Contents

What's New in SAS ODS Graphics Procedures 9.4
Accessibility Features of ODS Graphics Procedures

PART 1 Introduction to the Procedures 1

Chapter 1 • Introduction to SAS ODS Graphics Procedures 3
 About the SAS ODS Graphics Procedures 3
 Using SAS Studio 5
 Components of a Graph 5
 Creating Single-Cell Graphs 7
 Creating Multi-Cell Graphs 8
 Creating Paneled Scatter Plots 9
 Rendering Graphs from GTL Templates or ODS Graphics Editor Files 10
 Producing Graphs That Were Created with ODS Graphics Designer 11
 About ODS Destinations and Styles 12
 About the Examples in This Book 13
 About the SASHELP and the SAS Sample Library 14
 Examples and Resources on the Web 14
 References 15

Chapter 2 • Elements of a Program 17
 A Typical Program 17
 The PROC Step 18
 SAS Statements 20
 ODS Statements 21
 ODS GRAPHICS Statement Options 21
 Using an Annotation Data Set 22
 Using an Attribute Map Data Set 22

Chapter 3 • Overview of Plots and Charts 23
 Alphabetical List of Plots and Charts 24
 Basic Plots and Charts 24
 Fit and Confidence Plots 45
 Distribution Plots 49
 Categorization Plots and Charts 54

Chapter 4 • SAS Statements That Are Used with ODS Graphics Procedures 65
 Overview of SAS Statements That Are Used with ODS Graphics Procedures 65
 Dictionary 66

PART 2 The Procedures 103

Chapter 5 • SGDESIGN Procedure 105
 Overview: SGDESIGN Procedure 105
 Concepts: SGDESIGN Procedure 106
Chapter 12 • Controlling the Appearance of Your Graphs

- **Overview** ... 1333
- **Understanding Styles** .. 1335
- **Specifying Styles** .. 1338
- **Using Plot Options to Control Graph Appearance** 1339
- **Using Data Skins** .. 1343
- **Subpixel Rendering** .. 1346
- **Output for Grouped versus Non-Grouped Data** 1347

Contents

- **Chapter 6 • SGPANEL Procedure** 115
 - **Overview**: SGPANEL Procedure 116
 - **Concepts**: SGPANEL Procedure 117
 - **Syntax**: SGPANEL Procedure 120
 - **Examples**: SGPANEL Procedure 625
- **Chapter 7 • SGPLOT Procedure** 631
 - **Overview**: SGPLOT Procedure 632
 - **Concepts**: SGPLOT Procedure 634
 - **Syntax**: SGPLOT Procedure 636
 - **Examples**: SGPLOT Procedure 1219
- **Chapter 8 • SGRENDER Procedure** 1237
 - **Overview**: SGRENDER Procedure 1237
 - **Syntax**: SGRENDER Procedure 1237
 - **Examples**: SGRENDER Procedure 1244
- **Chapter 9 • SGSCATTER Procedure** 1249
 - **Overview**: SGSCATTER Procedure 1249
 - **Concepts**: SGSCATTER Procedure 1251
 - **Syntax**: SGSCATTER Procedure 1253
 - **Examples**: SGSCATTER Procedure 1299
- **Chapter 10 • Common Concepts** 1305
 - **Overview of the Common Concepts** 1305
 - **Plot Type Compatibility** 1306
 - **Plot Axes** .. 1307
 - **Legends** ... 1308
 - **Automatic Differentiation of Visual Attributes** 1312
 - **Fit Policies for Axis Tick Values, Curve Labels, and Data Labels** 1312
 - **Marker Fills and Outlines** 1315
- **Chapter 11 • Commonly Used Attribute Options** 1319
 - **General Syntax for Attribute Options** 1319
 - **Line Attributes and Patterns** 1320
 - **Fill Attributes** ... 1321
 - **Marker Attributes and Symbols** 1322
 - **Text Attributes** .. 1323
 - **Units of Measurement** 1325
 - **Color-Naming Schemes** 1325

PART 3 Controlling the Procedure Output 1331
Chapter 19 • SG Annotation Macro Dictionary ... 1477
 About the SG Annotation Macros ... 1477
 Using the SG Annotation Macros ... 1478
 Dictionary ... 1481
 Example .. 1530

PART 6 Appendix 1533

Appendix 1 • Units of Measurement .. 1535
Appendix 2 • Reserved Keywords and Unicode Values 1537
Appendix 3 • ODS Graphics Software ... 1541
Appendix 4 • Comparisons with the SAS/GRAPH Procedures 1543
 SAS/GRAPH Output versus ODS Graphics ... 1543
 Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures . 1544
Recommended Reading .. 1547
Glossary ... 1549
Index .. 1551
What's New in SAS ODS Graphics
Procedures 9.4

Overview

The procedures have the following enhancements for SAS 9.4 as well as for the first, second, and third maintenance releases for SAS 9.4:

• general changes
• new statements for the SGPLOT and SGPANEL procedures
• updates to plots and charts
• plot and chart updates in the first maintenance release for SAS 9.4
• plot and chart updates in the second maintenance release for SAS 9.4
• plot and chart updates in the third maintenance release for SAS 9.4
• enhancements to the SGRENDER procedure in the first maintenance release for SAS 9.4
• new gradient legend
• axis updates
• axis table updates
• annotation enhancements in the first maintenance release for SAS 9.4
• attribute map updates

General Changes

Changes to the Default ODS Output

• A new ATTRPRIORITY= option specifies a priority for cycling the attributes for group values. The ATTRPRIORITY= option is available in the ODS GRAPHICS statement.

• HTMLBlue is the default style for the HTML ODS destination when using SAS in the window environment as well as in batch mode. Previously, HTMLBlue was the default style only when using SAS in the window environment.
Unicode Values in User-Defined Formats

Starting with the third maintenance release of SAS 9.4, the ODS Graphics procedures support Unicode values in user-defined formats. The Unicode value must be escaped with the (*ESC*) escape sequence as shown in the following examples:

"(*ESC*){unicode beta}"

"(*ESC*){unicode '03B2'x}"

ODS Graphics does not support the use of a user-defined ODS escape character to escape Unicode values in user-defined formats.

Changes to the Appearance of Grouped Data

The GROUP= option is used to plot data when a classification or grouping variable is available. By default, this option automatically uses the GraphData style elements for the presentation of each unique group value. Previously, if you wanted to change the appearance of the GraphData output, you had to modify the ODS style template.

You can now specify appearance attributes for group values without having to change the ODS style template by using the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options. These options override the corresponding defaults from the current style. The appearance options affect only the procedure in which they are specified.

These options are available in the SGPANEL, SGPLOT, and SGSCATTER procedures. For the SGPLOT and SGPANEL procedures, those options are in the STYLEATTRS statement. For the SGSCATTER procedure, the options are in the procedure statement.

Changes to the Graph's Appearance

The following changes were made in the third maintenance release of SAS 9.4.

- The AXISBREAK= option was added to the STYLEATTRS statement. This option specifies a symbol to use on a broken axis created by the RANGES option. This change applies to the SGPLOT procedure only.

- The AXISEXTENT option specifies the extent of the axis line for all axes. This option was added to the STYLEATTRS statement in the SGPLOT procedure and to the PLOT statement in the SGSCATTER procedure.

- The BACKCOLOR= and WALLCOLOR= options enable you to specify the graph background color and the wall color, respectively. These options were added to the STYLEATTRS statement in the SGPLOT procedure and the SGPANEL procedure. The options were also added to the PROC SGSCATTER statement in the SGSCATTER procedure.
The INSET statement in the SGPANEL procedure adds a text box to each panel cell of the graph. You specify one or more variables to use for the data-driven text inside the inset.

The BLOCK statement creates a plot that highlights ranges. This highlight can extend to the height of the plot area, or it can be represented as blocks along the axis. The BLOCK statement has been added to the SGPLOT and SGPANEL procedures.

The STYLEATTRS statement specifies group attributes for a graph. The statement enables you to change group colors, markers, and so on, within the procedure, and without having to change the ODS style template. See “Changes to the Appearance of Grouped Data” on page viii.

The XAXISTABLE and YAXISTABLE statements create an axis-aligned row or column of textual data. The XAXISTABLE and YAXISTABLE statements place data values at specific locations inside or outside of the axis. The statements are available only in the SGPLOT procedure.

The following new statements were added in the first maintenance release for SAS 9.4.

- FRINGE creates a fringe plot on the X or X2 axis of a plot.
- DROPLINE creates one or more drop lines from data points to one or both axes. The lines can be horizontal, vertical, or both.
- POLYGON creates a polygon plot from data stored in a data set.
- You can define your own marker symbols to be used in plots that contain markers.
 - The SYMBOLCHAR statement defines a marker symbol using a Unicode character.
 - The SYMBOLIMAGE statement defines a marker symbol using an image that exists in the local file system.

The following new statements were added in the second maintenance release for SAS 9.4.

- The GRADLEGEND statement maps the data range of a response variable to a range of colors. See “New Gradient Legend” on page xvi.
- The TEXT statement displays the associated text from the column at the (x, y) location. The text can be numbers or characters.

The following new statements were added in the third maintenance release for SAS 9.4.

- The HBARBASIC and VBARBASIC statements create bar charts that are compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.
- The SPLINE statement creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.
- The HEATMAP and HEATMAPPARM statements create heat maps, in which data values are represented as rectangular regions with varying colors.
Updates to Plots and Charts

General Plot Updates

The following options and enhancements have been added to multiple plot statements in the SGPANEL and SGPLOT procedures:

- The SPLITCHAR= option enables you to split the text for data labels or curve labels when there is not enough room to display the text normally. This option applies to any plot statement that supports data labels or curve labels.

- The SPLITCHARNODROP and SPLITJUSTIFY= options specify the appearance of text that has been split using the SPLITCHAR= option.

 For vertical bar charts, you can specify split options for the data labels that appear above the bars by using the DATALABELFITPOLICY= option. The default for the display of the data labels has been changed to AUTO.

- The STAT= option supports two new values: MEDIAN and PERCENT. This option applies to bar charts, line plots, and dot plots.

 The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT or PROC SGPANEL statement.

- Previously, the DATALABELPOS= option was available only with vertical bar and vertical line plots in the SGPLOT procedure. The option is now also available with a large number of plots.

 The DATALABELPOS= option is also available in the SGSCATTER procedure.

 The DATALABELPOS= option specifies the location of the data labels. This option also turns off the automatic data label placement for collision avoidance.

The following options and enhancements have been added to multiple plot statements in the SGPANEL, SGPLOT, and SGSCATTER procedures:

- When your graph contains filled markers, such as those found in scatter plots, you can now change the appearance of both the marker fill and its outline.

 The following new options are provided:

 - FILLEDOUTLINEDMARKERS specifies that filled markers have a fill and an outline.
 - MARKERFILLATTRS= specifies the attributes of the marker fill.
 - MARKEROUTLINEATTRS= specifies the color and thickness of the marker outline.

 These options are available for the DOT, SCATTER, SERIES, and STEP plots in the SGPANEL and SGPLOT procedures. They are also available for the PLOT and COMPARE statements in the SGSCATTER procedure.

- A new TIP= option adds data tips to various charts and plots. You can apply formats and labels to the data tips using the TIPFORMAT= and TIPLABEL= options.
An AUTOITEMSIZE option changes the size of the markers in legends in proportion to the font size of the legend labels. This change enables you to control the size of the markers in your legends. The AUTOITEMSIZE option has been added to the KEYLEGEND statement in the SGPANEL and SG PLOT procedures. It has also been added to the LEGEND option in the COMPARE and PLOT statements in the SGSCATTER procedure.

Updates to Individual Plots

The following options and enhancements are specific to particular statements:

- An OPAQUE option has been added to the KEYLEGEND statement in the SG PLOT procedure. This feature is useful when the legend is positioned within the graph area, and you want to hide the graphics elements that are behind the legend.

- The SMOOTHCONNECT option has been added to the SERIES plot statement. This option specifies that a smoothed line passes through all vertices.

- Limits can be displayed in bar charts when the bars are grouped.

 In bar charts, you can add limit lines to the plot. Previously, if you used the GROUP= option in the HBAR or VBAR plot statement, the limits were ignored. Now, the limit lines appear if you also specify GROUPDISPLAY=CLUSTER.

- The OUTLINEATTRS= option has been added to bar charts. This option specifies the appearance of the outlines for your bars. The option is available with the HBAR, HBARPARM, VBAR, and VBARPARM statements.

- The LABEL= option in the REFLINE plot now accepts a variable for the label value. This label variable is used only when a variable is used for the REFLINE value.

- In the SG PLOT procedure, bar charts now support assignment of secondary X2 and Y2 axes.

 This change affects the following plot statements: HBAR, HBARPARM, VBAR, and VBARPARM.

- An INTBOXWIDTH= option has been added to box plots in the SG PLOT and SGPANEL procedures. This feature specifies the box width when an interval category variable is specified for the plot.

 This change affects the HBOX and VBOX statements.

- The JITTER option specifies that scatter plot data markers are jittered when multiple observations have the same response value. When used with fit plots, the JITTER option affects only the scatter plot that is drawn with the fit plot.

 This option affects the following plot statements in the SGPANEL and SG PLOT procedures: SCATTER, LOESS, PBSPLINE, REG. In addition, the JITTER option is available in the PLOT and COMPARE statements in the SGSCATTER procedure.

Updates to the PROC Statements

The following options and enhancements are specific to the procedure (PROC) statements:

- The PCTLEVEL= option specifies the scope of graph data that is calculated in percentages. The PCTNDEC= option specifies the number of decimal spaces to be used to calculate the percent values. These options take effect when the procedure contains a plot statement that specifies a percentage statistical calculation.
The PCTLEVEL= option applies to the PROC SGPANEL and PROC SGPLOT statements.

- The ASPECT= option specifies the aspect ratio of the plot's wall area. The ASPECT= option applies to the PROC SGPANEL and PROC SGPLOT statements, and is also available in the PLOT statement in the SGSCATTER procedure.

- The NOSUBPIXEL | SUBPIXEL option specifies whether subpixel rendering should be used for rendering plots and bars. This option applies to the PROC SGPANEL, the PROC SGPLOT, and the PROC SGSCATTER statements.

Updates to Panels in the SGPANEL Procedure

The PANELBY statement PROC SGPANEL support several new options:

- The HEADERATTRS= option specifies text attributes for column headings.
- The NOHEADER option hides the cell headings. This option is useful when a legend is displayed for the plot.
- The SKIPEMPTYCELLS option specifies whether the external axes skip the empty cells in a partially filled grid.
- The SORT= option specifies the sort order of the panel cells.
- The PROPORTIONAL option changes the size of the cells in proportion to the content of the discrete axis.

Plot and Chart Updates in the First Maintenance Release for SAS 9.4

These updates apply to the SGPLOT and SGPANEL procedures:

- The DATASKIN= option has been added to the following plot types: DOT, DROPLINE, HBOX, VBOX, HLINE, VLINE, HIGHLOW, REFLINE, NEEDLE, SERIES, STEP, and VECTOR
- Support has been added to the TIP= option to suppress data tips from a plot. Specify TIP=NONE in the plot statement. The list is as follows: DOT, HBOX, VBOX, HLINE, VLINE, HIGHLOW, HISTOGRAM, REFLINE, NEEDLE, SERIES, STEP, and VECTOR
- Box plots can now be combined with any other basic plot types. You can combine box plots with reference lines and other box plots, as well as with the following plot statements:

<table>
<thead>
<tr>
<th>BAND</th>
<th>HIGHLOW</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK</td>
<td>NEEDLE</td>
<td>VBAR Parm</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>SCATTER</td>
<td>VECTOR</td>
</tr>
</tbody>
</table>
• The DATALABEL option has been added to histograms. This option enables you to display a statistic at the end of each bin.

• When using the CATEGORYORDER= option in the past, the option was ignored if you also specified a group variable. This restriction has been removed. The CATEGORYORDER= is available with the following plots: DOT, HBAR, HLINE, VBAR, and VLINE.

• The SCATTER statement has a new LABELSTRIP option that strips leading and trailing blanks from marker characters or data labels. This feature helps center each string relative to its data point.

• BASELINE= specifies the response axis intercept for the baseline in bar charts. The BASELINEATTRS= option controls the visual attributes of the baseline.

• The WEIGHT= option has been added to box plots, density plots, and histograms.

• The NOERRORCAPS option suppresses the serif cap on error bars when they are displayed in scatter and step plots.

In the SGPANEL procedure, the INSET statement has been enhanced with two new options:

• The SEPARATOR= option specifies one or more characters to place between the data label and the data value.

• The NOLABEL option suppresses the data label from the text.

The following updates apply to the SGPLOT and SGPANEL procedures:

• The WHISKERPCT= option has been added to HBOX and VBOX statements. This option specifies the whisker length in percentile units.

• The TRANSPARENCY= option has been added to the PBSPLINE, REG, and LOESS statements.

• The FILLTYPE= option has been added to bar charts and histograms. This option enables you to specify a color gradient for the fill.

• The GROUP= option has been added to histograms and density plots.

• Bar charts include new options that enable and control the appearance of labels added to bar segments. For a grouped bar chart when GROUPDISPLAY=STACK, these options display and format a label inside each bar segment.

 • SEGLABEL displays a label inside each segment of a stacked bar.
 • SEGLABELATTRS= specifies the text properties of the bar segment label text.
 • SEGLABELFITPOLICY= specifies a policy for fitting the bar segment labels within the bar segments.
• `SEGLABELFORMAT=` specifies the text format used to display the bar segment labels.

• The `JITTERWIDTH=` option has been added to the SCATTER statement.

• The `SERIES` plot statement includes four group options that give you additional control over grouped output.

 • `GROUPLC=` specifies a variable that determines the line colors for the grouped series plot.

 • `GROUPLP=` specifies a variable that determines the line patterns for the grouped series plot.

 • `GROUPMC=` specifies a variable that determines the marker colors for the grouped series plot.

 • `GROUPMS=` specifies a variable that determines the marker symbols for the grouped series plot.

• The `LINELENGTH=` option has been added to the KEYLEGEND statement. This option specifies the length of the line glyph for line entries in the legend.

• The `TYPE=` option has been added to the KEYLEGEND statement. This option specifies which visual attributes to display for legend entries in the legend.

The `SORTORDER=` option specifies the sort order to use for the legend entry labels. This option has been added to the KEYLEGEND statements for the SGPLOT and SGPANEL procedures. The option has also been added to the LEGEND option of the COMPARE, MATRIX, and PLOT statements in the SGSCATTER procedure.

Plot and Chart Updates in the Third Maintenance Release for SAS 9.4

SGPLOT and SGPANEL Procedures

These updates apply to the SGPLOT and SGPANEL procedures:

• The following options have been added to the BUBBLE statement:

 • The `ABSSCALE` option specifies that the `SIZE=` column values are interpreted in the same units as the axes rather than as relative values.

 • The `DRAWORDER=` option specifies whether the bubbles are drawn according to bubble size or according to data order.

• The following options have been added to the KEYLEGEND statement:

 • The `EXCLUDE=` option specifies a list of legend entries to exclude from the display.

 • The `AUTOOUTLINE=`, `FILLASPECT=`, `FILLHEIGHT=`, and `SCALE=` options control the size and appearance of the fill markers in the legend.

• The TEXT statement has the following new options for sizing the font in text markers when a response variable is used to specify the size:

 • `SIZERESPONSE=` specifies a response variable that is used to determine the font size for each text value.
• SIZEMIN= and SIZEMAX= limit the minimum and maximum font size for the text values.
• SIZEMAXRESPONSE= specifies the response value that corresponds to the maximum font size for text markers.
• The GROUPORDER= option supports REVERSEDATA, which orders the groups within a category in the reverse data order of the group variable.
• The SERIES, STEP, and VECTOR statements enable you specify a response variable to control the thickness of the lines in your grouped plot.

The following options were added:
• THICKRESP= specifies a response variable that is used to map a line thickness to each group value.
• THICKMAX= specifies the maximum line thickness when a response variable is used.
• THICKMAXRESP= specifies the response value that corresponds to the maximum line thickness.

• The SERIES and STEP statements support arrowheads added to the lines.

The following options were added:
• ARROWHEADPOS= specifies a position for arrowheads.
• ARROWHEADSCALE= specifies an arrowhead scale factor based on the thickness of the arrow line.
• ARROWHEADSHAPE= specifies a shape for arrowheads.

• The COLORRESPONSE= and COLORMODEL= options were added to the following plots: DOT, HBAR, HBAR BASIC, HBARP ARM, HIGHLOW, SERIES, VBAR, VBAR BASIC, VBAR PARM, VECTOR, WATERFALL (SGPLOT procedure only).

• A COLORSTAT option was added to DOT, HBAR, HBAR BASIC, VBAR, and VBAR BASIC charts. The COLORSTAT option specifies a statistic to determine the chart colors.

• The NOZEROBARS option was added to HBAR, HBAR BASIC, VBAR, VBAR BASIC, and VBAR PARM charts. This option suppresses zero-length bars (bars that have a length of 0).

• In the previous maintenance release, the SERIES plot statement included four group options that give you additional control over grouped output. The third maintenance release enables you to associate those group variables with an attribute map.

The following attribute ID variables were added:
• LCATTRID= associates the GROUPLC= variable with an attribute map ID.
• LPATTRID= associates the GROUPLP= variable with an attribute map ID.
• MCATTRID= associates the GROUPMC= variable with an attribute map ID.
• MSATTRID= associates the GROUPMS= variable with an attribute map ID.
SGPANEL Procedure

These updates apply to the SGPANEL procedure only:

- The HEADERBACKCOLOR= option was added to the PANELBY statement. The option specifies a background color for the cell headers.
- The NOHEADERBORDER option was added to the PANELBY statement. This option removes the border from the cell headings.

Updates to the PROC Statements

The range restriction was removed from the ASPECT option in the SGPLOT statement, the SGPANEL statement, and the PLOT statement in the SGSCATTER procedure. Previously, the range was constrained to 0.0 – 1.

Enhancements to the SGRENDER Procedure in the First Maintenance Release for SAS 9.4

A discrete attribute map can be defined outside of the StatGraph template and applied to the rendered output. The following enhancements have been added to the SGRENDER procedure to support this new feature:

- The DATTRMAP= option specifies a data set that contains discrete attribute map descriptions. The attribute map descriptions are read from the data set and are rendered in the graph output.
- The DATTRVAR statement specifies one or more input variables to be associated with an attribute map at run time.

New Gradient Legend

The ability to generate a gradient legend was added in the second maintenance release for SAS 9.4. A gradient legend maps the data range of a response variable to a range of colors.

Gradient legends can be used with the following plot statements:

- SCATTER, TEXT, BUBBLE, and POLYGON statements in the SGPLOT and SG PANEL procedures
- PLOT, COMPARE, and MATRIX statements in the SGSCATTER procedure

To generate the gradient legend, specify the COLORRESPONSE= option in any of those statements. The COLORRESPONSE= option indicates the numeric variable that is used to map colors to a gradient. The COLORRESPONSE= option is used in conjunction with the GRADLEGEND statement in the SGPLOT and SG PANEL procedures. The GRADLEGEND statement can associate the gradient legend with a plot statement and can specify options for the legend. In the SGSCATTER procedure, a GRADLEGEND=
option is used in the PLOT, COMPARE, and MATRIX statements to control the title, position, and border of the legend.

The INTEGER option was added in the third maintenance release for SAS 9.4. This option specifies that integers are used for the gradient legend.

Axis Updates

Axis Updates in SAS 9.4

The XAXIS, X2AXIS (SGPLOT procedure), and COLAXIS (SGPANEL procedure) statements support several new options:

- The SPLITCHAR= option enables you to split the text for tick values when there is not enough room to display the text normally.
- The SPLITCHARNODROP and SPLITJUSTIFY= options specify the appearance of text that has been split using the SPLITCHAR= option.

All axes in the SGPANEL and SGPLOT procedures have the following changes and new options:

- The default behavior for the tick values has changed for character values. The new default fit policy is SPLITROTATE.
- The LABELPOS= option specifies the position of the axis label. For X axes, the label can be positioned left, right, or center. For Y axes, the label can be positioned top, bottom, or center. Labels can be centered over the plot axis area or over the data area. When positioned at the top or bottom of the Y axis, the label is oriented horizontally (unrotated).
- You can specify split options as part of the fit policy by using the FITPOLICY= option.
- The following enhancements affect minor tick marks.
 - The MINOR option now adds minor tick marks to a linear, log, or time axis. Previously, the option affected only log and time axes.
 - MINORCOUNT= adds minor tick marks and specifies the number of minor tick marks for the axis.
 - For a time axis, MINORINTERVAL= adds minor tick marks and specifies the time interval between minor ticks.
- The DISCRETEORDER= option applies to any plot with a discrete axis. Previously, the option applied only to box plots, dot plots, bar charts, and line plots, or for any axis where TYPE=DISCRETE.
- The VALUES= option specifies tick values for the axis.

The VALUES= option has been enhanced as follows:

- Values can be specified for discrete axes. The values can be numeric or character.
- Logarithmic axis values are now supported. In addition, a new option called LOGVTYPE= controls how the values in the VALUES= option and the MIN= and MAX= options are interpreted. The values can be interpreted as decimal numbers or as exponents.
• A new VALUESDISPLAY option specifies replacement text for the values that are specified in the VALUES= option.
• The TICKVALUEFORMAT= option was renamed VALUESFORMAT=.
• For discrete axes, the COLORBANDS= option specifies the display of alternating color bands corresponding to the discrete axis bins. You can use the COLORBANDATTRS= option to customize the color bands.

The axes in the SGPLOT and SGSCATTER procedures have an enhancement to the REFTICKS option. You can now specify whether labels and values are added to the tick marks. (This feature already exists for the axes in the SGPANEL procedure.) In the SGSCATTER procedure, the REFTICKS option applies to the COMPARE and PLOT statements.

Axis Updates in the Second Maintenance Release for SAS 9.4

In the SGPLOT procedure, the RANGES= option specifies the ranges for a broken axis.

In the SGPLOT and SGPANEL procedures, specifying the MINORCOUNT= option no longer adds minor tick marks to the axis. You can use the MINOR option to add tick marks.

Options have been added for managing grid lines. The following options have been added to the axis statements for the SGPLOT and SGPANEL procedures. They have also been added to the PLOT and COMPARE statements in the SGSCATTER procedure:

• GRIDATTRS= enables you to modify the visual attributes of grid lines.
• MINORGRID enables grid lines for minor tick marks.
• MINORGRIDATTRS= enables you to modify the visual attributes of the minor grid lines.

Axis Updates in the Third Maintenance Release for SAS 9.4

Axes in the SGPANEL and SGPLOT procedures have the following changes and new options starting with the third maintenance release of SAS 9.4:

• The VALUESFORMAT= option now supports discrete and logarithmic axes.
• The VALUESROTATE= option was added to the X axes. This option rotates tick values diagonally or vertically when a ROTATE fit policy is used.
• The VALUESALIGN= option was added to the Y axes. This option specifies the horizontal alignment for all of the tick values that are displayed on the axis.
• Bar charts now support a linear category axis. You can specify TYPE=LINEAR in the axis statement.

Axis Table Updates

Starting with the first maintenance release for SAS 9.4, axis tables support the TEXTGROUP= option, which customizes the text attributes of a graph based on group values. You specify this option only if you are using an attribute map to control visual attributes of the graph. A TEXTGROUPID= option specifies an attribute ID for the TEXTGROUP= option.
The following enhancements were made in the second maintenance release for SAS 9.4.

- `DROPONMISSING` specifies that the entire axis table is dropped when all of the values are missing.
- The `CLASSDISPLAY=` option controls whether the class values are clustered or stacked.
- The following options have been added to give you control over text alignment in Y axis tables:

 - `LABELHALIGN=` specifies the horizontal alignment of the column labels, when displayed.
 - `LABELJUSTIFY=` specifies the justification of the column labels.
 - `VALUEHALIGN=` specifies the horizontal alignment of the column values relative to the column width
 - `VALUEJUSTIFY=` specifies the justification of the column values relative to the column width

The following enhancements were made in the third maintenance release for SAS 9.4.

- Axis tables are supported in the `SGPANEL` procedure. The `COLAXISTABLE` and `ROWAXISTABLE` statements were added.
- The `CLASSORDER=` option controls the order in which the class values are displayed.
- The `LABEL<="text-string">` option enables you to specify the text that is used for table labels.
- The following indentation options have been added. These options apply to the `SGPLOT` procedure only.
 - `INDENT=` specifies a value to be used with the `INDENTWEIGHT=` option to determine the indentation for each text value.
 - `INDENTWEIGHT=` specifies the indentation weight (multiplier) for each observation.
- The `PAD=` option specifies the amount of extra space that is added inside the table border.
- The `NOMISSINGCLASS` option specifies that missing values of the class variable are not included in the axis table.
- The `NOMISSINGCHAR` option suppresses the display of the `MISSING` character (.) for missing numeric values.
- The `TITLEHALIGN=` and `TITLEJUSTIFY=` options were added to the `YAXISTABLE` and `ROWAXISTABLE` statements. These options specify title alignment and justification, respectively.

Annotation Updates in the First Maintenance Release for SAS 9.4

- You can use annotation macros within a SAS DATA step to simplify the process of creating annotation observations.
• Annotations now support the URL option for linking to websites.
• New LINESTYLEELEMENT=, FILLSTYLEELEMENT=, and TEXTSTYLEELEMENT= options enable you to specify style elements for the lines, fills, and text annotations.

Attribute Map Updates

Starting in the first maintenance release of SAS 9.4, attribute maps support the following new variables:
• LINETHICKNESS=, MARKERSIZE=, and TRANSPARENCY=
• TEXTCOLOR=, TEXTFAMILY=, TEXTSTYLE=, TEXTSTYLEELEMENT=, and TEXTWEIGHT=. These attributes can be applied only to axis tables.

Starting with the third maintenance release of SAS 9.4, attribute maps support the following features:
• Range attribute maps are now available. Range attribute maps enable you to map ranges of continuous numeric values to graphical properties.
• The following variables were added to discrete attribute map data sets:
 • NOCASE= specifies whether value comparisons in the attribute map are case sensitive.
 • SHOW= specifies whether values in the attribute map are displayed in the legend. You can display all attribute map values or only the values for which there is data.
Accessibility Features of ODS Graphics Procedures

Overview

The ODS Graphics Procedures has a command-line-only interface that is accessible using a keyboard or alternative keyboard assistive technologies. For this release, no accessibility testing was done and no additional features were added to address accessibility. If you have specific questions about the accessibility of SAS products, send them to accessibility@sas.com or call SAS Technical Support.

Documentation Format

Please contact accessibility@sas.com if you need this document in an alternative digital format.
Part 1

Introduction to the Procedures

Chapter 1
Introduction to SAS ODS Graphics Procedures 3

Chapter 2
Elements of a Program .. 17

Chapter 3
Overview of Plots and Charts ... 23

Chapter 4
SAS Statements That Are Used with ODS Graphics Procedures . . 65
Chapter 1
Introduction to SAS ODS Graphics Procedures

About the SAS ODS Graphics Procedures

The ODS Graphics procedures, sometimes called ODS Statistical Graphics procedures, use ODS Graphics functionality to produce plots for exploratory data analysis and for customized statistical displays. The procedures provide a simple, high-level syntax that enables you to produce sophisticated graphs by using a wide array of plot types and layouts. You can create scatter plots, histograms, bar charts, box plots, classification panels, scatter plot matrices, and many other types of statistical and business graphs. Your graphs can have titles, footnotes, legends, and other graphics elements.

The procedures support statistical analysis and can create simple or complex graphical views of your data. Though the procedures were initially designed to facilitate the production of standard statistical graphs, they are also well suited for the production of non-statistical or business graphs.

The ODS Graphics procedures create graphs that are based on the Graph Template Language (GTL). However, you do not need to know the details of templates and the
GTL in order to use the ODS Graphics procedures. With very little coding effort, you can use the procedures to create the most commonly used graphs that are supported by the GTL.

There are five ODS Graphics procedures. Each has a specific purpose:

SGPLOT
creates single-cell plots with a variety of plot and chart types and overlays.

SGPANEL
creates classification panels for one or more classification variables. Each graph cell in the panel can contain either a simple plot or multiple, overlaid plots.

Note: The SGPLOT and SGPANEL procedures largely support the same types of plots and charts. For this reason, the two procedures have an almost identical syntax. The main distinction between the two procedures is that the SGPANEL procedure produces a panel of graphs, one for each level of a classification variable.

SGSCATTER
creates scatter plot panels and scatter plot matrices with optional fits and ellipses.

SGRENDER
produces graphs from graph templates that are written in the GTL. You can also render a graph from a SAS ODS Graphics Editor (SGE) file.

SGDESIGN
creates graphical output based on a graph file that has been created by using the ODS Graphics Designer application.

An ODS destination must be open to create output from these procedures. By default, in the SAS windowing environment, the ODS HTML destination is open. In SAS Studio, the ODS HTML5, ODS RTF, and ODS PDF destinations are open by default. In either case, the HTML output is displayed automatically when you execute the procedure. You can use the ODS destination options and the ODS GRAPHICS statement options to control many aspects of your graph output. For more information, see Chapter 13, “Managing Your Graphics with ODS,” on page 1367.

The procedures have two facilities that enable you to modify graph output:

- The SG annotation feature enables you to add text, shapes, images, and other annotations to graph output.
- SG attribute maps enable you to control the visual attributes that are applied to specific data values in your graphs. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country by name. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data rather than the position of the data in the data set.

The ODS Graphics procedures enable you to create complex statistical graphs that use the principles of effective graphics to accurately communicate the results of your analysis to your consumers. The minimal coding required enables you to focus on your statistical analysis instead of the visual appearance of your graphs.

See Also

- “Overview of ODS Graphics Software” on page 1541

1 For more information about the principles of effective graphics, see Cleveland (1993) and Robbins (2005).
Using SAS Studio

SAS Studio is a web interface to the SAS system. Using SAS Studio, you can write programs as well as access your SAS resources such as data, libraries, and programs. You can also use the predefined tasks in SAS Studio to create basic graphs and generate the SAS code for those graphs.

By default, output is generated in the HTML5, PDF, and RTF formats. After running your code, you can download and open the generated output for these formats.

You can change the default output to specify only the output that you want. You can also change the default style for your output to any of the ODS styles that are available. You make these changes in the Preferences window in SAS Studio.

If you want greater control over your graphic output, you can customize the output environment in SAS Studio.

For a summary that explains both the default output environments and the custom output environments, see “SAS Studio and ODS” in SAS Output Delivery System: User’s Guide. For instructions about using SAS Studio, see SAS Studio: User’s Guide.

Components of a Graph

In general, a graph is made of up of the following parts:

- titles and footnotes
- one or more cells that contain a composite of one or more plots
- legends, which can reside inside or outside a cell
The following figure shows the different parts of a graph:

Figure 1.1 Components of a Graph

1. **Graph**
 a visual representation of data. The graph can contain titles, footnotes, legends, and one or more cells that have one or more plots.

2. **Cell**
 a distinct rectangular subregion of a graph that can contain plots, text, and legends.

3. **Title**
 descriptive text that is displayed above any cell or plot areas in the graph.

4. **Plot**
 a visual representation of data such as a scatter plot, a series line, a bar chart, or a histogram. Multiple plots can be overlaid in a cell.

5. **Legend**
 refers collectively to the legend border, one or more legend entries (where each entry has a symbol and a corresponding label) and an optional legend title.

6. **Axis**
 refers collectively to the axis line, the major and minor tick marks, the major tick mark values, and the axis label. Each cell has a set of axes that are shared by all the plots in the cell. In multi-cell graphs, the columns and rows of cells can share common axes if the cells have the same data type.

7. **Footnote**
Creating Single-Cell Graphs

The SGPLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is assigned to a different vertical axis. Data labels have been added for easy reference.

```
title "Power Generation (GWh)";
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
xaxis type=discrete;
series x=year y=coal / datalabel;
series x=year y=naturalgas / datalabel y2axis;
run;
title;
```

The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```
proc sgplot data=sashelp.class;
histogram height;
density height;
density height / type=kernel;
run;
```

See Also

Chapter 7, “SGPLOT Procedure,” on page 631
Creating Multi-Cell Graphs

The SGPANEL procedure creates a panel for the values of one or more classification variables. Each graph cell in the panel can contain either a single plot or multiple overlaid plots.

The SGPANEL procedure supports most of the plots and overlays that the SGPLOT procedure supports. For this reason, the two procedures have an almost identical syntax. As with the SGPLOT procedure, options are available for specifying colors, marker symbols, and other attributes.

The procedure syntax supports four types of panel layouts: PANEL, LATTICE, COLUMNLATTICE, and ROWLATTICE.

The following example creates a panel of loess curves using the default PANEL layout. In the PANEL layout, each graph cell represents a specific crossing of values for one or more classification variables. A label above each cell identifies the crossing of values that is represented in the cell. By default, cells are created only for crossings that are represented in the data set.

```sas
title1 "Cholesterol Levels for Age > 60";
proc sgpanel data=sashelp.heart(where=(AgeAtStart > 60)) ;
panelby sex / novarname;
loess x=weight y=cholesterol / clm;
run;
title1;
```

The following example creates a panel of box plots in a LATTICE layout. The graph cells are arranged in rows and columns by using the values of two classification variables. Labels above each column and to the right of each row identify the classification value that is represented by that row or column. A cell is created for each crossing of classification values.

```sas
title1 "Distribution of Cholesterol Levels";
proc sgpanel data=sashelp.heart ;
panelby weight_status sex / layout=lattice novarname;
hbox cholesterol ;
run;
title1;
```

For more information about the SGPANEL procedure and the procedure syntax, see Chapter 6, “SGPANEL Procedure,” on page 116.
The SGSCATTER procedure creates a paneled graph for multiple combinations of variables.

The procedure syntax supports the following features:

- three types of graph layouts: PLOT, COMPARE, and MATRIX
- basic scatter plots
- fit and confidence plots: loess curves, regression curves, penalized B-spline curves, and ellipses
- distribution plots: histograms and density curves (in the diagonal cells of a matrix)
- legends

The following example creates a panel using the PLOT layout. The PLOT statement creates a paneled graph of scatter plots where each cell has its own independent set of axes.

```sas
proc sgscatter data=sashelp.cars;
plot mpg_highway*weight msrp*horsepower / group=type;
run;
```

The following example creates a panel using the COMPARE layout. The COMPARE statement creates a paneled graph that uses common axes for each row and column of cells. Cells are created for all crossing of the X and Y variables.

```sas
proc sgscatter data=sashelp.cars;
   compare y=mpg_highway
      x=(weight enginesize horsepower )
   / group=type;
run;
```

The following example creates a panel using the MATRIX layout. The MATRIX statement creates a matrix of scatter plots where each cell represents a different
combination of variables. In the diagonal cells, you can place labels or histograms with or without density curves.

```
proc sgscatter data=sashelp.iris
  (where=(species eq "Virginica"));
matrix petallength petalwidth sepallength
  / ellipse=(type=mean)
    diagonal=(histogram kernel);
run;
```

For more information about the SGSCATTER procedure and the procedure syntax, see Chapter 9, “SGSCATTER Procedure,” on page 1249.

Rendering Graphs from GTL Templates or ODS Graphics Editor Files

The SGRENDER procedure creates graphical output from templates that are created using the Graph Template Language (GTL). You can use the GTL to create many different types of plots, paneled graphs, and matrices, some of which cannot be created with the ODS Graphics procedures.

The SGRENDER procedure can also produce graphical output from graphs that were edited in the SAS ODS Graphics Editor. An ODS Graphics Editor file (SGE) is created in SAS by using the SGE = ON option in the ODS destination statement. The SGRENDER procedure enables you to run one or more graphs in batch mode and render the graphs to any ODS destination using any of the supported ODS options. For more information about the editor, see the *SAS ODS Graphics Editor: User's Guide*.
The following example shows a layout that you can create by using the TEMPLATE procedure and the SGRENDER procedure.

```
proc template;
  define statgraph surface;
  begingraph;
    layout overlay3d;
      surfaceplotparm x=height y=weight z=density;
    endlayout;
  endgraph;
end;
run;

proc sgrender data=sashelp.gridded template=surface;
run;
```

For more information about the SGRENDER procedure, see Chapter 8, “SGRENDER Procedure,” on page 1237. For more information about the GTL, see SAS Graph Template Language: User's Guide.

Producing Graphs That Were Created with ODS Graphics Designer

The SGDESIGN procedure creates graphical output based on a graph file (SGD) that has been created by using the SAS ODS Graphics Designer application.

Here are the main features of the SGDESIGN procedure:

- By default, the procedure uses the data set or data sets that are currently referenced by the SGD file.
- The procedure can generate any graph type that can be created in the ODS Graphics Designer.
You can render the graph to any ODS destination by using standard ODS syntax. When it renders the graph, the procedure applies the style of the active destination rather than the style that was used in the SGD file.

As with all the ODS Graphics procedures, you can use the ODS GRAPHICS statement options to control many aspects of your graphics.

If the SGD file has been defined with dynamic variables, these variables can be initialized with the DYNAMIC statement of the procedure. You can use dynamic variables to generate the same graph with different data variables, a different data set, and different text elements.

The procedure supports SAS statements such as FORMAT, LABEL, BY, and WHERE. These statements can be applied only if the DATA= option is used with the procedure.

For more information about the SGDESIGN procedure and the procedure syntax, see Chapter 5, “SGDESIGN Procedure,” on page 105.

About ODS Destinations and Styles

ODS manages all output created by the procedures and enables you to control the output destination and format. ODS also enables you to control the style and other output features.

About ODS Destinations

ODS destinations determine where your graph output is sent and how the output is formatted. For example, in the SAS windowing environment, the HTML destination creates an HTML file that points to the graph image file. The LISTING destination sends output to an image file. The output image can be displayed by opening the image file from the Results window.

For creation of ODS graphs, a valid ODS destination must be open. You can open destinations by specifying an ODS destination statement. The HTML destination is open by default. In SAS Studio, the ODS HTML5, ODS RTF, and ODS PDF destinations are open by default. If you keep the default destination open and open another, the resultant output is sent to all open destinations. With the exceptions of the HTML and LISTING destinations, you must also close the destination before output is generated.

The ODS destination statement is used at the beginning and end of the program to open and close destinations.

For example, the following statements open and close an ODS LISTING destination.

```sas
ods listing; /* opens the destination */
/* procedure statements and other program elements here */
ods listing close; /* closes the destination */
```

Depending on the options available for the destination, you can specify options such as the filename or the path to an output directory. For more information, see “Specifying ODS Destinations” on page 1368.

About ODS Styles

ODS styles determine the overall appearance of your output. By default, ODS applies a style to all output. A style is a template, or set of instructions, that determines the colors,
fonts, line styles, fill colors, and other presentation aspects of your output. Each
destination is associated with a default style. For example, the default style for the
HTML destination is HTMLBlue.

The ODS Graphics procedures automatically obtain their default appearance attributes
from the current ODS style. However, you can use appearance options in your plot
statements to override the default style attributes.

To change the style that is applied to your output, specify the STYLE= option on your
ODS destination statement.

For example, suppose you want to change the overall look of your graph for the HTML
destination to the Analysis style. Do this by specifying STYLE=ANALYSIS in the ODS
HTML destination statement as follows:

```sql
ods html style=analysis;
```

Note: In SAS Studio, you can specify the style for the default ODS destinations in the
Preferences window.

For more information, see Chapter 12, “Controlling the Appearance of Your Graphs,” on
page 1333.

SAS ships predefined styles. Some of these predefined styles are described in
“Recommended Styles” on page 1335. To see all available styles, see “Viewing a Style
Template” on page 1338.

About the Examples in This Book

The example programs that are shown in this document often provide all of the code that
you need to generate the graphs that are shown in the figures. We encourage you to copy
and paste the example code into your SAS session and generate the graphs for yourself.
The examples are written to be runnable in the SAS windowing environment and in SAS
Studio. Unless otherwise noted, the examples use the default ODS destination. If you
generate the example graphs using an ODS HTML destination, they are typically
rendered as 640 pixel by 480 pixel images using the HTMLBlue style. Some of the
examples show you how to change the graph size and style. The graphs shown for those
elements are rendered in the specified size and style.

Because of size limitations, the graphs in this document are typically not shown in their
default size of 640 pixels by 480 pixels. They are scaled down to meet the size
requirements of our documentation production system. When graphs are reduced in size,
the smaller graphs might have scaled down font sizes. Also, their numeric axes might
display the tick values differently. Thus, the graphs that you generate from the example
programs will not always look identical to the graphs that are shown in the figures.
However, both graphs will accurately represent the data.

When you produce your own graphical output, you can change the graph size and
attributes, if needed. You can use the ODS destination options and the ODS GRAPHICS
statement options to control many aspects of your graph output. For more information,
see Chapter 13, “Managing Your Graphics with ODS,” on page 1367.
About the SASHELP and the SAS Sample Library

Many examples process sample data contained in a SAS data set that is stored in the SASHELP library. Each example specifies the data set name. To see a brief description of any SAS data set in the SASHELP library, as well as output displaying the first five observations in each data set, see SASHELP Data Sets.

To access the SASHELP library in SAS, select View ⇒ Explorer. In the Explorer window, select Libraries ⇒ Sashelp.

Note: In SAS Studio, you can access the SASHELP library in the Libraries section of the navigation pane.

Many of the examples in this guide also reside in the SAS Sample Library. These examples include the name of the sample library member in their syntax description.

How you access the code in the sample library depends on how it is installed at your site.

• In most operating environments, you can access the sample code through the SAS Help facility. Select Help ⇒ SAS Help and Documentation. On the Contents tab, select Learning to Use SAS ⇒ Sample SAS Programs ⇒ Base SAS Samples.

• In other operating environments, the SAS Sample Library might have been installed in your file system. If the SAS Sample Library has been installed at your site, ask your on-site SAS support personnel where the library is located.

Note: The SAS Sample Library is not available in SAS Studio. If you are using SAS Studio, you can download the Base SAS samples in the SAS Sample Library in zipped form from the documentation page for the Base SAS Output Delivery System (ODS) Graphics Suite on support.sas.com.

Examples and Resources on the Web

The SAS website contains a large number of examples that can help you visualize and code your graphs. The examples cover a range of SAS technologies including the ODS Graphics procedures.

• Graphically Speaking is a blog by Sanjay Matange focused on using ODS Graphics for data visualization in SAS. The blog covers topics related to the ODS Graphics procedures, the SAS Graph Template Language, and the SAS ODS Graphics Designer.

 http://blogs.sas.com/content/graphicallyspeaking/

• The Graphics Samples Output Gallery is a collection of graphs organized by SAS procedure. The graphs link to the source code in SAS Samples & Notes. The gallery is maintained by SAS Technical Support.

 http://support.sas.com/sassamples/graphgallery/index.html

• The Focus Area Graphics site provides a simple interface to business and analytical graphs. The site is maintained by the SAS Data Visualization team.

 http://support.sas.com/md/dataviz/index.htm
Samples & SAS Notes contains an abundance of searchable examples. You can browse by topic, search for a particular note, search for a particular technology such as SGLOT, and conduct other searches.

http://support.sas.com/notes/index.html

In addition, you can share your questions, suggestions, and experiences related to graphics on the SAS/GRAPH and ODS Graphics community site. See https://communities.sas.com/community/support-communities/sas_graph_and_ods_graphics.

References

Chapter 2
Elements of a Program

A Typical Program

Your programs must include at least one procedure (PROC step), which in turn contains a number of statements related to the procedure. The programs can also include ODS statements, ODS GRAPHICS statements, and Base SAS statements. In addition, the programs can specify an annotation data set or an attribute map data set.
The sample program below identifies the basic elements of a typical program.

```
ods html style=statistical;
ods graphics on / width=4.5in;
title "Electric Power Generation";
proc sgplot data=sashelp.electric;
  where (year >= 2002) and (customer="Residential");
  series x=year y=coal / datalabel;
  series x=year y=naturalgas / datalabel y2axis;
  xaxis type=discrete;
  yaxis label="Coal (GWh)";
  y2axis label="Natural Gas (GWh)";
run;
title;
ods graphics on / reset=all;
ods html style=htmlblue;
```

Here is the output for the sample program.

![Electric Power Generation Chart]

The following sections describe each element of the program in more detail and explain how the elements relate to one another.

The PROC Step

The descriptions in this topic refer to the example that is shown in “A Typical Program” on page 17.
About the PROC Step

A group of SAS procedure statements is called a PROC step. The PROC step consists of the following:

- a beginning procedure (PROC) statement with options
- typically, statements specifying plot types, variables, and options
- an ending RUN statement

These statements can identify and analyze the data in SAS data sets. They can generate the graphics output and control the appearance of the output. Statements can define variables and perform other operations on your data. You can also specify global statements and options within the PROC step.

Procedure Statements and Options

The procedure statement identifies which procedure you are invoking, such as the SGPLOT procedure, the SGPANEL procedure, and so on.

The statement also specifies which input data set is to be used. A data set is not required for all of the procedures. For example, the SGRENDER procedure defaults to the most recently created SAS data set if none is provided. The SGDESIGN procedure defaults to the data set or data sets that are currently defined in the SGD file.

The statement can include options that are related to the procedure. For example, the DESCRIPTION= option can be used with several procedures to provide a description for the output image.

Plot Statements and Options

Plot statements are used within the procedure to identify the type of plot that you want the procedure to produce. The SGPLOT and SGPANEL procedures require at least one plot statement.

Multiple plot statements can be used, as shown in the example. A SERIES statement is used to create a series plot that shows power generation from coal. A second SERIES statement creates a series plot that shows power generation from natural gas.

Options are available for specifying colors, marker symbols, and other attributes of plot features. In the example, both series plots specify that data labels are displayed. The second SERIES statement uses the Y2AXIS option to plot natural gas power output along the Y axis on the right side of the plot.

The SGPLOT procedure also enables you to add a text inset to a plot using the INSET statement (not shown in the example). The INSET statement adds a text box within the axes of the plot. Options are available for specifying the visual attributes of the text box and the text.

(Optional) Legend Statement and Options

By default, legends are created automatically for some plots, depending on their content. The graph shown in the example has an automatically generated legend.
You can manually add a legend to the graph for the SGPLOT, SGPANEL, and SGSCATTER procedures. When you manually add a legend, options are available for specifying the legend title, its position in the graph, and other attributes.

(Optional) Axis Statements and Options

The SGPLOT and SGPANEL procedures contain statements that enable you to change the type and appearance for the axes of the graph. By default, the type of each axis is determined by the types of plots that use the axis and the data that is applied to the axis. You can change the type of axis that is used for a plot. For example, to display independent data values rather than a range of numeric values on the axis, specify the TYPE=DISCRETE option. (Not all plot types support discrete axes.)

The SGPLOT procedure supports the use of secondary axes, as shown in the example. Secondary axes are denoted as X2 and Y2 axes. The secondary axes support the same options as the primary axes.

When you use an axis statement, options are available for showing or hiding axis features, such as ticks and labels, and for specifying other attributes. The graph shown in “A Typical Program” on page 17 has three axis statements. The first statement changes the X axis to be discrete. The other two statements change the labels for the Y and Y2 axes.

Other Required Statements

The SGPANEL and SGSCATTER procedures include some important statements that are not shown in the example. These statements are required with the procedure statement.

The SGPANEL procedure requires a PANELBY statement. This statement specifies one or more classification variables for the panel, the layout type, and other options for the panel. For more information, see “PANELBY Statement” on page 127.

The SGSCATTER procedure requires one of these three statements:

- PLOT creates a paneled graph of scatter plots where each graph cell has its own independent set of axes.
- COMPARE creates a shared axis panel, also called an MxN matrix.
- MATRIX creates a scatter plot matrix.

For more information, see Concepts: SGSCATTER Procedure on page 1251.

SAS Statements

The ODS Graphics procedures support a number of SAS statements. Some of these, such as the TITLE statement, are global statements.

A global statement is a statement that you can specify anywhere in a SAS program. A global statement sets values and attributes for all the output created after that global statement is specified in the program. The specifications in a global statement are not confined to the output generated by any one procedure. However, they do apply to all the output generated thereafter in the program, unless they are overridden by a procedure option or another global statement.
As shown in “A Typical Program” on page 17, the TITLE statement is used toward the beginning and end of the program. The first statement specifies the title. The second statement cancels the current title.

The example program also uses a WHERE statement to subset the data that is used in the graph. In the example, the WHERE statement selects observations based on their date (2002 or greater) and the type of customer (residential).

For more information, see Chapter 4, “SAS Statements That Are Used with ODS Graphics Procedures,” on page 65.

ODS Statements

The ODS Graphics procedures use ODS destination statements to control where the output goes and how it looks. Although ODS statements are not required in every program, they are necessary if you want to generate graphs for destinations other than the default HTML destination. Some other destinations include LISTING, RTF, and PDF.

You can use the STYLE= option in the ODS destination statement to change the style that is applied to your output. As shown in “A Typical Program” on page 17, the ODS destination statement is used at the beginning and end of the program to modify the default style. The beginning statement specifies a different style. The end statement sets the HTML style back to its default of HTMLBlue.

Note: In SAS Studio, you can specify the style for the default ODS destinations in the Preferences window.

The ODS destination statement can also be used to open a different destination. Depending on the options available for the destination, you can specify other features such as the name of the output file or the directory where images are stored.

An ODS destination must be open to create output from the procedures. If you want to use a destination other than the default, you should always open the destination before calling the procedure. Opening a non-default destination results in output being sent both to HTML by default as well as to the additional specified destination. Conserve system resources by using the ODS destination statement at the end of the SAS program to close a destination that was opened in that program.

See Also

• “Working with Styles” in SAS Output Delivery System: Procedures Guide

ODS GRAPHICS Statement Options

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. The ODS GRAPHICS statement is a global statement that can be used anywhere in your program. The settings that you specify remain in effect for all graphics until you change or reset these settings with another ODS GRAPHICS statement.
As shown in “A Typical Program” on page 17, the ODS GRAPHICS statement is used at the beginning and end of the program to modify the size of the graph. The beginning statement specifies the size. The end statement set all options back to their defaults.

See Also

“ODS GRAPHICS Statement” on page 71

Using an Annotation Data Set

The SG annotation feature enables you to add shapes, arrows, text, images, and other annotations to graph output.

Two main steps are required to add annotation elements to a graph:

1. Create an SG annotation data set, which contains the commands for creating the annotation elements.
2. Modify the procedure to use the SG annotation data set. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures.

For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

Using an Attribute Map Data Set

The attribute map feature enables you to control the visual attributes that are applied to specific data values in your graphs. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country by name.

Attribute maps apply only to group data. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data instead of the position of the data in the data set.

Two main steps are required for attribute mapping:

1. Create an SG attribute map data set, which associates data values with particular visual attributes. Each observation defines the attributes for a group value.
2. Modify the procedure and its plot statements to use the data in the SG attribute map. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures (not all plot statements support attribute maps).

For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
Chapter 3
Overview of Plots and Charts

<table>
<thead>
<tr>
<th>Alphabetical List of Plots and Charts</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Plots and Charts</td>
<td>24</td>
</tr>
<tr>
<td>About Basic Plots and Charts</td>
<td>24</td>
</tr>
<tr>
<td>About Band Plots</td>
<td>25</td>
</tr>
<tr>
<td>About Block Plots</td>
<td>26</td>
</tr>
<tr>
<td>About Bubble Plots</td>
<td>27</td>
</tr>
<tr>
<td>About Fringe Plots</td>
<td>28</td>
</tr>
<tr>
<td>About Heat Maps</td>
<td>28</td>
</tr>
<tr>
<td>About High-Low Plots</td>
<td>30</td>
</tr>
<tr>
<td>About Lines</td>
<td>32</td>
</tr>
<tr>
<td>About Needle Plots</td>
<td>35</td>
</tr>
<tr>
<td>About Scatter Plots</td>
<td>36</td>
</tr>
<tr>
<td>About Series Plots</td>
<td>38</td>
</tr>
<tr>
<td>About Spline Plots</td>
<td>39</td>
</tr>
<tr>
<td>About Step Plots</td>
<td>40</td>
</tr>
<tr>
<td>About Text Plots</td>
<td>41</td>
</tr>
<tr>
<td>About Text Insets</td>
<td>42</td>
</tr>
<tr>
<td>About Vector Plots</td>
<td>44</td>
</tr>
<tr>
<td>Fit and Confidence Plots</td>
<td>45</td>
</tr>
<tr>
<td>About Fit and Confidence Plots</td>
<td>45</td>
</tr>
<tr>
<td>About Ellipse Plots</td>
<td>45</td>
</tr>
<tr>
<td>About Loess Plots</td>
<td>46</td>
</tr>
<tr>
<td>About Penalized B-Spline Plots</td>
<td>47</td>
</tr>
<tr>
<td>About Regression Plots</td>
<td>48</td>
</tr>
<tr>
<td>Distribution Plots</td>
<td>49</td>
</tr>
<tr>
<td>About Distribution Plots</td>
<td>49</td>
</tr>
<tr>
<td>About Box Plots</td>
<td>49</td>
</tr>
<tr>
<td>About Density Plots</td>
<td>51</td>
</tr>
<tr>
<td>About Histograms</td>
<td>52</td>
</tr>
<tr>
<td>Categorization Plots and Charts</td>
<td>54</td>
</tr>
<tr>
<td>About Categorization Plots and Charts</td>
<td>54</td>
</tr>
<tr>
<td>About Bar Charts</td>
<td>54</td>
</tr>
<tr>
<td>About Dot Plots</td>
<td>59</td>
</tr>
<tr>
<td>About Line Charts</td>
<td>61</td>
</tr>
<tr>
<td>About Waterfall Charts</td>
<td>62</td>
</tr>
</tbody>
</table>
Alphabetical List of Plots and Charts

The following table lists all of the plots and charts in alphabetical order for easy access. Select a plot or chart to see its description.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band plot</td>
<td>Line, parameterized</td>
</tr>
<tr>
<td>Bar chart</td>
<td>Line, reference</td>
</tr>
<tr>
<td>Block plot</td>
<td>Loess plot</td>
</tr>
<tr>
<td>Box plot</td>
<td>Needle plot</td>
</tr>
<tr>
<td>Bubble plot</td>
<td>Penalized B-Spline plot</td>
</tr>
<tr>
<td>Density plot</td>
<td>Regression plot</td>
</tr>
<tr>
<td>Dot plot</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>Ellipse plot</td>
<td>Series plot</td>
</tr>
<tr>
<td>Fringe plot</td>
<td>Spline plot</td>
</tr>
<tr>
<td>Heat map</td>
<td>Step plot</td>
</tr>
<tr>
<td>High-Low plot</td>
<td>Text Inset</td>
</tr>
<tr>
<td>Histogram</td>
<td>Text plot</td>
</tr>
<tr>
<td>Line chart</td>
<td>Vector plot</td>
</tr>
<tr>
<td>Line, drop</td>
<td>Waterfall chart</td>
</tr>
</tbody>
</table>

See Also

“Plot Type Compatibility” on page 1306

Basic Plots and Charts

About Basic Plots and Charts

You can use the SGPLOT and SGPANEL procedures to produce basic plots and charts. The plot and chart statements include options for controlling how the output is displayed. Many of the options are unique to the particular plot or chart. However, some general options apply to most of the basic plots and charts.

For example, options enable you to do the following:

• specify colors, line attributes, and other visual features.

• group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

• use a secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

• reference an ID variable in attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
The basic plots and charts are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

\begin{verbatim}
ods graphics on / width=4in;
ods graphics on / width=4.5in;
\end{verbatim}

See Also

“Plot Type Compatibility” on page 1306

About Band Plots

A band plot creates a band that highlights part of the plot and shows upper and lower limits. The input data should be sorted by the X or Y variable.

The following examples show upper and lower mean weight values for a class of students. The first two examples use the SGPLOT procedure to show the same band plotted along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a matrix that is paneled by gender.

```
proc sgplot data=sashelp.classfit;
where age > 12;
band x=name lower=lowermean upper=uppermean;
run;
title;
```

```
proc sgplot data=sashelp.classfit;
where age > 12;
band y=name lower=lowermean upper=uppermean;
run;
title;
```
Options are available that enable you to customize the band plot and enhance its appearance. For example, you can do the following:

- add labels to the upper and lower edges of the band, specify how the labels are positioned, and set other attributes for the labels
- specify fill and outline attributes
- specify legend labels and plot transparency

Note: This list does not include all available options.

See Also

- “BAND Statement” on page 140 (SGPANEL procedure)
- “BAND Statement” on page 651 (SGPLOT procedure)

About Block Plots

Block plots show continuous ranges of data that have the same BLOCK= value. Block plots are available in the SGPLOT and SGPANEL procedures.

In the following example, blocks represent students of different ages.

Block plots can also be used with an interval (numeric linear or time) X variable. Options are available that enable you to customize the block plot and enhance its appearance. For example, you can do the following:

- specify attributes for the blocks, such as outlines, fill color, and transparency.
- alternate the fill color used by the blocks.
• control the display of the text within the blocks. For example, you can split block text into multiple lines in order to fit within the containing block.

Note: This list does not include all available options.

About Bubble Plots

Bubble plots show the relative magnitude of the values of a variable. The values of two variables determine the position of the bubble on the plot, and the value of a third variable determines the size of the bubble.

The following examples show the height and weight values for a class. The size of each bubble is determined by the student’s age. Examples are provided for the SGPLOT and SG PANEL procedures.

```plaintext
proc sgplot data=sashelp.class;
bubble x=height y=weight size=age;
run;
```

```plaintext
proc sgpanel data=sashelp.class;
panelby sex;
bubble x=height y=weight size=age;
run;
```

Options are available that enable you to customize the bubble plot and enhance its appearance. For example, you can do the following:

• control the size of the largest and the smallest bubble
• specify fill and outline attributes, and data labels and their attributes
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page

Note: This list does not include all available options.

See Also

• “BUBBLE Statement” on page 155 (SG PANEL procedure)
• “BUBBLE Statement” on page 669 (SG PLOT procedure)
About Fringe Plots

A fringe plot displays data values as a fringe on the X or X2 axis of the plot, and often is used to enhance a histogram or a density plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The following examples use fringe lines to compare miles-per-gallon ratings for vehicles from different regions.

```
proc sgplot data=sashelp.cars;
    histogram mpg_highway;
    fringe mpg_highway / group=origin height=1in;
run;
```

```
proc sgpanel data=sashelp.cars noautolegend;
    where origin in("Europe" "USA");
    panelby origin;
    histogram mpg_highway;
    fringe mpg_highway / height=20 lineattrs=(color=red);
run;
```

Options are available that enable you to customize the fringe plot and enhance its appearance. For example, you can do the following:

- specify the height of the fringe lines, and control line attributes
- control the data tips that are displayed and their attributes
- specify legend labels and plot transparency

Note: This list does not include all available options.

See Also

- “FRINGE Statement” on page 192 (SGPANEL procedure)
- “FRINGE Statement” on page 710 (SGPLOT procedure)

About Heat Maps

Heat maps present data values as rectangular areas with varying colors. The rectangles correspond to X and Y crossings.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The frequency or some other statistic is computed for the response variable. The grid is displayed by coloring each bin with a shade of color computed from a color gradient.

The following two examples create heat maps for participants in a heart disease study. The graphs plot weight and cholesterol. The heat map colors correspond to the frequency for the cholesterol count, as indicated by the gradient legend.

Parameterized heat maps create colored rectangles for each X and Y crossing based on specified response values.
proc sgpanel data=sashelp.heart;
panelby sex;
heatmapparm x=weight y=cholesterol
colorresponse=height;
run;

Options are available that enable you to customize the heat map and enhance its appearance. For example, you can do the following:

- (HEATMAP statement only) control aspects of the bins. For example, you can specify the sizes of the bins.
- control the color ramp that is used for the color response.
- (HEATMAP statement only) specify the statistic to use for the response variable.
- specify outlines for the colored rectangles.
- control data tips. For example, you can specify the information to display as well as the format.

Note: This list does not include all available options.

See Also

- “HEATMAP Statement” on page 262 (SGPANEL procedure)
- “HEATMAP Statement” on page 782 (SGPLOT procedure)
- “HEATMAPPARM Statement” on page 269 (SGPANEL procedure)
- “HEATMAPPARM Statement” on page 792 (SGPLOT procedure)

About High-Low Plots

High-low plots show how several values of one variable relate to one value of another variable. Typically, each variable value on the horizontal axis has several corresponding values on the vertical axis.

The following examples show the stock trend for IBM during a particular year. The first two examples use the SGPLOT procedure to show the same plot along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a paneled graph for Intel and Microsoft stock prices in the same year. Optional values have been specified for the closing stock prices, which are represented as tick marks on the high-low lines.
Options are available that enable you to customize the high-low plot and enhance its appearance. For example, you can do the following:

- use bars instead of lines to represent the data. If you use bars, then you can specify the fill and outline attributes for the bars.
- show tick marks for the open and closing values.
- specify labels and arrowheads for the high and low values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines or bars within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “HIGHLOW Statement” on page 277 (SGPANEL procedure)
About Reference Lines

You can add horizontal or vertical reference lines to your graphics. You can draw a reference line for each value of a specified variable. Or you can specify one or more explicit values for the reference lines.

The following examples show the height values for a class of students. A horizontal reference line is overlaid on a series plot to show the average height. Examples are provided for the SGPLOT and SGPANEL procedures.

In the first example, a value of 60.8 is specified for the reference line. The second example uses the MEANS procedure to obtain the averages for males and females in the class. The SGPANEL procedure then specifies the variable that contains these averages in order to obtain the reference lines.

Options are available that enable you to customize the reference line and enhance its appearance. For example, you can do the following:

- specify a horizontal or vertical line. In the SGPLOT procedure, you can associate the line with a secondary axis.
- specify line attributes, labels, and label attributes.
- specify legend labels and line transparency.
• specify an amount to offset all lines from discrete axis values.
• extend the plot axes to contain the reference lines.

Note: This list does not include all available options.

About Drop Lines
You can create one or more drop lines from data points to one or both axes. The lines can be horizontal, vertical, or both. A drop line is always drawn perpendicular from the specified point to the X, X2, Y, or Y2 axis.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The following examples show the weight values for a class of students. The example drops lines from the point (13, 90) to the respective points on both axes. The LINEATTRS= option specifies that line appearance is determined by the GraphData2 style element. The examples show drop lines in the SGPLOT and SG PANEL procedures.

Options are available that enable you to customize the drop line and enhance its appearance. For example, you can do the following:

• specify a horizontal line, a vertical line, or both. In the SGPLOT procedure, you can associate the line with a secondary axis.
• draw a drop line for each value of a specified variable.
• specify line attributes, labels, and label attributes.
• specify legend labels.
• specify an amount to offset all lines from discrete axis values.
• extend the plot axes to contain the drop lines.
Note: This list does not include all available options.

About Parameterized Lines

Parameterized lines are straight lines specified by a point and a slope. The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

The following example shows weight with respect to height for a class of students. A single line is generated by specifying values for the point and for the slope. The line in the example approximates a line of best fit.

```plaintext
proc sgplot data=sashelp.class
    noautolegend;
scatter x=height y=weight;
lineparm x=50 y=50 slope=3.89;
run;
```

You can generate multiple lines by specifying a numeric variable for any or all required arguments. Examples are provided for the SGPLOT and SGPANEL procedures. The following two examples create lines of best fit for male and female participants in a heart disease study. The lines show weight with respect to height.

The examples first sort the data set by male and female participants. The sorted data is output to a data set named HEART.

```plaintext
proc sort data=sashelp.heart(keep=height weight sex)
    out=heart;
by sex;
run;
```

The examples then use the REG procedure and output the regression statistics to a data set named STATS. The STATS data set includes the slope and the Y-intercept for the regression.

```plaintext
proc reg data=heart
    outest=stats(rename=(height=slope));
by sex;
model weight=height;
run;
```

Finally, the examples merge the HEART and STATS data sets.

```plaintext
data heartStats;
    merge heart stats(keep=intercept slope sex);
run;
```

The first example uses the SGPLOT procedure to show lines of best fit for females and males in the study. The regression lines are labeled and have their own legend.
The following example uses the SG PANEL procedure to create the same information, which is paneled by gender.

Options are available that enable you to customize the line and enhance its appearance. For example, you can do the following:

- specify line attributes, labels, and label attributes
- specify legend labels and line transparency
- prevent the line from being extended beyond the axis offset

Note: This list does not include all available options.

See Also

- “REFLINE Statement” on page 375 (SG PANEL procedure)
- “REFLINE Statement” on page 906 (SGPLOT procedure)
- “LINEPARM Statement” on page 322 (SG PANEL procedure)
- “LINEPARM Statement” on page 849 (SGPLOT procedure)

About Needle Plots

Needle plots use vertical line segments, or needles, to connect each data point to a baseline.

The following examples show the stock trend during a particular year. Examples are provided for the SGPLOT and SG PANEL procedures. Each example specifies an optional baseline value on the Y axis.
Options are available that enable you to customize the needle plot and enhance its appearance. For example, you can do the following:

- specify a baseline value, as shown in the example.
- add markers to the tips of the needles and specify marker attributes.
- add data labels and specify label attributes.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of needles within a group.
- specify an amount to offset all needle lines from discrete X values.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “NEEDLE Statement” on page 339 (SGPANEL procedure)
- “NEEDLE Statement” on page 866 (SGPLOT procedure)

About Scatter Plots

Scatter plots show the relationship of one variable to another, often revealing concentrations or trends in the data. Typically, each variable value on the horizontal axis can have any number of corresponding values on the vertical axis.
The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The third example includes error bars.

Options are available that enable you to customize the scatter plot and enhance its appearance. For example, you can do the following:

- add and customize error bars. The previous example shows error bars.
- specify how many times observations are repeated for computational purposes.
- specify marker attributes, data labels, and label attributes.
- specify an amount to offset all markers from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of markers within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
See Also

• “SCATTER Statement” on page 392 (SGPANEL procedure)
• “SCATTER Statement” on page 923 (SGPLOT procedure)

About Series Plots

Series plots display a series of line segments that connect observations of input data. The following examples show series plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.

