specifies that the print commands in the File menu will invoke the Windows dialog
boxes.

Details
To enable the Universal Printing menus and dialog boxes, you must specify both the
UNIVERSALPRINT system option and the UPRINTMENUSWITCH system option
when you start SAS. Specifying the UPRINTMENUSWITCH option without specifying
the UNIVERSALPRINT option will not invoke the Universal Printing menus and dialog
boxes.

See Also

� “Introduction to Printing in SAS within the Windows Environment” on page 168

USER System Option

Specifies the name of the default permanent SAS library.

Default: none

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Valid values for library-specification

See: USER System Option in SAS Language Reference: Dictionary

582 USERICON System Option � Chapter 23

Syntax
-USER “library-specification”

USER=“library-specification”

library-specification
specifies the default libref, an environment variable, or Windows pathname in which
to store data sets that are created during a SAS session. Remember that a pathname
is only to the directory or subdirectory level. The value of library-specification must
resolve to a valid Windows pathname.

Details
When you specify the USER system option, any data set that you create with a
one-level name will be permanently stored in the specified library. If you want to create
a temporary data set, use a two-level name for the data set, with the first part being
Work (for example, work.tempdata).

USERICON System Option

Specifies the pathname of the resource file associated with your user-defined icon.

Default: none
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-USERICON icon-resource-filename number-of-icons

icon-resource-filename
specifies the fully qualified Windows pathname of the resource file associated with
your user-defined icons. If the pathname contains spaces, it must be enclosed in
quotation marks.

number-of-icons
specifies the maximum number of icons stored in the resource file that you specified.

Details
The USERICON system option specifies the fully qualified Windows pathname of the
resource file associated with your icons, along with the maximum number of icons
stored in the resource file that you specified.

The icon resource file must be compiled using the Win32 Software Development Kit
(SDK). For more information, refer to the SDK documentation. User-defined icons can
be incorporated into applications developed with SAS/AF or SAS/EIS software.

System Options under Windows � VERBOSE System Option 583

Example

The following USERICON system option specifies 10 icons that are stored in
C:\MYSTUFF\MYICONS.DLL:

-usericon c:\mystuff\myicons.dll 10

VERBOSE System Option

Controls whether SAS writes the settings of all the system options specified in the configuration
file to either the terminal or the batch log.

Default: NOVERBOSE
Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
Windows specifics: Amount of information reported

Syntax
-VERBOSE | -NOVERBOSE

VERBOSE
specifies to write the settings of the system options to the log.

NOVERBOSE
specifies not to write the settings of the system options to the log. NOVERBOSE is
the default.

Details
The VERBOSE system option writes the settings of SAS system options that were set
at SAS invocation either on the command line or as part of the configuration file. If you
invoke SAS at a terminal, the settings are displayed at the terminal. If you invoke SAS
as a part of a batch job, the settings are written to the batch log. You cannot change the
settings of the SAS system options with the VERBOSE system option.

The VERBOSE system option is a good error diagnostic tool. If you receive an error
message when you invoke SAS, you can use this option to see whether you have an
error in your system option specifications.

See Also

� The SAS Log in SAS Language Reference: Concepts.

584 WEBUI System Option � Chapter 23

WEBUI System Option

Specifies to enable Web enhancements.

Default: NOWEBUI
Valid in: configuration file, SAS invocation

Category: Input control: Data processing
PROC OPTIONS GROUP= INPUTCONTROL

Windows specifics: all

Syntax
-WEBUI | -NOWEBUI

WEBUI
specifies to enable Web enhancements.

NOWEBUI
specifies to disable Web enhancements.

Details
If you have installed Microsoft Internet Explorer 5.0 (IE) or later and specify the
WEBUI system option, certain windows, such as the SAS Explorer window, work like
an IE Web page where pointing to an object with the mouse selects the object and a
single mouse-click invokes the object’s default action.

To select a range of objects, press and hold down the SHIFT key, and point to the
first and last objects in the group.

To select multiple items, press and hold down the CTRL key, and point to individual
items in the group.

WINDOWSMENU System Option

Specifies to include or suppress the Window menu in windows that display menus.

Default: NOWINDOWSMENU

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-WINDOWSMENU | -NOWINDOWSMENU

System Options under Windows � WORK System Option 585

WINDOWSMENU | NOWINDOWSMENU

WINDOWSMENU
specifies to include the Window menu in the main menu if the
NOAWSMENUMERGE system option is specified.

NOWINDOWSMENU
specifies to suppress the Window menu in the main menu if the
NOAWSMENUMERGE system option is specified.

Details
The WINDOWSMENU system option is valid only if the NOAWSMENUMERGE system
option is specified.

See Also

� “AWSMENUMERGE System Option” on page 500

WORK System Option

Specifies the pathname for the directory containing the Work data library.

Default: !TEMP\SAS Temporary Files

Valid in: configuration file, SAS invocation

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Windows specifics: Valid values for library-specification

See: WORK System Option in SAS Language Reference: Dictionary

Syntax
-WORK “library-specification”

“library-specification”
specifies an environment variable or a Windows pathname. Remember that a
pathname is only to the directory or subdirectory level. The value of
library-specification must resolve to a valid Windows pathname. The
library-specification must be enclosed in double quotation marks.

Details
The default SAS configuration file creates the Work data library in a folder named “SAS
Temporary Files” located in your system’s designated temporary area (as specified by
the TEMP environment variable).

SAS creates a subdirectory called TDnnnnn for each SAS process under the directory
you specify in the WORK option, where nnnnn is a unique number.

586 XCMD System Option � Chapter 23

If library-specification is a directory, then the work-data library will be stored in the
directory. If library-specification is a file, then SAS will select a directory from the file
to store the work-data library. The file must be a plain-text file. The following types of
lines are valid in the file:

� blank line, which are ignored
� lines wrapped in C-style comments (/*...*/), which are ignored
� lines that contain unquoted paths to a directory, only one path per line is allowed
� lines that contain instructions on how to choose a path using the argument

method=space or method=random. If there are multiple method= lines, only the
last line is processed. If there are no method= lines in the file, then
method=random will be processed.

The error message, Library WORK does not exist is displayed for the
following conditions:

� the path does not exist
� a path, not a directory, is specified for the argument.

See Also

� “Work Data Library” on page 21

XCMD System Option

Specifies that the X command is valid in the current SAS session.

Default: XCMD
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-XCMD | -NOXCMD

–XCMD ON | –XCMD OFF

XCMD or XCMD ON
specifies to allow the X command to be valid in the current SAS session.

NOXCMD or XCMD OFF
specifies not to allow the X command to be valid in the current SAS session.

Details
The XCMD allows the X command to be active in the current SAS session.

If you specify NOXCMD, the following are disabled:
� PIPE and NAMEPIPE device types in the FILENAME statement
� CALL SYSTEM routine

System Options under Windows � XMIN System Option 587

� X command
� Dynamic Data Exchange (DDE)
� %SYSEXEC macro
� SYSTASK statement
� FILENAME function.

See Also

� “X Command” on page 377

XMIN System Option

Specifies to open the application specified in the X command in a minimized state or in the
default active state.

Default: NOXMIN
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
Windows specifics: all

Syntax
-XMIN | -NOXMIN

XMIN | NOXMIN

XMIN
specifies to start the application specified in the X command in a minimized state.

NOXMIN
specifies to start the application specified in the X command in the default active
state.

Details
The XMIN system option allows you to open an application specified in the X command
in a minimized state or in the default active state.

588 XSYNC System Option � Chapter 23

XSYNC System Option

Controls whether an X command or statement executes synchronously or asynchronously.

Default: XSYNC

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax
-XSYNC | -NOXSYNC

XSYNC | NOXSYNC

XSYNC
specifies that the operating system command execute synchronously with your SAS
session. That is, control is not returned to SAS until the command has completed.
You cannot return to your SAS session until the process spawned by the X command
or statement is closed. XSYNC is the default.

NOXSYNC
specifies that the operating system command execute asynchronously with your SAS
session. That is, control is returned immediately to SAS and the command continues
executing without interfering with your SAS session. With NOXSYNC in effect, you
can execute an X command or X statement and return to your SAS session without
closing the process spawned by the X command or X statement.

Details
The value of the XSYNC system option affects the execution of the following:

� X statement

� X command

� CALL SYSTEM routine

� %SYSEXEC statement.

See Also

� “Running Windows or MS-DOS Commands from within SAS” on page 26

� “XWAIT System Option” on page 589

� “X Statement” on page 471

� “X Command” on page 377

� “CALL SYSTEM Routine” on page 391

� “Macro Statements” on page 597

System Options under Windows � XWAIT System Option 589

XWAIT System Option

Specifies whether you have to type EXIT at the DOS prompt before the DOS shell closes.

Default: XWAIT

Valid in: configuration file, SAS invocation, OPTIONS statement

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Windows specifics: all

Syntax

-XWAIT | -NOXWAIT

XWAIT | NOXWAIT

XWAIT
specifies that you must type EXIT to return to your SAS session. XWAIT is the
default.

NOXWAIT
specifies that the command processor automatically returns to the SAS session after
the specified command is executed. You do not have to type EXIT.

Details

The XWAIT system option does not affect Windows applications, such as Excel. It only
applies to applications that execute in a Command Prompt window.

The XWAIT system option affects the Command Prompt window started by any of
the following:

� X statement

� X command

� CALL SYSTEM routine

� %SYSEXEC statement.

See Also

� “Running Windows or MS-DOS Commands from within SAS” on page 26

� “XSYNC System Option” on page 588

� “X Statement” on page 471

� “X Command” on page 377

� “CALL SYSTEM Routine” on page 391

� “Macro Statements” on page 597

590

591

C H A P T E R

24
Length and Precision of
Variables

Length and Precision of Variables under Windows 591
Numeric Variables 591

Character Variables 592

Length and Precision of Variables under Windows
For detailed information about how SAS stores representations of numeric and

character data, see SAS Language Reference: Concepts. Data representation issues vary
among different operating environments; the topics in this section discuss how data are
represented in SAS under Windows.

Numeric Variables
The default length of numeric variables in SAS data sets is 8 bytes. (You can control

the length of SAS numeric variables with the LENGTH statement in the DATA step.)
In SAS under Windows, the Windows data type of numeric values that have a length of
8 is LONG REAL. The precision of floating-point values is accurate to approximately 15
digits. Depending upon the number, the precision can be 16 digits of accuracy. For more
information about the representation of the LONG REAL Windows data type, see Intels
developer Web site. Table 24.1 on page 591 specifies the significant digits and largest
integer values that can be stored in SAS numeric variables.

Table 24.1 Significant Digits and Largest Integer by Length for SAS Variables
under Windows

Length in Bytes
Largest Integer

Represented Exactly
Exponential
Notation

Significant Digits
Retained

3 8,192 213 3

4 2,097,152 221 6

5 536,870,912 229 8

6 137,438,953,472 237 11

592 Character Variables � Chapter 24

Length in Bytes
Largest Integer

Represented Exactly
Exponential
Notation

Significant Digits
Retained

7 35,184,372,088,832 245 13

8 9,007,199,254,740,992 253 15

For example, if you know that a numeric variable always has values between 0 and
100, you can use a length of 3 to store the number and thus save space in your data set.
Here is an example:

data mydata;
length num 3;
more data lines

run;

Note: Dummy variables (those variables whose only purpose is to hold 0 or 1) can be
stored in a variable whose length is 3 bytes. �

CAUTION:
Use the 3-byte limit for only those variables whose values are small, preferably integers.
If the value of a variable becomes large or has many significant digits, you can lose
precision when saving the results of arithmetic calculations if the length of a variable
is less than 8 bytes. �

The maximum number of variables is limited by the first encountered limitation:

� the observation length

� the total storage possible for names, labels, and metadata

� the amount of available memory on the machine where the data set is stored.

You can define a data set with an observation length of up to 2GB on a 32-bit
platform and approximately 2*46 bytes on a 64-bit platform. The observation length
cannot exceed the value of the BUFSIZE option.

Assuming a single-byte character set, and that you use the maximum 352 bytes
possible for name, label, and other data, for each variable, you can have a maximum of
approximately 1,350,000 variables. If the names, labels, and format names are shorter,
you can have more than 66,666,666. There is a maximum of 1GB to store all the
variable names and other metadata (data set label, compression name, and other data).

Assuming that the above limits are not exceeded the maximum possible number of
variables is 412,977,617 on 32-bit hosts and 2GB on 64-bit hosts.

Character Variables

In SAS under Windows, character values are sorted using the ASCII collating
sequence. As an alternative to the numeric dummy variables discussed previously, you
can choose a character variable with a length of 1 byte to serve the same purpose.

The maximum number of variables is limited by the first encountered limitation:

� the observation length

� the total storage possible for names, labels, and metadata

� the amount of available memory on the machine where the data set is stored.

You can define a data set with an observation length of up to 2GB on a 32-bit
platform and approximately 2*46 bytes on a 64-bit platform. The observation length
cannot exceed the value of the BUFSIZE option.

Length and Precision of Variables � Character Variables 593

Assuming a single-byte character set, and that you use the maximum 352 bytes
possible for name, label, and other data, for each variable, you can have a maximum of
about 4,050,000 variables. If the names, labels, and format names are shorter, you can
have more than 200,000,000. There is a maximum of 1GB to store all the variable
names and other metadata (data set label, compression name, and other data).

Assuming that the above limits are not exceeded the maximum possible number of
variables is 412,977,617 on 32-bit hosts and 2GB on 64-bit hosts.

594

595

C H A P T E R

25
SAS Macro Facility under
Windows

SAS Macro Facility under Windows 595
Automatic Macro Variables 595

Macro Statements 597

Macro Functions 598

Autocall Libraries 598

SASAUTOS System Option 599

SAS Macro Facility under Windows

In general, the SAS macro language is portable across operating environments. This
section discusses those components of the macro facility that have system dependencies.
For more information, see the SAS Macro Language: Reference and SAS Language
Reference: Dictionary.

Note: The words CON, NUL, PRN, COM1 through COM9, and LPT1 through LPT9
are reserved words under Windows. Do not use these reserved words as the name of a
macro variable. �

Automatic Macro Variables

The following automatic macro variables have values that are specific to Windows:

SYSCC
contains the current SAS condition code that SAS returns to Windows when SAS
exits. Upon exit, SAS translates this condition code to a return code that has a
meaningful value for the operating environment.

Note: When ERRORCHECK=NORMAL, the return code will be 0 even if an
error exists in a LIBNAME or FILENAME statement, or in a LOCK statement in
SAS/SHARE software. Also, the SAS job or session will not end when the
%INCLUDE statement fails due to a nonexistent file. For more information, see
the ERRORCHECK= system option in the SAS Language Reference: Dictionary �

SYSDEVIC
gives the name of the current graphics device. The current graphics device is
determined by the DEVICE system option. Contact your on-site SAS support
personnel to determine which graphics devices are available at your site. For
information about the DEVICE system option, see “DEVICE System Option” on
page 506 and SAS Language Reference: Dictionary.

596 Automatic Macro Variables � Chapter 25

SYSENV
always contains the value FORE under Windows.

SYSJOBID
returns a number that uniquely identifies the SAS task under Windows.

SYSMAXLONG
returns the maximum long integer value that is allowed under Windows, which is
2,147,483,647.

SYSRC
holds the Windows status of Windows commands that are issued during your SAS
session. The variable holds a character string that is the text form of the decimal
value of the Windows command status.

For example, consider the following statements:

options noxwait;
x ’dirf’; /* Invalid Windows command */
%put This Windows status is &sysrc;
x ’dir’; /* Valid Windows command */
%put The corrected Windows status is &sysrc;

The following lines are written to the SAS log:

This Windows status is 1
The corrected Windows status is 1

The OPTIONS statement turns the XWAIT option off so that the Windows
command prompt window closes automatically. You do not have to type exit to
return to your SAS session. The value of “This Windows status is” will be 1, and
the value for “The corrected Windows status is” will be 1. If you run this example
with the XWAIT option, you would need to type exit before SAS would run the
code. After you type exit, a value of 9009 is returned for the statement “This
Windows status is”, and 0 is the value for “The corrected Windows status is”. If
you use the NOXSYNC system option, the value of SYSRC is automatically 0.

SYSSCP
returns the operating environment abbreviation WIN.

SYSSCPL
returns the name of the specific Windows environment that you are using. The
possible return values are

NET_ASRV
Microsoft Windows Server 2003 Enterprise Edition

NET_DSRV
Microsoft Windows Server 2003 Datacenter Edition

NET_SRV
Microsoft Windows Server 2003 Standard Edition

W32_DSRV08
Microsoft Windows 2008 Datacenter Server

W32_ESRV08
Microsoft Windows 2008 Enterprise Server

W32_SRV08
Microsoft Windows Server 2008

W32_VSPRO
Microsoft Windows Vista or Windows 7

Macro Facility under Windows � Macro Statements 597

X64_VSPRO
Microsoft Windows Vista x64 or Windows 7 x64

W64_ASRV
Microsoft Windows Server 2003 Enterprise 64-bit Edition for Itanium-based
computers

W64_DSRV
Microsoft Windows Server 2003 Datacenter 64-bit Edition for Itanium-based
computers

W64_DSRV08
Microsoft Windows Server 2008 Datacenter 64–bit edition for Itanium-based
computers

W64_ESRV08
Microsoft Windows Server 2008 Enterprise 64–bit edition for Itanium-based
computers

W64_SRV08
Microsoft Windows Server 2008 Standard 64–bit edition for Itanium-based
computers

X64_DSRV
Microsoft Windows Server 2003 Datacenter 64–bit edition for x64 based
computers

X64_ESRV
Microsoft Windows Server 2003 Enterprise 64–bit edition for x64 based
computers

X64_SRV
Microsoft Windows Server 2003 Standard 64–bit edition for x64 based
computers

X64_DSRV08
Microsoft Windows Server 2008 Datacenter 64–bit edition for x64–based
computers

X64_ESRV08
Microsoft Windows Server 2008 Enterprise 64–bit edition for x64–based
computers

X64_PRO
Microsoft Windows XP Professional x64 edition

X64_SRV08
Microsoft Windows Server 2008 Standard 64–bit edition for x64–based
computers

XP_PRO
Microsoft Windows XP Professional

Macro Statements
The following macro statement has behavior specific to Windows:

%SYSEXEC
executes operating environment commands immediately and places the return code
in the SYSRC automatic macro variable. The %SYSEXEC statement is similar to

598 Macro Functions � Chapter 25

the X statement that is described in “Running Windows or MS-DOS Commands
from within SAS” on page 26. You can use the %SYSEXEC statement inside a
macro or in open code. The %SYSEXEC statement has the following syntax:

%SYSEXEC <command>;

The command argument can be any operating environment command or any
sequence of macro operations that generates an operating environment command.
You can also use the command argument to invoke a Windows application such as
Notepad.

Omitting the command argument launches a command prompt subprocess,
which is interactive. To return to your SAS session, type EXIT at the command
prompt and press ENTER. The SYSRC automatic variable is set to 0 if you omit
the command argument in the %SYSEXEC statement.

Here is a simple example of %SYSEXEC:

%sysexec time;

This statement launches a command prompt session that displays the following
lines:

The current time is: 16:32:45.16
Enter new time:

Note: The %SYSEXEC statement uses the XSYNC and XWAIT system option
values just like the X statement and X command do. For more information about
these system options, see “XSYNC System Option” on page 588 and “XWAIT
System Option” on page 589. �

Macro Functions
The behavior of the %SYSGET macro function is specific to Windows:

%SYSGET
returns the character string that is the value of the Windows environment
variable that is passed as the argument. Both Windows and SAS environment
variables can be translated by using the %SYSGET function. A warning message
is printed if the environment variable does not exist. The %SYSGET function has
the following syntax:

%SYSGET(environment-variable-name);

Here is an example of using the %SYSGET function:

%let var1=%sysget(comspec);
%put The COMSPEC environment variable

is &var1;

The following line is written to the SAS log:

The COMSPEC environment variable is
C:\winnt\system\command.exe

Autocall Libraries
This section discusses the system dependencies of using autocall libraries. For

general information, see SAS Macro Language: Reference.

Macro Facility under Windows � SASAUTOS System Option 599

An autocall library contains files that define SAS macros. SAS supplies some autocall
macros. To use the autocall facility, you must have the SAS system option
MAUTOSOURCE set. When SAS is installed, the SASAUTOS system option is used in
the SAS configuration file to tell SAS where to find the default macros that are supplied
by SAS Institute. You can also define your own autocall macros and store them in a
Windows directory.

If you store autocall macros in a Windows directory, the file extension must be .SAS.
Each macro file in the directory must contain a macro definition that has a macro name
that is the same as the filename. For example, a file named PRTDATA.SAS that is
stored in a directory must define a macro named PRTDATA.

SASAUTOS System Option
To use your own autocall macros in your SAS programs, you must tell SAS where to

find them using the SASAUTOS system option. The syntax of the SASAUTOS option is
given in “SASAUTOS System Option” on page 557.

You can set the SASAUTOS system option when you start SAS, or you can use it in
an OPTIONS statement during your SAS session. You should edit your SAS
configuration file to add your autocall library to the library concatenation that is
supplied by SAS Institute, as in the following example:

-sasautos (c:\mymacros
!sasroot\core\sasmacro
!sasroot\base\sasmacro
!sasroot\stat\sasmacro
more library specifications
)

Autocall libraries are searched in the order that you specify them. If you use the
preceding SASAUTOS option setting and call a macro named PRTDATA, the directory
C:\MYMACROS is searched first for the macro; then each of the !SASROOT libraries is
searched.

600

601

P A R T4

Appendixes

Appendix 1.SCL Methods for Automating OLE Objects 603

Appendix 2.Error Messages for SAS under Windows 613

Appendix 3.Graphics Considerations 621

Appendix 4.Default Key Settings for Interactive SAS Sessions 623

Appendix 5.SAS Disk Cleanup Handler 631

Appendix 6.Recommended Reading 635

602

603

A P P E N D I X

1
SCL Methods for Automating
OLE Objects

Summary of OLE Class Methods 603
COMPUTE 604

_DISABLE_DEFAULT_ACTION_ 605

DO 605

_ENABLE_DEFAULT_ACTION_ 606

EXECUTE 606
_GET_EVENT_ 607

_GET_PROPERTY_ 607

_GET_REFERENCE_ID_ 608

_GET_TYPE_ 608

_IN_ERROR_ 609

NEW 610
_SET_PROPERTY_ 610

UPDATE 611

Summary of OLE Class Methods
Table A1.1 on page 603 contains a list of SCL methods you can use with object

linking and embedding (OLE) and indicates which of the OLE classes they apply to.

Table A1.1 SCL Methods Valid for OLE and OLE Automation

Method SAS OLE class
SAS OLE
Automation class

COMPUTE Yes Yes

_DISABLE_DEFAULT_ACTION_ Yes No

DO Yes Yes

_ENABLE_DEFAULT_ACTION_ Yes No

EXECUTE Yes No

_GET_EVENT_ Yes No

_GET_PROPERTY_ Yes Yes

_GET_REFERENCE_ID_ Yes Yes

_GET_TYPE_ Yes No

_IN_ERROR_ Yes Yes

NEW No Yes

604 _COMPUTE_ � Appendix 1

Method SAS OLE class
SAS OLE
Automation class

_SET_PROPERTY_ Yes Yes

UPDATE Yes No

Note: The _NEW_ method can be used with any class, but the OLE Automation
class overrides this method because of special requirements. �

The remainder of this section contains the reference information for these methods.

COMPUTE

Invokes a method on an OLE automation object and returns a value.

Syntax
CALL NOTIFY(OLE-object-name,’_COMPUTE_’,in-OLE-method<,in-parm…,in-

parm>,out-value);

CALL SEND(OLE-object-id,’_COMPUTE_’,in-OLE-method<,in-parm…,in-parm>,out-
value);

Argument

Character (C)
or Numeric
(N) Description

in-OLE-method C specifies the OLE method name.

in-parm C or N provides a parameter to the OLE method.

out-value C or N contains the value returned by the OLE method.

Details
The _COMPUTE_ method invokes a method (with parameters) that is exposed by an
OLE automation server. The number of parameters (in-parm arguments) needed varies
among different objects and methods. Only methods that have a return value should be
used with the _COMPUTE_ method. For methods with no return values, use the _DO_
method.

Examples

The following example stores the contents of the item in position 2 of an OLE control
in the variable item2obj:

length item2obj $ 200;
call notify(’oleobj’, ’_COMPUTE_’,

’GetItem’, 2, item2obj);

SCL Methods for Automating OLE Objects � _DO_ 605

The following example uses the cells method of a spreadsheet object to compute the
location of the cell at row 2, column 5, and then sets the value of that cell to 100:

call send(oleobj, ’_COMPUTE_’, ’Cells’,
2, 5, cellobj1);

call send(cellobj1, ’_SET_PROPERTY_’,
’Value’, 100);

_DISABLE_DEFAULT_ACTION_

Disables the OLE object’s default action.

Syntax
CALL NOTIFY(OLE-object-name,’_DISABLE_DEFAULT_ACTION_’);

Details
This method prevents the default verb for an OLE object from executing when the
object is double-clicked. By default, the default action is enabled.

DO

Invokes a method on an OLE automation object with no return value.

Syntax
CALL NOTIFY(OLE-object-name,’_DO_’,in-OLE-method<,in-parm…,in-parm>);

CALL SEND(OLE-object-id,’_DO_’,in-OLE-method<, in-parm…,in-parm>);

Argument

Character (C)
or Numeric
(N) Description

in-OLE-method C specifies the OLE method name.

in-parm C or N provides a parameter to the OLE method.

Details
The _DO_ method invokes a method (with parameters) that is exposed by an OLE
automation server. The number of parameters (in-parm arguments) needed varies

606 _ENABLE_DEFAULT_ACTION_ � Appendix 1

among different OLE objects and methods. Only methods that have no return value
should be used with the _DO_ method. For methods with return values, use the
COMPUTE method.

Example

The following example sends the AboutBox method to an OLE control, which displays
the About Box for the control:

call notify(’oleobj’, ’_DO_’, ’AboutBox’);

_ENABLE_DEFAULT_ACTION_
Enables the OLE object’s default action.

Syntax
CALL NOTIFY(OLE-object-name,’_ENABLE_DEFAULT_ACTION_’);

Details
This method enables the default verb for an OLE object to execute when the object is
double-clicked. By default, the default action is enabled.

EXECUTE
Executes an OLE verb for the object.

Syntax
CALL NOTIFY(OLE-object-name,’_EXECUTE_’,in-verb<,in-verb…in-verb>);

Argument

Character (C)
or Numeric
(N) Description

in-verb C specifies the OLE verb to execute.

Details
A list of verbs supported by this object are listed in the Associated Verbs window for the
OLE object (after the object has been created). You can specify more than one OLE verb
at a time.

SCL Methods for Automating OLE Objects � _GET_PROPERTY_ 607

If you attempt to execute a verb that is not valid for the object, the SCL program
halts and returns a message that the verb does not exist.

_GET_EVENT_
Returns the name of the last OLE control event received.

Syntax
CALL NOTIFY(OLE-object-name,’_GET_EVENT_’,out-event);

Argument

Character (C)
or Numeric
(N) Description

out-event C contains the returned name of the last OLE
control event received.

Details
This method returns the name of the event that the specified OLE control most recently
sent.

_GET_PROPERTY_

Returns the value of a property of an automation object.

Syntax
CALL NOTIFY(OLE-object-name,’_GET_PROPERTY_’,in-OLE-property,out-property-

value);

CALL SEND(OLE-object-id,’_GET_PROPERTY_’,in-OLE-property,out-property-value);

Argument

Character (C)
or Numeric
(N) Description

in-OLE-property C specifies the name of the OLE property.

out-property-value C or N contains the returned value of the property.

608 _GET_REFERENCE_ID_ � Appendix 1

Details
The _GET_PROPERTY_ method is used to get the value of a property of an automation
object.

_GET_REFERENCE_ID_

Returns a reference identifier for use with any automation object method that requires an
automation object as one of its parameters.

Syntax
CALL NOTIFY(OLE-object-name,’_GET_REFERENCE_ID_’,out-refid);

CALL SEND(OLE-object-id,’_GET_REFERENCE_ID_’,out-refid);

Argument

Character (C)
or Numeric
(N) Description

out-refid C contains the returned reference identifier.

Details
The _GET_REFERENCE_ID_ method is used to get the automation object identifier.
The value returned is used in subsequent _DO_ or _COMPUTE_ calls where the object
method requires an automation object as one of its parameters. This value should be
used for the object parameter.

Example

The following example returns the reference identifier for the automation object.
This identifier is then sent as a parameter value to an automation method requiring an
object identifier.

call notify(’oleobj1’, ’_GET_REFERENCE_ID_’,
refid);

call notify(’oleobj2’, ’_DO_’, ’NewAppl’,
refid, p1, p2);

_GET_TYPE_

Returns the object’s type.

SCL Methods for Automating OLE Objects � _IN_ERROR_ 609

Syntax
CALL NOTIFY(OLE-object-name,’_GET_TYPE_’,out-type);

Argument

Character (C)
or Numeric
(N) Description

out-type C contains the returned object type.

Details
The _GET_TYPE_ method is used to get the type of the object. Valid types include
Embedded, Linked, Bitmap, Device Independent Bitmap, and Picture.

_IN_ERROR_

Returns an object’s ERROR status.

Syntax
CALL NOTIFY(OLE-object-name,’_IN_ERROR_’,error-status<,error-msg>);

CALL SEND(OLE-object-id,’_IN_ERROR_’,error-status<,error-msg>);

Argument

Character (C)
or Numeric
(N) Description

error-status N returns a value indicating whether an
automation error has been encountered for the
object.

error-msg C returns the automation error message.

Details
Errors encountered from automation calls can be detected using _IN_ERROR_. The
_IN_ERROR_ method returns the status of the last automation call and should be
called before any subsequent automation calls.

610 _NEW_ � Appendix 1

Example

The following example detects that an error was encountered during the previous
_GET_PROPERTY_ call:

length errmsg $ 200;
call send(objid,’_GET_PROPERTY_’,

’ActiveObject’, actobj);
call send(objid,’_IN_ERROR_’,inerror, errmsg);
if inerror then

link handle_err;

NEW

Creates a new instance of an OLE automation server.

Syntax
CALL SEND(OLE-instance,’_NEW_’,new-OLE-id,init-arg,OLE-auto-app);

Details
Before you can use SCL code to refer to an OLE Automation server, you must first
create an instance of the OLE Automation class.

For more information about the _INIT_ method, see the description of the Object
class in the online documentation for SAS/AF software.

Example

The following example creates a new instance of an OLE Automation server and
assigns the SCL identifier exclauto to the new object. Note that in this example,
Excel.Application.8 is the identifier for Microsoft Excel in the system registry:

hostcl=loadclass(’sashelp.fsp.hauto’);
call send (hostcl, ’_NEW_’, exclauto, 0,

’Excel.Application.8’);

_SET_PROPERTY_

Assigns a value to a property of an automation object.

Syntax
CALL NOTIFY(OLE-object-name,’_SET_PROPERTY_’,in-OLE-property,in-value);

SCL Methods for Automating OLE Objects � _UPDATE_ 611

CALL SEND(OLE-object-id,’_SET_PROPERTY_’,in-OLE-property,in-value);

Argument

Character (C)
or Numeric
(N) Description

in-OLE-property C specifies the OLE property name.

in-value C or N contains the value to assign to the OLE property.

Details
The _SET_PROPERTY_ method assigns a value to a property of an automation object.

UPDATE

Updates the object based on its current contents or on the contents of a different HSERVICE entry.

Syntax
CALL NOTIFY(OLE-object-name,’_UPDATE_’<,in-hservice>);

Argument

Character (C)
or Numeric
(N) Description

in-hservice C specifies the name of the HSERVICE entry to
use to update the object.

Details
The _UPDATE_ method recreates an object and updates its contents based on its
current attributes. The in-hservice parameter is used only with OLE objects and is the
name of an HSERVICE catalog entry. When you specify the in-hservice parameter, the
object specified by OLE-object is changed to the object stored in the HSERVICE entry
referenced by the in-hservice parameter.

If you use the _UPDATE_ method without specifying in-hservice, the object’s contents
are updated with the current OLE object source. This process is useful for manually
updating a linked object.

612 _UPDATE_ � Appendix 1

Example

In the following example, the object stored in OBJ1 is replaced by the
Sasuser.Examples.Sound1.Hservice object:

length refid $ 30;
call notify(’obj1’,’_update_’,

’sasuser.examples.sound1.hservice’);

613

A P P E N D I X

2
Error Messages for SAS under
Windows

Overview of SAS Error Messages 613
Return Codes and Completion Status 613

Accessing Files 614

Using SAS Features 615

Using OLE 616

Using Networks 617
Resolving Internal Errors 617

Resolving Operating System and Windows Error Messages 618

Initialization and Termination Error Messages 619

Overview of SAS Error Messages

This section contains completion codes and error messages that you might find
helpful. In the error message lists, the messages are in monospace. Words in italic in
the messages represent items that are variable, such as a filename or number. Each
description tells you where the message comes from and explains its meaning and what
you can do to correct the possible problem.

Return Codes and Completion Status

The return code for the completion of a SAS job is returned in the Windows batch
variable, ERRORLEVEL. A value of 0 indicates normal termination. You can affect the
value of ERRORLEVEL by using the ABORT statement. The ABORT statement takes
an option argument, n, which is an integer. The ABORT statement also takes the
RETURN or ABEND argument. If you issue these statements without specifying n, the
ERRORLEVEL variable is set to the following values:

abort; sets the ERRORLEVEL variable to 3.

abort return; sets the ERRORLEVEL variable to 4.

abort abend; sets the ERRORLEVEL variable to 5.

The n argument can range from 1 to 65,535. The ERRORLEVEL variable is used as
a condition in the IF command in a Windows batch file. Refer to your Window’s user’s
guide for more information on the ERRORLEVEL variable. The following table
summarizes the values of the ERRORLEVEL variable.

Note: To check the ERRORLEVEL variable, start SAS using the START/ WAIT
command. �

614 Accessing Files � Appendix 2

Table A2.1 Values for the ERRORLEVEL Variable

Condition Severity Return Code Value

All steps terminated normally SUCCESS 0

SAS issued warning(s) WARNING 1

SAS issued error(s) ERROR 2

User issued the ABORT statement INFORMATIONAL 3

User issued the ABORT RETURN statement FATAL 4

User issued the ABORT ABEND statement FATAL 5

SAS internal error INFORMATIONAL 6

Accessing Files
This section describes errors you might receive while trying to use SAS to access files

(either external files or SAS files). Whenever you have trouble accessing files, always
check the validity of your FILENAME and LIBNAME statements and functions to make
sure they point to the right files. Also, be sure you are using the correct fileref or libref.

Core catalog cannot be initialized. Please verify the system’s date/
time.

The date or time stamp of SAS CORE catalog is in the future. Make sure the date
and time on your machine are set correctly. This message is issued in conjunction
with internal error 602 (see “Resolving Internal Errors” on page 617).

Error: Date/time is in the future.
The date or time stamp of the file you are trying to access is in the future. Make
sure the date and time on your machine are set correctly.

Error: File is in use, filename.
The file you are trying to access is in use by another Windows process, such as
another Windows application.

Error: File not found loading filename-1. File contributing to error:
filename-2.