```
title "Stock Trend for IBM";
proc sgplot data=sashelp.stocks
(where=(date >= "01jan2002"d
    and stock = "IBM"));
series x=date y=close;
run;
title;
```

```
title "Stock Trend for IBM and Microsoft";
proc sgpanel data=sashelp.stocks
(where=(date >= "01jan2002"d and
    (stock = "IBM" or stock = "Microsoft"));
panelby stock;
series x=date y=close;
run;
title;
```

Options are available that enable you to customize the series plot and enhance its appearance. For example, you can do the following:

• specify line and marker attributes, data labels, curve labels, and label attributes.
• specify an amount to offset all markers from discrete axis values.
• control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

• “SERIES Statement” on page 406 (SGPANEL procedure)
• “SERIES Statement” on page 938 (SGPLOT procedure)
About Spline Plots

Spline plots are similar to series plots but have a quadratic Bézier spline interpolation that produces smooth curves.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following examples show spline plots for the SG PLOT and SGPANEL procedures. Each spline curve consists of three points. The curves are smooth and do not pass through the middle point.

Both examples use the following data:

```plaintext
data lines;
  input X Y Group $;
datalines;
  30 5 A
  15 15 A
  5 10 A
  30 5 B
  15 20 B
  7 15 B
;
run;
```

```plaintext
proc sgplot data=lines;
spline y=y x=x / group=group
  arrowheadpos=end;
run;
```

```plaintext
proc sgpanel data=lines;
panelby group;
spline y=y x=x / arrowheadpos=end;
run;
```

Options are available that enable you to customize the spline plot and enhance its appearance. For example, you can do the following:

- add arrows to the spline plot, as shown in the examples.
- specify line and arrow attributes, curve labels, and label attributes.
• specify an amount to offset all step lines from discrete axis values.
• control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group.
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also
• “SPLINE Statement” on page 426 (SGPANEL procedure)
• “SPLINE Statement” on page 960 (SGPLOT procedure)

About Step Plots

Step plots display a series of horizontal and vertical line segments that connect observations of input data. The plots use a step function to connect the data points. The vertical line can change at each step.

The following examples show step plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.

Options are available that enable you to customize the step plot and enhance its appearance. For example, you can do the following:
• add and customize markers and error bars.
• specify line attributes, data labels, curve labels, and label attributes.
• specify an amount to offset all step lines from discrete axis values.
• control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group

• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

• “STEP Statement” on page 439 (SGPANEL procedure)
• “STEP Statement” on page 974 (SGPLOT procedure)

About Text Plots

The TEXT statement displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The first two examples apply fills and outlines to the text markers.
Although you can achieve similar results using the SCATTER statement with the MARKERCHAR= option, the TEXT statement gives you more control over the appearance of the text. For example, you can do the following:

- add fills and outlines to the text markers, as shown in the previous examples. You can also specify a back-light effect for the text.
- rotate the text, reposition the text, and specify text attributes such as font size.
- split the text at one or more specified characters.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the axis to use for clustering.
- specify legend labels, plot transparency, and URLs for web pages that are displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “TEXT Statement” on page 464 (SGPANEL procedure)
- “TEXT Statement” on page 998 (SGPLOT procedure)

About Text Insets

A text inset provides an easy way to add text to a graphic. You can insert a text string as well as a series of label-value pairs.

The following example shows a linear regression curve with a text inset in the upper left corner. This text inset specifies a text string and is available only with the SGPLOT procedure.
Insets are also available with the SGPANEL procedure. Unlike the SGPLOT procedure, panel insets do not accept text strings as arguments. The INSET statement in the SGPANEL procedure generates data-driven text from one or more variables. Typically, the variable is a computed numeric value, such as a mean or a sum. For non-computed variables, the statement displays the value of the first observation for each classification.

The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using a NOLABEL option.) The inset values come from the variable data.

The following example shows a panel of histograms along with a text inset for each panel.

To see the code for this example, see “Example: Panel with Insets” on page 315.

Options are available that enable you to customize the text inset and enhance its appearance. For example, you can do the following:

• show or hide a border
• position the text box within the plot
• specify text attributes, add a title, and specify title attributes
• align the labels and values when you specify label-value pairs (SGPLOT procedure only)

Note: This list does not include all available options.

See Also

• “INSET Statement” on page 836 (SGPLOT procedure)
• “INSET Statement” on page 312 (SGPANEL procedure)
About Vector Plots

Vectors are directed line segments. A vector plot is a two-dimensional graphic that uses vectors to represent both direction and magnitude at each point.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. Both examples specify optional X and Y origins and data labels.

Options are available that enable you to customize the vector plot and enhance its appearance. For example, you can do the following:

- specify the origin, as shown in the examples.
- specify line attributes, data labels, and data label attributes. You can also show or hide the arrows, change the arrowhead shape, and the change the arrow direction.
- specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

- “VECTOR Statement” on page 544 (SGPANEL procedure)
- “VECTOR Statement” on page 1080 (SGPLOT procedure)
Fit and Confidence Plots

About Fit and Confidence Plots

You can use the SGPLOT and SGPANEL procedures to produce fit plots and ellipses (the ellipses plot is available with the SGPLOT procedure only). Fit plots represent the line of best fit (trend line) with confidence limits.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. However, some general options apply to most of the fit and confidence plots. For example, options enable you to do the following:

- add confidence limits (CLM) to the plot. When you add CLM limits, you can specify the confidence level, the transparency for the confidence limits, and other visual attributes. You can add CLM limits to loess, penalized B-spline, and regression plots.
- add prediction limits (CLI) for the individual predicted values. When you add CLI limits, you can specify the text that appears for the limits and other visual attributes. You can add CLI limits to penalized B-spline and regression plots.
- control the appearance of the markers and the fit line. You can also specify a smoothing parameter.
- add and customize curve and data labels.
- specify legend labels. You can also show or hide the legend entries for the CLM limits, the CLI limits, and the fit line.
- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: Not all of these features are available for all of the plots. Also, the list does not include all available options.

The fit and confidence plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

```plaintext
ods graphics on / width=4in;
ods graphics on / width=4.5in;
```

See Also

“Plot Type Compatibility” on page 1306

About Ellipse Plots

Ellipse plots create a confidence elliptical curve computed from input data. In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes. Ellipses are available only for the SGPLOT procedure. The SGPANEL procedure does not support ellipses.
The following example shows the relationship of height to weight for a class of students. The example consists of a scatter plot and two ellipses.

Here are the noteworthy features of the example:

- Both ELLIPSE statements use TYPE=PREDICTED. This is the default.
- One ELLIPSE statement uses ALPHA=.2 and the other uses ALPHA=.05.
- The automatically generated legend, which contains an entry for each ellipse and for the scatter plot, has been suppressed. Only the ellipses require a legend.
- A legend was created with entries only for the ellipses. Each ELLIPSE statement specifies a legend label and a plot name. The KEYLEGEND statement uses the NAME value to determine the entries in the legend.

```
proc sgplot data=sashelp.class
   noautolegend;
scatter x=height y=weight;
ellipse x=height y=weight /
   alpha=.2
   name="eighty"
   legendlabel="80% Prediction";
ellipse x=height y=weight /
   alpha=.05
   name="ninetyfive"
   legendlabel="95% Prediction";
keylegend "eighty" "ninetyfive";
run;
```

See Also

“ELLIPSE Statement” on page 707 (SGPLOT procedure)

About Loess Plots

A loess plot includes a scatter plot of two numeric variables along with an overlaid nonlinear fit line that enables you to perform locally weighted polynomial regression. You can specify the degree of the local polynomials to use for each local regression. You can also change the default smoothing technique that is applied to the fit.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. In both examples, the automatically generated legend for the fit line is not needed and has been suppressed.

```
proc sgplot data=sashelp.cars
   noautolegend;
where (origin = "Europe");
loess x=weight y=mpg_highway;
run;
```
proc sgpanel data=sashelp.cars
noautolegend;
where (origin = "Europe");
panelby drivetrain;
loess x=weight y=mpg_highway;
run;

See Also
• “LOESS Statement” on page 327 (SGPANEL procedure)
• “LOESS Statement” on page 855 (SGPLOT procedure)

About Penalized B-Spline Plots

A penalized B-spline curve includes a scatter plot of two numeric variables along with an overlaid nonlinear fit line. You can specify the degree of the local polynomials to use for each local regression. You can also change the default smoothing technique that is applied to the fit.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. In both examples, the automatically generated legend for the fit line is not needed and has been suppressed.

proc sgplot data=sashelp.class
noautolegend;
pbspline x=height y=weight;
run;

proc sgpanel data=sashelp.cars
noautolegend;
where (origin = "Europe");
panelby drivetrain;
loess x=weight y=mpg_highway;
run;
proc sgpanel data=sashelp.class
 noautolegend;
panelby sex / uniscale=row;
pbspline x=height y=weight;
run;

See Also

• “PBSPLINE Statement” on page 348 (SGPANEL procedure)
• “PBSPLINE Statement” on page 877 (SGPLOT procedure)

About Regression Plots

A regression plot includes a scatter plot of two numeric variables along with an overlaid linear or nonlinear fit line that enables you to perform a regression analysis. You can specify one of three types of regression equation: linear, quadratic, or cubic. You can display confidence limits for mean predicted values or individual predicted values.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The first two examples show the same plot with a linear fit line and a cubic fit line, respectively. The third example shows a paneled graph. In all three examples, the automatically generated legend for the fit line is not needed and has been suppressed.

```sas
title "Linear Fit Function";
proc sgplot data=sashelp.class
   noautolegend;
   reg x=height y=weight;
run;
title;
```

```sas
title "Cubic Fit Function";
proc sgplot data=sashelp.class
   noautolegend;
   reg x=height y=weight / degree=3;
run;
title;
```
Distribution Plots

About Distribution Plots

You can use the SGPlot and SGPanel procedures to produce plots that characterize the frequency or the distribution of your data.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each plot and the options that are available.

The distribution plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

ods graphics on / width=4in;
ods graphics on / width=4.5in;

See Also

“Plot Type Compatibility” on page 1306

About Box Plots

A box plot summarizes the data and indicates the median, upper and lower quartiles, and minimum and maximum values. The plot provides a quick visual summary that easily shows center, spread, range, and any outliers. The SGPlot and SGPanel procedures have separate statements for creating horizontal and vertical box plots.

The following examples show product sales summaries. Examples are provided for the SGPlot and SGPanel procedures.
The following two examples use the SGPLOT procedure to create a horizontal box plot and a vertical plot, respectively.

```plaintext
proc sgplot data=sashelp.prdsale;
   hbox actual;
run;
```

The following two examples use the SGPANEL procedure to create a horizontal box plot and a vertical plot, respectively. The box plots are paneled by product type.

```plaintext
proc sgpanel data=sashelp.prdsale;
   panelby prodtype;
   hbox actual;
run;
```
Options are available that enable you to customize the box plot and enhance its appearance. For example, you can do the following:

- control the box width, the whisker cap shape, and the visual attributes for the mean marker, median line, and the connect lines. You can also hide the whisker caps, mean marker, median line, and the outliers.

- specify data labels and font attributes for the labels.

- specify the method to use for computing the percentiles for the plot.

- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

- control the display of grouped boxes. For example, you can specify whether the boxes are overlaid or clustered, and the width of each cluster.

- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.

- specify legend labels and plot transparency.

- assign the analysis variable to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

See Also

- “HBOX Statement” on page 248 (SGPANEL procedure)
- “VBOX Statement” on page 530 (SGPANEL procedure)
- “HBOX Statement” on page 768 (SGPLOT procedure)
- “VBOX Statement” on page 1066 (SGPLOT procedure)

About Density Plots

After creating a histogram, you might use a density plot to fit various distributions to the data. The most common density plot uses the normal distribution, which is defined by the mean and the standard deviation.

A density plot can be used by itself, combined with another density plot, and overlaid on a histogram.

The following examples show a density plot overlaid on a histogram. Examples are provided for the SGPLOT and SGPANEL procedures.
The SGPANEL example shows output that is paneled by gender. The UNISCALE=ROW option specifies that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

Options are available that enable you to customize the density plot and enhance its appearance. For example, you can do the following:

- control the visual attributes of the density line.
- specify a kernel distribution instead of normal. You can also specify the scaling that is used for the response axis.
- specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

- “DENSITY Statement” on page 166 (SGPANEL procedure)
- “DENSITY Statement” on page 680 (SGPLOT procedure)

About Histograms

Histograms consist of a series of columns representing the frequency of a variable over a discrete interval or class.

The following examples show the height distribution for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures.
The SGPANEL example shows output that is paneled by gender. The UNISCALE=ROW option ensures that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

Options are available that enable you to customize the histogram and enhance its appearance. For example, you can do the following:

- control the visual attributes of the bins, such as fill color and outlines.
- specify the number of bins, their width, and the X coordinate of the first bin.
- specify legend labels and plot transparency.
- assign the response variable and the calculated values to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

Note: This list does not include all available options.

See Also

- “HISTOGRAM Statement” on page 290 (SGPANEL procedure)
- “HISTOGRAM Statement” on page 813 (SGPLOT procedure)
Categorization Plots and Charts

About Categorization Plots and Charts

Categorization plots and charts produce a series of graph elements, one for each selected category of cases. For example, the relation between the age and the risk of a heart attack might differ between males and females. Categorization plots and charts can reveal patterns, complex interactions, exceptions, and anomalies.

You can use the SGPLOT and SGPANEL procedures to produce a variety of categorization plots and charts. The plot and chart statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each type and the options that are available.

The categorization plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

ods graphics on / width=4in;
ods graphics on / width=4.5in;

See Also
“Plot Type Compatibility” on page 1306

About Bar Charts

Overview of Standard and Parameterized Bar Charts
Bar charts use bars to represent statistics based on the values of a category variable. Bar charts are useful for displaying magnitudes and emphasizing differences.

You can use the SGPLOT and SGPANEL procedures to create the following:

- horizontal and vertical bar charts that summarize the values of a category variable. Use the HBAR and VBAR statements for the charts. These charts are compatible only with other categorization charts and plots.

- basic-compatible horizontal and vertical bar charts that summarize the values of a category variable. Use the HBARBASIC and VBARBASIC statements for the charts. These bar charts are compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

- parameterized horizontal and vertical bar charts that require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. Use the HBARParm and VBARParm statements for the charts. These bar charts are compatible with other basic charts and plots.

Options are available that enable you to customize both types of bar charts and enhance their appearance. For example, you can do the following:

- control the visual attributes of the bars, such as bar width, fill color, fill skin, and outlines.
• add data labels and specify font attributes for the labels.
• group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
• control the display of grouped bars. For example, you can specify the width of each cluster.
• specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
• specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

Bar Chart Examples
The following examples show statistics for different categories of smokers. The examples use the SGPLOT procedure to create a horizontal bar chart and a vertical bar chart, respectively. By default, the charts show the frequency for each category. The examples specify an optional response variable to show the average age at death for each category rather than the frequency.

```sas
proc sgplot data=sashelp.heart;
  hbar smoking_status / response=ageatdeath
e  stat=mean;
run;
```

```sas
proc sgplot data=sashelp.heart;
  vbar smoking_status / response=ageatdeath
   stat=mean;
run;
```

The following two examples use the SGPANEL procedure to create a horizontal chart and a vertical chart, respectively. The bar charts are paneled by gender.
Bar charts includes options that are not applicable to parameterized bar charts. For example, you can do the following:

- specify the response variable and the statistic to use for its axis
- specify the order in which the response values are arranged
- show limit lines, specify the statistic to use for the limit lines, and specify the confidence level
- for grouped data, you can specify whether the bars are stacked or clustered
- specify how many times observations are repeated for computational purposes

Note: This list does not include all available options.

Basic-Compatible Bar Chart Examples

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following examples combine a bar chart with a scatter plot to show the age and height of students in a class. The examples specify an optional response variable and statistic to show the height average rather than the frequency.
Parameterized Bar Chart Examples

Note: Parameterized bar charts are considered basic charts rather than categorization charts. However, all bar charts are described here in one place.

The following examples show height averages for a class of students. The averages are obtained using the following program.

```
proc means data=sashelp.class alpha=.05 clm mean std;
```
The following two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively. The response variable contains the computed mean values that were created with the MEANS procedure.

```
proc sgplot data=classMean; hbarparm category=age response=mean; run;
```

The following two examples use the SGPANEL procedure to create horizontal and vertical bar charts, respectively. The charts are paneled by gender.

```
proc sgpanel data=classMean; hbarparm category=age response=mean; run;
```
You can also assign variables to the upper and lower limits of the bar chart. Parameterized bar charts enable you to pass in your own precomputed limits.

```
proc sgplot data=classMean;
  hbarparm category=age response=mean /
    limitlower=lclm
    limitupper=uclm;
run;
```

See Also

- “Plot Type Compatibility” on page 1306
- “HBAR Statement” on page 201 (SGPANEL procedure)
- “VBAR Statement” on page 479 (SGPANEL procedure)
- “HBAR Statement” on page 719 (SGPLOT procedure)
- “VBAR Statement” on page 1014 (SGPLOT procedure)
- “HBARBASIC Statement” on page 738 (SGPLOT procedure)
- “VBARBASIC Statement” on page 1035 (SGPLOT procedure)
- “HBARPARM Statement” on page 233 (SGPANEL procedure)
- “VBARPARM Statement” on page 513 (SGPANEL procedure)
- “HBARPARM Statement” on page 752 (SGPLOT procedure)
- “VBARPARM Statement” on page 1049 (SGPLOT procedure)

About Dot Plots

Dot plots summarize horizontally the values of a category variable. By default, each dot represents the frequency for each value of the category variable.

The following examples show the frequency of different weights of patients in a study. The examples use the SGPLOT and SGPANEL procedures.
Options are available that enable you to customize the dot plot and enhance its appearance. For example, you can do the following:

- specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.
- show limits for the plot. You can also specify the statistic for the limit lines and visual attributes of the lines.
- specify the color, size, and symbol for the markers.
- add data labels and specify font attributes for the labels.
- control the display of grouped markers, lines, and bars. For example, you can specify whether the groups are overlaid or clustered, and the ordering of dots within a group.
- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “DOT Statement” on page 172 (SGPANEL procedure)
- “DOT Statement” on page 686 (SGPLOT procedure)
About Line Charts

Line charts display information as a series of data points connected by straight line segments. The SGPLOT and SGPANEL procedures have separate statements for creating horizontal and vertical line charts.

The following examples show mean weight values for a class. Examples are provided for the SGPLOT and SGPANEL procedures. The examples specify an optional response variable and use the mean statistic for that variable. The examples also add data point markers.

These two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively.

```
proc sgplot data=sashelp.class;
  hline age / response=height
            stat=mean
            markers;
run;
```

```
proc sgplot data=sashelp.class;
  vline age / response=height
            stat=mean
            markers;
run;
```

The following two examples use the SGPANEL procedure to create panels of horizontal and vertical charts, respectively.

```
proc sgpanel data=sashelp.class;
  panelby sex;
  hline age / response=height
            stat=mean
            markers;
run;
```

```
proc sgpanel data=sashelp.class;
  vline age / response=height
            stat=mean
            markers;
run;
```
Options are available that enable you to customize the line chart and enhance its appearance. For example, you can do the following:

- specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.

- show limits for the chart. You can also specify the statistic for the limit lines and visual attributes of the lines.

- add data point markers and specify the color, size, and symbol for the markers.

- add curve and data labels and specify font attributes for the labels.

- control the display of grouped lines. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the ordering of lines within a group.

- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.

- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

- assign the category variable, the response variable, or both variables to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

See Also

- “HLINE Statement” on page 296 (SGPANEL procedure)
- “VLINE Statement” on page 553 (SGPANEL procedure)
- “HLINE Statement” on page 819 (SGPLOT procedure)
- “VLINE Statement” on page 1090 (SGPLOT procedure)

About Waterfall Charts

Waterfall charts show how the value of a variable increases or decreases until it reaches a final value. In the chart, bars represent an initial value of Y and a series of intermediate values identified by X leading to a final value of Y. Waterfall charts are available only for the SGPLOT procedure.
The following example shows average failure counts for capacitors.

```
proc sgplot data=sashelp.failure;
  waterfall category=cause response=count / stat=mean;
run;
```

Options are available that enable you to customize the waterfall chart and enhance its appearance. For example, you can do the following:

- specify the statistic for the response variable.
- specify an initial bar for the chart. You can also specify the tick value that is used for the initial bar and visual attributes of the bar.
- control the appearance of the bars. For example, you can do the following:
 - show or hide the bar outline
 - show or hide the bar fill
 - use a special effect (data skin) for the fill
 - specify a variable to use for the bar colors
 - specify attributes separately for the final bar
- add data labels and specify font attributes for the labels.
- specify plot transparency and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

“WATERFALL Statement” on page 1107 (SGPLOT procedure)
Overview of SAS Statements That Are Used with ODS Graphics Procedures

The SAS ODS Graphics procedures support these statements in addition to statements that are unique to each procedure:

BY
processes your data by using one or more classification variables, and produces a separate graph for each unique combination of values.

FORMAT
associates SAS formats or user-defined formats with variables.

FOOTNOTE
adds footnotes to your graphs.

LABEL
associates descriptive labels with variables.

ODS GRAPHICS
enables you manage the settings for your graphics output.

TITLE
adds titles to your graphs.

WHERE
selects observations from SAS data sets that meet a particular condition.

The ODS GRAPHICS, TITLE, and FOOTNOTE statements are global statements. That is, they can be specified anywhere in your program and they remain in effect until you explicitly cancel or change them. The BY, FORMAT, and LABEL statements are associated with a specific procedure step.
Note: Some of the statements that can be used with traditional SAS procedures are not used with the ODS Graphics procedures.

Dictionary

BY Statement

Creates a separate graph for each BY group.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Syntax

```plaintext
BY <DESCENDING> variable-1 <... <DESCENDING> variable-n> <NOTSORTED>; 
```

Required Argument

variable

specifies the variable that the procedure uses to form BY groups. You can specify more than one variable. By default, observations in the data set must either be sorted in ascending order by all the variables that you specify, or be indexed appropriately.

Optional Arguments

DESCENDING

specifies that the data set is sorted in descending order by the specified variable. This option affects only the variable that immediately follows it—you must specify the DESCENDING option before each variable that is sorted in descending order. For example, the following code specifies a BY group that uses two variables that are both sorted in descending order:

```plaintext
by descending variable1 descending variable2; 
```

NOTSORTED

specifies that the observations in the data set that have the same BY values are grouped together, but are not necessarily sorted in alphabetical or numeric order. For example, the observations might be sorted in chronological order using a date format such as DDMMYY.

The NOTSORTED option applies to all of the variables in the BY statement. You can specify the NOTSORTED option anywhere within the BY statement.

The requirement for ordering or indexing observations according to the values of BY variables is suspended when you use the NOTSORTED option. In fact, the procedure does not use an index if you specify the NOTSORTED option. For the NOTSORTED option, the procedure defines a BY group as a set of contiguous observations that have the same values for all BY variables. If observations that have the same value for the BY variables are not contiguous, then the procedure treats each new value that it encounters as the first observation in a new BY group. The procedure then creates a graph for that value.

Restriction

The NOTSORTED option is not supported by the SGPANEL procedure.
Details

Preparing Data for BY-Group Processing
Unless you specify the NOTSORTED or DESCENDING options, observations in the input data set must be in ascending numeric or alphabetic order. To prepare the data set, sort it with the SORT procedure using the same BY statement that you plan to use in the target procedure. Alternatively, you can create an appropriate index on the BY variables. For more information about indexes, see “Understanding SAS Indexes” in SAS Language Reference: Concepts.

If the procedure encounters an observation that is out of order, an error message is generated.

If you need to group data in some other order, such as chronological order, you can still use BY-group processing. To do so, process the data so that observations are arranged in contiguous groups that have the same BY-variable values and specify the NOTSORTED option in the BY statement.

Controlling BY Lines
By default, the BY statement prints a BY line above each graph that contains the variable name followed by an equal sign and the variable value. For example, if you specify BY SITE in the procedure, the default heading when the value of SITE is London would be SITE=London.

To suppress the BY line, use the NOBYLINE option in an OPTION statement.

To display only the BY value, use the NOBYLINE option and then use the #BYVAL1 substitution in a TITLE statement.

Using the BY Statement with the SGPLOT Procedure
You can use the UNIFORM= option in the PROC SGPLOT statement to produce the same group markers, the same axis scaling, or both for all graphs in a BY group. By default, the group markers and axis scales might vary from graph to graph.

Using the BY Statement with the TITLE and FOOTNOTE Statements
The TITLE and FOOTNOTE statements can automatically include the BY variable name, BY variable values, or BY lines in the text that they produce. To insert BY variable information into the text strings used by these statements, use the #BYVAR, #BYVAL, and #BYLINE substitution options. For more information, see the description for the text-string argument in “TITLE and FOOTNOTE Statements” on page 95.

FOOTNOTE Statement
Writes up to 10 lines of text at the bottom of the graph.

Valid in: anywhere in your program
Used by: SGPLOT, SGPANEL, and SGSCATTER procedures
See: “TITLE and FOOTNOTE Statements” on page 95

Syntax
FOOTNOTE<1...10><text-options><"text-string-1"> ... <text-options><"text-string-n">;
FORMAT Statement

Associates SAS formats or user-defined formats with variables.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Details

All features of the FORMAT statement are supported except as noted here. For more information, see “FORMAT Statement” in SAS Statements: Reference.

Note: The ODS Graphics procedures do not support Unicode values in user-defined formats in the second maintenance release of SAS 9.4 and in earlier releases.

Note: Starting with the third maintenance release of SAS 9.4, the ODS Graphics procedures support Unicode values in user-defined formats. The Unicode value must be escaped with the (*ESC*) escape sequence as shown in the following examples:

```
"{unicode beta}
"{unicode '03B2'x}
```

The procedures do not support an escape character that is defined in an ODS ESCAPECHAR statement.

The following SAS formats are supported by the ODS Graphics procedures:

Table 4.1 Character Formats Supported by Java

<table>
<thead>
<tr>
<th></th>
<th>$ASCII</th>
<th>$BINARY</th>
<th>$CHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>SHEX</td>
<td>SOCTAL</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Numeric Formats Supported by Java

<table>
<thead>
<tr>
<th></th>
<th>BINARY</th>
<th>COMMA</th>
<th>COMMAX</th>
<th>COMMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>DOLLAR</td>
<td>DOLLARX</td>
<td>E</td>
<td>EURO</td>
</tr>
<tr>
<td>EUROX</td>
<td>F</td>
<td>HEX</td>
<td>LOGPROB</td>
<td>NEGPAREN</td>
</tr>
<tr>
<td>NLBEST</td>
<td>NLD</td>
<td>NLMNIAED</td>
<td>NLMNIAUD</td>
<td>NLMNIBGN</td>
</tr>
<tr>
<td>NLMNIBRL</td>
<td>NLMNICAD</td>
<td>NLMNICF</td>
<td>NLMNICNY</td>
<td>NLMNICZK</td>
</tr>
<tr>
<td>NLMNIDKK</td>
<td>NLMNIEEK</td>
<td>NLMNIEGP</td>
<td>NLMNIEUR</td>
<td>NLMNIGBP</td>
</tr>
<tr>
<td>NLMNIHKD</td>
<td>NLMNIHRK</td>
<td>NLMNIHUF</td>
<td>NLMNIIDR</td>
<td>NLMNIILS</td>
</tr>
<tr>
<td>NLMNIINR</td>
<td>NLMNIJPY</td>
<td>NLMNIKRW</td>
<td>NLMNILTL</td>
<td>NLMNILVL</td>
</tr>
<tr>
<td>NLMNIMOP</td>
<td>NLMNIMXN</td>
<td>NLMNIMYR</td>
<td>NLMNINOK</td>
<td>NLMNINzd</td>
</tr>
<tr>
<td>NLMNIPLN</td>
<td>NLMNIROL</td>
<td>NLMNIRUB</td>
<td>NLMNIRUR</td>
<td>NLMNISEK</td>
</tr>
</tbody>
</table>
Table 4.3 Date and Time Formats Supported by Java

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRDFDD</td>
<td>AFRDFDE</td>
</tr>
<tr>
<td>AFRDFMN</td>
<td>AFRDFMY</td>
</tr>
<tr>
<td>CATDFDE</td>
<td>CATDFDN</td>
</tr>
<tr>
<td>CATDFMY</td>
<td>CATDFWDX</td>
</tr>
<tr>
<td>CRODFDN</td>
<td>CRODFDT</td>
</tr>
<tr>
<td>CRODFWDX</td>
<td>CRODFWX</td>
</tr>
<tr>
<td>CSYDFDT</td>
<td>CSYDFDNS</td>
</tr>
<tr>
<td>CSYDFWX</td>
<td>DANDFDD</td>
</tr>
<tr>
<td>DANDFDWN</td>
<td>DANDFDEV</td>
</tr>
<tr>
<td>DATE</td>
<td>DATEAMPM</td>
</tr>
<tr>
<td>DDMMYYN</td>
<td>DESDFDN</td>
</tr>
<tr>
<td>DESDFWDXN</td>
<td>DESDFDKE</td>
</tr>
<tr>
<td>DEUDFDD</td>
<td>DEUDFDE</td>
</tr>
<tr>
<td>DEUDEFMN</td>
<td>DEUDEFMY</td>
</tr>
</tbody>
</table>

FORMAT Statement

69
<table>
<thead>
<tr>
<th>Column</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDATE</td>
<td>DTMONYY</td>
<td>DTWKDATX</td>
<td>DTYEAR</td>
<td>DTYYQC</td>
<td></td>
</tr>
<tr>
<td>ENGDFDD</td>
<td>ENGDFDE</td>
<td>ENGDFDN</td>
<td>ENGDFDT</td>
<td>ENGDFDW</td>
<td></td>
</tr>
<tr>
<td>ENGDFMN</td>
<td>ENGDFMY</td>
<td>ENGDFWX</td>
<td>ENGDFWKX</td>
<td>ESPDFDD</td>
<td></td>
</tr>
<tr>
<td>ESPDFDE</td>
<td>ESPDFDN</td>
<td>ESPDFDT</td>
<td>ESPDFDW</td>
<td>ESPDFMN</td>
<td></td>
</tr>
<tr>
<td>ESPDFMY</td>
<td>ESPDFWX</td>
<td>ESPDFWKX</td>
<td>EURDFDD</td>
<td>EURDFDE</td>
<td></td>
</tr>
<tr>
<td>EURDFDN</td>
<td>EURDFDT</td>
<td>EURDFDW</td>
<td>EURDFMN</td>
<td>EURDFMY</td>
<td></td>
</tr>
<tr>
<td>EURDFWX</td>
<td>EURDFWKX</td>
<td>FINDFDD</td>
<td>FINDFDE</td>
<td>FINDFDN</td>
<td></td>
</tr>
<tr>
<td>FINDFDT</td>
<td>FINDFDWN</td>
<td>FINDFMN</td>
<td>FINDFMY</td>
<td>FINDFWDX</td>
<td></td>
</tr>
<tr>
<td>FINDFWX</td>
<td>FRADFDD</td>
<td>FRADFDE</td>
<td>FRADFND</td>
<td>FRADFDT</td>
<td></td>
</tr>
<tr>
<td>FRADFWN</td>
<td>FRADMN</td>
<td>FRADFMY</td>
<td>FRADFWX</td>
<td>FRADF WKX</td>
<td></td>
</tr>
<tr>
<td>FRDSFD</td>
<td>FRDSFDN</td>
<td>FRDSFDT</td>
<td>FRSDFW</td>
<td>FRSDFWN</td>
<td></td>
</tr>
<tr>
<td>FRDSFMN</td>
<td>FRDSFLY</td>
<td>FRSDFWX</td>
<td>FRSDFWKX</td>
<td>HHMM</td>
<td></td>
</tr>
<tr>
<td>HOUR</td>
<td>HUNDFDD</td>
<td>HUNDFDE</td>
<td>HUNDFN</td>
<td>HUNDFDT</td>
<td></td>
</tr>
<tr>
<td>HUNDFWN</td>
<td>HUNDFMN</td>
<td>HUNDFMY</td>
<td>HUNDFWX</td>
<td>HUNDFWKX</td>
<td></td>
</tr>
<tr>
<td>ITADFDD</td>
<td>ITADFDE</td>
<td>ITADFDN</td>
<td>ITADFDT</td>
<td>ITADF DWN</td>
<td></td>
</tr>
<tr>
<td>ITADFMN</td>
<td>ITADFMY</td>
<td>ITADFWX</td>
<td>ITADFWKX</td>
<td>JDatemd</td>
<td></td>
</tr>
<tr>
<td>JDATEMON</td>
<td>JDATEQWR</td>
<td>JDATEQTR</td>
<td>JDATESEM</td>
<td>JDATESMW</td>
<td></td>
</tr>
<tr>
<td>JULDATE</td>
<td>JULDAY</td>
<td>JULIAN</td>
<td>MACFDD</td>
<td>MACDFDE</td>
<td></td>
</tr>
<tr>
<td>MACFDDN</td>
<td>MACFDT</td>
<td>MACFDFW</td>
<td>MACFMY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACFWX</td>
<td>MACFWX</td>
<td>MMDDYY</td>
<td>MMDDYYN</td>
<td>MMSS</td>
<td></td>
</tr>
<tr>
<td>MMYY</td>
<td>MMYYN</td>
<td>MONNAME</td>
<td>MONTH</td>
<td>MONYY</td>
<td></td>
</tr>
<tr>
<td>NLDATE</td>
<td>NLDATMD</td>
<td>NLDATMN</td>
<td>NLDATW</td>
<td>NLDATWN</td>
<td></td>
</tr>
<tr>
<td>NLDATED</td>
<td>NLDATEY</td>
<td>NLDATYR</td>
<td>NLDATYW</td>
<td>NLDATM</td>
<td></td>
</tr>
<tr>
<td>NLDATM</td>
<td>NLDATMDT</td>
<td>NLDATMMD</td>
<td>NLDATMTM</td>
<td>NLDATMTZ</td>
<td></td>
</tr>
<tr>
<td>NLDATMW</td>
<td>NLDATMWN</td>
<td>NLDATMZW</td>
<td>NLDATMYM</td>
<td>NLDATMYQ</td>
<td></td>
</tr>
<tr>
<td>NLDATMY</td>
<td>NLDATMYW</td>
<td>NLDATMZ</td>
<td>NLDFDD</td>
<td>NLDFDE</td>
<td></td>
</tr>
<tr>
<td>NLDDFDN</td>
<td>NLDDFDT</td>
<td>NLDDFDW</td>
<td>NLDFMN</td>
<td>NLDFMY</td>
<td></td>
</tr>
<tr>
<td>NLDFWX</td>
<td>NLDFWX</td>
<td>NLSTRMN</td>
<td>NLSTRQTR</td>
<td>NLSTRWK</td>
<td></td>
</tr>
<tr>
<td>NLTIME</td>
<td>NORDFDD</td>
<td>NORDFDE</td>
<td>NORDFDN</td>
<td>NORDFWX</td>
<td></td>
</tr>
<tr>
<td>NORDFDT</td>
<td>NORDFDWN</td>
<td>NORDFMN</td>
<td>NORDFMY</td>
<td>NORDFWX</td>
<td></td>
</tr>
</tbody>
</table>
LABEL Statement

Associates descriptive labels with variables.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Details

All features of the LABEL statement are supported. For more information, see “LABEL Statement” in SAS Statements: Reference.

ODS GRAPHICS Statement

Enables or disables ODS Graphics processing and sets graphics environment options. This statement affects ODS template-based (ODS Graphics) graphics only. The ODS GRAPHICS statement does not affect device-based graphics (SAS/GRAPH).

Valid in: Anywhere

Category: ODS: Output Control

Default: ON. Beginning in SAS 9.4, ODS Graphics is enabled by default on all platforms except z/OS. When running SAS in batch mode, the default is OFF.
Interaction: SAS/GRAF device-based global statements such as GOPTIONS, SYMBOL, PATTERN, AXIS, and LEGEND do not affect template-based graphics. The ODS GRAPHICS statement does not affect device-based graphics.

See: For information about common tasks for managing ODS Graphics output, see SAS Graph Template Language: User's Guide.

Syntax

ODS GRAPHICS <OFF | ON> <\option(s)> ;

Summary of Optional Arguments

ANTIALIAS | NOANTIALIAS | ANTIALIAS= ON | OFF
specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph.

ANTIALIASMAX=n
specifies the maximum number of graphics elements before anti-aliasing is disabled.

ATTRPRIORITY=COLOR | NONE
specifies a priority for cycling of the group attributes.

BORDER | NOBORDER | BORDER=ON | OFF
specifies whether to draw a border around each graph.

BYLINE=NOBYLINE | TITLE | FOOTNOTE
specifies how the BY line is displayed in graphs.

DATASKINMAX=n
specifies the maximum number of skinned graphical elements allowed per plot.

DISCRETEMAX=n
specifies the maximum number of discrete values to be shown in any graph.

DRILLTARGET="_blank" | "_self" | "_parent" | "_top" | "frame-name"
specifies the window that displays the drill-down output.

GROUPMAX=n
specifies the maximum number of group values to be shown in any graph.

HEIGHT=dimension
specifies the height of a graph.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF
specifies whether data tips are generated.

IMAGENAME="filename"
specifies the base image filename.

LABELMAX=n
specifies the maximum number of labeled areas before labeling is disabled.

LABELPLACEMENT= GREEDY | SA
specifies the label-placement algorithm to use for positioning labels in the graphs.

LEGENDAREAMAX=n
specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.
LOESSOBSMAX= n
specifies an upper limit for the number of observations that can be used with a loess plot.

OUTPUTFMT= file–type | STATIC
specifies the output format used to generate image or vector graphic files.

PANELCELLMAX= n
specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables.

PUSH | POP
pushes and pops ODS GRAPHICS settings in a stack.

RESET | RESET= option
Reset one or more ODS GRAPHICS options to its default.

SCALE | NOSCALE | SCALE= ON | OFF
specifies whether the content of any graph is scaled proportionally.

SCALEMARKERS | NOSCALEMARKERS | SCALEMARKERS= ON | OFF
specifies whether the plot markers are to be scaled with the graph size.

SHOW
writes the current ODS GRAPHICS settings to the SAS log.

STACKDEPTHMAX= n
specifies the maximum stack depth for PUSH and POP requests.

SUBPIXEL | NOSUBPIXEL | SUBPIXEL= ON | OFF
specifies whether subpixel rendering should be used for rendering ODS Graphics.

TIPMAX= n
specifies the maximum number of distinct mouse-over areas allowed before data tips are disabled.

WIDTH= dimension
specifies the width of any graph.

Without Arguments
If the ODS automatic graphic capabilities are currently disabled, then specifying the ODS GRAPHICS statement without options enables them. If the ODS automatic graphic capabilities are currently enabled, then specifying the ODS GRAPHICS statement leaves them enabled.

Required Arguments

ON
enables ODS Graphics processing. This is the default if no argument is used.

Note: Beginning in SAS 9.4, ODS Graphics is enabled by default on all platforms except z/OS.

 Alias YES

OFF
disables ODS Graphics processing.

 Alias NO
Optional Arguments

ANTIALIAS | NOANTIALIAS | ANTIALIAS= ON | OFF

specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph. Anti-aliasing smooths the appearance of lines and some markers. Text displayed in the graph is always anti-aliased. For graphical displays that plot large numbers of points it is recommended that ANTIALIAS=OFF be specified for performance considerations.

ANTIALIAS
smoothes jagged edges of all components in the graph.

NOANTIALIAS
does not smooth jagged edges of components other than text in the graph.

ANTIALIAS=ON | OFF
specifies whether anti-aliasing is applied to the rendering of the line and markers in the graph.

ON
smoothes jagged edges of all components in the graph.

Alias YES

OFF
does not smooth jagged edges of components other than text in the graph.

Alias NO

Default ANTIALIAS or ANTIALIAS=ON | YES

Restriction If the number of markers or lines in the plot exceeds the number specified by the ANTIALIASMAX= option, then the ANTIALIAS option is turned off. This is true even if you specify the option ANTIALIAS=ON or ANTIALIAS.

ANTIALIASMAX= n
specifies the maximum number of graphics elements before anti-aliasing is disabled. For example, if there are more than 400 scatter point markers to be anti-aliased and ANTIALIASMAX=400, then no markers are anti-aliased. The default value is 4000.

Note: Prior to the third maintenance release of SAS 9.4, the ANTIALIASMAX= option specifies the maximum number of observations in the graph data to be anti-aliased before anti-aliasing is disabled. The default is 4000. When the graph data contains more than 4000 observations, anti-aliasing is disabled for the entire graph. Starting with the third maintenance release of SAS 9.4, the ANTIALIASMAX= option specifies the maximum number of graphics elements to be anti-aliased in each plot on a per-plot basis. The default remains at 4000. If any plot in a graph contains more than 4000 elements, anti-aliasing is disabled for that plot. Anti-aliasing is enabled for the rest of the graph in that case.

n
specifies a positive integer.

Default 4000

ATTRPRIORITY=COLOR | NONE
specifies a priority for cycling of the group attributes.
COLOR
assigns priority to the color attribute rotation by cycling through the list of colors while holding the marker symbol and line pattern constant. When all of the colors are exhausted, the marker symbol and line style attributes increment to the next element, and then the colors in the list are repeated. This pattern repeats as needed.

NONE
does not use an attribute priority in the rotation pattern, even if one is set in the active style’s AttrPriority attribute. The rotation pattern cycles progressively through the attribute lists.

Default
The AttrPriority attribute of the graph style element, or NONE if the current style does not define the AttrPriority style attribute.

Interaction
The default lists of data colors, contrast colors, marker symbols, and line patterns are set in the active style’s GraphData1–GraphDataN elements.

BORDER | NOBORDER | BORDER=ON | OFF
specifies whether to draw a border around each graph.

BORDER
specifies whether to draw a border around the graph.

NOBORDER
specifies not to draw a border around any graph.

BORDER=ON | OFF
specifies whether to draw the graph with a border on the outermost layout.

ON
specifies to draw a border around the graph.

Alias
YES

OFF
specifies not to draw a border around the graph.

Alias
NO

Default
BORDER or BORDER=ON | YES

BYLINE=NOBYLINE | TITLE | FOOTNOTE
specifies how the BY line is displayed in graphs when an analysis is run with a BY statement. By default, no BY line is displayed.

The following code is an example of how the placement of the BY line is controlled in each graph template:

```plaintext
if (_BYTITLE_)
   entrytitle _BYLINE_ / textattrs=GraphValueText;
else
   if (_BYFOOTNOTE_)
      entryfootnote halign=left _BYLINE_;
   endif;
endif;
```

You can modify the graph template if you want to change how the BY line is displayed. Because most graphs have titles and few graphs have footnotes, the BY
line looks better when it is displayed as a footnote. For complete documentation about the Graph Template Language, see *SAS Graph Template Language: User's Guide*.

When the **BYLINE**= option is specified, and there are BY groups, ODS creates a BY line and sets the appropriate special dynamic variables. The following table lists the special dynamic variables for BY lines. For complete documentation about special dynamic variables, see “Special Dynamic Variables” in *SAS Graph Template Language: User's Guide*.

Table 4.4 Special Dynamic Variables for BY Lines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYFOOTNOTE</td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to FOOTNOTE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
<tr>
<td>BYTITLE</td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to TITLE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
</tbody>
</table>

The variables in the table are set automatically only for analytical procedures that support ODS GRAPHICS. For a list of these procedures, see “Automatic Graphics from SAS Analytical Procedures” in *SAS Graph Template Language: User's Guide*. For all other procedures, the variables are not set automatically (NULL).

NOBYLINE specifies that no BY line is displayed. NOBYLINE is the default.

FOOTNOTE specifies that the BY line is displayed as a left-justified graph footnote. This is the recommended setting.

TITLE specifies that the BY line is displayed as a centered graph title. Specifying **TITLE** is not recommended because graphs are not designed to have additional title lines.

Default **NOBYLINE**

DATASKINMAX= specifies the maximum number of skinned graphical elements allowed per plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

n specifies a positive integer.

Default **200**

DISCRETEMAX= specifies the maximum number of discrete values to be shown in any graph. Bar charts and box plots are examples of affected plot types. Scatter plots and other plot types can be affected if the data to be plotted is discrete or the axis is discrete.

n specifies a positive integer.
Tips

Some plot layers might be unaffected by the DISCRETEMAX= option, and those layers are rendered. If all layers are affected, a blank graph is rendered.

If the value specified by the DISCRETEMAX= option is exceeded by any plot layer in the graph, that layer is not drawn and a warning message is issued.

DRILLTARGET="_blank" | "_self" | "_parent" | "_top" | "frame-name"

specifies the window that displays the drill-down output.

Note: This option is supported only for HTML.

"_blank"

opens a new browser window to display the drilldown output.

Default: _blank is the default.

Requirements: You must enclose _blank in quotation marks.

You must specify _blank in lowercase.

"_self"

opens the drill-down output in the same window.

Requirements: You must enclose _self in quotation marks.

You must specify _self in lowercase.

"_parent"

opens the drill-down output in the parent frame.

Requirements: You must enclose _parent in quotation marks.

You must specify _parent in lowercase.

"_top"

opens the drill-down output in the full body of the window.

Requirements: You must enclose _top in quotation marks.

You must specify _top in lowercase.

"frame-name"

opens the drill down output in the named frame in the current window. If the name does not exist, the output is opened in a new window.

Requirement: You must enclose frame-name in quotation marks.

GROUPMAX=n

specifies the maximum number of group values to be shown in any graph. Any graph that supports the GROUP= option is affected.

n
specifies a positive integer.

Default: 1000
Tip If the value specified by the `GROUPMAX=` option is exceeded by any plot layer in the graph, that layer is rendered. The system ignores the `GROUP=` option and issues a warning message.

HEIGHT=dimension
specifies the height of a graph.

`dimension`
is a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Units of Measure for Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm Centimeters</td>
</tr>
<tr>
<td>in Inches</td>
</tr>
<tr>
<td>mm Millimeters</td>
</tr>
<tr>
<td>pct or % Percentage</td>
</tr>
<tr>
<td>pt Point size (72 points = 1 inch)</td>
</tr>
<tr>
<td>px Pixels</td>
</tr>
</tbody>
</table>

Defaults The value of the SAS registry entry "ODS > ODS GRAPHICS > Design Height" or the value of the `DesignHeight=` option in a STATGRAPH template. Typically, the value is 480px.

For the PRINTER destination, units of 1/150 of an inch

Tip If only the `HEIGHT=` option is specified, then the default aspect of the graph is maintained.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF
controls data tips and drill down generation. Data tips are pieces of explanatory text that appear when you hold the mouse pointer over the data portions of a graph contained in an HTML page.

IMAGEMAP specifies to generate data tips.

NOIMAGEMAP specifies not to generate data tips.

IMAGEMAP= ON | OFF
controls data tips generation.

ON specifies to generate data tips.

OFF specifies not to generate data tips.
Default: NOIMAGEMAP or IMAGEMAP=OFF | NO

Restrictions: This option applies only when the ODS HTML destination is used.

An image map is not generated using SVG with ODS Graphics. The image map data that is used to produce tooltips and links is written directly in the SVG and is not part of the HTML. Using HTML5 with the inline SVG mode (the default value), the tooltips and links are written in the SVG portion of the document.

Interaction: When IMAGEMAP | IMAGEMAP=ON is specified and the ODS HTML destination is used, the IMAGE_DPI option in the ODS HTML destination is ignored, if specified, and the default image resolution of 96 DPI is used.

IMAGENAME=\"filename\"

specifies the base image filename. If more than one image is generated, each is assigned filename as a base name followed by a number in order to create unique names. This numbering can be reset with the RESET=INDEX option. Path information (if needed) can be set with the GPATH= option on the ODS destination statement. The default path is the current output directory. A file extension for filename is automatically generated based on the OUTPUTFMT= option.

Default: The name of the output object.

Restriction: filename must be a single name. It must not include any path specification or image-format name extension.

Requirement: You must enclose filename in quotation marks.

See: “Specifying and Resetting the Image Name” on page 89

LABELMAX= n

specifies the maximum number of labeled areas before labeling is disabled. For example, if there are more than 50 points to be labeled and LABELMAX=50, then no points are labeled.

\[n \]

specifies a positive integer.

Default: 200

Restriction: Data label collision avoidance is turned off under the following conditions:

- The number of observations with nonmissing labels exceeds the value specified by LABELMAX=.
- The number of observations exceeds five times the value specified by LABELMAX=.

A message is then sent to the SAS log.

Tip: To turn off collision avoidance specify LABELMAX=0.

LABELPLACEMENT= GREEDY | SA

specifies the label-placement algorithm to use for positioning labels in the graphs. The following labels are affected:

- data labels for needle plots, scatter plots, series plots, step plots, and vector plots
• vertex labels for line charts
• curve labels when the curve label is positioned at the start or end of the curve

GREEDY
specifies the Greedy method for managing label collision. The Greedy method tries different placement combinations in order to find an optimal approximation that avoids collisions. Label placement using this method is often less optimal than label placement using the Simulated Annealing (SA) method. However, depending on the number of data points and the potential for label collisions, the Greedy process can be significantly faster.

SA
specifies the Simulated Annealing method for managing label collision. The SA method attempts to determine the global minimization-of-cost function, which is based on a simulated annealing algorithm. The resulting label placement is usually better than placement using the Greedy method. However, depending on the number of data points and the potential for label collisions, the SA method can be significantly slower.

Restriction
For BANDPLOT and LINECHART, the SA method has no effect on the curve labels when the CURVELABELPOSITION= option specifies START or END.

Default
GREEDY

LEGENDAREAMAX= *n*
specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.

Note: Starting with the third maintenance release for SAS 9.4, LEGENDAREAMAX= replaces MAXLEGENDAREA=. However, MAXLEGENDAREA= is supported as an alias. It is recommended that you use LEGENDAREAMAX=.

n
specifies a positive integer.

Alias
MAXLEGENDAREA=

Default
20

Range
0–100

Tip
To turn off the legend, specify LEGENDAREAMAX=0. No warning is issued when the legend is turned off in this way.

LOESSOBSMAX= *n*
specifies an upper limit for the number of observations that can be used with a loess plot.

Note: Starting with the third maintenance release for SAS 9.4, LOESSOBSMAX= replaces LOESSMAXOBS=. However, LOESSMAXOBS= is supported as an alias. It is recommended that you use LOESSOBSMAX=.

If the number of observations of the loess plot exceeds the specified limit, the loess plot is not drawn.

For example, the following specifies that the most observations a loess plot can have is 1000.
LOESSOBSMAX=1000

Alias LOESSMAXOBS=

Default 5000

OUTPUTFMT= file-type | STATIC

specifies the output format used to generate image or vector graphic files. If the image or vector graphic format is not valid for the active output destination, the format is automatically changed to the default format for that destination.

file-type

is the image or vector graphic format to be generated. See “Supported File Types for Output Destinations” on page 92.

STATIC

uses the best quality static image format for the active output destination. This is the default output format.

Tip The STATIC keyword can be used to reset the output format to its default state.

Default STATIC

See “Specifying the Image Format” on page 90

PANELCELLMAX=n

specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables. If the number of cells in the panel exceeds the specified limit, the panel is not drawn.

n

specifies a positive integer.

Default 10000

Note Graphs with DataPanel or DataLattice templates layouts are affected. In the ODS Graphics Procedures, this option affects graphs that are created with the SGPANEL procedure. If the value specified by the PANELCELLMAX= option is exceeded by any of these layouts, an empty graph is rendered and a warning message is issued.

PUSH | POP

pushes and pops ODS GRAPHICS settings in a stack. This feature enables you to temporarily save your custom settings in a stack and later restore those settings.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

PUSH

pushes the current ODS GRAPHICS settings to a stack.

POP

restores the most recently pushed settings from the stack. For each PUSH action, you can specify a POP request. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed.

The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied.
Interaction You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. You can also use STACKDEPTHMAX= to empty the stack. For more information, see “Managing the Stack Depth” on page 95.

Note Order of specification is important when using the PUSH and POP options. For more information, see “About PUSH and POP” on page 94.

Tip Use the SHOW option to show the current ODS GRAPHICS settings.

See “Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 94

RESET | RESET= option
Reset one or more ODS GRAPHICS options to its default.

RESET
resets all options to their defaults.

RESET=
resets one of the following to its default:

- **ALL**
resets all reset-options to their defaults.

- **ANTIALIAS**
resets the ANTIALIAS= option to its default.

 See [ANTIALIAS= on page 74](#)

- **ANTIALIASMAX**
resets the ANTIALIASMAX= option to its default.

 See [ANTIALIASMAX= on page 74](#)

- **ATTRPRIORITY**
resets the ATTRPRIORITY= option to its default.

 See [ATTRPRIORITY= on page 74](#)

- **BORDER**
resets the BORDER= option to its default.

 See [BORDER= on page 75](#)

- **BYLINE**
resets the BYLINE= option to its default.

 See [BYLINE= on page 75](#)

- **DATASKINMAX**
resets the DATASKINMAX= option to its default.

 See [DATASKINMAX= on page 76](#)

- **DISCRETEMAX**
resets the DISCRETEMAX= option to its default.
See DISCRETEMAX= on page 76

DRILLTARGET
resets the DRILLTARGET= option to its default.

See DRILLTARGET= on page 77

GROUPMAX
resets the GROUPMAX= option to its default.

See GROUPMAX= on page 77

HEIGHT
resets the HEIGHT= option to its default.

See HEIGHT= on page 78

IMAGEMAP
resets the IMAGEMAP= option to its default.

Note Not all output destinations support this feature.

See IMAGEMAP= on page 78

IMAGENAME
resets the IMAGENAME= option to its default.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See IMAGENAME= on page 79

INDEX <(positive-integer)> resets the index counter that is appended to static image files.

When specifying this option, you can also specify the value for the index counter. The number that you specify must be enclosed in parentheses. positive-integer determines the suffix for the next subsequent image, and increments with each new image. This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See “Resetting the Image Name” on page 89

LABELMAX resets the LABELMAX= option to its default.

See LABELMAX= on page 79

LABELPLACEMENT specifies the label-placement algorithm to use for positioning labels in the graphs.

See LABELPLACEMENT= on page 79

LEGENDAREAMAX resets the LEGENDAREAMAX= option to its default.

See LEGENDAREAMAX= on page 80
LOESSOBSMAX
resets the LOESSOBSMAX= option to its default.

See LOESSOBSMAX= on page 80

OUTPUTFMT
resets the OUTPUTFMT= option to its default.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See OUTPUTFMT= on page 81

PANELCELLMAX
resets the PANELCELLMAX= option to its default.

See PANELCELLMAX= on page 81

SCALE
resets the SCALE= option to its default.

See SCALE= on page 84

SCALEMARKERS
resets the SCALEMARKERS= option to its default.

See SCALEMARKERS= on page 85

STACKDEPTHMAX
resets the STACKDEPTHMAX= option to its default.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See STACKDEPTHMAX= on page 86

SUBPIXEL
resets the SUBPIXEL option to its default.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See SUBPIXEL on page 87

TIPMAX
resets the TIPMAX= option to its default.

See TIPMAX = on page 88

WIDTH
resets the WIDTH= option to its default.

See WIDTH= on page 88

SCALE | NOSCALE | SCALE=ON | OFF
specifies whether the content of any graph is scaled proportionally.

SCALE
scales the components of graph proportionally.
NOSCALE
does not scale the components of graph proportionally.

SCALE=ON | OFF
specifies whether the content of the graph is scaled proportionally.

ON
scales the components of graph proportionally.

Alias YES

OFF
does not scale the components of graph proportionally.

Aliases NOSCALE

NO

Default SCALE or SCALE=ON | YES

SCALEMARKERS | NOSCALEMARKERS | SCALEMARKERS=ON | OFF
specifies whether the plot markers are to be scaled with the graph size. The scaling factor is based on the height of the graph cells and the height of the graph.

SCALEMARKERS
scales the markers with the graph size.

NOSCALE
does not scale the markers with the graph size.

SCALEMARKERS=ON | OFF
specifies whether the plot markers are to be scaled with the graph size.

ON
scales the markers with the graph size.

Alias YES

OFF
does not scale the markers with the graph size.

Aliases NOSCALE

NO

Default SCALEMARKERS or SCALEMARKERS=ON | YES

Restriction Scaling is done only if the graph contains multiple cells or single nested cells.

SHOW
writes the current ODS GRAPHICS settings to the SAS log. This option enables you to verify which settings are in effect. The option is especially useful when you use the PUSH and POP options to restore settings. For more information, see “Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 94.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

If no options have been specified, then SHOW lists those options for which ODS currently knows the default values.
The following statement resets all settings and shows the default values.

```sql
ods graphics / reset=all show;
```

Here are the default values displayed in the SAS log:

<table>
<thead>
<tr>
<th>ODS Graphics Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output format:</td>
</tr>
<tr>
<td>By line:</td>
</tr>
<tr>
<td>Antialias:</td>
</tr>
<tr>
<td>Maximum Losses observations:</td>
</tr>
<tr>
<td>Maximum stack depth:</td>
</tr>
<tr>
<td>Stack depth:</td>
</tr>
</tbody>
</table>

If you have specified the settings for one or more options, then SHOW includes those settings along with the defaults.

Order of specification is important when using the SHOW option. For example, the following statement shows the current settings and then sets the NOBORDER option.

```sql
ods graphics / show noborder;
```

However, the following statement sets the NOBORDER option and then shows the settings. The NOBORDER setting is shown in the log along with the other settings that are in effect.

```sql
ods graphics / noborder show;
```

The following statement resets all settings. It then sets the image width and shows the default settings along with the specified width.

```sql
ods graphics / reset=all width=5in show;
```

Here are the default values plus the image width, as displayed in the SAS log:

<table>
<thead>
<tr>
<th>ODS Graphics Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output format:</td>
</tr>
<tr>
<td>By line:</td>
</tr>
<tr>
<td>Antialias:</td>
</tr>
<tr>
<td>Maximum Losses observations:</td>
</tr>
<tr>
<td>Image width:</td>
</tr>
<tr>
<td>Maximum stack depth:</td>
</tr>
<tr>
<td>Stack depth:</td>
</tr>
</tbody>
</table>

Tip If you have specified the settings for some options but want to see the default values without losing your specified settings, issue the following two statements. The first statement pushes your specified settings, resets all settings, and then lists options for which ODS currently knows the default values. The second statement restores your previous settings.

```sql
ods graphics / push reset=all show;
ods graphics / pop;
```

STACKDEPTHMAX = n
specifies the maximum stack depth for PUSH and POP requests. The stack is used to temporarily store ODS GRAPHICS settings when you issue PUSH requests. PUSH saves the current settings to the stack and increments the stack depth. POP restores the most recently saved settings from the stack and decrements the stack depth.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

n specifies a positive integer.

If n is less than the current stack depth, then the stack is popped until its depth equals n. Popping the stack does not affect other option settings.
Defaults

1024 is the default maximum depth

0 is the default depth

Tips

To empty the stack and then reset it to the default maximum depth, issue the following statement:

```ods graphics / stackdepthmax=0 reset=stackdepthmax;```

You can use any of the following commands to reset the stack to its default maximum depth:

- `reset=stackdepthmax`
- `reset=all`
- `reset stackdepthmax=1024`

See

“Managing the Stack Depth” on page 95

**SUBPIXEL | NOSUBPIXEL | SUBPIXEL=ON | OFF**

specifies whether subpixel rendering should be used for rendering ODS Graphics. Subpixel rendering produces smoother curves and more precise bar spacing.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**SUBPIXEL**

always uses subpixel rendering, when applicable, for rendering lines and bars.

**NOSUBPIXEL**

never uses subpixel rendering.

**SUBPIXEL=ON | OFF**

specifies whether subpixel rendering should be used.

**ON**

always uses subpixel rendering, when applicable, for rendering lines and bars.

**Alias**

YES

**OFF**

never uses subpixel rendering.

**Alias**

NO

**Default**

Subpixel rendering is always enabled for vector-graphics output. It is enabled by default for image output, unless the graph contains a scatter plot or a scatter-plot matrix. In those cases, subpixel rendering is disabled by default.

**Requirement**

Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the `ANTIALIAS=ON` option in the ODS GRAPHICS statement.

**Tip**

For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the
maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1346

**TIPMAX=n**
specifies the maximum number of distinct mouse-over areas allowed before data tips are disabled. For example, if there are more than 400 points in a scatterplot, and TIPMAX=400, then no data tips appear. The default maximum value is 500.

*Note:* Prior to the third maintenance release of SAS 9.4, the TIPMAX= option specifies the maximum number of observations in the graph data to be allowed before data tips are disabled. The default is 500. When the graph data contains more than 500 observations, data tips are disabled for the entire graph. Starting with the third maintenance release of SAS 9.4, the TIPMAX= option specifies the maximum number of mouse-over areas allowed before data tips are disabled. This threshold is applied separately for each plot. The default remains at 500. If any plot in a graph contains more than 500 mouse-over areas, data tips are disabled for that plot. Data tips are enabled for the remaining plots in the graph.

\[ n \]
specifies a positive integer.

Default 500

**WIDTH=** *dimension*
specifies the width of any graph.

*dimension*
is a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pct or %</td>
<td>Percentage</td>
</tr>
<tr>
<td>pt</td>
<td>Point size (72 points = 1 inch)</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>

**Defaults** The value of the SAS registry entry "ODS > ODS GRAPHICS > Design Width" or the value of the DesignWidth= option in a STATGRAPH template. Typically, this value is 640px.

For the PRINTER destination, units of 1/150 of an inch

**Tip** If only the WIDTH= option is specified, then the default aspect of the graph is maintained.
Details

**Using the ODS GRAPHICS Statement**
You can enable ODS Graphics by using one of the following equivalent statements:

```plaintext
ods graphics on;
ods graphics;
```

When you specify one of these statements before your procedure invocation, Base, SAS/STAT, SAS/ETS, and SAS/QC procedures support ODS Graphics, either by default, or when you specify procedure options for requesting particular graphs.

To disable ODS Graphics, specify the following statement:

```plaintext
ods graphics off;
```

*Note:* ODS Graphics is ON by default for procedures SGPLOT, SGPANEL, SGSCATTER, SGDESIGN, and SGRENDER. For other products, the initial state of ODS Graphics is determined by a SAS Registry setting.

**Using the ODS GRAPHICS Statement for Batch Jobs**
To generate device-based graphics output in UNIX batch jobs, you must set the DISPLAY system option before creating the output. To set the display, enter the following command:

```plaintext
export DISPLAY=<ip_address>:0
```

The `ip_address` is the TCP/IP address, or the name of a UNIX terminal. Usually, the IP address of the UNIX system where SAS is running would be used. If you do not set the DISPLAY variable, then you get an error message in the SAS log.

**Specifying and Resetting the Image Name**

**Specifying the Image Name**
For ODS Graphics output, by default, the ODS object name is used as the “root” name for the image output file. The following example creates a GIF image named REGPLOT:

```plaintext
ods graphics / imagename="regplot" outputfmt=gif;
```

The assigned name REGPLOT is treated as a "root" name and the first output created is named REGPLOT. Subsequent graphs are named REGPLOT1, REGPLOT2, and so on, with an increasing index counter. This numbering can be reset with the RESET=INDEX option.

**Resetting the Image Name**
The RESET=INDEX option enables you to reset the filename numbering sequence. For example, if you are developing a template and it takes several submissions to get the desired output, you can use the RESET or RESET=INDEX option to force each output to replace itself:

```plaintext
ods graphics / reset=index ... ;
```

This specification causes all subsequent images to be created with the default or current image name.

When specifying this option, you can also specify the value for the index counter. The value that you specify determines the suffix for the next subsequent image. For example:

```plaintext
ods graphics / reset=index(100) imagename="MyName";
```
The next graph that you produce is named MYNAME100.

This feature is useful for creating animated graphics. For example, for a sequence of 100 images, you might begin with the following statement:

```sas
ods graphics / reset=index(1) imagename="MyName";
```

In the example, your program produces 100 images named MYNAME1, MYNAME2, ..., MYNAME100. If you later add more images to the animation, you might submit the following:

```sas
ods graphics / reset=index(101) imagename="MyName";
```

The next generated image is named MYNAME101.

*Note:* The ability to specify the value for the index counter applies to the third maintenance release in SAS 9.4 and later releases.

**Specifying the Image Format**

Each ODS destination uses a default format for its output. You can use the OUTPUTFMT= option in the ODS GRAPHICS statement to change the output format.

*Note:* Unless you have a special requirement for changing the image format, we recommend that you not change it. The default PNG or vector graphic format is far superior to other formats, such as GIF, in support for transparency and a large number of colors. Also, PNG and vector graphics images require much less disk storage space than JPEG or TIFF formats.

If you want to generate vector graphics images, you can use the following OUTPUTFMT= values for each destination:

<table>
<thead>
<tr>
<th>ODS Destination</th>
<th>OUTPUTFMT= value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS EPUB</td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS destination for Excel</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS HTML</td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS LISTING</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=PDF</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=PS</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=PCL</td>
</tr>
<tr>
<td>ODS PDF</td>
<td>Vector graphics images are generated by default</td>
</tr>
<tr>
<td>ODS PCL</td>
<td>OUTPUTFMT=PCL (for PCL output)</td>
</tr>
<tr>
<td>ODS PS</td>
<td>OUTPUTFMT=PS (for PostScript output)</td>
</tr>
<tr>
<td>ODS destination for PowerPoint</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS Destination</td>
<td>OUTPUTFMT=value</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ODS PRINTER</td>
<td>OUTPUTFMT=PCL (for PCL output)</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=PDF (for PDF output)</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=PS</td>
</tr>
<tr>
<td></td>
<td>OUTPUTFMT=SVG</td>
</tr>
<tr>
<td>ODS RTF</td>
<td>OUTPUTFMT=EMF</td>
</tr>
<tr>
<td>ODS Measured RTF</td>
<td>OUTPUTFMT=EMF</td>
</tr>
</tbody>
</table>

When a vector graphics image cannot be generated for the format that you specify, a PNG image is generated instead and is embedded in the specified output file. The output file format and extension are not changed in that case. In the following cases, a vector graphics image cannot be generated:

- surface plots
- bivariate histograms
- graphs that use smooth gradient contours
- graphs that include continuous legends
- graphs that use data skins
- graphs that use transparency (EMF and PS ODS destinations only)
- graphs that contain one or more rotated images
- graphs that have a broken axis
- graphs that contain outline marker characters

Starting with the second maintenance release of SAS 9.4, additional cases for which vector graphics output cannot be generated for graphs are as follows:

- graphs that use gradient fill for bars in a bar chart, histogram, or waterfall chart
- graphs that use the back-light effect on text
- graphs that include a text plot that displays text with an outlined bounding box or text with a filled bounding-box background
- graphs that include images (PostScript output only)

Starting with the third maintenance release of SAS 9.4, vector graphics output can be generated in the EMF, PDF, and SVG output formats for the following cases:

- graphs that use data skins
  
  **Note:** For the EMF, PDF, and SVG formats, vector graphics output is not supported for graphs that use transparency and data skins. An image is generated in that case.
- graphs that include one or more rotated images
- graphs that use gradient fills (except PDF)
- graphs that use a continuous legend
Note: For the PDF output format, vector graphics output is not supported for graphs that use a continuous legend and data transparency. An image is generated in that case.

**Supported File Types for Output Destinations**
The following table lists all of the supported file types for some ODS output destinations.