A DLL-dependent file cannot be found when the requested file is loaded. For SAS,
the !SASROOT\CORE\SASEXE file (usually specified with the PATHDLL system
option in the SAS configuration file) might be unavailable. The requested file
might not be available due to a network error or other drive failure. Ensure that
PATHDLL specifies the location of !SASROOT\CORE\SASDLL.

ERROR: Member or library filename unavailable for use.
The file filename is being used by another Windows application.

ERROR: Module module-name not found in search paths.
This error is caused by one of the following:

� incorrect PATH system option in the SAS configuration file
� the product you called is not installed
� a dependent image is not installed.

ERROR: Unable to clear or reassign the library library-name because
it is still in use.

Error Messages for SAS under Windows � Using SAS Features 615

You are trying to reassign a libref while the library is in use.

ERROR: Operating system error number n occurred while accessing
filename.

An unexpected return code has been received by SAS from the operating system.
For more information, see “Resolving Operating System and Windows Error
Messages” on page 618.

ERROR: Physical file does not exist filename.
The file you are trying to access does not exist. Verify that you have specified the
correct drive and directory. This error can also occur if you are trying to write to a
write-protected diskette.

ERROR: Write access to member member-name is denied.
You are trying to update a file on a write-protected diskette or you are trying to
update a file marked as read-only.

Using SAS Features
This section describes errors you can receive while using features of the SAS

language and procedures under Windows. Always check the syntax of the statement or
procedure you are using. Also, if you do not get the results you expect, check the
contents of any external files or SAS files to be sure they are correct.

An interrupt has occurred.
You have canceled a print job by clicking on Abort.

ERROR: Out of disk space for spooling.
Not enough disk space is currently available for spooling a print job. This message
implies that no more disk space can be made available.

ERROR: Not enough memory is available for spooling.
Not enough memory is available for spooling. This message implies, however, that
more space can become available at some point.

WARNING: SAS option option-name is valid only at startup of the SAS
System or startup of an environment within SAS. The SAS option is
ignored.

Several SAS system options can be set only in the SAS configuration file or in the
SAS command. For more information, see “SAS System Options under Windows”
on page 475.

ERROR: Unknown configuration option option-name.
Check your SAS command and SAS configuration file for an invalid SAS system
option. For more information on system options under Windows, see “SAS System
Options under Windows” on page 475.

ERROR: User terminated the job through the Print Manager.
You terminated (that is, deleted) your print job by using the Print Manager.

Invalid toolbox catalog: catalog-name.
You have tried to load a nonexistent toolbox from a SAS catalog with the
TOOLLOAD command. Check the spelling of the toolbox name and the catalog
name in the command. You can use the SAS Explorer window to see a listing of a
SAS catalog.

No tools defined.
The toolbox you have attempted to load has no tools defined. You must have at
least one tool defined in a toolbox.

616 Using OLE � Appendix 2

Unable to access the specified printer driver.
SAS cannot access the printer driver. Make sure the correct printer driver has
been specified by either the SYSPRINT system option or with the Printer Setup
dialog box.

Unable to find the printer name.
SAS cannot find the printer specified in the Printer Setup dialog box.

Using OLE
This section describes errors you can receive while using the Windows object linking

and embedding (OLE) capability in your SAS applications.

OLE Error: nnnnnnnn <error message text>
An OLE error not documented in this section has occurred. If you receive this
error message and cannot determine its cause from the given error message text,
contact your SAS Installation Representative, who can determine the cause of the
error. The SAS Installation Representative might have to call the SAS Institute
Technical Support Division.

OLE: Unable to Paste Special. The clipboard contains no supported
formats.

The Windows clipboard does not contain any formats that SAS/AF software can
use in the FRAME entry.

... Do you want to invoke the Links dialog box?
The data source of the link could not be found. You have the option of invoking the
Links dialog box to redirect the link to another data source.

OLE: Operation not allowed on static object.
Static objects do not support this operation. A static object is basically a picture of
an object; it does not contain nor is it linked to any data.

Static objects cannot be converted.
You cannot convert static objects to another type.

OLE: Verb is invalid for the object.
The OLE verb that was passed to the object was invalid or could not be sent.
Check your SCL code for a misspelled verb.

OLE: Server application could not be launched.
The server application for the object could not be invoked. You can be missing
some executables, or perhaps your network connection is down.

OLE: Member or one of the named parameters is not known.
You specified a member (that is, a property or method) that is not valid for the
OLE object you are automating. For information about the members that are
supported, see the documentation for the OLE server application.

OLE: Access to multi-dimensional arrays not supported.
SAS does not support multi-dimensional arrays. If you want to access
multi-dimensional data from a server application, you must first use the server
application to present the data in a one-dimensional format.

OLE: Object cannot be automated.
This object does not support automation.

OLE: One of the parameters is of the wrong type.
OLE: One of the parameters is not a valid type.
OLE: One of the parameters is out of the present range.

Error Messages for SAS under Windows � Resolving Internal Errors 617

A parameter passed to an OLE automation server’s method is not the correct type
and cannot be interpreted.

OLE: Application is busy.
The OLE server application is busy with a task and cannot honor the current
request.

OLE: Control is not licensed for use.
You do not have appropriate licensing to use a control of this type. For more
information, see the control’s documentation.

OLE: Unable to connect to network device:UNC-drive-name
The linked object exists on a network drive that is currently not connected. The
UNC name for the drive follows the message.

There is no object selected for conversion.
The Convert dialog box was invoked but there are no selected objects to convert.

There are no linked objects in this window.
The Links dialog box was invoked but the frame does not contain any linked OLE
objects.

Using Networks

This section describes errors you can receive while using SAS on a network.
Any of the following errors can occur on a network if you do not have proper access

rights:

� ERROR: Deletion of old member filename failed.

� ERROR: File deletion failed for filename.

� ERROR: Rename of temporary member for filename failed.

� ERROR: User does not have appropriate authorization level for file
filename

Network software enables the network supervisor to control access to network files.
Access rights can be set up so that you can read a file, but are unable to update that
file. The last message in this list can also appear if you try to access a directory as if it
were a file.

Resolving Internal Errors

Internal errors are fatal errors that keep SAS from starting. While you should not
usually see these error messages, with a bit of investigation you might be able to solve
the problem that generated the message. The following list describes the most common
of these messages:

10 Host internal error: 10
CTRL+BREAK was pressed during the initialization of SAS. Therefore, SAS
terminated.

11 Host internal error: 11
SAS needs more memory. To correct the problem, change swapping to a disk with
more free space or delete enough files from the present swap disk to free up at
least 20 megabytes of memory.

618 Resolving Operating System and Windows Error Messages � Appendix 2

12 Host internal error: 12
SAS has determined that there is an error in the specified SAS configuration. A
descriptive message is displayed that indicates which system option is in error.

13 Host internal error: 13
Some part of SAS cannot be loaded. The part in question is indicated via a
descriptive message. Restore the missing part to the appropriate directory.

24 Host internal error: 24
SAS was unable to initialize the windowing environment. A descriptive message is
displayed indicating the appropriate action.

208 Unable to open profile catalog.
SAS must have access to your Sasuser.Profile catalog or be able to create one if
one does not exist. Check to ensure that you have enough disk space, or if you are
running SAS on a network, that you have access to the correct files. The
Sasuser.Profile catalog is opened in the directory specified by the SASUSER
system option, which is described in “SASUSER System Option” on page 560. Also
see “Profile Catalog” on page 20.

Work library is undefined. Sasuser library is undefined. Sashelp
library is undefined.

Check your SAS command or SAS configuration file to ensure that you have
specified the directory path correctly for these libraries.

302 Sasmsg library is undefined.
Check your SAS command or SAS configuration file to ensure that you have
specified the directory path correctly for this library.

Unable to initialize Work library. Unable to initialize Sasuser
library.

Check your SAS command or SAS configuration file to ensure that you have
specified the correct directory for the Work and Sasuser libraries. If you are
running SAS on a network, be sure you have access to the necessary files.

401 Unable to initialize the message subsystem.
Check your SAS command or SAS configuration file to ensure that you have
specified the directory path correctly for all SAS libraries. Also check to determine
whether your SAS configuration file is where it should be. If you are sure you have
specified the directory paths correctly, contact your SAS Site Representative. It is
possible that SAS message files have become corrupt or have been inadvertently
deleted.

601 Invalid setinit information.
Check your setinit information for errors. For more information, see the
installation instructions for SAS 9.2 for Windows.

602 CORE catalog could not be accessed for options initialization.
The CORE catalog cannot be accessed. This action might be caused by having the
date on your PC set incorrectly. Use the Windows DATE command to verify and
set the date.

Resolving Operating System and Windows Error Messages
In situations where unexpected return codes are returned from Windows, the

Windows error number is written to the SAS log. If you have access to Windows
programming manuals or Windows user documentation, you can look up the error

Error Messages for SAS under Windows � Initialization and Termination Error Messages 619

number to determine the cause of the error. Alternatively, you can report the error
number to your SAS Installation Representative.

Initialization and Termination Error Messages

If SAS issues error messages during SAS initialization or termination, the SAS log
can contain error messages that explain the error. Any error message that SAS issues
before the SAS log is initialized or after is closed are written to the MSG window if it is
available or the SAS console log, which is a Windows file. Under Windows Vista,
Windows 7, and Windows Server 2008, the SAS console log is typically located in
c:\Users\user ID\AppData. In all other Windows operating environments the SAS
console log is typically located in the c:\Documents and Settings\user
ID\Application Data folder. You can obtain the location and filename for the SAS
Console Log from the Application Event Log. To open the application Event Log, submit
eventvwr from the Run dialog box and click on Application.

620

621

A P P E N D I X

3
Graphics Considerations

Using TrueType Fonts with SAS/GRAPH Software 621

Using TrueType Fonts with SAS/GRAPH Software

TrueType fonts can be used with the WIN, WINPRTx, WMF, EMF, and GIF device
drivers, among others. Before you can use a TrueType font to print (other than the
default), you must identify its name. To identify TrueType fonts, select Start � Settings
� Control Panel and double-click on the Fonts icon. Truetype fonts will have a double
’T’ icon or will have TrueType beside the font.

In SAS/GRAPH programs, you can use the font name to specify a TrueType font with
the FONT= or F= option. For example, you can specify the following:

title2 font="arial"
’This is TrueType font arial’;

Note: You must put truetype system font names in quotes. �

For more information about the FONT= option, such as how to use alternate fonts
with hard copy devices and how to make an alternate font the default font, see
SAS/GRAPH: Reference.

622

623

A P P E N D I X

4
Default Key Settings for
Interactive SAS Sessions

Default Key Definitions under Windows 623
Keyboard Shortcuts within the SAS Main Window 624

Keyboard Shortcuts within the Enhanced Editor 626

Keyboard Shortcuts within Print Preview 629

Default Key Definitions under Windows
The following table lists the default key definitions for the primary SAS application

windows (such as Program Editor, Log, and Output), excluding the Enhanced Editor.
“Keyboard Shortcuts within the Enhanced Editor” on page 626 lists the default key
definitions for the Enhanced Editor. Any other key combination that is not listed in this
table is either reserved by Windows or has a definition that you cannot change within
SAS (see “Keyboard Shortcuts within the SAS Main Window” on page 624).

If you want to browse or change any of the key definitions that are listed in this table,
you can do so by selecting Tools � Options � Keys or by issuing the KEYS command.

Table A4.1 Default Key Settings for SAS under Windows

Key Default Setting Key Default Setting

F1 help Alt + F1

F2 reshow Alt + F2

F3 end Alt + F3

F4 recall Alt + F11

F5 wpgm Alt + F12

F6 log Ctrl + B libref

F7 output Ctrl + D dir

F8 zoom off; submit Ctrl + E clear

F9 keys Ctrl + G

F11 command focus Ctrl + H help

F12 Ctrl + I options

Shift + F1 subtop Ctrl + J

Shift + F2 Ctrl + K cut (Program Editor
only)

Shift + F6 Ctrl + L log

624 Keyboard Shortcuts within the SAS Main Window � Appendix 4

Key Default Setting Key Default Setting

Shift + F7 left Ctrl + M mark

Shift + F8 right Ctrl + Q filename

Shift + F9 Ctrl + R rfind

Shift + F10 wpopup Ctrl + T title

Shift + F11 Ctrl + U unmark

Shift + F12 dmcopylsv Ctrl + W access Explorer
window

Ctrl + F1 Ctrl + Y

Ctrl + F2 RMB wpopup

Ctrl + F3 Shift + RMB

Ctrl + F11 Ctrl + RMB

Ctrl + F12 MMB

Shift + MMB

Ctrl + MMB

Note:
1 RMB is the right mouse button.
2 MMB is the middle mouse button. (Not all mouse devices have a middle mouse

button.)

�

Keyboard Shortcuts within the SAS Main Window
The keys that are listed here are not listed in the KEYS window. You might find

these keys to be useful as shortcuts for editing and other tasks.

Table A4.2 Key Settings for the Main SAS Window

Key Combination Action

Dialog boxes and Entry Fields

Tab move to next field

Shift + Tab move to previous field

Navigate around Text

Ctrl + -> (right arrow) move to next word

Ctrl + <- (left arrow) move to previous word

Home move to beginning of line

End move to end of line

Ctrl + Home move to top

Ctrl + End move to bottom

Page Up page up

Default Key Settings � Keyboard Shortcuts within the SAS Main Window 625

Key Combination Action

Page Down page down

Ctrl + Page Up move to top

Ctrl + Page Down move to bottom

Ctrl + Tab navigate to the next open SAS window (NEXTWIND
command)

Ctrl + Shift + Tab navigate to the previous open SAS window
(PREVWIND command)

Mark Text

Shift + -> (right arrow) mark while going to the right

Shift + <- (left arrow) mark while going to the left

Shift + Home mark to beginning of line

Shift + End mark to end of line

Shift + Ctrl + Home mark to top

Shift + Ctrl + End mark to bottom

Shift + Page Up page up and mark

Shift + Page Down page down and mark

Shift + Ctrl + Page Up mark to top

Shift + Ctrl + Page Down mark to bottom

Shift + MB1 extend the current marked text selection to the click
position

Cut, Copy, and Paste

Delete delete the next character (or marked text)

Ctrl + Delete delete from the insertion point position to the end of
the current word

Ctrl + Backspace delete from the insertion point position to the start of
the current word

Ctrl + MB1 selects the entire line (clicked line)

Ctrl + Z undo previous action

Ctrl + X cut selected text

Ctrl + C copy selected text to paste buffer

Ctrl + V paste text

Window Control

Alt switch focus to or from the main menu bar

Shift + F5 cascade the windows

Shift + F4 tile the windows vertically

Shift + F3 tile the windows horizontally

Ctrl + F6 next window

Alt + F4 exit SAS

Ctrl + F4 close the active window

626 Keyboard Shortcuts within the Enhanced Editor � Appendix 4

Key Combination Action

Shift + F10 open context menu

Resizing the Docking View

Alt + W + S start docking view resizing

-> (right arrow) move the split bar a small amount to the right

<- (left arrow) move the split bar a small amount to the right

Ctrl + -> (right arrow) move the split bar a larger amount to the right

Ctrl + <- (left arrow) move the split bar a larger amount to the left

Home move the split bar all the way to the left

End move the split bar all the way to the right

Return accept the current size of the docking view and exit
docking view resizing

Esc end docking view resizing without resizing the
docking view

Miscellaneous

Alt + Enter open the Properties dialog box for a selected object

This command is valid only in a Tree view or a List
view.

Esc + letter (or number) color or highlighting attributes in NOTEPAD window

Keyboard Shortcuts within the Enhanced Editor

The keyboard shortcuts that are listed here are the default shortcuts.

Table A4.3 Default Keyboard Shortcuts for the Enhanced Editor

Category Command Keyboard Shortcut

Abbreviation Add a new abbreviation Ctrl + Shift + A

Bring up word tip Alt + F1 + No Selection

Hide the current word tip Esc

Code Folding Collapse all folding blocks Alt + Ctrl + Number pad -

Collapse current line Alt + Number pad -

Expand all folding blocks Alt + Ctrl + Number pad +

Expand current line Alt + Number pad +

Toggle expand current line Alt + Number pad *

Command/Macro Support Add or change macros Ctrl + Shift + M

Execute the last recorded
macro

Ctrl + F1

Play a command/macro Alt + F8

Start/Complete macro Alt + Shift + R

Default Key Settings � Keyboard Shortcuts within the Enhanced Editor 627

Category Command Keyboard Shortcut

Edit Copy selection Ctrl + C

Cut selection Ctrl + X

Delete current character Delete

Delete previous character Backspace or Shift + Backspace

Delete to next word start Ctrl + Delete

Delete to previous word start Ctrl + Backspace

Insert a carriage return Enter

Paste from clipboard Ctrl + V

Redo Ctrl + Y

Alt + Shift + Backspace

Undo Ctrl + Z

Alt + Backspace

Help Get Help for a SAS procedure place the insertion point within
a procedure name and press F1

Context Help F1

Line Markers Go to the next marked line F2

Go to the previous marked line Shift + F2

Toggle marker on the current
line

Ctrl + F2

Navigation Go to line (interactive) Ctrl + G

Move cursor to the top of the
file

Ctrl + Page Up

Ctrl + Home

Move cursor to the bottom of
the file

Ctrl + Page Down

Ctrl + End

Move cursor down Down

Move cursor down a page Page Down

Move cursor left Left

Move cursor right Right

Move cursor to beginning of
line

Home

Move cursor to end of line End

Move cursor to matching brace/
parentheses

Ctrl + [

Ctrl +]

Move cursor to matching DO/
END keyword

Alt + [

Alt +]

Move cursor to next case
change

Alt + Right

Move cursor to next word start Ctrl + Right

628 Keyboard Shortcuts within the Enhanced Editor � Appendix 4

Category Command Keyboard Shortcut

Move cursor to previous case
change

Alt + Left

Move cursor to previous word
start

Ctrl + Left

Move cursor up Up

Move cursor up a page Page Up

Move cursor to the first visible
line

Alt + Up

Move cursor to the last visible
line

Alt + Down

Scroll screen down Ctrl + Up

Scroll screen up Ctrl + Down

Option Setting Toggle insert/overwrite mode Insert

Selection Extend selection character left Shift + Left

Extend selection character
right

Shift + Right

Extend selection down Shift + Down

Extend selection down a page Shift + Page Down

Extend selection to beginning
of document

Ctrl + Shift + Home

Ctrl + Shift + Page Up

Extend selection to beginning
of line

Shift + Home

Extend selection to end of
document

Ctrl + Shift + End

Ctrl + Shift + Page Down

Extend selection to end of line Shift + End

Extend selection to next case
change

Alt + Shift + Right

Extend selection to previous
case change

Alt + Shift + Left

Extend selection up Shift + Up

Extend selection up a page Shift + Page Up

Extend selection to previous
word start

Ctrl + Shift + Left

Extend selection to the next
word start

Ctrl + Shift + Right

Select all Ctrl + A

Selection Operations Clean up whitespace Ctrl + Shift + W

Comment the selection with
line comments

Ctrl + /

Convert the selected text to
lowercase

Ctrl + Shift + L

Default Key Settings � Keyboard Shortcuts within Print Preview 629

Category Command Keyboard Shortcut

Convert the selected text to
uppercase

Ctrl + Shift + U

Tab selection Tab + Selection

Undo the Comment Ctrl + Shift + /

Left Tab selection Shift + Tab + Selection

Keyboard Shortcuts within Print Preview
You can use the keyboard shortcuts in the following table in the Print Preview

window.

Table A4.4 Keyboard Shortcuts for the Print Preview Window

Action Keyboard Shortcut

Next page or Page Down Alt + N

Previous page or Page Up Alt + P

Zoom Alt + Z

Help Alt + H

Print Alt + R

Close the window Alt + C or

Alt + F4

630

631

A P P E N D I X

5
SAS Disk Cleanup Handler

The SAS Disk Cleanup Handler Utility 631
Description 631

Requirements 632

Using the Disk Cleanup Handler 632

Automating Cleanup with Microsoft Task Scheduler 632

The SAS Disk Cleanup Handler Utility

Description
The SAS Disk Cleanup Handler searches for and cleans any temporary files that SAS

generates, as well as any SAS Work and SAS utility directories. SAS Disk Cleanup
Handler is a COM hook into the Microsoft Disk Cleanup Handler (cleanmgr.exe).

SAS Work directories have the format, #TD pid or _TD pid, where #TD is the SAS
V6.X prefix and _TD is the SAS V7+ prefix. The pid part of the directory entry is
interpreted as the process ID. If the process ID is no longer in use, the SAS Disk
Cleanup Handler deletes the entry and the contents of the directory.

SAS Disk Cleanup Handler also removes SAS utility directories that have the
following format:

SAS_utilNNNNPPPPPPPP_nodename
where

NNNN is a unique random number

PPPPPPPP is the hexadecimal representation of the process ID

nodename is the host name of the machine that created the directory.

SAS Disk Cleanup Handler deletes the utility directories and contents only under
the following conditions:

� SAS Disk Cleanup Handler is run on the machine that represents the nodename
and the process ID

� PPPPPPPP is no longer in use.

Additionally, you can use the SAS Disk Cleanup Handler to clean SAS automatically
generated log files. These log filenames have the format module name.PID.DATE.log.
The PID represents the process ID of the process that creates the log file. If the process
is no longer running, the log file will be deleted.

632 Requirements � Appendix 5

Requirements
The SAS Disk Cleanup Handler requires Microsoft .Net Framework 2.0 or greater for

32-bit Windows, Windows Itanium, and Windows x64 editions.

Using the Disk Cleanup Handler
To run the Disk Cleanup Handler, complete these steps:
1 Type cleanmgr from the command prompt.

Note: You can also start the SAS Disk Cleanup Handler from Windows
Explorer. Access My computer and right–click a local physical hard disk. Select
Properties and double click Disk Cleanup. �

Note: Disk Cleanup Manager will start. This process might take a few
minutes. �

2 Select SAS Temporary Files.

Note: If SAS Temporary Files is not listed, the SAS Disk Cleanup Handler is
not installed. �

3 Click View Files to list the currently detected SAS temporary files and
directories. If a process is still active, then the file or directory will not be listed.
Any files or directories to be saved should be cleared.

4 Click OK to save changes. Click Cancel to discard.
5 Click OK in the Disk Cleanup window to start the cleanup.
6 Check the EventViewer for any errors.

Note: Windows Server 2008 does not automatically install Microsoft Disk Cleanup
Manager (cleanmgr.exe). In order to have Microsoft Disk Cleanup Manager installed as
a default application, you must install Desktop Experience. To install Desktop
Experience do the following steps:

1 Open Server Manager.
2 Select Add Features from the Actions menu.
3 Select Desktop Experience.

�

Automating Cleanup with Microsoft Task Scheduler
With cleanmgr.exe you can configure specific tasks to perform the desired cleanups.
To configure Disk Cleanup Manager:
1 Select Start � Run.
2 Type the following text in the Run dialog box: cleanmgr /sageset:n, where n can

be any number between 0 and 65535.
3 Select the items that you want to be cleaned.
4 Select OK.

Note: You can also create a shortcut in your Windows folder to cleanmgr /
sagerun:n (where n is the number in step 2). Type a name for the shortcut (for
example, cleanuptask). �

5 If you want to verify the settings, repeat steps 1 through 3.

� Automating Cleanup with Microsoft Task Scheduler 633

The following steps apply to Windows XP Professional and Windows Server 2003:
1 Select Start � All Programs � Accessories � System Tools � Schedule Task.
2 Add the scheduled task.
3 Select Next.
4 Select Disk Cleanup or the shortcut that you created in step 2. If you are using

the shortcut, select Next.
5 Select Next and configure.

Note: You must provide your user ID and password to run this task. �

6 If not using the shortcut, then select the Open advanced properties for this
task when you click Finish.

7 Select Finish when the step is complete.
8 If you are not using the shortcut, then the Properties dialog box should be

displayed. Select the Task tab.
9 In the Run text box append /sagerun:#, where # is the number from step 2.
10 Check Event Viewer for any errors under Application.

The following steps apply to Windows Vista and Windows 7.
1 Select Start � All Programs � Accessories � System Tools � Task Scheduler.
2 Select Create Basic Task.
3 Type a name for the task in the Name field.
4 Select Next.
5 Select the appropriate triggers and options.

Note: Select Next to advance through the trigger options. �

6 Select Action � Start Program.
7 Select Next.
8 Type cleanmgr in the Program/script: text box.
9 Type the appropriate arguments for :/sagerun:#, where # is the number from

step 2.
10 Select Next.
11 Select Finish.

634

635

A P P E N D I X

6
Recommended Reading

Recommended Reading 635

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� Moving and Accessing SAS Files

� SAS/CONNECT User’s Guide
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

� SAS National Language Support (NLS): Reference Guide
� SAS Output Delivery System: User’s Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore
Customers outside the United States and Canada, please contact your local SAS office
for assistance.

636

637

Glossary

active window
a window that is open and displayed, and to which keyboard input is directed. Only
one window can be active at a time.

American Standard Code for Information Interchange
a 7-bit character encoding that is the U.S. national variant of the ISO 646 standard.
The ASCII encoding includes the upper- and lowercase letters A-Z, digits, symbols
(such as &, #, and mathematical symbols), punctuation marks, and control characters.
This set of 128 characters is also included in most other encodings. Short form:
ASCII. See also Extended Binary Coded Decimal Interchange Code and encoding.

application workspace
a window that contains other windows or from which other windows can be invoked,
but which is not contained within any window that is part of the same software
application. The SAS application workspace (SAS AWS) is also referred to as the
main SAS window. Short form: AWS.

ASCII
See American Standard Code for Information Interchange.

ASCII collating sequence
the rules that are used by a specific ASCII encoding for sorting textual data. Sort
order is determined by the location of each code point in the code page of an ASCII
encoding. In the Windows Latin1 code page, the sort order of precedence is
punctuation characters, numbers, uppercase characters, and lowercase characters.
Because the uppercase A (code point 41) precedes the lowercase g (code point 67), A
is sorted before g. See also American Standard Code for Information Interchange and
EBCDIC collating sequence.

autocall macro
a macro whose uncompiled source code and text are stored in an autocall macro
library. Unlike a stored compiled macro, an autocall macro is compiled before
execution the first time it is called.

AUTOEXEC.SAS
a file containing SAS statements that are executed automatically when SAS is
invoked. The autoexec file can be used to specify some SAS system options, as well
as to assign librefs and filerefs to folders or directories that are used frequently.

638 Glossary

automatic macro variable
a macro variable that is defined by SAS rather than by the user and that supplies
information about the SAS session. For example, the SYSPROCESSID automatic
macro variable contains the process ID of the current SAS process.

AWS
See application workspace.

batch file
a file that contains operating-system commands, which are processed sequentially
when the file is executed.

batch mode
a method of executing SAS programs in which a file that contains SAS statements
plus any necessary operating environment commands is submitted to the computer’s
batch queue. After you submit the program, control returns to your computer or
workstation, and you can perform other tasks. Batch mode is sometimes referred to
as running in the background. The program output can be written to files or printed
on an output device. Under Windows, a Status window is associated with a SAS
batch job. The Status window indicates which batch job is running and shows the
pathnames and filenames of the log file and the procedure output file.

binary
the name of the base 2 number system. A binary digit can have one of two values: 0
or 1. A binary digit is called a bit and is considered to be off when its value is 0 and
on when its value is 1. See also binary file.

binary file
a file that contains information that can be read by one or more software applications
but not by humans. Some binary files are executable programs. Others store images,
sounds, data, or a combination of printable and non-printable characters. Binary files
cannot be edited with a text editor.

buffer
an area of computer memory that is reserved for use in performing input/output (I/O)
operations.

cache
a small, fast memory area that holds recently accessed data. The cache is designed to
speed up subsequent access to the same data.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry.

central processing unit
the main hardware component of a computer. The CPU executes program instructions
and controls the operation of other parts of the computer. Short form: CPU.

character constant
a character string that is enclosed in quotation marks in a SAS statement to indicate
a fixed value rather than the name of a variable. The maximum number of
characters that is allowed is 32,767. Character constants are sometimes referred to
as character literals. See also character string.

character set
the set of characters that are used by a language or group of languages. A character
set includes national characters, special characters (such as punctuation marks and
mathematical symbols), the digits 0-9, and control characters that are needed by the

Glossary 639

computer. Most character sets also include the unaccented upper- and lowercase
letters A-Z. See also national character.

character string
one or more alphanumeric characters or other keyboard characters or both. See also
character constant.

character value
a value that can contain alphabetic characters, the numeric characters 0 through 9,
and other special characters.

class
in object-oriented programming, a template for an object. A class includes data that
describes the object’s characteristics (such as attributes or instance variables), as
well as the operations (methods) that the object can perform. See also subclassing
and object.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the context of named pipes and in DDE and OLE, an application that
sends data to or receives data from an application that is acting as a server. See also
server.

clipboard
a temporary storage place for data that is being passed from one application to
another. For example, in Windows operating environments, you can use the clipboard
to pass information between Excel and your SAS session.

COM
See Component Object Model.

COM/DCOM client
a program that uses the Microsoft Component Object Model (COM) or Distributed
Component Object Model (DCOM) to make requests to a server. COM/DCOM clients
can be written in Visual Basic, C++, Perl, or other programming languages in the
Windows environment. See also Component Object Model and Distributed
Component Object Model.

command prompt
the symbol after which you enter operating system commands.

component
a self-contained, reusable programming object that provides some type of service to
other components in an object-oriented programming environment.

Component Object Model
an object-oriented programming model that defines how software components
interact within a single process or between processes. For example, COM includes
standard rules of communication that enable a user-interface object to be dragged
and dropped from one application window to another. Short form: COM.

CONFIG.SYS
a system file that contains DOS configuration commands that specify the properties
of the operating system, including device drivers, file-handling elements, and
memory-management options.

configuration file
(1) in SAS software, an external file that contains SAS system options. These system
options take effect each time you invoke SAS. (2) under DOS, the CONFIG.SYS file
that specifies the properties of the operating system. See also CONFIG.SYS

640 Glossary

Control Panel
under Windows, an application that enables you to specify characteristics of your
Windows session, such as mouse tracking speed and the color of the title bar.

conventional memory
in servers that are running 32-bit operating systems, the first 4 gigabytes of main
memory. In servers that are running 64-bit operating systems, all of the main
memory is conventional memory.

CPU
See central processing unit.

CPU time
the amount of time it takes for the central processing unit of a computer system to
perform the calculations or other operations that you request.

current folder
the folder to which commands and actions apply when you execute an application.

DCOM
See Distributed Component Object Model.

DDE
See Dynamic Data Exchange.

device driver
a program that controls the interaction between a computer and an external device
such as a printer or a disk drive.

directory
another term for folder. See also folder.

Distributed Component Object Model
an extension to the Component Object Model (COM) that enables components to
request services from components that are on other computers in a network. Short
form: DCOM. See also component and Component Object Model.

DLL
See dynamic link library.

docking view
a view of the main SAS window in which one or more windows, such as the Explorer
and Results windows, are integrated with the left side of the main SAS window.

DOS
a disk operating system for personal computers. In SAS documentation, the acronym
DOS refers specifically to MS-DOS, the Microsoft disk operating system, which was
developed by Microsoft for IBM.

drag
in a graphical user interface, to move an object such as an icon or a window around
on a display screen. To drag the object, you usually use a mouse button to select the
object, and move the mouse while keeping the mouse button pressed down.

Dynamic Data Exchange
a standard mechanism in the PC environment for sharing data among applications.
Short form: DDE.

dynamic link library
a collection of executable program modules that are loaded at run time as needed.
Short form: DLL.

Glossary 641

EBCDIC
See Extended Binary Coded Decimal Interchange Code.

encoding
a set of characters (letters, logograms, digits, punctuation, symbols, control
characters, and so on) that have been mapped to numeric values (called code points)
that can be used by computers. The code points are assigned to the characters in the
character set by applying an encoding method. Some examples of encodings are
wlatin1, wcyrillic, and shift-jis.

encoding method
a set of rules that are used to map characters (letters, logograms, digits, punctuation,
symbols, control characters, and so on) to numeric values. Some examples of
encoding methods are ASCII, EBCDIC, EUC, and PCMS.

Enhanced Editor
an ASCII text editor that provides features such as color coding and code sections to
help SAS users write and debug SAS programs. The Enhanced Editor also provides
familiar features of the SAS Program Editor.

environment variable
under Windows, a variable that equates one character string to another by using the
SAS system option SET, the Windows SET command, or the Windows System
Properties dialog box. SAS environment variables cannot be accessed by other
Windows applications. By contrast, Windows environment variables can be accessed
by all Windows applications.

error message
a message in the SAS log or Message window that indicates that SAS was not able to
continue processing the program.

Extended Binary Coded Decimal Interchange Code
a group of 8-bit character encodings that each include up to 256 characters. EBCDIC
is used on IBM mainframes and on most IBM mid- range computers, and it includes
both graphic (printable) codes and control (nonprintable) codes. Short form: EBCDIC.
See also American Standard Code for Information Interchange and encoding.

extended memory
See extended server memory.

extended server memory
on a server that is running a 32-bit operating system, the part of main memory that
exceeds the 4 gigabytes of conventional memory. See also conventional memory.

external file
a file that is created and maintained by a host operating system or by another
vendor’s software application. SAS can read data from and route output to external
files. External files can contain raw data, SAS programming statements, procedure
output, or output that was created by the PUT statement. A SAS data set is not an
external file. See also fileref.

fatal error
an error that causes a program to end abnormally or that prevents the program from
starting.

field
a window area in which users can view, enter, or modify a value.

file extension
the classification of a file in a directory that identifies what type of information is
stored in the file. For example, .sas7bcat is the file extension for UNIX, and .pdf is
the file extension for Adobe Acrobat.

642 Glossary

filename
the identifier that is used for a file. The filename includes the file extension, as in
<charvar-value>PROFILE.SC2</charvar-value>. See also fully qualified filename
and pathname.

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS. Under Windows, you can assign a fileref with a FILENAME
statement, the SAS system option SET, the Windows SET command, or from the SAS
Explorer window.

folder
a named subdivision that is used for organizing files on a disk, diskette, CD-ROM, or
DVD-ROM. A folder also contains information about each file that it contains, such
as size and date of last change.

font
a complete set of all the characters of the same design and style. The characters in a
font can be figures or symbols as well as alphanumeric characters.

fully qualified filename
a file specification that includes both the pathname and the filename, as in
<charvar-value>C:\SAS\SASUSER\PROFILE.SC2</charvar-value>. See also
filename and pathname.

graphical user interface
any system that uses graphical objects such as windows, menus, icons, buttons, and
check boxes to represent the functions of a software application and to enable the
user to interact with the application. By contrast, a command-line interface requires
users to interact with the software application by entering text. Many graphical user
interfaces use visual metaphors for real-world objects such as file cabinets, folders,
rulers, and scissors. Short form: GUI.

GUI
See graphical user interface.

host option
in a SAS statement, an option that is specific to a particular operating environment.

HTML
See HyperText Markup Language.

HyperText Markup Language
a coding system in which the codes indicate the layout and style of the text in a text
file. Other HTML codes enable you to embed electronic objects such as images,
sounds, video streams, and applets (small software applications) into HTML
documents. All Web browsers can process HTML documents. Short form: HTML.