<table>
<thead>
<tr>
<th>Output Destination</th>
<th>Supported File Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPUB, EPUB2</td>
<td>PNG (default), GIF, JPG, SVG</td>
</tr>
<tr>
<td>EPUB3</td>
<td>SVG (default), PNG, GIF, JPG</td>
</tr>
<tr>
<td></td>
<td>Note: EPUB3 was added in the first maintenance release of SAS 9.4.</td>
</tr>
<tr>
<td></td>
<td>Note: Starting with the third maintenance release of SAS 9.4, EPUB3 is an alias for EPUB, and the EPUB3 supported file types supersede the EPUB supported file types.</td>
</tr>
<tr>
<td>ODS destination for Excel</td>
<td>PNG (default), JPEG, JPG, EMF</td>
</tr>
<tr>
<td>HTML</td>
<td>PNG (default), GIF, JPEG, JPG, SVG</td>
</tr>
<tr>
<td>HTML5</td>
<td>SVG (default), PNG, GIF, JPEG, JPG</td>
</tr>
<tr>
<td>LISTING</td>
<td>PNG (default), BMP, EMF, EPSI, GIF, JFIF, JPEG, JPG, PDF, PS, SASEMF, STATIC, TIFF, WMF, PSL, SVG</td>
</tr>
<tr>
<td>PDF</td>
<td>Native PDF (default), JPEG, JPG, GIF, PNG</td>
</tr>
<tr>
<td>ODS destination for PowerPoint</td>
<td>PNG (default), JPEG, JPG, GIF, EMF, TIFF, BMP</td>
</tr>
<tr>
<td>PS</td>
<td>PNG (default), JPEG, JPG, GIF, EPS, PDF, PCL, PS</td>
</tr>
<tr>
<td>RTF and Measured RTF</td>
<td>EMF (default), PNG, JPEG, JPG, JFIF</td>
</tr>
</tbody>
</table>

**Description of Supported File Types**
The following table provides descriptions of the supported file types for ODS output destinations.

<table>
<thead>
<tr>
<th>File Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP (Microsoft Windows Device Independent Bitmap)</td>
<td>Supports color-mapped and true color images that are stored as uncompressed or run-length encoded data. BMP was developed by Microsoft Corporation.</td>
</tr>
<tr>
<td>File Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>CGM (Computer Graphics Metafile)</td>
<td>A free and open international standard file format for 2-D vector graphics, raster graphics, and text. This format is defined by ISO/IEC 8632.</td>
</tr>
<tr>
<td>DIB (Microsoft Windows Device Independent Bitmap)</td>
<td>See the description of BMP.</td>
</tr>
<tr>
<td>EMF Plus (Enhanced Metafile Format Plus Extensions)</td>
<td>Supports Enhanced Metafile Plus Extensions that provides additional functionality, such as support of RGBA colors.</td>
</tr>
<tr>
<td>EMF Dual (Enhanced Metafile Format and Enhanced Metafile Format Plus Extensions)</td>
<td>Produces both EMF and EMF Plus formats simultaneously in the same output.</td>
</tr>
<tr>
<td>EPS</td>
<td>Encapsulated PostScript</td>
</tr>
<tr>
<td>EPSI (Microsoft NT Enhanced Metafile)</td>
<td>An extended version of the standard PostScript (PS) format. Files that use this format can be printed on PostScript printers and can also be imported into other applications. Notice that EPSI files can be read, but PS files cannot be read.</td>
</tr>
<tr>
<td>GIF (Graphics Interchange Format)</td>
<td>Supports only color-mapped images. GIF is owned by CompuServe, Inc.</td>
</tr>
<tr>
<td>JFIF (JPEG File Interchange Format)</td>
<td>Supports JPEG image compression. JFIF software is developed by the Independent JPEG Group.</td>
</tr>
<tr>
<td>JPEG or JPG (Joint Photographic Experts Group)</td>
<td>A file format that is used for storing noninteractive images.</td>
</tr>
<tr>
<td>PBM (Portable Bitmap Utilities)</td>
<td>Supports gray-scale, color, RGB, and bitmap files. The Portable Bitmap Utilities are a set of free utility programs that were developed primarily by Jef Poskanzer.</td>
</tr>
<tr>
<td>PCL</td>
<td>Printer Control Language</td>
</tr>
<tr>
<td>PNG (Portable Network Graphic)</td>
<td>Supports true color, gray-scale, and 8-bit images.</td>
</tr>
<tr>
<td>PS (PostScript Image File Format)</td>
<td>The Image classes use only PostScript image operators. A level II PS printer is required for color images. PostScript was developed by Adobe Systems, Inc.</td>
</tr>
</tbody>
</table>
### File Types and Descriptions

<table>
<thead>
<tr>
<th>File Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL (PostScript)</td>
<td>PostScript</td>
</tr>
<tr>
<td>STATIC</td>
<td>Chooses the best image format for the current ODS destination.</td>
</tr>
<tr>
<td>SVG (Scalable Vector Graphics)</td>
<td>Is an XML language for describing two-dimensional vector graphics.</td>
</tr>
<tr>
<td>TIFF (Tagged Image File Format)</td>
<td>Internally supports a number of compression types and image types, including bitmapped, color-mapped, gray-scaled, and true color. TIFF was developed by Aldus Corporation and Microsoft Corporation and is used by a wide variety of applications (available if licensed).</td>
</tr>
<tr>
<td>XBM</td>
<td>X Window Bitmap</td>
</tr>
<tr>
<td>XPM</td>
<td>X Window Pixmap</td>
</tr>
</tbody>
</table>

### Temporarily Saving and Restoring ODS GRAPHICS Settings

This feature applies to the third maintenance release of SAS 9.4 and to later releases.

#### About PUSH and POP

Although you can use the RESET option to restore the default ODS GRAPHICS settings, there might be times when you want to save your current custom settings and later restore them. ODS enables you to temporarily store your custom settings in a stack created for this purpose, perform some other task with different settings, and then restore the previous settings.

The PUSH option saves the current ODS GRAPHICS settings to the stack and increments the stack depth. The POP option restores the most recently stored settings from the stack and decrements the stack depth.

This feature is useful when you run macros. Within a macro you can PUSH at the start of the macro and POP at the end. This enables your macro to have custom ODS GRAPHICS behaviors without affecting the calling environment.

You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied. For more information, see “Managing the Stack Depth” on page 95. For each PUSH request, you can specify a POP request. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed to the stack.

Order of specification is important when using the PUSH option. For example, the following statement pushes the NOBORDER option to the stack along with any other custom settings that are in effect.

```
ods graphics / noborder push;
```

A subsequent POP request restores the pushed settings including NOBORDER.

However, the following statement pushes the current custom settings and then sets the NOBORDER option.
Here, the subsequent POP request restores whatever border setting was in effect when the PUSH request was made.

**T I P** Use the SHOW option to show the ODS GRAPHICS settings that are currently in effect.

**Settings That Can Be Pushed**
The PUSH and POP commands apply to all ODS GRAPHICS options except the following: PUSH, POP, RESET=INDEX, and SHOW.

**How Code Errors Affect the PUSH Operation**
If the ODS GRAPHICS statement contains a syntax error, then the PUSH request is ignored.

For example, the PUSH request is ignored in the following statement:

```ods graphics / antialias=bogus push;```

A syntax error (BOGUS) in ANTIALIAS causes the parser to ignore the remaining options. However, a simple semantics error does not prevent the remaining options from being handled. In the following statement, the PUSH request is honored.

```ods graphics / antialiasmax=-1 push;```

In this statement, ANTIALIASMAX=–1 is invalid. The option expects a zero or a positive integer. In this case, a warning is issued to the log, but the PUSH occurs.

*Note:* Syntax errors in your code can have other unexpected results that are not described here.

**Managing the Stack Depth**
By default, the stack supports up to 1024 pushes. You can change the default by using the STACKDEPTHMAX= option.

If the specified STACKDEPTHMAX= value is less than the current stack depth, then the stack is popped until its depth equals the specified value. Popping the stack does not affect other option settings.

If you want to empty the stack, issue the following statement:

```ods graphics / stackdepthmax=0 reset=stackdepthmax;```

This statement first empties the stack of all PUSH requests and then restores the stack size to 1024.

TITLE and FOOTNOTE Statements
The TITLE and FOOTNOTE statements control the content, appearance, and placement of title and footnote text.

Valid in: anywhere in your program
Used by: SGPLOT, SGPANEL, and SGSCATTER procedures

Syntax

```
TITLE<1...10> <text-options> <"text-string–1"> ... <text-options> <"text-string–n">;  
FOOTNOTE<1...10> <text-options> <"text-string–1"> ... <text-options> <"text-string–n">;
```
Required Argument

- **text-string**

 is a text string that can contain up to 512 characters. You must enclose text strings in either single or double quotation marks. The text appears exactly as you enter it in the statement, including uppercase and lowercase characters and spaces. Titles and footnotes automatically wrap to additional lines if necessary.

 To use single quotation marks or apostrophes within the title, you can either:

 - use a pair of single quotation marks together:
    ```sql
    footnote 'All''s well that ends well';
    ```
 - enclose the text in double quotation marks:
    ```sql
    footnote "All's well that ends well";
    ```

 Because the FOOTNOTE and TITLE statements concatenate all text strings, the strings must contain the correct spacing. With a series of strings, add spaces to the beginning of a text string rather than at the end, as in this example:

  ```sql
  footnote color=red "Sales:" color=blue " 2000";
  ```

 With fonts that support Unicode, you can produce specific characters by specifying a hexadecimal value. A trailing `x` identifies a string as a hexadecimal value. You must also enclose the character specification in a special ODS handler string, in the format `(*ESC*){Unicode 'hexadecimal-value'x}`. For example:

  ```sql
  title "Regression with Confidence Limits \{ (*ESC*){unicode '03B1'x}=.05 \}";
  ```

 This statement produces the title, "Regression with Confidence Limits (α = .05)" because '03B1'x is the hexadecimal value for the lowercase Greek letter alpha in all Unicode fonts.

 In addition, if you are using a BY statement, then you can include special options. For more information, see “Substituting BY Line Values in a Text String” on page 100.

 —

 Note The LISTING destination does not honor the (*ESC*) statement.

Optional Arguments

- **BOLD**

 specifies that the font weight is bold for the text string.

 Defaults For titles, the default font weight is specified by the FONTWEIGHT attribute of the GraphTitleText style element in the current style.

 For footnotes, the default font weight is specified by the FONTWEIGHT attribute of the GraphFootnoteText style element in the current style.

- **BCOLOR= color**

 specifies the background color for a box that you created with the BOX= option. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

 This option has no effect if you do not also specify the BOX= option. By default, the background color is the same color as the background of the graph.

 Alias BC=
BOX=1 | 2 | 3 | 4
draws a box around one line of text. Specify a value between 1 and 4, where 1 specifies the thinnest line and 4 specifies the thickest line. Only the last BOX= option is used. The color of the box outline is determined by the GraphBorderLines element of the current style.

Alias BO

BSPACE=numeric-value<units>
specifies the amount of space between the text and the border of a box that you create with the BOX= option.

You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 101 for a list of the units that are supported.

If you do not specify a unit, then the size of the space is approximately 12n points. For example, if you specify BSPACE=2, then the space is approximately 24 points.

Alias BS=
Default 0

COLOR=color
specifies the color for the text. The COLOR= option affects all of the text strings that follow it in your TITLE or FOOTNOTE statement. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

You can use multiple colors by specifying multiple COLOR= options. For example, the following code produces a title where the first word is red and the second word is blue:

```
title color=red "Red" color=blue " Blue"
```

Alias C=

Defaults

For titles, the default text color is specified by the COLOR attribute of the GraphTitleText style element in the current style.

For footnotes, the default font color is specified by the COLOR attribute of the GraphFootnoteText style element in the current style.

Note SAS/GRAPH software fonts such as SWISS cannot be used with statistical graphics procedures.

FONT="system-font"
specifies a system font for the text string.

Alias F=

Defaults

For titles, the default font is specified by the FONTFAMILY attribute of the GraphTitleText style element in the current style.

For footnotes, the default font is specified by the FONTFAMILY attribute of the GraphFootnoteText style element in the current style.

HEIGHT=numeric-value<units>
specifies the size of the text. You can also specify the unit of measurement. The following table lists the measurement units that are supported:
You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 101 for a list of the units that are supported.

If you do not specify a unit, then the size of the text is approximately 12n points. For example, if you specify HEIGHT=2, then the text size is approximately 24 points.

Alias H=

Defaults

For the first title (title or title1), the default font size is specified by the FONTSIZE attribute of the GraphTitleText style element in the current style. For subsequent titles (titleN), the size is the FONTSIZE attribute of the GraphLabelFont style attribute.

For footnotes, the default font size is specified by the FONTSIZE attribute of the GraphFootnoteText style element in the current style.

ITALIC specifies that the font style is italic for the text string.

Defaults

For titles, the default font style is specified by the FONTSTYLE attribute of the GraphTitleText style element in the current style.

For footnotes, the default font style is specified by the FONTSTYLE attribute of the GraphFootnoteText style element in the current style.

JUSTIFY= LEFT | CENTER | RIGHT

specifies the alignment of the text string. You can specify one of the following values:

LEFT | L

aligns the text to the left.

CENTER | C

aligns the text in the center.

Note: By default, titles and footnotes are sometimes centered over the data area of the graph. However, when you explicitly specify center justification, titles and footnotes are always centered over the graph area.

RIGHT | R

aligns the text to the right.

The JUSTIFY= option affects all of the text strings that follow it in your TITLE or FOOTNOTE statement. You can specify multiple alignments by using more than one JUSTIFY= option. For example, the following code creates a footnote where the first string is aligned to the left and the second string is aligned to the right:

footnote justify=left "Example 2" justify=right "Graph 3";

Alias J=

Default CENTER

LSPACE= numeric-value <units>

specifies the amount of space above the title text and below the footnote text.

You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 101 for a list of the units that are supported.
If you do not specify a unit, then the size of the space is approximately $12n$ points. For example, if you specify LSPACE=2, then the space is approximately 24 points.

Alias	LS
Default | 0
Interaction | The LSPACE= option has no effect if you also specify the BOX= option.

Details

Summary of Text Options
text-options can be one or more of the following:

- appearance options:
 - BOLD
 - COLOR= color
 - FONT= “system-font”
 - HEIGHT= numeric-value <units>
 - ITALIC
- placement and spacing options:
 - JUSTIFY= LEFT | CENTER | RIGHT
 - LSPACE= numeric-value <units>
- boxing and drawing options:
 - BCOLOR= color
 - BOX= numeric-value
 - BSPACE= numeric-value <units>

The following options are not supported by statistical graphics procedures:

- ANGLE=
- BLANK=
- DRAW=
- LANGLE=
- LINK=
- MOVE=
- ROTATE=
- UNDERLIN=
- WRAP

Using TITLE and FOOTNOTE Statements
You can define TITLE and FOOTNOTE statements anywhere in your SAS program. They are global and remain in effect until you cancel them or until you end your SAS session. All currently defined FOOTNOTE and TITLE statements are displayed automatically.
You can define up to ten TITLE statements and ten FOOTNOTE statements in your SAS session. A TITLE or FOOTNOTE statement without a number is equivalent to a TITLE1 or FOOTNOTE1 statement. It is not necessary to use sequential statement numbers—skipping a number in the sequence leaves a blank line.

You can use an unlimited number of text strings and options. Ensure that each option is placed before the text strings that you want it to modify.

The most recently specified TITLE or FOOTNOTE statement of any number completely replaces any other TITLE or FOOTNOTE statement of that number. In addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For example, if you define TITLE1, TITLE2, and TITLE3, then submitting a new TITLE2 statement cancels TITLE3.

The most recently specified TITLE or FOOTNOTE statement of any number completely replaces any other TITLE or FOOTNOTE statement of that number. In addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For example, if you define TITLE1, TITLE2, and TITLE3, resubmitting the TITLE2 statement cancels TITLE3.

title4;

But remember that this cancels all other existing statements of a higher number.

To cancel all current TITLE or FOOTNOTE statements, use the TITLE1; or FOOTNOTE1; statement:

Substituting BY Line Values in a Text String

These options are available if a BY statement is in effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in the text string. The BY line uses the format variable-name=value.

#BYVALn | #BYVAL(BY-variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the text string. Specify the variable with one of these:

n specifies a variable by its position in the BY statement. For example, #BYVAL2 specifies the second variable in the BY statement.

BY-variable-name specifies a variable from the BY statement by its name. For example, #BYVAL(YEAR) specifies the BY variable, YEAR. variable-name is not case sensitive.

#BYVARn | #BYVAR(BY-variable-name)
substitutes the name of the BY-variable or the label associated with the variable (whatever the BY line would normally display) for #BYVAR in the text string. Specify the variable with one of these:

n specifies a variable by its position in the BY statement. For example, #BYVAR2 specifies the second variable in the BY statement.

BY-variable-name specifies a variable from the BY statement by its name. For example, #BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not case sensitive.
Note: A BY variable name displayed in a title or footnote is always in uppercase. If a label is used, then it appears as specified in the LABEL statement.

To use the #BYVAR and #BYVAL substitutions, insert the item in the text string at the position where you want the substitution text to appear. Both #BYVAR and #BYVAL specifications must be followed by a delimiting character. The character can be either a space or other non-alphanumeric character, such as a quotation mark. If no delimiting character is provided, then the specification is ignored and its text remains intact and is displayed with the rest of the string. To allow a #BYVAR or #BYVAL substitution to be followed immediately by other text, with no delimiter, use a trailing dot (as with macro variables). The trailing dot is not displayed in the resolved text. If you want a period to be displayed as the last character in the resolved text, use two dots after the #BYVAR or #BYVAL substitution.

The substitution for #BYVAR or #BYVAL does not occur in the following cases:

• if you use a #BYVAR or #BYVAL specification for a variable that is not named in the BY statement. For example, you might use #BYVAL2 when there is only one BY-variable or #BYVAL(ABC) when ABC is non-existent or is not a BY-variable.

• if there is no BY statement at all

For both cases, no error or warning message is issued. The option specification is displayed with the rest of the string. The graph continues to display a BY line at the top of the page unless you suppress it by using the NOBYLINE option in an OPTION statement.

Measurement Units for TITLE and FOOTNOTE Statement Options

Some of the options in the TITLE and FOOTNOTE statements give you the option to specify the unit of measurement. The following table lists the units that are supported:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 100 dots per inch</td>
</tr>
</tbody>
</table>

WHERE Statement

Selects observations from SAS data sets that meet a particular condition.

Used by: SGDESIGN, SGPANEL, SGPLOT, SGRENDER, and SGSCATTER procedures

Details

All features of the WHERE statement are supported. For more information, see “WHERE Statement” in SAS Statements: Reference.
Note: When the WHERE statement is used with the SGDESIGN procedure, you must specify the data set. This is required even though a data set has already been defined for the ODS Graphics Designer (SGD) file that is rendered by the procedure.
Part 2

The Procedures

Chapter 5
SGDESIGN Procedure .. 105

Chapter 6
SGPANEL Procedure ... 115

Chapter 7
SGPLOT Procedure ... 631

Chapter 8
SGRENDER Procedure 1237

Chapter 9
SGSCATTER Procedure 1249

Chapter 10
Common Concepts ... 1305

Chapter 11
Commonly Used Attribute Options 1319
Chapter 5
SGDESIGN Procedure

Overview: SGDESIGN Procedure

The SGDESIGN procedure produces a graph from one or more input SAS data sets and a user-defined ODS Graphics Designer (SGD) file. The SGD file is created with the SAS ODS Graphics Designer application.
Here is example output:

Figure 5.1 Example PROC SGDESIGN Output

![Distribution of Class Weight](image)

In the example, the data columns and title text are provided dynamically with the DYNAMIC statement.

By default, the SGDESIGN procedure uses the data set or data sets that are currently defined in the SGD file. If the SGD file has been defined with dynamic variables, then you can substitute a different value for a variable by using the DYNAMIC statement. For more information, see “Dynamic Variable Concepts” on page 107.

Note: The procedure applies the style of the active destination rather than the style that is currently defined in the SGD file.

Concepts: SGDESIGN Procedure

General Concepts

Here are the general concepts for the SGDESIGN procedure:

- The SGDESIGN procedure requires an SGD file that was created with the ODS Graphics Designer application.
- By default, the SGDESIGN procedure uses the data set or sets that are currently referenced by the SGD file. You have the option to specify an alternate data set.
- You can produce a graph from a different data set as long as the new data set has variables of the same name and type. For an example, see “Example 2: Creating a Graph That Uses a Different Data Set” on page 112.
Note: If the SGD file was created using shared variables, then you can create a graph from a different data set regardless of the name of the variables. For more information, see “Dynamic Variable Concepts” on page 107.

• You can render the graph to any ODS destination by using standard ODS syntax. When the graph is rendered, the procedure applies the style of the active destination rather than the style that was used in the SGD file.

• As with the other ODS Graphics procedures, the ODS GRAPHICS statement is always ON. However, you can use the ODS GRAPHICS statement options to control many aspects of your graphics. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

• The SGDESIGN procedure supports SAS statements such as FORMAT, LABEL, BY, and WHERE. These statements can be applied only if the DATA= option is used with the procedure.

 For an example that uses the WHERE statement, see “Example 1: Creating a Graph and Subsetting the Data” on page 111.

Dynamic Variable Concepts

A dynamic variable is a variable that is defined in a template with the DYNAMIC statement and that can be initialized at template run time. If the SGD file has been defined with dynamic variables, then you can set or initialize these variables by using the DYNAMIC statement with the SGDESIGN procedure.

For more information about dynamic variables, see SAS Graph Template Language: Reference.

Dynamic variables can be created in ODS Graphics Designer in two ways:

• shared variables

 In ODS Graphics Designer, graphs can be defined to use shared variables. A shared variable is a feature of ODS Graphics Designer that enables users to reuse graphs and specify different variables from the same or from a different data set. The shared variable is a type of dynamic variable that can be assigned the name of a data column.

 In ODS Graphics Designer, shared variables are named V1, V2, V3, and so on. Each shared variable corresponds to a column in the data set.

 If the SGD file has been defined with a shared variable, you can substitute a different column for the shared variable when you run the SGDESIGN procedure. When you use the SGDESIGN procedure, the column that you substitute must be the same type as the column specified in the SGD file.

 For example, suppose that your SGD file is a shared-variable graph in which V1 is assigned MPG_City, which is a numeric data type. When you run the SGDESIGN procedure, you can substitute MPG_Highway because it is also a numeric data type. In the procedure, you would specify DYNAMIC V1="MPG_Highway".

 The column that you substitute can reside in the same or in a different data set. (To use a different data set, you specify the data set by using the DATA= option.)

• dynamic content in text elements

 In ODS Graphics Designer, you can insert dynamic content into textual elements such as titles and footnotes. This dynamic content is specified by using the expression dyn(DNAME) where DNAME is a name that you want to associate with
the text that is generated. You then substitute a character string or numeric constant when you run the graph using the SGDESIGN procedure.

For example, suppose the SGD file has the following title: *Weight in dyn(DWEIGHT)*. When you run the graph with the SGDESIGN procedure, you can specify `DYNAMIC DWEIGHT="Pounds"`. The entire string `dyn(DWEIGHT)` is replaced with the specified value. In the resulting graph, the title becomes *Weight in Pounds*.

Note:

- In ODS Graphics Designer, you can see the dynamic variables that have been defined for a graph when you view the graph’s template code (from the View menu).
- For every graph that you create in ODS Graphics Designer, the designer defines dynamic variables automatically for every role assignment in the graph. In the template code, the names of these automatic variables begin with an underscore (for example, `dynamic _HEIGHT`).

CAUTION:

Substituting columns for these automatic dynamic variables can be complex and prone to error, and is not a supported usage of the SGDESIGN procedure. When using the SGDESIGN procedure, it is strongly recommended that you limit your use of dynamic variables to the shared variables and dynamic content that are described in this topic.

In summary, you can use dynamic variables to generate the same graph with different data variables, a different data set, and different text elements.

For more information about shared variables and dynamic content that are defined in the ODS Graphics Designer, see “Using Shared Variables in Graphs” in *SAS ODS Graphics Designer: User’s Guide*.

Syntax: SGDESIGN Procedure

```
PROC SGDESIGN SGD="SGD-file-specification" <option(s)>;
   DYNAMIC dynamic-var–1="assigned-value–1" <…dynamic-var–n="assigned-value-n">;
```

PROC SGDESIGN Statement

Renders a graph (SGD file) that was created by using ODS Graphics Designer. The statement also enables you to specify a data set and other options.

Restrictions:

On z/OS systems, the SGDESIGN procedure does not render SGD files that were generated with the previous release of the ODS Graphics Designer. You must open the SGD file in the 9.3 version of the ODS Graphics Designer (on a Windows or UNIX system). Then save the file in the 9.3 format.

On z/OS systems, SGD files must be transferred to the HFS file system of UNIX System Services in order to be rendered by the SGDESIGN procedure.
Requirement: An input SGD file specification is required. If the SGD file was created to use a temporary data set, such as a data set in the SAS Work library, then that data set must exist in the current SAS session in order for the graph to be rendered. The data set might need to be re-created in the current SAS session.

Syntax

PROC SGDESIGN SGD="SGD-file-specification" <options> ;

Summary of Optional Arguments

CONTENT
outputs important information about the SGD file into the SAS log.

DATA=input-data-set
specifies the SAS data set that contains the variables to process.

DESCRIPTION="text-string"
specifies a description for the output image.

LIBNAME=library-name
specifies an alternate library for all data sets that are associated with the SGD file.

Required Argument

SGD="SGD-file-specification"
specifies the SGD file to use for the graph. Include the complete path and filename enclosed in single or double quotation marks.

If you do not specify the full path, then the procedure looks for the file in the SAS current working directory. The SAS current directory is the same directory in which you start your SAS session. If you are running SAS with the Windowing environment in the Windows operating system, then the current directory is displayed in the status bar at the bottom of the main SAS window.

Optional Arguments

CONTENT
outputs important information about the SGD file into the SAS log. The information includes data set names, library names, variable names (including those for dynamic variables), and the ODS style.

Note When the CONTENT option is used, no graphics output is produced.

DATA=input-data-set
specifies the SAS data set that contains the variables to process.

By default, the SGDESIGN procedure uses the data set or data sets that are currently defined in the SGD file. You have the option to specify an alternate data set. Only one data set can be specified here. If the SGD file uses columns from multiple data sets, then the specified data set should contain all the columns that are required to render the graph.

Specify the full name of the SAS data set in the format libref.data-set. If you do not specify the library, then the procedure looks for the data set in the SAS Work library.
DESCRIPTION=“text-string”
specifies a description for the output image.

The description identifies the image in the following locations:

• the Results window
• the alternate text for the image in HTML output
• the table of contents that is created by the CONTENTS option in an ODS statement

Alias DES
Default The default description is “The SGDesign Procedure”.

LIBNAME=library-name
specifies an alternate library for all data sets that are associated with the SGD file. If no library is specified, then the procedure uses the library that is currently defined in the SGD file.

The data sets in the SGD file can come from multiple libraries. However, when you use the LIBNAME= option, you override all of those library names with the specified library.

DYNAMIC Statement
Assigns values to dynamic variables that have been defined in the SGD file. You can either specify variables in multiple DYNAMIC statements or specify all of your variables in a single DYNAMIC statement.

See: “Example 3: Using the DYNAMIC Statement to Specify a Column and a Character String” on page 112

Syntax
DYNAMIC dynamic-var–1="assigned-value–1" <…dynamic-var–n="assigned-value–n">;

Required Argument
dynamic-var=assigned-value
specifies the values for one or more dynamic variables. For more information about dynamic variables, see “Dynamic Variable Concepts” on page 107.

dynamic-var
specifies the name of a dynamic variable.

The variable must be declared in a DYNAMIC statement within the SGD file's template. (In ODS Graphics Designer, you can see the dynamic variables that have been declared for a graph when you view the graph's template code from the View menu.)

assigned-value
specifies the value for the dynamic variable. If the value is a character string or a column name, then it must be enclosed in single or double quotation marks. For example: V1="year" and MYTITLE="Distribution of Patient Weight".

If the value is a numeric value, then you should supply a number. In this case, no quotation marks are required. For example: BINS=5.
If the value refers to a column name, then the new column must be the same type as the column that it replaces. For example, if V1 is a numeric type column, then the column name that you specify must also be numeric.

When the value is a column name, the case of the string value does not matter. For example, V1="Weight" is effectively the same as V1="WEIGHT". When the value resolves to text that appears in the graph (for example, titles and axis labels) the value entered is case-sensitive.

Details

When you use dynamic variables, be aware that some variables must be initialized, whereas for others, initialization is optional. For example, suppose that the graph file Histogram.sgd is defined with dynamic content in the title. In order to execute this SGD file with the correct title, the dynamic variable used in the title must be initialized. (In the example, the dynamic variable is named TITLE.)

```plaintext
proc sgdesign sgd="Histogram.sgd";
   dynamic TITLE ="This is a Histogram";
run;
```

However, if the SGD file was created with a shared variable, then that shared variable has already been assigned a column value in the SGD file. You do not need to specify a value for the variable unless you want to change the column. For more information about shared variables, see “Dynamic Variable Concepts” on page 107.

If you have multiple dynamic variables, you can either specify variables in multiple DYNAMIC statements or specify all of your variables in a single DYNAMIC statement. For example, the following statement specifies two variables.

```plaintext
dynamic V1="cholesterol" EXAMPLESV="Cholesterol";
```

As an alternative, you can specify the dynamic variables in multiple DYNAMIC statements.

```plaintext
dynamic V1="cholesterol";
dynamic EXAMPLESV="Cholesterol";
```

Examples: SGDESIGN Procedure

Example 1: Creating a Graph and Subsetting the Data

Features: WHERE statement

This example uses a WHERE statement to subset the data. The example assumes the existence of a graph named CarsLattice.sgd that was created based on the SASHELP.CARS data set.

Although a data set has already been defined for the SGD file, you must specify the data set in the procedure when you use the WHERE statement.

```plaintext
proc sgdesign sgd="CarsLattice.sgd";
   data=sashelp.cars;
   where Origin="Asia";
run;
```
Example 2: Creating a Graph That Uses a Different Data Set

Features: subset data

You can produce a graph from a different data set as long as the new data set has variables of the same name and type. (If the SGD file was created using shared variables, then you can create a graph from a different data set regardless of the name of the variables. For more information, see “Dynamic Variable Concepts” on page 107.)

The following example creates a new data set from an existing data set. This example assumes the existence of a graph named CarsLattice.sgd that was created based on the SASHELP.CARS data set.

```sas
data sedans;
  set sashelp.cars;
  where type="Sedan";
run;

proc sgdesign sgd="CarsLattice.sgd"
  data=sedans;
run;
```

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\CarsLattice.sgd."

Example 3: Using the DYNAMIC Statement toSpecify a Column and a Character String

Features: DYNAMIC statement

This example substitutes a column and also initializes the dynamic text for a title. The example assumes the following:

- the existence of a shared-variable graph named svExample.sgd that uses the SASHELP.CLASSFIT data set. To create this SGD file, follow the steps provided in “Example: Create a Shared-Variable Graph and Add a Dynamic Title” in [SAS ODS Graphics Designer: User's Guide](#).
- in the SGD file, the shared variable V1 is set to WEIGHT.
- in ODS Graphics Designer, the title of the graph is `Distribution of dyn(EXAMPLESV).`

Create the graph using the default data. You generate this graph only for comparison purposes.

```sas
proc sgdesign sgd="svExample.sgd";
  dynamic EXAMPLESV="Class Weight";
run;
```
Example 3: Using the DYNAMIC Statement to Specify a Column and a Character String

1 Specify the path and name that you used when you saved the SGD file. For example, the path might be "C:\SGDFiles\svExample.sgd."

2 Though this example uses the default value for the shared variable V1 (WEIGHT), there is no default value for the dyn(EXAMPLESV) function that is used in the title. To execute this SGD file with a correct title, the dynamic expression used in the title must be initialized, as shown in the code. In the output, the title becomes Distribution of Class Weight. The “Distribution of” portion of the title was defined in the SGD file. The “Class Weight” portion is generated dynamically.

Create the graph using different data. You can create the graph using a different data set and substitute a different column for V1. You can also change the dynamic variable that is used in the title. In the output, the title is Distribution of Cholesterol.

 proc sgdesign sgd="svExample.sgd" data=sashelp.heart;
 dynamic V1="cholesterol" EXAMPLESV="Cholesterol";
 run;

1 Specify the path and name that you used when you saved the SGD file.

2 The CHOLESTEROL column is the same type as the WEIGHT column that was defined in the SGD file. The columns can be different as long as they are the same type (numeric in this case).
Chapter 6
SGPANEL Procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: SGPANEL Procedure</td>
<td>116</td>
</tr>
<tr>
<td>Concepts: SGPANEL Procedure</td>
<td>117</td>
</tr>
<tr>
<td>Panel Creation</td>
<td>117</td>
</tr>
<tr>
<td>Concepts in Common with the SGPLOT Procedure</td>
<td>120</td>
</tr>
<tr>
<td>Syntax: SGPANEL Procedure</td>
<td>120</td>
</tr>
<tr>
<td>PROC SGPANEL Statement</td>
<td>122</td>
</tr>
<tr>
<td>PANELBY Statement</td>
<td>127</td>
</tr>
<tr>
<td>STYLEATTRS Statement</td>
<td>136</td>
</tr>
<tr>
<td>BAND Statement</td>
<td>140</td>
</tr>
<tr>
<td>BLOCK Statement</td>
<td>148</td>
</tr>
<tr>
<td>BUBBLE Statement</td>
<td>155</td>
</tr>
<tr>
<td>DENSITY Statement</td>
<td>166</td>
</tr>
<tr>
<td>DOT Statement</td>
<td>172</td>
</tr>
<tr>
<td>DROPLINE Statement</td>
<td>188</td>
</tr>
<tr>
<td>FRINGE Statement</td>
<td>192</td>
</tr>
<tr>
<td>GRADLEGEND Statement</td>
<td>196</td>
</tr>
<tr>
<td>HBAR Statement</td>
<td>201</td>
</tr>
<tr>
<td>HBARBASIC Statement</td>
<td>219</td>
</tr>
<tr>
<td>HBARPARM Statement</td>
<td>233</td>
</tr>
<tr>
<td>HBOX Statement</td>
<td>248</td>
</tr>
<tr>
<td>HEATMAP Statement</td>
<td>262</td>
</tr>
<tr>
<td>HEATMAPPARM Statement</td>
<td>269</td>
</tr>
<tr>
<td>HIGHLow Statement</td>
<td>277</td>
</tr>
<tr>
<td>HISTOGRAM Statement</td>
<td>290</td>
</tr>
<tr>
<td>HLINE Statement</td>
<td>296</td>
</tr>
<tr>
<td>INSET Statement</td>
<td>312</td>
</tr>
<tr>
<td>KEYLEGEND Statement</td>
<td>315</td>
</tr>
<tr>
<td>LINEPARM Statement</td>
<td>322</td>
</tr>
<tr>
<td>LOESS Statement</td>
<td>327</td>
</tr>
<tr>
<td>NEEDLE Statement</td>
<td>339</td>
</tr>
<tr>
<td>PBSPLINE Statement</td>
<td>348</td>
</tr>
<tr>
<td>POLYGON Statement</td>
<td>361</td>
</tr>
<tr>
<td>REFLINE Statement</td>
<td>375</td>
</tr>
<tr>
<td>REG Statement</td>
<td>380</td>
</tr>
<tr>
<td>SCATTER Statement</td>
<td>392</td>
</tr>
<tr>
<td>SERIES Statement</td>
<td>406</td>
</tr>
<tr>
<td>SPLINE Statement</td>
<td>426</td>
</tr>
<tr>
<td>STEP Statement</td>
<td>439</td>
</tr>
<tr>
<td>SYMBOLCHAR Statement</td>
<td>454</td>
</tr>
<tr>
<td>SYMBOLIMAGE Statement</td>
<td>459</td>
</tr>
</tbody>
</table>
Examples: SGPANEL Procedure

- Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots
- Example 2: Creating a Panel of Regression Curves
- Example 3: Creating a Panel of Bar Charts
- Example 4: Creating a Panel of Line Charts

Overview: SGPANEL Procedure

The SGPANEL procedure creates a panel of graph cells for the values of one or more classification variables. For example, if a data set contains three variables (A, B and C) and you want to compare the scatter plots of B*C for each value of A, then you can use the SGPANEL procedure to create this panel. The SGPANEL procedure creates a layout for you automatically and splits the panel into multiple graphs if necessary.

The SGPANEL procedure can create a wide variety of plot types, and overlay multiple plots together in each graph cell in the panel. It can also produce several types of layout.

Here are some examples of panels that the SGPANEL procedure can create.

Table 6.1 Examples of Panels That Can Be Generated by the SGPANEL Procedure

The following code creates a panel of loess curves:

title1 "Cholesterol Levels for Age > 60";
proc sgpanel data=sashelp.heart(where=(AgeAtStart > 60));
 panelby sex / novarname;
 loess x=weight y=cholesterol / clm; run;
title1;
The following code creates a panel of vertical bar charts:

```sas
proc sgpanel data=sashelp.prdsale;
panelby quarter;
rowaxis label="Sales";
vbar product / response=predict stat=mean transparency=0.3;
vbar product / response=actual stat=mean barwidth=0.5 transparency=0.3;
run;
title1;
```

The following code creates a panel of box plots in a lattice layout:

```sas
proc sgpanel data=sashelp.heart;
panelby weight_status sex / layout=lattice novarname;
hbox cholesterol;
run;
title1;
```

The following code creates a panel of cells with a histogram and a normal density curve:

```sas
proc sgpanel data=sashelp.heart noautolegend;
panelby sex / novarname;
histogram weight;
density weight;
run;
title1;
```

Concepts: SGPANEL Procedure

Panel Creation

The SGPANEL procedure has a required PANELBY statement that is used to define the classifier variables for the panel. This statement must be specified before any plot, axis, or legend statement or else an error occurs. You can use options in the PANELBY statement to control the attributes of the panel. For example, you can use the COLUMNS= option to specify the number of columns in the panel.
SGPANEL can use four different layouts, which are specified by the `LAYOUT=` option in the `PANELBY` statement. The layout determines how your classifier variables are used to create the panel, and also affects the number of classifier variables that you can specify.

The default layout is `PANEL`. With this layout, you can specify any number of classifier variables. The graph cells in the panel are arranged automatically, and the classifier values are displayed above each graph cell in the panel. When you specify multiple classifier variables, the order of the classifier variables determines how the graph cells are sorted.

Figure 6.1 Example of the PANEL Layout

Another layout is called `LATTICE`. This layout requires exactly two classifier variables. The values of the first variable are assigned as columns, and the values of the second variable are assigned as rows. The classifier values are displayed above the columns and to the right side of the rows.
Two additional layouts are available, which are called COLUMNLATTICE and ROWLATTICE. These layouts require exactly one classifier variable. The values of the classifier variable are assigned as cells in a single row or column.

If you have a large number of classifier variables, then the best method for creating a panel is to choose one or two classifiers for the PANELBY statement. Then specify the remaining variables in a BY statement. This method maximizes the space for the plots and generates results that are easier to interpret.
Concepts in Common with the SGPLOT Procedure

The following topics are located in the Chapter 10, “Common Concepts,” on page 1305 section. These topics describe concepts that are similar between the SGPANEL and SGPLOT procedures.

Table 6.2 Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1306)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1307)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1308)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1312)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1312)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1315)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.</td>
</tr>
</tbody>
</table>

Syntax: SGPANEL Procedure

Requirement: The PANELBY statement and at least one plot statement are required.

Global statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE
PROC SGPANEL <option(s)>;
 PANELBY variable(s) <option(s)>;
 STYLEATTRS <option(s)>
 BAND X=variable Y=variable
 UPPER= numeric-value | numeric-variable
 LOWER= numeric-value | numeric-variable <option(s)>;
 BLOCK X=category-variable BLOCK=block-variable <option(s)>;
 BUBBLE X=variable Y=variable SIZE=numeric-variable <option(s)>;
 DENSITY response-variable <option(s)>;
 DOT category-variable <option(s)>;
 DROPLINE X=variable x-axis-value
 Y=variable | y-axis-value <option(s)>;
 FRINGE numeric-variable <option(s)>;
 GRADLEGEND <"name"> <option(s)>
 HBAR category-variable <option(s)>;
 HBARBARC category-variable <option(s)>;
 HBARPARM CATEGORY= category-variable RESPONSE= numeric-variable <option(s)>;
 HBOX analysis-variable <option(s)>;
 HEATMAP X=variable Y=variable <option(s)>
 HEATMAPPARM X=variable Y=variable
 COLORGROUP=variable | COLORRESPONSE=numeric-variable <option(s)>;
 HIGHLOW X=variable | Y=variable
 HIGH=numeric-variable LOW=numeric-variable <option(s)>;
 HISTOGRAM response-variable <option(s)>;
 HLINE category-variable <option(s)>;
 INSET variable <...variable-n> <option(s)>
 KEYLEGEND "name-1" ... "name-n" <option(s)>
 LINEPARM X=numeric-variable | numeric-variable
 Y=numeric-variable | numeric-variable
 SLOPE=numeric-variable | numeric-variable <option(s)>;
 LOESS X=numeric-variable Y=numeric-variable <option(s)>;
 NEEDLE X=variable Y=numeric-variable <option(s)>;
 PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>;
 POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>;
 REFLINE value(s) <option(s)>;
 REG X=numeric-variable Y=numeric-variable <option(s)>;
 SCATTER X=variable Y=variable <option(s)>;
 SERIES X=variable Y=variable <option(s)>;
 SPLINE X=variable Y=variable <option(s)>;
 STEP X=variable Y=variable <option(s)>;
 SYMBOLCHAR NAME=identifier CHAR="hex-string" keyword <option(s)>;
 SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" <option(s)>
 TEXT X=variable Y=variable TEXT=variable <option(s)>;
 VBAR category-variable <option(s)>;
 VBARBARC category-variable <option(s)>;
 VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable <option(s)>;
 VBOX analysis-variable <option(s)>;
 VECTOR X=numeric-variable Y=numeric-variable <option(s)>;
 VLINE <category-variable> <option(s)>;
 COLAXIS <option(s)>;

PROC SGPANEL Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, and control automatic legends and automatic attributes.

Requirement: An input data set is required.

Syntax

```plaintext
PROC SGPANEL <options> ;
```

Summary of Optional Arguments

- **ASPECT=positive-number**
 specifies the aspect ratio of the plot’s wall area.

- **CYCLEATTRS | NOCYCLEATTRS**
 specifies whether plots are drawn with unique attributes in the graph.

- **DATA=input-data-set**
 specifies the SAS data set that contains the variables to process.

- **DATATTRMAP=discrete-attribute-map-data-set**
 specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure.

- **DESCRIPTION="text-string"**
 specifies a description for the output image.

- **NOAUTOLEGEND**
 disables automatic legends from being generated.

- **NOSUBPIXEL | SUBPIXEL**
 specifies whether subpixel rendering should be used for rendering line plots and bar charts.

- **OPAQUE | NOOPAQUE**
 specifies whether the graph background is opaque or transparent.

- **PAD=dimension<units> | (pad-options)**
 specifies the amount of extra space that is reserved inside the border of an annotated graph.

- **PCTLEVEL=BY | CELL | GRAPH | GROUP**
 specifies the scope of graph data that is calculated in percentages.

- **PCTNDEC=numeric-value**
 specifies the number of decimal spaces to be used to calculate the percent values.

- **RATTRMAP=range-attribute-map-data-set**
 specifies the range attribute map data set that you want to use with the procedure.

- **SGANNO=annotation-data-set**
 specifies the SG annotation data set that you want to use.
Optional Arguments

ASPECT= positive-number

specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall height divided by wall width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default: The wall area is sized to the maximum area that can fill the available space.

CYCLEATTRS | NOCYCLEATTRS

specifies whether plots are drawn with unique attributes in the graph. By default, the SGPANEL procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

DATA= input-data-set

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATTRMAP= discrete-attribute-map-data-set

specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Requirement: The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See: Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

DESCRIPTION= "text-string"

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPANEL Procedure”.

Alias: DES

Note: The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.
Tip You can disable the alternate text in HTML output by specifying an empty string. That is, `DESCRIPTION=""`.

NOAUTOLEGEND

Disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a `KEYLEGEND` statement.

NOSUBPIXEL | SUBPIXEL

Specifies whether subpixel rendering should be used for rendering line plots and bar charts. Subpixel rendering produces smoother curves and more precise bar spacing.

- **NOSUBPIXEL**
 - never uses subpixel rendering.

- **SUBPIXEL**
 - always uses subpixel rendering, when applicable, for rendering lines and bars.

Defaults

- When this option is not specified, the system applies `SUBPIXEL` when it makes sense for the graph.
- Starting with the third maintenance release of SAS 9.4, subpixel rendering is always enabled for vector-graphics output.

Restriction

- In the second maintenance release of SAS 9.4 and in earlier releases, this option affects line-based plots and bar charts. The affected line-based plots are `BAND`, `DENSITY`, `SERIES`, `LOESS`, `REG`, and `PBSPLINE`. The affected bar charts are `HBAR`, `HBARPARM`, `VBAR`, and `VBARPARM`. Starting with the third maintenance release of SAS 9.4, subpixel rendering is available for all plots and charts.

Requirement

- Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the `ANTIALIAS=ON` option in the ODS GRAPHICS statement.

Interaction

- Starting with the third maintenance release of SAS 9.4, if the `SUBPIXEL` option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip

- For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the `ANTIALIASMAX=` option in the ODS GRAPHICS statement.

See

- "Subpixel Rendering" on page 1346
- "ODS GRAPHICS Statement" on page 71 for information about the `ANTIALIAS=` and `ANTIALIASMAX=` options.

OPAQUE | NOOPAQUE

Specifies whether the graph background is opaque or transparent.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

- OPAQUE
Restriction: The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

Interaction: When NOOPAQUE is specified, the background color is not used.

PAD= *(dimension*<units>*| (pad-options))*

specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

- **LEFT=** *(dimension*<units>*)

 specifies the amount of extra space to add to the left edge.

- **RIGHT=** *(dimension*<units>*)

 specifies the amount of extra space to add to the right edge.

- **TOP=** *(dimension*<units>*)

 specifies the amount of extra space to add to the top edge.

- **BOTTOM=** *(dimension*<units>*)

 specifies the amount of extra space to add to the bottom edge.

PCTLEVEL=BY | CELL | GRAPH | GROUP

specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the STAT=PERCENT option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

- **BY**

 the percentages within each BY-group round up to 100%.

 Interaction: For this value to take effect, a BY-group must be specified in the procedure.

- **CELL**

 the percentages within each panel cell round up to 100%.

- **GRAPH**

 the percentages across the entire graph round up to 100%.

- **GROUP**

 the percentages across groups within a category round up to 100%.

 Interaction: For this value to take effect, the GROUP= option must be specified in the plot statement.
In the following examples, the first example specifies a value of GRAPH (the default), and the second example specifies a value of GROUP.

```sas
ods graphics on / reset=all;
ods graphics on / width=4.5in;
```

PCTLEVEL=GRAPH

```sas
proc sgpanel data=sashelp.cars pctlevel=graph;
  panelby origin;
  where origin in("Asia" "Europe");
  vbar type / response=horsepower stat=percent
group=cylinders;
run;
```

PCTLEVEL=GROUP

```sas
proc sgpanel data=sashelp.cars pctlevel=group;
  panelby origin;
  where origin in("Asia" "Europe");
  vbar type / response=horsepower stat=percent
group=cylinders;
run;
```

In the graph that specifies PCTLEVEL=GRAPH, the bars collectively add up to 100%. Each bar represents a fraction of the total.

In the graph that specifies PCTLEVEL=GROUP, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.

Default

GRAPH

Interaction

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

Tip

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

PCTNDEC=numeric-value

specifies the number of decimal spaces to be used to calculate the percent values.

Default

The default number of decimals is based on the magnitude of the largest percentage value.

- 10% to 100% = 1
- .1% to < 1% = 3
- 1% to < 10% = 2
- < .1% = 4

Interaction

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.
Tip: You can use the PCTLEVEL= option in the PROC SGPANEL statement to control the scope of the percent calculations.

RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Requirement
The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See
Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

PANELBY Statement
Specifies one or more classification variables for the panel, the layout type, and other options for the panel.

Syntax

```
PANELBY variable(s) </option(s)>;
```

Summary of Optional Arguments

- **BORDER | NOBORDER**
 specifies whether borders are displayed around each cell in the panel.

- **COLHEADERPOS=TOP | BOTTOM | BOTH**
 specifies the location of the column headings in the panel.

- **COLUMNS=n**
 specifies the number of columns in the panel.

- **HEADERATTRS=style-element <(options)> | (options)**
 specifies the appearance of the column headings.

- **HEADERBACKCOLOR=color**
 specifies a background color for the cell headers.

- **LAYOUT=LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE**
 specifies the type of layout that is used for the panel.

- **MISSING**
 processes missing values as a valid classification value and creates cells for it.

- **NOHEADER**
 hides the cell headings.

- **NOHEADERBORDER**
 removes the border from the cell headings.

- **NOVARNAME**
removes the variable names from the cell headings of a panel layout, or from the row and column headings of a lattice layout.

NOWALL
turns off the display of the graph wall.

ONEPANEL
places the entire panel in a single output image.

PROPORTIONAL
changes the size of the cells in proportion to the content of the discrete axis.

ROWHEADERPOS=LEFT | RIGHT | BOTH
specifies the location of the row headings in the panel.

ROWS=n
specifies the number of rows in the panel.

SKIPEMPTYCELLS
specifies whether the external axes skip the empty cells in a partially filled grid.

SORT=sort-option | (sort-option-1 …sort-option-n)
specifies the sort order of the panel cells.

SPACING=n
specifies the number of pixels between the rows and columns in the panel.

SPARSE
enables the SG PANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set.

START=TOPLEFT | BOTTOMLEFT
specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner.

UNISCALE=COLUMN | ROW | ALL
scales the shared axes in the panel to be identical.

Required Argument

variable(s)
specifies one or more classification variables for the panel.

Optional Arguments

BORDER | NOBORDER
specifies whether borders are displayed around each cell in the panel. BORDER adds the borders. NOBORDER removes the borders. Depending on the current ODS style, the borders might be present by default.

COLHEADERPOS=TOP | BOTTOM | BOTH
specifies the location of the column headings in the panel. Specify one of the following values:

- **TOP**
 places column headings at the top of each column.

- **BOTTOM**
 places column headings at the bottom of each column.

- **BOTH**
 places column headings at the top and bottom of each column.

Default: TOP
This option has no effect if the panel uses the PANEL layout.

COLUMNS=n

specifies the number of columns in the panel. By default, the number of columns is determined automatically based on the number of classifier values and the layout type. The SGPANEL procedure automatically splits the panel into multiple panel images (pages) as needed when your panel contains a large number of cells.

Specifying COLUMNS= enables you to control panel size. When the number of classification levels exceeds the number of cells in the panel, additional panels (images) are created. The last panel might be partially populated.

If you specify COLUMNS= without specifying a value for ROWS= (by default, ROWS=1), then one of the following occurs:

- The cells fill each row from left to right up to the requested number of columns before going to the next row. Each panel can have a maximum of three rows. For example, if you specify two columns, and the classifier has six values, the result is a 2-column by 3-row panel. If you specify two columns, and the classifier has eight values, the result is two panels, and each panel has two rows and two columns.

- If the number of classification variables is not divisible by the columns value, then the procedure simply creates multiple single-row panels. Each panel has the specified number of columns. In this scenario, the last panel is only partially populated.

However, if you also specify ROWS= with a value greater than one, then the procedure uses your specified values to determine the number of panels. Specifying both ROWS= and COLUMNS= enables you to define the precise layout, including how many cells are in a panel.

HEADERATTRS=style-element <(options)> | (options)

specifies the appearance of the column headings. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples:

HEADERATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

HEADERATTRS=GraphLabelText

HEADERBACKCOLOR=color

specifies a background color for the cell headers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

LAYOUT=LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE

specifies the type of layout that is used for the panel. Select one of the following values:

LATTICE

when you specify two classification variables, arranges the cells so that the values of the first variable are columns and the values of the second variable are
rows. You can use LATTICE only when you specify exactly two classification variables.

PANEL
arranges the cells in rows and columns. The headings for each cell are placed at the top of the cell.

COLUMNLATTICE
arranges the cells in a single row. You can use the COLUMNLATTICE layout only with a single classification variable.

ROWLATTICE
arranges the cells in a single column. You can use the ROWLATTICE layout only with a single classification variable.

Default **PANEL**

MISSING
processes missing values as a valid classification value and creates cells for it. By default, missing values are not processed as a classification value.

NOHEADER
hides the cell headings. This option is useful when a legend is displayed.

```sas
ods graphics on / reset=all;
ods graphics on / width=4in;
proc sgpanel data=sashelp.class;
    panelby sex / noheader noborder;
    vbar age / response=height group=sex;
run;
```

NOHEADERBORDER
removes the border from the cell headings.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOVARNAME
removes the variable names from the cell headings of a panel layout, or from the row and column headings of a lattice layout. For example, to change a row heading from “Region=NorthEast” to “NorthEast,” specify the NOVARNAME option.

NOWALL
turns off the display of the graph wall. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall color is the same as the graph background, and it is impossible to see the difference. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill.

ONEPANEL
places the entire panel in a single output image. If you do not specify this option, then the panel is automatically split into multiple images as appropriate.
Interactions
When you use ONEPANEL with the PANEL layout, only one of the ROWS= and COLUMNS= options can be used. If you specify both options, then the value for COLUMNS= is used.

When you use ONEPANEL with the LATTICE layout, the ROWS= and COLUMNS= options have no effect.

Note
This option is recommended only for panels with a small number of cells. If your panel is too large for the output image, then a blank image is created.

PROPORTIONAL
changes the size of the cells in proportion to the content of the discrete axis.

The following examples show the use of PROPORTION on the X axis and on the Y axis. The first example adjusts the width of the two cells relative to the number of vertical bars along the X axis of each cell. The second example adjusts the height of the rows relative to the number of horizontal bars along the Y axis for each row.

```ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
  where age > 14;
  panelby age / uniscale=row proportional;
  vbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

```ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
  where age > 12;
  panelby age / uniscale=column proportional;
  hbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

Requirements
The axis must be discrete.

You must also use the UNISCALE= option in the statement. Otherwise, the discrete axis cannot scale independently.

ROWHEADERPOS=LEFT | RIGHT | BOTH
specifies the location of the row headings in the panel. Specify one of the following values:

LEFT
places row headings at the left side of each row.

RIGHT
places row headings at the right side of each row.
BOTH
places row headings at the left side and the right side of each row.

Default RIGHT

Interaction This option has no effect if the panel uses the PANEL layout.

ROWS=n
specifies the number of rows in the panel. By default, the number of rows is
determined automatically based on the number of classifier values and the layout
type. The SGPANEL procedure automatically splits the panel into multiple panel
images (pages) as needed when your panel contains a large number of cells.

If you specify ROWS= without specifying a value for COLUMNS= (by default,
COLUMNS=1), then one of the following occurs:

• The cells fill each row from left to right up to the requested number of rows.
 Each panel can have a maximum of three columns. For example, if you specify
two rows, and the classifier has six values, the result is a three-column by two-
row panel. If you specify two rows, and the classifier has eight values, the result
is two panels. Each panel has two rows and two columns.

• If the number of classification variables is not divisible by the rows value, then
 the procedure simply creates multiple single-column panels. Each panel has the
 specified number of rows. The last panel is only partially populated.

However, if you also specify COLUMNS= with a value greater than one, then the
procedure uses your specified values to determine the number of panels. Specifying
both COLUMNS= and ROWS= enables you to define the precise layout, including
how many cells are in a panel.

SKIPEMPTYCELLS
specifies whether the external axes skip the empty cells in a partially filled grid. If
the number of classifier values does not match the number of cells in the rows and
columns of the layout, then the grid is partially filled with data cells and padded with
empty cells to complete the grid. Specifying the SKIPEMPTYCELLS option
removes those empty cells.

In the following examples, the data cells are arranged in a two-column, two-row
panel. The first graphic shows the panel padded with an empty cell. The are specifies
SKIPEMPTYCELLS, and the panel contains no empty cells.

```plaintext
proc sgpanel data=sashelp.cars;
panelby origin;
scatter x=mpg_city y=msrp;
run;
```
The SKIPEMPTYCELLS option works whether the rows and columns are determined automatically or explicitly specified.

SORT= <sort-option> | (<sort-option-1> ... <sort-option-n>)

specifies the sort order of the panel cells.

Note: This option affects only the order of the cells in your panel. It does not affect the order of the cell contents.

If you have multiple classification variables, you can control the sort for each variable using (<sort-option-1> ... <sort-option-n>).

<sort-option> can be one of the following values.

(<sort-option-1> ... <sort-option-n>) can be one or more of the first five values listed. If you attempt to use any other values (such as DATA or any value after DATA), the sort request is ignored and a message is written to the log.

AUTO sorts in ascending order for character data and numeric data. The sorts performed by PROC SORT and PROC SQL are also honored with this option. This option represents the default sorting behavior.

ASCENDING sorts in ascending order using the unformatted values.

DESCENDING sorts in descending order using the unformatted values.

ASCFORMAT sorts in ascending order using the formatted values.

DESCFORMAT sorts in descending order using the formatted values.

DATA uses data order for the sort.

ASCMEAN sorts by the ascending mean of the Y (or response) variable of the primary plot.

DESCMEAN sorts by the descending mean of the Y (or response) variable of the primary plot.

ASCMEDIAN sorts by the ascending median of the Y (or response) variable of the primary plot.

DESCMEDIAN sorts by the descending median of the Y (or response) variable of the primary plot.

ASCFREQ sorts by the ascending frequency of the class values.
DESCFREQ sorts by the descending frequency of the class values.

The sort-option is applied to your panel variables as follows:

- When a single sort-option is specified, the sort is applied to all panel variables.
- When (sort-option-1...sort-option-n) values are specified, sort-option-1 corresponds to the first PANELBY variable that is specified, sort-option-2 corresponds to the second variable, and so on.

If you do not specify enough sort-option values, the list is padded with AUTO. If you specify too many sort-option values, the rest of the list is ignored. If you want to skip the first variable but sort the second, use AUTO for the first variable.

The following example shows barley yields by year in ascending (formatted) order and by site in descending order.

```
proc sgpanel data=barley;
  panelby year site / layout=lattice
    onepanel sort=(ascformat descformat)
    uniscale=column novarname;
  dot variety / response=yield stat=mean
    categoryorder=respasc;
run;
```

You cannot use a (sort-option-1...sort-option-n) list with a statistical sort, such as DESCMEAN. However, there is a way to obtain a statistical sort for multiple class variables:

1. Merge the statistic variable with the raw data by the class variables.
2. Use the SORT procedure to sort the data by the statistic variable.
3. In the SGPANEL procedure, specify SORT=DATA in the PANELBY statement.

Statistical sorts are most effective when you specify COLUMNS=1 or ROWS=1 in the PANELBY statement.

Default AUTO

SPACING=n

specifies the number of pixels between the rows and columns in the panel.

Default 0
SPARSE
enables the SGPANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set. By default, empty cells are not created for the panel layout.

Interaction
This option has no effect if you specify LAYOUT=LATTICE.

START=TOPLEFT | BOTTOMLEFT
specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner. Specify one of the following values:

TOPLEFT
places the cell for the first data crossing in the upper left corner.

Cells are placed from left to right, starting in the top row. Each additional row is placed below the previous row.

The following figure shows the placement of nine cells in a panel where START= TOPLEFT:

```
 1 2 3
 4 5 6
 7 8 9
```

BOTTOMLEFT
places the cell for the first data crossing in the lower left corner. Cells are placed from left to right, starting in the bottom row. Each additional row is placed above the previous row.

The following figure shows the placement of nine cells in a panel where START=BOTTOMLEFT:

```
 7 8 9
 4 5 6
 1 2 3
```

Default
TOPLEFT

UNISCALE=COLUMN | ROW | ALL
scales the shared axes in the panel to be identical. Specify one of the following values:

COLUMN
scales all of the column axes in the panel to be identical.

ROW
scales all of the row axes in the panel to be identical.

ALL
scales all of the column axes to be identical, and also scales all of the row axes to be identical.
STYLEATTRS Statement

Specifies group attributes for a graph. The statement enables you to change group colors, markers, and so on, within the procedure, without having to change the ODS style template.

Requirement: The procedure must include at least one plot statement, and at least one plot statement must specify the GROUP= option.

Syntax

```
STYLEATTRS <option(s)>;
```

Summary of Optional Arguments

- **BACKCOLOR=color**
 - specifies the background color of the graph area.

- **DATACOLORS=(color-list)**
 - specifies the fill colors for the graphics elements.

- **DATACONTRASTCOLORS=(color-list)**
 - specifies the contrast colors for the graphics elements, such as lines and markers.

- **DATALINEPATTERNS=(line-pattern-list)**
 - specifies the list of line patterns for the graph data lines.

- **DATASYMBOLS=(marker-symbol-list)**
 - specifies the list of marker symbol for the graph data.

- **WALLCOLOR=color**
 - specifies the color of the plot wall area.

Optional Arguments

- **BACKCOLOR=color**
 - specifies the background color of the graph area.

 Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

 You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

 Default
 - The Color attribute of the GraphBackground style element

 Examples
 - backcolor=CXFF0000
 - backcolor=light_blue

- **DATACOLORS=(color-list)**
 - specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.
Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default

The colors that are defined in the GraphData1 ... GraphData\(_n\) style elements in the current style are used.

Interaction

Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

Note

When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphData\(_n\) style elements. When the colors in color-list are exhausted, the colors repeat.

Example

datacolors=(CXFF0000 green blue)

DATACONTRASTCOLORS=(color-list)

specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default

The contrast colors that are defined in the GraphData1 ... GraphData\(_n\) style elements in the current style are used.

Interaction

Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note

When this option is specified, the colors cycle through color-list rather than the contrast colors that are defined in the GraphData1 ... GraphData\(_n\) style elements. When the colors in color-list are exhausted, the colors repeat.

Example

datacontrastcolors=(orange cyan #FF0000)

DATALINEPATTERNS=(line-pattern-list)

specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default

The line patterns that are defined in the GraphData1 ... GraphData\(_n\) style elements in the current style are used.

Interaction

Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

Note

When this option is specified, the line patterns cycle through line-pattern-list rather than the line patterns that are defined in the GraphData1 ... GraphData\(_n\) style elements. When the patterns in line-pattern-list are exhausted, the patterns repeat.

Example

datailinepatterns=(dot solid longdash 26)
DATASYMBOLS=(marker-symbol-list)

specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See Figure 11.2 on page 1323.

Default
The symbols that are defined in the GraphData1 ... GraphData\(n\) style elements in the current style are used.

Interaction
Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

Note
When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphData\(n\) style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

Example
datasymbols=(circle square triangle star)

WALLCOLOR=color

specifies the color of the plot wall area.

Note:
This feature applies to the third maintenance release of SAS 9.4 and to later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

The following figure shows a light blue wall color.

![Light Blue Wall Color](image)

Default
The Color attribute of the GraphWalls style element

Examples

color=light_blue

color=CXFF0000

color=light_blue

Details

How the Attributes Are Cycled

The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.
In this example, which uses the HTMLBlue style, the procedure uses a color-priority rotation pattern.

With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

```
           Student Age
            11   12   13
        14    15    16
```

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

ATTRPRIORITY=COLOR | NONE

Note: The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, such as LISTING, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the SG PLOT procedure:

```
ods graphics / attrpriority=none;
```

Now, the following options in the STYLEATTRS statement are applied in alternating order:

```
datacontrastcolors=(red green blue)
datailinepatterns=(dot solid)
```

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

```
           Student Age
            11   12   13
        14    15    16
```

See Also

“ODS GRAPHICS Statement” on page 71
Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
- The ODS style is HTMLBlue. For the HTMLBlue style, the ATTRPRIORITY defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.

```sas
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
   by age;
run;

/* Generate the graph using the sorted data */
proc sgpanel data=class;
   panelby sex;
   styleattrs
      datacontrastcolors=(red green blue)
      datalinepatterns=(dot solid);
   series x=height y=weight / group=age;
   keylegend;
run;
```

BAND Statement

Creates a band that highlights part of a plot.

Restriction: The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.

Note: The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.
Example: “About Band Plots” on page 25

Syntax

BAND X=variable | Y=variable
UPPER=numeric-value | numeric-variable
LOWER=numeric-value | numeric-variable
</option(s>);

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bands from discrete X or Y tick values.

FILL | NOFILL
 specifies whether the area fill is visible.

FILLATTRS=style-element <(options) | (options)
 specifies the fill color and transparency.

LINEATTRS=style-element <(options) | (options)
 specifies the appearance of the lines in the plot.

NOEXTEND
 when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot.

OUTLINE | NOOUTLINE
 specifies whether the outlines of the band are visible.

TRANSARENCY=value
 specifies the degree of transparency for the plot.

TYPE=SERIES | STEP
 specifies how the data points for the lower and upper band boundaries are connected.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
 specifies a variable that is used to group the data.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.
Label options

CURVELABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you specify a curve
 label.

CURVELABELLOWER ="text-string"
 adds a label to the lower edge of the band.

CURVELABELPOS=MIN | MAX | START | END
 specifies the location of the curve label.

CURVELABELUPPER ="text-string"
 adds a label to the upper edge of the band.

LEGENDLABEL="text-string"
 specifies a label that identifies the elements from the band plot in the legend.

SPLITCHAR="character-list"
 specifies one or more characters used to split the text used for curve labels
 into multiple lines.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Plot reference options

MODELNAME="plot-name"
 specifies the name of a plot from which to derive the interpolation for the
 band.

NAME="text-string"
 specifies a name for the plot.

Required Arguments

X=variable | Y=variable
 specifies a variable that is used to plot the band along the x or y axis.

LOWER=numeric-value | numeric-variable
 specifies the lower value for the band. You can specify either a constant numeric
 value or a numeric variable.

UPPER=numeric-value | numeric-variable
 specifies the upper value for the band. You can specify either a constant numeric
 value or a numeric variable.

Optional Arguments

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You specify
 this option only if you are using an attribute map to control visual attributes of the
 graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
 “Overview of Attribute Maps” on page 1383

CURVELABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you specify a curve label. You
 can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData \(n \) style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Interaction

This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

Examples

CURVELABELATRERS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATRERS=GraphTitleText

CURVELABELLOWER =“text-string”

adds a label to the lower edge of the band. Specify the label text.

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

- **MIN**
 places the label at the part of the curve closest to the minimum X axis value.

- **MAX**
 places the label at the part of the curve closest to the maximum X axis value.

- **START**
 places the curve label at the first point on the curve.

- **END**
 places the curve label at the last point on the curve.

Default

END

Interaction

This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.

CURVELABELUPPER =“text-string”

adds a label to the upper edge of the band. Specify the label text.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bands from discrete X or Y tick values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default

0.0 (no offset)

Requirement

This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL

specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.
The default status of the area fill is specified by the DisplayOpts style attribute of the GraphBand style element in the current style. Specifying FILL also hides any visible outlines. If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=

```
style-element <(options)> | (options)
```

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

LINEATTRS=

```
style-element <(options)> | (options)
```

specifies the appearance of the lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults

GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle.

For line thickness, GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attribute is LineThickness.

MODELNAME=

```
"plot-name"
```

specifies the name of a plot from which to derive the interpolation for the band.

Defaults

If you do not specify this option, then the band is interpolated in the same way as a series plot.
Requirement plot-name must be the name that has been assigned with the associated plot’s NAME= option.

See “Details” on page 148

NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

Interaction This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the band outlines is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Interactions

This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=

LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

variable-list

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)
TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

TYPE=SERIES | STEP

specifies how the data points for the lower and upper band boundaries are connected. You can specify one of the following:
SERIES
the data points are connected directly using line segments, as in a series plot.

STEP
the data points are connected using a step function, as in a step plot.

Default SERIES

Details
The MODELNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```r
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```

Figure 6.4 Fitted Band Plot Example

BLOCK Statement

Creates one or more rectangular blocks containing text values. The width of each block corresponds to specified numeric intervals. Block plots show continuous ranges of data that have the same BLOCK= value.

Requirement: The BLOCK statement must be used with another plot statement, which establishes the axis type for the Y axis.

Example: “About Block Plots” on page 26

Syntax

```r
BLOCK X=category-variable BLOCK=block-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ALTFILLATTRS=`
 - `style-element <options>`
 - `(options)`
 specifies the appearance of alternate fills for the blocks.

ATTRID=*character-value*

specifies the value of the ID variable in a discrete attribute map data set.

FILL | **NOFILL**

specifies whether the blocks are filled.

FILLATTRS=*style-element* *(<options>)| *(options)*

specifies the appearance of the fill for the blocks.

FILLTYPE=**MULTICOLOR** | **ALTERNATE**

specifies how the blocks are filled.

LINEATTRS=*style-element* *(<options>)| *(options)*

specifies the appearance of the block outlines.

OUTLINE | **NOOUTLINE**

specifies whether the blocks have outlines.

TRANSPARENCY=*numeric-value*

specifies the degree of transparency for the blocks.

Block text options

BLOCKLABEL=*variable*

specifies a column to use for alternative text in the blocks.

NOVALUES | **VALUES**

specifies whether the block values are displayed or hidden.

SPLITCHAR=“*character-list”*

specifies one or more characters used to split block text values into multiple lines.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

VALUEATTRS=*style-element* *(<options>)| *(options)*

specifies the appearance of the block text values.

VALUEFITPOLICY=**NONE** | **SHRINK** | **SPLIT** | **SPLITALWAYS** | **TRUNCATE**

specifies how text values are adjusted to fit within the containing block.

VALUEHALIGN=**LEFT** | **CENTER** | **RIGHT** | **START**

specifies the horizontal alignment of the value text within the blocks.

VALUENAME=**TOP** | **CENTER** | **BOTTOM**

specifies the vertical alignment of the value text within the blocks.

Label options

LABEL=“*text-string”| **NOLABEL**

specifies an external label for a single block plot.

LABELATTRS=*style-element* *(<options>)| *(options)*

specifies the color and font attributes of the external block labels.

LABELPOS=**BOTTOM** | **LEFT** | **RIGHT** | **TOP**

specifies the position for the block label for a single block plot.

Plot options

CLASS=*variable*

creates a stack of block plots, with one block plot for each unique value of the specified variable.

EXTENDMISSING

extends the previous block value if the current value is missing.

NOMISSINGCLASS

suppresses blocks that correspond to missing values of the CLASS= value.
Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=category-variable

specifies X axis positions. When the X axis is numeric and the specified variable is numeric, values are expected to be in sorted, ascending order. If the X axis is discrete and the specified column is numeric, values are treated as numeric-discrete.

BLOCK=block-variable

specifies the variable that classifies the observations into distinct subsets.

Optional Arguments

ALTFILLATTRS=style-element <(options)> | (options)

specifies the appearance of alternate fills for the blocks. This option in conjunction with the FILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Requirement
FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction
This option has no effect if you specify the NOFILL option.

Note
The TRANSPARENCY= attribute affects only the alternate fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips
The FILLATTRS= option controls the fill color of non-alternate blocks.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BLOCKLABEL=variable

specifies a column to use for alternative text in the blocks.

Interaction
This option overrides the default text for the blocks.

Tip
The font and color attributes for the alternative text are specified by the VALUEATTRS= option.
CLASS=variable
creates a stack of block plots, with one block plot for each unique value of the specified variable.

Interaction To label the blocks by the class values, specify the BLOCKLABEL= option using the same class variable.

EXTENDMISSING
extends the previous block value if the current value is missing.

FILL | NOFILL
specifies whether the blocks are filled.

Default FILL

Interaction The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

FILLATTRS=style-element<(options)> | (options)
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Requirement FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction This option has no effect if you specify the NOFILL option.

Note The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

MULTICOLOR
Blocks are filled with the COLOR attribute of the GraphData1 ... GraphData$n
style elements.

ALTERNATE
Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.

Default MULTICOLOR

Interaction This option has no effect if NOFILL is also specified.

LABEL <="text-string"> | NOLABEL
specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.
The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.

By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

LABELATTRS=\(\text{style-element} \langle\text{options}\rangle\) \(\mid\) \(\langle\text{options}\rangle\)

specifies the color and font attributes of the external block labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Examples

\[
\text{LABELATTRS=\{Color=Green Family=Arial Size=8 Style=Italic Weight=Bold\}}
\]

Here is an example that specifies a style element:

\[
\text{LABELATTRS=GraphTitleText}
\]

LABELPOS=\(\text{BOTTOM} \mid \text{LEFT} \mid \text{RIGHT} \mid \text{TOP}\)

specifies the position for the block label for a single block plot.

Default

LEFT

Interaction

This option has no effect if NOLABEL is also specified.

LINEATTRS=\(\text{style-element} \langle\text{options}\rangle\) \(\mid\) \(\langle\text{options}\rangle\)

specifies the appearance of the block outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect if the NOOUTLINE option is also specified.

NAME=\("\text{text-string}\)"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interaction The NOOUTLINE option can be used with the NOFILL option to hide both the outline and the fill.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

Default VALUES

Tip The font and color attributes for the text values are specified by the VALUEATTRS= option.

SPLITCHAR="character-list"
specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

Default The default split character is a space.

Interactions This option has no effect unless VALUEFITPOLICY= specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY= is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
TRANSPARENCY=numeric-value

specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

VALUEATTRS=style-element 〈options〉 〈(options)〉

specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples

```
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
VALUEATTRS=GraphTitleText
```

VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE

specifies how text values are adjusted to fit within the containing block. Select one of the following values:

- **NONE**
 No attempt is made to fit values that collide with the text values in adjacent blocks.

- **SHRINK**
 All values are reduced in font size until they all fit.

- **SPLIT**
 If a value does not fit within the containing block, it is split at a split character. No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value.

 If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

 Default The default split character is a space.

 Tip Use the SPLITCHAR= option to specify a split character.

- **SPLITALWAYS**
 Text values are split at a split character in all blocks.

 Default The default split character is a space.

 Tip Use the SPLITCHAR= option to specify a split character.
Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

Default
SPLIT

VALUEHALIGN=LEFT | CENTER | RIGHT | START

specifies the horizontal alignment of the value text within the blocks. This option changes the text alignment regardless of whether you split values or specify the VALUEFITPOLICY= option.

Select one of the following values:

- **LEFT**
 left-aligned within the block
- **CENTER**
 center-aligned within the block
- **RIGHT**
 right-aligned within the block
- **START**
 center-aligned at the starting value of the block

Default
CENTER

Interaction
This option has no effect if you also specify the NOVALUES option.

VALUEVALIGN=TOP | CENTER | BOTTOM

specifies the vertical alignment of the value text within the blocks.

Default
TOP

Interaction
This option has no effect if you also specify the NOVALUES option.

Details

The BLOCK statement provides several options for changing the appearance of the blocks and the text values inside the blocks.

The syntax for these display attributes is almost identical between the SGPANEL and SGPLOT procedures, and is described in the following topics in the SGPLOT chapter:

- “Changing the Appearance of Block Text Values” on page 667
- “Changing the Appearance of Block Fills” on page 668

BUBBLE Statement

Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.

Example:
“About Bubble Plots” on page 27
Syntax

```
BUBBLE X=variable Y=variable SIZE=numeric-variable <\ option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ABSSCALE**
 - Specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.

- **ATTRID=character-value**
 - Specifies the value of the ID variable in a discrete attribute map data set.

- **BRADIUSMAX=numeric-value**
 - Specifies the size of the radius of the largest bubble.

- **BRADIUSMIN=numeric-value**
 - Specifies the size of the radius of the smallest bubble.

- **COLORMODEL=style-element | (color-list)**
 - Specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 - Specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 - Specifies a special effect to be used on the plot.

- **DRAWORDER=SIZE | DATA**
 - Specifies whether the bubbles are drawn according to bubble size or according to data order.

- **FILL | NOFILL**
 - Specifies whether the bubbles are filled.

- **FILLATTRS=style-element <(options)> | (options)**
 - Specifies the fill color and transparency.

- **LINEATTRS=style-element <(options)> | (options)**
 - Specifies the appearance of the outlines for the bubbles.

- **OUTLINE | NOOUTLINE**
 - Specifies whether the outlines of the bubbles are visible.

- **RATTRID=character-value**
 - Specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=value**
 - Specifies the degree of transparency for the plot.

Data tip options

- **TIP=(variable-list) | NONE**
 - Specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIFFORMAT=(format-list)**
 - Applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
 - Applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
GROUP=variable
 specifies a variable that is used to group the data.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options

 DATALABEL <=variable>
 displays a label for each data point.

 DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

 DATALABELPOS=position
 specifies the location of the data label with respect to the plot.

 LEGENDLABEL="text-string"
 specifies the label that identifies the bubble plot in the legend.

 SPLITCHAR="character-list”
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

 SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

 SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Plot options

 URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

 NAME="text-string"
 specifies a name for the plot.

Required Arguments

 X=variable
 specifies the variable for the X axis.

 Y=variable
 specifies the variable for the Y axis.

 SIZE=numeric-variable
 specifies the variable that controls the size of the bubbles. The minimum and maximum values automatically provide the range that is used to determine bubble sizes. You can control this range manually by using the BRADIUSMAX and BRADIUSMIN options.

 Tip Starting with the third maintenance release of SAS 9.4, you can use the ABSSCALE option to interpret the bubble size in the same units as the axes rather than as relative values.
Optional Arguments

ABSSCALE

specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

By default, the bubble sizes are scaled to represent the value range of the SIZE= column.

For example, suppose a graph contains only two bubbles, and their sizes are 2 and 4. These two bubbles appear the same as they would if their sizes were 4000 and 8000, respectively. By contrast, when ABSSCALE is specified, the size values are interpreted in the same units as the axes.

Restriction

This option is ignored if the X or Y axis is discrete.

Interaction

When this option is used, the BRADIUSMAX= and BRADIUSMIN= options are ignored.

Note

The bubbles might be drawn as ellipses if the X and Y axes are scaled differently.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BRADIUSMAX=numeric-value

specifies the size of the radius of the largest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Restriction

The BRADIUSMAX= value must be greater than the BRADIUSMIN= value if one is specified. If BRADIUSMAX is not greater, an error is generated and a message is written to the SAS log.

Note

If you specify the maximum size as a percentage, this is interpreted as a percentage of the graph's height.

BRADIUSMIN=numeric-value

specifies the size of the radius of the smallest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Restriction

The BRADIUSMIN= value must be smaller than the BRADIUSMAX= value if one is specified. If BRADIUSMIN is not smaller, an error is generated and a message is written to the SAS log.

Note

If you specify the minimum size as a percentage, this is interpreted as a percentage of the graph's height.
COLORMODEL= *style-element* | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE= numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 196

“Using Gradient Color Legends” on page 1310

DATALABEL <= variable

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS= *style-element* | (options) | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 6.3 DATASKIN Options for Bubbles

<table>
<thead>
<tr>
<th>None</th>
<th>Crisp</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS optionDATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DRAWORDER=SIZE | DATA

Specifies whether the bubbles are drawn according to bubble size or according to data order.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

SIZE

Draws the bubbles according to bubble size, from the largest to the smallest.

DATA

Draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

FILL | NOFILL

Specifies whether the bubbles are filled. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL
Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1319.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

GROUP=variable
specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1... GraphData\(n\) style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

Interaction This option is ignored if the COLORRESPONSE= option is also used.

LEGENDLABEL=“text-string”
specifies the label that identifies the bubble plot in the legend. By default, the label for the Y variable is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1319.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect if you also specify the NOOUTLINE option.
NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

| Notes | When multiple characters are specified, the order of the characters in the list is not significant. The split characters are case sensitive. |

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

| Interaction | This option has no effect unless SPLITCHAR= is also specified. |

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

| Default | LEFT |

| Interaction | This option has no effect unless you specify the SPLITCHAR= option. |

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

| Requirement | You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure: |

| | ODS GRAPHICS / IMAGEMAP=ON; |

| Interaction | This option replaces all of the information that is displayed by default. |

| Tip | Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables. |

| Example | tip=(age weight) |
TIPFORMAT=(*format-list*)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPLABEL= option to assign labels to the list of variables.</td>
</tr>
<tr>
<td>See</td>
<td>SAS Formats and Informats: Reference</td>
</tr>
<tr>
<td>Example</td>
<td>tipformat=(auto F5.2)</td>
</tr>
</tbody>
</table>

TIPLABEL=(*label-list*)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
Example	tiplabel=(auto "Class Weight")

TRANSPARENCY=*value*

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

| Default | 0.0 |
| Range | 0 (completely opaque) to 1 (completely transparent) |

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

DENSITY Statement

Creates a density curve that shows the distribution of values in your data.

Interaction:

The DENSITY statement can be combined only with the DENSITY and HISTOGRAM statements in the SGPANEL procedure.

Examples:

“About Density Plots” on page 51

“Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” on page 625

Syntax

```
DENSITY response-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value`

specifies the value of the ID variable in a discrete attribute map data set.

- `LINEATTRS=style-element <(options)> | (options)`

specifies the appearance of the density line.

- `TRANSPARENCY=value`

specifies the degree of transparency for the plot.

Axis options

- `SCALE=COUNT | DENSITY | PERCENT | PROPORTION`

specifies the scaling that is used for the response axis.

Group options

- `GROUP=variable`
specifies a variable that is used to group the data.

Label options

CURVELABEL="text-string"
adds a label for the density curve.

CURVELABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=END | MAX | MIN | START
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend.

SPLITCHAR="character-list"
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

TYPE =NORMAL < (normal-opts)| KERNEL < (kernel-opts)>
specifies the type of distribution curve that is used for the density plot.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

response-variable
specifies the variable for the x axis. The variable must be numeric.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

CURVELABEL="text-string"
adds a label for the density curve.
CURVELABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

<table>
<thead>
<tr>
<th>GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData# style elements.</td>
</tr>
</tbody>
</table>

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions

This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note

If the value is not an integer, only the integer portion is used.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is “Normal.” If you specify TYPE=KERNEL, then the default label is “Kernel.”

Note User-specified parameters from the TYPE= option are included in the label by default.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphFit style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

SCALE=COUNT | DENSITY | PERCENT | PROPORTION
specifies the scaling that is used for the response axis. Specify one of the following values:

COUNT
the axis displays the frequency count.

DENSITY
the axis displays the density estimate values.

PERCENT
the axis displays values as a percentage of the total.

PROPORTION
the axis displays values in proportion to the total.

Default PERCENT
SPLITCHAR="character-list"
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless CURVELABEL is specified.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
TYPE =NORMAL < (normal-opts)>| KERNEL < (kernel-opts)>

specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

NORMAL < (normal-opts)>
specifies a normal density estimate, with a mean and a standard deviation.

normal-opts can be one or more of the following values:

MU=numeric-value
specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

SIGMA=numeric-value
specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a positive number. By default, the standard deviation value is calculated from the data.

KERNEL < (kernel-opts)>
specifies a nonparametric kernel density estimate.

kernel-opts can be:

C=numeric-value
specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

The value that you specify for the C= suboption affects the value of \(\lambda \) as shown in the following equation:

\[
\lambda = cQn^{-\frac{1}{5}}
\]

In this equation \(c \) is the standardized bandwidth, \(Q \) is the interquartile range, and \(n \) is the sample size.

WEIGHT=NORMAL | QUADRATIC | TRIANGULAR
specifies the weight function. You can specify either normal, quadratic, or triangular weight function.

Default NORMAL

Default NORMAL

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
Details

Normal Density Function
When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[
p(x) = \frac{100h \%}{\sigma \sqrt{2\pi}} \exp \left(- \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right) \text{ for } -\infty < x < \infty
\]

In the equation, \(\mu \) is the mean, and \(\sigma \) is the standard deviation. You can specify \(\mu \) by using the MU= suboption and \(\sigma \) by using the SIGMA= suboption.

Kernel Density Function
When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[
f_{\lambda}(x) = \frac{100h\%}{n\lambda} \sum_{i=1}^{n} K_0 \left(\frac{x - x_i}{\lambda} \right)
\]

In the equation, \(K_0(\cdot) \) is the weight function, \(\lambda \) is the bandwidth, \(n \) is the sample size, and \(x_i \) is the \(i \)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \(K_0(\cdot) \).

Kernel Density Weight Functions
The formulas for the weight functions are as follows.

NORMAL
\[
K_0(t) = \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{1}{2} t^2 \right) \text{ for } -\infty < t < \infty
\]

QUADRATIC
\[
K_0(t) = \frac{3}{4} \left(1 - t^2 \right) \text{ for } |t| \leq 1
\]

TRIANGULAR
\[
K_0(t) = 1 - |t| \text{ for } |t| \leq 1
\]

DOT Statement
Creates a dot plot that summarizes the values of a category variable.

Interaction: The DOT statement can be combined only with other horizontal categorization plot statements.

Example: “About Dot Plots” on page 59

Syntax

```
DOT category-variable </option(s)>
```
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all dots from discrete category values.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped dots.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS= <style-element> <options> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=UPPER | LOWER | BOTH
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT= STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS= <style-element> <options> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS= <COLOR=color>
specifies the color of the marker fill.

MARKEROUTLINEATTRS= <style-element> <options> | (options)
specifies the appearance of the marker outlines.

Plot options

ALPHA= numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ= numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as valid category value and creates a dot for it.

RESPONSE= response-variable
specifies a numeric response variable for the plot.

URL= character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT= numeric-variable
specifies how observations are weighted.

Plot reference options

NAME= “text-string”
specifies a name for the plot.

Statistics options

- `COLORSTAT=FREQ | PCT | SUM | MEAN` specifies the statistic to use for computing the response colors.
- `STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM` specifies the statistic for the horizontal axis.

Required Argument

`category-variable` specifies the variable whose values determine the categories of data represented by the dots.

Optional Arguments

- `ALPHA=numeric-value` specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).
 - **Default**: .05
 - **Interactions**: This option has no effect if you do not specify `LIMITSTAT=CLM`.
 - If your plot is overlaid with other categorization plots, then the first `ALPHA` value that you specify is used for all of the plots.

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
 - See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
 - “Overview of Attribute Maps” on page 1383

- `CATEGORYORDER=RESPASC | RESPDESC` specifies the order in which the categories are arranged. Specify one of the following values:
 - `RESPASC` sorts by the response values in ascending order.
 - `RESPDESC` sorts by the response values in descending order.
 - **Default**: By default, the plot is sorted in ascending order based on the category values.
 - **Restriction**: This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.
 - **Requirement**: This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the `ROWS=` option or the `COLUMNS=` option in the PANELBY statement. If you do not use this option and your graph contains
multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

<table>
<thead>
<tr>
<th>Style Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTCOLOR</td>
<td>specifies the color for the smallest data value of the COLORRESPONSE= column.</td>
</tr>
<tr>
<td>NEUTRALCOLOR</td>
<td>specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.</td>
</tr>
<tr>
<td>ENDCOLOR</td>
<td>specifies the color for the highest data value of the COLORRESPONSE= column.</td>
</tr>
</tbody>
</table>

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.
Requirement

The list of colors must be enclosed in parentheses.

Example

\[\text{colormodel} = \text{(blue yellow green)} \]

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the \text{COLORRESPONSE=} option must also be specified in the statement.

\[\text{COLORRESPONSE=} \text{numeric-column} \]

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction

If the \text{GROUP=} option is also specified in the statement, then the \text{GROUP=} option is ignored.

Tip

The color ramp is specified by the \text{COLORMODEL=} option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 196

“Using Gradient Color Legends” on page 1310

\[\text{COLORSTAT=} \text{FREQ | PCT | SUM | MEAN} \]

specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When \text{COLORRESPONSE=} is not specified, the following values are valid:

FREQ

frequency count

PCT

percentages between 0 and 100

When the \text{COLORRESPONSE=} option is specified, the following values are valid:

SUM

sum values for the color response

MEAN

mean values for the color response

Defaults

SUM when you also specify the \text{COLORRESPONSE=} option.

FREQ when do not specify the \text{COLORRESPONSE=} option.

Note

This option is independent of the \text{STAT=} and \text{RESPONSE=} options.

\[\text{DATALABEL} \leq \text{variable} \]

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

\[\text{DATALABELATTRS=} \text{style-element <(options)> | (options)} \]

specifies the appearance of the labels in the plot when you use the \text{DATALABEL=} option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATALABELPOS=\(position\)**

specifies the location of the data label with respect to the plot. \(position\) can be one of the following values:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom Left</th>
<th>Bottom Right</th>
<th>Center</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>BottomLeft</td>
<td>BottomRight</td>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=\(NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN\)**

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

Table 6.4 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>
Default | NONE
---|---

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
You can use the MARKERATTRS= option to specify a filled marker symbol.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all dots from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default	0.0 (no offset)

Requirement
This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped dots.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction

This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

ASCENDING

Interaction

This option is ignored unless GROUP= is specified.
By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=UPPER | LOWER | BOTH
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. Specify one of the following values:

BOTH
 adds lower and upper limit lines to the plot.

LOWER
 adds lower limit lines to the plot.

UPPER
 adds upper limit lines to the plot.

Interaction

Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
 confidence limits
STDDEV
standard deviation

STDERR
standard error

Default: CLM

Interaction: If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH. Limits lines are displayed only when you specify STAT=MEAN.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and LineThickness.

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MISSING
for group data, processes missing values as valid category value and creates a dot for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string” specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n specifies the number of standard units for the limit lines, when you specify LIMITSTAT= STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RATTRID=character-value specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

SPLITCHAR=“character-list” splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM specifies the statistic for the horizontal axis. Specify one of the following:

FREQ the frequencies, which are calculated as follows:

• If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.

• If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.
MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the
procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults

| The statistic is displayed for the response variable. |
| When a custom label is assigned to the response variable, the statistic is not displayed. |

Interactions

| This option has no effect unless the RESPONSE= option is specified. |
| This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement. |

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

| The column format of the tip variable, or BEST6 if no format is assigned to a numeric column |

Requirement

| A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option. |

Interaction

| This option has no effect unless TIP= is also specified. |
Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.
WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

DROPLINE Statement

Creates one or more drop lines from data points to one or both axes. The line or lines can be horizontal, vertical, or both.

Interaction:
When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

Note:
This feature applies to the first maintenance release of SAS 9.4 and to later releases.

See:
"About Drop Lines" on page 33

Syntax

DROPLINE X=variable | x-axis-value
Y=variable | y-axis-value <(option(s)>;

Summary of Optional Arguments

Appearance options

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all drop lines from discrete X or Y values.

- **LINEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the drop line.

- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.

Axis options

- **DROPTO=BOTH | X | Y**
 specifies the axis to which the line is dropped.

- **NOCLIP**
 extends the plot axes to contain the drop lines.

Label options

- **LABEL <=variable> | <=("text-string-1" ... "text-string-n")>**
 creates labels for each drop line.

- **LABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels.

LEGENDLABEL="text-string"

specifies a label that identifies the plot in the legend.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

\[X=variable \mid x-axis-value \]

specifies the X coordinate of the drop line or drop lines. If you specify an \(x-axis-value \) that is a text string, enclose the string in quotation marks.

Requirement

Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

\[Y=variable \mid y-axis-value \]

specifies the Y coordinate of the drop line or drop lines. If you specify a \(y-axis-value \) that is a text string, enclose the string in quotation marks.

Requirement

Values must agree in type with the Y-axis data type.

Optional Arguments

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 6.5 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th></th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See

“Using Data Skins” on page 1343
DISCRETEOFFSET=numeric-value

specifies an amount to offset all drop lines from discrete X or Y values.

Default 0.0 (no offset)

Range –0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.

Requirement This option is applicable only when the X or Y axis is discrete.

DROPTO=BOTH | X | Y

specifies the axis to which the line is dropped.

BOTH
draws droplines to both axes.

X
draws droplines to the X axis.

Y
draws droplines to the Y axis.

LABEL <=variable> | <=("text-string-1" ... "text-string-n")>

creates labels for each drop line. If you do not specify a label value, the value for that line is used as the label.

If you specify a label value, the following options are available.

variable
a variable for the label value.

Restriction This label variable is used only when a variable is used for the DROPLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

text-string-1" ... "text-string-n”
a text string for the label value.

Restriction The label string does not apply when a variable is used for the DROPLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:
`LABELATTRS=GraphTitleText`

LEGENDLABEL="text-string"

specifies a label that identifies the plot in the legend. By default, the label “drop” is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the drop line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The `text-string` is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP

extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

Details

A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.
Example

This example shows a DROPLINE statement originating from the point (X=3, Y=5) and dropping to both axes. The data form a parabola, which is divided in the panel depending on whether the curve is going down or up.

Drop lines at Inflection Point

<table>
<thead>
<tr>
<th>Status = Down</th>
<th>Status = Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/* Create data set with X and Y variables that plot a parabola.*/
data test;
length Status $4;
do X=0 to 8 by 0.25;
 Y=(x-3)*(x-3) + 5;
 if X >= 3 then Status='Up';
 else Status='Down';
 output;
end;
run;

/* Create the plot and drop lines. Specify a label and line attributes for the drop lines.*/
title "Drop lines at Inflection Point";
proc sgpanel data=test;
 panelby Status;
 series x=x y=y;
 dropline x=3 y=5 / dropto=both label="(3,5)"
 lineattrs=(color=blue pattern=dot);
 rowaxis min=0;
run;
title;

FRINGE Statement

Creates a fringe plot on the X axis of an X-Y plot.
interaction: Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots).

note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

example: “About Fringe Plots” on page 28

syntax
FRINGE numeric-variable </option(s)>;

summary of optional arguments

appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

HEIGHT=dimension<units>
specifies the height of the fringe lines.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fringe lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

label options

LEGENDLABEL="text-string"
specifies a label that identifies the fringe plot in the legend.

plot reference options

NAME="text-string"
specifies a name for the plot.

required argument

numeric-variable
specifies the variable that provides the X coordinates of the data values.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

HEIGHT=dimension<units>
specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

Table 6.6 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default 10px

LEGENDLABEL="text-string"
specifies a label that identifies the fringe plot in the legend.
Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element | (options)
specifies the appearance of the fringe lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list) applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips. A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

See

SAS Formats and Informats: Reference

Example

```plaintext
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example

```plaintext
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

GRADLEGEND Statement

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

See: “Using Gradient Color Legends” on page 1310

Syntax
GRADLEGEND <"name"> <option(s)>;

Summary of Optional Arguments

Appearance options
BORDER | NOBORDER
specifies whether a border is visible around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

Legend options
"name"
specifies the name of the plot that you want to include in the legend.

Scale options
EXTRACTSCALE<=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width.

Optional Arguments

"name"
specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.

Default If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.
Restriction Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

BORDER | NOBORDER

specifies whether a border is visible around the legend.

Default NOBORDER

EXTRACTSCALE=DEFAULT | SCIENTIFIC

extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

You can also specify whether to use a named scale or a scientific-notation scale.

DEFAULT

extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as 10^n) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of $1/10$ (10^{-n}) for values less than 1 trillionth.

SCIENTIFIC

extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as 10^n for values greater than 1, or a multiple of $1/10$ expressed as 10^{-n} for values less than 1.

The following examples show a gradient legend before and after EXTRACTSCALE= is specified:

<table>
<thead>
<tr>
<th>Default Scale</th>
<th>EXTRACTSCALE Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default DEFAULT

Restriction The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

INTEGER

specifies that integers are used for the gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
NOTITLE
removes the default title. The default title is the name of the response variable.

Default The default title is displayed.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

dimension specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.

TOP=dimension specifies the amount of extra space added to the top.

BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note Sides that are not assigned padding are padded with the default amount.

Tip Use pad-options to create non-uniform padding.

Default No padding

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Example “Example: Gradient Legend That Uses the OUTERPAD= Option” on page 200

POSITION=TOP | BOTTOM | LEFT | RIGHT specifies the position of the legend within the graph.

Default RIGHT

Notes By default, if you use more than one GRADLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then those legends are placed at that position.

TITLE=“text-string” specifies a title for the legend.

Default If you do not specify this option, then the name of the legend variable is displayed as the title.
TITLEATTRS=<style-element> <(options)> | (options)

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Examples

```
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
TITLEATTRS=GraphTitleText
```

Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps an age scale to a color gradient. The OUTERPAD= option adds padding to the top and bottom of the gradient.

```plaintext
title "Height and Weight Distribution";
proc sgpanel data=sashelp.heart;
  panelby sex;
  scatter x=height y=weight / 
    colorresponse=ageatdeath name="scatter"
    markerattrs=(symbol=squarefilled size=6px);
  gradlegend "scatter" / 
    outerpad=(top=20px bottom=20px);
```
HBAR Statement

Creates a bar chart that summarizes the values of a category variable.

Interactions: The HBAR statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.

When used with particular styles, the HBAR statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Tip: Starting with the third maintenance release for SAS 9.4, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

Examples: “About Bar Charts” on page 54
“Example 3: Creating a Panel of Bar Charts” on page 627

Syntax

```
HBAR category-variable </option(s>>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `BARWIDTH=numeric-value` specifies the width of the bars as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element <(options)> | (options)` specifies the appearance of the baseline.
- `COLORMODEL=style-element | (color-list)` specifies a color ramp that is to be used with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column` specifies the numeric column that is used to map colors to a gradient legend.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value` specifies an amount to offset all bars from the category midpoints.
- `FILL | NOFILL` specifies whether the bars are filled.
- `FILLATTRS=style-element <(options)> | (options)` specifies the fill color and transparency.
- `FILLTYPE=SOLID | GRADIENT` specifies the fill type that is applied to the chart.
- `NOZEROBARS` suppresses zero-length bars.
- `OUTLINE | NOOUTLINE` specifies whether the bars have outlines.
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options
BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options
DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER

specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value

specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data.

MISSING

for group data, processes missing values as valid category value and creates a bar for it.

RESPONSE=response-variable

specifies a numeric response variable for the plot.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable

specifies how observations are weighted.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the horizontal axis.

Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.
Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interactions If GROUPDISPLAY=STACKED is specified, this option is ignored.
When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. Specify one of the following values:

- **RESPASC**

 sorts by the response values in ascending order.

- **RESPDESC**

 sorts by the response values in descending order.

Default

By default, the plot is sorted in ascending order based on the category values.

Restriction

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement

This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the
sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.
Example: colormodel=(blue yellow green)

Default: The ThreeColorAltRamp style element

Interaction: For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction: If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip: The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See: “GRADLEGEND Statement” on page 196
“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults: SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note: This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Interaction: This option has no effect if you also specify the GROUPDISPLAY=STACK option.

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To
show the labels regardless of how they fit, specify
DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default
0.0 (no offset)

Range
-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default
FILL

Interactions
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.
Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data.

Interaction

This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT

specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align
between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData... GraphData element style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default

STACK

Interaction

This option is ignored unless GROUP= is specified.

Tip

The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

ASCENDING

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

LIMITS=BOTH | LOWER | UPPER

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

- **BOTH** adds lower and upper limit lines to the plot.
- **LOWER** adds lower limit lines to the plot.
- **UPPER** adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction Limit lines are displayed only when you specify STAT= MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.
LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default CLM

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING
for group data, processes missing values as valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.
Tip This option is useful when the bar chart baseline is suppressed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive
number, including decimals.

Default 1

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines.
The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=<style-element><(options)>

specifies the appearance of the bar outlines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color

• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for
grouped data. The affected attributes are ContrastColor and
LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable

specifies a numeric response variable for the plot. The summarized values of the
response variable are displayed on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar.
This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<table>
<thead>
<tr>
<th>Make</th>
<th>21.68</th>
<th>18.7</th>
<th>29.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedan</td>
<td>29.968</td>
<td>27.116</td>
<td>28.544</td>
</tr>
<tr>
<td>Sports</td>
<td>26.647</td>
<td>25.13</td>
<td>24.222</td>
</tr>
</tbody>
</table>

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

- Use the SEGLABELATTRS= option to modify the appearance of the label text.
- Use the SEGLABELFORMAT= option to modify the format of the segment labels.
- Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS= specifies the text properties of the bar segment label text.

- **Note**: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

- **Note**: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE

No attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

Does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.
THIN

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\textit{format}

specifies the text format used to display the bar segment labels.

\textit{Note}: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

\textbf{STAT=\textit{FREQ} | MEAN | MEDIAN | PERCENT | SUM}

specifies the statistic for the horizontal axis. Specify one of the following:

\textbf{FREQ}

the frequencies, which are calculated as follows:

\begin{itemize}
 \item If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
 \item If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.
\end{itemize}

\textbf{MEAN}

the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

\textbf{MEDIAN}

the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

\textbf{PERCENT}

the percentage, which is calculated as follows:

\begin{itemize}
 \item If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
 \item If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.
\end{itemize}

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100\% at the requested level.

Alias PCT
Interactions

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM

the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction

For this value to take effect, you must also specify the RESPONSE= option.

Defaults

SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(*format-list*)

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
[SAS Formats and Informats: Reference](#)

Example
tipformat=(auto F5.2)

TIPLABEL=(*label-list*)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example
txlabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

HBARBASIC Statement

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.
Interaction: When used with particular styles, the HBARBASIC statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Notes: This feature applies to the third maintenance release of SAS 9.4 and to later releases. When using the HBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

See: Basic plot types on page 1306

Example: “About Bar Charts” on page 54

Syntax

HBARBASIC category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
 specifies the fill type that is applied to the chart.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.
Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL
displays the bar statistic value for each bar.

Datalabelattrs=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the Datalabel= option.

Datalabelfitpolicy=NONE
specifies that no fit policy is implemented for the bar labels.

Datalabelformat=format
specifies the text format used to display the bar label.

Legendlabel="text-string"
specifies the label that identifies the bar chart in the legend.

Seglabel
displays a label inside each segment of a stacked bar.

Seglabelattrs=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

Seglabelfitpolicy=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Seglabelformat=format
specifies the text format used to display the bar segment labels.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

```plaintext
NAME="text-string"
```
specifies a name for the plot.

Statistics options

```plaintext
COLORSTAT=FREQ | PCT | SUM | MEAN
```
specifies the statistic to use for computing the response colors.

```plaintext
STAT=FREQ | PCT | SUM | MEAN | PROPORTION
```
specifies the statistic for the horizontal axis.

Required Argument

`category-variable`
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

```plaintext
ATTRID=character-value
```
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

```plaintext
BARWIDTH=numeric-value
```
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults

<table>
<thead>
<tr>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>when the GROUP option is specified and GROUPDISPLAY=CLUSTER</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(narrowest) to 1.0 (widest)</td>
</tr>
</tbody>
</table>

Interaction

When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default
value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

;color-list
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 196

“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.
DATALABEL

Displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default

No label is shown

Interaction

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify **DATALABELFITPOLICY=NONE**.

Tip

The font and color attributes for the label are specified by the **DATALABELATTRS** option. The text format is specified by the **DATALABELFORMAT** option.

DATALABELATTRS=style-element <(options)> | (options)

Specifies the appearance of the labels in the plot when you use the **DATALABEL** option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction

This option has no effect unless the **DATALABEL** option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE

Specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify **DATALABELFITPOLICY=NONE**.

Default

Show the labels unless they collide.

Interaction

This option has no effect unless **DATALABEL** is also specified.

DATALABELFORMAT=format

Specifies the text format used to display the bar label.

Default

The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.
Interaction This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 6.8 DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default **NONE**

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default **FILL**

Interactions Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATRERS=, to set the initial transparency in the gradients.

Default
SOLID

Interaction
This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...
GraphData
style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER= . The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of
the response variable and the computed statistic (SUM or MEAN) is used. If the
RESPONSE= option is not used, the legend label is “Frequency”.

Interaction

The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

MISSING

for group data, processes missing values as a valid category value and creates a bar
for it. If more than one chart is specified in the procedure, the MISSING option
affects the group calculations for all of the charts.

NAME=”text-string”
specifies a name for the plot. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this
option is specified, zero-length bars are not drawn. The following figure shows a
simple example. In the figure, the graph border, axis line, and bar-chart baseline are
suppressed for clarity.

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines.
The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options
are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATRTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATRTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT= *format*

specifies the text format used to display the bar segment labels.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION

specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ frequency count

PCT | PERCENT percentages between 0 and 100

PROPORTION proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM sum values for the response

MEAN mean values for the response

Defaults: SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Interaction When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(category response)`

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of roles.

Example
tylabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

HBARPARM Statement

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.
Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interactions: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306. When used with particular styles, the HBARPARM statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Note: An important distinction between HBARPARM and HBAR is that the response variable is required for HBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 54

Syntax

HBARPARM CATEGORY=category-variable RESPONSE=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

 ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

 BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

 BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

 COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

 COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

 DATASKIN=NONE | CRISP | GLOSS | MATTE | Pressed | SHEEN
 specifies a special effect to be used on the plot.

 DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

 FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

 FILLTYPE=SOLID | GRADIENT
 specifies the fill type that is applied to the chart.

 LEGENDLABEL="text-string"
 specifies the label that identifies the bar chart in the legend.

 NOZEROBARS
 suppresses zero-length bars.

 OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.

 OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.

 RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options
BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Bar options
FILL | NOFILL
specifies whether the bars are filled.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options
DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Limit options
LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.
LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines.
LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines.

Plot options
MISSING
for group data, processes missing values as a valid category value and creates a bar for it.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Required Arguments
CATEGORY=category-variable
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

RESPONSE=numeric-variable
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

Optional Arguments
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8
1.0 when the GROUP option is specified and
GROUPDISPLAY=CLUSTER

Range
0.0 (narrowest) to 1.0 (widest)

Interaction
When the GROUP option is specified, the bar width is determined by
the maximum number of bars in any one group cluster. All bars are
drawn with the same width. The cluster is positioned symmetrically
around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later
releases.

The baseline is always displayed in the chart, even when this option is not specified.
In that case, the default value is used. When this option is specified, the axis range is
adjusted to include the baseline, and the baseline is placed at the specified value on
the response axis.

Default
0

Interaction
When a logarithmic response axis is used and BASELINE= specifies 0
or a negative value, the response axis reverts to a linear axis. To restore
the log axis in that case, set BASELINE= to a positive value.

Tips
The appearance of the baseline is controlled by the
BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the
line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later
releases.

You can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override
specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR,
LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0
(narrowest) to 1.0 (widest).
CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.
Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 196

“Using Gradient Color Legends” on page 1310

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Note: By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default Show the labels unless they collide.

Interaction This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 6.9 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![Image]</td>
<td>Control the maximum number of graphics elements that are skinned in a plot statement.</td>
</tr>
<tr>
<td>CRISP</td>
<td>![Image]</td>
<td>Use the DATASKINMAX= option to increase or decrease the maximum limit.</td>
</tr>
<tr>
<td>GLOSS</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td>![Image]</td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions: This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See: “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default: FILL
Interactions

Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

0.0 transparency

Interaction

This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Defaults

SOLID

Interaction

This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default
STACK

Interaction
This option is ignored unless GROUP= is specified.

Tip
The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
ASCENDING

Interaction
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only.
For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITLOWER=numeric-variable

specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.
MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction
This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV</td>
<td>21.68</td>
<td>18.7</td>
<td>20.04</td>
</tr>
<tr>
<td>Sedan</td>
<td>29.968</td>
<td>27.115</td>
<td>28.544</td>
</tr>
<tr>
<td>Sports</td>
<td>26.647</td>
<td>25.13</td>
<td>24.222</td>
</tr>
</tbody>
</table>

Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=<style-element>(options)> | (options)
specifies the text properties of the bar segment label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default
The GraphDataText style element.

Interaction
This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE
o no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default
THIN

Interaction
This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default
The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction
This option has no effect unless SEGLABEL is also specified.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.
Requirement
You must specify the `IMAGEMAP=ON` option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the `TIPFORMAT` and `TIPLABEL` options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

`TIPFORMAT=(format-list)`
Applies formats to the list of data tip variables that you specify in the `TIP=` option.

- Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
- A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the `TIP=` option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

- **Default**
 The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

- **Requirement**
 A format or the keyword AUTO must be provided for each variable that is listed in the `TIP=` option.

- **Interaction**
 This option has no effect unless `TIP=` is also specified.

- **Tip**
 Use the `TIPLABEL=` option to assign labels to the list of variables.

- **See**
 SAS Formats and Informats: Reference

- **Example**
 `tipformat=(auto F5.2)`

`TIPLABEL=(label-list)`
Applies labels to the list of data tip variables that you specify in the `TIP=` option.

- Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
- A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the `TIP=` option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

- **Requirement**
 A label or the keyword AUTO must be provided for each variable that is listed in the `TIP=` option. When AUTO is used, the label is obtained from the variable.

- **Interaction**
 This option has no effect unless `TIP=` is also specified.

- **Tip**
 Use the `TIPFORMAT` option to assign formats to the list of variables.
Example: `tiplabel=(auto "Class Weight")`

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: `0.0`

Range: `0` (completely opaque) to `1` (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

HBOX Statement

Creates a horizontal box plot that shows the distribution of your data.

Restriction: This plot has plot compatibility restrictions. See Table 10.2 on page 1307.

Interaction: The HBOX statement cannot be used together with other plot statements in the SGPANEL procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

See: “Visual Description of Box Plot Percentile Boundaries” on page 261

Example: “About Box Plots” on page 49

Syntax

```
HBOX numeric-analysis-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options
ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
 specifies the width of the box.

CAPSHAPE=BRACKET | LINE | SERIF NONE
 specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
 specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element <(options)> | (options)
 specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
 specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL | NOFILL
 specifies whether the boxes are filled with color.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

INTBOXWIDTH=numeric-value
 specifies the box width when an interval category (Y) variable is specified.

LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the box outlines.

MEANATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker that represents the mean in the box.

MEDIANATTRS=style-element <(options)> | (options)
 specifies the appearance of the line that represents the median.

NOCAPS
 hides the cap lines for the whiskers.

NOMEAN
 hides the mean marker.

NOMEDIAN
 hides the median line.

NOOUTLIERS
 hides the outliers from the plot.

NOTCHES
 specifies that the boxes be notched.

OUTLIERATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

WHISKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the whisker and cap lines.

WHISKERPCT=number
 specifies the whisker length, in percentile units.

Data tip options

 TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

\begin{itemize}
 \item \texttt{TIPFORMAT=\{format-list\}}
 \begin{itemize}
 \item applies formats to the list of data tip roles that you specify in the \texttt{TIP=} option.
 \end{itemize}
 \item \texttt{TIPLABEL=\{label-list\}}
 \begin{itemize}
 \item applies labels to the list of data tip roles that you specify in the \texttt{TIP=} option.
 \end{itemize}
\end{itemize}

Group options

\begin{itemize}
 \item \texttt{CLUSTERWIDTH=\texttt{numeric-value}}
 \begin{itemize}
 \item specifies the cluster width as a ratio of the midpoint spacing.
 \end{itemize}
 \item \texttt{GROUP=\texttt{variable}}
 \begin{itemize}
 \item specifies a variable that is used to group the data.
 \end{itemize}
 \item \texttt{GROUPDISPLAY=\texttt{CLUSTER | OVERLAY}}
 \begin{itemize}
 \item specifies how to display grouped boxes.
 \end{itemize}
 \item \texttt{GROUPORDER=\texttt{DATA | REVERSEDATA | ASCENDING | DESCENDING}}
 \begin{itemize}
 \item specifies the ordering of the groups within a category.
 \end{itemize}
\end{itemize}

Label options

\begin{itemize}
 \item \texttt{DATALABEL <=\texttt{variable>}}
 \begin{itemize}
 \item adds data labels for the outlier markers.
 \end{itemize}
 \item \texttt{DATALABELATTRS=\texttt{style-element \langle\texttt{options}\rangle \mid \langle\texttt{options}\rangle}}
 \begin{itemize}
 \item specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option.
 \end{itemize}
 \item \texttt{LABELFAR}
 \begin{itemize}
 \item specifies that only the far outliers have data labels.
 \end{itemize}
 \item \texttt{LEGENDLABEL="\texttt{text-string}"
 \begin{itemize}
 \item specifies a label that identifies the box plot in the legend.
 \end{itemize}
 \item \texttt{SPLITCHAR="\texttt{character-list}"
 \begin{itemize}
 \item splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.
 \end{itemize}
 \item \texttt{SPLITCHARNODROP}
 \begin{itemize}
 \item specifies that the split characters are included in the displayed value.
 \end{itemize}
 \item \texttt{SPLITJUSTIFY=\texttt{LEFT | CENTER | RIGHT}}
 \begin{itemize}
 \item specifies the horizontal alignment of the value text that is being split.
 \end{itemize}
\end{itemize}

Plot options

\begin{itemize}
 \item \texttt{CATEGORY=\texttt{category-variable}}
 \begin{itemize}
 \item specifies the category variable for the plot.
 \end{itemize}
 \item \texttt{FREQ=\texttt{numeric-variable}}
 \begin{itemize}
 \item specifies a variable for the frequency count for each observation in the input data.
 \end{itemize}
 \item \texttt{MISSING}
 \begin{itemize}
 \item for group data, processes missing values as a valid category value and creates a box for it.
 \end{itemize}
 \item \texttt{PERCENTILE=\texttt{1 | 2 | 3 | 4 | 5}}
 \begin{itemize}
 \item specifies a method for computing the percentiles for the plot.
 \end{itemize}
 \item \texttt{SPREAD}
 \begin{itemize}
 \item relocates outlier points that have identical values to prevent overlapping.
 \end{itemize}
 \item \texttt{WEIGHT=\texttt{numeric-variable}}
 \begin{itemize}
 \item specifies how observations are weighted.
 \end{itemize}
\end{itemize}
Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4
When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

CATEGORY=category-variable
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7
Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interactions This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:
CONNECTATTRS=GraphData3

DATALABEL The <variable>
adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData{n} style elements.
Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 6.10</th>
<th>DATASKIN Options for Box Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See

“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.
Default 0.0 (no offset)

EXTREME
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

FILL | NOFILL
specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

FILLATTRS=style-element *(options)* | *(options)*
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated *n* times for computational purposes, where *n* is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData... GraphData style elements in the current style.

Defaults
| CLUSTER for a discrete category axis
| OVERLAY for a linear axis

Restriction
| GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction
| This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
| DATA

Interactions
| This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
| Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

| The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (Y) variable is specified.
Restriction The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example
```sas
proc sgpanel data=sashelp.class;
panelby sex;
hbox weight / category=height intboxwidth=50 ;
rowaxis type=linear;
run;
```

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interactions This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.
GraphBoxMedian style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction
This option is ignored if the NOMEDIAN option is also specified.

MISSING
for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
hides the cap lines for the whiskers.

Interaction
Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \left(IQR/\sqrt{N}\right)
\]

For a visual description of the parts of a box plot, see “Details” on page 261.

OUTLIERATTRS=style-element \(<\text{(options)}\) | \(\text{(options)}\)
specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphOutlier style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.
PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot. For descriptions of each method, see “Calculating Percentiles” in the UNIVARIATE Procedure chapter of Base SAS Procedures Guide: Statistical Procedures.

Default 5

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312
SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note: This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

 (role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS ON / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(mean median)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the *format-list* and the *role-list* that is specified for the TIP= option. A format must be provided for each role, using the same order as the *role-list*. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL option to assign labels to the list of roles.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element *(options)* | *(options)*
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

options can be one or more of the following:

Default GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

WHISKERPCT=number
specifies the whisker length, in percentile units.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified, `number` is used as the low percentile, and `100–number` is used as the high percentile.

Here are some examples of values and their effect:

- `0` specifies the high and low extremes
- `10` specifies the 10\(^{th}\) percentile low and the 90\(^{th}\) percentile high
- `25` specifies the 25\(^{th}\) percentile low and the 75\(^{th}\) percentile high

Default

The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR.

Range

0–25

Notes

When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25\(^{th}\) to the 75\(^{th}\) percentile.

Details

Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Note: Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 IQR$). Outliers that are beyond upper and lower far fences ($\pm 3 IQR$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Example: “About Heat Maps” on page 28

Syntax

```
HEATMAP X=variable Y=variable <option(s)>;
```
Summary of Optional Arguments

Appearance options

COLORMODEL= `style-element | (color-list)`
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE= `numeric-variable`
specifies a numeric variable that is used to color the regions of the heat map.

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for the COLORRESPONSE= variable.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

OUTLINE
displays an outline around each colored region.

OUTLINEATTRS= `style-element <(options)> | (options)`
specifies the appearance of the rectangle outlines.

RATTRID= `character-value`
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Binning options

XBINSIZE= `positive-number`
specifies the horizontal size of bins in X axis coordinate system units.

XBINSTART= `positive-number`
specifies the data value for the first bin of the X role.

YBINSIZE= `positive-number`
specifies the vertical size of bins in Y axis coordinate system units.

YBINSTART= `positive-number`
specifies the data value for the first bin of the Y role.

Data options

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

TIP= `(role-list) | NONE`
specifies the information to display when the cursor is positioned over a rectangle.

\[\text{TIPFORMAT}=(\text{format-list}) \]

applies formats to the list of data tip roles that you specify in the TIP= option.

\[\text{TIPLABEL}=(\text{label-list}) \]

applies labels to the list of data tip roles that you specify in the TIP= option.

Plot options

\[\text{FREQ=} \text{numeric-variable} \]

specifies a variable for the frequency count for each observation in the input data.

\[\text{WEIGHT=} \text{numeric-variable} \]

specifies how observations are weighted.

Plot reference options

\[\text{NAME=} \text{"text-string"} \]

specifies a name for the plot.

Required Arguments

\[\text{X=} \text{variable} \]

specifies the variable for the X axis.

Requirement

If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

\[\text{Y=} \text{variable} \]

specifies the variable for the Y axis.

Requirement

If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

Optional Arguments

\[\text{COLORMODEL=} \text{style-element} | (\text{color-list}) \]

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

\[\text{STARTCOLOR} \]

specifies the color for the smallest data value of the COLORRESPONSE= column.

\[\text{NEUTRALCOLOR} \]

specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

\[\text{ENDCOLOR} \]

specifies the color for the highest data value of the COLORRESPONSE= column.

Example

\[\text{colormodel=TwoColorRamp} \]
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>The list of colors must be enclosed in parentheses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>colormodel=(blue yellow green)</td>
</tr>
</tbody>
</table>

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for the COLORRESPONSE= variable.

Defaults FREQ

SUM if COLORRESPONSE= is specified

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.

Range 0 (opaque) to 1 (entirely transparent)
Interaction This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

FREQ= *numeric-variable*

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated *n* times for computational purposes, where *n* is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

NAME= "**text-string**"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The **text-string** is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE

displays an outline around each colored region.

Default No outline is displayed

OUTLINEATTRS= *style-element* < *(options)* > | *(options)*

specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

RATTRID= *character-value*

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>Without this option, a standard axis is used, ignoring bin boundaries and midpoints.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.</td>
</tr>
</tbody>
</table>

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

<table>
<thead>
<tr>
<th>Default</th>
<th>Without this option, a standard axis is used, ignoring bin boundaries and midpoints.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.</td>
</tr>
</tbody>
</table>

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

- **(role-list)**
 - a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

- **NONE**
 - suppresses the data tips from this plot.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODS GRAPHICS ON / IMAGEMAP=ON;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option replaces all of the information that is displayed by default.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tip</th>
<th>Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>tip=(x y)</th>
</tr>
</thead>
</table>

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

- Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

- A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
</table>
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPLABEL option to assign labels to the list of roles.

See SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of roles.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

XBINSIZE=positive-number

specifies the horizontal size of bins in X axis coordinate system units. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 790

XBINSTART=positive-number

specifies the data value for the first bin of the X role. The bins always span the X data range.
HEATMAPPARM Statement

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

Requirements: The COLORGROUP= role or the COLORRESPONSE= role must be specified. The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

Notes: The data for a parameterized heat map should contain only one observation for each X and Y value pair. This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Example: “About Heat Maps” on page 28
Syntax

HEATMAPPARM X=variable Y=variable COLORGROUP=variable </option(s)>;
HEATMAPPARM X=variable Y=variable COLORRESPONSE=numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

NOMISSINGCOLOR
excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map.

OUTLINE
displays an outline around each colored region.

OUTLINEATTRS=style-element </(options)> | (options)
specifies the appearance of the rectangle outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axis options

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Data options

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

- **TIP=(role-list) | NONE**
 specifies the information to display when the cursor is positioned over a rectangle.

- **TIPFORMAT=(format-list)**
 applies formats to the list of data tip roles that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
 applies labels to the list of data tip roles that you specify in the TIP= option.

Plot options

- **URL=character-variable**
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

- **NAME="text-string"**
 specifies a name for the plot.

Required Arguments

- **X=variable**
 specifies the variable for the X axis.

 Requirement If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

- **Y=variable**
 specifies the variable for the Y axis.

 Requirement If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

- **COLORGROUP=variable**
 specifies a variable that is used to color the regions of the heat map.

 Requirement This argument is required when the response variable is of type discrete.

- **COLORRESPONSE=numeric-variable**
 specifies a numeric variable that is used to color the regions of the heat map.

 Requirement This argument is required when the response variable is of type interval.

 Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.
Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This feature applies to the COLORGROUP variable in the heat map.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

COLOREMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

DISCRETEX

forces the X axis to be discrete when the X= variable is numeric.

Requirement

If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction

If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.
DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Requirement
If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction
If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

Default
The TRANSPARENCY= option value.

Range
0 (opaque) to 1 (entirely transparent)

Interaction
This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Note
The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.

Tip
You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCOLOR
excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.

Default
Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

OUTLINE
displays an outline around each colored region.

Default
No outline is displayed
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

Default Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Interaction When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)
a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
Example

```plaintext
Tipformat=(auto F5.2)
```

TIPLABEL=(**label-list**)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the **label-list** and the **role-list** that is specified for the TIP= option. A label must be provided for each role, using the same order as the **role-list**. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example

```plaintext
Tiplabel=(auto "Class Weight")
```

TRANSPARENCY=**value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each
plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the
ODS GRAPHICS statement. For example, add the following
statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement”
on page 1371.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the
X axis.

Default
If this option is not used, then the axis ticks and value labels are drawn
at the bin midpoints. This is true regardless of whether the XVALUES=
option identifies the X data as endpoint values or midpoint values.

Interaction
This option has no effect unless the SHOWXBINS option is also used.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower endpoints, or upper
endpoints of the bins.

Default
MIDPOINTS

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the
Y axis.

Default
If this option is not used, then the axis ticks and value labels are drawn
at the bin midpoints. This is true regardless of whether the YVALUES=
option identifies the Y data as endpoint values or midpoint values.

Interaction
This option has no effect unless the SHOWYBINS option is also used.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower endpoints, or upper
endpoints of the bins.
HIGHLOW Statement

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

Note: This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

Example: "About High-Low Plots" on page 30

Syntax

HIGHLOW \(X=\text{variable} \mid Y=\text{variable}\)
HIGH\(=\text{numeric-variable}\) LOW\(=\text{numeric-variable}\) \(<\text{option(s)}>\);

Summary of Optional Arguments

Appearance options

ATTRID\(=\text{character-value}\)
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH\(=\text{numeric-value}\)
specifies the width of the bars as a ratio of the maximum possible width.

CLIPCAP
displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
specifies the type of cap used for the clip cap.

COLORMODEL\(=\text{style-element} \mid (\text{color-list})\)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE\(=\text{numeric-column}\)
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET\(=\text{numeric-value}\)
specifies an amount to offset all lines or bars from the category midpoints.

FILL | NOFILL
specifies whether the area fill is visible for bars.

FILLATTRS\(=\text{style-element} <\text{options}> \mid (\text{options})\)
specifies the fill color and transparency.

INTERVALBARWIDTH\(=\text{numeric-value}\)
specifies the thickness of the bar when the X (or Y) data is numeric.

LINEATTRS\(=\text{style-element} <\text{options}> \mid (\text{options})\)
specifies the appearance of the outlines for the band.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bars are visible.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width.

GROUP=variable

specifies a variable that is used to group the data.

GROUPDISPLAY=OVERLAY | CLUSTER

specifies how to display grouped data.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Label options

HIGHLABEL=variable

specifies the label to be shown at the high end of the line or bar.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

LEGENDLABEL=“text-string”

specifies a label that identifies the elements from the band plot in the legend.

LOWLABEL=variable

specifies the label to be shown at the low end of the line or bar.

Plot options

CLOSE=numeric-variable

specifies the data for the CLOSE tick on the bar or line.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line.

LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the low end of the bar or line.

OPEN=numeric-variable
specifies the data for the OPEN tick on the bar or line.

TYPE=BAR | LINE
specifies how the data is to be represented.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=variable | Y=variable
specifies a variable that is used to plot the values along the N or Y axis.

Note If you specify X=variable, then the statement creates vertical lines or bars on the X axis, and the HIGH and LOW values are plotted along the Y axis. Conversely, if you specify Y=variable, then the statement creates horizontal lines or bars on the Y axis, and the HIGH and LOW values are plotted along the X axis.

HIGH=numeric-variable
specifies the upper value for the floating lines or bars.

LOW=numeric-variable
specifies the lower value for the floating lines or bars.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

See “Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars. If you specify a width of 0.5, then the width of the bars is equal to the space between the bars.

Default 0.85

Requirement This option is applicable only when the X or Y axis is discrete.

Interaction This option has no effect unless TYPE= BAR.

CLIPCAP
displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the MIN= and MAX= axis options are specified for an axis and a data value exceeds the
specified axis range, the bar or line for that value is clipped. If the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y axis range. The cap is a vertical arrowhead that points toward the clip edge (▼ or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by the X axis range. The cap is a horizontal arrowhead that points toward the clip edge (◀ or ▶).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side where the bar or line was clipped.

Interaction
Clip indicators appear only when CLIPCAP is specified and the data values exceed the axis range that is specified by the MIN= and MAX= options. When the MIN= and MAX= options are not specified, the axis range is adjusted to accommodate the data values, and clipping does not occur.

Note
When the high-low TYPE=LINE, you can change the appearance of the clip cap using the CLIPCAPSHAPE= option.

Tip
If you specify the HIGHLABEL or LOWLABEL option, and the bar or line is clipped, the label value is still drawn outside the tip of the clip cap. If the entire bar or line is clipped, no labels are shown.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW

specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

Default
DEFAULT

Requirement
The shape can be changed only when TYPE=LINE (the default value).

CLOSE= numeric-variable
specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has higher X values. For a horizontal plot, the value is represented by an indicator on the side with higher Y values.

CLUSTERWIDTH= numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Requirement
This option is applicable only when the X or Y axis is discrete.
This option is applicable only when TYPE=BAR.

This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

COLORMODEL= `<style-element> | (color-list)`

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE= `numeric-column`

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction

If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 196
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 6.11 DATASKIN Options for Filled Areas

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

High-low plots can specify lines rather than bars.

Table 6.12 DATASKIN Options for Lines

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions: This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.
If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines or bars from the category midpoints. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default
0.0 (no offset from the category midpoints)

Requirement
This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL
specifies whether the area fill is visible for bars. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default
The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions
This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

FILLATTRS=style-element<(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults
Color attribute of the GraphDataConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=OVERLAY | CLUSTER

specifies how to display grouped data.

OVERLAY
groups are overlaid without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\textit{n} style elements in the current style.

CLUSTER
observations with different group values are displayed in adjacent clusters around the category value. Each set of group values is centered at the midpoint tick mark for the category.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is discrete.

Interactions GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR.

This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

This option is applicable only when GROUPDISPLAY=CLUSTER and TYPE=BAR.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 6.6 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>NONE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction

When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

HIGHLABEL=variable

specifies the label to be shown at the high end of the line or bar.
INTERVALBARWIDTH=numeric-value
specifies the thickness of the bar when the X (or Y) data is numeric.

Default The default thickness of the bar is derived from the minimum interval between the data values along X or Y.

Requirement This option is applicable only when the X or Y axis is a linear axis or a TIME axis.

Interaction This option has no effect unless TYPE=BAR.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless you also specify the OUTLINES option.
LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 6.7 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>LOWLABEL=variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the label to be shown at the low end of the line or bar.</td>
</tr>
</tbody>
</table>

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

| NOMISSINGGROUP | specifies that missing values of the group variable are not included in the plot.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless GROUP= is also specified.</td>
</tr>
</tbody>
</table>

OPEN=numeric-variable

specifies the data for the OPEN tick on the bar or line.

For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

OUTLINE | NOOUTLINE

specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default

| OUTLINE
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless TYPE=BAR.

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See

Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```
Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
\texttt{tip=(age weight)}

\textbf{TIPFORMAT=}(\textit{format-list})
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the \textit{format-list} and the \textit{variable-list} that is specified for the TIP= option. A format must be provided for each variable, using the same order as the \textit{variable-list}. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
\textit{SAS Formats and Informats: Reference}

Example
\texttt{tipformat=(auto F5.2)}

\textbf{TIPLABEL=}(\textit{label-list})
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the \textit{label-list} and the \textit{variable-list} that is specified for the TIP= option. A label must be provided for each variable, using the same order as the \textit{variable-list}. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
\texttt{tiplabel=(auto "Class Weight")}

\textbf{TRANSPARENCY=}\textit{value}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

TYPE=BAR | LINE
specifies how the data is to be represented. BAR uses fill and outline attributes. LINE uses line attributes.

Default LINE

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

HISTOGRAM Statement

Creates a histogram that displays the frequency distribution of a numeric value.

Interaction: The HISTOGRAM statement can be combined only with DENSITY statements in the SGPANEL procedure.

Note: The range of the response variable is automatically divided into an appropriate number of bins.

Examples:

- “About Histograms” on page 52
- “Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” on page 625

Syntax

```
HISTOGRAM response-variable <<option(s)>>;
```

Summary of Optional Arguments

Appearance options
ATTRID=

Specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=

None | Crisp | Gloss | Matte | Pressed | Sheen
Specifies a special effect to be used on the plot.

FILL | NOFILL
Specifies whether the area fill is visible.

FILLATTRS=

Style-element <(options)> | (options)
Specifies the fill color and transparency.

FILLTYPE=

Solid | Gradient
Specifies the fill type that is applied to the chart.

OUTLINE | NOOUTLINE
Specifies whether outlines are displayed for the bars.

TRANSPARENCY=

Value
Specifies the degree of transparency for the plot.

Group options

GROUP=

Variable
Specifies a variable that is used to group the data.

Label options

DATALABEL=

None | Auto | Count | Density | Percent | Proportion
Specifies the statistic to display at the end of each bin.

LEGENDLABEL=

"text-string"
Specifies a label that identifies the histogram in the legend.

Plot options

BINSTART=

Numeric-value
Specifies the X coordinate of the first bin.

BINWIDTH=

Numeric-value
Specifies the bin width.

BOUNDARY=

Lower | Upper
Specifies how boundary values are assigned to bins.

FREQ=

Numeric-variable
Specifies a variable for the frequency count for each observation in the input data.

NBINS=

Numeric-value
Specifies the number of bins.

SCALE=

Count | Percent | Proportion
Specifies the scaling that is applied to the vertical axis.

WEIGHT=

Numeric-variable
Specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Plot reference options

NAME=

"text-string"
Specifies a name for the plot.

Required Argument

response-variable
Specifies a response variable for the histogram.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BINSTART=numeric-value
specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

Default The default value is determined by the system.

BINWIDTH=numeric-value
specifies the bin width. The system determines the number of bins. The bins always span the range of the data.

Default The default value is determined by the system.

Restriction The maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log.

Interaction This option is ignored if the NBINS= option is also specified.

BOUNDARY=LOWER | UPPER
specifies how boundary values are assigned to bins.

LOWER specifies that boundary values are assigned to the lower bin.

UPPER specifies that boundary values are assigned to the upper bin.

Default UPPER

DATALABEL<= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>
specifies the statistic to display at the end of each bin.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify one of the following:

NONE suppresses the data labels.

AUTO uses the SCALE= option value. By default, SCALE=PERCENT.
COUNT | DENSITY | PERCENT | PROPORTION
specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bin.

Default
If DATALABEL is specified without a value, then the default is AUTO.

Interaction
When DATALABEL=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bin.

DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Dataskin Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343
FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default
The default status of the area fill is specified by the DisplayOpts style attribute of the GraphHistogram style element in the current style.

Interactions
Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATRNS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID
each bin is filled with the color that is assigned to the bin fill area.

GRADIENT
a gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATRNS=, to set the initial transparency in the gradients.

Default
SOLID

Interaction
This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
If the value is not an integer, only the integer portion is used.

GROUP=`variable`
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip ODS Graphics limits the number of groups to 1000. Use the `GROUPMAX=` option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL=`"text-string"`
specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

NAME=`"text-string"`
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The `text-string` is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NBINS=`numeric-value`
specifies the number of bins. The system determines the `BINWIDTH=` value. The bins always span the range of the data.

The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with the `NBINS=` option.

Default The default number of bins is determined by the system.

Range 2–10,000

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the bar outlines is specified by the `DisplayOpts` attribute of the GraphHistogram style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SCALE=`COUNT | PERCENT | PROPORTION`specifies the scaling that is applied to the vertical axis. Specify one of the following values:

COUNT
the axis displays the frequency count.
PERCENT
the axis displays values as a percentage of the total.

PROPORTION
the axis displays values as proportions (0.0 to 1.0) of the total.

Default

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

HLINE Statement
Creates a horizontal line chart (the line is vertical). You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

Interaction: The HLINE statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.

Example: “About Line Charts” on page 61

Syntax

HLINE category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
creates a break in the line for each missing value of the response variable.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from the discrete category values.

LINEATTRS=style-element <options> | (options)
specifies the appearance of the lines in the line plot.

\[\text{TRANSPARENCY=}value \]
specifies the degree of transparency for the plot.

Data tip options

\[\text{TIP=} (\text{variable-list}) \mid \text{NONE} \]
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\[\text{TIPFORMAT=} (\text{format-list}) \]
applies formats to the list of data tip variables that you specify in the TIP= option.

\[\text{TIPLABEL=} (\text{label-list}) \]
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

\[\text{CLUSTERWIDTH=} \text{numeric-value} \]
specifies the width of the group clusters as a fraction of the midpoint spacing.

\[\text{GROUP=} \text{variable} \]
specifies a category variable to divide the values into groups.

\[\text{GROUPDISPLAY=} \text{CLUSTER} \mid \text{OVERLAY} \]
specifies how to display grouped lines.

\[\text{GROUPORDER=} \text{DATA} \mid \text{REVERSEDATA} \mid \text{ASCENDING} \mid \text{DESCENDING} \]
specifies the ordering of the groups within a category.

Label options

\[\text{CURVELABEL} \langle\text{"text-string"}\rangle \]
adds a label for the line.

\[\text{CURVELABELATTRS=} \text{style-element} <(\text{options})> \mid (\text{options}) \]
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

\[\text{CURVELABELPOS=} \text{MIN} \mid \text{MAX} \mid \text{START} \mid \text{END} \]
specifies the location of the curve label.

\[\text{DATALABEL} \langle\text{variable}\rangle \]
displays a label for each data point.

\[\text{DATALABELATTRS=} \text{style-element} <(\text{options})> \mid (\text{options}) \]
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\[\text{DATALABELPOS=} \text{position} \]
specifies the location of the data label with respect to the plot.

\[\text{LEGENDLABEL=} \text{"text-string"} \]
specifies the label that identifies the line plot in the legend.

\[\text{SPLITCHAR=} \text{"character-list"} \]
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

\[\text{SPLITCHARNODROP} \]
specifies that the split characters are included in the displayed value.

\[\text{SPLITJUSTIFY=} \text{LEFT} \mid \text{CENTER} \mid \text{RIGHT} \]
specifies the horizontal alignment of the value text that is being split.

\[\text{STATLABEL} \mid \text{NOSTATLABEL} \]
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

**LIMITATTRS=style-element *(options)* | *(options)*

specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER

adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

**MARKERATTRS=style-element *(options)* | *(options)*

specifies the appearance of the markers in the plot.

**MARKERFILLATTRS=style-element *(COLOR=color)* | *(COLOR=color)*

specifies the color of the marker fill.

**MARKEROUTLINEATTRS=style-element *(options)* | *(options)*

specifies the appearance of the marker outlines.

MARKERS

adds data point markers to the plot.

Plot options

ALPHA=numeric-value

specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data.

MISSING

for group data, processes missing values as a valid category value and creates a line for it.

RESPONSE=response-variable

specifies a numeric response variable for the plot.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable

specifies how observations are weighted.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the horizontal axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BREAK

creates a break in the line for each missing value of the response variable.

Notes The observation is excluded from the graph when there is a missing value for the category variable without the specification of the MISSING option. (No break occurs in the line.)

The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC

sorts by the response values in ascending order.

RESPDESC

sorts by the response values in descending order.

Default By default, the plot is sorted in ascending order based on the category values.

Restriction This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY
statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH= *numeric-value*

Specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default

0.8

Interaction

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

CURVELABEL= *<"text-string">*

Adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

Interaction

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS= *style-element *(<options>)* | *(options)*

Specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.
Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

- **MIN** places the label at the part of the curve closest to the minimum X axis value.
- **MAX** places the label at the part of the curve closest to the maximum X axis value.
- **START** places the curve label at the first point on the curve.
- **END** places the curve label at the last point on the curve.

Default

END

Interaction

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element <=(options)>> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphData_n style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. *position* can be one of the following values:
<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 6.14 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 6.15 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from the discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a category variable to divide the values into groups. A separate plot is created for each unique value of the category variable.

Interaction If you specify more than one categorization plot statement, then all of the plots must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then the GROUP= option has no effect.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.
OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group
is represented by unique visual attributes derived from the GraphData style elements in the current style.

Default: OVERLAY

Restriction: GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction: This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interaction: This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes: Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=“text-string”

specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=\texttt{style-element \textlangle options\textrangle} | \textlangle options\textrangle

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER

adds limit lines to the plot. Specify one of the following values:

- \texttt{BOTH} adds lower and upper limit lines to the plot.
- \texttt{LOWER} adds lower limit lines to the plot.
- \texttt{UPPER} adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following

- \texttt{CLM} confidence limits
- \texttt{STDDEV} standard deviation
- \texttt{STDERR} standard error

Default \texttt{CLM}

Interaction If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS=\texttt{style-element \textlangle options\textrangle} | \textlangle options\textrangle

specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphData\texttt{Default} style element in the current style for ungrouped data. GraphData\texttt{1 ... GraphData\texttt{n}} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data.

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.
See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERS
adds data point markers to the plot.

MISSING
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the horizontal axis.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias
PCT

Interactions
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction
For this value to take effect, you must also specify the RESPONSE= option.

Defaults
SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction
If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction
When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults
The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions
This option has no effect unless the RESPONSE= option is specified.
This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips. A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY= *value*

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL= *character-variable*

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

`ODS GRAPHICS ON / IMAGEMAP=ON;`

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WEIGHT= *numeric-variable*

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

INSET Statement

Adds a text box to each panel cell of the graph.