I/O time
an abbreviation for input/output time. I/O time is the time the computer spends on
moving data from storage areas, such as disk or tape, into memory for work (input
time) and moving the result out of memory to storage or to a display device, such as
a terminal or a printer (output time).

icon
in a graphical user interface, a pictorial representation of a window, an action (such
as sending e-mail or printing a document), or an option (such as double-spacing) that
is available to the user. The user clicks on (or otherwise selects) the icon in order to
expand the icon into a window, to perform the action, or to specify the option.

Glossary 643

libref
a name that is temporarily associated with a SAS library. The complete name of a
SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

maximize
in a graphical user interface, to cause a resizable window to instantly be displayed at
its largest size, usually by clicking on (or otherwise selecting) an icon or on the
maximize button of an active window.

member
a SAS file in a SAS library.

member name
a name that is assigned to a SAS file in a SAS library. Under Windows, the member
name is the same as the filename for files that are stored in a SAS library.

memory
the size of the work area that the central processing unit (CPU) must devote to the
operations in a program.

memory-based library
a SAS library that is stored either in conventional memory or in extended server
memory (rather than on a data storage device) for the duration of a SAS session or
job. See also conventional memory and extended server memory.

menu bar
the primary list of items at the top of a window, which represent the actions or
classes of actions that can be executed. Selecting an item executes an action, opens a
menu, or opens a dialog box that requests additional information. See also pop-up
menu and menu.

message area
the area of the status bar (at the bottom of the main SAS window) that displays
messages from SAS.

minimize
in a graphical user interface, to click on the minimize button of an active window,
causing the window to be replaced by an icon elsewhere on the desktop. The window
can be restored to its former size, location, and active status by clicking on (or
otherwise selecting) the icon.

named pipe
a named object that provides client-to-server, server-to-client, or duplex
communication between unrelated processes. You can use named pipes to establish
communication between Windows applications, including multiple SAS sessions. See
also pipe.

national character
any character that is specific to a language as it is written in a particular nation or
group of nations.

network
an interconnected group of computers.

NT file system
an advanced system for organizing directories and files. NTFS supports long
filenames, full security access control, file system recovery, and extremely large
storage media. Short form: NTFS.

644 Glossary

NTFS
See NT file system.

object
in object-oriented methodology, a specific representation of a class. An object inherits
the characteristics (attributes or instance variables) of its class as well as the
operations (methods) that class can execute. For example, a push button object is an
instance of the Push Button class. The terms object and instance are often used
interchangeably.

Object Linking and Embedding
a method of interprocess communication supported by Windows that involves a
client/server architecture. OLE enables an object that was created by one application
to be embedded in or linked to another application. Short form: OLE.

ODBC
See Open Database Connectivity.

ODBC driver
a loadable library module that provides a standardized interface for accessing,
manipulating, and updating data that is created and maintained by a particular
vendor’s data management software. For example, the SAS ODBC driver enables you
to access, manipulate, and update SAS data sources from any application that
conforms to the ODBC standard. See also Open Database Connectivity.

ODS
See Output Delivery System.

OLE
See Object Linking and Embedding.

Open Database Connectivity
an interface standard that provides a common application programming interface
(API) for accessing data. Many software products that run in the Windows operating
environment conform to this standard so that you can access data that was created
using other software products. Short form: ODBC.

Output Delivery System
a component of SAS software that can produce output in a variety of formats such as
markup languages (HTML, XML), PDF, listing, RTF, Postscript, and SAS data sets.
Short form: ODS.

pathname
in Windows operating environments, a specification of a drive, directories, and
subdirectories, such as <charvar- value>C:\SAS\SASUSER</charvar-value>.

PCL
See Printer Command Language.

PID
See process ID.

pipe
an object that provides direct access to STDIN, STDOUT, and STDERR between
processes. Pipe is synonymous with unnamed pipe. See also named pipe.

pop-up menu
a menu that appears when it is requested. These menus are context-specific,
depending on which window is active and on the cursor location. See also, menu.

Glossary 645

portability
the ability of a program to execute in an operating environment other than the one
for which it was written.

portable
See portability.

Printer Command Language
a command language that was developed by Hewlett-Packard for controlling
Hewlett-Packard printers. Each PCL command consists of an escape key followed by
a series of code numbers. Different versions of PCL have been developed for use with
different models or types of Hewlett-Packard printers. Short form: PCL.

process
a functional unit of a program or task.

process ID
a unique number that is assigned to each process by the operating system. Short
form: PID.

menu
the list of menu items or choices that appears when you choose an item from a menu
bar or from another menu.

raw data
data that has not been read into a SAS data set.

record
a logical unit of information that consists of fields of related data. A collection of
records are stored in a file. A record is analogous to a SAS observation.

SAS AWS
See application workspace.

SAS windowing environment
a graphical user interface for SAS software, through which you can perform many
different tasks, including preparing and submitting programs, viewing and printing
results, and debugging and resubmitting programs. See also graphical user interface.

sasroot
a term that represents the name of the directory or folder in which SAS is installed
at your site or on your computer.

Sasuser.Profile catalog
a SAS catalog in which SAS stores information about attributes of your SAS
windowing environment. For example, this catalog contains function-key definitions,
fonts for graphics applications, window attributes, and other information that is used
by interactive SAS procedures. See also SAS catalog.

Secure Socket Layer
a protocol that was developed by Netscape for transmitting private documents across
the Internet. SSL uses a private key to encrypt data that is transmitted between a
Web browser and a server.

sequential access
a method of file access in which the records are read or written one after the other
from the beginning of the file to the end.

serial port
an I/O port (usually using an RS-232 interface) through which data are transmitted
one bit at a time. Most plotters and some laser printers are connected to the host
computer via a serial port.

646 Glossary

server
a computer system that provides data or services to multiple users on a network.
The term ’server’ sometimes refers to the computer system’s hardware and software,
but it often refers only to the software that provides the data or services. In a
network, users might log on to a file server (to store and retrieve data files), a print
server (to use centrally located printers), or a database server (to query or update
databases). In a client/server implementation, a server is a program that waits for
and fulfills requests from client programs for data or services. The client programs
might be running on the same computer or on other computers. See also client.

signature line
in the Enhanced Editor, a line of SAS code in which a step keyword (DATA, PROC, or
MACRO) appears.

SMP
See symmetric multiprocessing.

standard input
the primary source of data going into a command. Standard input comes from the
keyboard unless it is being redirected from a file or piped from another command.

standard output
the primary destination of data coming from a command. Standard output goes to
the display unless it is being redirected to a file or piped to another command.

step boundary
a point in a SAS program when SAS recognizes that a DATA step or PROC step is
complete.

subclassing
in object-oriented methodology, the process of deriving a new class from an existing
class. A new class inherits the characteristics (attributes or instance variables) and
operations (methods) of its parent. It can also contain custom attributes (or instance
variables) and methods.

swap
to move data or program code from a computer system’s main memory to a storage
device such as a hard disk, or vice versa.

swapping
See swap.

symmetric multiprocessing
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller. Short form: SMP.

system menu
under Windows, a menu that is typically activated by clicking on (or otherwise
selecting) an icon in the top left corner of an application window. You can use the
system menu to move, resize, minimize, or maximize the window or to close the
application. In SAS, you use the SAS system option AWSCONTROL to control
whether this menu is available in the main SAS window or not.

system option
See SAS system option.

taskbar
the bar at the bottom of the Windows desktop that displays active applications. The
taskbar enables you to easily switch between applications and to restore, move, size,
minimize, maximize, and close applications.

Glossary 647

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow
of control that is scheduled by the operating system. See also symmetric
multiprocessing, thread-enabled operating system, and threading.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
boss-worker model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the pipeline
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs.

title bar
under Windows, an element of a window that displays the title of the window. The
title bar is at the top of the window and is highlighted if the window is active.

toolbar
in Windows, a part of the SAS windowing environment that contains icons that you
can associate with SAS commands or macros. Selecting an icon executes its
associated command or string of commands. The toolbar is located in the menu bar
area of the main SAS window. See also toolbox.

toolbox
a part of the SAS windowing environment in which you can place icons that you can
associate with SAS commands or macros. Selecting an icon executes its associated
command or string of commands. Unlike the toolbar, the toolbox is not attached to
the main SAS window.

Universal Printing
a feature of SAS software that enables you to send SAS output to PDF, Postscript,
GIF, PNG, SVG, and PCL files, as well as directly to printers. The Universal
Printing system also provides many options that enable you to customize your
output, and it is available in all of the operating environments that SAS supports.

unnamed pipe
See pipe.

window bar
the bar at the bottom of the SAS main window that includes a button for each SAS
window that is open in your current SAS session. When you select one of the
buttons, the window that is associated with that button becomes the active window

648 Glossary

and appears on top of the other windows. You can also right-click on a button to
access a menu that enables you to move, size, minimize, maximize, or close the
associated window, or to access a different menu that is specific to that window.

working directory
another term for current folder. See also current folder.

649

Index

A
abbreviations 96
ABEND option

ABORT statement 450
abort printing 550
ABORT statement 450
About SAS System dialog box 75, 335
ACCESS member type 124
accessibility features 77, 492

Customize Tools dialog box 80
docking view 81
fonts 81
icons 81
menu access 82
Property dialog boxes 80
resizing list view detail columns 82
sorting list views by column 82
user interface 79
windows and dialog boxes 78

ACCESSIBILITY system option 79, 492
Advanced preferences 63
aggregate syntax 151
ALL option

SYSTASK statement 468
ALTLOG system option 493
ALTPRINT system option 494
ANY option

WAITFOR statement 470
APPEND system option 495
appending data

to external files 163
Application Log

messages to, with LOGEVENT.EXE 227
messages to, with user-written functions 225
Windows 7 224
Windows Server 2003 224
Windows Vista 224
Windows XP 225

application performance
Windows 7 200
Windows Server 2003 201
Windows Vista 200
Windows XP 201

applications
adding to Tools menu 66, 553
minimized 587
toolbars for 71

ARG statement
DLLs 301

ASCII
alternate characters 58

ASCII collating sequence
position of characters in 413
returning a string 393
returning one character in 390

attachment format 365
ATTRIB statement 450
authentication domain server

searching for secure server logins 496
authentication providers

associating domain suffix with 496
AUTHPROVIDERDOMAIN system option 496
AUTHSERVER system option 496
autocall libraries 598

SASAUTOS system option 599
specifying 557

AutoComplete 41
autoexec file 18

alternate file 497
default 18
locating a renamed file 19
suppressing 19
text editor for creating 18
uses for 19

AUTOEXEC system option 497
automatic indention 95
automatic macro variables 595
Autosave 61, 117, 360
autosave files 89
AutoScroll 55
AUTOSCROLL command 329
AWSCONTROL system option 498
AWSDEF system option 499
AWSMAXIMIZE command 330
AWSMENU system option 499
AWSMENUMERGE system option 500
AWSMINIMIZE command 330
AWSRESTORE command 331
AWSTITLE system option 501

B
batch jobs

canceling 8
Status window 8
submitting 8
windowing procedures in 8

650 Index

batch mode 6, 24
log files for 529
printing in 180
procedure output file for 549
source files 575

binary data
reading 419
writing 379

bitmaps
pasting into SAS sessions 57
printing 176

BMDP engine 142
BMDP files

converting to SAS data sets 433
reading 142

bookmarking lines 96
browsers

invoking 361
selecting 62
start page 62

buffers
number for processing data sets 501
page size 502

BUFNO system option 501
BUFSIZE system option 502
bus speed 199
Busy property 273
BYTE function 390
$BYVALw. format

DLLs 310

C
C language

DLL formats 307
CALL RECONNECT routine 295
CALL routines 389
CAPS command 331
carriage control characters 185
catalog entries

saving window contents to 353
catalog member type 124
CATALOG procedure 429
catalogs 124

converting Releases 6.03 and 6.04 to 9.2 141
converting Releases 6.08 to 9.2 140
converting to 9.2 format 137
converting Version 6 in 9.2 140
migrating from previous releases 137
number to keep open 503
Profile catalog 20
Versions 7 and 8 139

CATCACHE system option 503
performance and 207

CGM drivers 194
CGM files

creating from SAS/GRAPH 194
exporting to other applications 194

Change Folder dialog box 335
character data

converting hexadecimal data to 422
character expressions

translating specific characters 414
character strings

passing to programs 576

character values
converting to hexadecimal 381

character variables
length and precision 592

CIMPORT procedure 430
SAS 9.2 files with previous releases 141

CLEANUP system option 504
clearing librefs 132
clipboard 55

copying window contents 354, 361, 362
data formats supported 55
pasting bitmaps into SAS sessions 57
pasting graphics from 191, 193
pasting OLE objects from 245
pasting with WPASTE command 372
selecting and copying in nontext windows 56
selecting and copying text 56
submitting code 24, 57, 349
submitting statements 162

COBOL
DLL formats 308

code, submitting 23
batch mode 24
by dragging and dropping 25
from clipboard 24, 57, 349
from Enhanced Editor 23
from Program Editor 23
from registered file types 26
from SAS NOTEPAD text editor 23

coding errors 94
collapsible code sections 102
COLLATE function 393
collating sequence

creating 443
color

changing window colors 64
color attributes for text 57
of selected window portions 332
printing in color 175

COLOR command 332
Column Settings dialog box 335
combo boxes

adding items to 264
finding items in 265

COMDEF system option 505
command bar 36

Help from 73
issuing commands 41
setting options for 333

COMMAND command 333
command line 5

issuing commands 42
toggling 353

Command method 270
COMMAND option

SYSTASK statement 467
command prompt

starting SAS from 7
Command window

display location 505
commands

accessing external files 161
AutoComplete feature 41
customizing windowing environment 63
Enhanced Editor window 89
issuing 41

Index 651

issuing from command bar 41
issuing from command line 42
issuing from menus 41
issuing from toolbar 41
not supported in Windows 329
OLE automation of 270
printing with 179
Windows environment 328

CommandWindow property 273
CommandWindowVisible property 273
communications ports

reading from 157, 164
timeouts 165, 166

compatibility 5, 137
completion status 613
COMPRESS data set option

performance and 207
COMPUTE method 604
concatenated data libraries 133

input access 133
output access 134
update access 133
with same name 134

concatenated directories
accessing 155
assigning filerefs 153

concatenated files
accessing 156
assigning filerefs 154

CONFIG system option 506
configuration files 7, 12

alternate 14, 506
custom 14
default 13
editing 14
naming conventions 14
processing options 18
processing order 15
purpose of 12
search order for 15
specifying system options in 13
system options in 477

CONTENTS procedure 431
Convert dialog box 336
CONVERT procedure 433
converting catalogs

Release 6.08 to 9.2 140
Releases 6.03 and 6.04 to 9.2 141
to 9.2 format 137
Version 6 to 9.2 140

converting data sets
Releases 6.08 through 6.12 139

copying text 56
counters 229, 230
CPORT procedure 435

SAS 9.2 files with previous releases 141
$CSTRw. format

DLLs 309
current folder 9, 39

changing 39
changing with statements 40
interactively selecting 40
setting initial path for 67

cursor
hiding 63
home position 350

scroll bar flash and 561
suppressing display of 367

Customize Tools dialog box 68
accessibility features 80, 492
opening 356

CUT command 334

D
data

accessing from other applications 146
data directives

for e-mail 48
populating Lotus Notes database 216

data files 123
exceeding maximum size 136
interface 123
native 123

data libraries 127
assigning with LIBNAME statement 128
assigning with OLE 269
concatenated 133
default permanent library 582
libref specification 127
listing attributes 466
Multi Engine Architecture and 124
New Library dialog box 128
Sasuser 134
Work 21, 135

data set options 325
data sets 122

buffer number 501
buffer size 502
calculating size 209
converting Releases 6.08 through 6.12 139
converting to 9.2 format 137
creating, Releases 6.08 through 6.12 141
performance and 209
reading and writing from previous releases 5
Releases 6.03 and 6.04 139
Releases 6.08 through 8.2 138
Scatter-read/Gather-write for 325

DATA step
OLE automation of 272
printing output 179
scheduling start time 415
sending e-mail 46, 49
suspending 413

data views 123
database files

accessing with SAS/ACCESS 145
DATASETS procedure 436
DDE (Dynamic Data Exchange) 275

controlling applications with 278
DDE triplets 277
!DDE_FLUSH string 283
dynamic data transfer 283
examples 278
HOTLINK option 282
invoking application commands 280
missing values 276, 284
NOTAB option with 281
reading from Excel 279
reading from Word 279
referencing external file 276
syntax 276

652 Index

tab characters 281
writing to Excel 278
writing to Word 279

DDE servers
opening with X command 278

DDE triplets 277
!DDE_FLUSH string 283
default engine 126
descriptor files 124
device drivers 507
DEVICE system option 507
dialog boxes

accessibility features 78
Help in 74

DINFO function 394
directories

deleting when empty 397
existence of 399
identifier values 396
information about 394
name of information item 396
number of information items 397

directory listings 392
_DISABLE_DEFAULT_ACTION_ method 605
disk cleanup 631

automating 632
disk controllers 199
disk space 199
DLGABOUT command 335
DLGCDIR command 335
DLGCOLUMNSIZE command 335
DLGCOLUMNSORT command 336
DLGCONVERT command 336
DLGENDR command 337
DLGFIND command 337
DLGFONT command 338
DLGLIB command 338
DLGLINKS command 338
DLGOPEN command 339
DLGPAGESETUP command 341
DLGPREF command 341
DLGPRT command 342
DLGPRTPREVIEW command 343
DLGPRTSETUP command 343
DLGREPLACE command 344
DLGRUN command 344
DLGSAVE command 345
DLGSMAIL command 346
DLLs 297

accessing efficiently 304
accessing from SAS 320
accessing returned pointers 314
calling 410
character string arguments 303
constants as arguments to MODULE 306
expressions as arguments to MODULE 306
formats for MODULE arguments 307
grouping variables as structure arguments 305
informats for MODULE arguments 307
invoking routines from IML procedure 315
MODULE functions 410
MODULE log messages 311
passing arguments by value 313
PEEK functions 303
SASCBTBL attribute table 298
structures 314

updating character string arguments 312
DO method 605
docking view 37, 61

docking and undocking windows 38
enabling and disabling 38
minimizing and restoring 38
resizing 38, 81