Restriction: Only one INSET statement can be specified in the PROC SGPANEL step. If more than one is specified, the first inset is generated and a message is logged for the additional statements.

See: “About Text Insets” on page 42

Syntax

INSET variable <…variable-n> <option(s)>;

Summary of Optional Arguments

Appearance options

BACKCOLOR=color
specifies the background color of the inset.

BORDER | NOBORDER
specifies whether to display a border around the text box.

NOLABEL
suppresses the label.

OPAQUE
forces the inset background to be opaque rather than transparent.

POSITION=position-value
specifies the position of the text box within the plot.

SEPARATOR="string"
specifies one or more characters to place between the data label and the data value.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the text box.

TITLE="text-string"
specifies a title for the text box.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

Required Argument

variable <…variable-n>
specifies one or more variables to use for the data-driven text inside the inset. Typically, the variable is a computed numeric value, such as a mean or a sum. For non-computed variables, the statement displays the value of the first observation for each classification.
The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using the NOLABEL option.) The inset values come from the variable data.

Tip If the text does not fit in the space provided, the inset might become clipped. Use the TEXTATTRS= option to change the font size or other font characteristics.

Optional Arguments

BACKCOLOR=color
specifies the background color of the inset. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default By default, the background is transparent.

Interaction If BACKCOLOR= is set, then the OPAQUE option is also set automatically.

BORDER | NOBORDER
specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

NOLABEL
suppresses the label.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

OPAQUE
forces the inset background to be opaque rather than transparent. This option is useful when a transparent background makes the text in the inset difficult to see. For example, if the inset is positioned on top of a histogram, specifying OPAQUE sets the inset off from the histogram.

Default The background is transparent unless BACKCOLOR= is also specified.

Interaction If BACKCOLOR= is specified, the background is always opaque.

POSITION=position-value
specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>Bottom</td>
<td>Bottomleft</td>
<td>Bottomright</td>
</tr>
<tr>
<td>Top</td>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
<tr>
<td>Left</td>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.

SEPARATOR="string"
specifies one or more characters to place between the data label and the data value.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
With fonts that support Unicode, you can produce specific characters by specifying a hexadecimal value. A trailing \texttt{x} identifies a string as a hexadecimal value. You must also enclose the character specification in a special ODS handler string, in the format \texttt{(*ESC*)\{Unicode \ 'hexadecimal-value'\x\}}. For example:

\begin{verbatim}
separator="(*ESC*)\{unicode '03B1'x\}";
\end{verbatim}

This option produces the lowercase Greek letter alpha for the separator.

\textbf{Interaction} \hspace{0.5cm} This option is ignored if NOLABEL is also specified.

\textbf{TEXTATTRS}={\texttt{style-element <\texttt{options}>} | \texttt{(options)}}

specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

\begin{description}
\item[Default] GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
\item[Tip] The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.
\item[Examples] \texttt{TEXTATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}
\end{description}

Here is an example that specifies a style element:

\texttt{TEXTATTRS=GraphDataText}

\textbf{TITLE}="text-string"

specifies a title for the text box. The title text is always center-aligned.

\textbf{TITLEATTRS}={\texttt{style-element <\texttt{options}>} | \texttt{(options)}}

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

\begin{description}
\item[Default] GraphLabelText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
\item[Examples] \texttt{TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}
\end{description}

Here is an example that specifies a style element:

\texttt{TITLEATTRS=GraphLabelText}
Example: Panel with Insets

/* Calculate the mean height and weight for the inset */
proc means data=sashelp.class nway;
 class sex;
 var weight height;
 output out=stats mean(weight)=mean_weight mean(height)=mean_height;
run;
/* Sort the data */
proc sort data=sashelp.class out=class;
 by sex;
run;
/* Match-merge the inset data with the original data */
data merged;
merge class stats;
 by sex;
 label mean_height = "mean(height)";
 label mean_weight = "mean(weight)";
run;
proc sgpanel data=merged;
 panelby sex;
 histogram weight;
 density weight;
 inset mean_weight mean_height /
 position=topright textattrs=(style=italic)
 title="Averages";
run;

KEYLEGEND Statement

Adds a legend to the plot.
Syntax

KEYLEGEND <"name-1" ..."name-n"> <option(s)>;

Summary of Optional Arguments

Appearance options

ACROSS=n
specifies the number of columns in the legend.

BORDER | NOBORDER
specifies whether the border around the legend is visible.

DOWN=n
specifies the number of rows in the legend.

LINELENGTH=dimension<units>
specifies the length of the line glyph for line entries in the legend.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=position-value
specifies the position of the legend within the graph outside of the axes.

TITLE="text-string"
adds a title to the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the legend value labels.

Legend options

EXCLUDE=("item-name1" <"item-name2" ...>)
specifies a list of legend entries to exclude from the display.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL
specifies which visual attributes to display for legend entries in the legend.

name-1" ... "name-n"
specifies the names of one or more plots that you want to include in legend.

Marker options

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels.

AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

FILLASPECT=GOLDEN | positive-number
specifies an aspect ratio for the fill swatches based on their height.

FILLHEIGHT= dimension
specifies the height of the fill swatches.

SCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height.
Optional Arguments

“name-1” ... “name-n”
specifies the names of one or more plots that you want to include in legend. Each
name that you specify must correspond to a value that you entered for the NAME=
option in a plot statement.

Default If you do not specify a name, then the legend contains references to all of
the plots in the graph.

Note The names specified here determine which plots are included, but not the
labels that appear in the legend for those plots. To specify labels, use the
LEGENDLABEL= option on the plot statements.

ACROSS=n
specifies the number of columns in the legend. By default, the number of columns is
determined automatically.

Note Depending on the number of legend entries and the number of columns and
rows that you specify, the legend might not fit in your graph. If your legend
does not appear, then you might need to specify a different value for the
ACROSS= option.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used
for the legend value labels. These proportional sizes take effect regardless of the
attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the
markers are small compared to the labels. The second figure uses AUTOITEMSIZE
to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip Use the VALUEATTRS= option to control the font size for the legend value labels.

AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill
swatches in the legend have outlines.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

Default When this option is not specified, the legend fill swatches are always
outlined.

Note The outlines are always 1 pixel wide with a solid pattern.

BORDER | NOBORDER
specifies whether the border around the legend is visible. The BORDER option
shows the border. The NOBORDER option hides the border.

Default BORDER
DOWN=n
specifies the number of rows in the legend. By default, the number of rows is determined automatically.

Note Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the DOWN= option.

EXCLUDE=('item-name1' '<item-name2' '...')
specifies a list of legend entries to exclude from the display.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default No items are excluded.

Requirement Each item name must be enclosed in quotation marks and separated from adjacent names by a space.

Note When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.

Tip For plots with groups, you can exclude specific group values.

Example The following example excludes items Truck and Wagon from the legend.
exclude=('Truck' 'Wagon')

FILLASPECT= GOLDEN | positive-number
specifies an aspect ratio for the fill swatches based on their height.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

GOLDEN specifies the golden ratio of 1.618 (width = 1.618 * height).

positive-number specifies a custom aspect ratio.

Default The system determines the aspect.

Interaction This option is ignored when AUTOITEMSIZE is specified.

Tip Use FILLHEIGHT= to specify the height.

FILLHEIGHT= dimension
specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default The system determines the height.

Interaction This option is ignored when AUTOITEMSIZE is specified.

Tip Use FILLASPECT= to specify the aspect ratio.
LINELENGTH=dimension<units>

specifies the length of the line glyph for line entries in the legend.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Default

The length is determined automatically by the system.

OUTERPAD=dimension | (pad-options)

specifies the amount of extra space that is added outside the legend border.

dimension

specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space added to the left side.
- **RIGHT=dimension** specifies the amount of extra space added to the right side.
- **TOP=dimension** specifies the amount of extra space added to the top.
- **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

Note

Sides that are not assigned padding are padded with the default amount.

Tip

Use *pad-options* to create non-uniform padding.

Default

No padding

Note

The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

POSITION=position-value

specifies the position of the legend within the graph outside of the axes. The positions are as follows:

- **BOTTOM** places the legend at the bottom of the graph.
- **LEFT** places the legend at the left side of the graph.
- **RIGHT** places the legend at the right side of the graph.
- **TOP** places the legend at the top of the graph.
Default | BOTTOM
---|---

Note | By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.

SCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default	1

Restriction | This option does not apply to markers with pattern fills.
Interaction | This option is ignored when AUTOITEMSIZE is specified.
Tips | Use FILLHEIGHT= to change the base height.
| Use FILLASPECT= to specify the width.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Defaults | When the procedure contains more than one plot statement, the default is based on the order of the plot statements.
| For grouped data, the default is derived from the data order.
Interaction | This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

TITLE="text-string"
adds a title to the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Defaults | No title unless the legend shows group values
| If the legend shows group values, then the group variable is displayed by default as the title. In this case, to remove the title, specify TITLE=" ".

Requirement | text-string must be enclosed in quotation marks.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Examples TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TITLEATTRS=GraphTitleText

TYPE)\textsubscript{=}** FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL

specifies which visual attributes to display for legend entries in the legend.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying **TYPE**)\textsubscript{=}** MARKERSYMBOL displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the TYPE specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords FILLCOLOR or MARKERSYMBOL result in the display of a single attribute. Other keywords (for example, FILL, LINE, or MARKER) result in legends that display a set of visual attributes. For example, the keyword LINE results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to LINEPATTERN or MARKERSYMBOL, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords FILLCOLOR, LINECOLOR, and MARKERCOLOR, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the CONTRASTCOLOR attribute of the GraphOutlines style element.

Default All attributes are displayed.

VALUEATTRS)\textsubscript{=}** style-element \(<\text{options}> \) | (options)

specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples

valueattrs=(Color=Green Family=Aria Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

density height / type=kernel
 lineattrs=(color = red);
 keylegend "kernel" /
 title="Density Plot"
 titleattrs=(color = red);
run;

Example

proc sgpanel data=sashelp.class noautolegend;
 panelby sex;
 histogram height;
 density height /
 type=kernel
 name="kernel"
 lineattrs=(color = red);
 keylegend "kernel" /
 title="Density Plot"
 titleattrs=(color = red);
run;

LINEPARAM Statement

Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.
Requirement: The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

Example: “About Parameterized Lines” on page 34

Syntax

LINEPARM X=numeric-value | numeric-variable
Y=numeric-value | numeric-variable
SLOPE=numeric-value | numeric-variable
<option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the line.

NOEXTEND
prevents the line from being extended beyond the axis offset.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <*>=“text-string”
adds a label for the line.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MAX | MIN
specifies the location of the curve label.

LEGENDLABEL=“text-string”
specifies a label that identifies the plot in the legend.

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CLIP
specifies that the data for the line is ignored when determining the data ranges for the axes.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=numeric-value | numeric-variable

specifies the X coordinate of a point.

Notes

Values are in the units of the data.

- If the value specified for the X= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.
- If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

Y=numeric-value | numeric-variable

specifies the Y coordinate of a point.

Notes

Values are in the units of the data.

- If the value specified for the Y= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.
- If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

SLOPE=numeric-value | numeric-variable

specifies the slope of the line. The slope can be positive or negative.

Tips

- SLOPE=0 creates a horizontal line (parallel to the X axis).
- SLOPE= . (missing value) creates a vertical line (parallel to the Y axis).

Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

CLIP

specifies that the data for the line is ignored when determining the data ranges for the axes. Each axis scale is determined by the other plots in the overlay. This might result in the line not being displayed if its data range is not within the data ranges of the other plots. This option ensures that the line is displayed.
CURVELABEL <="text-string"> adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.

Interaction If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element <(options)> | (options) specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MAX | MIN specifies the location of the curve label. Specify one of the following values:

MIN places the curve label at the minimum value for the X axis.

MAX places the curve label at the maximum value for the X axis.

Default MAX

Interaction This option has no effect unless CURVELABEL is also specified.

GROUP=variable specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

LEGENDLABEL="text-string" specifies a label that identifies the plot in the legend. By default, the label “LineParm” is used (if you specify a numeric value for Y) or the Y variable name is used (if you specify a variable for Y).
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=

Specifies the appearance of the line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME=

Specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND

Prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

NOMISSINGGROUP

Specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

SPLITCHAR=

Specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interaction

This option has no effect unless CURVELABEL is also specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

LOESS Statement

Creates a fitted loess curve.

Example: “About Loess Plots” on page 46

Syntax

LOESS X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit curve.

NOMARKERS
removes the scatter markers from the plot.

SMOOTH=numeric-value
specifies a smoothing parameter value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a classification variable to divide the values into groups.

Label options

CURVELABEL =<“text-string”>
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL =<variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR=“character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL=“text-string”
specifies a label that identifies the fit line in the legend.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

Limit options

- **CLM <=“text-string”**

 creates confidence limits.

- **CLMATTRS =style-element | (CLMAtributeOptions)**

 specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

- **CLMTRANSPARENCY=numeric-value**

 specifies the degree of transparency for the confidence limits.

Marker options

- **FILLEDOUTLINEDMARKERS**

 specifies that markers have a fill and an outline.

- **JITTER**

 specifies that data markers are offset when multiple observations have the same response value.

- **MARKERATTRS=style-element <(options) | (options)**

 specifies the appearance of the markers in the plot.

- **MARKERFILLATTRS=style-element <(COLOR=color) | (COLOR=color)**

 specifies the color of the marker fill.

- **MARKEROUTLINEATTRS=style-element <(options) | (options)**

 specifies the appearance of the marker outlines.

Plot options

- **ALPHA=numeric-value**

 specifies the confidence level for the confidence limits.

- **DEGREE=1 | 2**

 specifies the degree of the local polynomials to use for each local regression.

- **INTERPOLATION=CUBIC | LINEAR**

 specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

- **MAXPOINTS=n**

 specifies the maximum number of predicted points for the loess fit and the corresponding limits.

- **REWEIGHT=n**

 specifies the number of iterative reweighting steps to apply to the data.

- **WEIGHT=numeric-variable**

 specifies how observations are weighted.

Plot reference options

- **NAME="text-string"**

 specifies a name for the plot.

Required Arguments

- **X=numeric-variable**

 specifies the variable for the x axis.
Y=numeric-variable
 specifies the variable for the y axis.

Optional Arguments

ALPHA=numeric-value
 specifies the confidence level for the confidence limits.

 Default .05

 Range 0.01 (complete confidence) to 0.99 (no confidence)

 Interaction This option has no effect unless you also specify the CLM option.

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You specify
 this option only if you are using an attribute map to control visual attributes of the
 graph.

 See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
 “Overview of Attribute Maps” on page 1383

CLM <*>text-string”>
 creates confidence limits. The optional text string overrides the default legend label
 for the confidence limit.

CLMATTRS =style-element | (CLMAttributeOptions)
 specifies the appearance of the mean value confidence limits by using an ODS style
 element or by specifying fill and line attributes. CLMAttributeOptions can be one or
 both of the following:

 CLMFILLATTRS=style-element | (COLOR=color)
 You can specify the color of the fill by using a style element or by using the
 COLOR= suboption. You can specify colors using a number of different color-
 naming schemes. For more information, see “Color-Naming Schemes” on page
 1325.

 CLMLINEATTRS=style-element <| (options)| (options)
 Specify the line attributes of the confidence limits. You can specify the
 appearance by using a style element or by specifying specific options. If you
 specify a style element, you can also specify options to override specific
 appearance attributes.

 For a description of the line options, see “Line Attributes and Patterns” on page
 1320.

 Default GraphConfidence style element in the current style for ungrouped
 data. GraphData1 ... GraphData n style elements in the current style
 for grouped data. The affected attributes are ContrastColor,
 LineStyle, and LineThickness.

 Interaction CLMLINEATTRS= has no effect unless you change the display
 options in the style element to display outlines. See the preceding
 code example.

 Default The default appearance of the confidence limits is specified by the
 GraphConfidence style element in the current style.
The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY= *numeric-value*

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

Interaction: This option takes effect only if you also specify the CLM option.

CURVELABEL <="**text-string**">

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions: If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS= *style-element* <=(**options**)> | (**options**)>

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults: GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction: This option has no effect unless the CURVELABEL option is also specified.

Examples: CURVELABELATTRS= (Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS= GraphTitleText

CURVELABELPOS= MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

MIN

places the label at the part of the curve closest to the minimum X axis value.

MAX

places the label at the part of the curve closest to the maximum X axis value.

START

places the curve label at the first point on the curve.
places the curve label at the last point on the curve.

Default

END

Interaction

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL, `<variable>`

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction

This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS= `style-element (options)` | `(options)`

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

```plaintext
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
DATALABELATTRS=GraphLabelText
```

DATALABELPOS= `position`

specifies the location of the data label with respect to the plot. `position` can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.
DEGREE=1 | 2

specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

GROUP= *variable*

specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interaction

If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

INTERPOLATION=CUBIC | LINEAR

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default CUBIC

JITTER

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

Markers that represent the same response value are overlaid, which results in some markers being obscured.
Notes
This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"

specifies a label that identifies the fit line in the legend. By default, the label “Loess” is used, along with the value of the SMOOTH= option if specified.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the fit curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults
For grouped data, GraphData1 ... GraphDataN style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple Loess plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphDataN style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.
This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MAXPOINTS=n

specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default

201

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLM

hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

NOMARKERS

removes the scatter markers from the plot.
REWEIGHT=n
 specifies the number of iterative reweighting steps to apply to the data.
 Default 0
 Interaction This option has no affect if you do not specify the WEIGHT option.

SMOOTH=numeric-value
 specifies a smoothing parameter value. If you do not specify this option, a smoothing
 value is determined automatically.

SPLITCHAR="character-list"
 splits the text for curve and data labels at the specified characters when there is not
 enough room to display the text normally. The text value is split into one or more
 lines as needed. The split occurs every occurrence of the specified split character or
 characters.

"character-list" is one or more characters with no delimiter between each character
 and enclosed in quotation marks. For example, to specify the split characters a, b,
 and c, use the following option:

 SPLITCHAR="abc"

 When multiple split characters are specified, each character in the list is treated as a
 separate split character unless the specified characters appear consecutively in the
 value. In that case, all of the specified split characters together are treated as a single
 split character.

 If the value does not contain any of the specified split characters, a split does not
 occur.
 Default Values are not split.
 Interaction This option has no effect unless either CURVELABEL or
 DATALABEL is specified.

 When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

 You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
 the list is not significant.

 The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both
 types of labels. If you do not want to split both types with the same
 split character, consider using an overlaid plot in your graph. You can
 then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
 Interaction This option has no effect unless SPLITCHAR= is also specified.
SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- (variable-list)
 a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
- NONE
 suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODS GRAPHICS / IMAGEMAP=ON;</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option replaces all of the information that is displayed by default.</td>
</tr>
<tr>
<td>Note</td>
<td>The option affects only the scatter plot in this statement.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.</td>
</tr>
<tr>
<td>Example</td>
<td>tip=(age weight)</td>
</tr>
</tbody>
</table>

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tiplabel=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Details For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

$$minimum = \frac{\text{degree} + 1}{\text{number of observations}}$$
NEEDLE Statement

Creates a plot with needles connecting each point to the baseline.

Restriction: The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

Example: “About Needle Plots” on page 35

Syntax

NEEDLE X=variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BASELINEATTRS=style-element (options) | (options)
specifies the appearance of the baseline.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all needle lines from discrete X values.

LINEATTRS=style-element (options) | (options)
specifies the appearance of the needle lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped needles.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

- **DATALABEL <=variable>**

 displays a label for each data point.

- **DATALABELATTRS=style-element <(options)> | (options)**

 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=position**

 specifies the location of the data label with respect to the plot.

- **LEGENDLABEL="text-string"**

 specifies a label that identifies the needle plot in the legend.

- **SPLITCHAR="character-list"**

 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

- **SPLITCHARNODROP**

 specifies that the split characters are included in the displayed value.

- **SPLITJUSTIFY=LEFT | CENTER | RIGHT**

 specifies the horizontal alignment of the value text that is being split.

Marker options

- **MARKERATTRS=style-element <(options)> | (options)**

 specifies the appearance of the markers in the plot.

- **MARKERS**

 adds markers to the tips of the needles.

Plot options

- **BASELINE=numeric-value**

 specifies a value on the Y axis for the baseline.

- **URL=character-variable**

 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

- **NAME="text-string"**

 specifies a name for the plot.

Required Arguments

- **X=variable**

 specifies the variable for the x axis.

- **Y=numeric-variable**

 specifies a numeric variable for the y axis.

Optional Arguments

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

 See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
BASELINE=numeric-value
specifies a value on the Y axis for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the axis.

Default 0

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.
DATALABEL. `<variable>`

Displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS= `style-element <(options)> | (options)`

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDatum style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS= `position`

Specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>Bottom Left</th>
<th>Bottom Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>Bottom</td>
<td>Bottom Left</td>
<td>Bottom Right</td>
</tr>
<tr>
<td>Center</td>
<td>Center Left</td>
<td>Center Right</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>Top Left</td>
<td>Top Right</td>
<td></td>
</tr>
</tbody>
</table>

Interaction

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN= `NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`

Specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:
Table 6.16 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 6.17 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all needle lines from discrete X values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X axis is discrete.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots.
If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped needles.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData$n style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

DATA

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction
This option has no effect unless you also specify the MARKERS option.

MARKERS
adds markers to the tips of the needles.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.
See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
	tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

<table>
<thead>
<tr>
<th>Default</th>
<th>By default, no HTML links are created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.</td>
</tr>
<tr>
<td></td>
<td>This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:</td>
</tr>
<tr>
<td></td>
<td>ODS GRAPHICS ON / IMAGEMAP=ON;</td>
</tr>
<tr>
<td></td>
<td>For more information, see “Using the ODS GRAPHICS Statement” on page 1371.</td>
</tr>
</tbody>
</table>

PBSPLINE Statement

Creates a fitted penalized B-spline curve.

Example:
“About Penalized B-Spline Plots” on page 47
Syntax

PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.
LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the fitted curve.
NKNOTS=n
 specifies the number of evenly spaced internal knots.
SMOOTH=numeric-value
 specifies a smoothing parameter value.
TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Label options

CURVELABEL <=“text-string”>
 adds a label for the curve.
CURVELABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
CURVELABELPOS=MIN | MAX | START | END
 specifies the location of the curve label.
DATALABEL <=variable>
 displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.
DATALABELPOS=position
 specifies the location of the data label with respect to the plot.
SPLITCHAR=“character-list”
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.
SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.
Legend options

`LEGENDLABEL="text-string"`
specifies a label that identifies the B-spline curve in the legend.

`NOLEGCLI`
hides the legend entry for the individual value prediction limits.

`NOLEGCLM`
hides the legend entry for the mean value confidence limits.

`NOLEGFIT`
hides the legend entry for the fit line.

Limit options

`CLI <="text-string">`
creates prediction limits for the individual predicted values.

`CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))`
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

`CLM <="text-string">`
creates confidence limits.

`CLMATTRS =style-element | (CLMAttributeOptions)`
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

`CLMTRANSPARENCY=numerical-value`
specifies the degree of transparency for the confidence limits.

Marker options

`FILLEDOUTLINEDMARKERS`
specifies that markers have a fill and an outline.

`JITTER`
specifies that data markers are offset when multiple observations have the same response value.

`MARKERATTRS=style-element <(options)> | (options)`
specifies the appearance of the markers in the plot.

`MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)`
specifies the color of the marker fill.

`MARKEROUTLINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the marker outlines.

`NOMARKERS`
removes the scatter markers from the plot.

PBSPLINE options

`MAXPOINTS=n`
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Plot options

`ALPHA=numerical-value`
specifies the confidence level for the confidence limits.

`DEGREE=n`
specifies the degree of the spline transformation.

`FREQ=numerical-variable`
specifies a variable for the frequency count for each observation in the input data.

GROUP=variable
specifies a classification variable to divide the values into groups.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=numeric-variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default .05
Range 0.01 (complete confidence) to 0.99 (no confidence)
Interaction This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See **Chapter 15, “Using Discrete Attribute Maps,” on page 1387**

“Overview of Attribute Maps” on page 1383

CLI <="text-string"> creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)>) | (options)
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.
GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Default

The default style element is GraphPredictionLimits.

Interaction

The CLIATTRS = option has no effect unless you also specify the CLI option.

CLM <="text-string">
creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS =style-element | (CLMAtributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAttributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData \(n \) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Default

The default appearance of the confidence limits is specified by the GraphConfidence style element in the current style.

Interaction

The CLMMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default

0.0

Interaction

This option takes effect only if you also specify the CLM option.
CURVELABEL. <="text-string">
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction This option has no effect unless the CURVELABEL option is also specified.
DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that
variable are used for the data labels. If you do not specify a variable, then the values
of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData{n} style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>position</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=n
specifies the degree of the spline transformation.

Default 3

Ranges 0–174 in the first maintenance release of SAS 9.4 and earlier releases.
0–10 starting with the second maintenance release of SAS 9.4.

Restriction
Starting with the second maintenance release of SAS 9.4, DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note
If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interaction
If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is specified, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.
Markers that represent the same response value are overlaid, which results in some markers being obscured.

This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults
For grouped data, GraphData1 ... GraphData_n style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData_n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MAXPOINTS=n
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Default 201

NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NKNOTS=n
specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When
SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots are usually enough to follow the functional form found in most data.

Default 100

Range 0 to 1000

NOLEGCLI

hides the legend entry for the individual value prediction limits.

NOLEGCLM

hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

NOMARKERS

removes the scatter markers from the plot.

SMOOTH=numeric-value

specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.

SPLITCHAR="character-list"

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list) a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.
Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

Details

For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]

POLYGON Statement

Draws a polygon from data stored in a data set.

Restriction:

You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead.

Note:

This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax

POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set.

- **BACKLIGHT=number**

 specifies that label text should have a back light of a contrasting color.

- **COLORMODEL=style-element | (color-list)**

 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**

 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

 specifies a special effect to be used on the plot.

- **FILL | NOFILL**

 specifies whether the polygons are filled.

- **FILLATTRS=style-element <options> | (options)**

 specifies the fill color and transparency.

- **LINEATTRS=style-element <options> | (options)**
specifies the appearance of the polygon outline.

OUTLINE | NOOUTLINE
specifies whether the polygons have outlines.

RATTRID=
character-value
specifies the value of the ID variable in a range attribute map data set.

ROTATE=
numeric-column | number | expression
specifies the angle of rotation for the polygon measured in degrees.

TRANSPARENCY=
value
specifies the degree of transparency for the plot.

Axis options

XOFFSET=
numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

YOFFSET=
numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

GROUP=
variable
creates a separate polygon color or outline pattern for each unique grouping that is specified.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LABEL <=
variable>
specifies a label for the polygon curve.

LABELATTRS=
style-element <(options)> | (options)
specifies the appearance of the labels in the plot.

LABELLOC=
INSIDEBOX | OUTSIDEBOX
specifies the location of the polygon label.

LABELPOS=
CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=x-variable
specifies the variable for the X values.

Y=y-variable
specifies the variable for the Y values.

ID=id-variable
specifies the variable for the ID values that identify the polygon or polygons. All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BACKLIGHT=number
specifies that label text should have a back light of a contrasting color. *number*
specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

- 0.5 when no GROUP= or COLORRESPONSE= option is used.
- 0.75 when the GROUP= or COLORRESPONSE= option is used.

Range

0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect.

Note

This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

COLORMODEL=

- **style-element**
- **(color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **style-element**

 specifies the name of a style element. The style element should contain these style attributes:

 - **STARTCOLOR**
 - specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR**
 - specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR**
 - specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.
COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 196
“Using Gradient Color Legends” on page 1310

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

Table 6.18 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

FILL | NOFILL
specifies whether the polygons are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.

Default: NOFILL

Interactions: Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS= `style-element <(options)> | (options)`

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction

This option has no effect if you specify the NOFILL option.

GROUP= `variable`

creates a separate polygon color or outline pattern for each unique grouping that is specified. The plot elements for each group value are automatically distinguished by different visual attributes.

The polygon attributes for each unique group value are derived from the GraphData1–GraphData n and GraphMissing style elements. If the polygon is filled, then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR attribute is used for the polygon outline. If the polygon is not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

Interactions

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

This option is ignored if the COLORRESPONSE= option is also used.

LABEL =variable

specifies a label for the polygon curve.

Default

When no variable is provided, the ID variable is used for labels.

Interaction

If a variable is supplied, rows that have the same ID value are expected to have the same value. If they do not, the ID value’s first row determines the polygon label.

Tip

The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS= `style-element <(options)> | (options)`

specifies the appearance of the labels in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontWeight, and FontStyle.

Interaction

This option has no effect unless the LABEL= option is also specified.
Examples

LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphValueText

LABELLOC=INSIDEBOX | OUTSIDEBOX
specifies the location of the polygon label.

INSIDEBOX
inside the polygon.

OUTSIDEBOX
outside the polygon but inside the plot area.

Default INSIDEBOX

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELPOS= option.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label. Specify one of the following values:

CENTER
centers the label.

Interaction LABELPOS=CENTER has no effect if you also specify
LABELLOC=OUTSIDEBOX. The default label position is used
in this case.

XMIN
places the label at the part of the polygon closest to the minimum X axis value,
centered in the Y axis range.

XMAX
places the label at the part of the polygon closest to the maximum X axis value,
centered in the Y axis range.

YMIN
places the label at the part of the polygon closest to the minimum Y axis value,
centered in the X axis range.

YMAX
places the label at the part of the polygon closest to the maximum Y axis value,
centered in the X axis range.

Default CENTER

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELLOC= option.

When LABELLOC=OUTSIDE, increasing the length of the label might cause the available plot area to decrease. Also, when
LABELLOC=OUTSIDE, the label might collide with the axis ticks and tick values.

LEGENDLABEL="text-string"

specifies the label that identifies the polygon in the legend.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the polygon outline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults

For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attributes of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1 – GraphData n style elements.

Interactions

This option is ignored if the NOOUTLINE option is also specified.

This option is ignored if the DATASKIN= option is also specified.

Note

If this option is used with grouped data, the COLOR= suboption has the effect of holding the polygon outline color constant across all group values.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE

specifies whether the polygons have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default

OUTLINE

Interaction

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

Tip

Use the LINEATTRS= option to control the appearance of the outline.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

ROTATE= numeric-column | number | expression
specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default 0 (no rotation is performed)

Interaction When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEbbox and CENTER respectively.

Notes An angle that exceeds 360 degrees in absolute value can be specified.

Rotating a polygon might cause clipping in some cases.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon. Specify one of the following:

AUTO
rotates the label with the rotation of the polygon.

NONE
does not rotate the label with the rotation of the polygon. The label position remains fixed regardless of the polygon rotation.

VERTICAL
rotates the label to a vertical position.

Default AUTO

Interaction If ROTATION= is also specified, then ROTATELABEL=VERTICAL is ignored.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

Default A single space

Interactions This option has no effect unless LABEL= is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY= `LEFT | CENTER | RIGHT`

specifies the horizontal alignment of the value text that is being split.

Default

`LEFT`

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```plaintext
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPLABEL= option to assign labels to the list of variables.
See	SAS Formats and Informats: Reference
Example	tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of roles.
Example	tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

| Default | 0.0 |
| Range | 0 (completely opaque) to 1 (completely transparent) |

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

XOFFSET=numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.

Requirement The X axis must be discrete.

YOFFSET=numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Default 0.0 (no offset)

Range -0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.

Requirement The Y axis must be discrete.

Details

Overview

The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.
Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.

**Requirements for the Polygon Data Set**

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.

Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
- specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.
- specify an HTML page to display when the selectable polygon is clicked.

**Drawing a Single Polygon**

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

```data polydata;
 input id $1-2 x y;
datalines;
P1 40 100
P1 20 220
P1 160 200
P1 180 80
```

```POLYGON Statement 373```
P1 40 100
;
run;
proc sgplot data=polydata;
 polygon X=x Y=y ID=id / fill outline;
run;

The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.

Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

data polydata;
 input id x y;
datalines;
1 0 0
1 20 0
1 20 30
1 0 30
1 0 0
2 30 0
2 50 0
2 40 30
2 30 0
3 60 0
3 80 5
3 80 15
3 70 30
3 60 30
3 60 0
;
run;

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.

The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Example

For examples, see the following examples as used in the SGPLOT procedure:
 • “Example 1: Create a Single Filled Hexagon” on page 904
 • “Example 2: Use a Polygon to Highlight Data in a Scatter Plot” on page 905

REFLINE Statement

Creates a horizontal or vertical reference line.

Example: “About Reference Lines” on page 32

Syntax

REFLINE variable | value-1 < ...value-n> </option(s)>;

Summary of Optional Arguments

Appearance options

- **DATASKIN**=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

 Specifies a special effect to be used on the plot.

- **DISCRETEOFFSET**=numeric-value

 Specifies an amount to offset all lines from discrete X or Y values.

- **LINEATTRS**=style-element <(options)> | (options)

 Specifies the appearance of the reference line.

- **NOCLIP**

 Extends the plot axes to contain the reference lines.

- **TRANSPARENCY**=value

 Specifies the degree of transparency for the plot.

Axis options

- **AXIS**=X | Y

 Specifies the axis that contains the reference line values.

Label options

- **LABEL** <=variable> | <=("text-string-1" ... "text-string-n")>

 Creates labels for each reference line.

- **LABELATTRS**=style-element <(options)> | (options)

 Specifies the appearance of the labels.

- **LABELPOS**=MIN | MAX

 Specifies the position of the labels.

- **LEGENDLABEL**="text-string"

 Specifies a label that identifies the plot in the legend.

- **SPLITCHAR**="character-list"

 Splits the text for labels at the specified character or characters when there is not enough room to display the text normally.

- **SPLITCHARNODROP**

 Specifies that the split characters are included in the displayed value.

- **SPLITJUSTIFY**=LEFT | CENTER | RIGHT

 Specifies the horizontal alignment of the value text that is being split.

Plot reference options

- **NAME**="text-string"

 Specifies a name for the plot.

Required Arguments

- **variable**

 Draws a reference line for each value of the specified variable.

- **value-1 <... value-n>**

 Draws one or more reference lines at the values that you specify.

Optional Arguments

- **AXIS**=X | Y

 Specifies the axis that contains the reference line values. For example, if you specify **AXIS**= X, vertical reference lines are drawn at points on the X axis.
Default Y

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 6.19 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

LABEL <=variable | <=("text-string-1" ... "text-string-n")> creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

variable a variable for the label value.

Restriction This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.
“text-string-1” ... “text-string-n”
 a text string for the label value.

Restriction The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
 LABELATTRS=GraphTitleText

LABELPOS=MIN | MAX
specifies the position of the labels. MIN specifies the label is placed at the minimum value of the data axis. MAX specifies that the label is placed at the maximum value of the data axis.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “Reference Line” is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the reference line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP
extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

SPLITCHAR="character-list"
splits the text for labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.
TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

REG Statement

Creates a fitted regression line or curve.

Interaction: A linear regression (DEGREE=1) cannot be used with logarithmic axes.

Examples: “About Regression Plots” on page 48
“Example 2: Creating a Panel of Regression Curves” on page 626

Syntax

REG X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <options> | (options)

specifies the appearance of the fit line.

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable

specifies a classification variable to divide the values into groups.

Label options

CURVELABEL <=“text-string”>

adds a label for the curve.
CURVELABELATR<style-element \<(options)\)> | (options)
specifies the appearance of the labels in the plot when you use the
CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL \<variable\>
displays a label for each data point.

DATALABELATR<style-element \<(options)\)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR=“character-list”
splits the text for curve and data labels at the specified characters when there
is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL=“text-string”
specifies a label that identifies the regression curve in the legend.

NOLEGCLI
hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <“text-string”>
creates prediction limits for the individual predicted values.

CLIAATR<style-element | (CLILINEATR<style-element \<(options)\)> | (options))
specifies the appearance of the individual value prediction limits by using an
ODS style element or by specifying attributes for the outlines.

CLM <“text-string”>
creates confidence limits.

CLMAATR<style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an
ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are jittered when multiple observations have the
same response value.
MARKERATTRS=\texttt{style-element (options)} | (options)

specifies the appearance of the markers in the plot.

MARKERFILLATTRS=\texttt{style-element (COLOR=color)} | (COLOR=color)

specifies the color of the marker fill.

MARKEROUTLINEATTRS=\texttt{style-element (options)} | (options)

specifies the appearance of the marker outlines.

NOMARKERS

removes the scatter markers from the plot.

\textbf{Plot options}

\textbf{ALPHA=\texttt{numeric-value}}

specifies the confidence level for the confidence limits.

\textbf{DEGREE=\texttt{n}}

specifies the degree of the polynomial fit.

\textbf{FREQ=\texttt{numeric-variable}}

specifies a variable for the frequency count for each observation in the input data.

\textbf{MAXPOINTS=\texttt{n}}

specifies the maximum number of predicted points for the regression curve and for any confidence limits.

\textbf{WEIGHT=\texttt{numeric-variable}}

specifies how observations are weighted.

\textbf{Plot reference options}

\textbf{NAME=\texttt{“text-string”}}

specifies a name for the plot.

\textbf{Required Arguments}

\textbf{X=\texttt{numeric-variable}}

specifies the variable for the x axis.

\textbf{Y=\texttt{numeric-variable}}

specifies the variable for the y axis.

\textbf{Optional Arguments}

\textbf{ALPHA=\texttt{numeric-value}}

specifies the confidence level for the confidence limits.

Default \hspace{1cm} \textbf{.05}

Range \hspace{1cm} 0.01 (complete confidence) to 0.99 (no confidence)

Interaction \hspace{1cm} This option has no effect unless you specify the CLI or CLM option (or both).

\textbf{ATTRID=\texttt{character-value}}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\textbf{See} \hspace{1cm} Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383
CLI <=“text-string”>
creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction The CLIATTRS = option has no effect unless you also specify the CLI option.

CLM <=“text-string”>
creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMAATTRS =style-element | (CLMAAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAAttributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction CLMAATTRS = has no effect unless you change the display options in the style element to display outlines. See the preceding code example.
The default appearance of the confidence limits is specified by the `GraphConfidence` style element in the current style.

The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

This option takes effect only if you also specify the CLM option.

CURVELABEL <“text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

The default appearance of the labels is specified by the `GraphValueText` style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the `GraphValueText` style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the `GraphData1...GraphData n` style elements.

This option has no effect unless the CURVELABEL option is also specified.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.
places the curve label at the first point on the curve.

END

places the curve label at the last point on the curve.

Default END

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

This option has no effect unless you also specify the DATALABEL option.
This option displays group values for each category when GROUP= is also specified.

DEGREE=n
specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

- **Default:** 1
- **Ranges:** 0–174 in the first maintenance release of SAS 9.4 and earlier releases. 0–10 starting with the second maintenance release of SAS 9.4.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

- **Requirement:** The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.
- **Interaction:** Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
- **See:** For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

- **Restriction:** If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
- **Note:** If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

- **Interaction:** If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

JITTER
specifies that data markers are jittered when multiple observations have the same response value. When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.
The following partial images show the effect of jittering.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default
No jittering. Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes
This option affects only how the scatter plot is drawn. It has no effect on the REG curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL= *text-string*
specifies a label that identifies the regression curve in the legend. By default, the label “Regression” is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS= *style-element (options)* | *(options)*
specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults
For grouped data, GraphData1 ... GraphDataₙ style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphDataₙ style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS= *style-element (options)* | *(options)*
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

MARKERFILLATTRS=<style-element> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

MARKEROUTLINEATTRS=<style-element> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

MAXPOINTS=n

specifies the maximum number of predicted points for the regression curve and for any confidence limits.
NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLI

hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM

hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

NOMARKERS

removes the scatter markers from the plot.

SPLITCHAR="character-list"

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Interactions: This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY= *LEFT | CENTER | RIGHT*

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312

TIP=(variable-list**| NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Note

The option affects only the scatter plot in this statement.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.
Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

SCATTER Statement

Creates a scatter plot.

Example:

About Scatter Plots on page 36

Syntax

SCATTER X=variable Y=variable \</option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all markers from discrete X or Y values.

ERRORBARATTRS=style-element \</options> | \(options\)

specifies the appearance of the error bars in the plot.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

NOERRORCAPS

suppresses the serif cap on error bars, if error bars are displayed.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value

specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
 option.
TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options
CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
 specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped markers.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.
NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the
 plot.

Label options
DATALABEL <=variable>
 displays a label for each data point.
DATALABELATTRS=style-element<(options)>(options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.
DATALABELPOS=position
 specifies the location of the data label with respect to the plot.
LEGENDLABEL="text-string"
 specifies a label that identifies the markers from the plot in the legend.
SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when
 there is not enough room to display the text normally.
SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Marker options
FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.
JITTER
 specifies that data markers are jittered when multiple observations have the
 same response value.
JITTERWIDTH=positive-number
 specifies the width of the jitter space as a fraction of either the midpoint
 spacing or of the minimal interval width.
MARKERATTRS=style-element<(options)>(options)
 specifies the appearance of the markers in the plot.
MARKERCHAR=variable
 specifies a variable whose values replace the marker symbols in the plot.
MARKERCHARATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot when you use the
 MARKERCHAR= option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
 specifies the color of the marker fill.

MARKEROOUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker outlines.

Plot options

FREQ=numeric-variable
 specifies a variable for the frequency count for each observation in the input
 data.

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

XERRORLOWER=numeric-variable
 specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable
 specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=numeric-variable
 specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
 specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME="text-string"
 specifies a name for the plot.

Required Arguments

X=variable
 specifies the variable for the x axis.

Y=variable
 specifies the variable for the y axis.

Optional Arguments

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You specify
 this option only if you are using an attribute map to control visual attributes of the
 graph.

 See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

 “Overview of Attribute Maps” on page 1383

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.
 Specify a value from 0.0 (narrowest) to 1.0 (widest).

 Default 0.8
Interactions

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction

If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 196
DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:
Table 6.20 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>MATTE</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>PRESSED</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>SHEEN</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: You can use the MARKERATTRS= option to specify a filled marker symbol.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:

COLOR=color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.

PATTERN=line-pattern
specifies the line pattern for the line. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.
The default line pattern is specified by theLineStyle attribute of the
GraphError style element in the current style.

\[\text{THICKNESS}=n \ <\text{units}> \]
specifies the thickness of the line. You can also specify the unit of measure. The
default unit is pixels. For a list of measurement units that are supported, see
“Units of Measurement” on page 1325.

The default line thickness is specified by the LineThickness attribute of
the GraphError style element in the current style.

\textbf{FILLEDOUTLINEDMARKERS}
specifies that markers have a fill and an outline.

\textbf{Requirement}
The marker symbol, derived either from the applied style or specified
with the MARKERATTRS= option, must have the “Filled” suffix in
its name. Otherwise, this option is ignored.

\textbf{Interaction}
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS=
options to specify attributes for the fill and outline.

\textbf{See}
For usage information and an example, see “Marker Fills and
Outlines” on page 1315.

\textbf{FREQ}=\textit{numeric-variable}
specifies a variable for the frequency count for each observation in the input data.
Each observation is repeated \(n \) times for computational purposes, where \(n \) is the
value of the numeric variable.

\textbf{Restriction}
If the value of FREQ= for a given observation is missing or is less than
1, that observation is not used in the analysis.

\textbf{Note}
If the value is not an integer, only the integer portion is used.

\textbf{GROUP}=\textit{variable}
specifies a variable that is used to group the data. The plot elements for each group
value are automatically distinguished by different visual attributes.

\textbf{Interaction}
When the procedure contains both computed and non-computed plot
statements, such as a box plot overlaid with a scatter plot, the
assignment of group attributes does not always align between the plots.
If you need to control the group attribute assignment for these types of
plots, consider using an attribute map. For more information, see
Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on
page 1383.

\textbf{Tip}
ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change the
maximum number of groups that can be processed.

\textbf{GROUPDISPLAY=CLUSTER | OVERLAY}
specifies how to display grouped markers.

\textbf{CLUSTER}
grouped items are drawn adjacent to each other.
OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData... GraphData\nstyle elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

DATA

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
JITTER

specifies that data markers are jittered when multiple observations have the same response value. When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.

Note: Although the examples were created using the SGLOT procedure, the jittering feature works the same in the SGPANEL procedure.

The following figures show a box plot and a scatter plot. The figures show the case in which the X axis is discrete and the Y axis is linear.

Table 6.21 X Axis Is Discrete and Y Axis Is Linear

In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and the Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

Table 6.22 Both Axes Are Linear

Default

When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.

Interaction

This option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.
Note By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JITTERWIDTH=positive-number

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default 0.85

Notes The specified number can be greater than 1.

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.

Interactions This option affects marker strings only when the MARKERCHAR= option is specified.

This option affects data labels only when DATALABEL is specified.

Tip Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

LEGENDLABEL="text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.
MARKERCHAR=variable
specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6 format is used.

Interaction The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

MARKERCHARATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples MARKERCHARATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
MARKERCHARATTRS=GraphValueText

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.</th>
</tr>
</thead>
</table>

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS

suppresses the serif cap on error bars, if error bars are displayed.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Interaction

The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See

Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.
 When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
 You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.
 The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
 a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sql
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See `SAS Formats and Informats: Reference`

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

XERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SERIES Statement

Creates a series plot.

Example: “About Series Plots” on page 38
Syntax

SERIES X=variable Y=variable /option(s);

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the series line.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped lines.

GROUPLC=variable
 specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
 specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPMC=variable
 specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

GROUPMS=variable
 specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

LCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLC= variable.

LPATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
 adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
 specifies the location of the curve label.

DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
 specifies the location of the data label with respect to the plot.
LEGENDLABEL="text-string"
 specifies a label that identifies the series plot in the legend.

SPLITCHAR="character-list"
 splits the text for curve and data labels at the specified characters when there
 is not enough room to display the text normally.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
 specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker outlines.

MARKERS
 adds data point markers to the series plot data points.

Plot options

BREAK
 creates a break in the line for each missing value for the Y variable.

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
 specifies a name for the plot.

Series options

SMOOTHCONNECT
 specifies that a smoothed line passes through all vertices.

Required Arguments

X=variable
 specifies the variable for the x axis.

Y=variable
 specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
 specifies a position for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.
The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

```
START  displays an arrowhead at the starting point of each line.
END    displays an arrowhead at the ending point of each line.
BOTH   displays an arrowhead at each end of each line.
```

Default: No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSCALE= *positive-number*

specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default: 1.0

Interaction: ARROWHEADPOS= must also be specified for this option to have any effect.

Tip: Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED

specifies a shape for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

```
<table>
<thead>
<tr>
<th>OPEN</th>
<th>FILLED</th>
<th>BARBED</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶</td>
<td>▲</td>
<td>▶</td>
</tr>
</tbody>
</table>
```

Default: OPEN

Interaction: ARROWHEADPOS= must also be specified for this option to have any effect.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

<table>
<thead>
<tr>
<th>Default</th>
<th>0.8</th>
</tr>
</thead>
</table>

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element
specifies the name of a style element. The style element should contain these style attributes:

<table>
<thead>
<tr>
<th>STARTCOLOR</th>
<th>specifies the color for the smallest data value of the COLORRESPONSE= column.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRALCOLOR</td>
<td>specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.</td>
</tr>
<tr>
<td>ENDCOLOR</td>
<td>specifies the color for the highest data value of the COLORRESPONSE= column.</td>
</tr>
</tbody>
</table>

Example
```
colormodel=TwoColorRamp
```

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 196
“Using Gradient Color Legends” on page 1310

CURVELABEL <="text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText
CURVELABELPOS= **MIN | MAX | START | END**
specifies the location of the curve label. Specify one of the following values:

- **MIN**
 places the label at the part of the curve closest to the minimum X axis value.

- **MAX**
 places the label at the part of the curve closest to the maximum X axis value.

- **START**
 places the curve label at the first point on the curve.

- **END**
 places the curve label at the last point on the curve.

Default:
END

Interaction:
This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS= **style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults:
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Interaction:
This option has no effect unless the DATALABEL option is also specified.

Examples:
DATALABELATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS= **position**
specifies the location of the data label with respect to the plot. **position** can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 6.23 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 6.24 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Marker None]</td>
<td>![Marker Crisp]</td>
<td>![Marker Gloss]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Marker Matte]</td>
<td>![Marker Pressed]</td>
<td>![Marker Sheen]</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See

“Using Data Skins” on page 1343
DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.
For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPLC=variable

specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphDataN style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips

Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

See

For an overview, see Using Group Options on page 958 in the SGPLOT procedure.

GROUPLP=variable

specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tips

Use the GROUPLP= option to set the line pattern. You can also use the LINEATTRS= option to set the line pattern and thickness.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.
GROUPMC=variable
specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphData_n style elements based on the GROUPMC= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPMC= variable with an attribute map ID.

See
For an overview, see Using Group Options on page 958 in the SGPLOT procedure.

GROUPMS=variable
specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphData_n style elements based on the GROUPMS= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMC= option to set the marker color. You can also use the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable with an attribute map ID.
See For an overview, see Using Group Options on page 958 in the SGPLOT procedure.

GROUPORDER=DATA | REVISEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVISEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LCATTRID= discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC= variable. This option enables the plot to associate an attribute map with the line color group. The option specifies the value of the ID variable that maps attributes to LINECOLOR in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLC= option is specified.

This option overrides the COLOR= suboption of the LINEATTRS= option.
Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example: Using Group Options, and Group Options with an Attribute Map” on page 958.

Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383

`LEGENDLABEL="text-string"` specifies a label that identifies the series plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

`LINEATTRS=style-element <(options)> | (options)` specifies the appearance of the series line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

`LPATTRID=discrete-attr-variable` specifies an attribute map ID variable to be associated with the GROUPLP= variable. This option enables the plot to associate an attribute map with the line pattern group. The option specifies the value of the ID variable that maps attributes to LINEPATTERN in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLP= option is specified.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example: Using Group Options, and Group Options with an Attribute Map” on page 958.

Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383

`MARKERATTRS=style-element <(options)> | (options)` specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERS
adds data point markers to the series plot data points.
MCATTRID=\text{discrete-attr-variable}

specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker color group. The option specifies the value of the ID variable that maps attributes to MARKERCOLOR in the attribute map.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\textbf{Requirement} The procedure statement must specify the attribute map data set using the DATTRMAP= option.

\textbf{Interactions}

This option is ignored unless the GROUPMC= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

\textbf{Note} Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

\textbf{See} For an overview, see “Example: Using Group Options, and Group Options with an Attribute Map” on page 958.

\textit{Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383}

MSATTRID=\text{discrete-attr-variable}

specifies an attribute map ID variable to be associated with the GROUPMS= variable. This option enables the plot to associate an attribute map with the marker symbol group. The option specifies the value of the ID variable that maps attributes to MARKERSYMBOL in the attribute map.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\textbf{Requirement} The procedure statement must specify the attribute map data set using the DATTRMAP= option.

\textbf{Interactions}

This option is ignored unless the GROUPMS= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

\textbf{Note} Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

\textbf{See} For an overview, see “Example: Using Group Options, and Group Options with an Attribute Map” on page 958.

\textit{Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383}

\textbf{NAME=“text-string”}

specifies a name for the plot. You can use the name to refer to this plot in other statements.
Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

This option has no effect unless SPLITCHAR= is also specified.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

LEFT

This option has no effect unless you specify the SPLITCHAR= option.

“Overview of Collision Avoidance” on page 1312

THICKMAX=dimension
 specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.
If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

THICKMAXRESP= **numeric-value**

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP= **numeric-variable**

specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

**Interaction** This option replaces all of the information that is displayed by default.

**Tip** Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```
tip=(age weight)
tipformat=(auto F5.2)
tiplabel=(label-list)
```

**TIPFORMAT=(format-list)**

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default** The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement** A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPLABEL= option to assign labels to the list of variables.

**See** *SAS Formats and Informats: Reference*

**Example**

```
tipformat=(auto F5.2)
tiplabel=(label-list)
```

**TIPLABEL=(label-list)**

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction  This option has no effect unless TIP= is also specified.
Tip  Use the TIPFORMAT option to assign formats to the list of variables.
Example  tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default**: 0.0
- **Range**: 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable**: specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

  **Example**  http://www.sas.com/en_us/home.html

- **Default**: By default, no HTML links are created.
- **Interactions**: This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

  This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

  ```
 ODS GRAPHICS ON / IMAGEMAP=ON;
  ```

  For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

---

**SPLINE Statement**

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

- **Notes**: The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 439.

  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

- **Example**: “About Spline Plots” on page 39

**Syntax**

```plaintext
SPLINE X=variable Y=variable <option(s)>;
```
**Summary of Optional Arguments**

**Appearance options**

- **ARROWHEADPOS=** START | END | BOTH  
  specifies a position for arrowheads.
- **ARROWHEADSCALE= positive-number**  
  specifies an arrowhead scale factor based on the thickness of the arrow line.
- **ARROWHEADSHAPE= OPEN | FILLED | BARBED**  
  specifies a shape for arrowheads.
- **ATTRID= character-value**  
  specifies the value of the ID variable in a discrete attribute map data set.
- **COLORMODEL= style-element | (color-list)**  
  specifies a color ramp that is to be used with the COLORRESPONSE= option.
- **COLORRESPONSE= numeric-column**  
  specifies the numeric column that is used to map colors to a gradient legend.
- **DATASKIN= NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**  
  specifies a special effect to be used on the plot.
- **DISCRETEOFFSET= numeric-value**  
  specifies an amount to offset all lines from discrete X or Y values.
- **LINEATTRS= style-element <(options)> | (options)**  
  specifies the appearance of the spline line.
- **RATTRID= character-value**  
  specifies the value of the ID variable in a range attribute map data set.
- **THICKMAX= dimension**  
  specifies the maximum line thickness when a response variable is used to determine the line thickness.
- **THICKMAXRESP= numeric-value**  
  specifies the response value that corresponds to the maximum line thickness.
- **THICKRESP= numeric-variable**  
  specifies a response variable that is used to map a line thickness to each group value.
- **TRANSPARENCY= value**  
  specifies the degree of transparency for the plot.

**Data tip options**

- **TIP=(variable-list) | NONE**  
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
- **TIPFORMAT=(format-list)**  
  applies formats to the list of data tip variables that you specify in the TIP= option.
- **TIPLABEL=(label-list)**  
  applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH= numeric-value**  
  specifies the width of the group clusters as a fraction of the midpoint spacing.
- **GROUP= variable**  
  specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
  specifies how to display grouped lines.

GROUPLC=variable
  specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
  specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
  adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
  specifies the location of the curve label.

LEGENDLABEL="text-string"
  specifies a label that identifies the spline plot in the legend.

SPLITCHAR="character-list"
  splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Plot options

BREAK
  creates a break in the line for each missing value for the Y variable.

SEGPOINTS=positive-integer
  specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

URL=character-variable
  specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
  specifies a name for the plot.

Required Arguments

X=variable
  specifies the variable for the x axis.

Y=variable
  specifies the variable for the y axis.
**Optional Arguments**

**ARROWHEADPOS=** `START` | `END` | `BOTH`

specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

- **START**  
  displays an arrowhead at the starting point of each line.

- **END**  
  displays an arrowhead at the ending point of each line.

- **BOTH**  
  displays an arrowhead at each end of each line.

**Default**  
No arrowheads are displayed when this option is not specified.

**See**  
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

---

**ARROWHEADSCALE=** `positive-number`

specifies an arrowhead scale factor based on the thickness of the arrow line.

- **Default**  
  1.0

- **Interaction**  
  `ARROWHEADPOS=` must also be specified for this option to have any effect.

- **Tip**  
  Use a factor greater than 1.0 to make a larger arrowhead.

**See**  
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

---

**ARROWHEADSHAPE=** `OPEN` | `FILLED` | `BARBED`

specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>OPEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FILLED</td>
<td></td>
</tr>
<tr>
<td>BARBED</td>
<td></td>
</tr>
</tbody>
</table>

- **Default**  
  OPEN

- **Interaction**  
  `ARROWHEADPOS=` must also be specified for this option to have any effect.

- **See**  
  “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

---

**ATTRID=** `character-value`

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**See**  
Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383
BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values
See “GRADLEGEND Statement” on page 196
See “Using Gradient Color Legends” on page 1310

CURVELABEL. «text-string»
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData[n] style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default
END
Interaction  This option has no effect unless the CURVELABEL option is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

*Table 6.25 DATASKIN Options for Lines*

<table>
<thead>
<tr>
<th>Option</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all lines from discrete X or Y values. Specify a value from −0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped lines.

- **CLUSTER**
  grouped items are drawn adjacent to each other.

- **OVERLAY**
  grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\(n\) style elements in the current style.

**Default** OVERLAY

**Restriction** GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

**Interaction** This option is ignored unless GROUP= is specified.

**GROUPLC=variable**
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData\(n\) style elements based on the GROUPLC= variable instead of the GROUP= variable.

**Interactions**
The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

**Tips**
Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

**See**
For an overview, see Using Group Options on page 958 in the SGPLOT procedure.

**GROUPLP=variable**
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData\(n\) style elements based on the GROUPLP= variable instead of the GROUP= variable.

**Interactions**
The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

**Tip**
Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the spline line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**RATTRID=**character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**See** Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

**SEGPOINTS=**positive-integer

specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

**Default** 20

**SPLITCHAR=**“character-list”

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Interactions** This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1312

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default
Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Default
The maximum value in the response column that is specified in the THICKRESP= option.
Interactions

The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKRESP=numeric-variable**

specifies a response variable that is used to map a line thickness to each group value.

**Default**

The GraphDataDefault style element LineThickness attribute.

**Restriction**

The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

**Requirement**

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

**Interactions**

When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

**See**

“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)
TIPFORMAT=(*format-list*)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example tipformat=(auto F5.2)

TIPLABEL=(*label-list*)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

Details
Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.

Figure 6.8 Spline and Series Plots

STEP Statement
Creates a step plot.

Restriction: The vertical axis that is used with the STEP statement cannot be a discrete axis.

Example: “About Step Plots” on page 40
Syntax

STEP X=variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values.

ERRORBARATTRS=style-element <options> | (options)
specifies the appearance of the error bars in the plot.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point.

LINEATTRS=style-element <options> | (options)
specifies the appearance of the step line.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped step lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the step plot in the legend.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the step plot data points.

Plot options

BREAK
creates a break in the line for each missing value.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Required Arguments
X=variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments
ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.

END displays an arrowhead at the ending point of each line.

BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.
ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>OPEN</th>
<th>FILLED</th>
<th>BARBED</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram of arrowheads]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

CURVELABEL <=“text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.
When a group variable is specified, the group values are always used for labels.

**CURVELABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

```
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
CURVELABELATTRS=GraphTitleText
```

**CURVELABELPOS=MIN | MAX | START | END**

specifies the location of the curve label. Specify one of the following values:

**MIN**

places the label at the part of the curve closest to the minimum X axis value.

**MAX**

places the label at the part of the curve closest to the maximum X axis value.

**START**

places the curve label at the first point on the curve.

**END**

places the curve label at the last point on the curve.

**Default**

END

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**DATALABEL <=variable>**

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interaction

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 6.26 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.
Table 6.27  DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Default</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Image&gt;</td>
<td>&lt;Image&gt;</td>
<td>&lt;Image&gt;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Image&gt;</td>
<td>&lt;Image&gt;</td>
</tr>
</tbody>
</table>

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343

DISCRETOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values. Specify a value from −0.5 (left offset) to +0.5 (right offset).

Default
0.0 (no offset)

Requirement
This option is applicable only when the X axis is discrete.

ERRORBARATTRS=style-element<(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions
This option has no effect unless MARKERS is also specified.
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

**GROUP=**variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=**CLUSTER | OVERLAY

specifies how to display grouped step lines.

**CLUSTER**

grouped items are drawn adjacent to each other.

**OVERLAY**

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

**GROUPORDER=**DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

**DATA**

orders the groups within a category in data order of the group variable.

**REVERSEDATA**

orders the groups within a category in the reverse data order of the group variable.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

**Default**

**DATA**

**Interactions**

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

**Notes**

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**JUSTIFY=LEFT | CENTER | RIGHT**

specifies the location of each step relative to its data point. *Figure 6.9 on page 448* shows the effect of each option:

*Figure 6.9 Values for JUSTIFY=

LEFT | CENTER | RIGHT

LEGENDLABEL="text-string"

specifies a label that identifies the step plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**LINEATTRS=style-element (options) | (options)**

specifies the appearance of the step line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData data style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction
This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.
### MARKERS
adds markers to the step plot data points.

### NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip**: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

### NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

**Note**: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Interaction**: The appearance of the error bars is controlled by the ERRORBARATTRS= option.

### NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

**Interaction**: This option has no effect unless GROUP= is also specified.

### SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**: Values are not split.

**Interactions**: This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the `SPLITJUSTIFY=` option.

<table>
<thead>
<tr>
<th>Notes</th>
<th>When multiple characters are specified, the order of the characters in the list is not significant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>The split characters are case sensitive. If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

**SPLITCHARNODROP** specifies that the split characters are included in the displayed value.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option has no effect unless <code>SPLITCHAR=</code> is also specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

**SPLITJUSTIFY=** *LEFT | CENTER | RIGHT*

specifies the horizontal alignment of the value text that is being split.

<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the <code>SPLITCHAR=</code> option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

**THICKMAX=** *dimension*

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>Ten times the thickness that is specified by the GraphDataDefault style element <code>LineThickness</code> attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The <code>THICKRESP=</code> option must be specified for this option to have any effect.</td>
</tr>
<tr>
<td></td>
<td>The <code>THICKMAXRESP=</code> option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the <code>THICKMAXRESP=</code> value are set to the value that is specified by this option.</td>
</tr>
<tr>
<td></td>
<td>If the line thickness that is calculated from the <code>THICKMAX=</code> and <code>THICKMAXRESP=</code> option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
<tr>
<td>See</td>
<td>“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.</td>
</tr>
</tbody>
</table>
**THICKMAXRESP=numeric-value**

specifies the response value that corresponds to the maximum line thickness.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>The maximum value in the response column that is specified in the THICKRESP= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
<tr>
<td></td>
<td>The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.</td>
</tr>
<tr>
<td></td>
<td>If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
</tbody>
</table>

**THICKRESP=numeric-variable**

specifies a response variable that is used to map a line thickness to each group value.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>The GraphDataDefault style element LineThickness attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.</td>
</tr>
<tr>
<td>Requirement</td>
<td>The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.</td>
</tr>
<tr>
<td>Interactions</td>
<td>When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.</td>
</tr>
<tr>
<td></td>
<td>The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.</td>
</tr>
<tr>
<td>See</td>
<td>“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.</td>
</tr>
</tbody>
</table>

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- *(variable-list)*
  - a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

- NONE
  - suppresses the data tips from this plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.
Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interation This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SYMBOLCHAR Statement
Defines a marker symbol using a Unicode character that can be referenced in other statements.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax
SYMBOLCHAR NAME=identifier
CHAR=\"hex-string\"x | keyword <option(s)>;

Summary of Optional Arguments
HOFFSET=offset
specifies a horizontal offset for the marker symbol.

```
ROTATE=number
```
specifies the angle of rotation for the marker symbol in degrees.

```
SCALE=double
```
specifies a scale factor for the marker symbol as a percentage.

```
TEXTATTRS=style-element <(options)>) | (options)
```
specifies the appearance of the text in the marker symbol.

```
VOFFSET=offset
```
specifies a vertical offset for the marker symbol.

Required Arguments

NAME= *identifier*

specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique *identifier*. The identifier is not case-sensitive.

Interaction If the identifier matches one of the system-provided symbol names such as `CIRCLE`, the system symbol is replaced by the user-defined symbol. See Figure 11.2 on page 1323.

Note Do not enclose the identifier in quotation marks.

CHAR="hex-string"x | keyword

specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

```
"hex-string"x
```
specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the Unicode hexadecimal constants at the following URL: http://www.unicode.org/charts/charindex.html

keyword
specifies a SAS keyword for a Unicode character, such as `alpha` or `alpha_u`. See Appendix 2, “Reserved Keywords and Unicode Values,” on page 1537.

Note: The “_u” in a keyword makes the character uppercase.

tip This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.

Optional Arguments

HOFFSET= *offset*

specifies a horizontal offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol to the right while a negative offset moves it to the left.
ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default 0 (no rotation is performed)

Note An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default 1.0 (100%)

Range Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the marker symbol. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Note: Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The color and size text attributes are derived from the MARKERATTRS= option in the plot statement.

Default GraphUnicodeText style element in the current style. The affected attributes are FontFamily, FontStyle, and FontWeight.

Examples
TEXTATTRS=(Family=Arial Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TEXTATTRS=GraphDataText

VOFFSET=offset
specifies a vertical offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range −0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol up while a negative offset moves it down.

Details
The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statements. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This
enables you to use SYMBOLCHAR statements in IF/ELSE statements. Symbol specifications also are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can modify the appearance of markers that are created by the SYMBOLCHAR statement in the following ways:

- use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option in the plot statement.

 Note: The WEIGHT= suboption has no effect on these markers.

- use the FAMILY=, WEIGHT=, and STYLE= suboptions of the TEXTATTRS= option in the SYMBOLCHAR statement to format the symbol character. The color and size are controlled using the MARKERATTRS= option.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLCHAR Example

This example specifies the SAS keyword DELTA_U, which produces the delta (\(\Delta\)) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.

```
proc sgpanel data=sashelp.class;
```
Example 2: SYMBOLCHAR Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign colors and symbols for each grouping of the variable SIZE.

In the example, the following marker symbols are used:

- ✅ indicates students who weigh 60 pounds or more
- ✗ indicates students who weigh less than 60 pounds

The procedure uses two SYMBOLCHAR statements to identify the marker symbols used in the plot. The example creates marker symbols from the Unicode check mark, heavy character ('2714'x) and the Ballot X character ('2717'x). The example then shows how to use the symbols in a scatter plot.
/* Create the attribute map that assigns colors and symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markercolor $ markersymbol $;
datalines;
myid Short green greeny
myid Tall red redx
; run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12)) dattrmap=myattrmap;
 panelby sex;
symbolchar name=redX char='2714'x;
symbolchar name=greenY char='2717'x;
scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;

SYMBOLIMAGE Statement

Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax

SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" </option(s)>;

Summary of Optional Arguments

- **HOFFSET=offset**
 specifies a horizontal offset for the marker symbol.

- **ROTATE=number**
 specifies the angle of rotation for the marker symbol in degrees.

- **SCALE=double**
 specifies a scale factor for the marker symbol as a percentage.

- **VOFFSET=offset**
 specifies a vertical offset for the marker symbol.

Required Arguments

- **NAME=identifier**
 specifies an identifier for the marker symbol. The identifier can be used in statements that support marker symbols.

 Interaction
 If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See Figure 11.2 on page 1323.
<table>
<thead>
<tr>
<th>Note</th>
<th>Do not enclose the identifier in quotation marks.</th>
</tr>
</thead>
</table>

IMAGE=\"image-file-specification\"

specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements

- The image file specification must be enclosed in quotation marks.
- The image file must be located on the local file system. URL access is not supported.

Example

```
image="c:\temp\mylogo.gif"
```

Optional Arguments

HOFFSET=offset

specifies a horizontal offset for the marker symbol.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (the marker symbol is centered on its data point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-0.5 to +0.5, where 0.5 represents one-half of the original marker size.</td>
</tr>
<tr>
<td>Note</td>
<td>A positive offset moves the marker symbol to the right while a negative offset moves it to the left.</td>
</tr>
</tbody>
</table>

ROTATE=number

specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (no rotation is performed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>An angle that exceeds 360 degrees in absolute value can be specified.</td>
</tr>
</tbody>
</table>

SCALE=double

specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

<table>
<thead>
<tr>
<th>Default</th>
<th>1.0 (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.</td>
</tr>
</tbody>
</table>

VOFFSET=offset

specifies a vertical offset for the marker symbol.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (the marker symbol is centered on its data point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-0.5 to +0.5, where 0.5 represents one-half of the original marker size.</td>
</tr>
<tr>
<td>Note</td>
<td>A positive offset moves the marker symbol up while a negative offset moves it down.</td>
</tr>
</tbody>
</table>
Details

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.

The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUMLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLIMAGE Example

This example specifies the image file for a triangle (△). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.
proc sgpanel data=sashelp.class;
panelby sex;
symbolimage name=sym1 image="c:\temp\triangle.png" / rotate=90;
scatter x=weight y=height / markerattrs=(symbol=sym1 size=10pt);
run;

Example 2: SYMBOLIMAGE Used with an SG Attribute Map
This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

✓ indicates students who weigh 60 pounds or more

X indicates students who weigh less than 60 pounds

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markersymbol $;
datalines;
myid Short greeny
myid Tall redx
run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12))
 dattrmap=myattrmap;
panelby sex;
symbolimage name=redx image='c:\temp\redCheck.png';
symbolimage name=greeny image='c:\temp\greenX.png';
scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;
TEXT Statement
Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

Example: “About Text Plots” on page 41

Syntax
TEXT X=variable Y=variable TEXT=variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BACKFILL
displays filled bounding boxes around the text.