Docking View window
minimizing 363
Resize mode for split bar 364
restoring from task bar 364
toggling on/off 362

documentation 73
index files for 519
location of Help files 520
table of contents files 522

domain suffix
associating with authentication provider 496

DOPEN function 396
DOPTNAME function 396
DOPTNUM function 397
DOS shell

enabling EXIT command 589
exiting from 28

drag and drop
Enhanced Editor window 93
nondefault action 247
overriding default action 115
Program Editor 115
submitting code 25

drag modifiers 247
drag scrolling 116
dummy variables

length and precision 592
Dynamic Data Exchange

See DDE (Dynamic Data Exchange)
dynamic link libraries

See DLLs

E
e-mail

attaching window contents to 359
attachment format 365
data directives for 48
DATA step for sending 46, 49
e-mail software for sending 43
FILENAME statement for sending 46
in SAS/AF applications 322
initializing 43
mailing current window as attachment 60
SCL for sending 46, 51
Send Mail dialog box 44, 346
sending window contents 45
sending with SAS 42
SMTP for sending 52
supported interfaces 42

e-mail dialog box 508
e-mail interface 509
ECHO system option 507
Edit preferences 61
editors

Enhanced Editor 86
Program Editor 111

EMAILDLG system option 508
EMAILSYS system option 509

Index 653

_ENABLE_DEFAULT_ACTION_ method 606
ENCODING= option

FILE statement 451
FILENAME statement 455
%INCLUDE statement 460
INFILE statement 461

end-of-line character 452, 463
ENGINE system option 510
engines 125

assigning 129, 130
assigning multiple 130
assigning to environment variables 130
BMDP 142
changing, for Sasuser data library 135
changing, for Work data library 135
default engine 126
library engines 125
NOTESDB 215
OSIRIS 143
rules for determining 127
SPSS 144
view engines 125

Enhanced Editor 86
See also Enhanced Editor window
appearance options 107, 108
associating file extensions with file types 105
autosave files 89
creating keywords 104
disabling 8
enabling/disabling 110, 365, 511
features 86
General options 106
keyboard shortcuts 626
keyboard shortcuts for customizing 109
Open dialog box 348
opening files in 348
preference setting for 61
schemes 109
setting options 105
submitting code 23
switching to Program Editor 111
toggling between windows 371

Enhanced Editor Options window 105
Enhanced Editor window 87

abbreviations 96
automatic indention 95
bookmarking lines 96
coding errors 94
collapsible code sections 102
dragging text 93
editing text 91
filename for submitted code/catalog entries 98
finding and replacing text 93
insertion point 90
keyboard macros 100
keyboard shortcuts 100
line number commands 89
multiple views of same file 89
opening 365
opening files 88
overview 87
path for submitted code/catalog entries 98
saving contents to catalog entry 353
saving files 88
scrolling commands 89
selecting text 91

submitting programs 97
tabs 95
Word Tips 97

ENHANCEDEDITOR system option 511
environment variables

assigning librefs 130
defining 562
defining with SET system option 131
defining with SET Windows command 131
Enhanced Editor 98
filerefs for external files 150
in Work data library 136

error checking
Enhanced Editor 94

error messages 613
accessing files 614
completion status 613
initialization 619
internal errors 617
library for 537
networks 617
OLE 616
resolving 618
return codes 613
SAS features 615
termination 619
uppercasing 537

ERRORLEVEL batch variable 613
Event Map dialog box 262
event viewer

writing log messages to 186
Event Viewer

Application Log 224
viewing SAS events 225

Excel applications
reading with DDE 279

Excel spreadsheets
OLE and 257

executable files
search path for 545

EXECUTE method 606
existence of directories 399
existence of external files 399
Exit dialog box 337
exit preference 60
Explorer window

clearing librefs 132
exporting graphics 192
external DLLs

See DLLs
external files 148

accessing with commands 161
accessing with statements 158
altering record format 162
appending to 163
communications port timeouts 165, 166
concatenated files 156
concatenating 150
copying lines to a window 351
copying to text editor window 161
default file extensions 152
deleting 397
FILE command 161
FILE statement 158
filerefs for 149
GSUBMIT command 162

654 Index

I/O techniques 162
in working directories 158
INCLUDE command 161
%INCLUDE statement 160
INFILE statement 159
long filenames 154
name of information item 404
national characters in 164
quoted Windows filenames 157
reading from COM ports 157, 164
reading with %INCLUDE statement 160
reading with INFILE statement 159
referencing 148, 458, 463
reserved physical names 157
saving window contents to 347
saving windows to 53
UNC paths 154
value of information items 401
verification by fileref 398
verification by physical name 399
wildcards for 150
writing to LPT ports 157
writing window contents to 161
writing with FILE statement 158

F
FDELETE function 397
FEXIST function 398
file access

error messages for 614
file cache

memory-based libraries as 205, 533
FILE command 161, 347
file extensions 121

associating with file types 105
changing 122

file filters 512
file formats

compatibility among releases 137
File menu

listing recently used files 369
Universal Printing commands 581

file resource tracking system 556
file resources

list of 556
file shortcuts 149
FILE statement 451

writing to external files 158
file types

associating file extensions with 105
FILEEXIST function 399
FILELOCKWAITMAX= system option 512
FILENAME function 399
FILENAME statement 453

DDE syntax 276
named pipes 288
sending e-mail 46
unnamed pipes 286

filenames
clearing 54

FILEOPEN command 348
FILEREF function 400
filerefs 149

assigning file shortcuts 149
assigning to concatenated directories 153

assigning to concatenated files 154
assigning to directories 151
assigning with FILENAME function 399
clearing 155
deassigning 399
environment variables and 150
FILENAME statement and 149
listing 155
SET command and 151
SET system option and 151
verification of 400

files 120
compatibility 137
file extensions 121
from multiple SAS sessions 136
from remote hosts 142
locked files 512
migrating 137
number of information items 406
opening in Enhanced Editor 88
opening in Program Editor 111
printing to 179
remote host SAS files in SAS 9.2 142
SAS 9.2 files with previous releases 141
saving in Enhanced Editor 88
saving in Program Editor 117
sharing 136
submitting on opening 60
transferring 145
types of 121

fill character 349
FILL command 349
FILTERLIST system option 512
find and replace

Enhanced Editor 93
Program Editor 114

Find dialog box 337
FINFO function 401
firewalls

remote browsing and 76
fixed-point binary values

converting hexadecimal values to 421
fixed-point data

reading 423, 425
writing 382

flat files 206
floating-point binary values

converting hexadecimal values to 421
floating-point data

converting to hexadecimal 381
reading 426
writing 386

folders
assigning librefs to 128
assigning librefs to working folder 129
current folder 39
default structure 22
for HTML output files 62
for Sasuser libref 134
setting current folder 9
WORK folder 62

FONT system option 513
FONTALIAS system option 514
fonts 58

assigning Windows font to SAS font 514
changing 171

Index 655

directory location 515
enlarging 81
for printing 578
for window contents 574
for windows 513
TrueType 621

Fonts dialog box 338
FONTSLOC system option 515
FOOTNOTE statement 459
FOPTNAME function 404
FOPTNUM function 406
FORM window 178
formats 379

writing binary data 379
formatting characters

default 516
FORMCHAR system option 516
FORTRAN

DLL formats 307
FRAME entries

editing OLE objects in 248
inserting OLE objects 244

FULLSTIMER system option 517
function keys

mapping 546
number of 540

functions 389

G
General preferences 60

customizing toolbars 68
_GET_EVENT_ method 607
_GET_PROPERTY_ method 607
_GET_REFERENCE_ID_ method 608
Getting Started with SAS Software 74
_GET_TYPE_ method 609
graphical interface 5
graphics

CGM drivers 194
exporting as WMF files 195
exporting CGM files 194
exporting for other applications 192
exporting to SAS/GRAPH 192
import file formats 191
importing from other applications 190
importing from SAS/GRAPH 191
pasting from clipboard 191, 193
printing 187
producing 195
producing on display 186

graphics adapters 199
graphics output

device driver for 507
GSUBMIT command 162, 349
GUI 5

H
hard drives 199

configuration 199
mapping 163

hardware 197
disk space for I/O 199
graphics adapter 199
memory 198

processor speed 198
Height property 273
Help

adding to Help menu 66
for main SAS window 37
for SAS products 74
from command bar 73
from Help Menu 74
from Web sites 75
in dialog boxes 74
index files for 519
Microsoft HTML Help 73
online 73
table of contents files 522
viewing in remote browser 75

help files
displaying in main SAS window Help menu 521
location for Microsoft HTML Help 520
registering 521

Help menu 74
adding Help to 66

HELPHOST system option 77, 518
HELPINDEX system option 519
HELPLOC system option 520
HELPPORT system option 77
HELPREGISTER system option 521
HELPTOC system option 522
hexadecimal values

converting character values to 381
converting real binary values to 381
converting to character data 422
converting to fixed-point binary 421
converting to floating-point binary 421

$HEXw. format 381
HEXw. format 381
$HEXw. informat 422
HEXw. informat 421
highlighting 57
HOME command 350
host commands

executing conditionally 392
executing from SAS sessions 471
submitting 391
submitting from SAS sessions 377

host computer
specifying name of 77, 518

host sort utility
name of 568

HOSTPRINT system option 524
HOTLINK option

DDE 282
HSERVICE entries

reading OLE objects from 246
HTML Help 73
HTML output 62

ODS 182
preferences 182

I
I/O disk space 199
I/O enhancements for multiple processors 201
IBw.d format 382
IBw.d informat 423
ICON command 350
ICON system option 525

656 Index

icons
enlarging 81
in SAS/AF applications 321
user-defined 67, 582

image usage statistics 517
importing graphics 190
in-memory macro variables

size of 539
INCLUDE command 161, 351
%INCLUDE statement 459

reading external files 160
indention

automatic 95
index files

for SAS Help and Documentation 519
indexes 123
_IN_ERROR_ method 609
INFILE statement 461

reading external files 159
informats 419

converting to 9.1 420
reading binary data 419

.INI files 234
creating with ASCII editor 238
creating with SSCU 235

initialization error messages 619
INITSTMT system option 525
insert mode

toggling on/off 368
INSERT system option 526
insertion point

Enhanced Editor 90
Program Editor 112

integer binary data
reading 423
writing 382

IntelliMouse 55
interactive processing 211
interactive sessions 6

dragging files in 25
interface 35

accessibility and 79
interface data files 123
interface library engines 126
internal errors 617
interrupting SAS sessions 26
invocation file

system options in 477

J
Java Runtime Environment (JRE) options 527
JREOPTIONS system option 527

K
key definitions 54, 623
keyboard macros 100
keyboard shortcuts

assigning 109
bookmarking lines 96
customizing the Enhanced Editor 109
deleting 110
Enhanced Editor 100, 626
for keyboard macros 100
main SAS window 624

Print Preview window 629
resetting 110
selecting and editing text 91, 92

Keys window
saving contents to catalog entry 353

KEYS window
mouse buttons 541

keywords
user-defined 104

KILL option
SYSTASK statement 467

L
Learning SAS Programming 74
length of variables 591
LENGTH statement 464
LIBNAME function 407

clearing librefs 133
LIBNAME statement 464

assigning librefs 128
clearing librefs 133

LIBNAME window
clearing librefs 133

libraries
concatenating in system options 478
default access method 510
memory-based 201, 204

Libraries dialog box 338
library engines 125
librefs 124, 127

associating 466
available at startup 129
clearing 132, 407
listing 132
User 136

librefs, assigning
multiple to one directory 130
to a single directory 128
to a working folder 128
to multiple folders 129
with environment variables 130
with GUI 128
with LIBNAME function 407

line breaks
Program Editor 113

line numbers 175
Enhanced Editor 89
Program Editor 112

line size 175
LINESIZE system option 528
Links dialog box

opening 338
updating linked OLE objects 250

LIST option
SYSTASK statement 467

list views
resizing detail columns 82
sorting by column 82

load security settings 204
LOADMEMSIZE system option 528
locked files 512
log

alternate log 493
batch mode 529
echoing messages 507

Index 657

news file for messages 540
routing to file 184
routing with PRINTTO procedure 184
routing with Save As dialog box 184
routing with system options 185
writing messages to Windows event viewer 186

log events
writing to Windows event viewer 186

LOG system option 529
Log window

line size 528
saving contents to catalog entry 353
scroll frequency 329

LOGEVENT.EXE utility 227
logo screen 67

bitmap location 571
displaying at startup 571

logos
in SAS/AF applications 321

long filenames 154
Lotus Notes 215

client requirements 215
creating Notes documents 216
NOTESDB engine 215
NotesSQL ODBC driver 221
populating databases 216
retrieving information from 221
SAS/GRAPH output for 220

M
macro facility 595

autocall libraries 598
automatic macro variables 595
macro functions 598
macro statements 597

macro functions 598
macro statements 597
macro variable symbol tables 538
macro variables

size of in-memory variables 539
macros, keyboard 100
main SAS window 35

adding applications to Tools menu 553
appearance and behavior of 317
components of 35
controlling 317
controlling windows within 558
customizing 498
dimensions of 499
docking view 37
embedding menu options 500
height setting 273
help files 521
help for 37
keyboard shortcuts 624
location of 499
maximizing 330
menu bar 499
menus 39
minimizing 330, 525
parent window 273
restoring to previous state 331
saving windows to external files 53
Screen Tips 37
size and placement 65

status line 37
system options for controling 317
title 273, 501
width setting 273
window bar 39
windowing environment commands for 318
X Y coordinates 273

map data sets
library name for 531

mapping function keys 546
MAPS system option 531
MAXMEMQUERY system option 531
MCIPISLP function 408
MCIPISTR function 409
member-name syntax 151

resolving 153
member types 121

access 124
catalog 124
program 124
table 122
view 122

members 121
MEMBLKSZ system option 532
MEMCACHE system option 533

64-bit Windows environments 203
MEMLIB option

LIBNAME statement 465
MEMLIB system option 534

64-bit Windows environments 203
MEMMAXSZ system option 535
memory

block size for memory-based libraries 532
executables loaded by SAS 528
in-memory macro variables 539
limit for SORT procedure 570
limit on total amount 535
macro variable symbol tables 538
maximum for procedures 531
performance and 198
requirements for 198
usage statistics 517
virtual memory 553

memory address
storing 412

memory-based libraries 201
as file cache 205, 533
maximum amount of memory 535
processing SAS libraries as 204
Windows 2003 Servers 202
Windows XP Professional 203
Work library as 534

MEMSIZE system option 535
menu bars 36

displaying 499
menus 39

accessibility features 82
displaying descriptions of menu items 37
embedding menu items 500
issuing commands 41
system/control menu 558

messages
writing log messages to Windows event viewer 186

Microsoft HTML Help 73, 520
Microsoft IntelliMouse 55

658 Index

Microsoft Task Scheduler
automating disk cleanup 632

migrating from previous releases 137
minimizing windows 350
missing values

DDE 276, 284
MNAME= option

SYSTASK statement 468
MODULE functions 410

constants as arguments to 306
expressions as arguments to 306
formats for 307
informats for 307
log messages 311

mouse
IntelliMouse 55

mouse buttons 541
MS-DOS commands

running from SAS 26
MSG system option 537
MSGCASE system option 537
MSYMTABMAX system option 538
Multi Engine Architecture 124, 125
multimedia equipment

submitting MCI string commands to 409
waiting for activation 408

MVARSIZE system option 539

N
named pipes 288

CALL RECONNECT routine 290
connecting to next client 290, 295
definition 285
examples 290
in SCL 290
NOBLOCK option 293
one client, one server 290
one server, several clients 291
syntax 288
waiting for data 293

naming conventions
configuration files 14

national characters
in external files 164

native data files 123
native library engines 125
network performance 207
networks

error messages for 617
New Library dialog box 128
NEW method 610
NEWS system option 540
NOBLOCK option

named pipes 293
nondefault drag and drop 115
NOTAB option

DDE 281
NOTEPAD text editor

submitting code from 23
Notepad window

saving contents to catalog entry 353
notes

uppercasing 537
NOTESDB engine 215
NotesSQL ODBC driver 221

numeric variables
length and precision 591

NUMKEYS system option 540
NUMMOUSEKEYS system option 541

O
OBS system option 542
observations

end point for processing 542
OCXs

See OLE custom controls (OCXs)
ODBC driver 146
ODS HTML output 182
ODS output

remote browsing with 76
OLE 244

automating objects and applications 252
converting objects 251
editing objects in FRAME entries 248
error messages for 616
inserting objects as FRAME entries 244
invoking OLE verbs 249
linked objects 249
OCXs in SAS/AF applications 259
SAS/AF catalog compatibility 244

OLE automation 252, 267
array values returned by server 253
Command method 270
creating an instance of SAS 267
creating external instances 255
examples 269
feedback from SAS sessions 268
methods and properties for objects 270
optional parameters in server methods 255
populating Excel spreadsheets 257
QueryWindow method 271
Quit method 271
Submit method 272
Top method 272
value properties 254
Visual Basic code and SCL equivalents 258

OLE automation properties
Busy 273
CommandWindow 273
CommandWindowVisible 273
Height 273
Parent 273
RC 273
ResultString 273
Title 273
Visible 273
Width 273
X 273
Y 274

OLE class methods 603
OLE custom controls (OCXs) 259

adding items to combo boxes 264
assigning SCL code to events 262
event handling 262, 263
Event Map dialog box 262
finding items in combo boxes 265
inserting in FRAME entries 260
properties 260
registering 260
retrieving argument values from events 263

Index 659

retrieving text value of 265
SCL methods and 261
subclassing 264

OLE linked objects 249
updating programmatically 251
updating with Links dialog box 250

OLE objects
automating 252
automation methods and properties 270
converting 251
editing within FRAME entries 248
inserting in FRAME entries 244, 246
pasting from clipboard 245
reading from HSERVICE entries 246

OLE verbs
invoking 249

online documentation 73
online Help 73
Open dialog box

file filters 512
folders 560
opening for default editor 339
opening for Enhanced Editor 348
paths specified in 67

optimizing performance 200
OPTIONS procedure 437
OPTIONS statement

system options in 478
OSIRIS engine 143
OSIRIS files

converting to data sets 433
reading 142

out-of-resource condition 504
output

formatting characters 516
page size 544
previewing 176
viewing in remote browser 75

Output window
line size 528
saving contents to catalog entry 353
scroll frequency 329

overtype mode 61

P
packed decimal data

reading 424
writing 383

page numbers 175
resetting 543

page range to print 176
page setup 172
Page Setup dialog box 341
page size 175, 544
PAGENO system option 543
PAGESIZE system option 544
paper type 544
PAPERTYPE system option 544
Parent property 273
PATH system option 545
pathnames

appending to system options 495
inserting into system option values 526

PCLEAR command 329
PDw.d format 383

PDw.d informat 424
PEEKLONG functions 412

accessing character string arguments 303
performance

data set size, calculating 209
DLLs 304
hardware 197
I/O enhancements for multiple processors 201
interactive processing 211
memory-based libraries 201
networks 207
optimizing 200
responsiveness 200
SAS features for 206
SORT procedure 208, 231
tuning methods 208
Windows 7 applications 200
Windows Vista applications 200
Windows XP applications 201

performance counters 229
performance monitors 228

configuring 230
PROC SQL queries 232
starting 228

performance objects 229
PFKEY system option 546
PIBw.d format 384
PIBw.d informat 425
pipes 285

file attributes and 405
named 288
unnamed 286

PL/I
DLL formats 308

PLIST command 329
PMENU command 353
PMENU procedure 439
pointers

passing to structures 306
returning 314

pop-up menus
displaying 373
toggling on/off 369

port number
for remote browser server 77

positive integer binary data
reading 425
writing 384

precision of variables 591
preferences

Advanced 63
Edit 61
for HTML output 182
General 60
Results tab 62
saving on exit 366
session preferences 59
View 61
Web 62

Preferences dialog box 59, 341
previewing output 176
Print Abort dialog box 550
Print dialog box 170, 342
print forms 177
Print Manager 524
print options 169

660 Index

Print Preview window 177
invoking 343
keyboard shortcuts 629
shortcut keys 177

Print Setup dialog box
opening 343
Use Forms check box 552

PRINT system option 549
printing 168

aborting 550
batch mode 180
bitmaps 176
canceling jobs 181
changing the printer 171
color printing 175
commands for 179
DATA step output 179
default printer 180
destination printer 551, 577
font specification 171
fonts 578
FORM window 178
forms 552
from GRAPH window 190
graphics 187
line numbers 175
line size 175
number of copies 176
options for 169
page numbers 175
page ranges 176
page setup 172
page size 175
paper type 544
previewing a window 176
previewing from GRAPH window 190
Print dialog box 171
print forms 177
printer specification 171
problems with 12
procedure output file for batch mode 549
recognizing printers attached to the system 549
SAS/GRAPH generic drivers for 188
SAS/GRAPH native drivers for 189, 190
setting printer settings 343
to a file 179
windows 170
Windows Print Manager 524
windows that can be printed 170
WINPxxx drivers for 188, 190
within a window 168

PRINTTO procedure 440
routing procedure output 184

PRNGETLIST system option 549
PROC SQL queries 232
procedure output

alternate file 494
batch mode 549
carriage control characters 185
routing to a file 184
routing to a Web browser 181
routing with PRINTTO procedure 184
routing with Save As dialog box 184
routing with system options 185

procedures 429
maximum memory for 531

processor speed 198
processors

I/O enhancements for multiple 201
Profile catalog 20

changing location of 20
default 20
deleting 20

Program Editor 111
Autosave 117
deleting text 114
drag and drop 115
drag scrolling 116
features 117
find and replace 114
insertion point 112
line breaks 113
line numbers 112
opening files 111
overriding drag/drop action 115
RTF text 116
saving files 117
selecting text 113
starting when SAS starts 8
submitting code 23
switching to Enhanced Editor 111
tabs 112

Program Editor window
saving contents to catalog entry 353

program items
starting SAS from 6

program member type 124
programs, submitting 355
Property dialog boxes

accessibility features 80
PRTABORTDLGS system option 550
PRTPERSISTDEFAULT system option 551
PRTSETFORMS system option 552

Q
QueryWindow method 271
Quit method 271
quoted Windows filenames 157

R
RANK function 413
RBw.d format 386
RBw.d informat 426
RC property 273
real binary data

converting to hexadecimal 381
reading 426
writing 386

REALMEMSIZE system option 553
recently used file list 60, 369
REGISTER system option 553
registered file types 26
registry files 22
regressing files

SAS 9.2 files with previous releases 141
Release 6.08 catalogs

converting to 9.2 140
Releases 6.03 and 6.04 data sets 139
Releases 6.08 through 8.2 data sets 138

Index 661

remote browser server 75
installing 77
port number for 77

remote browsing 75
computer name for 518
firewalls and 76
ODS output with 76
system options for 77
viewing output and Help 75

remote host
SAS files in SAS 9.2 142

Replace dialog box 344
resources directory 554
RESOURCESLOC system option 554
responsiveness 200
restricted options 476
Results tab 62
Results Viewer window 182
ResultString property 273
return codes 273, 613
RETURN option

ABORT statement 450
rich text format (RTF) 116

saving window contents to 373
ROUTINE statement

DLLs 299
RSASUSER system option 555
RTF (rich text format) 116

saving window contents to 373
RTRACE system option 556
RTRACELOC system option 556
Run dialog box

opening 344
starting SAS from 7

S
SAS

batch mode 24
Help for SAS products 74

SAS, starting 6
as a Windows service 234
batch mode 6
from command prompt 7
from program items 6
from Run dialog box 7
from SAS files 7
from shortcuts 6
from Start Menu 6
if SAS does not start 12
interactive mode 6
with alternate configuration file 14

SAS 9.2 files
remote host files 142
with previous releases 141

SAS/AF applications
e-mail interface in 322
icons in 321
invoking automatically 321
logos in 321
OCXs in 259

SAS/AF catalogs
OLE compatibility 244

SAS automation objects 269
SAS command 7

appending system options to 6

SAS Disk Cleanup Handler 631
SAS files 12

See also files
autoexec file 18
configuration files 12
Profile catalog 20
registry files 22
starting SAS from 7
Work data library 21

SAS/GRAPH
creating CGM files from 194
generic drivers 188
native drivers 189, 190
preparing output for a Notes document 220

SAS Help and Documentation 74
SAS Institute Web sites 75
SAS logging facility 186
SAS NOTEPAD text editor

submitting code from 23
SAS on the Web 75
SAS processes

terminating 30
SAS resources

directory location of 554
SAS responsiveness 200
SAS Service

configuration utility (SSCU) 234
installing 240
removing 242
starting 242

SAS session preferences
Advanced 63
Edit 61
General 60
View 61
Web 62

SAS sessions 37
bringing to foreground 272
checking busy status 269, 273
confirming exit 60
customizing 58
ending 30
interrupting 26
minimizing 66
pasting bitmaps into 57
sample 9
saving settings on exit 60
selecting fonts 58
setting session preferences 59
setting window title 269
terminating 270, 271
titles 66
toggling visible/invisible 269, 273

SASAUTOS system option 557, 599
SASCBTBL attribute table 298

ARG statement 301
importance of 302
ROUTINE statement 299
syntax 298

SASCONTROL system option 558
SAS_EXECFILENAME environment variable 98
SAS_EXECFILEPATH environment variable 98
Sashelp catalog

searching entries 559
SASHELP system option 559
SASINITIALFOLDER system option 560

662 Index

Sasuser data library 134
changing engines 135

Sasuser library
name specification 560
read/write access control 555

Sasuser libref
folders for 134

SASUSER system option 560
Save As dialog box

file filters 512
folders 560
opening 345

SAVE command 353
Save dialog box

paths specified in 67
saving automatically 360
Scatter-read/Gather-write 207, 563

activating for data sets 325
schemes 109
SCL

sending e-mail 46, 51
SCL methods

for OLE 603
OLE controls and 261

ScreenTips 37
toggling 374

scroll bars
disabling focus 63
flashing cursor and 561
horizontal 367
toggling on/off 367, 376

SCROLLBAR command 329
SCROLLBARFLASH system option 561
scrolling

drag scrolling 116
Enhanced Editor 89
preferences for 63

search path
for executable files 545

Section 508 77, 492
secure server logins

searching for 496
selecting and copying text 56
selecting text

Enhanced Editor 91
Program Editor 113

Send Mail dialog box 44, 346
server logins 496
session preferences 59
SET command

filerefs for external files 151
SET system option 562

filerefs for external files 151
SET Windows command 131
_SET_PROPERTY_ method 611
SGIO data set option 325
SGIO system option 563
sharing files

between UNIX and Windows 452, 463
SHELL= option

SYSTASK statement 468
shortcuts

starting SAS from 6
signature line 102
SLEEP function 413

SLEEP window
enabling/disabling 564

SLEEPWINDOW system option 564
SMARK command 329
SMP (symmetric multiprocessing) 201
SMTP

sending e-mail 52
sort algorithm

SyncSort 443
Sort Columns dialog box 336
SORT procedure 441

memory limit 570
performance and 208, 231
sort utility 569
SyncSort 443

sort utility 569
name of host sort utility 568

SORTANOM system option 564
SORTCUT system option 565
SORTCUTP system option 566
SORTDEV system option 567
sorting

list views by column 82
with SyncSort 443

SORTNAME system option 568
SORTPARM system option 568
SORTPGM system option 569
SORTSEQ= option

PROC SORT statement 445
SORTSIZE= option

PROC SORT statement 442
SORTSIZE= system option 570

performance and 208
SOUND call routine 390
sound generation 390
source files

batch mode 575
special character attributes 57
speed 198
splash screen 67

bitmap location 571
displaying at startup 571

SPLASH system option 571
SPLASHLOC system option 571
SPSS engine 144
SPSS files

converting to data sets 433
reading 142
reformatting 144

SSCU (SAS service configuration utility) 234
Start Menu 6
starting SAS

See SAS, starting
STATE option

SYSTASK statement 468
statements 449

accessing external files 158
execution instructions 525
submitting from clipboard 162

statistics
system performance 573

status line 36, 37, 61
area proportions 374
toggling on/off 374

STATUS= option
SYSTASK statement 468

Index 663

Status window 8
STATVAR option

SYSTASK statement 468
STIMEFMT system option 572
STIMER system option 573
STORE command 354
stored program files 124
subclassing 264
Submit method 272
submitting code

See code, submitting
submitting programs 355

Enhanced Editor 97
SUBTOP command 97, 355
symmetric multiprocessing (SMP) 201
SyncSort 443

activation 565, 566
location of temporary files 444
options specification 564
parameters specification 568
passing options to 445
passing parameters to 445
pathname for temporary files 567
setting as sort algorithm 443
sorting based on size or observations 444

SYSCC automatic macro variable 595
SYSDEVIC automatic macro variable 595
SYSENV automatic macro variable 596
%SYSEXEC statement 597
%SYSGET function 598
SYSGUIFONT system option 574
SYSIN system option 575
SYSJOBID automatic macro variable 596
SYSMAXLONG automatic macro variable 596
SYSPARM system option 576
SYSPRINT system option 577
SYSPRINTFONT system option 578
SYSRC automatic macro variable 596
SYSSCP automatic macro variable 596
SYSSCPL automatic macro variable 596
SYSTASK statement 467
system administrators

firewalls and remote browsing 76
SYSTEM call routine 391
system options 475

appending pathnames to 495
appending to SAS command 6
changing settings 476
concatenating libraries in 478
controling main SAS window with 317
customizing windowing environment 65
displaying settings 476
for remote browsing 77
in configuration file 477
in invocation file 477
in OPTIONS statement 478
inserting pathnames 526
logging 583
restricted 476
sending e-mail 43
set in multiple places 478
specifying in configuration file 13
summary of 479
writing to terminal 583

system performance statistics 573

T
tab characters

DDE 281
table member type 122
table of contents files 522
tabs

Enhanced Editor 95
Program Editor 112

TAGSORT option
performance and 208
PROC SORT statement 442

Tasking Manager window 360
TASKNAME= option

SYSTASK statement 468
terminating processes 30, 360
termination error messages 619
TERMSTR= option

FILE statement 452, 463
text

unmarking 370
text editor

submitting code from 23
text editor windows 111

Autosave frequency 61
deleting text 114
overtype mode as default 61
preferences 61

time display 572
TIMEOUT= option

WAITFOR statement 470
title bar 501
Title property 273
TITLE statement 469
toolbars 36, 37

adding tools to 70
button size 356
closing 355
custom controls 321
customizing 68
examples of creating tools 72
issuing commands 41
removing tools 71
removing tools from 71
restoring defaults 72
saving 71
setting General preferences 68

toolboxes
button size 356
closing 355
display location 580
loading 357
tool switching 358

TOOLCLOSE command 355
TOOLDEF system option 580
TOOLEDIT command 356
TOOLLARGE command 356
TOOLLOAD command 357
Tools menu

adding applications to 66, 553
TOOLSWITCH command 358
ToolTips

toggling on/off 358
TOOLTIPS command 358
Top method 272
TRANSLATE function 414
TrueType fonts 621

664 Index

U
undo 376
Universal Printing 168

enabling commands for 581
UNIVERSALPRINT system option 168
UNIX

sharing files with Windows 452, 463
unmarking text 61, 370
unnamed pipes 286

definition 285
example 287
redirection sequences 287
syntax 286

UPDATE method 611
uppercase

converting to 331
for warnings and messages 537

UPRINTMENUSWITCH system option 168, 581
user-defined icons 67, 582
user-defined keywords 104
User libref 136
USER system option 582
USERICON system option 582
Using this Window 74

V
value properties 254
variables

grouping as structure arguments 305
length and precision 591

VERBOSE system option 583
Version 6 catalogs

converting in 9.2 140
Version 6 files 137
Versions 7 and 8 catalogs 139
Versions 7 and 8 files 137
view engines 125
view member type 122
View preferences 61
virtual memory 553
Visible property 273
Visual Basic code

SCL equivalents 258

W
WAIT option

SYSTASK statement 467
WAITFOR statement 470
WAKEUP function 415
warnings

uppercasing 537
WATTACH command 359
WATTENTION command 360
WAUTOSAVE command 360
WBROWSE command 361
WCOPY command 361
WCUT command 362
WDOCKVIEW command 362
WDOCKVIEWMINIMIZE command 363
WDOCKVIEWRESIZE command 364
WDOCKVIEWRESTORE command 364
WDRAG command 329

Web browsers
invoking 361
routing procedure output to 181
selecting 62
start page 62

Web enhancements 584
enabling 68

Web preferences 62
Web sites

Help from 75
WEBUI system option 584
WEDIT command 365
WEMAILFMT command 365
WEXITSAVE command 366
WFILE command 366
WGROW command 329
WHIDECURSOR command 367
WHSBAR command 367
Width property 273
wildcards 150
window bar 36, 39, 61

toggling 376
Window menu 585
windowing environment 35, 36

color 64
commands for controling main SAS window 318
customizing with commands 63
customizing with system options 65

windowing procedures
in batch jobs 8

windows
accessibility features 78
attaching contents to e-mail 359
changing active window to last edited window 372
checking existence of 271
clearing 54, 371
color of 57, 332
copying lines from external files 351
copying to clipboard 354, 361
cutting text from 334
cutting to clipboard 362
fonts for 513, 574
mailing current window as attachment 60
maximizing 378
minimizing 350
pasting from clipboard 372
position of 63
printing 170
printing from within 168
saving contents to file 347, 366
saving to external files 53
saving to RTF file 373
sending contents by e-mail 45
special character attributes 57
text highlighting 57
toolbars for 71

Windows 4
enterprise environments 4
error messages 618
memory-based libraries 535
memory block size 532
sharing files with UNIX 452, 463
supported editions 4
system tools 223

Windows 2003 Servers
memory-based libraries 202

Index 665

Windows 7

Application Log 224

application performance 200

automating cleanup with Microsoft Task Scheduler 633

creating .INI files 236

memory-based libraries 202, 203

performance monitors and 228

SASUSER system option 560

starting a SAS Service 242

supported editions 4

SYSSCPL automatic macro variable 596

Windows applications

executing from SAS sessions 471

submitting 391

Windows commands

issuing conditionally 27

running from SAS 26

running with X statement or command 27

synchronous versus asynchronous execution 29

XWAIT system option and 28

XWAIT system option versus XSYNC 29

Windows event viewer

writing log messages to 186

Windows fonts 514

Windows Print Manager 524

Windows Server 2003

Application Log 224

application performance 201

supported editions 4

Windows service

starting SAS as 234

Windows Vista

Application Log 224

application performance 200

supported editions 4

Windows XP

Application Log 225

application performance 201

supported editions 4

Windows XP Professional

memory-based libraries 203

WINDOWSMENU system option 585

WINPxxx drivers 188, 190

WINSERT command 368

WMENUPOP command 369

WMF files

exporting graphics as 195

WMOVE command 329

WMRU command 369

WNAVKEYUNMARK command 370

WNEWTITLE command 371

WNEXTEDIT command 371

Word

reading from with DDE 279

writing to with DDE 279

Word Tips 97

Work data library 21, 135

as memory-based library 534

changing engines 135

default folder 21

deleting the folder 21

location of 21

pathname 585

specifying with environment variables 136

temporary subfolders 21

WORK folder 62

WORK system option 585

WPASTE command 372

WPGM command 372

WPOPUP command 373

writing log messages

to Windows event viewer 186

WRTFSAVE command 373

WSCREENTIPS command 374

WSHRINK command 329

WSTATUSLN command 374

WUNDO command 376

WVSBAR command 376

WWINDOWBAR command 376

X
X command 377

opening DDE server with 278

opening minimized applications 587

running Windows commands 27

synchronous versus asynchronous 588

valid in current SAS session 586

X property 273

X statement 471

running Windows commands 27

synchronous versus asynchronous 588

XCMD system option 586

XMIN system option 587

XSYNC system option 588

synchronous versus asynchronous command execu-
tion 29

XWAIT system option versus 29

XWAIT system option 589

exiting from DOS shell 28

XSYNC system option versus 29

Y
Y property 274

Z
ZDw.d format 387

ZDw.d informat 427

zoned decimal data

reading 427

writing 387

ZOOM command 378

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/spn

	Contents
	What’s New
	Overview
	SAS Default Directory Path
	Word Tip
	Software Migration
	Support for Windows Versions
	Running SAS in Batch Mode
	SAS Disk Cleanup Handler Utility
	Recovery Information If SAS Does Not Start
	SAS Logging Facility
	Remote Browsing
	Reformatting SPSS Files
	SAS Language Elements
	Commands
	Data Set Options
	Functions
	Statements
	Macros
	System Options

	Running SAS under Windows
	Getting Started
	SAS: Exploiting the Power of Windows
	SAS Runs in Enterprise Environments
	An Integral Part of Your Windows Editions
	Compatible and Maintainable

	Starting SAS
	Use SAS Interactively or in Batch Mode
	Starting from the Start Menu
	Starting from Custom Shortcuts or Program Items
	Starting from the Run Dialog Box or a Command Prompt
	Starting from a SAS File
	Submitting a Batch SAS Job
	Starting the Program Editor When SAS Starts
	Determining the Current Folder When SAS Starts
	Sample SAS Session
	What If SAS Does Not Start?