BACKLIGHT=number
specifies a back-light effect for the marker text.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE=
option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)
specifies whether this plot's space requirements contribute to the calculation
of the axis offsets.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

OUTLINE
displays outlined bounding boxes around the text.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines around the text boxes.

PAD=dimension <units> | (pad-options)
specifies the amount of extra space that is added inside the text-marker
border.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

```
CLUSTERAXIS= X | Y
```

specifies the axis to use for clustering groups when `GROUPDISPLAY=CLUSTER`.

Data tip options

```
TIP=〈variable-list〉 | NONE
```

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

```
TIPFORMAT=〈format-list〉
```

applies formats to the list of data tip variables that you specify in the `TIP=` option.

```
TIPLABEL=〈label-list〉
```

applies labels to the list of data tip variables that you specify in the `TIP=` option.

Group options

```
CLUSTERWIDTH= numeric-value
```

specifies the width of the group clusters as a fraction of the midpoint spacing.

```
GROUP= variable
```

specifies a variable that is used to group the data.

```
GROUPDISPLAY=CLUSTER | OVERLAY
```

specifies how to display grouped text markers.

```
NOMISSINGGROUP
```

specifies that missing values of the group variable are not included in the plot.

Legend options

```
LEGENDLABEL=“text-string”
```

specifies a label that identifies the markers from the plot in the legend.

Plot options

```
URL= character-variable
```

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

```
NAME=“text-string”
```

specifies a name for the plot.

Text options

```
POSITION=position-option
```

specifies the position of the text with respect to the location of the data point.

```
ROTATE= number | numeric-column
```

specifies the angle of rotation in degrees for the text markers.

```
SIZEMAX= dimension<unit>
```

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

```
SIZEMAXRESPONSE=number
```

specifies the response value that corresponds to the maximum font size for text markers.
SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable is used to size the font for text values.

SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

SPLITCHAR="character-list"
splits the text at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text.

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

Required Arguments

X=variable
specifies the variable for the x axis.

Y=variable
specifies the variable for the y axis.

TEXT=variable
specifies the variable for the text values that are used for the markers.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BACKFILL
displays filled bounding boxes around the text.

Tips Use the OUTLINE option to specify outlined boxes around the text.
Use the TRANSPARENCY= option to change the transparency of the backfill and the text. To change the transparency of only the backfill, use the TRANSPARENCY= suboption of the FILLATTRS= OPTION.

BACKLIGHT=number
specifies a back-light effect for the marker text. The effect is applied to the marker text only. *number* specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified to help illustrate the back-light effect.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults
0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

Range
0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note
This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y
specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

Default
Uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

Interaction
The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. The GROUP= option must also be used.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).
Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL= `style-element | (color-list)`
specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `style-element` specifies the name of a style element. The style element should contain these style attributes:
 - `STARTCOLOR` specifies the color for the smallest data value of the COLORRESPONSE= column.
 - `NEUTRALCOLOR` specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - `ENDCOLOR` specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

- `(color-list)` specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

 You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE= `numeric-column`
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
- “GRADLEGEND Statement” on page 196
- “Using Gradient Color Legends” on page 1310

CONTRIBUTE OFFSETS= `ALL | NONE | (axis-offset-list)`
specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.
The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTEoffsets= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

XMAX the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.

XMIN the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.

YMAX the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.

YMIN the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default ALL

DISCRETEoffset=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect unless BACKFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped text markers.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData$n style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction

This option is ignored unless GROUP= is specified.

LEGENDLABEL="text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

OUTLINE

displays outlined bounding boxes around the text.

Tip

Use the BACKFILL option to display filled bounding boxes around the text.
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines around the text boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the outline.

Default
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless OUTLINE is also specified.

PAD=dimension <units> | (pad-options)
specifies the amount of extra space that is added inside the text-marker border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension <units>
TOP=dimension <units>
RIGHT=dimension <units>
BOTTOM=dimension <units>

Default
Padding is a fraction of the font height.

Note
Sides that are not assigned padding are padded with the default amount.

Tips
This option is meaningful only when you also specify OUTLINE, BACKFILL, or both.

Use pad-options to create non-uniform padding.

Note
The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

POSITION=position-option
specifies the position of the text with respect to the location of the data point. Specify one of the following position options:

BOTTOM CENTER TOP
BOTTOMLEFT LEFT TOPLEFT
BOTTOMRIGHT RIGHT TOPRIGHT

The VCENTER= option specifies whether the position is relative to the text bound box or the text baseline. By default, the positions are relative to the text bounding
box. The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.

<table>
<thead>
<tr>
<th>POSITION= When VCENTER=BBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CENTER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TOP</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default CENTER

RATTRID= character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

ROTATE= number | numeric-column

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0

SIZEMAX= dimension<unit>

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
The following table contains the units that are available:

Table 6.28 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

Default

Three times the size specified in the GraphDataText style element for the maximum response variable value marker.

Interactions

The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips

Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE=number

specifies the response value that corresponds to the maximum font size for text markers.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction

The SIZERESPONSE= option must be specified for this option to have any effect.

Note

When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.
SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable is used to size the font for text values.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following table contains the units that are available:

Table 6.29 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default
The size specified in the GraphDataText style element for the minimum response column value marker.

Interaction
The SIZERESPONSE= option must be specified for this option to have any effect.

Tip
Use the SIZEMAX= option to specify the maximum text size.

SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The size specified in the GraphDataText style element for all text values.

Notes
When the variable value for an observation is 0, the font size for that observation is set to the SIZEMIN= option value.

When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on.

When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip
Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.
SPLITCHAR="character-list"
splits the text at the specified character or characters when there is not enough room
to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

"character-list" is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

NONE does not split the text for text markers that collide.

SPLIT splits the marker text at a split character only if a split is needed at that character
in order to make the text fit the available space. No split occurs at split characters
that occur where a split is not needed. If the text does not contain any of the
specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.

See See the SPLITCHAR= option for information about specifying the split characters.

SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See See the SPLITCHAR= option for information about specifying the split characters.

Default NONE

SPLITWIDTH= *width-in-characters*
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every *width-in-characters* characters.

Default Uses the width of the longest inter-split-character substring.

Restriction This option has effect only when SPLITPOLICY=SPLIT.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default Blanks are not stripped

Tip Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS= *style-element | style-element (text-options) | (text-options)*
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

TIP= *(variable-list) | NONE*
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)

A space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See `SAS Formats and Informats: Reference`

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSAPRENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

VCENTER=BBOX | BASELINE

specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

BBOX

vertically centers the text with respect to its bounding box.

BASELINE

vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

Default BBOX
Tip: Use the POSITION= option to specify the text position with respect to the text bounding box or the text baseline.

VBAR Statement

Creates a vertical bar chart that summarizes the values of a category variable.

Interactions: The VBAR statement can be combined only with other vertical categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.

When used with particular styles, the VBAR statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Tip: Starting with the third maintenance release for SAS 9.4, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

Example: “About Bar Charts” on page 54

Syntax

VBAR category-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
 specifies the fill type that is applied to the chart.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.
Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interactions If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default By default, the plot is sorted in ascending order based on the category values.

Restriction This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis
is not numeric, an error is generated and a message is written to the SAS log.

Requirement
This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions
When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

\textbf{CLUSTERWIDTH=numeric-value}

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

\textbf{COLORMODEL=style-element | (color-list)}

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\textit{Note}: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\textit{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\textbf{STARTCOLOR} specifies the color for the smallest data value of the COLORRESPONSE= column.

\textbf{NEUTRALCOLOR} specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

\textbf{ENDCOLOR} specifies the color for the highest data value of the COLORRESPONSE= column.
Example: `colormodel=TwoColorRamp`

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as `GraphData3:Color`.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example: `colormodel=(blue yellow green)`

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the `COLORRESPONSE=` option must also be specified in the statement.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction
If the `GROUP=` option is also specified in the statement, then the `GROUP=` option is ignored.

Tip
The color ramp is specified by the `COLORMODEL=` option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 196

“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When `COLORRESPONSE=` is not specified, the following values are valid:

FREQ frequency count

PCT percentages between 0 and 100

When the `COLORRESPONSE=` option is specified, the following values are valid:

SUM sum values for the color response

MEAN mean values for the color response

Defaults
SUM when you also specify the `COLORRESPONSE=` option.

FREQ when do not specify the `COLORRESPONSE=` option.

Note
This option is independent of the `STAT=` and `RESPONSE=` options.
DATALABEL `<variable>`

Displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Interaction

This option has no effect if you also specify the `GROUPDISPLAY=STACK` option.

DATALABELATTRS= `style-element `<options>`>` | `<options>`

Specifies the appearance of the labels in the plot when you use the `DATALABEL=` option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are `FontFamily`, `FontSize`, `FontStyle`, and `FontWeight`.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the `GraphData1...GraphData n` style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

```plaintext
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
DATALABELATTRS=GraphLabelText
```

DATALABELFITPOLICY= `policy-value`

Specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- **NONE**
 - does not rotate the bar labels. Labels that are too long overlap.

- **ROTATE**
 - rotates the text 90 degrees, but only if collisions occur.

- **SPLIT**
 - splits the labels at the character or characters specified in the `SPLITCHAR=` option.

 No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default

The default split character is a space.

Tips

Use the `SPLITCHAR=` option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify `SPLITCHARNODROP`.
SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Tips
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults
ROTATE if the column is numeric.
SPLIT if the column is character.

Interaction
This option has no effect unless DATALABEL= is also specified.

See
“Overview of Collision Avoidance” on page 1312

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

| Table 6.30 DATASKIN Options for Filled Areas |
|------------|-----------------|-----------------|
| NONE | CRISP | GLOSS |
| | | |
| MATTE | PRESSED | SHEEN |
| | | |

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.
If you also specify NOFILL, then the data skin is applied to the
outlines.

Note

When determining the maximum number of graphics elements that are
skinned in a plot statement, the procedure evaluates the plot elements
in each cell separately. It is possible for a plot in one cell to reach the
maximum threshold, but the plot in a different cell does not.

See

“Using Data Skins” on page 1343

DISCRETE_OFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default

0.0 (no offset)

Range

-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the
distance between category ticks.

Interaction

If you specify the REVERSE option in the axis statement, then the
offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the
bars. The NOFILL option hides the fill color for the bars.

Default

FILL

Interactions

Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options
are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults

Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData_n style elements in
the current style for grouped data.

0.0 transparency

Interaction

This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later
releases.

SOLID

Each bar is filled with the color that is assigned to the bar fill area.
GRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction

This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

Specifies how to display grouped bars.

STACK

Groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDatan style elements in the current style.
CLUSTER displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=“text-string” specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS= `style-element <(options)>` | `(options)`

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS= `BOTH | LOWER | UPPER`

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= option or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default.

Specify one of the following values:

- **BOTH**: adds lower and upper limit lines to the plot.
- **LOWER**: adds lower limit lines to the plot.
- **UPPER**: adds upper limit lines to the plot.

Default: By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions: Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

LIMITSTAT= `CLM | STDDEV | STDERR`

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**: confidence limits
- **STDDEV**: standard deviation
- **STDERR**: standard error

Default: CLM

Interactions: If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.
If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

NUMSTD=

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default
GraphOutlines style element in the current style for ungrouped data.
GraphData1 … GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTR$S= option to modify the appearance of the label text.

Use the SEGLABELFORMAT$= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY$= option to specify how the labels fit in the segments.

SEGLABELATTR$S=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.
THIN

drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\texttt{format}

specifies the text format used to display the bar segment labels.

\textit{Note:} This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR=\texttt{"character-list"}

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

\texttt{"character-list"} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\begin{verbatim}
SPLITCHAR=\"abc\"
\end{verbatim}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Interaction This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.
Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.
Defaults | **SUM** when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction | If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction | When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. **STATLABEL** forces the statistic to be displayed. **NOSTATLABEL** removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults | The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions | This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement | You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction | This option replaces all of the information that is displayed by default.

Tip | Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
TIPFORMAT=(*format-list*)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(*label-list*)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

VBARBASIC Statement
Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Interaction: When used with particular styles, the VBARBASIC statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Notes: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
When using the VBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

See: Basic plot types on page 1306

Example: “About Bar Charts” on page 54

Syntax
VBARBASIC category-variable <option(s)>;
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

NOZEROBARS
suppresses zero-length bars.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RAATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.
GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options
DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Plot options
MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.
To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=

- **style-element**(options) | (options)
 - specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
 - For a description of the line options, see “Line Attributes and Patterns” on page 1320.
 - Default: The GraphAxisLines style element in the current style.
 - Notes: The baseline is always drawn by default.
 - When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.
 - Tip: To suppress the baseline, set the line thickness to 0 as follows:

 \[
 \text{baselineattrs} = \{ \text{thickness}=0 \}
 \]

CLUSTERWIDTH=

- numeric-value
 - specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).
 - CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.
 - Default: 0.8
 - Interaction: This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=

- style-element | (color-list)
 - specifies a color ramp that is to be used with the COLORRESPONSE= option.
 - style-element
 - specifies the name of a style element. The style element should contain these style attributes:
 - **STARTCOLOR**
 - specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR**
 - specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR**
 - specifies the color for the highest data value of the COLORRESPONSE= column.
 - Example: \[\text{colormodel}= \text{TwoColorRamp} \]
 - (color-list)
 - specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example
```plaintext
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See
- “GRADLEGEND Statement” on page 196
- “Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

- **FREQ** frequency count
- **PCT** percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

- **SUM** sum values for the color response
- **MEAN** mean values for the color response

Defaults
- SUM when you also specify the COLORRESPONSE= option.
- FREQ when do not specify the COLORRESPONSE= option.

Note
This option is independent of the STAT= and RESPONSE= options.

DATALABEL

displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default
No label is shown
Tip The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

Default
The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 6.31 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default: FILL

Interactions: Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element<(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is
represented by unique visual attributes derived from the GraphData1... GraphData2 style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

- **DATA** orders the groups within a category in data order of the group variable.
- **REVERSEDATA** orders the groups within a category in the reverse data order of the group variable.
- **ASCENDING** orders the groups within a category in ascending order of the group variable.
- **DESCENDING** orders the groups within a category in descending order of the group variable.

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.
MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.
GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData2n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

RESPONSE= response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
SEGLABELATRERS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment
labels might overlap other graphical elements. The segment labels are not
considered when the axis ranges are computed. As a result, segment labels that
extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do
not fit within the plot area extend into the graph axis area and might overlap axis
elements.

THIN
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if
no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ frequency count
PCT | PERCENT percentages between 0 and 100
PROPORTION proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM sum values for the response
MEAN mean values for the response

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Interaction When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | **NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

**Interaction** This option replaces all of the information that is displayed by default.

**Tip** Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```
tip=(category response)```

TIPFORMAT=(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the *format-list* and the *role-list* that is specified for the TIP= option. A format must be provided for each role, using the same order as the *role-list*. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of roles.

See *SAS Formats and Informats: Reference*

Example

```
tipformat=(auto F5.2)```

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of roles.

**Example**
tilabel=(auto "Class Weight")

**TRANSPARENCY=** *value*

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**URL=** *character-variable*

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

---

**VBARPARM Statement**

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.
Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interactions: The VBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306. When used with particular styles, the VBARPARM statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Note: An important distinction between VBARPARM and VBAR is that the response variable is required for VBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 54

Syntax

VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
  specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
  specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
  specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
  specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
  specifies the fill type that is applied to the chart.

NOZEROBARS
  suppresses zero-length bars.

OUTLINE | NOOUTLINE
  specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the bar outlines.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=\textit{value}
specifies the degree of transparency for the plot.

\textbf{Axis options}

\textbf{BASELINE=\textit{numeric-value}}
specifies the response axis intercept for the baseline.

\textbf{Data tip options}

\textbf{TIP=(\textit{variable-list}) | NONE}
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\textbf{TIPFORMAT=(\textit{format-list})}
applies formats to the list of data tip variables that you specify in the TIP= option.

\textbf{TIPLABEL=(\textit{label-list})}
applies labels to the list of data tip variables that you specify in the TIP= option.

\textbf{Group options}

\textbf{CLUSTERWIDTH=\textit{numeric-value}}
specifies the cluster width as a ratio of the maximum width.

\textbf{GROUP=\textit{variable}}
specifies a variable that is used to group the data.

\textbf{GROUPDISPLAY=STACK | CLUSTER}
specifies how to display grouped bars.

\textbf{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}
specifies the ordering of the groups within a category.

\textbf{Label options}

\textbf{DATALABEL <=\textit{variable}>}
displays a label for each data point.

\textbf{DATALABELATTRS=style-element <(options)> | (options)}
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\textbf{DATALABELFITPOLICY=\textit{policy-value}}
specifies a policy for avoiding collisions among the bar labels, when displayed.

\textbf{LEGENDLABEL=“\textit{text-string}”}
specifies the label that identifies the bar chart in the legend.

\textbf{SEGLABEL}
displays a label inside each segment of a stacked bar.

\textbf{SEGLABELATTRS=style-element <(options)> | (options)}
specifies the text properties of the bar segment label text.

\textbf{SEGLABELFITPOLICY=NONE | NOCLIP | THIN}
specifies a policy for fitting the bar segment labels within the bar segments.

\textbf{SEGLABELFORMAT=\textit{format}}
specifies the text format used to display the bar segment labels.

\textbf{SPLITCHAR=“\textit{character-list}”}
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

\textbf{SPLITCHARNODROP}
specifies that the split characters are included in the displayed value.

**Limit options**

\[
\text{LIMITATTRS=style-element (options)} \mid (options)
\]

specifies the appearance of the limit lines in the plot.

\[
\text{LIMITLOWER=numeric-variable}
\]

specifies values for the lower endpoints on the limit lines.

\[
\text{LIMITUPPER=numeric-variable}
\]

specifies values for the upper endpoints on the limit lines.

**Plot options**

\[
\text{MISSING}
\]

for group data, processes missing values as a valid category value and creates a bar for it.

\[
\text{URL=character-variable}
\]

specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

\[
\text{NAME="text-string"}
\]

specifies a name for the plot.

**Required Arguments**

\[
\text{CATEGORY=category-variable}
\]

specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values.

The CATEGORY axis is always discrete.

\[
\text{RESPONSE=numeric-variable}
\]

specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

**Optional Arguments**

\[
\text{ATTRID=character-value}
\]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

\[
\text{BARWIDTH=numeric-value}
\]

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.
Defaults
.8
1.0 when the GROUP option is specified and
GROUPDISPLAY=CLUSTER

Range
0.0 (narrowest) to 1.0 (widest)

Interaction
When the GROUP option is specified, the bar width is determined by
the maximum number of bars in any one group cluster. All bars are
drawn with the same width. The cluster is positioned symmetrically
around the midpoint.

**BASELINE=numeric-value**
specifies the response axis intercept for the baseline.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later
releases.

The baseline is always displayed in the chart, even when this option is not specified.
In that case, the default value is used. When this option is specified, the axis range is
adjusted to include the baseline, and the baseline is placed at the specified value on
the response axis.

Default
0

Interaction
When a logarithmic response axis is used and BASELINE= specifies 0
or a negative value, the response axis reverts to a linear axis. To restore
the log axis in that case, set BASELINE= to a positive value.

Tips
The appearance of the baseline is controlled by the
BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the
line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the baseline.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later
releases.

You can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override
specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default
The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR,
LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:

`baselineattrs=(thickness=0)`
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0
(narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are
clustered around a midpoint (category value). The bar width is applied to the
maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interaction This option is applicable only when the GROUP option is specified,
when GROUPDISPLAY=CLUSTER, and when the category axis is
discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

style-element specifies the name of a style element. The style element should contain these
style attributes:

STARTCOLOR specifies the color for the smallest data value of the
COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the
COLORRESPONSE= column. This attribute is not
required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the
COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use
style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute
references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must
also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

The fill colors are assigned according to the legend gradient.
Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 196
“Using Gradient Color Legends” on page 1310

**DATALABEL <=variable>**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELFITPOLICY=policy-value**
specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

**NONE**

does not rotate the bar labels. Labels that are too long overlap.

**ROTATE**

rotates the text 90 degrees, but only if collisions occur.

**SPLIT**

splits the labels at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Tips Use the SPLITCHAR= option to specify a split character.
The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**SPLITALWAYS**

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

**Default**
The default split character is a space.

**Tips**
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**Defaults**

ROTATE if the column is numeric.

SPLIT if the column is character.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

**See**
“Overview of Collision Avoidance” on page 1312

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 6.32 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>Options</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image" alt="CRISP" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="MATTE" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image" alt="PRESSED" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

**Default**
NONE

**Restriction**
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interactions**
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and
FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

**Note**
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**See**
“Using Data Skins” on page 1343

**DISCRETEOFFSET=**\textit{numeric-value} 
specifies an amount to offset all bars from the category midpoints.

- **Default**: 0.0 (no offset)
- **Range**: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

**Interaction**
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**FILL | NOFILL** 
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

- **Default**: FILL
- **Interactions**: Specifying FILL also hides the outlines.

  If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=**\textit{style-element <(options)> | (options)}
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

- **Defaults**
  - Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.
  - 0.0 transparency

  **Interaction**
  This option has no effect if you specify the NOFILL option.

**FILLTYPE=**\textit{SOLID | GRADIENT} 
specifies the fill type that is applied to the chart.

**Note**: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID
Interaction This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK
Interaction This option is ignored unless GROUP= is specified.
Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

- **DATA**
  - orders the groups within a category in data order of the group variable.

- **REVERSEDATA**
  - orders the groups within a category in the reverse data order of the group variable.

  *Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

- **ASCENDING**
  - orders the groups within a category in ascending order of the group variable.

- **DESCENDING**
  - orders the groups within a category in descending order of the group variable.

  **Default:** ASCENDING

  **Interactions:** This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

**Notes:** Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

**Interaction:** The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default:** GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
LIMITLOWER=numeric-variable

specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.
Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Diagram" /></td>
<td><img src="image" alt="Diagram" /></td>
</tr>
</tbody>
</table>

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options) specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData$\ n$ style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SEGLABEL

displays a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

![Bar chart example]

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN
Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\textit{format}
specifies the text format used to display the bar segment labels.

\textit{Note:} This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.
Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR="\textit{character-list}"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"\textit{character-list} " is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.
Interaction This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**  This option has no effect unless SPLITCHAR= is also specified.

**See**  “Overview of Collision Avoidance” on page 1312

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.

**Note:** This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**  You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**  This option replaces all of the information that is displayed by default.

**Tip**  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  `tip=(age weight)`

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the **format-list** and the **variable-list** that is specified for the TIP= option. A format must be provided for each variable, using the same order as the **variable-list**. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  This option has no effect unless TIP= is also specified.
Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interaction
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.
VBOX Statement
Creates a vertical box plot that shows the distribution of your data.

**Restriction:** This plot has plot compatibility restrictions. See Table 10.2 on page 1307.

**Interaction:** The VBOX statement cannot be used together with other plot statements in the SGPANEL procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

**See:** “Visual Description of Box Plot Percentile Boundaries” on page 543

**Example:** “About Box Plots” on page 49

---

**Syntax**

\[ \text{VBOX } \text{numeric-analysis-variable } <\text{option(s)}>; \]

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=** *character-value*
  
  Specifies the value of the ID variable in a discrete attribute map data set.

- **BOXWIDTH=** *numeric-value*
  
  Specifies the width of the box.

- **CAPSHAPE=** *BRACKET | LINE | SERIF | NONE*
  
  Specifies the shape of the whisker cap lines.

- **CONNECT=** *MEAN | MEDIAN | Q1 | Q3 | MIN | MAX*
  
  Specifies that a connect line joins a statistic from box to box.

- **CONNECTATTRS=** *style-element <(options)> | (options)*
  
  Specifies the appearance of the lines that connect multiple boxes.

- **DATASKIN=** *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*
  
  Specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=** *numeric-value*
  
  Specifies an amount to offset all boxes from the discrete tick marks.

- **EXTREME**
  
  Specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

- **FILL | NOFILL**
  
  Specifies whether the boxes are filled with color.

- **FILLATTRS=** *style-element <(options)> | (options)*
  
  Specifies the fill color and transparency.

- **INTBOXWIDTH=** *numeric-value*
  
  Specifies the box width when an interval category (X) variable is specified.

- **LINEATTRS=** *style-element <(options)> | (options)*
  
  Specifies the appearance of the box outlines.

- **MEANATTRS=** *style-element <(options)> | (options)*
  
  Specifies the appearance of the marker that represents the mean in the box.

- **MEDIANATTRS=** *style-element <(options)> | (options)*
  
  Specifies the appearance of the line that represents the median.
NOCAPS
  hides the cap lines for the whiskers.

NOMEAN
  hides the mean marker.

NOMEDIAN
  hides the median line.

NOOUTLIERS
  hides the outliers from the plot.

NOTches
  specifies that the boxes be notched.

OUTLIERATTRS=style-element <(options)> | (options)
  specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

WHISKERATTRS=style-element <(options)> | (options)
  specifies the appearance of the whisker and cap lines.

WHISKERPCT=number
  specifies the whisker length, in percentile units.

Data tip options

  TIP=(role-list) | NONE
    specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

  TIPFORMAT=(format-list)
    applies formats to the list of data tip roles that you specify in the TIP= option.

  TIPLABEL=(label-list)
    applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

  CLUSTERWIDTH=numeric-value
    specifies the cluster width as a ratio of the midpoint spacing.

  GROUP=variable
    specifies a variable that is used to group the data.

  GROUPDISPLAY=CLUSTER | OVERLAY
    specifies how to display grouped boxes.

  GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.

Label options

  DATALABEL <=variable>
    adds data labels for the outlier markers.

  DATALABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the DATALABEL= option.

  LABELFAR
    specifies that only the far outliers have data labels.

  LEGENDLABEL="text-string"
    specifies a label that identifies the box plot in the legend.

  SPLITCHAR="character-list"
    splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
specifies the category variable for the plot.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as a valid category value and creates a box for it.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

SPREAD
relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.
LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default  SERIF

CATEGORY=category-variable
specifies the category variable for the plot. A box plot is created for each distinct
value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category
variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from
0.1 (narrowest) to 1.0 (widest).

Default  0.7

Interaction This option is applicable only when a GROUP is in effect and the
category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to
generate multiple boxes.

Tip You can use the CONNECTATRNS option to specify attributes for the
connect line.

CONNECTATRNS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default  GraphConnectLine style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped
data. The affected attributes are ContrastColor, LineStyle, and
LineThickness.

Interactions This option takes effect only if the CONNECT= option is also specified.
This option is ignored if the GROUP= option is also specified.

Examples CONNECTATRNS=(Color="light green" Pattern=MediumDash Thickness=4)
This example specifies a style element:
CONNECTATRNS=GraphData3
**DATALABEL <=variable>**
adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

**Note** This option has no effect unless the plot contains outlier points.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults** GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction** This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**Note:** This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 6.33 DATASKIN Options for Box Plots**

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![NONE]</td>
<td>![CRISP]</td>
<td>![GLOSS]</td>
</tr>
</tbody>
</table>

MATTE | PRESSED | SHEEN

Although the figure shows horizontal boxes, the data skin for vertical boxes is identical.
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See
“Using Data Skins” on page 1343

**DISCRETEOFFSET=** numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default 0.0 (no offset)

**EXTREME**
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL** | **NOFILL**
specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

**FILLATTRS=** style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

**FREQ=** numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.
Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Defaults
CLUSTER for a discrete category axis

OVERLAY for a linear axis

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.
DESCENDING
orders the groups within a category in descending order of the group variable.

Default | DATA

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

Restriction
The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example
```
proc sgpanel data=sashelp.class;
 panelby sex;
 vbox weight / category=height intboxwidth=50;
 colaxis type=linear;
run;
```

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note
This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.
Interactions

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=style-element <(options)> | (options)

specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default

GraphBoxMean style element in the current style for ungrouped data.

GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element <(options)> | (options)

specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphBoxMedian style element in the current style for ungrouped data.

GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option is ignored if the NOMEDIAN option is also specified.

MISSING

for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS

hides the cap lines for the whiskers.

Interaction

Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.
NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[ \text{median} \pm 1.58 \left( \frac{IQR}{\sqrt{N}} \right) \]

For a visual description of the parts of a box plot, see “Details” on page 542.

OUTLIERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphOutlier style element in the current style for ungrouped data.
GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot. For descriptions of each method, see “Calculating Percentiles” in the UNIVARIATE Procedure chapter of Base SAS Procedures Guide: Statistical Procedures.

Default 5

SPLITCHAR=“character-list”
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[ \text{SPLITCHAR} = \text{"abc"} \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**

“Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.

**See**

“Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**Default**

LEFT

**Interaction**

This option has no effect unless you specify the SPLITCHAR= option.

**See**

“Overview of Collision Avoidance” on page 1312

**SPREAD**

relocates outlier points that have identical values to prevent overlapping.

**Note**

This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

**TIP=(role-list) | NONE**

specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

**(role-list)**

a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

**NONE**

suppresses the data tips from this plot.

**Note:** This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.
Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(mean median)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of roles.

See *SAS Formats and Informats: Reference*

Example tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element <(options)> | (options)
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

WHISKERPCT=number
specifies the whisker length, in percentile units.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10th percentile low and the 90th percentile high
25 specifies the 25th percentile low and the 75th percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

Details

Statement Summary
The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries
Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Figure 6.10  Parts of a Box Plot

In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.
Outliers are observations that are more extreme than the upper and lower fences \(\pm 1.5 \times IQR\). Outliers that are beyond upper and lower far fences \(\pm 3 \times IQR\) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are \(3 \times IQR\) from the box have data labels.

**VECTOR Statement**

Creates a vector plot that draws arrows from a point of origin to each data point.

Example: “About Vector Plots” on page 44

**Syntax**

VECTOR \(X=\text{numeric-variable} \ Y=\text{numeric-variable} \ <\text{option(s)}>\);

**Summary of Optional Arguments**

**Appearance options**

ARROWDIRECTION=IN | OUT | BOTH
specifies the location of the arrowheads for the vectors.

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

LINEATTRS=style-element | (options) | (options)
specifies the appearance of the vector line.

NOARROWHEADS
removes the arrowheads from the vectors.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Data tip options**
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options
DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the vector plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options
XORIGIN=numeric-value | numeric-variable
specifies the X coordinate of the origin for the vectors.

YORIGIN=numeric-value | numeric-variable
specifies the Y coordinate of the origin for the vectors.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Required Arguments
X=numeric-variable
specifies a numeric variable for the x axis.

Y=numeric-variable
specifies numeric variable for the y axis.
Optional Arguments

ARROWDIRECTION=IN | OUT | BOTH
specifies the location of the arrowheads for the vectors. Specify one of the following:

IN
places the arrowheads at the origin of the vector.

OUT
places the arrowheads at the ending point of the vector.

BOTH
places arrowheads at both the origin and ending point of the vector.

Default OUT

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors. Specify one of the following:

OPEN
resembles the letter "V".

CLOSED
an outline of a triangle.

FILLED
a solid triangle.

BARBED
a solid triangle with an indent at the base.

Default OPEN

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

style-element
specifies the name of a style element. The style element should contain these
style attributes:

STARTCOLOR specifies the color for the smallest data value of the
COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the
COLORRESPONSE= column. This attribute is not
required when you specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 196
“Using Gradient Color Legends” on page 1310

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the GraphData1...GraphData\textit{n} style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**

specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when \texttt{GROUP=} is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

\textit{Note: } This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

**Table 6.34  DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

**GROUP=variable**
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

**LEGENDLABEL="text-string"**
specifies a label that identifies the vector plot in the legend. By default, the label of the Y variable or the group value for each plot element is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the vector line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NAME="text-string"**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOARROWHEADS**
removes the arrowheads from the vectors.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the plot.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[ \text{SPLITCHAR="abc"} \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

THICKMAX=dimension specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
Ten times the thickness that is specified by the GraphDataDefault style
element LineThickness attribute.

The THICKRESP= option must be specified for this option to have
any effect.

The THICKMAXRESP= option specifies the response value at which
this maximum line thickness is reached. The line thickness for
response values that exceed the THICKMAXRESP= value are set to
the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and
THICKMAXRESP= option values is less than 0.5 for a line, that line
is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and
Arrowheads” on page 1233 for an example of how to use this option.

**THICKMAXRESP=numeric-value**

specifies the response value that corresponds to the maximum line thickness.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The maximum value in the response column that is specified in the
THICKRESP= option.

The THICKRESP= option must be specified for this option to have
any effect.

The thickness for all lines that exceed the maximum response value is
set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and
THICKMAXRESP= option values is less than 0.5 for a line, that line
is not drawn.

**THICKRESP=numeric-variable**

specifies a response variable that is used to map a line thickness to each group value.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The GraphDataDefault style element LineThickness attribute.

The THICKRESP= values are assumed to be constant for each group
value. If the THICKRESP column has multiple values for a single
GROUP value, only one of the THICKRESP= values is used for that
group.

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

When the column values are all zero, all negative, or all missing, this
option is ignored. In that case, the default line thickness is used for all
of the lines.
The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See "Example 12: Series Plot with Line-Thickness Response and Arrowheads" on page 1233 for an example of how to use this option.

<table>
<thead>
<tr>
<th>**TIP=(variable-list)</th>
<th>NONE**</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the data tip information to be displayed when the cursor is positioned over the graphics element.</td>
<td></td>
</tr>
<tr>
<td>(variable-list)</td>
<td></td>
</tr>
<tr>
<td>a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.</td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>suppresses the data tips from this plot.</td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong> This feature applies to the first maintenance release of SAS 9.4 and to later releases.</td>
<td></td>
</tr>
</tbody>
</table>

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

<table>
<thead>
<tr>
<th>TIPFORMAT=(format-list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>applies formats to the list of data tip variables that you specify in the TIP= option.</td>
</tr>
<tr>
<td>Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.</td>
</tr>
<tr>
<td>A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.</td>
</tr>
</tbody>
</table>

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
```
tipformat=(auto F5.2)
```
TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

 Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
 option provides a way to specify labels for the variable data that appears in the data
 tips.

 A one-to-one correspondence exists between the label-list and the variable-list that is
 specified for the TIP= option. A label must be provided for each variable, using the
 same order as the variable-list. If you do not want to apply a custom label to a
 variable, use the AUTO keyword instead.

 Requirement A label or the keyword AUTO must be provided for each variable
 that is listed in the TIP= option. When AUTO is used, the label is
 obtained from the variable.

 Interaction This option has no effect unless TIP= is also specified.

 Tip Use the TIPFORMAT option to assign formats to the list of variables.

 Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
 specifies the degree of transparency for the plot. The transparency that you specify
 applies to all aspects of the plot statement.

 Default 0.0

 Range 0 (completely opaque) to 1 (completely transparent)

XORIGIN=numeric-value | numeric-variable
 specifies the X coordinate of the origin for the vectors. You can specify either a
 numeric value or a numeric variable.

 Default 0

YORIGIN=numeric-value | numeric-variable
 specifies the Y coordinate of the origin for the vectors. You can specify either a
 numeric value or a numeric variable.

 Default 0

VLINE Statement

Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR
statement to create a bar-line chart.

Interaction: The VLINE statement can be combined only with other categorization plot
statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.

See:

Examples: “About Line Charts” on page 61
 “Example 4: Creating a Panel of Line Charts” on page 629
Syntax

\texttt{VLINE category-variable \langle/option(s)\rangle;}

Summary of Optional Arguments

Appearance options

\texttt{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set.

\texttt{BREAK}

creates a break in the line for each missing value of the response variable.

\texttt{DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot.

\texttt{DISCRETEOFFSET=numeric-value}

specifies an amount to offset all lines from discrete category values.

\texttt{LINEATTRS=style-element \langle/options\rangle | \langle/options\rangle}

specifies the appearance of the lines in the line plot.

\texttt{TRANSPARENCY=value}

specifies the degree of transparency for the plot.

Data tip options

\texttt{TIP=(variable-list) | NONE}

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\texttt{TIPFORMAT=(format-list)}

applies formats to the list of data tip variables that you specify in the TIP= option.

\texttt{TIPLABEL=(label-list)}

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

\texttt{CLUSTERWIDTH=numeric-value}

specifies the width of the group clusters as a fraction of the midpoint spacing.

\texttt{GROUP=variable}

specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=CLUSTER | OVERLAY}

specifies how to display grouped lines.

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}

specifies the ordering of the groups within a category.

Label options

\texttt{CURVELABEL <="text-string"} \\

adds a label for the line plot.

\texttt{CURVELABELATTRS=style-element \langle/options\rangle | \langle/options\rangle}

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

\texttt{CURVELABELPOS=MIN | MAX | START | END}

specifies the location of the curve label.

\texttt{DATALABEL <=variable} \\

displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list”
splits the text for curve and data labels at the specified characters when there
is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates a line for it.

RESPONSE=response-variable

specifies a numeric response variable for the plot.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable

specifies how observations are weighted.

Plot reference options

NAME=“text-string”

specifies a name for the plot.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis.

Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions

This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BREAK

creates a break in the line for each missing value of the response variable.

Notes

The observation is excluded from the graph when there is a missing value for the category variable without the specification of the MISSING option. (No break occurs in the line.)

The observation is excluded from the graph when there is a missing value for the FREQ variable.
CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

<table>
<thead>
<tr>
<th>Default</th>
<th>By default, the plot is sorted in ascending order based on the category values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.</td>
</tr>
<tr>
<td>Requirement</td>
<td>This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.</td>
</tr>
<tr>
<td>Interactions</td>
<td>When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category. When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.</td>
</tr>
<tr>
<td>Notes</td>
<td>Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored. If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.</td>
</tr>
</tbody>
</table>

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

<table>
<thead>
<tr>
<th>Default</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.</td>
</tr>
</tbody>
</table>

CURVELABEL "text-string"
adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

| Interaction | If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall |
outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element `<(options)>` | `(options)`
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

- **MIN**
 places the label at the part of the curve closest to the minimum X axis value.

- **MAX**
 places the label at the part of the curve closest to the maximum X axis value.

- **START**
 places the curve label at the first point on the curve.

- **END**
 places the curve label at the last point on the curve.

Default
END

Interaction
This option has no effect unless the CURVELABEL option is also specified.

DATALABEL `<variable>`
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element `<(options)>` | `(options)`
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 6.35 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.
Table 6.36 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>Symbol</th>
<th>Symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

See “Using Data Skins” on page 1343

DISCRETOFFSET=numeric-value

specifies an amount to offset all lines from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement

This option is applicable only when the category axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions

This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROVALINEATTRS= options to specify attributes for the fill and outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.
Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

Default	OVERLAY

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
ASCENDING

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.
By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
 confidence limits
- **STDDEV**
 standard deviation
- **STDERR**
 standard error

Default **CLM**

If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS=

specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default

GraphDataDefault style element in the current style for ungrouped
data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and
LineThickness

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and
Outlines” on page 1315.

MARKERS

adds data point markers to the plot.

MISSING

for group data, processes missing values as a valid category value and creates a line
for it. If more than one chart is specified in the procedure, the MISSING option
affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other
statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.
NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SPLITCHAR=“character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

`SPLITCHAR="abc"`

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
• If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
• If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.
SUM
the sum of the response variable. This is the default value when you specify the
RESPONSE= option.

Interaction For this value to take effect, you must also specify the
RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the
FREQ or PERCENT statistic is calculated (FREQ is the default). If you
specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable
name in the axis label and the legend (if it is created). However, if a
label has been assigned to the variable, then the label appears in the
axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend
labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes
the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response
variable. However, when a custom label is assigned to the response variable, the
procedure does not display the statistic. In each case, you can control whether the
statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic
is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the
LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to
later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;
Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each
plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the
ODS GRAPHICS statement. For example, add the following
statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement”
on page 1371.

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value
of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an
observation’s weight is zero, negative, or missing, the observation is
deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also
specify WEIGHT=, then the first WEIGHT variable that you
specified is used for all of the plots.

COLAXIS Statement
Specifies the axis options for each X axis in the panel. You can control the features of the axis (for
every example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for
every example, the data range, data type, and tick mark values).

Syntax

COLAXIS option(s);

Summary of Optional Arguments

Appearance options
ALTERNATE
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=interval-value
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.

REFTICKS <=(options)>
adds tick marks to the side of the panel that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element <(options)>(options)
specifies the appearance of the axis labels.

LABELPOS= CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY= LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <(options)>(options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) ("string-list")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.
Optional Arguments

ALTERNATE
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

\[
\begin{align*}
\text{COLORBANDS=ODD} & \quad \text{COLORBANDS=EVEN} \\
\text{Thomas} & \quad \text{Thomas} \\
\text{Alice} & \quad \text{Alice} \\
\text{James} & \quad \text{James} \\
\text{Joyce} & \quad \text{Joyce} \\
60 & \quad 60 \\
90 & \quad 90 \\
100 & \quad 100 \\
\text{Weight (Sum)} & \quad \text{Weight (Sum)}
\end{align*}
\]

Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element (options) | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

FORMATTED
sorts the formatted values in ascending character order.
UNFORMATTED
 sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. Options can be any of the following:

NOLABEL
 hides the axis label

NOLINE
 hides the axis line

Tips
 This value hides the axis line, but has no effect on the cell border. To hide the border, specify NOBORDER in the PANELBY statement.

 This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
 hides the tick marks on the axis

NOVALUES
 hides the tick mark values on the axis

Default ALL

Interaction If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

ROTATE
 rotates the value text 45 degrees.

 TIP Use VALUESROTATE= to specify how the tick values are rotated on the axis.

 Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

ROTATETHIN
 attempts to use ROTATE, and then THIN to fit the values.

 Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.
SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.
Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.
Restriction This option has no effect unless the axis is discrete.
Tip You can specify the split character using the SPLITCHAR= option.

SPLITROTATE
attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

STAGGER
shifts the values up and down.

STAGGERROTATE
attempts to use STAGGER, and then ROTATE to fit the values.

Interaction When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction This option does not affect logarithmic axes.

See “Fit Policies for Axes” on page 1314

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.
Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=<style-element> <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
```
GRIDATTRS=(color=green pattern=longdash thickness=2)
```

Here is an example that specifies a style element:
```
GRIDATTRS=GraphAxisLines
```

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=<interval-value>
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 6.37 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
</tbody>
</table>
INTERVAL

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

LABEL=“text-string”
specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LABELPOS=CENTER | DATA CENTER | LEFT | RIGHT
specifies the position of the axis label.

CENTER

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values.
DATACENTER centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values.

LEFT positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the LEFT and RIGHT positions for the same axis labels.

Default CENTER

LOGBASE=2 | 10 | e specifies the base value for the logarithmic scale.

Default 10
This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT

-specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND

places the tick marks at integer powers of the base. For example, if you specified `LOGBASE=2`, the tick marks might be at 1, 2, 4, 8, 16. See Figure 6.11 on page 578.

Figure 6.11 Graph Axes with LOGEXPAND

LOGEXPONENT

places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified `LOGBASE=10`, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 6.12 on page 578.

Figure 6.12 An Axis with LOGEXPONENT

LINEAR

places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 6.13 on page 578.

Figure 6.13 An Axis with LINEAR

Default

LOGEXPAND

Interaction

This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT

-specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED

the values are interpreted as integer powers of the base (decimal numbers).
EXPONENT

the values are interpreted as integer exponents of the base.

Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
rowaxis type=log logbase=10 logstyle=logexpand
  logvtype=exponent
  min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
colaxis type=log logbase=10 logstyle=logexponent
  logvtype=expanded
  values=(10 100 1000 10000 100000);
```

MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.
This option does not determine the minimum axis tick value displayed. The \texttt{THRESHOLDMIN=} value is used to determine the minimum tick value.

For logarithmic axes, use the \texttt{LOGVTYPE} option to control whether the minimum value is expanded or interpreted as an exponent.

| Tip | The minimum axis tick value might differ from the \texttt{MIN=} value. The \texttt{MIN=} and \texttt{MAX=} values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the \texttt{MIN=} value as the minimum tick value, use the \texttt{VALUES=} option. |

\textbf{MINOR}	adds minor tick marks to a linear, log, or time axis.
Restriction	This option has no effect on discrete axes.
Interaction	This option has no effect if you specify the \texttt{VALUES=} option.
Tip	Use \texttt{MINORCOUNT=} to specify the number of tick marks.

\textbf{MINORCOUNT=} \texttt{numeric-value}	specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.
Restriction	This option applies to linear and log axes only.
Note	Starting with the second maintenance release for SAS 9.4, this option does not automatically add minor tick marks to the axis. Use the \texttt{MINOR} option to add tick marks.

| \textbf{MINORGRID} | creates grid lines at each minor tick on the axis. |
| Interaction | This option has no effect unless \texttt{GRID} is also specified for the axis. |

\textbf{MINORGRIDATTRS=} \texttt{style-element} \texttt{<(options)>	(options)}	specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes. For a description of the line options, see “Line Attributes and Patterns” on page 1320.
Default	GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.	
Interaction	This option has no effect unless \texttt{MINORGRID} is also specified.	
Tip	You can use \texttt{GRIDATTRS=} to change the appearance of the major grid lines.	
Examples	\texttt{MINORGRIDATTRS=(color=green pattern=longdash thickness=2)}	

Here is an example that specifies a style element:

\texttt{MINORGRIDATTRS=GraphAxisLines}
MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 6.37 on page 575.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

REFTICKS <=(options)>
adds tick marks to the side of the panel that is opposite from the specified axis. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR=“character-list”
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. The text value is split at every
occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[\text{SPLITCHAR} = "abc" \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Restriction: This option has no effect unless the axis is discrete.

Interactions: This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See: “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default: LEFT

See: “Overview of Collision Avoidance” on page 1312

THRESHOLDMAX=numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default: 0.30

Range: 0 to 1
Restriction
This option applies to linear axes only.

Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

THRESHOLDMIN=`numeric-value`
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default
0.30

Range
0 to 1

Restriction
This option applies to linear axes only.

Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

TYPE=`DISCRETE | LINEAR | LOG | TIME`
Specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.
Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

• VALUES= (values-list) specifies tick values for linear, time, and logarithmic axes.

• VALUES=(“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)
For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES= (0 50 100) places tick marks at 0, 50, and 100.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES= (0 to 100 by 50) creates tick marks at 0, 50, and 100.

Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

<value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>
creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is
specified by `value-2`. The `increment-value` specifies the interval between the ticks.

For example, `VALUES= (-5 10 to 50 by 20 75)` creates tick marks at –5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

- `value <...value-n>` creates ticks for specific values. For example, `VALUES= ("25MAY08"d "04JUL08"d "23AUG08"d)` places tick marks at 25MAY08, 04JUL08, and 23AUG08.

- `value-1 TO value-2 BY increment-value` creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks. For example, `VALUES= ("01JAN08"d to "01MAY08"d by month)` creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the `INTERVAL=` option.

Restrictions

- This option has no effect on discrete axes.

- If your `VALUES=` option creates more than 1000 values, then the option has no effect.

Interactions

- For logarithmic axes, use the `LOGVTYPE` option to control whether the values are expanded or interpreted as exponents.

- If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

- Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.

VALUES=(“string-list”)

- For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

- Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Note: For an example that is used in the SGPLOT procedure, see Table 7.39 on page 1135.

Restrictions

- This option has no effect on linear, time, or logarithmic axes.

- Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes

- If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.
The axis data can be character or numeric.

Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```plaintext
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```plaintext
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

Tip

Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction

This option applies only to linear and discrete axes.

Interaction

This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

VALUESFORMAT=DATA | SAS-format

specifies how to format the values for major tick marks.

Note: Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format

specifies a format to apply to the major tick values.

Restriction

This option currently honors most, but not every, SAS format. For more information, see “SAS Formats Not Supported” in SAS Graph Template Language: Reference.
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

For discrete axes, only character formats are supported.

This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

This option has no effect unless you also specify the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL specifies how the tick values are rotated on the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DIAGONAL
rotates the tick values to a 45-degree diagonal position.

VERTICAL
rotates the tick values to a 90-degree vertical position. The values are always drawn from bottom to top.

Default DIAGONAL

This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

COLAXISTABLE Statement

Creates an event plot of input data along the X axis, placing data values at specific locations inside the axis. The SGPANEL procedure can contain multiple COLAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with a COLAXISTABLE statement, the COLAXISTABLE statement is rejected with a message.
Axis tables are separate plots and are unaware of the options specified in the accompanying plots.
Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Syntax

```plaintext
COLAXISTABLE variable <…variable-n> <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.
- **COLORGROUP=variable**
 specifies a variable that is used to determine the color of the table values.
- **DROPONMISSING**
 specifies that the entire axis table is dropped when all of the values are missing.
- **NOMISSINGCHAR**
 suppresses the display of the MISSING character (.) for missing numeric values.
- **PAD=dimension | (pad-options)**
 specifies the amount of extra space that is added inside the table border.
- **POSITION=BOTTOM | TOP**
 specifies the position of the axis table at the bottom or top of the graph.
- **SEPARATOR**
 creates a separating line between the axis table or axis tables and the plot.
- **TEXTGROUP=attribute-map-group-variable**
 specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.
- **TEXTGROUPID=attribute-map-id**
 specifies an attribute ID for the TEXTGROUP= option.
- **VALUEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the axis table values.

Class options

- **CLASS=variable**
 creates a separate axis table for each unique value of the specified variable.
- **CLASSDISPLAY=STACK | CLUSTER**
 specifies how the class values are displayed.
- **CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
 specifies the order in which the class values are displayed.
- **NOMISSINGCLASS**
 specifies that missing values of the class variable are not included in the table.
Label options

- **LABEL | NOLABEL | LABEL="text-string"**
 specifies whether the table label is shown or hidden.
- **LABELATTRS=style-element<(options)> | (options)**
 specifies the color and font attributes of the axis table label.
- **LABELPOS=LEFT | RIGHT**
 specifies the position of the labels at the left or right side of the axis table.
- **STATLABEL | NOSTATLABEL**
 specifies whether the variable statistic is displayed in the table’s label.

Plot options

- **STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
 specifies the statistic for the axis table.
- **X=variable**
 Specifies the X variable to use to align the table values to the X axis.

Plot reference options

- **NAME="text-string"**
 specifies a name for the plot.

Title options

- **TITLE="text-string"**
 specifies a title for the axis table.
- **TITLEATTRS=style-element<(options)> | (options)**
 specifies the appearance of the title for the axis table.

Required Argument

- **variable <…variable-n>**
 specifies one or more variables for the axis table.

 When multiple variables are specified, the axis tables are stacked one on the other. Any options that you add to the statement apply to all the variables that are specified in that statement.

Note When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

Optional Arguments

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

 See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
 “Overview of Attribute Maps” on page 1383
CLASS=variable

creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction
The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction
If NOLABEL is also specified, then the class labels are removed.

Tips
Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

STACK
displays the class values vertically at each midpoint value on the X axis.

CLUSTER
displays the class values horizontally at each midpoint value on the X axis.

Default STACK

Interaction
For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default DATA

Interactions
This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

For this option to have any effect, the CLASS= option must be specified.
COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the
variable values are found, the value colors are taken from the GraphData1 ...
GraphData style elements in the current style. The CONTRASTCOLOR attribute is
used for the value text.

Interaction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements,
this option has no effect unless the accompanying chart specifies the
same GROUP variable.

Note This option is used only to color the table values. If you want to set
additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing.
Consider using this option if the SAS log indicates that the specified data column
used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden. If you specify LABEL=, then
you can also specify a text string for the label.

Note: The ability to specify a text string applies to the third maintenance release of
SAS 9.4 and to later releases.

Defaults LABEL

If you do not specify a text string, then the variable name is used for the
label. Or, if CLASS= is also specified, then the unique values of the
specified class variable are used for the labels.

Tip Use the LABELATTRS= option to modify the label text attributes. Use
the LABELPOS= option to move the label.

LABELATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the axis table label. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults For non-grouped data, the GraphValueText style element in the current
style. The affected attributes are Color, FontFamily, FontSize,
FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color
derived from the ContrastColor attribute of the
GraphData1...GraphData style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the
font properties such as color, family, size, weight, and style, then the
properties that are not specified are derived from the GraphValueText style element.

LABELPOS=LEFT | RIGHT

specifies the position of the labels at the left or right side of the axis table.

Default LEFT

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR

suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOMISSINGCLASS

specifies that missing values of the class variable are not included in the table.

Interaction For this option to have any effect, the CLASS= option must be specified.

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the table border.

dimension

specifies a dimension to use for the extra space at the table border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

TOP=dimension

specifies the amount of extra space added to the top.

Default 0 px

BOTTOM=dimension

specifies the amount of extra space added to the bottom.

Default 0 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use *pad-options* to create non-uniform padding.

Note The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list
of measurement units that are supported, see “Units of Measurement” on page 1325.

POSITION=BOTTOM | TOP
specifies the position of the axis table at the bottom or top of the graph.

Default BOTTOM

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ
the frequency of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the PROC SGPANEL statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Default SUM
Restrictions

Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction

Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL

specifies whether the variable statistic is displayed in the table’s label. STATLABEL forces the statistic to be displayed in the label. NOSTATLABEL removes the statistic from the label.

Defaults

The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction

This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable

specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Requirement

The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction

When this option is specified, the COLORGROUP= option is ignored.

See

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TEXTGROUPID=attribute-map-id

specifies an attribute ID for the TEXTGROUP= option.

Default

If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TITLE="text-string"

specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip

Use the TITLEATTRS= option to modify the title text attributes.
TITLEATTRS=<style-element><(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interactions
This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

VALUEATTRS=<style-element><(options)> | (options)
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interactions
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

X=<variable>
Specifies the X variable to use to align the table values to the X axis.

Default
X variable of the primary plot
Interaction

This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Example: COLAXISTABLE Statements

This example shows axis tables along the X axis of a scatter plot that plots student height.

Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student above the X axis. The ages appear on different rows because the CLASS=AGE option is used.
- The second axis table statement specifies two variables, height and weight.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=5in;
proc sgpanel data=sashelp.class (where=(age < 13));
  panelby sex / uniscale=row;
  scatter x=name y=height;
  colaxistable age / class=age title="Student Age"
    valueattrs=(color=red)
    labelattrs=(color=red)
    titleattrs=(color=red);
  colaxistable weight height / valueattrs=(color=blue);
run;
```

For an example that shows vertical axis tables along the Y axis, see “Example: ROWAXISTABLE Statements” on page 624.
ROWAXIS Statement

Specifies the axis options for each Y axis in the panel. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
ROWAXIS option(s);
```

Summary of Optional Arguments

Appearance options

- **ALTERNATE**
 adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

- **COLORBANDATRRS=**
 specifies the fill appearance of the color band.

- **COLORBANDS=**
 specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- **DISPLAY=**
 specifies which features of the axis are displayed.

- **GRID**
 creates grid lines at each tick on the axis.

- **GRIDATTRS=**
 specifies the appearance of the grid lines.

- **MINORGRID**
 creates grid lines at each minor tick on the axis.

- **MINORGRIDATTRS=**
 specifies the appearance of the minor grid lines.

Axis options

- **DISCRETEORDER=**
 specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

- **INTEGER**
 specifies that only integers are used for tick mark values.

- **INTERVAL=**
 specifies the tick interval for a time axis.

- **LOGBASE=**
 specifies the base value for the logarithmic scale.

- **LOGSTYLE=**
 specifies how to scale and format the values for the major tick marks for logarithmic axes.

- **LOGVTYPE=**
 specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.
MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.

REFTICKS <(options)>
adds tick marks to the side of the panel that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels.

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis.

VALUESDISPLAY=
 specifies the text that is to be displayed for the tick values that are defined in
 the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHALIGN=LEFT | CENTER | RIGHT
 specifies the horizontal alignment for all of the tick values that are displayed
 on the axis.

VALUESHINT
 specifies that the minimum and maximum axis values are determined
 independently of the values that you specify in the VALUES= option.

Optional Arguments

ALTERNATE
 adds reference ticks to each side of the panel and alternates the tick values for each
 row or column between the two sides.

COLORBANDS=NONE | EVEN | ODD
 specifies the display of alternating wall-color bands corresponding to the discrete
 axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction This option applies to discrete axes only.

Interaction Specifying this option for more than one axis in the graph might have
unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note The full width of a color band is the distance between midpoints. When
no axis offsets are specified, the first band begins at one-half of the
midpoint distance, and the last band ends at one-half of the midpoint
distance. When axis offsets are specified, the first and last color bands
on the axis might extend into their adjacent offsets by as much as half
the color-band width.

Tip Use the COLORBANDATTRS= option to customize the color bands.
COLORBANDATTRS=\texttt{style-element \langle (options) \rangle | (options)}
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Interaction This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=\texttt{DATA | FORMATTED | UNFORMATTED}
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

\texttt{DATA}
places the values in the order in which they appear in the data.

\texttt{FORMATTED}
sorts the formatted values in ascending character order.

\texttt{UNFORMATTED}
sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=\texttt{ALL | NONE | \langle (options) \rangle}
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. Options can be any of the following:

\texttt{NOLABEL}
hides the axis label

\texttt{NOLINE}
hides the axis line

Tips This value hides the axis line, but has no effect on the cell border. To hide the border, specify NOBORDER in the PANELBY statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

\texttt{NOTICKS}
hides the tick marks on the axis

\texttt{NOVALUES}
hides the tick mark values on the axis

Default ALL

Interaction If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=\texttt{NONE | SPLIT | SPLITALWAYS | THIN}
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:
NONE

does not split the values.

SPLIT

splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

THIN

removes some of the values from the axis.

Default THIN

See “Fit Policies for Axes” on page 1314

GRID

creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)

specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.

Interaction This option has no effect unless GRID is also specified.
Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=interval-value
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select *AUTO, SECOND, MINUTE, or HOUR*.

Specify one of the following values:

Table 6.38 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR</td>
</tr>
</tbody>
</table>

Default: AUTO

LABEL=“text-string”

specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.

BOTTOM

positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.

CENTER

centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

DATACENTER

centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

TOP

positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.
The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
</table>

The next figure shows the TOP and BOTTOM positions for the same axis labels.

<table>
<thead>
<tr>
<th>TOP</th>
<th>BOTTOM</th>
</tr>
</thead>
</table>

Default: CENTER

LOGBASE=2 | 10 | e

specifies the base value for the logarithmic scale.

Default: 10

Interaction: This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:
LOGEXPAND places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 6.14 on page 605.

Figure 6.14 Graph Axes with LOGEXPAND

LOGEXPONENT places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 6.15 on page 605.

Figure 6.15 An Axis with LOGEXPONENT

LINEAR places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 6.16 on page 605.

Figure 6.16 An Axis with LINEAR

Default LOGEXPAND

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGVTYPEx=EXPANDED | EXPONENT specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT the values are interpreted as integer exponents of the base.

Default EXPANDED
Interaction

This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip

This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
rowaxis type=log logbase=10 logstyle=logexpand
    logvtype=exponent
    min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
colaxis type=log logbase=10 logstyle=logexponent
    logvtype=expanded
    values=(10 100 1000 10000 100000);
```

MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction

This option affects linear, log, and time axes only.

Interactions

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

 Restriction

This option affects linear, log, and time axes only.

Interactions

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether
the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The
MIN= and MAX= values, and additional factors such as thresholds
and the tick values computed by the plot statement, are used to
determine the axis tick values. To display the MIN= value as the
minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the
number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
Starting with the second maintenance release for SAS 9.4, this option
does not automatically add minor tick marks to the axis. Use the
MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction
This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default
GraphMinorGridLines style element in the current style for ungrouped
data. GraphData1 ... GraphData\(n\) style elements in the current style for
grouped data.

Interaction
This option has no effect unless MINORGRID is also specified.

Tip
You can use GRIDATTRS= to change the appearance of the major grid
tlines.

Examples
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
 specifies the time interval between minor ticks. The interval that you select must be
consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select *AUTO, SECOND, MINUTE, or HOUR*.

For information about the intervals that you can select, see Table 6.38 on page 602.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX= *numeric-value*

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. For these plots, OFFSETMAX= creates an offset at the end of the Y axis nearer to the origin.

OFFSETMIN= *numeric-value*

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. For these plots, OFFSETMIN= creates an offset at the end of the Y axis farther from the origin.

REFTICKS <=(options)>**

adds tick marks to the side of the panel that is opposite from the specified axis. You can also specify *options*:

LABEL

in addition to the tick marks, displays the axis label.
VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default	Values are not split.
Restriction	This option has no effect unless the axis is discrete.
Interactions	This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

| See | “Overview of Collision Avoidance” on page 1312 |

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT
See “Overview of Collision Avoidance” on page 1312

THRESHOLDMAX= numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to linear axes only.</td>
</tr>
<tr>
<td>Tips</td>
<td>If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.</td>
</tr>
</tbody>
</table>

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN= numeric-value

Specifies a threshold for displaying one more tick mark at the low end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to linear axes only.</td>
</tr>
<tr>
<td>Tips</td>
<td>If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.</td>
</tr>
</tbody>
</table>

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TYPE= DISCRETE | LINEAR | LOG | TIME

specifies the type of axis. Specify one of the following values:

DISCRETE

specifies an axis with discrete values. If a character variable is assigned to an axis, then that the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

LINEAR

specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.
LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

• VALUES= (values-list) specifies tick values for linear, time, and logarithmic axes.

• VALUES= (“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)
For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value
specifies the interval between the ticks. For example, \texttt{VALUES=(0 to 100 by 50)} creates tick marks at 0, 50, and 100.

\textit{Note:} If you omit the \textit{increment-value}, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\texttt{<value ... value-n>value-1 TO value-2 BY increment-value <value ... value-n>} creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \textit{value-1} and the end of the range is specified by \textit{value-2}. The \textit{increment-value} specifies the interval between the ticks.

For example, \texttt{VALUES=(-5 10 to 50 by 20 75)} creates tick marks at –5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

\texttt{value <...value-n>}

creates ticks for specific values. For example, \texttt{VALUES=("25MAY08"d "04JUL08"d "23AUG08"d)} places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \textit{value-1} and the end of the range is specified by \textit{value-2}. The \textit{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=("01JAN08"d to "01MAY08"d by month)} creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the \texttt{INTERVAL=} option.

\textbf{Restrictions} This option has no effect on discrete axes.

\begin{tabular}{|l|}
\hline
If your VALUES= option creates more than 1000 values, then the option has no effect. \\
\hline
\end{tabular}

\textbf{Interactions} For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

\begin{tabular}{|l|}
\hline
If a custom format is applied to the value, the raw value is plotted first and then formatted. \\
\hline
\end{tabular}

\textbf{Tip} Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

\texttt{VALUES=("string-list")}

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

\textit{Note:} For an example that is used in the SGPLOT procedure, see Table 7.39 on page 1135.
Restrictions
This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

values=('Sedan' 'Sports' 'Wagon' 'SUV')

The following example specifies the axis tick values 10, 20, 30, and 40:

values=('10' '20' '30' '40')

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

TIP
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction
This option applies only to linear and discrete axes.

Interaction
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

VALUESFORMAT=DATA | SAS-format

specifies how to format the values for major tick marks.

Note: Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.
DATA
uses the format that has been assigned to the column that is contributing to the
axis (or BEST6 if no format is assigned) in order to control the formatting of the
major tick values.

SAS-format
specifies a format to apply to the major tick values.

Restriction
This option currently honors most, but not every, SAS format. For
more information, see “SAS Formats Not Supported” in SAS Graph
Template Language: Reference.

Note
If you specify a format that significantly reduces precision, then,
because of tick-value rounding, the plot data elements might not
align properly with the axis tick values. In that case, specify a tick-
value format with a higher precision.

Restriction
For discrete axes, only character formats are supported.

Interactions
This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE =LOGEXPAND, this option is honored for the
base 10 and base 2 logarithmic scales, and is ignored for the base E
scale.

When LOGSTYLE =LINEAR, this option is honored for the base 10,
base 2, and base E logarithmic scales.

VALUESALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the
axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

Default
RIGHT

Interaction
This option is ignored when FITPOLICY= is specified as either SPLIT
or SPLITALWAYS. To align split tick mark values, use the
SPLITJUSTIFY= option.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently
of the values that you specify in the VALUES= option. The values from the
VALUES= option are displayed only if they are located between the minimum and
maximum values.

Interaction
This option has no effect unless you also specify the VALUES= option.

ROWAXISTABLE Statement

Creates an event plot of input data along the axis, placing data values at specific locations inside the axis.
The SGPANEL procedure can contain multiple ROWAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with
the category axis of the chart. If a statement uses the wrong orientation, the
statement is rejected with a message in the SAS log. For example, if your procedure has a VBAR statement along with a ROWAXISTABLE statement, the ROWAXISTABLE is rejected with a message.

Axis tables are separate plots and are unaware of the options specified in the accompanying plots.

Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Syntax

```sas
ROWAXISTABLE variable <…variable-n> </option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `COLORGROUP=variable` specifies a variable that is used to determine the color of the table values.
- `DROPONMISSING` specifies that the entire axis table is dropped when all of the values are missing.
- `NOMISSINGCHAR` suppresses the display of the MISSING character (.) for missing numeric values.
- `PAD=dimension | (pad-options)` specifies the amount of extra space that is added inside the table border.
- `POSITION=LEFT | RIGHT` specifies the position of the axis table at the left or right side of the graph cell.
- `SEPARATOR` creates a separating line between the axis table or axis tables and the plot.
- `TEXTGROUP=attribute-map-group-variable` specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.
- `TEXTGROUPID=attribute-map-id` specifies an attribute ID for the TEXTGROUP= option.
- `VALUEATTRS=style-element (options)| (options)` specifies the appearance of the axis table values.
- `VALUEHALIGN=LEFT | CENTER | RIGHT` specifies the horizontal alignment of the column values relative to the column width in the axis table.
- `VALUEJUSTIFY=LEFT | CENTER | RIGHT` specifies the justification of the column values relative to the column width in the axis table.

Class options

```sas
CLASS=variable
```
creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Label options

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden.

LABELATTRS=style-element<(options)> | (options)
specifies the color and font attributes of the axis table label.

LABELHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels.

LABELJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the labels, when displayed.

LABELPOS=BOTTOM | TOP
specifies the position of the labels at the bottom or top of the axis table.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table.

Y=variable
Specifies the Y variable to use to align the table values to the Y axis.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Title options

TITLE="text-string"
specifies a title for the axis table.

TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title for the axis table.

TITLEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column title, when displayed.

TITLEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column title, when displayed.

Required Argument

variable <…variable-n>
specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.
When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

Optional Arguments

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

CLASS= *variable*

creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction
The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction
If NOLABEL is also specified, then the class labels are removed.

Tips
Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY= *STACK | CLUSTER*

specifies how the class values are displayed.

STACK
displays the class values horizontally at each midpoint value on the Y axis.

CLUSTER
displays the class values vertically at each midpoint value on the Y axis.

Default
STACK

Interaction
For this option to have any effect, the CLASS= option must be specified.

CLASSORDER= *DATA | REVERSEDATA | ASCENDING | DESCENDING*

specifies the order in which the class values are displayed.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip
This option is useful when the plot axis is reversed.
ASCENDING
 displays the class values in ascending order.

DESCENDING
 displays the class values in descending order.

Default
 DATA

Interactions
 This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

 For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
 specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData\n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction
 When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note
 This option is used only to color the table values. If you want to set additional text attributes, use the TEXTGROUP= option instead.

DROPONMISSING
 specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"
 specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Note: The ability to specify a text string applies to the third maintenance release of SAS 9.4 and to later releases.

Defaults
 LABEL

 If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the labels.

Tip
 Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATTRS=style-element <(options)> | (options)
 specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 For a description of the text options, see “Text Attributes” on page 1323.
Defaults

For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Restriction

Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions

This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELALIGN=

LEFT	CENTER	RIGHT

specifies the horizontal alignment of the column labels.

Default

Uses the effective value of the LABELJUSTIFY= option.

Interaction

This option has no effect if NOLABEL is also specified.

LABELJUSTIFY=

LEFT	CENTER	RIGHT

specifies the justification of the labels, when displayed.

Default

Uses LEFT for text values or RIGHT for numeric values.

LABELPOS=

BOTTOM	TOP

specifies the position of the labels at the bottom or top of the axis table.

Default

BOTTOM

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR

suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOMISSINGCLASS

specifies that missing values of the class variable are not included in the table.

Interaction

For this option to have any effect, the CLASS= option must be specified.
PAD= *dimension* *(pad-options)*

specifies the amount of extra space that is added inside the table border.

dimension

specifies a dimension to use for the extra space at the table border.

(pad-options)

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

LEFT= *dimension*

specifies the amount of extra space added to the left side.

Default 4 px

RIGHT= *dimension*

specifies the amount of extra space added to the right side.

Default 4 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use *pad-options* to create non-uniform padding.

POSITION= LEFT | RIGHT

specifies the position of the axis table at the left or right side of the graph cell.

Default RIGHT

SEPARATOR

creates a separating line between the axis table or axis tables and the plot.