	Files Used by SAS
	Introduction to Files Used by SAS
	SAS Configuration Files
	SAS Autoexec File
	Profile Catalog
	Work Data Library
	SAS Registry Files
	SAS Default Folder Structure

	Submitting SAS Code
	Introduction to Submitting SAS Code
	Submitting Code from the Enhanced Editor or Program Editor
	Submitting Code from the SAS NOTEPAD Text Editor
	Running SAS in Batch Mode
	Submitting Code from the Clipboard
	Submitting Code by Dragging and Dropping
	Submitting Code Stored in Registered SAS File Types

	Interrupting Your SAS Session
	Running Windows or MS-DOS Commands from within SAS
	Overview of Running Windows or MS-DOS Commands from within SAS
	Using a DATA Step to Issue Conditional Operating System Commands Conditionally
	XWAIT System Option
	XSYNC System Option
	Comparison of the XWAIT and XSYNC System Options

	Terminating a SAS Process
	Ending Your SAS Session

	Interacting with SAS under Windows
	Overview of the SAS Interface
	The SAS Windowing Environment
	Understanding Components of the Main SAS Window
	Getting Help for the Main SAS Window

	Working within Your SAS Session
	Using the Docking View
	Using the Window Bar
	Using Menus
	Changing the SAS Current Folder
	Issuing SAS Commands
	Sending E-Mail Using SAS
	Saving Windows to External Files
	Clearing the Window and Filename
	Defining Keys
	Navigating with Microsoft IntelliMouse
	Using the Clipboard
	Creating Text Highlighting and Special Characters

	Customizing Your SAS Session
	Selecting Fonts
	Setting Session Preferences
	Customizing Your Windowing Environment with Commands
	Customizing Your Windowing Environment with System Options
	Customizing the Toolbar

	Accessing Online Help and Documentation
	Using Microsoft HTML Help
	Getting Help from the Command Bar
	Getting Help in the Dialog Boxes
	Getting Help for a SAS Product
	Getting Help from the Help Menu
	Viewing Output and Help in the SAS Remote Browser

	Accessibility Features in SAS under Windows
	Introduction to Accessibility Features in SAS under Windows
	Accessible Windows and Dialog Boxes
	The ACCESSIBILITY System Option
	Enlarging Fonts
	Enlarging Icons
	Resizing the Docking View in the Main SAS Window
	Sorting Window List Views by a Specific Column
	Resizing the Detail Columns of a List View
	Improving Access to Menus

	Using the SAS Editors
	Using the Enhanced Editor
	Enhanced Editor Features
	Using the Enhanced Editor Window
	Creating Your Own Keywords
	Associating File Extensions with File Types
	Setting Enhanced Editor Options
	Using Keyboard Shortcuts to Customize the Enhanced Editor
	Enabling and Disabling the Enhanced Editor

	Using the Program Editor
	Switching from the Enhanced Editor to the Program Editor
	Opening Files
	Using Line Numbers
	Moving the Insertion Point
	Using Tabs
	Understanding Line Breaks
	Selecting Text
	Deleting Text
	Finding and Replacing Text
	Dragging and Dropping Text
	Drag Scrolling
	Using Rich Text Format Text
	Saving Files
	Saving Program Editor Files Using Autosave
	Understanding Unique Features of the Editor

	Using SAS Files
	Introduction to SAS Files
	What Is a SAS File?
	File Extensions for SAS Files
	SAS Data Sets (Member Type: Data or View)
	SAS Catalogs (Member Type: Catalog)
	SAS Stored Compiled DATA Step Programs (Member Type: Program)
	Access Descriptor Files (Member Type: Access)

	Multi Engine Architecture
	SAS Libraries
	SAS Engines

	Using Data Libraries
	Specifying a Libref
	Assigning SAS Libraries Using the Graphical User Interface
	Assigning SAS Libraries Using the LIBNAME Statement or Function
	Assigning SAS Libraries Using Environment Variables
	Listing Libref Assignments
	Clearing Librefs
	Understanding How Multi-Folder SAS Libraries Are Accessed
	Using the Sasuser Data Library
	Using the Work Data Library
	Using Large Data Sets with Windows and NTFS

	Accessing SAS Files from Multiple SAS Sessions
	Using SAS Files from Other Versions with SAS 9.2 for Windows
	Introduction to Using SAS Files from Other Versions with SAS 9.2 for Windows
	Using Release 6.08 through Release 8.2 Data Sets
	Using Release 6.03 and Release 6.04 SAS Data Sets
	Converting Release 6.08 through Release 6.12 SAS Data Sets
	Using Version 7 and 8 Catalogs in SAS 9.2
	Converting Version 6 SAS Catalogs in SAS 9.2
	Converting Release 6.08 SAS Catalogs to SAS 9.2
	Converting Release 6.03 and Release 6.04 SAS Catalogs to SAS 9.2
	Creating Release 6.08 through Release 6.12 Data Sets

	Using SAS 9.2 Files with Previous Releases
	Using Remote Host SAS Files in SAS 9.2
	Reading BMDP, OSIRIS, and SPSS Files
	BMDP Engine
	OSIRIS Engine
	SPSS Engine

	Transferring SAS Files between Operating Environments
	Accessing Database Files with SAS/ACCESS Software
	Using the SAS ODBC Driver to Access SAS Data from Other Applications

	Using External Files
	About External Files
	Referencing External Files
	Accessing External Files
	Using a Fileref
	Using a Quoted Windows Filename
	Using a File in Your Working Directory

	Accessing External Files with SAS Statements
	Using the FILE Statement
	Using the INFILE Statement
	Using the %INCLUDE Statement

	Accessing External Files with SAS Commands
	Using the FILE Command
	Using the INCLUDE Command
	Using the GSUBMIT Command

	Advanced External I/O Techniques
	Altering the Record Format
	Appending Data to an External File
	Determining Your Drive Mapping
	Reading External Files with National Characters

	Reading Data from the Communications Port
	Communications Port Timeouts
	Options that Relate to Communications Port Timeouts

	Managing SAS Output
	Printing
	Introduction to Printing in SAS within the Windows Environment
	Printing from within a SAS Window
	Previewing Your Output Before You Print
	Using SAS Print Forms
	Printing with SAS Commands
	Sending DATA Step Output to a Printer
	Sending Printed Output to a File
	Printing in Batch Mode
	Default Printer Details
	Canceling a Print Job

	Routing Procedure Output to a Web Browser
	Introduction to Routing Procedure Output to a Web Browser
	Configuring Preferences for HTML Output
	Using the Results Viewer Window

	Routing Procedure Output and the SAS Log to a File
	Introduction to Routing Procedure Output and the SAS Log to a File
	Using the Save As Dialog Box
	Using the PRINTTO Procedure
	Using SAS System Options

	Using the SAS Logging Facility to Write Log Messages to the Windows Event Viewer
	Producing Graphics
	Producing Graphics on Your Display
	Printing Graphics
	Importing Graphics from Other Applications
	Exporting Graphics for Use with Other Applications
	Additional Resources

	Performance Considerations
	Hardware Considerations
	Processor Speed
	Memory
	Disk Space for I/O
	Graphics Adapter

	Windows Features That Optimize Performance
	Controlling SAS Responsiveness
	I/O Enhancements for Multiple Processors
	Memory-Based Libraries

	SAS Features That Optimize Performance
	Network Performance Considerations
	Advanced Performance Tuning Methods
	Improving Performance of the SORT Procedure
	Calculating Data Set Size
	Increasing the Efficiency of Interactive Processing

	Using SAS with Other Windows Applications
	Using Lotus Notes to Distribute SAS Data
	Introduction to Using Lotus Notes with SAS
	The NOTESDB Engine
	Client Requirements

	Populating a Lotus Notes Database Using the DATA Step and SCL Code
	Creating New Notes Documents
	Preparing SAS/GRAPH Output for a Notes Document
	Using SAS with the NotesSQL ODBC Driver
	Retrieving Information from Preexisting Notes Documents

	Using Windows System Tools with SAS
	Introduction to Using Windows System Tools with SAS
	Event Viewer Application Log
	Accessing the Application Log Using Windows Vista
	Accessing the Application Log Using Windows 7
	Accessing the Application Log Using Windows Server 2003
	Accessing the Application Log Using Windows XP
	Viewing a SAS Event
	Sending Messages to the Application Log Using a User-Written Function
	Sending Messages to the Application Log Using LOGEVENT.EXE

	Performance Tools
	Why Use a Performance Monitor?
	Starting the Windows Performance Monitors
	Performance Counters and Objects
	SAS Counters in the Performance and System Monitors
	Selecting SAS Counters to Monitor
	Examples of Monitoring the DATA Step, PROC SORT, and PROC SQL
	Examining the Performance between the DATA and PROC SORT Steps
	Examining a PROC SQL Query

	Starting SAS as a Windows Service
	Overview of Starting SAS as a Windows Service
	Starting the SAS Service Configuration Utility
	Creating an Initialization File
	Installing a SAS Service
	Starting a SAS Service
	Removing a SAS Service

	Using OLE in SAS/AF Software
	About OLE
	SAS/AF Catalog Compatibility
	Inserting an OLE Object in a FRAME Entry
	Introduction to Inserting an OLE Object in a FRAME Entry
	Inserting an OLE Object
	Pasting an OLE Object from the Clipboard
	Reading an OLE Object from an HSERVICE Entry
	Inserting an OLE Object by Dragging It

	Editing an OLE Object within a FRAME Entry
	Invoking OLE Verbs
	Using Linked OLE Objects
	Updating a Linked Object with the Links Dialog Box
	Updating a Linked Object Programmatically

	Converting OLE Objects
	Automating OLE Objects and Applications
	Accessing Array Values Returned by the OLE Automation Server
	Using Value Properties
	Specifying Optional Parameters in OLE Server Methods
	Creating an External OLE Automation Instance
	Example: Populating a Microsoft Excel Spreadsheet with SAS Data

	Using OLE Custom Controls (OCXs) in Your SAS/AF Application
	Inserting an OLE Control in a FRAME Entry
	Registering OLE Controls
	Accessing OLE Control Properties
	Interacting with the OLE Control Using SCL Methods
	Responding to OLE Control Events

	Controlling SAS from Another Application Using OLE
	Introduction to Automating SAS
	Creating an Instance of SAS
	Getting Feedback from the SAS Session
	Examples of Automating SAS with OLE
	Creating a SAS Automation Object
	Determine Whether the SAS Session is Busy
	Toggle the SAS Session between Visible and Invisible
	Set the Main SAS Window Title of the SAS Session
	Assign a SAS Library and Run a SAS Procedure
	End the SAS Session

	Methods and Properties for Use with a SAS OLE Automation Object

	Using Dynamic Data Exchange
	Overview of Dynamic Data Exchange (DDE)
	DDE Syntax within SAS
	Referencing the DDE External File
	Using the DDE Triplet
	Controlling Another Application Using DDE

	DDE Examples
	Using the X Command to Open a DDE Server
	Using DDE to Write Data to Microsoft Excel
	Using DDE to Write Data to Microsoft Word
	Using DDE to Read Data from Microsoft Excel
	Using DDE to Read Data from Microsoft Word
	Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel
	Using the NOTAB Option with DDE
	Using the DDE HOTLINK
	Using the !DDE_FLUSH String to Transfer Data Dynamically
	Using Macro Variables to Issue DDE Commands
	Reading Missing Data

	Using Unnamed and Named Pipes
	Overview of Pipes
	Using Unnamed Pipes
	Introduction to Unnamed Pipes
	Unnamed Pipe Syntax
	Using Redirection Sequences
	Unnamed Pipe Example

	Using Named Pipes
	Introduction to Named Pipes
	Named Pipe Syntax
	Using the CALL RECONNECT Routine
	Using Named Pipes in SCL
	Named Pipe Examples

	Accessing External DLLs from SAS
	Overview of Dynamic Link Libraries in SAS
	The SASCBTBL Attribute Table
	Syntax of the Attribute Table
	The Importance of the Attribute Table

	Special Considerations When Using External DLLs
	Using PEEKLONG Functions to Access Character String Arguments
	Accessing External DLLs Efficiently
	Grouping SAS Variables as Structure Arguments
	Using Constants and Expressions as Arguments to MODULE
	Specifying Formats and Informats to Use with MODULE Arguments
	Understanding MODULE Log Messages

	Examples
	Updating a Character String Argument
	Passing Arguments by Value
	Using PEEKCLONG to Access a Returned Pointer
	Using Structures
	Invoking a DLL Routine from PROC IML

	Special Considerations for SAS/ AF Programmers
	Controlling the Appearance and Behavior of SAS
	Controlling the Main SAS Window
	SAS System Options That Control the Main SAS Window
	SAS Commands That Control the Main SAS Window

	Accessing External DLLs from SAS
	Designing, Saving, and Loading Custom Toolbar Controls
	Invoking SAS/AF Applications Automatically
	Associating Your Own Logo and Icons with Your SAS/AF Application
	Incorporating Electronic Mail into Your SAS/AF Application

	Features of the SAS Language for Windows
	Data Set Options under Windows
	SAS Data Set Options under Windows

	SAS Commands under Windows
	SAS Commands under Windows
	Commands Not Supported in the Windows Operating Environment

	SAS Formats under Windows
	SAS Formats under Windows
	Writing Binary Data
	Accessing User-Written Formats from Earlier Releases to SAS 9.2

	SAS Functions and CALL Routines under Windows
	SAS Functions and Call Routines under Windows

	SAS Informats under Windows
	SAS Informats under Windows
	Reading Binary Data
	Converting User-Written Informats from Earlier Releases to SAS 9.2
	Converting Version 6 User-Written Informats
	Converting Version 5 User-Written Informats

	SAS Procedures under Windows
	SAS Procedures under Windows

	SAS Statements under Windows
	SAS Statements under Windows

	SAS System Options under Windows
	SAS System Options under Windows
	Restricted Options

	Displaying SAS System Option Settings
	Changing SAS System Option Settings
	Syntax for System Options in the SAS Invocation or SAS Configuration File
	Syntax for Concatenating Libraries in SAS System Options
	Syntax for System Options in the OPTIONS Statement

	Processing System Options That Are Set in Several Places
	Summary of System Options for Windows

	Length and Precision of Variables
	Length and Precision of Variables under Windows
	Numeric Variables
	Character Variables

	SAS Macro Facility under Windows
	SAS Macro Facility under Windows
	Automatic Macro Variables
	Macro Statements
	Macro Functions
	Autocall Libraries
	SASAUTOS System Option

	Appendixes
	SCL Methods for Automating OLE Objects
	Summary of OLE Class Methods

	Error Messages for SAS under Windows
	Overview of SAS Error Messages
	Return Codes and Completion Status
	Accessing Files
	Using SAS Features
	Using OLE
	Using Networks
	Resolving Internal Errors
	Resolving Operating System and Windows Error Messages
	Initialization and Termination Error Messages

	Graphics Considerations
	Using TrueType Fonts with SAS/GRAPH Software

	Default Key Settings for Interactive SAS Sessions
	Default Key Definitions under Windows
	Keyboard Shortcuts within the SAS Main Window
	Keyboard Shortcuts within the Enhanced Editor
	Keyboard Shortcuts within Print Preview

	SAS Disk Cleanup Handler
	The SAS Disk Cleanup Handler Utility
	Description
	Requirements
	Using the Disk Cleanup Handler
	Automating Cleanup with Microsoft Task Scheduler

	Recommended Reading
	Recommended Reading

	Glossary
	Index