STAT= FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ

the frequency of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

MEAN

the mean of the axis table variable.

MEDIAN

the median of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).
PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the PROC SGPANEL statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label. STATLABEL forces the statistic to be displayed in the label. NOSTATLABEL removes the statistic from the label.

Defaults The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Requirement The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the
ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction
When this option is specified, the COLORGROUP= option is ignored.

See
“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default
If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See
“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TITLE="text-string"
specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip
Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData" style elements.

Interactions
This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

TITLEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEALIGN= option specifies the alignment and also helps avoid clipping.

Default
LEFT
Interaction This option takes effect only when TITLE= is also specified.

Tip Use the TITLEJUSTIFY= option to specify justification for the title.

TITLEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEJUSTIFY= option specifies the justification and also helps avoid clipping.

Default LEFT

Interaction This option takes effect only when TITLE= is also specified.

Tip Use the TITLEHALIGN= option to specify title alignment.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

VALUEATTRS=GraphTitleText

VALUEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column values relative to the column width in the axis table. This option aligns the text within the column based on the longest string.

Default Uses the effective value of the VALUEJUSTIFY= option.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column values relative to the column width in the axis table. This option horizontally aligns the table values center, left, or right relative to the column width.

Default LEFT for text values or RIGHT for numeric values.

Y=variable
Specifies the Y variable to use to align the table values to the Y axis.

Default Y variable of the primary plot
Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Example: ROWAXISTABLE Statements

This example shows two axis tables along the Y axis of a bar chart that charts student height.

Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student.
- The second axis table statement specifies the weight. Both axis tables are located to the right of the Y axis by default.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in height=3.5in;
proc sgpanel data=sashelp.class (where=(age > 13));
panelby sex / layout=rowlattice uniscale=column;
hbar name / response=height stat=mean;
rowaxistable age / stat=mean
    valueattrs=(color=red)
    labelattrs=(color=red);
rowaxistable weight / valueattrs=(color=blue)
    stat=mean
    labelattrs=(color=blue);
run;
```

For an example that shows horizontal axis tables along the X axis, see “Example: COLAXISTABLE Statements” on page 596.
Examples: SGPANEL Procedure

Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots

Features: HISTOGRAM statement
 DENSITY statement

Sample library member: SGPNHST

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a panel of graph cells with histograms and density plots.

Output

![Cholesterol Distribution in Heart Study](image)

Program

```sas
proc sgpanel data=sashelp.heart noautolegend;
  title "Cholesterol Distribution in Heart Study";
  panelby sex;
  histogram cholesterol;
  density cholesterol;
run;
  title;
```
Program Description

Create the panel and specify the title.

```sas
proc sgpanel data=sashelp.heart noautolegend;
title "Cholesterol Distribution in Heart Study";
```

Specify the classification variable for the panel.

```sas
panelby sex;
```

Create the histogram and density plots.

```sas
histogram cholesterol;
density cholesterol;
run;
```

Cancel the title.

```sas
title;
```

Example 2: Creating a Panel of Regression Curves

Features: REG statement

Sample library member: SGPNREG

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a panel of regression curves. The COLUMNS= option in the PANELBY statement specifies that the panel has three columns of graph cells.

Output

![Scatter plot for Fisher iris data](image-url)
Program

proc sgpanel data=sashelp.iris;
 title "Scatter plot for Fisher iris data";
 panelby species / columns=3;

 reg x=sepallength y=sepalwidth / cli clm;
run;

title;

Program Description

Create the panel and specify the title.

proc sgpanel data=sashelp.iris;
 title "Scatter plot for Fisher iris data";

Specify the classification variable for the panel. The COLUMNS= option specifies the number of columns in the panel.

 panelby species / columns=3;

Create the regression curve. The CLI option creates individual predicted value confidence limits. The CLM option creates mean value confidence limits.

 reg x=sepallength y=sepalwidth / cli clm;
run;

Cancel the title.

title;

Example 3: Creating a Panel of Bar Charts

Features: HBAR statement
Sample library member: SGPNBAR
Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a panel of bar charts. The COLUMNS= option in the PANELBY statement specifies that the panel contains a single column of cells.
Program:

```sas
proc sgpanel data=sashelp.prdsale;
   title "Yearly Sales by Product";
   panelby year / novarname columns=1;
       hbar product / response=actual;
run;
   title;
```

Program Description:

Create the panel and set the title.

```sas
proc sgpanel data=sashelp.prdsale;
   title "Yearly Sales by Product";
```
Specify the classification variable for the panel. The NOVARNAME option specifies that the variable name is not shown in the heading for each cell. The COLUMNS= option specifies the number of columns in the panel.

```plaintext
panelby year / novarname columns=1;
```

Create the horizontal bar chart. The RESPONSE= option specifies the response variable for the chart.

```plaintext
hbar product / response=actual;
run;
```

Cancel the title.

```plaintext
title;
```

Example 4: Creating a Panel of Line Charts

- **Features:** VLINE statement
- **Sample library member:** SGPNLIN
- **Note:** For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.

This example shows a panel of line plots with grouped data.

Output

![Yearly Sales by Product](image)

Program

```plaintext
proc sgpanel data=sashelp.prdsale;
  where product in ("CHAIR" "SOFA");
title "Yearly Sales by Product";
```
Program Description

Create the panel and specify a title.

```sas
proc sgpanel data=sashelp.prdsale;
  where product in ("CHAIR" "SOFA");
  title "Yearly Sales by Product";
run;
```

Specify the classification variable for the panel. The SPACING= option specifies the number of pixels between the panels in the plot. The NOVARNAME option specifies that the classification variable name is not shown in the headings for each cell.

```sas
panelby year / spacing=5 novarname;
```

Create the vertical line plot. The RESPONSE= option specifies the response variable. The GROUP= option specifies the group variable.

```sas
vline month / response=actual group=product;
run;
```

Cancel the title.

```sas
title;
```
Chapter 7
SGPLOT Procedure

Overview: SGPLOT Procedure .. 632
Concepts: SGPLOT Procedure ... 634
 Overview of the SGPLOT Procedure ... 634
 Concepts in Common with the SG PANEL Procedure 635
Syntax: SGPLOT Procedure .. 636
 PROC SGPLOT Statement .. 638
 STYLEATTRS Statement ... 644
 BAND Statement .. 651
 BLOCK Statement .. 659
 BUBBLE Statement ... 669
 DENSITY Statement ... 680
 DOT Statement .. 686
 DROPLINE Statement ... 702
 ELLIPSE Statement ... 707
 FRINGE Statement .. 710
 GRADLEGEND Statement .. 715
 HBAR Statement .. 719
 HBARBASIC Statement .. 738
 HBARPARM Statement ... 752
 HBOX Statement .. 768
 HEATMAP Statement ... 782
 HEATMAPPARM Statement ... 792
 HIGHLOW Statement .. 800
 HISTOGRAM Statement .. 813
 HLINE Statement .. 819
 INSET Statement .. 836
 KEYLEGEND Statement ... 839
 LINEPARM Statement ... 849
 LOESS Statement .. 855
 NEEDLE Statement ... 866
 PBSPLINE Statement ... 877
 POLYGON Statement ... 890
 REFLINE Statement ... 906
 REG Statement .. 911
 SCATTER Statement ... 923
 SERIES Statement ... 938
 SPLINE Statement ... 960
 STEP Statement .. 974
 SYMBOLCHAR Statement ... 989
 SYMBOLIMAGE Statement ... 994
Overview: SGPLOT Procedure

The SGPLOT procedure creates one or more plots and overlays them on a single set of axes. You can use the SGPLOT procedure to create statistical graphics such as histograms and regression plots, in addition to simple graphics such as scatter plots and line plots. Statements and options enable you to control the appearance of your graph and add additional features such as legends and reference lines.

The SGPLOT procedure can create a wide variety of plot types, and can overlay plots together to produce many different types of graphs.
Here are some examples of graphs that the SGPLOT procedure can create.

Table 7.1 Examples of Graphs That Can Be Generated by the SGPLOT Procedure

The following code creates an ellipse plot:
```sas
proc sgplot data=sashelp.class;
    scatter x=height y=weight;
    ellipse x=height y=weight;
run;
```

The following code creates a horizontal box plot:
```sas
proc sgplot data=sashelp.cars;
    hbox weight / category=origin;
run;
```

The following code creates a graph with two series plots:
```sas
title "Power Generation (GWh)";
proc sgplot data=sashelp.electric(where= (year >= 2001 and customer="Residential"));
    xaxis type=discrete;
    series x=year y=coal / datalabel;
    series x=year y=naturalgas /
        datalabel y2axis;
run;
title;
```

The following code creates a graph with a histogram, a normal density curve, and a kernel density curve:
```sas
proc sgplot data=sashelp.class;
    histogram height;
    density height;
    density height / type=kernel;
run;
```
The following code creates a graph with two bar charts:

```sas
proc sgplot data=sashelp.prdsale;
yaxis label="Sales" min=200000;
vbar country / response=predict;
vbar country / response=actual
   barwidth=0.5
   transparency=0.2;
run;
```

Concepts: SGLOT Procedure

Overview of the SGLOT Procedure

The SGLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is assigned to a different vertical axis. Data labels have been added for easy reference.

```sas
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential");
xaxis type=discrete;
series x=year y=coal / datalabel;
series x=year y=naturalgas / datalabel y2axis;
run;
title;
```
The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```
proc sgplot data=sashelp.class;
    histogram height;
    density height;
    density height / type=kernel;
run;
```

Concepts in Common with the SGPANEL Procedure

The following topics are located in the Chapter 10, “Common Concepts,” on page 1305 section. These topics describe concepts that are similar between the SGPANEL and SGPLOT procedures.

Table 7.2 Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1306)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1307)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1308)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1312)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1312)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1315)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.</td>
</tr>
</tbody>
</table>
Syntax: SGPLOT Procedure

Requirement: At least one plot statement is required.

Global statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE
PROC SG PLOT <option(s)>;
 STYLEATR TS <option(s)>
 BAND X=variable Y=variable
 UPPER= numeric-value | numeric-variable
 LOWER= numeric-value | numeric-variable <option(s)>;
 BLOCK X=category-variable BLOCK=block-variable <option(s)>;
 BUBBLE X=variable Y=variable SIZE=numeric-variable <option(s)>;
 DENSITY response-variable <option(s)>
 Y=variable | y-axis-value <option(s)>;
 DOT category-variable <option(s)>
 DROPLINE X=variable x-axis-value
 Y=variable | y-axis-value <option(s)>;
 ELLIPSE X=numeric-variable Y=numeric-variable <option(s)>;
 FRINGE numeric-variable <option(s)>
 GRAD LEGEND <"name"<option(s)>
 HBAR category-variable <option(s)>
 HBAR BASIC category-variable <option(s)>
 HBAR PARM CATEGORY= category-variable RESPONSE= numeric-variable <option(s)>
 HBOX analysis-variable <option(s)>
 HEATMAP X=variable Y=variable <option(s)>
 HEAT MAP PARM X=variable Y=variable
 COLORGROUP=variable | COLORRESPONSE=numeric-variable <option(s)>
 HIGHLOW X=variable | Y=variable
 HIGH=numeric-variable | numeric-variable
 LOW=numeric-variable <option(s)>
 HISTOGRAM response-variable <option(s)>
 HLINE category-variable <option(s)>
 INSET "text-string-1" < . . "text-string-n" | (label-list) <option(s)>
 KEYLEGEND <"name-1" "name-n" <option(s)>
 LINE PARM X=numeric-variable | numeric-variable
 Y=numeric-variable | numeric-variable
 SLOPE=numeric-variable | numeric-variable <option(s)>
 LOESS X=numeric-variable Y=numeric-variable <option(s)>
 NEEDLE X=variable Y=numeric-variable <option(s)>
 PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>
 POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>
 REFLINE value(s) <option(s)>
 REG X=numeric-variable Y=numeric-variable <option(s)>
 SCATTER X=variable Y=variable <option(s)>
 SERIES X=variable Y=variable <option(s)>
 SPLINE X=variable Y=variable <option(s)>
 STEP X=variable Y=variable <option(s)>
 SYMBOL CHAR NAME=identifier CHAR="hex-string" keyword <option(s)>
 SYMBOL IMAGE NAME=identifier IMAGE="image-file-specification" <option(s)>
 TEXT X=variable Y=variable TEXT=variable <option(s)>
 VBAR category-variable <option(s)>
 VBAR BASIC category-variable <option(s)>
 VBAR PARM CATEGORY=category-variable RESPONSE=numeric-variable <option(s)>
 VBOX analysis-variable <option(s)>
 VECTOR X=numeric-variable Y=numeric-variable <option(s)>
 VLINE <category-variable> <option(s)>
 WATERFALL CATEGORY=variable RESPONSE=numeric-variable <option(s)>

PROC SGPLOT Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, write template code to a file, control the uniformity of axes, and control automatic legends and automatic attributes.

Requirement: An input data set is required.

Syntax

PROC SGPLOT <options> ;

Summary of Optional Arguments

- **ASPECT=** positive-number
 specifies the aspect ratio of the plot’s wall area.

- **CYCLEATTRS** | **NOCYCLEATTRS**
 specifies whether plots are drawn with unique attributes in the graph.

- **DATA=** input-data-set
 specifies the SAS data set that contains the variables to process.

- **DATTRMAP=** discrete-attribute-map-data-set
 specifies the discrete attribute map data set that you want to use with the procedure.

- **DESCRIPTION=** "text-string"
 specifies a description for the output image.

- **NOAUTOLEGEND**
 disables automatic legends from being generated.

- **NOBORDER**
 removes the data-area border from the plot.

- **NOSUBPIXEL** | **SUBPIXEL**
 specifies whether subpixel rendering should be used for rendering plots and charts.

- **NOWALL**
 turns off the display of the graph wall’s fill and outline.

- **OPAQUE** | **NOOPAQUE**
 specifies whether the graph background is opaque or transparent.

- **PAD=** dimension<units> | (pad-options)
 specifies the amount of extra space that is reserved inside the border of an annotated graph.

- **PCTLEVEL=** BY | GRAPH | GROUP
 specifies the scope of graph data that is calculated in percentages.

- **PCTNDEC=** numeric-value
 specifies the number of decimal spaces to be used to calculate the percent values.

- **RATTRMAP=** range-attribute-map-data-set
 specifies the range attribute map data set that you want to use with the procedure.

- **SGANNO=** annotation-data-set
 specifies the SG annotation data set that you want to use.
TPLOUT="filename"
writes the Graph Template Language code for your graph to a file.

UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP
specifies how to control axis scaling and marker attributes when you use a BY statement.

Optional Arguments

ASPECT=positive-number
specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing \textit{wall-height} divided by \textit{wall-width}. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default The wall area is sized to the maximum area that can fill the available space.

CYCLEATTRS | NOCYCLEATTRS
specifies whether plots are drawn with unique attributes in the graph. By default, the SGPLOT procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots will have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

DATA=input-data-set
specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATTRMAP=discrete-attribute-map-data-set
specifies the discrete attribute map data set that you want to use with the procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Requirement The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

DESCRIPTION="text-string"
specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement
The default description is “The SGPLOT Procedure”.

<table>
<thead>
<tr>
<th>Alias</th>
<th>DES</th>
</tr>
</thead>
</table>

Notes
The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

NOAUTOLEGEND
disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a KEYLEGEND statement.

NOBORDER
removes the data-area border from the plot.

NOSUBPIXEL | SUBPIXEL
specifies whether subpixel rendering should be used for rendering plots and charts. Subpixel rendering produces smoother curves and more precise bar spacing.

NOSUBPIXEL
ever uses subpixel rendering for rendering curved lines.

SUBPIXEL
always uses subpixel rendering, when applicable, for rendering lines and bars.

Defaults
When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Starting with the third maintenance release of SAS 9.4, subpixel rendering is always enabled for vector-graphics output.

Restriction
In the second maintenance release of SAS 9.4 and in earlier releases, this option affects line-based plots and bar charts. The affected line-based plots are BAND, DENSITY, SERIES, LOESS, REG, and PBSPLINE. The affected bar charts are HBAR, HBARPARM, VBAR, and VBARPARM. Starting with the third maintenance release of SAS 9.4, subpixel rendering is available for all plots and charts.

Requirement
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Interaction
Starting with the third maintenance release of SAS 9.4, if the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip
For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See
“Subpixel Rendering” on page 1346
“ODS GRAPHICS Statement” on page 71 for information about the ANTIALIAS= and ANTIALIASMAX= options.

NOWALL

turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

OPAQUE | NOOPAQUE
specifies whether the graph background is opaque or transparent.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

OPAQUE

Restriction
The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

Interaction

When NOOPAQUE is specified, the background color is not used.

PAD=dimension<units> | (pad-options)
specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

LEFT=dimension<units>
specifies the amount of extra space to add to the left edge.

RIGHT=dimension<units>
specifies the amount of extra space to add to the right edge.

TOP=dimension<units>
specifies the amount of extra space to add to the top edge.

BOTTOM=dimension<units>
specifies the amount of extra space to add to the bottom edge.
PCTLEVEL=BY | GRAPH | GROUP
specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the STAT=PERCENT option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

BY
the percentages within each BY-group round up to 100%

Interaction For this value to take effect, a BY-group must be specified in the procedure.

GRAPH
the percentages across the entire graph round up to 100%

GROUP
the percentages across groups within a category round up to 100%.

Interaction For this value to take effect, the GROUP= option must be specified in the plot statement.

In the following examples, the first example specifies a value of GRAPH (the default), and the second example specifies a value of GROUP.

ods graphics on / reset=all;
ods graphics on / width=4.5in;

PCTLEVEL=GRAPH
proc sgplot data=sashelp.class pctlevel=graph;
 vbar age / response=height stat=percent group=sex;
run;

PCTLEVEL=GROUP
proc sgplot data=sashelp.class pctlevel=group;
 vbar age / response=height stat=percent group=sex;
run;

In the graph that specifies PCTLEVEL=GRAPH, the bars collectively add up to 100%. Each bar represents a fraction of the total.

In the graph that specifies PCTLEVEL=GROUP, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.
Default: `GRAPH`

Interaction
For this option to take effect, `STAT=PERCENT` must be specified for a plot in the procedure.

Tip
You can use the `PCTNDEC=` option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

PCTNDEC=numeric-value
specifies the number of decimal spaces to be used to calculate the percent values.

Default
The default number of decimals is based on the magnitude of the largest percentage value.

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Default Number of Decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% to 100%</td>
<td>1</td>
</tr>
<tr>
<td>.1% to < 1%</td>
<td>3</td>
</tr>
<tr>
<td>1% to < 10%</td>
<td>2</td>
</tr>
<tr>
<td>< .1%</td>
<td>4</td>
</tr>
</tbody>
</table>

Interaction
For this option to take effect, `STAT=PERCENT` must be specified for a plot in the procedure.

Tip
You can use the `PCTLEVEL=` option in the PROC SGPLOT statement to control the scope of the percent calculations.

RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Requirement
The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See
Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

TMPLOUT=“filename”
writes the Graph Template Language code for your graph to a file. Writing your template code to a file can be useful for building larger Graph Template Language definitions.

Restriction
Graphs that contain summarized data (for example, bar, line, and dot) do not generate a useable template. For summarized data, the procedure sets internal values for one or more variables, and these internal values do not exist in the data set that is used with the procedure.

UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP
specifies how to control axis scaling and marker attributes when you use a BY statement.

Specify one of the following values:
specifies that both the legend group values and the axis scaling are shared between all of the levels of the BY variable or variables.

GROUP
specifies that the legend group values are shared between all of the levels of the BY variable or variables. This option is applicable only when the GROUP= option is specified for the plot.

SCALE
specifies that the axis scaling is shared between all of the levels of the BY variable or variables.

XSCALE
specifies that the X axis scaling is shared between all of the levels of the BY variable or variables. The Y axes are unaffected.

YSCALE
specifies that the Y axis scaling is shared between all of the levels of the BY variable or variables. The X axes are unaffected.

XSCALEGROUP
specifies that both the legend group values and the X axis scaling are shared between all of the levels of the BY variable or variables. The Y axes are unaffected. This option is applicable only when the GROUP= option is specified for the plot.

YSCALEGROUP
specifies that both the legend group values and the Y axis scaling are shared between all of the levels of the BY variable or variables. The X axes are unaffected. This option is applicable only when the GROUP= option is specified for the plot.

By default, each level of the BY variable or variables can have different legend group values and different axis scaling.

Restriction
Basic bar charts (HBARBASIC and VBARBASIC) do not support uniform axis scaling. However, they do support group uniformity.

Interactions
This option has no effect if you do not use a BY statement.

This option has no effect when the CATEGORYORDER= option is specified in the plot statement.

Uniform axis scaling does not apply to the gradient legend that is displayed when the COLORRESPONSE= option is specified in the plot statement. For a workaround that involves defining a range attribute map, see SAS Note SN-055810.

STYLEATTRS Statement

Specifies attributes for a graph. The statement enables you to change colors, markers, and so on, within the procedure, without having to change the ODS style template.

Requirement: The procedure must include at least one plot statement.

Interaction: At least one plot statement must specify the GROUP= option in order for the data attributes to take effect. This requirement applies to the DATACOLORS=,
DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options.

Syntax

STYLEATTRS <option(s)>;

Summary of Optional Arguments

Axis options

AXISBREAK=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
 specifies a symbol to use on the axis lines to indicate a break in the axis.

AXISEXTENT=FULL | DATA
 specifies the extent of the axis line for all axes.

Style options

BACKCOLOR=color
 specifies the background color of the graph area.

DATACOLORS=(color-list)
 specifies the fill colors for the graphics elements.

DATACONTRASTCOLORS=(color-list)
 specifies the contrast colors for the graphics elements, such as lines and markers.

DATALINEPATTERNS=(line-pattern-list)
 specifies the list of line patterns for the graph data lines.

DATASYMBOLS=(marker-symbol-list)
 specifies the list of marker symbol for the graph data.

WALLCOLOR=color
 specifies the color of the plot wall area.

Optional Arguments

AXISBREAK=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
 specifies a symbol to use on the axis lines to indicate a break in the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows an example of each symbol on a horizontal linear axis for ranges 1–4 and 6–10.

<table>
<thead>
<tr>
<th>Bracket</th>
<th>Notch</th>
<th>Slanted Left</th>
<th>Slanted Right</th>
<th>Spark</th>
<th>Squiggles</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

When this option is not specified, the default break is a sine wave across the plot area.
Restriction: This option applies to linear and time axes only.

Requirements: For this option to have any effect, the DISPLAY= option for the axis must include the axis line.

For this option to have any effect, the RANGES= option for the axis must be used to specify ranges for a broken axis.

AXISEXTENT=FULL | DATA
specifies the extent of the axis line for all axes.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

This option also turns off the wall border so that the axis lines can be clearly seen.

FULL
the axis lines extend along the entire length of the axis.

DATA
the axis lines extend through the data range from the minimum offset to the maximum offset.

The following figure shows a simple example of each value for the X and Y axis lines. Both axes specify a small minimum offset. For the DATA value, the axis lines extend through the data range from the minimum offset. No maximum offset was used in the example.

Default FULL

Tips
Use the OFFSETMIN and OFFSETMAX axis options to specify the offsets.

Use the THRESHOLDMIN and THRESHOLDMAX axis options to specify a threshold for displaying one more tick mark at the low or high end of the axis.

BACKCOLOR=color
specifies the background color of the graph area.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default The Color attribute of the GraphBackground style element
Examples

backcolor=CXFF0000

backcolor=light_blue

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
The colors that are defined in the GraphData1 ... GraphData_n style elements in the current style are used.

Requirement
For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction
Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

Note
When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphData_n style elements. When the colors in color-list are exhausted, the colors repeat.

Example
datacolors=(CXFF0000 green blue)

DATACONTRASTCOLORS=(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
The contrast colors that are defined in the GraphData1 ... GraphData_n style elements in the current style are used.

Requirement
For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Interaction
Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note
When this option is specified, the colors cycle through color-list rather than the contrast colors that are defined in the GraphData1 ... GraphData_n style elements. When the colors in color-list are exhausted, the colors repeat.

Example
datacontrastcolors=(orange cyan #FF0000)

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.
The line patterns that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

When this option is specified, the line patterns cycle through line-pattern-list rather than the line patterns that are defined in the GraphData1 ... GraphDataN style elements. When the patterns in line-pattern-list are exhausted, the patterns repeat.

datalinepatterns=(dot solid longdash 26)

specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See Figure 11.2 on page 1323.

The symbols that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphDataN style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

datasymbols=(circle square triangle star)

specifies the color of the plot wall area.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

The following figure shows a light blue wall color.
The Color attribute of the GraphWalls style element

wallcolor=0xFF0000
wallcolor=light_blue

Details

How the Attributes Are Cycled
The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.

datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)

In this example, which uses the HTMLBlue style, the procedure uses a color-priority rotation pattern.

With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

ATTRPRIORITY=COLOR | NONE

Note: The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, such as LISTING, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the SGPLOT procedure:

ods graphics / attrpriority=none;
Now, the following options in the STYLEATTRS statement are applied in alternating order:

```
datacontrastcolors=(red green blue)
datailinepatterns=(dot solid)
```

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

```
<table>
<thead>
<tr>
<th>Student</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
```

See Also

“ODS GRAPHICS Statement” on page 71

Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
- The ODS style is HTMLBlue. For the HTMLBlue style, the ATTRPRIORITY defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.

```plaintext
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
   by age;
run;

/* Generate the graph using the sorted data */
proc sgplot data=class;
```
styleattrs
 datacontrastcolors=(red green blue)
 datalinepatterns=(dot solid);
series x=height y=weight / group=age;
keylegend;
run;

BAND Statement

Creates a band that highlights part of a plot.

Restriction: The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.

Note: The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.

Examples: "About Band Plots" on page 25
 "Example 6: Creating Lines and Bands from Pre-Computed Data" on page 1225

Syntax

BAND X=variable | Y=variable
UPPER=numeric-value | numeric-variable
LOWER=numeric-value | numeric-variable
<option(s)>;

Summary of Optional Arguments

Appearance options
 ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.
 DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bands from discrete X or Y tick values.
 FILL | NOFILL
 specifies whether the area fill is visible.
 FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.
 LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the outlines for the band.
 NOEXTEND
 specifies that the band does not extend beyond the first and last data points in the plot.
 OUTLINE | NOOUTLINE
 specifies whether the outlines of the band are visible.
 TRANSPARENCY=value
 specifies the degree of transparency for the plot.
 TYPE=SERIES | STEP
 specifies how the data points for the lower and upper band boundaries are connected.
Axes options

X2AXIS
assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

TIP=\(\text{variable-list}\) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=\(\text{format-list}\)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=\(\text{label-list}\)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=\(\text{variable}\)
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABELATTRS=\(\text{style-element} <\text{(options)}> | \text{(options)}\)
specifies the appearance of the labels in the plot when you specify a curve label.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELLOWER =“\text{text-string}”
adds a label to the lower edge of the band.

CURVELABELPOS=\(\text{AUTO} \mid \text{MIN} \mid \text{MAX} \mid \text{START} \mid \text{END}\)
specifies the location of the curve label.

CURVELABELUPPER =“\text{text-string}”
adds a label to the upper edge of the band.

LEGENDLABEL=“\text{text-string}”
specifies a label that identifies the elements from the band plot in the legend.

SPLITCHAR=“\text{character-list}”
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=\(\text{LEFT} \mid \text{CENTER} \mid \text{RIGHT}\)
specifies the horizontal alignment of the value text that is being split.

Plot reference options

MODELNAME=“\text{plot-name}”
specifies the name of a plot that is used as a model for the interpolation for the band.

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable | Y=variable
specifies a variable that is used to plot the band along the x or y axis.

LOWER=numeric-value | numeric-variable
specifies the lower value for the band. You can specify either a constant numeric value or a numeric variable.

UPPER=numeric-value | numeric-variable
specifies the upper value for the band. You can specify either a constant numeric value or a numeric variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you specify a curve label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphData style elements.

Interaction
This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

Examples
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
Default INSIDE

CURVELABELLOWER = "text-string"
adds a label to the lower edge of the band. Specify the label text.

CURVELABELPOS = AUTO | MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interactions This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.
The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

CURVELABELUPPER = "text-string"
adds a label to the upper edge of the band. Specify the label text.

DISCRETEOFFSET = numeric-value
specifies an amount to offset all bands from discrete X or Y tick values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interaction 0.0 transparency

GROUP=variable
specifies a variable that is used to group the data. A separate band is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

LEGENDLABEL=“text-string”
specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle, and LineThickness

Interaction This option has no effect unless you also specify the OUTLINES option.

MODELNAME=“plot-name”
specifies the name of a plot that is used as a model for the interpolation for the band.

Default If you do not specify this option, then the band is interpolated in the same way as a series plot.

Requirement plot-name must be the name that has been assigned with the associated plot’s NAME= option.

See “Details” on page 659
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

Interaction This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default
The default status of the band outlines is specified by the DisplayOpt attribute of the GraphBand.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Interactions This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**TYPE=SERIES | STEP**
specifies how the data points for the lower and upper band boundaries are connected.

You can specify one of the following:

**SERIES**
the data points are connected directly using line segments, as in a series plot.

**STEP**
the data points are connected using a step function, as in a step plot.

**Default**
SERIES
X2AXIS
assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Details
The MODELLNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```

Figure 7.1 Fitted Band Plot Example

---

**BLOCK Statement**

Creates one or more rectangular blocks containing text values. The width of each block corresponds to specified numeric intervals. Block plots show continuous ranges of data that have the same BLOCK= value.

**Requirement:** The BLOCK statement must be used with another plot statement, which establishes the axis type for the Y axis.

**Example:** “About Block Plots” on page 26

**Syntax**

```
BLOCK X=category-variable BLOCK=block-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

```
ALTFILLATTRS=style-element </options> | (options)
```

specifies the appearance of alternate fills for the blocks.
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

FILL | NOFILL
specifies whether the blocks are filled.

FILLATTRS=style-element (options) | (options)
specifies the appearance of the fill for the blocks.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

LINEATTRS=style-element (options) | (options)
specifies the appearance of the block outlines.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the blocks.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Block options

POSITION=BOTTOM | CENTER | TOP
positions the block plot at the bottom, center, or top of the graph.

Block text options

BLOCKLABEL=variable
specifies a column to use for alternative text in the blocks.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

SPLITCHAR="character-list"
specifies one or more characters used to split block text values into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

VALUEATTRS=style-element (options) | (options)
specifies the appearance of the block text values.

VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE
specifies how text values are adjusted to fit within the containing block.

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks.

VALUEVALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the value text within the blocks.

Label options

LABEL <="text-string"> | NOLABEL
specifies an external label for a single block plot.

LABELATTRS=style-element (options) | (options)
specifies the color and font attributes of the external block label(s).

LABELPOS=BOTTOM | LEFT | RIGHT | TOP
specifies the position for the block label for a single block plot.

Plot options
CLASS=variable
creates a stack of block plots, with one block plot for each unique value of
the specified variable.

EXTENDMISSING
extends the previous block value if the current value is missing.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=category-variable
specifies X axis positions. When the X-axis is numeric and the specified variable is
numeric, values are expected to be in sorted, ascending order. If the X-axis is discrete
and the specified column is numeric, values are treated as numeric-discrete.

BLOCK=block-variable
specifies the variable that classifies the observations into distinct subsets.

Optional Arguments

ALTFILLATTRS=style-element <(options)> | (options)
specifies the appearance of alternate fills for the blocks. This option in conjunction
with the FILLATTRS= option controls fill appearance when
FILLTYPE=ALTERNATE. You can specify the appearance by using a style element
or by specifying specific options. If you specify a style element, you can also specify
options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Requirement  FILLTYPE=ALTERNATE must be specified for this option to have
any effect.

Interaction  This option has no effect if you specify the NOFILL option.

Note  The TRANSPARENCY= attribute affects only the alternate fill
blocks. To set the same transparency for both the fill blocks and the
alternate fill blocks, use the TRANSPARENCY= option in the
BLOCK statement.

Tips  The FILLATTRS= option controls the fill color of non-alternate
blocks.

To make all block fill areas the same color, set the FILLATTRS= and
ALTFILLATTRS= options to the same value.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See  Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383
**BLOCKLABEL=**variable
specifies a column to use for alternative text in the blocks.

**Interaction** This option overrides the default text for the blocks.

**Tip** The font and color attributes for the alternative text are specified by the VALUEATTRS= option.

**CLASS=**variable
creates a stack of block plots, with one block plot for each unique value of the specified variable.

**Interaction** To label the blocks by the class values, specify the BLOCKLABEL= option using the same class variable.

**EXTENDMISSING**
extends the previous block value if the current value is missing.

**FILL | NOFILL**
specifies whether the blocks are filled.

**Default** FILL

**Interaction** The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

**FILLATTRS=**style-element <(options)> | (options)
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

**Requirement** FILLTYPE=ALTERNATE must be specified for this option to have any effect.

**Interaction** This option has no effect if you specify the NOFILL option.

**Note** The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

**Tips** The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

**FILLTYPE=**MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

**MULTICOLOR**
Blocks are filled with the COLOR attribute of the GraphData1 ... GraphDataN style elements.

**ALTERNATE**
Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.
**Default**	MULTICOLOR
**Interaction** | This option has no effect if NOFILL is also specified.

**LABEL. `<="text-string"> | NOLABEL**
specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.

**Default**	The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.
**Interactions** | By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

**LABELATTRS=style-element <(options)> | (options)**
specifies the color and font attributes of the external block label(s). You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**	GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
**Examples** | LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphQLTitleText

**LABELPOS=**BOTTOM | LEFT | RIGHT | TOP**
specifies the position for the block label for a single block plot.

**Default**	LEFT
**Interaction** | This option has no effect if NOLABEL is also specified.

**LINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the block outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default** | GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interaction**
This option has no effect if the NOOUTLINE option is also specified.

**NAME=“text-string”**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCLASS**
suppresses blocks that correspond to missing values of the CLASS= value.

**OUTLINE | NOOUTLINE**
specifies whether the blocks have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default**
OUTLINE

**Interaction**
The NOOUTLINE option can be used with the NOFILL option to hide both the outline and the fill.

**NOVALUES | VALUES**
specifies whether the block values are displayed or hidden.

**Default**
VALUES

**Tip**
The font and color attributes for the text values are specified by the VALUEATTRS= option.

**POSITION=BOTTOM | CENTER | TOP**
positions the block plot at the bottom, center, or top of the graph. This option is useful when the graph contains more than one plot.

**Default**
CENTER
SPLITCHAR="character-list"

specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

Default

The default split character is a space.

Interactions

This option has no effect unless VALUEFITPOLICY specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

TRANSPARENCY=numeric-value

specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default

0.0

VALUEATTRS=style-element <(options)> | (options)

specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default

GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
Examples: `VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)`

Here is an example that specifies a style element:

`VALUEATTRS=GraphTitleText`

**VALUEFITPOLICY** specifies how text values are adjusted to fit within the containing block. Select one of the following values:

- **NONE**
  - No attempt is made to fit values that collide with the text values in adjacent blocks.

- **SHRINK**
  - All values are reduced in font size until they all fit.

- **SPLIT**
  - If a value does not fit within the containing block, it is split at a split character. No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value.

  - If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

  **Default**
  - The default split character is a space.

  **Tip**
  - Use the SPLITCHAR= option to specify a split character.

- **SPLITALWAYS**
  - Text values are split at a split character in all blocks.

  **Default**
  - The default split character is a space.

  **Tip**
  - Use the SPLITCHAR= option to specify a split character.

- **TRUNCATE**
  - Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

  **Default**
  - SPLIT

**VALUEALIGN** specifies the horizontal alignment of the value text within the blocks. Select one of the following values:

- **LEFT**
  - left-aligned within the block

- **CENTER**
  - center-aligned within the block

- **RIGHT**
  - right-aligned within the block
START
  center-aligned at the starting value of the block

Default: CENTER

Interaction: This option has no effect if you also specify the NOVALUES option.

**VALUEALIGN=**TOP | CENTER | BOTTOM
  specifies the vertical alignment of the value text within the blocks.

Default: TOP

Interaction: This option has no effect if you also specify the NOVALUES option.

**X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.

Details

**Changing the Appearance of Block Text Values**

By default, values for the variable that is specified in the BLOCK= argument appear as text in the blocks. You have several options for changing the text or its appearance.

The following table lists the tasks that you can perform along with the options that are involved in performing the task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>hide or show the values</td>
<td>NOVALUES</td>
</tr>
<tr>
<td>use a different variable for alternative text in the blocks</td>
<td>BLOCKLABEL=</td>
</tr>
<tr>
<td>change the font characteristics of the text</td>
<td>VALUEATTRS=</td>
</tr>
<tr>
<td>align the text horizontally</td>
<td>VALUEHALIGN=</td>
</tr>
<tr>
<td>align the text vertically</td>
<td>VALUEALIGN=</td>
</tr>
<tr>
<td>specify how text values are adjusted to fit within the containing block</td>
<td>VALUEFITPOLICY=</td>
</tr>
<tr>
<td>for text that is split into multiple lines within the block, specify either or both of the following:</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>• one or more characters used to split the text value</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>• that the split characters are included in the displayed value</td>
<td>SPLITCHAR=</td>
</tr>
</tbody>
</table>

The following DATA step creates a SPEC column with two values: Teen and Pre-Teen.

```
data class1;
 set sashelp.class;
```
where sex="F";
length spec $10;
if age > 12 then spec='Teen';
else spec='Pre-Teen';
run;

The SPEC column is used for the blocks in the examples below. The value fit policy is specified as VALUEFITPOLICY=SPLIT. Based on this policy, the text values split if they do not fit within their block. The examples split the block text on the “-” character.

In the first example, the split character does not appear in the blocks.

```
proc sgplot data=class1;
 block x=name block=spec /
 valuefitpolicy=split
 splitchar="-";
 series x=name y=weight / markers
 markerattrs=(size=10pt);
run;
```

The next example specifies the SPLITCHARNODROP option. This option forces the split character to appear in the graph.

```
proc sgplot data=class1;
 block x=name block=spec /
 valuefitpolicy=split
 splitchar="-"
 splitcharnodrop;
 series x=name y=weight / markers
 markerattrs=(size=10pt);
run;
```

Notice that the series plot does not contrast well against the block plots. There are two simple changes that you can make to improve the graph:

- Position the block plot above or below the series plot. The POSITION= option positions the block plot at the bottom, center, or top of the graph. This option is available only with the SGPLOT procedure.
- Change the display attributes of the block plot or the series plot. The following section provides more information about block plot display attributes.

**Changing the Appearance of Block Fills**

If you want to change the appearance of the fills, you have several options.
The following table lists the tasks that you can perform along with the options that are involved in performing the task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>change the transparency of the fills for all blocks</td>
<td>TRANSPARENCY=</td>
</tr>
<tr>
<td>change the color or transparency for the fills when you are alternating fill colors</td>
<td>FILLTYPE=</td>
</tr>
<tr>
<td></td>
<td>FILLATTRS=</td>
</tr>
<tr>
<td></td>
<td>ALTFILLATTRS=</td>
</tr>
</tbody>
</table>

For example, the previous example in “Changing the Appearance of Block Text Values” on page 667 showed a block plot overlaid on a series plot. For that example, you might want the block fills to provide more contrast with the series plot. The following example builds on the previous plot and specifies colors and transparency for alternating fills.

```sas
proc sgplot data=class1;
 block x=name block=spec /
 valuefitpolicy=split
 splitchar="-"
 filltype=alternate
 fillattrs=(color=orange)
 altfillattrs=(color=green)
 transparency=.8;
 series x=name y=weight / markers
 markerattrs=(size=10pt);
run;
```

The FILLTYPE=ALTERNATE option alternates the block fills. You can then specify a fill color for the primary and alternate fills using the FILLATTRS= option and the ALTFILLATTRS= option, respectively. Finally, the example changes the transparency of the block plot to 80%.

---

### BUBBLE Statement

Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.

**Example:**  
“About Bubble Plots” on page 27

---

### Syntax

```
BUBBLE X=variable Y=variable SIZE=numeric-variable </option(s)>;
```

### Summary of Optional Arguments

**Appearance options**

ABSSCALE
specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BRADIUSMAX=numeric-value
specifies the size of the radius of the largest bubble.

BRADIUSMIN=numeric-value
specifies the size of the radius of the smallest bubble.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DRAWORDER=SIZE | DATA
specifies whether the bubbles are drawn according to bubble size or according to data order.

FILL | NOFILL
specifies whether the bubbles are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the bubbles.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bubbles are visible.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
GROUP=variable
    specifies a variable that is used to group the data.

NOMISSINGGROUP
    specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
    displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
    specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
    specifies the label that identifies the bubble plot in the legend.

SPLITCHAR="character-list”
    splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
    specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
    assigns a name to a plot statement.

Required Arguments

X=variable
    specifies the variable for the X axis.

Y=variable
    specifies the variable for the Y axis.

SIZE=numeric-variable
    specifies the variable that controls the size of the bubbles. The minimum and maximum values automatically provide the range that is used to determine bubble sizes. You can control this range manually by using the BRADIUSMAX and BRADIUSMIN options.

Optional Arguments

ABSSCALE
    specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
By default, the bubble sizes are scaled to represent the value range of the SIZE= column. For example, if only two bubbles are drawn with sizes of 2 and 4, then they appear the same as only two bubbles with sizes of 4000 and 8000. By contrast, when ABSSCALE is specified, the size values are interpreted in the same units as the axes.

**Restriction**  
This option is ignored if the X or Y axis is discrete.

**Interaction**  
When this option is used, the BRADIUSMAX= and BRADIUSMIN= options are ignored.

**Note**  
The bubbles might be drawn as ellipses if the X and Y axes are scaled differently.

**ATTRID=**character-value**
**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**See** Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

**BRADIUSMAX=**numeric-value**
**
specifies the size of the radius of the largest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

**Restriction**  
The BRADIUSMAX= value must be greater than the BRADIUSMIN= value if one is specified. If BRADIUSMAX is not greater, an error is generated and a message is written to the SAS log.

**Note**  
If you specify the maximum size as a percentage, this is interpreted as a percentage of the graph's height.

**BRADIUSMIN=**numeric-value**
**
specifies the size of the radius of the smallest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

**Restriction**  
The BRADIUSMIN= value must be smaller than the BRADIUSMAX= value if one is specified. If BRADIUSMIN is not smaller, an error is generated and a message is written to the SAS log.

**Note**  
If you specify the minimum size as a percentage, this is interpreted as a percentage of the graph's height.

**COLORMODEL=**style-element | (color-list)**
**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**  
specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**  
specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
```
colormodel=TwoColorRamp
```

**(color-list)**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

**Example**
```
colormodel=(blue yellow green)
```

**Default** The ThreeColorAltRamp style element

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction** If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip** The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**

“GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

**DATALABEL <=variable>**

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**DATALABELATRGS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
This option has no effect unless the DATALABEL option is also specified.

Examples

```
DATALABELATRBS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATRBS=GraphLabelText
```

**DATALABELPOS=**

```
position
```

specifies the location of the data label with respect to the plot. `position` can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when `GROUP=` is also specified.

**DATASKIN=**

```
NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
```

specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
**DRAWORDER=SIZE | DATA**

specifies whether the bubbles are drawn according to bubble size or according to data order.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**SIZE**

draws the bubbles according to bubble size, from the largest to the smallest.

**DATA**

draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

<table>
<thead>
<tr>
<th>DRAWORDER=SIZE</th>
<th>DRAWORDER=DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Size Example" /></td>
<td><img src="image2.png" alt="Data Example" /></td>
</tr>
</tbody>
</table>

**Default**  SIZE

**FILL | NOFILL**

specifies whether the bubbles are filled. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Default**  FILL

**Interactions**

Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

**Defaults**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

**Interaction**

This option has no effect if you specify the NOFILL option.
GROUP=variable
specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1...GraphData4n style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

Interaction This option is ignored if the COLORRESPONSE= option is also used.

LEGENDLABEL="text-string"
specifies the label that identifies the bubble plot in the legend. By default, the label for the Y variable is used for ungrouped data, and the group values are used for grouped data.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData4n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect if you also specify the NOOUTLINE option.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE
Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**See** Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

**SPLITCHAR=“character-list”**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**

Values are not split.

**Interactions**

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See** “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default   LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to
later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.
### TIPLABEL=(label-list)
Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
```
tiplabel=(auto "Class Weight")
```

### TRANSPARENCY=value
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

### URL=character-variable
Specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

Specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**
```
```

**Default** By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:
```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.
X2AXIS
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

DENSITY Statement
Creates a density curve that shows the distribution of values for a numeric variable.

Restriction: The DENSITY statement cannot be used with discrete axes.
Interaction: The DENSITY statement can be combined only with DENSITY and HISTOGRAM statements in the SGPLOT procedure.
Examples: “About Density Plots” on page 51
“Example 8: Combining Histograms with Density Plots” on page 1228

Syntax
DENSITY response-variable </option(s)>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the density line.
TRANSPARENCY=value
specifies the degree of transparency for the plot.
TYPE =NORMAL <(normal-opts)> | KERNEL <(kernel-opts)>
specifies the type of distribution curve that is used for the density plot.

Axis options
SCALE=scaling-type
specifies the scaling that is used for the response axis.
X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Group options
GROUP=variable
specifies a variable that is used to group the data.

Label options
CURVELABEL="text-string"
adds a label for the density curve.
CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
CURVELABELLOC=OUTSIDE | INSIDE
  specifies whether the curve label is placed inside the plot axes (INSIDE) or
  outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
  specifies the location of the curve label.

LEGENDLABEL="text-string"
  specifies a label that identifies the density plot in the legend.

SPLITCHAR="character-list”
  splits the text for curve labels at the specified character or characters when
  there is not enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Plot options

  FREQ=numeric-variable
    specifies a variable for the frequency count for each observation in the input
    data.

  WEIGHT=numeric-variable
    specifies a variable that contains values to be used as weights for the
    calculations.

  Y2AXIS
    assigns the calculated result to the secondary (right) vertical axis.

Plot reference options

  NAME="text-string"
    assigns a name to a plot statement.

Required Argument

  response-variable
    specifies the variable for the x axis. The variable must be numeric.

Optional Arguments

  ATTRID=character-value
    specifies the value of the ID variable in a discrete attribute map data set. You specify
    this option only if you are using an attribute map to control visual attributes of the
    graph.

    See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
    “Overview of Attribute Maps” on page 1383

  CURVELABEL="text-string”
    adds a label for the density curve.

  CURVELABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the CURVELABEL=
    option. You can specify the appearance by using a style element or by specifying
    specific options. If you specify a style element, you can also specify options to
    override specific appearance attributes.

    For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default

INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction

This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.

MAX

places the label at the part of the curve closest to the maximum X axis value.

MIN

places the label at the part of the curve closest to the minimum X axis value.

START

places the curve label at the first point on the curve.

Default

END

Interactions

This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

Restriction

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
If the value is not an integer, only the integer portion is used.

**GROUP=**variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Tip** ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**LEGENDLABEL=**"text-string"

specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is “Normal.” If you specify TYPE=KERNEL, then the default label is “Kernel.”

*Note* User-specified parameters from the TYPE= option are included in the label by default.

**LINEATTRS=**style-element *(options)* | *(options)*

specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default** GraphFit style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness

**NAME=**"text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

*Note* The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**SCALE=**scaling-type

specifies the scaling that is used for the response axis. Specify one of the following values:

**COUNT**

the axis displays the frequency count.

**DENSITY**

the axis displays the density estimate values.

**PERCENT**

the axis displays values as a percentage of the total.

**PROPORTION**

the axis displays values in proportion to the total.
The PROPORTION scale can be used only when you combine a density plot and a histogram together.

**SPLITCHAR=“character-list”**
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Interactions**
This option has no effect unless CURVELABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant. The split characters are case sensitive.

**See**
“Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**
“Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Default**
LEFT

**Interaction**
This option has no effect unless you specify the SPLITCHAR= option.

**See**
“Overview of Collision Avoidance” on page 1312
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

TYPE =NORMAL (<normal-opts>)|KERNEL (<kernel-opts>)
specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

NORMAL (<normal-opts>)
specifies a normal density estimate, with a mean and a standard deviation.

normal-opts can be one or more of the following values:

MU=numeric-value
specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

SIGMA=numeric-value
specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a positive number. By default, the standard deviation value is calculated from the data.

KERNEL (<kernel-opts>)
specifies a nonparametric kernel density estimate.

kernel-opts can be:

C=numeric-value
specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

The value that you specify for the C= suboption affects the value of \( \lambda \) as shown in the following equation:

\[
\lambda = cQn^{-\frac{1}{5}}
\]

In this equation \( c \) is the standardized bandwidth, \( Q \) is the interquartile range, and \( n \) is the sample size.

WEIGHT=NORMAL | QUADRATIC | TRIANGULAR
specifies the weight function. You can specify either normal, quadratic, or triangular weight function.

Default NORMAL

Default NORMAL

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.
Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the calculated result to the secondary (right) vertical axis.

**Details**

**Normal Density Function**
When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[
p(x) = \frac{100h\%}{\sigma\sqrt{2\pi}} \exp\left( -\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2 \right) \text{for} -\infty < x < \infty
\]

In the equation, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. You can specify \( \mu \) by using the MU= suboption and \( \sigma \) by using the SIGMA= suboption.

**Kernel Density Function**
When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[
f_\lambda(x) = \frac{100h\%}{n\lambda} \sum_{i=1}^{n} K\left( \frac{x - x_i}{\lambda} \right)
\]

In the equation, \( K_0(\cdot) \) is the weight function, \( \lambda \) is the bandwidth, \( n \) is the sample size, and \( x_i \) is the \( i \)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \( K_0(\cdot) \).

**Kernel Density Weight Functions**
The formulas for the weight functions are as follows.

**NORMAL**

\[
K_0(t) = \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{1}{2} t^2 \right) \text{for} -\infty < t < \infty
\]

**QUADRATIC**

\[
K_0(t) = \frac{3}{4} \left( 1 - t^2 \right) \text{for} |t| \leq 1
\]

**TRIANGULAR**

\[
K_0(t) = 1 - |t| \text{for} -1 \leq |t| \leq 1
\]

**DOT Statement**
Creates a dot plot that summarizes the values of a category variable.
**Interaction:** The DOT statement can be combined only with other horizontal categorization plot statements.

**Examples:**
- “About Dot Plots” on page 59
- “Example 7: Adding Statistical Limits to a Dot Plot” on page 1227

---

**Syntax**

```
DOT category-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value`
  - specifies the value of the ID variable in a discrete attribute map data set.

- `COLORMODEL=style-element | (color-list)`
  - specifies a color ramp that is to be used with the `COLORRESPONSE=` option.

- `COLORRESPONSE=numeric-column`
  - specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
  - specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
  - specifies an amount to offset all dots from discrete category values.

- `RATTRID=character-value`
  - specifies the value of the ID variable in a range attribute map data set.

- `TRANSPARENCY=value`
  - specifies the degree of transparency for the plot.

**Data tip options**

- `TIP=(variable-list) | NONE`
  - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- `TIPFORMAT=(format-list)`
  - applies formats to the list of data tip variables that you specify in the `TIP=` option.

- `TIPLABEL=(label-list)`
  - applies labels to the list of data tip variables that you specify in the `TIP=` option.

**Group options**

- `CLUSTERWIDTH=numeric-value`
  - specifies the width of the group clusters as a fraction of the midpoint spacing.

- `GROUP=variable`
  - specifies a variable that is used to group the data.

- `GROUPDISPLAY=CLUSTER | OVERLAY`
  - specifies how to display grouped dots.

- `GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING`
  - specifies the ordering of the groups within a category.

**Label options**
DATALABEL <=variable>
    displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    DATALABEL= option.
DATALABELPOS=DATA | LEFT | RIGHT
    specifies the location of the data label.
LEGENDLABEL="text-string"
    specifies the label that identifies the dot plot in the legend.
SPLITCHAR="character-list"
    splits the text for data labels at the specified character(s) when there is not
    enough room to display the text normally.
SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.
STATLABEL | NOSTATLABEL
    specifies whether the response variable statistic is displayed in the axis and
    legend labels.

Limit options
LIMITATTRS=style-element <(options)> | (options)
    specifies the appearance of the limit lines in the plot.
LIMITS=BOTH | LOWER | UPPER
    specifies which limit lines to display.
LIMITSTAT=CLM | STDDEV | STDERR
    specifies the statistic for the limit lines.
NUMSTD=n
    specifies the number of standard units for the limit lines when you specify
    LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options
FILLEDOUTLINEDMARKERS
    specifies that markers have a fill and an outline.
MARKERATTRS=style-element <(options)> | (options)
    specifies the appearance of the markers in the plot.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
    specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
    specifies the appearance of the marker outlines.

Plot options
ALPHA=numeric-value
    specifies the confidence level for the confidence limits.
CATEGORYORDER=RESPASC | RESPDESC
    specifies the order in which the categories are arranged.
FREQ=numeric-variable
    specifies a variable for the frequency count for each observation in the input
    data.
MISSING
for group data, processes missing values as valid category value and creates a
dot for it.

**RESPONSE=response-variable**
specifies a numeric response variable for the plot.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the
calculations.

**Plot reference options**

**NAME="text-string"**
assigns a name to a plot statement.

**Statistics options**

**COLORSTAT=FREQ | PCT | SUM | MEAN**
specifies the statistic to use for computing the response colors.

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
specifies the statistic for the horizontal axis.

**Required Argument**

**category-variable**
specifies the variable whose values determine the categories of data represented by
the dots.

**Optional Arguments**

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits. Specify a number between
0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first
ALPHA value that you specify is used for all of the plots.

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

**CATEGORYORDER=RESPASC | RESPDESC**
specifies the order in which the categories are arranged. Specify one of the following
values:

**RESPASC**
sorts by the response values in ascending order.
RESPDESC
sorts by the response values in descending order.

Default
By default, the plot is sorted in ascending order based on the category values.

Restrictions
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions
When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default
0.8

Interaction
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  
colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response
Defaults  
SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note  
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL <=variable>

Displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults  
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction  
This option has no effect unless the DATALABEL option is also specified.

Examples  
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=DATA | LEFT | RIGHT

Specifies the location of the data label. Specify one of the following values:

DATA  
places the label on the data primitives (at the right edge of the dots).

LEFT  
places the label to the left of the dots.

RIGHT  
places the label to the right of the dots.

Default  
DATA

Interaction  
This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.
This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

**Table 7.4 DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>Option</th>
<th>Display</th>
<th>Display</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
<td><img src="image9.png" alt="Image" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image10.png" alt="Image" /></td>
<td><img src="image11.png" alt="Image" /></td>
<td><img src="image12.png" alt="Image" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image13.png" alt="Image" /></td>
<td><img src="image14.png" alt="Image" /></td>
<td><img src="image15.png" alt="Image" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image16.png" alt="Image" /></td>
<td><img src="image17.png" alt="Image" /></td>
<td><img src="image18.png" alt="Image" /></td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**

You can use the MARKERATTRS= option to specify a filled marker symbol.

**See**

“Using Data Skins” on page 1343

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all dots from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default**

0.0 (no offset)

**Requirement**

This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**Requirement**

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interaction**

Use the MARKERFILLATTRS= and MARKEROOUTLINEATTRS= options to specify attributes for the fill and outline.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1315.
**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**
- If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
- If the value is not an integer, only the integer portion is used.

**Interaction**
- If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interactions**
- If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

- When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped dots.

- **CLUSTER**
  grouped items are drawn adjacent to each other.

- **OVERLAY**
  grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData style elements in the current style.

**Default**
OVERLAY

**Restriction**
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

**Interaction**
This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

- **DATA**
  orders the groups within a category in data order of the group variable.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, then the legend label is “Frequency”.

Interaction The LEGENDLABEL=option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option.

Specify one of the following values:
BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default
By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction
Limit lines are displayed only when you specify STAT=MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default
CLM

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.
Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MISSING
for group data, processes missing values as valid category value and creates a dot for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=\(n\)
specifies the number of standard units for the limit lines when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1
**RATTRID=character-value**
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

**RESPONSE=response-variable**
specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

**SPLITCHAR=“character-list”**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Interactions** This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes** When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction** This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312
**SPLITJUSTIFY=LEFT | CENTER | RIGHT**  
specifies the horizontal alignment of the value text that is being split.

**Default**  
LEFT

**Interaction**  
This option has no effect unless you specify the SPLITCHAR= option.

**See**  
“Overview of Collision Avoidance” on page 1312

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**  
specifies the statistic for the horizontal axis. Specify one of the following:

**FREQ**  
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

**MEAN**  
the mean of the response variable.

**MEDIAN**  
the median of the response variable.

**PERCENT**  
the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

**Alias**  
PCT

**Interactions**  
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

**Note**  
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.
**SUM**

The sum of the response variable. This is the default value when you specify the RESPONSE= option.

**Interaction**

For this value to take effect, you must also specify the RESPONSE= option.

**Defaults**

SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

**Restriction**

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

**Interaction**

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

**STATLABEL | NOSTATLABEL**

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

**Defaults**

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

**Interactions**

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;
**Interaction**  
This option replaces all of the information that is displayed by default.

**Tip**  
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  
tip=(age weight)

**TIPFORMAT=(format-list)**  
Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**  
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  
This option has no effect unless TIP= is also specified.

**Tip**  
Use the TIPLABEL= option to assign labels to the list of variables.

**See**  
[SAS Formats and Informats: Reference](#)

**Example**  
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**  
Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**  
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**  
This option has no effect unless TIP= is also specified.

**Tip**  
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**  
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**  
Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable* specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

---

**DROPLINE Statement**

Creates one or more drop lines from data point(s) to one or both axes. The line(s) can be horizontal, vertical, or both.

Restriction: When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

See: “About Drop Lines” on page 33
Syntax

**DROPLEINE** X=variable | x-axis-value
Y=variable | y-axis-value <option(s)>;

**Summary of Optional Arguments**

**Appearance options**

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
  specifies an amount to offset all drop lines from discrete X or Y values.

- **LINEATTRS=style-element <(options) | (options)**
  specifies the appearance of the drop line.

- **NOCLIP**
  extends the plot axes to contain the drop lines.

- **TRANSPARENCY=value**
  specifies the degree of transparency for the plot.

**Axis options**

- **DROPTO=BOTH | X | Y**
  specifies the axis to which the line is dropped.

- **X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.

- **Y2AXIS**
  assigns the Y variable to the secondary (right) vertical axis.

**Label options**

- **LABEL <=variable> | <=("text-string-1" ... "text-string-n")>**
  creates labels for each drop line.

- **LABELATTRS=style-element <(options)| (options)**
  specifies the appearance of the labels.

- **LEGENDLABEL="text-string"**
  specifies a label that identifies the plot in the legend.

**Plot reference options**

- **NAME="text-string"**
  assigns a name to a plot statement.

**Required Arguments**

- **X=variable | x-axis-value**
  specifies the X coordinate of the drop line(s). If you specify an x-axis-value that is a text string, enclose the string in quotation marks.

  **Requirement** Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

- **Y=variable | y-axis-value**
  specifies the Y coordinate of the drop line(s). If you specify a y-axis-value that is a text string, enclose the string in quotation marks.
Values must agree in type with the Y-axis data type.

Optional Arguments

**DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 7.5 DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See: “Using Data Skins” on page 1343

**DISCRETEOFFSET=**numeric-value

specifies an amount to offset all drop lines from discrete X or Y values.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.

Requirement: This option is applicable only when the X or Y axis is discrete.

**DROPTO=**BOTH | X | Y

specifies the axis to which the line is dropped.

BOTH
draws dropline(s) to both axes.

X
draws dropline(s) to the X axis, or to the X2 axis if specified.

Y
draws dropline(s) to the Y axis, or to the Y2 axis if specified.

**LABEL** <=variable> | <=("text-string-1" ... "text-string-n")>

creates labels for each drop line. If you do not specify a label value, the value for that line is used as the label.

If you specify a label value, the following options are available.
variable
a variable for the label value.

Restriction
This label variable is used only when a variable is used for the
DROPLINE value. If this condition fails, the label variable is
ignored and a message is written to the log.

“text-string-1” ... “text-string-n”
a text string for the label value.

Restriction
The label string does not apply when a variable is used for the
DROPLINE value. In that situation, the label string is ignored and a
message is written to the log.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphLabelText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style
(ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the
GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the LABEL option is also specified.

Examples
LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “drop” is
used.

Interaction
This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the drop line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default
GraphReference style element in the current style. The affected attributes
are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.
Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOCLIP**
extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

**TRANSPARENCY=** value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default** 0.0
- **Range** 0 (completely opaque) to 1 (completely transparent)

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Details**
A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

**Example**
This example shows a DROPLINE statement originating from the point (X=3, Y=5) and dropping to both axes.
/* Create data set with X and Y variables that plot a parabola. */
data test;
do X=0 to 8 by 0.25;
   Y=(x-3)*(x-3) + 5;
   output;
end;
run;

/* Create the plot and drop lines. Specify a label and line attributes for the drop lines. */
title "Drop lines at Inflection Point";
proc sgplot data=test;
   series x=x y=y;
   dropline x=3 y=5 / dropto=both label="(3,5)"
      lineattrs=(color=blue pattern=dot);
   yaxis min=0;
run;
title;

ELLIPSE Statement

Adds a confidence or prediction ellipse to another plot.

Restriction: In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes.

Examples: "About Ellipse Plots" on page 45
           "Example 5: Adding a Prediction Ellipse to a Scatter Plot" on page 1224

Syntax

ELLIPSE X=numeric-variable Y=numeric-variable </option(s)>;
Summary of Optional Arguments

Appearance options

FILL | NOFILL
specifies whether the area fill is visible.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the ellipse.

OUTLINE | NOOUTLINE
specifies whether the outlines of the ellipse are visible.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Plot options

ALPHA=numeric-value
specifies the confidence level for the ellipse.

CLIP
specifies that the data for the ellipse is ignored when determining the data ranges for the axes.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

TYPE =MEAN | PREDICTED
specifies the type of ellipse.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-variable
specifies a numeric variable for the X axis.

Y=numeric-variable
specifies a numeric variable for the Y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the ellipse.

Default .05
Range 0.01 (complete confidence) to 0.99 (no confidence)

CLIP
specifies that the data for the ellipse is ignored when determining the data ranges for the axes. By default, the data for the ellipse is considered when determining the data ranges for the axes.

Interaction This option is automatically set if you specify UNIFORM=SCALE or UNIFORM=ALL option in the PROC SGPLOT statement.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

LEGENDLABEL="text-string"
specifies a label that identifies the ellipse in the legend. By default, the label describes the confidence value of the ellipse and the type of ellipse. For example, “95% Prediction Ellipse.”

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.
Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NAME="text-string"**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The `text-string` is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**OUTLINE | NOOUTLINE**
specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

**Default** The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

**Interactions** Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**TYPE =MEAN | PREDICTED**
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume a bivariate normal distribution.

**Default** PREDICTED

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**FRINGE Statement**

Creates a fringe plot on the X axis of an X-Y plot.

**Interaction:** Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots).
Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Example: “About Fringe Plots” on page 28

Syntax

FRINGE numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the fringe lines.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

Axis options

X2AXIS
  assigns the X variable to the secondary (top) horizontal axis.

Data tip options

TIP=(variable-list) | NONE
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
  applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
  specifies a variable that is used to group the data.

HEIGHT=dimension<units>
  specifies the height of the fringe lines.

NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.

Label options

LEGENDLABEL="text-string"
  specifies a label that identifies the needle plot in the legend.

Plot reference options

NAME="text-string"
  assigns a name to a plot statement.
**Required Argument**

*numeric-variable*

specifies the variable that provides the X coordinates of the data values.

**Optional Arguments**

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**HEIGHT=dimension<units>**

specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
LEGENDLABEL="" "text-string"
specifies a label that identifies the needle plot in the legend. By default, the label of
the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)>
| (options)
specifies the appearance of the fringe lines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

NAME="" "text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.
**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL= option to assign labels to the list of variables.

**See**

*SAS Formats and Informats: Reference*

**Example**

```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of variables.

**Example**

```
tiplabel=(auto "Class Weight")
```

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**

0.0

**Range**

0 (completely opaque) to 1 (completely transparent)

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.
GRADLEGEND Statement

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

See: “Using Gradient Color Legends” on page 1310

Syntax

GRADLEGEND <"name"> <option(s)>;

Summary of Optional Arguments

Appearance options

BORDER | NOBORDER
specifies whether a border is visible around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

Legend options

"name"
specifies the name of the plot that you want to include in the legend.

Scale options

EXTRACTSCALE<=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width.

Optional Arguments

"name"
specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.
If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.

Restriction

Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

**BORDER | NOBORDER**

specifies whether a border is visible around the legend.

Default NOBORDER

**EXTRACTSCALE<DEFAULT | SCIENTIFIC>**

extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

You can also specify whether to use a named scale or a scientific-notation scale.

**DEFAULT**

extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as $10^n$) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of $1/10$ ($10^{-n}$) for values less than 1 trillionth.

**SCIENTIFIC**

extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as $10^n$ for values greater than 1, or a multiple of $1/10$ expressed as $10^{-n}$ for values less than 1.

The following examples show a gradient legend before and after EXTRACTSCALE= is specified:

<table>
<thead>
<tr>
<th>Default Scale</th>
<th>EXTRACTSCALE Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Default Scale Diagram" /></td>
<td><img src="image" alt="EXTRACTSCALE Specified Diagram" /></td>
</tr>
</tbody>
</table>

**Restriction**

The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.
INTEGER
specifies that integers are used for the gradient legend.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOTITLE
removes the default title. The default title is the name of the response variable.

**Default**
The default title is displayed.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

*dimension*
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

*(pad-options)*
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space added to the left side.
- **RIGHT=dimension** specifies the amount of extra space added to the right side.
- **TOP=dimension** specifies the amount of extra space added to the top.
- **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

*Note* Sides that are not assigned padding are padded with the default amount.

**Tip**
Use *pad-options* to create non-uniform padding.

**Default**
No padding

*Note* The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

**Example**
“Example: Gradient Legend That Uses the OUTERPAD= Option” on page 718

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

**Default**
RIGHT

**Notes**
By default, if you use more than one GRADLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then those legends are placed at that position.
TITLE="text-string"
specifies a title for the legend.

Default If you do not specify this option, then the name of the legend variable is displayed as the title.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\_n style elements.

Examples TITLEATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps a density scale to a color gradient. The OUTERPAD= option adds padding to the top and bottom of the gradient.

```
title "Height and Weight Distribution";
proc sgplot data=sashelp.gridded(where=(count>0));
```
HBAR Statement

HBAR statement creates a horizontal bar chart that summarizes the values of a category variable.

**Interactions:** The HBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1306. When used with particular styles, the HBAR statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

**Tip:** Starting with the third maintenance release for SAS 9.4, bar charts can be combined with basic plot types using the HBAR BASIC and VBAR BASIC statements.

**Example:** “About Bar Charts” on page 54

**Syntax**

```
HBAR category-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value`
  - specifies the value of the ID variable in a discrete attribute map data set.

- `BARWIDTH=numeric-value`
  - specifies the width of the bars as a ratio of the maximum possible width.

- `BASELINEATTRS=style-element <(options)> | (options)`
  - specifies the appearance of the baseline.

- `COLORMODEL=style-element | (color-list)`
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
  - specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
  - specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
  - specifies an amount to offset all bars from the category midpoints.

- `FILL | NOFILL`
  - specifies whether the bars are filled.

- `FILLSATRBS=style-element (options)`
  - specifies the fill color and transparency.

- `FILLTYPE=SOLID | GRADIENT`
  - specifies the fill type that is applied to the chart.

- `NOZEROBARS`
suppresses zero-length bars.

**OUTLINE | NOOUTLINE**
specifies whether the bars have outlines.

**OUTLINEATTRS=** *style-element* *(<options>)* | *(options)*
specifies the appearance of the bar outlines.

**RATTRID=** *character-value*
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=** *value*
specifies the degree of transparency for the plot.

**Axis options**

**BASELINE=** *numeric-value*
specifies the response axis intercept for the baseline.

**X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the category variable to the secondary (right) vertical axis.

**Data tip options**

**TIP=**(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=**(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=**(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=** *numeric-value*
specifies the cluster width as a ratio of the maximum width.

**GROUP=** *variable*
specifies a variable that is used to group the data.

**GROUPDISPLAY=** STACK | CLUSTER
specifies how to display grouped bars.

**GROUPORDER=** DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

**Label options**

**DATALABEL <=** *variable>*
displays a label for each bar.

**DATALABELATTRS=** *style-element* *(<options>)* | *(options)*
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELFITPOLICY=** NONE
specifies that no fit policy is implemented for the bar labels.

**DATALABELPOS=** DATA | LEFT | RIGHT
specifies the location of the data label.

**LEGENDLABEL=** ”text-string”
specifies the label that identifies the bar chart in the legend.
SEGLABEL
    displays a label inside each segment of a stacked bar.
SEGLABELATTRS=style-element <(options)> | (options)
    specifies the text properties of the bar segment label text.
SEGLABELFITPOLICY=NONE | NOCLIP | THIN
    specifies a policy for fitting the bar segment labels within the bar segments.
SEGLABELFORMAT=format
    specifies the text format used to display the bar segment labels.
STATLABEL | NOSTATLABEL
    specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options
LIMITATTRS=style-element <(options)> | (options)
    specifies the appearance of the limit lines in the plot.
LIMITS=BOTH | LOWER | UPPER
    specifies which limit lines to display.
LIMITSTAT=CLM | STDDEV | STDERR
    specifies the statistic for the limit lines.
NUMSTD=n
    specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options
ALPHA=numeric-value
    specifies the confidence level for the confidence limits.
CATEGORYORDER=RESPASC | RESPDESC
    specifies the order in which the categories are arranged.
FREQ=numeric-variable
    specifies a variable for the frequency count for each observation in the input data.
MISSING
    for group data, processes missing values as a valid category value and creates a bar for it.
RESPONSE=response-variable
    specifies a numeric response variable for the plot.
URL=character-variable
    specifies an HTML page to be displayed when parts of the plot are selected.
WEIGHT=numeric-variable
    specifies a variable that contains values to be used as weights for the calculations.

Plot reference options
NAME="text-string"
    assigns a name to a plot statement.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
    specifies the statistic to use for computing the response colors.
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
    specifies the statistic for the horizontal axis.
**Required Argument**

category-variable

specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

**Optional Arguments**

**ALPHA=numeric-value**

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

**BARWIDTH=numeric-value**

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=numeric-value**

specifies the response axis intercept for the baseline.
**Note:** This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

**Default**

0

**Interactions**

If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

**Tips**

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=**

*style-element* *(<options>)| *(options)*

specifies the appearance of the baseline.

**Note:** This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**

The GraphAxisLines style element in the current style.

**Notes**

The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**

To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

**CATEGORYORDER=**

**RESPASC** | **RESPDESC**

specifies the order in which the categories are arranged. Specify one of the following values:

**RESPASC**

sorts by the response values in ascending order.

**RESPDESC**

sorts by the response values in descending order.

**Default**

By default, the plot is sorted in ascending order based on the category values.

**Restrictions**

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis
is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

**Interactions**

When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

**Notes**

Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=** *numeric-value*

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

**Interaction**

This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

**COLORMODEL=** *style-element | (color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.
Example  colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction  If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  “GRADLEGEND Statement” on page 715
  “Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ  frequency count
PCT  percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM  sum values for the color response
MEAN  mean values for the color response

Defaults  SUM when you also specify the COLORRESPONSE= option.
          FREQ when do not specify the COLORRESPONSE= option.

Note  This option is independent of the STAT= and RESPONSE= options.
**DATALABEL <=variable>**
displays a label for each bar. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**Interactions**
This option has no effect if you also specify the GROUPDISPLAY=STACK option.

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**DATALABELATTRS=style-element <(options) | (options)>**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELFITPOLICY=NONE**
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**Default**
Show the labels unless they collide.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

**DATALABELPOS=DATA | LEFT | RIGHT**
specifies the location of the data label. Specify one of the following values:

**DATA**
places the label on the data primitives (at the right edge of the bars).

**LEFT**
places the label to the left of the bars.

**RIGHT**
places the label to the right of the bars.
DATA

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 7.7 DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
</tr>
</tbody>
</table>

Default

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions
This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

See

“Using Data Skins” on page 1343
**DISCRETEOFFSET=**`numeric-value`

specifies an amount to offset all bars from the category midpoints.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0 (no offset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.</td>
</tr>
<tr>
<td>Interaction</td>
<td>If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.</td>
</tr>
</tbody>
</table>

**FILL | NOFILL**

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

<table>
<thead>
<tr>
<th>Default</th>
<th>FILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>Specifying FILL also hides the outlines.</td>
</tr>
<tr>
<td></td>
<td>If NOFILL and NOOUTLINE are both specified, then both options are ignored.</td>
</tr>
</tbody>
</table>

**FILLATTRS=**`style-element <(options)>` | `(options)`

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults	Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\text{n} style elements in the current style for grouped data.
	0.0 transparency
Interaction	This option has no effect if you specify the NOFILL option.

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

| Interaction | Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case. |
| Tip         | Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients. |

| Default   | SOLID |
Interaction  This option has no effect if NOFILL is also specified.

**FREQ=** numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction  If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=** variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interactions**

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

**Tip**  ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=** STACK | CLUSTER

specifies how to display grouped bars.

**STACK**

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\( n \) style elements in the current style.

**CLUSTER**

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

**Note:**  CLUSTER is supported only when the category axis is discrete.

**Default**  STACK

**Interaction**  This option is ignored unless GROUP= is specified.

**Tip**  The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

**hb**
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
ASCENDING

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
Interaction

This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

**LIMITS=BOTH | LOWER | UPPER**

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. Specify one of the following values:

**BOTH**
adds lower and upper limit lines to the plot.

**LOWER**
adds lower limit lines to the plot.

**UPPER**
adds upper limit lines to the plot.

**Default**
By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default.

**Interactions**
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

**LIMITSTAT=CLM | STDDEV | STDERR**

specifies the statistic for the limit lines. Specify one of the following statistics:

**CLM**
confidence limits

**STDDEV**
standard deviation

**STDERR**
standard error

**Default**
CLM

**Interactions**
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT=option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

**MISSING**
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

**NAME="text-string"**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.
Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**
suppresses zero-length bars.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default" /></td>
<td><img src="image2.png" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

*Note:* If BASELINE= is specified, a zero-length bar value equals the baseline.

*Tip:* This option is useful when the bar chart baseline is suppressed.

**NUMSTD=**\(n\)
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default: 1

**OUTLINE | NOOUTLINE**
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default: OUTLINE

Interactions: Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**OUTLINEATTRS=**\(+style-element <(options)> | (options)\)**
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

**Default**

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**

This option has no effect if NOOUTLINE is also specified.

**RATTRID=character-value**

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**See** Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

**RESPONSE=response-variable**

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

**SEGLABEL**

displays a label inside each segment of a stacked bar.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

```
<table>
<thead>
<tr>
<th></th>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.68</td>
<td>29.988</td>
<td>26.647</td>
</tr>
<tr>
<td>18.7</td>
<td></td>
<td>27.116</td>
<td>25.13</td>
</tr>
<tr>
<td>20.04</td>
<td></td>
<td>28.644</td>
<td>24.222</td>
</tr>
</tbody>
</table>
```

**Tips**

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

- Use the SEGLABELATTRS= option to modify the appearance of the label text.
- Use the SEGLABELFORMAT= option to modify the format of the segment labels.
- Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

**SEGLABELATTRS=style-element <(options)> | (options)**

specifies the text properties of the bar segment label text.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.
MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.
STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults
The statistic is displayed for the response variable.
When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions
This option has no effect unless the RESPONSE= option is specified.
This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.
Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement | A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction | This option has no effect unless TIP= is also specified.
Tip | Use the TIPLABEL= option to assign labels to the list of variables.
See | *SAS Formats and Informats: Reference*
Example | `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement | A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction | This option has no effect unless TIP= is also specified.
Tip | Use the TIPFORMAT option to assign formats to the list of variables.
Example | `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default	0.0
Range | 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default | By default, no HTML links are created.
Interactions | This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

**WEIGHT=** *numeric-variable*

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Interaction**
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

**X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the category variable to the secondary (right) vertical axis.

---

**HBARBASIC Statement**

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

**Interaction:**
When used with particular styles, the HBARBASIC statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

**Notes:**
This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When using the HBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

**See:**
Basic plot types on page 1306

**Example:**
“About Bar Charts” on page 54

---

**Syntax**

```
HBARBASIC category-variable <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=** *character-value*
  
  specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=** *numeric-value*
specifies the width of the bars as a ratio of the maximum possible width.

`BASELINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the baseline.

`COLORMODEL=style-element | (color-list)`
specifies a color ramp that is to be used with the `COLORRESPONSE=` option.

`COLORRESPONSE=numeric-column`
specifies a numeric column that is used to map colors to a gradient legend.

`DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
specifies a special effect to be used on the plot.

`DISCRETEOFFSET=numeric-value`
specifies an amount to offset all bars from the category midpoints.

`FILL | NOFILL`
specifies whether the bars are filled.

`FILLATTRS=style-element <(options)> | (options)`
specifies the fill color and transparency.

`FILLTYPE=SOLID | GRADIENT`
specifies the fill type that is applied to the chart.

`NOZEROBARS`
suppresses zero-length bars.

`OUTLINE | NOOUTLINE`
specifies whether the bars have outlines.

`OUTLINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the bar outlines.

`RATTRID=character-value`
specifies the value of the ID variable in a range attribute map data set.

`TRANSPARENCY=value`
specifies the degree of transparency for the plot.

**Axis options**

`BASELINE=numeric-value`
specifies the response axis intercept for the baseline.

`X2AXIS`
assigns the response variable to the secondary (top) horizontal axis.

`Y2AXIS`
assigns the category variable to the secondary (right) vertical axis.

**Data tip options**

`TIP=(role-list) | NONE`
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

`TIPFORMAT=(format-list)`
applies formats to the list of data tip roles that you specify in the `TIP=` option.

`TIPLABEL=(label-list)`
applies labels to the list of data tip roles that you specify in the `TIP=` option.

**Group options**

`CLUSTERWIDTH=numeric-value`
specifies the cluster width as a ratio of the maximum width.

`GROUP=variable`
specifies a variable that is used to group the data.
GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element (options) | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by
the bars. The variable generates the midpoints to which each observation in the data
set contributes.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

BARWIDTH=1.0 when the GROUP option is specified and
GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default  The GraphAxisLines style element in the current style.

Notes  The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip  To suppress the baseline, set the line thickness to 0 as follows:
    baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default  0.8

Interaction  This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element  specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR  specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR  specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR  specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)  specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions If the GROUP= option is also specified, then the GROUP= option is ignored.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715
“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL
displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default No label is shown

Interaction By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Tip The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

Default
The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 7.8  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**FILL | NOFILL**

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

Interaction If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

SOLID each bar is filled with the color that is assigned to the bar fill area.
GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default
SOLID

Interaction
This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default
STACK

Interaction
This option is ignored unless GROUP= is specified.
Tip
The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default" /></td>
<td><img src="image2.png" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

**Note**  If BASELINE= is specified, a zero-length bar value equals the baseline.

**Tip**  This option is useful when the bar chart baseline is suppressed.

**OUTLINE | NOOUTLINE**

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default**  OUTLINE

**Interactions**  Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**OUTLINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color  
- line thickness  

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

**Default**  GraphOutlines style element in the current style for ungrouped data.  
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**  This option has no effect if NOOUTLINE is also specified.
RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.
Use the SEGLABELFORMAT= option to modify the format of the segment labels.
Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not
considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**
do not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**
drops any bar segment label that does not fit within its segment.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=** *format*
specifies the text format used to display the bar segment labels.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless SEGLABEL is also specified.

**STAT=** *FREQ | PCT | SUM | MEAN | PROPORTION*
specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

- **FREQ** frequency count
- **PCT | PERCENT** percentages between 0 and 100
- **PROPORTION** proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

- **SUM** sum values for the response
- **MEAN** mean values for the response

Defaults: SUM when you also specify the RESPONSE= option.

When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

**TIP=(role-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(**role-list**) a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

**NONE** suppresses the data tips from this plot.
You must specify the IMAGEMAP=ON option in the ODS GRAPhICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(category response)
```

**TIPFORMAT=** *(format-list)*

Applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

**TIPLABEL=** *(label-list)*

Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example
```
tiplabel=(auto "Class Weight")
```
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

HBARPARM Statement

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interactions: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.
When used with particular styles, the HBARPARM statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Note: An important distinction between HBARPARM and HBAR is that the response variable is required for HBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 54
Syntax

HBARPARM CATEGORY=category-variable RESPONSE=numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
  specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
  specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
  specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
  specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
  specifies the fill type that is applied to the chart.

LEGENDLABEL="text-string"
  specifies the label that identifies the bar chart in the legend.

NOZEROBARS
  suppresses zero-length bars.

OUTLINE | NOOUTLINE
  specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the bar outlines.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
  specifies the response axis intercept for the baseline.

X2AXIS
  assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
  assigns the category variable to the secondary (right) vertical axis.
Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=None
specifies that no fit policy is implemented for the bar labels.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=None | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines.

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME=“text-string”**
assigns a name to a plot statement.

**Required Arguments**

**CATEGORY=category-variable**
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

**RESPONSE=numeric-variable**
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

**Optional Arguments**

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

**BARWIDTH=numeric-value**
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of 0.5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

**Defaults**

| .8 |
| 1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER |

**Range**

| 0.0 (narrowest) to 1.0 (widest) |

**Interaction**

When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are
drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=**numeric-value  
specifies the response axis intercept for the baseline.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

**Default**  
0

**Interaction**  
When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

**Tips**  
The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=**style-element *(options)*  
specifies the appearance of the baseline.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**  
The GraphAxisLines style element in the current style.

**Notes**  
The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**  
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**CLUSTERWIDTH=**numeric-value  
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default**  
0.8
Interaction This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

**COLORMODEL=**<style-element> | (<color-list>)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

colormodel=TwoColorRamp

**(<color-list>)**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

**Example**

colormodel=(blue yellow green)

**Default** The ThreeColorAltRamp style element

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=**<numeric-column>

specifies the numeric column that is used to map colors to a gradient legend.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

**Interaction** If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip** The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**

“GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310
DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that
variable are used for the data labels. If you do not specify a variable, then the values
of the calculated response are used for the data labels.

*Note:* By default, the data label fit policy is to show the labels unless they collide.
As a result, the labels sometimes might not be visible. To show the labels
regardless of how they fit, specify DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element <(options)>, | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDatan style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}
Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**Default**
Show the labels unless they collide.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label. Specify one of the following values:

**DATA**
places the label on the data primitives (at the right edge of the bars).

**LEFT**
places the label to the left of the bars.

**RIGHT**
places the label to the right of the bars.

**Default**
DATA

**Interactions**
This option has no effect unless you also specify the DATALABEL option.
This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interactions**

This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

**See**

“Using Data Skins” on page 1343

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

**Default**

0.0 (no offset)
<table>
<thead>
<tr>
<th><strong>Range</strong></th>
<th>-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interaction</strong></td>
<td>If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.</td>
</tr>
</tbody>
</table>

**FILL | NOFILL**
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

<table>
<thead>
<tr>
<th><strong>Default</strong></th>
<th>FILL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interactions</strong></td>
<td>Specifying FILL also hides the outlines.</td>
</tr>
<tr>
<td></td>
<td>If NOFILL and NOOUTLINE are both specified, then both options are ignored.</td>
</tr>
</tbody>
</table>

**FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

<table>
<thead>
<tr>
<th><strong>Defaults</strong></th>
<th>Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData(n) style elements in the current style for grouped data.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 transparency</td>
</tr>
<tr>
<td><strong>Interaction</strong></td>
<td>This option has no effect if you specify the NOFILL option.</td>
</tr>
</tbody>
</table>

**FILLTYPE=SOLID | GRADIENT**
specifies the fill type that is applied to the chart.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**SOLID**
each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

<table>
<thead>
<tr>
<th><strong>Interaction</strong></th>
<th>Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tip</strong></td>
<td>Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Default</strong></th>
<th>SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interaction</strong></td>
<td>This option has no effect if NOFILL is also specified.</td>
</tr>
</tbody>
</table>
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVISEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING
Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**style-element <(options)>

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITLOWER=**numeric-variable

specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default

The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions

If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

**LIMITUPPER=**numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.
The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="default.png" alt="Diagram" /></td>
<td><img src="specified.png" alt="Diagram" /></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE
Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData-n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See

Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

SEGLABEL
displays a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.
Use the **SEGLABELATTRS**= option to modify the appearance of the label text.

Use the **SEGLABELFORMAT**= option to modify the format of the segment labels.

Use the **SEGLABELFITPOLICY**= option to specify how the labels fit in the segments.

**SEGLABELATTRS=** *style-element* < *(options)* > | *(options)*

specifies the text properties of the bar segment label text.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: The GraphDataText style element.

Interaction: This option has no effect unless **SEGLABEL** is also specified.

**SEGLABELFITPOLICY=** *NONE | NOCLIP | THIN*

specifies a policy for fitting the bar segment labels within the bar segments.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**NONE**

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default: THIN

Interaction: This option has no effect unless **SEGLABEL** is also specified.

**SEGLABELFORMAT=** *format*

specifies the text format used to display the bar segment labels.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default: The column format assigned to the **RESPONSE**= column, or **BEST6** if no format is assigned.
**TIP=(variable-list) | NONE**  
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)  
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE  
suppresses the data tips from this plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**  
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**  
This option replaces all of the information that is displayed by default.

**Tip**  
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  
tip=(age weight)

**TIPFORMAT=(format-list)**  
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**  
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  
This option has no effect unless TIP= is also specified.

**Tip**  
Use the TIPLABEL= option to assign labels to the list of variables.

**See**  
*SAS Formats and Informats: Reference*

**Example**  
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**  
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.
HBOX Statement

Creates a horizontal box plot that shows the distribution of your data.

**Restriction:** This plot has plot compatibility restrictions. See Table 10.2 on page 1307.

**Interaction:** The HBOX statement cannot be used with other plot statements in the SGPLOT procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

**See:** "Visual Description of Box Plot Percentile Boundaries" on page 781

**Examples:** “About Box Plots” on page 49

“Example 9: Creating a Horizontal Box Plot” on page 1230

**Syntax**

HBOX numeric-analysis-variable </option(s)>;

**Summary of Optional Arguments**

**Appearance options**

**ATTRID=**character-value

specifies the value of the ID variable in a discrete attribute map data set.

**BOXWIDTH=**numeric-value

specifies the width of the box.

**CAPSHAPE=**BRACKET | LINE | SERIF | NONE

specifies the shape of the whisker cap lines.

**CONNECT=**MEAN | MEDIAN | Q1 | Q3 | MIN | MAX

specifies that a connect line joins a statistic from box to box.

**CONNECTATTRS=**style-element <(options)> | (options)

specifies the appearance of the lines that connect multiple boxes.

**DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

**DISCRETEOFFSET=**numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

**EXTREME**

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

**FILL | NOFILL**

specifies whether the boxes are filled with color.

**FILLATTRS=**style-element <(options)> | (options)

specifies the fill color and transparency.

**INTBOXWIDTH=**numeric-value

specifies the box width when an interval category (Y) variable is specified.

**LINEATTRS=**style-element <(options)> | (options)

specifies the appearance of the box outlines.

**MEANATTRS=**style-element <(options)> | (options)

specifies the appearance of the marker that represents the mean in the box.

**MEDIANATTRS=**style-element <(options)> | (options)
specifies the appearance of the line that represents the median.

NOCAPS
  hides the cap lines for the whiskers.

NOMEAN
  hides the mean marker.

NOMEDIAN
  hides the median line.

NOOUTLIERS
  hides the outliers from the plot.

NOTCHES
  specifies that the boxes be notched.

OUTLIERATTRS=style-element <(options)> | (options)
  specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

WHISKERATTRS=style-element <(options)> | (options)
  specifies the appearance of the whisker and cap lines.

WHISKERPCT=number
  specifies the whisker length, in percentile units.

Axis options

X2AXIS
  assigns the analysis variable to the secondary (top) horizontal axis.

Y2AXIS
  assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(role-list) | NONE
  specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

TIPFORMAT=(format-list)
  applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
  applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
  specifies the cluster width as a ratio of the midpoint spacing.

GROUP=variable
  specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
  specifies how to display grouped boxes.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
  adds data labels for the outlier markers.

DATALABELATTRS=style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.
LABELFAR
specifies that only the far outliers have data labels.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
specifies the category variable for the plot.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a box for it.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

SPREAD
relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the
calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY=
option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available
width) and 1.0 (100% of the available width).
Defaults 0.4

When GROUP is specified, the default box width is 0.6.

**CAPSHAPE=BRACKET | LINE | SERIF | NONE**
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

**CATEGORY=category-variable**
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

**CLUSTERWIDTH=numeric-value**
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

**CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX**
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

**CONNECTATTRS=style-element <(options)> | (options)**
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.
Interactions

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples

CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:
CONNECTATTRS=GraphData3

DATALABEL <=variable>

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note: This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData{n} style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 7.10 DATASKIN Options for Box Plots

<table>
<thead>
<tr>
<th></th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction** If you also specify NOFILL, then the data skin is applied to the outlines.

**See** “Using Data Skins” on page 1343

**DISCRETEOFFSET=** numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

**Default** 0.0 (no offset)

**EXTREME**

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL | NOFILL**

specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Default** FILL

**FILLATTRS=** style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

**Defaults** Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.
Interaction

This option has no effect if you specify the NOFILL option.

**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped boxes.

**CLUSTER**
the boxes are drawn adjacent to each other.

**OVERLAY**
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\( n \) style elements in the current style.

Defaults

CLUSTER for a discrete category axis

OVERLAY for a linear axis

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction

This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER= . The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (Y) variable is specified.

Restriction The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example

```
proc sgplot data=sashelp.class;
 hbox weight / category=height intboxwidth=20 ;
 yaxis type=linear;
run;
```

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interactions This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphBoxMedian style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

MISSING
for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
hides the cap lines for the whiskers.
Interaction  Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOUTLIERS in the same statement, the NOCAPS option might be ignored.

**NOMEAN**

hides the mean marker.

**NOMEDIAN**

hides the median line.

**NOOUTLIERS**

hides the outliers from the plot.

**NOTCHES**

specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \left(\frac{\text{IQR}}{\sqrt{N}}\right)
\]

For a visual description of the parts of a box plot, see “Details” on page 781.

**OUTLIERATTRS=** <style-element> (<options>) | (options)

specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default  GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**PERCENTILE=** 1 | 2 | 3 | 4 | 5

specifies a method for computing the percentiles for the plot. For descriptions of each method, see “Calculating Percentiles” in the UNIVARIATE Procedure chapter of *Base SAS Procedures Guide: Statistical Procedures*.

Default  5

**SPLITCHAR=** "character-list"

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

**SPLITCHAR=** "abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Values are not split.

This option has no effect unless DATAVALUE is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

“Overview of Collision Avoidance” on page 1312

specifies that the split characters are included in the displayed value.

This option has no effect unless SPLITCHAR= is also specified.

“Overview of Collision Avoidance” on page 1312

specifies the horizontal alignment of the value text that is being split.

LEFT is the default alignment.

This option has no effect unless you specify the SPLITCHAR= option.

“Overview of Collision Avoidance” on page 1312

relocates outlier points that have identical values to prevent overlapping.

This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
ODS GRAPHICS ON / IMAGEMAP=ON;

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(mean median)

---

**TIPFORMAT=**(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL option to assign labels to the list of roles.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

---

**TIPLABEL=**(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of roles.

**Example**
tiplabel=(auto "Class Weight")

---

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element<(options)> | (options)

specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

WHISKERPCT=number

specifies the whisker length, in percentile units.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10th percentile low and the 90th percentile high
25 specifies the 25th percentile low and the 75th percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

X2AXIS

assigns the analysis variable to the secondary (top) horizontal axis.
Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

Details

Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Note: Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots.

Figure 7.2 Parts of a Box Plot
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 \text{ IQR}$). Outliers that are beyond upper and lower far fences ($\pm 3 \text{ IQR}$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

### HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**Example:** "About Heat Maps" on page 28

#### Syntax

HEATMAP X=variable Y=variable <option(s)>;

#### Summary of Optional Arguments

**Appearance options**

- **COLORMODEL=** *style-element | (color-list)*
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=** *numeric-variable*
  - specifies a numeric variable that is used to color the regions of the heat map.

- **COLORSTAT=FREQ | PCT | SUM | MEAN**
  - specifies the statistic to use for the COLORRESPONSE= variable.

- **FILLATTRS=(TRANSPARENCY=number)**
  - specifies the transparency of the area fill in the rectangles.

- **OUTLINE**
  - displays an outline around each colored region.

- **OUTLINEATTRS=** *style-element <(options)> | (options)*
  - specifies the appearance of the rectangle outlines.

- **RATTRID=** *character-value*
  - specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=** *value*
  - specifies the degree of transparency for the plot.

**Axis options**
SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

**Binning options**

NXBINS=positive-integer
specifies the number of bins to use for the X role.

NYBINS=positive-integer
specifies the number of bins to use for the Y role.

XBINSIZE=positive-number
specifies the horizontal size of bins in X axis coordinate system units.

XBINSTART=positive-number
specifies the data value for the first bin of the X role.

YBINSIZE=positive-number
specifies the vertical size of bins in Y axis coordinate system units.

YBINSTART=positive-number
specifies the data value for the first bin of the Y role.

**Data options**

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

**Data tip options**

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

**Plot options**

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.
Plot reference options

NAME="text-string"

assigns a name to a plot statement.

**Required Arguments**

**X=variable**
specifies the variable for the X axis.

**Requirement**
If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

**Y=variable**
specifies the variable for the Y axis.

**Requirement**
If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

**Optional Arguments**

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
```
colormodel=TwoColorRamp
```

**color-list** specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**
```
colormodel=(blue yellow green)
```

**Default** The ThreeColorAltRamp style element

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified.
COLORRESPONSE=numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for the COLORRESPONSE= variable.

Defaults FREQ
SUM if COLORRESPONSE= is specified

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.

Range 0 (opaque) to 1 (entirely transparent)

Interaction This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

outline transparency=0.2 fillattrs=(transparency=0.6)

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NXBINS=positive-integer
specifies the number of bins to use for the X role. The system determines the XBINSIZE= and XBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.
Range 2 or more
See “Binning Options” on page 790

NYBINS=positive-integer
specifies the number of bins to use for the Y role. The system determines the YBINSIZE= and YBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.
Range 2 or more
See “Binning Options” on page 790

OUTLINE
displays an outline around each colored region.

Default No outline is displayed

OUTLINEATTRS=style-element (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

Default
Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction
This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction
When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

Default
Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction
This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction
When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)
a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(x y)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the `format-list` and the `role-list` that is specified for the `TIP=` option. A format must be provided for each role, using the same order as the `role-list`. If you do not want to apply a format to a role, use the `AUTO` keyword instead.

**Default**

The column format of the tip variable, or `BEST6` if no format is assigned to a numeric column

**Requirement**

A format or the keyword `AUTO` must be provided for each variable that is listed in the `TIP=` option.

**Interaction**

This option has no effect unless `TIP=` is also specified.

**Tip**

Use the `TIPLABEL` option to assign labels to the list of roles.

**See**

*SAS Formats and Informats: Reference*

**Example**

`tiformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the `TIP=` option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the `label-list` and the `role-list` that is specified for the `TIP=` option. A label must be provided for each role, using the same order as the `role-list`. If you do not want to apply a custom label to a role, use the `AUTO` keyword instead.

**Requirement**

A label or the keyword `AUTO` must be provided for each role that is listed in the `TIP=` option. When `AUTO` is used, the label is obtained from the variable.

**Interaction**

This option has no effect unless `TIP=` is also specified.

**Tip**

Use the `TIPFORMAT` option to assign formats to the list of roles.

**Example**

`tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**

0.0

**Range**

0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

XBINSIZE= positive-number
specifies the horizontal size of bins in X axis coordinate system units. The system determines the NXBINS= and XBINSTART= values, if not specified. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 790

XBINSTART= positive-number
specifies the data value for the first bin of the X role. The system determines the NXBINS= and XBINSIZE= values, if not specified. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 790

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interaction This option has no effect unless the SHOWXBINS option is also used.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YBINSIZE= positive-number
specifies the vertical size of bins in Y axis coordinate system units. The system determines the NYBINS= and YBINSIZE= values, if not specified. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 790

YBINSTART= positive-number
specifies the data value for the first bin of the Y role. The system determines the NYBINS= and YBINSIZE= values, if not specified. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 790

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interaction This option has no effect unless the SHOWYBINS option is also used.
Details

Binining Options

Overview of Binnning Options

In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The number of observations that fall into each bin is computed, and the grid is displayed by coloring each bin with a shade of color computed from a color gradient. You can use the COLORRESPONSE= option to specify the variable that is used for the color gradient. You can also use the COLORSTAT= option to specify the statistic to apply to the variable.

Note: Although the examples in this section were created in the SGPLOT procedure, the general concepts apply also to heat maps in the SGPANEL procedure.

Heat maps have several options for controlling how bins are used to represent the data. You can do the following:

- specify the number of bins (SGPLOT procedure only)
- specify the bin size
- specify the bin start values

The following sections describe the binning options and show how they interact.

The examples are all based on the following simple program:

```plaintext
ods graphics / reset=all;
ods _all_ close;
ods html;
ods graphics / width=4.5in;
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city;
run;
```

Specifying the Number of Bins

The NXBINS= and NYBINS= options specify the number of bins to use for the X role and the Y role respectively. The system determines the bin size and bin start values, if not specified.

Note: The NXBINS= and NYBINS= options are available only in the SGPLOT procedure. In the SGPANEL procedure, you can manage bins using the options to control bin size and bin start values.

In the following example, the number of bins is reduced to 11 on both axes. The example uses the SHOWYBINS option to make it easier to see the number of bins along the Y axis.

The following occur when you run this example:

- fewer bins are used to represent the data.
- because the bins always span the range of the data, the size of each bin increases. If you also specify the XBINSIZE, YBINSIZE, or both options, those options are ignored in order to accommodate the data.
Conversely, if you increase the number of bins, more bins are available to represent the data, and the size of each bin decreases.

**Specifying the Bin Size**

The XBINSIZE= and YBINSIZE= options specify the size of bins along the X role and the Y role in their respective data units. The system determines the number of bins and the bin start values, if not specified.

In the following example, the bin size is increased for both the X and Y roles.

The following occur when you run this example:

- the size of each bin increases.
- because the bins always span the range of the data, fewer bins are used to represent the data.

**Specifying the Bin Start Values**

The XBINSTART= and YBINSTART= options specify the data value for the first bin of the X and Y roles, respectively. The system determines the number of bins and the bin size, if not specified.

In the following example, the bin start values are increased for both the X and Y roles.

The following occur when you run this example:

- bins are drawn only for the data that starts with the specified values. In this case, the bins represent the intersection of data values in which X >= 4000 and Y >= 20.
- because the bins always span the range of the data, the size of each bin increases and fewer bins are used to represent the data.
HEATMAPPARM Statement

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

**Requirements:**
- The COLORGROUP= role or the COLORRESPONSE= role must be specified.
- The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

**Notes:**
- The data for a parameterized heat map should contain only one observation for each X and Y value pair.
- This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**Example:**
“About Heat Maps” on page 28

**Syntax**

```plaintext
HEATMAPPARM X=variable Y=variable
COLORGROUP=variable <option(s)>;

HEATMAPPARM X=variable Y=variable
COLORRESPONSE=numeric-variable <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.

- **COLORMODEL=style-element | (color-list)**
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **FILLATTRS=(TRANSPARENCY=number)**
  specifies the transparency of the area fill in the rectangles.

- **NOMISSINGCOLOR**
  excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map.

**OUTLINE**
displays an outline around each colored region.

OUTLINEATTRS=\texttt{style-element <(options)> | (options)}
specifies the appearance of the rectangle outlines.

RATTRID=\texttt{character-value}
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=\texttt{value}
specifies the degree of transparency for the plot.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

\textbf{Axis options}

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

\textbf{Data options}

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

\textbf{Data tip options}

TIP=\texttt{(role-list) | NONE}
specifies the information to display when the cursor is positioned over a rectangle.

TIPFORMAT=\texttt{(format-list)}
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=\texttt{(label-list)}
applies labels to the list of data tip roles that you specify in the TIP= option.

\textbf{Plot options}

URL=\texttt{character-variable}
specifies an HTML page to be displayed when parts of the plot are selected.

\textbf{Plot reference options}

NAME=\texttt{"text-string"}
assigns a name to a plot statement.

**Required Arguments**

\textbf{X=variable}

specifies the variable for the X axis.

\textbf{Requirement} If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

\textbf{Y=variable}

specifies the variable for the Y axis.

\textbf{Requirement} If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

\textbf{COLORGROUP=variable}

specifies a variable that is used to color the regions of the heat map.

\textbf{Requirement} This argument is required when the response variable is of type discrete.

\textbf{COLORRESPONSE=numeric-variable}

specifies a numeric variable that is used to color the regions of the heat map.

\textbf{Requirement} This argument is required when the response variable is of type interval.

\textbf{Tip} The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

**Optional Arguments**

\textbf{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\textbf{Note:} This feature applies to the COLORGROUP variable in the heat map.

\textbf{See} Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

\textbf{COLORMODEL=}\texttt{style-element} | (\texttt{color-list})

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\texttt{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\texttt{STARTCOLOR} specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  
\[
\text{colormodel=TwoColorRamp}
\]

\text{(color-list)}  
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  
\[
\text{colormodel=(blue yellow green)}
\]

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

DISCRETEX forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number) specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.

Range 0 (opaque) to 1 (entirely transparent)

Interaction This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Note The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.
Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

**NAME="text-string"**  
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.  

**Note** The `text-string` is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.  

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCOLOR**  
excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.  

Default Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

**OUTLINE**  
displays an outline around each colored region.  

Default No outline is displayed

**OUTLINEATTRS=style-element <(options)> | (options)**  
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.  

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

**RATTRID=character-value**  
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.  

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**See** Chapter 16, “Using Range Attribute Maps,” on page 1403
SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

Default
Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction
This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction
When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

Default
Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction
This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction
When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)
a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(x y)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL option to assign labels to the list of roles.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of roles.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

By default, no HTML links are created.

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the `XVALUES=` option identifies the X data as endpoint values or midpoint values.

This option has no effect unless the `SHOWXxBINS` option is also used.

**XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

**Y2AXIS**

assigns the Y variable to the secondary (right) vertical axis.

**YENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the `YVALUES=` option identifies the Y data as endpoint values or midpoint values.

This option has no effect unless the `SHOWYxBINS` option is also used.

**YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

**Default** MIDPOINTS
HIGHLOW Statement

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

Note: This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

Examples:

“About High-Low Plots” on page 30
“Example 11: Creating a High-Low Chart” on page 1232

Syntax

HIGHLOW X=variable | Y=variable
HIGH=numeric-variable LOW=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
  specifies the width of the bars as a ratio of the maximum possible width.

CLIPCAP
  displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
  specifies the type of cap used for the clip cap.

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
  specifies an amount to offset all lines or bars from the category midpoints.

FILL | NOFILL
  specifies whether the area fill is visible for bars.

FILLATTRS=style-element <(options)> | (options)
  specifies the fill color and transparency.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
  specifies the type of cap used at the high end of the bar or line.

INTERVALBARWIDTH=numeric-value
  specifies the thickness of the bar when the X (or Y) data is numeric.

LINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the outlines for the band.
LOWLABEL=variable
specifies the label to be shown at the low end of the line or bar.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bars are visible.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Axis options**

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how to display grouped data.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

**Label options**

HIGHLABEL=variable
specifies the label to be shown at the high end of the line or bar.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the legend.

**Plot options**

CLOSE=numeric-variable
specifies the data for the CLOSE tick on the bar or line.
LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FilledArrow | OPENARROW | CLOSEDARROW
specifies the type of cap used at the low end of the bar or line.

OPEN=numeric-variable
specifies the data for the OPEN tick on the bar or line.

TYPE=BAR | LINE
specifies how the data is to be represented.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments
X=variable | Y=variable
specifies a variable that is used to plot the values along the N or Y axis.

Note
If you specify X=variable, then the statement creates vertical lines or bars on
the X axis and the HIGH and LOW values are plotted along the Y axis.
Conversely, if you specify Y=variable, then the statement creates horizontal
lines or bars on the Y axis and the HIGH and LOW values are plotted along
the X axis.

HIGH=numeric-variable
specifies the upper value for the floating lines or bars.

LOW=numeric-variable
specifies the lower value for the floating lines or bars.

Optional Arguments
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See
Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The
maximum width is equal to the distance between the center of each bar and the
centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars.
If you specify a width of .5, then the width of the bars is equal to the space between
the bars.

Default 0.85

Requirement This option is applicable only when the X or Y axis is discrete.

Interaction This option has no effect unless TYPE=BAR.
CLIPCAP

displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the MIN= and MAX= axis options are specified for an axis and a data value exceeds the specified axis range, the bar or line for that value is clipped. If the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y axis range. The cap is a vertical arrowhead that points toward the clip edge (▼ or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by the X axis range. The cap is a horizontal arrowhead that points toward the clip edge (◄ or ►).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side where the bar or line was clipped.

Interactions

Clip indicators appear only when CLIPCAP is specified and the data values exceed the axis range that is specified by the MIN= and MAX= options. When the MIN= and MAX= options are not specified, the axis range is adjusted to accommodate the data values, and clipping does not occur.

When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

Note

When the high-low TYPE=LINE, you can change the appearance of the clip cap using the CLIPCAPSHAPE= option.

Tip

If you specify the HIGHLABEL or LOWLABEL option, and the bar or line is clipped, the label value is still drawn outside the tip of the clip cap. If the entire bar or line is clipped, no labels are shown.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW

specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
<td>➤</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤</td>
<td>➤</td>
</tr>
</tbody>
</table>

Default DEFAULT

Requirement The shape can be changed only when TYPE=LINE (the default value).

CLOSE=numeric-variable

specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has higher X values. For a horizontal plot, the value is represented by an indicator on the side with higher Y values.
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Requirement This option is applicable only when the X or Y axis is discrete.
Interactions This option is applicable only when TYPE=BAR.
This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.
Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  “GRADLEGEND Statement” on page 715
    “Using Gradient Color Legends” on page 1310

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

*Table 7.11*  **DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
</tbody>
</table>

High-low plots can specify lines rather than bars.

*Table 7.12*  **DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
<td><img src="image9.png" alt="Image" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image10.png" alt="Image" /></td>
<td><img src="image11.png" alt="Image" /></td>
<td><img src="image12.png" alt="Image" /></td>
</tr>
</tbody>
</table>

**Default**  NONE

**Restriction**  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interactions**  This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts”
If you also specify NOFILL, then the data skin is applied to the outlines.

See

“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines or bars from the category midpoints. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset from the category midpoints)

Requirement This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL
specifies whether the area fill is visible for bars. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interactions This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataConfidence style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
Tip  ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=OVERLAY | CLUSTER**
specifies how to display grouped data.

**OVERLAY**
groups are overlaid without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\textsubscript{n} style elements in the current style.

**CLUSTER**
observations with different group values are displayed in adjacent clusters around the category value. Each set of group values is centered at the midpoint tick mark for the category.

Default  OVERLAY

Restriction  GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is discrete.

Interactions  GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR.

This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

Default  DATA

Interactions  This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

This option is applicable only when GROUPDISPLAY=CLUSTER and TYPE=BAR.

Notes  Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.
The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**HIGHCAP=**<br>character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

*Figure 7.3 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars*

<table>
<thead>
<tr>
<th>NONE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="SERIF" /></td>
<td><img src="image" alt="BARBEDARROW" /></td>
</tr>
<tr>
<td><img src="image" alt="FILLEDARROW" /></td>
<td><img src="image" alt="OPENARROW" /></td>
<td><img src="image" alt="CLOSEDARROW" /></td>
</tr>
</tbody>
</table>

**Default**
NONE

**Restriction**
Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

**Interaction**
When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**HIGHLABEL=**variable

specifies the label to be shown at the high end of the line or bar.
INTERVALBARWIDTH=numeric-value

specifies the thickness of the bar when the X (or Y) data is numeric.

Default
The default thickness of the bar is derived from the minimum interval between the data values along X or Y.

Requirement
This option is applicable only when the X or Y axis is a linear axis or a TIME axis.

Interaction
This option has no effect unless TYPE=BAR.

LABELATRRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples
LABELATRRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATRRS=GraphTitleText

LEGENDLABEL="text-string"

specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

LINEATRRS=style-element <(options)> | (options)

specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction
This option has no effect unless you also specify the OUTLINES option.
LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FilledArrow | OPENARROW | CLOSEDARROW

specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 7.4 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

Default NONE

Restriction Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

LOWLABEL=variable

specifies the label to be shown at the low end of the line or bar.

NAME=“text-string”

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction
This option has no effect unless GROUP= is also specified.

OPEN=numeric-variable
specifies the data for the OPEN tick on the bar or line.
For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

OUTLINE | NOOUTLINE
specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default
OUTLINE

Interactions
This option has no effect unless TYPE=BAR.
Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See
Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;
### Interaction
This option replaces all of the information that is displayed by default.

### Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

#### Example
```
tip=(age weight)
```

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Formats and Informats: Reference*

#### Example
```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

#### Example
```
tiplabel=(auto "Class Weight")
```

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
HISTOGRAM Statement

Creates a histogram that displays the frequency distribution of a numeric variable.

Interaction: The HISTOGRAM statement can be combined only with DENSITY statements in the SGPLOT procedure.

Note: The range of the response variable is automatically divided into an appropriate number of bins.

Examples: “About Histograms” on page 52
“Example 8: Combining Histograms with Density Plots” on page 1228

Syntax

HISTOGRAM response-variable <option(s)>;

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

TYPE=BAR | LINE
specifies how the data is to be represented. BAR uses fill and outline attributes.
LINE uses line attributes.

Default LINE

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.
Summary of Optional Arguments

Appearance options

**ATTRID=** *character-value*
specifies the value of the ID variable in a discrete attribute map data set.

**DATASKIN=** *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*
specifies a special effect to be used on the plot.

**FILL | NOFILL**
specifies whether the area fill is visible.

**FILLATTRS=** *style-element <(options)> | (options)*
specifies the fill color and transparency.

**FILLTYPE=** *SOLID | GRADIENT*
specifies the fill type that is applied to the chart.

**OUTLINE | NOOUTLINE**
specifies whether outlines are displayed for the bars.

**TRANSPARENCY=** *value*
specifies the degree of transparency for the plot.

Axis options

**X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the calculated values to the secondary (right) vertical axis.

Group options

**GROUP=** *variable*
specifies a variable that is used to group the data.

Label options

**DATALABEL=** *NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>*
specifies the statistic to display at the end of each bin.

**LEGENDLABEL=** *"text-string"*
specifies a label that identifies the histogram in the legend.

Plot options

**BINSTART=** *numeric-value*
specifies the X coordinate of the first bin.

**BINWIDTH=** *numeric-value*
specifies the bin width.

**BOUNDARY=** *LOWER | UPPER*
specifies how boundary values are assigned to bins.

**FREQ=** *numeric-variable*
specifies a variable for the frequency count for each observation in the input data.

**NBINS=** *numeric-value*
specifies the number of bins.

**SCALE=** *COUNT | PERCENT | PROPORTION*
specifies the scaling that is applied to the vertical axis.

**SHOWBINS**
specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis.

**WEIGHT=**numeric-variable
specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

**Plot reference options**

**NAME=**"text-string"
assigns a name to a plot statement.

**Required Argument**

**response-variable**
specifies the response variable for the histogram.

**Optional Arguments**

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

**BINSTART=**numeric-value
specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

Default The default value is determined by the system.

**BINWIDTH=**numeric-value
specifies the bin width. The system determines the number of bins. The bins always span the range of the data.

Default The default value is determined by the system.

Restriction The maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log.

Interactions

This option is ignored if the NBINS= option is also specified.

**BOUNDARY=**LOWER | UPPER
specifies how boundary values are assigned to bins.

**LOWER**
specifies that boundary values are assigned to the lower bin.
UPPER
specifies that boundary values are assigned to the upper bin.

Default: UPPER

**DATALABEL=** NONE | AUTO | COUNT | DENSITY | PERCENT | PROPORTION
specifies the statistic to display at the end of each bin.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify one of the following:

NONE
suppresses the data labels.

AUTO
uses the SCALE= option value. By default, SCALE=PERCENT.

COUNT | DENSITY | PERCENT | PROPORTION
specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bar.

Default: If DATALABEL is specified without a value, then the default is AUTO.

Interaction: When DATALABEL=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bar.

**DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

*Table 7.13* **DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="none.png" alt="Image" /></td>
<td><img src="crisp.png" alt="Image" /></td>
<td><img src="gloss.png" alt="Image" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="matte.png" alt="Image" /></td>
<td><img src="pressed.png" alt="Image" /></td>
<td><img src="sheen.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
**Interactions**  This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

See  “Using Data Skins” on page 1343

<table>
<thead>
<tr>
<th>FILL</th>
<th>NOFILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.</td>
<td></td>
</tr>
</tbody>
</table>

**Default**  The default status of the area fill is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.

**Interactions**  Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

<table>
<thead>
<tr>
<th>FILLATTRS=style-element &lt;(options)&gt;</th>
<th>(options)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.</td>
<td></td>
</tr>
</tbody>
</table>

For a description of fill attributes, see “Fill Attributes” on page 1321.

**Defaults**  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data.

0.0 transparency

**Interaction**  This option has no effect if you specify the NOFILL option.

<table>
<thead>
<tr>
<th>FILLTYPE=SOLID</th>
<th>GRADIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the fill type that is applied to the chart.</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**  This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID  each bin is filled with the color that is assigned to the bin fill area.

GRADIENT  a gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

**Interaction**  Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

**Tip**  Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.
FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"
specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NBINS=numeric-value
specifies the number of bins. The system determines the BINWIDTH= value. The bins always span the range of the data.

The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with NBINS=.

Default The default number of bins is determined by the system.

Range 2 to 10,000

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.
Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**SCALE=COUNT | PERCENT | PROPORTION**

specifies the scaling that is applied to the vertical axis. Specify one of the following values:

- **COUNT**
  - the axis displays the frequency count.

- **PERCENT**
  - the axis displays values as a percentage of the total.

- **PROPORTION**
  - the axis displays values as proportions (0.0 to 1.0) of the total.

Default **PERCENT**

**SHOWBINS**

specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis. By default, the tick marks are created at regular intervals based on the minimum and maximum values.

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default **0.0**

Range 0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**

specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**

assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the calculated values to the secondary (right) vertical axis.

---

**HLINE Statement**

Creates a horizontal line chart. You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

Interaction: The HLINE statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Axes” on page 1307.
Syntax

**HLINE** category-variable **</option(s)>**;

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.

- **BREAK**
  - creates a break in the line for each missing value of the response variable.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
  - specifies an amount to offset all lines from the discrete category values.

- **LINEATTRS=style-element <(options)> | (options)**
  - specifies the appearance of the lines in the line plot.

- **TRANSPARENCY=value**
  - specifies the degree of transparency for the plot.

**Axis options**

- **X2AXIS**
  - assigns the response variable to the secondary (top) horizontal axis.

- **Y2AXIS**
  - assigns the category variable to the secondary (right) vertical axis.

**Data tip options**

- **TIP=(variable-list) | NONE**
  - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
  - applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
  - applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH=numeric-value**
  - specifies the width of the group clusters as a fraction of the midpoint spacing.

- **GROUP=variable**
  - specifies a variable that is used to group the data.

- **GROUPDISPLAY=CLUSTER | OVERLAY**
  - specifies how to display grouped lines.

- **GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
  - specifies the ordering of the groups within a category.

**Label options**

- **CURVELABEL =<“text-string”>**
adds a label for the line.

**CURVELABELATTRS=** *style-element* | *(options)*
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

**CURVELABELLOC=** *OUTSIDE* | *INSIDE*
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**CURVELABELPOS=** *AUTO* | *END* | *MAX* | *MIN* | *START*
specifies the location of the curve label.

**DATALABEL <=** *variable>*
displays a label for each data point.

**DATALABELATTRS=** *style-element* | *(options)*
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELPOS=** *DATA* | *LEFT* | *RIGHT*
specifies the location of the data label.

**LEGENDLABEL=** "*text-string*"
specifies the label that identifies the line plot in the legend.

**SPLITCHAR=** "*character-list*"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=** *LEFT* | *CENTER* | *RIGHT*
specifies the horizontal alignment of the value text that is being split.

**STATLABEL** | **NOSTATLABEL**
specifies whether the response variable statistic is displayed in the axis and legend labels.

### Limit options

**LIMITATTRS=** *style-element* | *(options)*
specifies the appearance of the limit lines in the plot.

**LIMITS=** *BOTH* | *LOWER* | *UPPER*
adds limit lines to the plot.

**LIMITSTAT=** *CLM* | *STDDEV* | *STDERR*
specifies the statistic for the limit lines.

**NUMSTD=n**
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

### Marker options

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**MARKERATTRS=** *style-element* | *(options)*
specifies the appearance of the markers in the plot.

**MARKERFILLATTRS=** *style-element* | *(COLOR=**color**)*
specifies the color of the marker fill.

**MARKEROUTLINEATTRS=** *style-element* | *(options)*
specifies the appearance of the marker outlines.

**MARKERS**
adds markers to the plot.
Plot options

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits.

**CATEGORYORDER=RESPASC | RESPDESC**
specifies the order in which the categories are arranged.

**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data.

**MISSING**
for group data, processes missing values as a valid category value and creates a line for it.

**RESPONSE=response-variable**
specifies a numeric response variable for the plot.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

**NAME="text-string"**
assigns a name to a plot statement.

Statistics options

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
specifies the statistic for the horizontal axis.

**Required Argument**

**category-variable**
specifies the variable whose values determine the categories of data represented by the lines.

**Optional Arguments**

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383
BREAK
creates a break in the line for each missing value of the response variable.

Notes
The observation is excluded from the graph when there is a missing value for the category variable without the specification of the MISSING option. (No break occurs in the line.)

The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default
By default, the plot is sorted in ascending order based on the category values.

Restrictions
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions
When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default
0.8
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

**CURVELABEL <"text-string">**

adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

Interaction If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

**CURVELABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element: CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default** INSIDE

**CURVELABELPOS=AUTO | END | MAX | MIN | START**

specifies the location of the curve label. Specify one of the following values:

**AUTO**

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

**END**

places the curve label at the last point on the curve.

**MAX**

places the label at the part of the curve closest to the maximum X axis value.
MIN  
places the label at the part of the curve closest to the minimum X axis value.

START  
places the curve label at the first point on the curve.

<table>
<thead>
<tr>
<th>Default</th>
<th>END</th>
</tr>
</thead>
</table>

| Interactions | This option has no effect unless the CURVELABEL option is also specified. |

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

<table>
<thead>
<tr>
<th>Defaults</th>
<th>GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.</th>
</tr>
</thead>
</table>

| Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements. |

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option has no effect unless the DATALABEL option is also specified.</th>
</tr>
</thead>
</table>

**Examples**

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=DATA | LEFT | RIGHT**
specifies the location of the data label. Specify one of the following values:

<table>
<thead>
<tr>
<th>DATA</th>
<th>places the label on the data primitives (at the right edge of the lines).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LEFT</th>
<th>places the label to the left of the lines.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RIGHT</th>
<th>places the label to the right of the lines.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>DATA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option has no effect unless you also specify the DATALABEL option.</th>
</tr>
</thead>
</table>
This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

*Table 7.14  DATASKIN Options for Lines*

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

*Table 7.15  DATASKIN Options for Markers*

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
</table>

Default  NONE

Restriction  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See  “Using Data Skins” on page 1343

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all lines from the discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default  0.0 (no offset)
**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**Requirement**
This option is applicable only when the category axis is discrete.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interactions**
This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

**Interaction**
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interactions**
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

specifies how to display grouped lines.

**CLUSTER**

grouped items are drawn adjacent to each other.
OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData style elements in the current style.

Default

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction

This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

ASCENDING

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**\( \text{style-element } <\text{(options)}> \mid (\text{options}) \)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**LIMITS=**\( \text{BOTH } \mid \text{LOWER } \mid \text{UPPER} \)

adds limit lines to the plot. Specify one of the following values:

- **BOTH**
  - adds lower and upper limit lines to the plot.

- **LOWER**
  - adds lower limit lines to the plot.

- **UPPER**
  - adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

**LIMITSTAT=**\( \text{CLM } \mid \text{STDDEV } \mid \text{STDERR} \)

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
  - confidence limits

- **STDDEV**
  - standard deviation

- **STDERR**
  - standard error

**Default**

- **CLM**

**Interaction**

If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

**LINEATTRS=**\( \text{style-element } <\text{(options)}> \mid (\text{options}) \)

specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**

- GraphDataDefault style element in the current style for ungrouped data.

- GraphData1 ... GraphData\( n \) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.
MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element<(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.
Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERS
adds markers to the plot.

MISSING
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction
For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction
For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.
PERCENT

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias       PCT

Interactions

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SG PLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM

the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction

For this value to take effect, you must also specify the RESPONSE= option.

Defaults       SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults       The statistic is displayed for the response variable.
When a custom label is assigned to the response variable, the statistic is not displayed.

**Interactions**
This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**
suppresses the data tips from this plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

**TIPFORMAT=(format-list)**
 applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example** http://www.sas.com/en_us/home.html

**Default** By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

`ODS GRAPHICS ON / IMAGEMAP=ON;`

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.
Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

**X2AXIS**
assigns the response variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the category variable to the secondary (right) vertical axis.

---

**INSET Statement**

Adds a text box inside the axes of the plot.

**Example:**  "About Text Insets’ on page 42

**Syntax**

```
INSET "text-string" <... "text-string-n"> </option(s)>;
INSET (label-list) </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **BORDER | NOBORDER**
  specifies whether to display a border around the text box.

- **LABELALIGN=LEFT | CENTER | RIGHT**
  specifies how the labels are aligned when you specify label-value pairs.

- **POSITION=position-value**
  specifies the position of the text box within the plot.

- **TEXTATTRS=style-element <(options)> | (options)**
  specifies the appearance of the text in the text box.

- **TITLE="text-string"**
  specifies a title for the text box.

- **TITLEATTRS=style-element <(options)> | (options)**
  specifies the appearance of the title.

- **VALUEALIGN=LEFT | CENTER | RIGHT**
  specifies how text values are aligned.

**Required Argument**

```
text-string-list | (label-list)
```

you must specify one of the following arguments:

```
text-string-list
```

specifies one or more quoted text strings. Each string is placed on a separate line in the text box (for example, "My line 1” “My line 2").
**TIP** You can use the VALUEALIGN= option to align the text values. They can be centered in the graph, or right- or left-justified.

**TIP** You can use the LABELALIGN= and VALUEALIGN= options to align the labels and the values, respectively.

```
(label-list)
```
specifies a series of quoted labels and values for the text box.

```
Specify your label-value pairs as follows:
("label-1" = "value-1" ... "label-n" = "value-n")
```

Here is an example: ("My label 1" = "My value 1" "My label 2" = "My value 2").

```
Note: (*ESC*) is the default ODS escape character. You can set your own escape character with the ODS ESCAPECHAR="character"; statement.
```

In the following inset statement, the Greek letter alpha denotes the alpha value for the confidence limits in a graph. The R-Square value is displayed using the superscript format:

```
inset (*(*ESC*){unicode alpha}" = "0.05"
 "R(*ESC*){sup '2'}" = "0.7705") / border;
```

Here is the text inset for this example:

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>0.7705</td>
</tr>
</tbody>
</table>

**Optional Arguments**

**BORDER | NOBORDER**

specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

**LABELALIGN=LEFT | CENTER | RIGHT**

specifies how the labels are aligned when you specify label-value pairs. Specify one of the following:
LEFT
  aligns the text to the left.

CENTER
  aligns the text to the center.

RIGHT
  aligns the text to the right.

Default  LEFT

POSITION=position-value
  specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
<tr>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.

TEXTATTRS=style-element <(options)> | (options)
  specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
  Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Tip
  The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.

Examples
  TEXTATTRS=(Color=Green Family=Ariel Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
  TEXTATTRS=GraphDataText

TITLE=“text-string”
  specifies a title for the text box. The title text is always center-aligned.

TITLEATTRS=style-element <(options)> | (options)
  specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TITLEATTRS=GraphTitleText

VALUEALIGN=LEFT | CENTER | RIGHT

specifies how text values are aligned.

Use this option to specify either of the following:

• how the values are aligned when you specify quoted label-value pairs in a (label-list)

• how the quoted strings are aligned when you specify a text-string-list

Specify one of the following values.

LEFT

aligns the text to the left.

CENTER

aligns the text to the center.

RIGHT

aligns the text to the right.

Default RIGHT

KEYLEGEND Statement

Adds a legend to the plot.

See: “Using Discrete Legends” on page 1309

Examples:

“Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1224

“Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1225

“Example 8: Combining Histograms with Density Plots” on page 1228

Syntax

KEYLEGEND <"name-1" ..."name-n"> <option(s)>;

Summary of Optional Arguments

Appearance options

ACROSS=n

specifies the number of columns in the legend.
**Legend options**

- **EXCLUDE=**
  `<"item-name" <... "item-nameN" ...>>`
  specifies a list of legend entries to exclude from the display.

- **SORTORDER=**
  **ASCENDING | DESCENDING**
  specifies the sort order to use for the legend entry labels.

- **TYPE=**
  **FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL**
  specifies which visual attributes to display for legend entries in the legend.

- **name-1** ... **name-n**
  specifies the names of one or more plots that you want to include in the legend.

**Marker options**

- **AUTOITEMSIZE**
  specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels.

- **AUTOOUTLINE**
  specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

- **FILLASPECT=GOLDEN | positive-number**
  specifies an aspect ratio for the fill swatches based on their height.

- **FILLCOLOR=**
  specifies the height of the fill swatches.

- **SCALE=positive-number**
  specifies a scale factor that is to be applied to the fill swatch height.
Optional Arguments

“name-1” ... “name-n”
specifies the names of one or more plots that you want to include in the legend. Each
name that you specify must correspond to a value that you entered for the NAME=
option in a plot statement.

Default If you do not specify a name, then the legend contains references to all of
the plots in the graph.

Note The names specified here determine which plots are included, but not the
labels that appear in the legend for those plots. To specify labels, use the
LEGENDLABEL= option on the plot statements.

ACROSS=n
specifies the number of columns in the legend. By default, the number of columns is
determined automatically.

Note Depending on the number of legend entries and the number of columns and
rows that you specify, the legend might not fit in your graph. If your legend
does not appear, then you might need to specify a different value for the
ACROSS= option.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used
for the legend value labels. These proportional sizes take effect regardless of the
attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the
markers are small compared to the labels. The second figure uses AUTOITEMSIZE
to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>❇️ Asia ❇️ Europe ❇️ USA</td>
<td>❇️ Asia ❇️ Europe ❇️ USA</td>
</tr>
</tbody>
</table>

Tip Use the VALUEATTRS= option to control the font size for the legend value
labels.

AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill
swatches in the legend have outlines.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

Default When this option is not specified, the legend fill swatches are always
outlined.

Note The outlines are always 1 pixel wide with a solid pattern.

BORDER | NOBORDER
specifies whether the border around the legend is visible. The BORDER option
shows the border. The NOBORDER option hides the border.

Default BORDER
DOWN=\(n\)

specifies the number of rows in the legend. By default, the number of rows is determined automatically.

*Note:* Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the DOWN= option.

**EXCLUDE=("item-name" <... "item-nameN" ...>)**

specifies a list of legend entries to exclude from the display.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>No items are excluded.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>Each item name must be enclosed in quotation marks and separated from adjacent names by a space.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>For plots with groups, you can exclude specific group values.</td>
</tr>
<tr>
<td><strong>Example</strong></td>
<td>The following example excludes items Truck and Wagon from the legend.</td>
</tr>
<tr>
<td></td>
<td>exclude=(&quot;Truck&quot; *Wagon&quot;)</td>
</tr>
</tbody>
</table>

**FILLASPECT=GOLDEN | positive-number**

specifies an aspect ratio for the fill swatches based on their height.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**GOLDEN**

specifies the golden ratio of 1.618 (width = 1.618 * height).

**positive-number**

specifies a custom aspect ratio.

<table>
<thead>
<tr>
<th>Default</th>
<th>The system determines the aspect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option is ignored when AUTOITEMSIZE is specified.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>Use FILLHEIGHT= to specify the height.</td>
</tr>
</tbody>
</table>

**FILLHEIGHT= dimension**

specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>The system determines the height.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option is ignored when AUTOITEMSIZE is specified.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>Use FILLASPECT= to specify the aspect ratio.</td>
</tr>
</tbody>
</table>
LINELENGTH=\texttt{dimension<units>}

specifies the length of the line glyph for line entries in the legend.

\textit{Note:} This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The default units for \texttt{dimension} are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

\textbf{Default} The length is determined automatically by the system.

LOCATION=\texttt{OUTSIDE} | \texttt{INSIDE}

specifies whether the legend is placed outside or inside the axis area. The \texttt{OUTSIDE} option places the legend outside of the axis area. The \texttt{INSIDE} option places the legend inside the axis area.

\textbf{Default} OUTSIDE

\textbf{Interaction} If \texttt{LOCATION=INSIDE} and \texttt{POSITION=} is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see “Example 2: Legend with a Position Specified inside the Axis Area” on page 847.

\textbf{OPAQUE} | \texttt{NOOPAQUE}

OPAQUE removes the legend’s transparency. This feature is useful when the legend is positioned within the graph area, and you want to hide the graphics elements that are behind the legend.

\textbf{Default} NOOPAQUE (the legend background is transparent)

OUTERPAD=\texttt{dimension} \texttt{| (pad-options)}

specifies the amount of extra space that is added outside the legend border.

\texttt{dimension}

specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

\texttt{(pad-options)}

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

\texttt{LEFT=dimension}

specifies the amount of extra space added to the left side.

\texttt{RIGHT=dimension}

specifies the amount of extra space added to the right side.

\texttt{TOP=dimension}

specifies the amount of extra space added to the top.

\texttt{BOTTOM=dimension}

specifies the amount of extra space added to the bottom.

\textbf{Note} Sides that are not assigned padding are padded with the default amount.

\textbf{Tip} \texttt{Use pad-options} to create non-uniform padding.

\textbf{Default} No padding
The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

**POSITION=position-value**

specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
  places the legend at the bottom of the graph.
- **BOTTOMLEFT**
  places the legend at the bottom left corner of the graph.
- **BOTTOMRIGHT**
  places the legend at the bottom right corner of the graph.
- **LEFT**
  places the legend at the left side of the graph.
- **RIGHT**
  places the legend at the right side of the graph.
- **TOP**
  places the legend at the top of the graph.
- **TOPLEFT**
  places the legend at the top left corner of the graph.
- **TOPRIGHT**
  places the legend at the top right corner of the graph.

Defaults

- **BOTTOM**

  If LOCATION=INSIDE is specified, the legend is automatically positioned near an edge of the plot area that has the least amount of collision with the data.

Interaction

- If LOCATION=INSIDE and POSITION= is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see “Example 2: Legend with a Position Specified inside the Axis Area” on page 847.

Notes

- By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.
- If you specify more than one legend with the same position, then all of your legends are placed at that position.

**SCALE=positive-number**

specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

- **1**

Restriction

- This option does not apply to markers with pattern fills.

Interaction

- This option is ignored when AUTOITEMSIZE is specified.
Tips

Use FILLHEIGHT= to change the base height.
Use FILLASPECT= to specify the width.

**SORTORDER=ASCENDING | DESCENDING**
specifies the sort order to use for the legend entry labels.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Defaults

When the procedure contains more than one plot statement, the default is based on the order of the plot statements.

For grouped data, the default is derived from the data order.

Interaction

This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

**TITLE=“text-string”**
specifies a title for the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Defaults

No title unless the legend shows group values

If the legend shows group values, then the group variable is displayed by default as the title. In this case, to remove the title, specify TITLE=" ".

Requirement

text-string must be enclosed in quotation marks.

**TITLEATTRS=style-element <(options)> | (options)**
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

**TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)**

Here is an example that specifies a style element:

**TITLEATTRS=GraphTitleText**
TYPE= FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL
 specifies which visual attributes to display for legend entries in the legend.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying TYPE=MARKERSYMBOL displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the TYPE specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords FILLCOLOR or MARKERSYMBOL result in the display of a single attribute. Other keywords (for example, FILL, LINE, or MARKER) result in legends that display a set of visual attributes. For example, the keyword LINE results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to LINEPATTERN or MARKERSYMBOL, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords FILLCOLOR, LINECOLOR, and MARKERCOLOR, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the CONTRASTCOLOR attribute of the GraphOutlines style element.

Default All attributes are displayed.

VALUEATTRS= style-element <(options)> | (options)
 specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples valueattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
valueattrs=GraphTitleText
Examples

Example 1: Legend for Two Ellipses

```
ods graphics / reset width=4in;
proc sgplot data=sashelp.class
 noautolegend;
 scatter x=height y=weight;
 ellipse x=height y=weight /
 alpha=.2
 name="eighty"
 legendlabel="80% Prediction";
 ellipse x=height y=weight /
 alpha=.05
 name="ninetyfive"
 legendlabel="95% Prediction";
 keylegend "eighty" "ninetyfive";
run;
```

Example 2: Legend with a Position Specified inside the Axis Area

If POSITION= and LOCATION= INSIDE are both specified, you might need to offset
the axis in order to make space for the legend within the axis area.

The following example specifies LOCATION= INSIDE and POSITION= BOTTOM. In
the graph, the legend collides with the data. To avoid this problem, the graph specifies an
OFFSETMIN= value for the Y axis. (If the legend’s position was at the top of the plot, an OFFSETMAX= value would be specified instead.)

Note: For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. As a result, you use OFFSETMAX= to create an offset at the bottom of the axis. OFFSETMIN= is used to create an offset at the top of the axis for these plot types.

The following example specifies LOCATION=INSIDE and POSITION=TOPRIGHT. To avoid having the legend collide with the graph, the code specifies an OFFSETMAX=
The OFFSETMAX= value is applied to the end of the axis farther from the origin.

**Average Height of Teenage Students**

<table>
<thead>
<tr>
<th>Age</th>
<th>Height (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

ods graphics / reset width=4in;
title "Average Height of Teenage Students";
proc sgplot data=sashelp.class;
   where age >= 12 and age < 16;
hbar age / response=height stat=mean;
keylegend / location=inside position=topright;
xaxis offsetmax=0.3 display=(nolabel);
yaxis grid;
run;
title;

**LINEPARM Statement**

 Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.

**Requirement:** The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

**Example:** “About Parameterized Lines” on page 34

**Syntax**

LINEPARM X=numeric-value | numeric-variable
    Y=numeric-value | numeric-variable
    SLOPE=numeric-value | numeric-variable
</option(s)>;
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the line.

NOEXTEND
prevents the line from being extended beyond the axis offset.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <"text-string">
adds a label for the line.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | MIN | MAX
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CLIP
specifies that the data for the line is ignored when determining the data ranges for the axes.

Plot reference options
NAME="text-string"
   assigns a name to a plot statement.

**Required Arguments**

**X=numeric-value | numeric-variable**
   specifies the X coordinate of a point.

Notes  Values are in the units of the data.
   If the value specified for the X= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

   If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**Y=numeric-value | numeric-variable**
   specifies the Y coordinate of a point.

Notes  Values are in the units of the data.
   If the value specified for the Y= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

   If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**SLOPE=numeric-value | numeric-variable**
   specifies the slope of the line. The slope can be positive or negative.

Tips  SLOPE=0 creates a horizontal line (parallel to the X axis).
      SLOPE=. (missing value) creates a vertical line (parallel to the Y axis).

**Optional Arguments**

**ATTRID=character-value**
   specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 15, “Using Discrete Attribute Maps,” on page 1387
     “Overview of Attribute Maps” on page 1383

**CLIP**
   specifies that the data for the line is ignored when determining the data ranges for the axes. Each axis scale is determined by the other plots in the overlay. This might result in the line not being displayed if its data range is not within the data ranges of the other plots. This option ensures that the line is displayed.

**CURVELABEL <="text-string"**
   adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

**CURVELABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Ariel Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default**

INSIDE

**Interactions**

This option is used in conjunction with the CURVELABELPOS= option to determine where the labels appear.

This option has no effect unless CURVELABEL is also specified.

**CURVELABELPOS=AUTO | MIN | MAX**

specifies the location of the curve label. Specify one of the following values:

**AUTO**

determines the best label position automatically. The line label is positioned near the line boundary along unused axes whenever possible (typically Y2 and X2).

**Interaction**

This value is available only when CURVELABELLOC=OUTSIDE. If CURVELABELLOC=INSIDE, you must specify either MIN or MAX.

**MIN**

places the curve label at the minimum value for the X axis.

**MAX**

places the curve label at the maximum value for the X axis.
Defaults

AUTO when CURVELABELLOC=OUTSIDE

MAX when CURVELABELLOC=INSIDE

GROUP=variable

specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

LEGENDLABEL="text-string"

specifies a label that identifies the plot in the legend. By default, the label “LineParm” is used (if you specify a numeric value for Y) or the Y variable name is used (if you specify a variable for Y).

INTERACTION

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND

prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

INTERACTION

This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"

specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.
“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[ \text{SPLITCHAR=":abc\} } \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Interactions** This option has no effect unless CURVELABEL is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction** This option has no effect unless SPLITCHAR= is also specified.

**See** “Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Default** LEFT

**Interaction** This option has no effect unless you specify the SPLITCHAR= option.

**See** “Overview of Collision Avoidance” on page 1312

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the Y variable to the secondary (right) vertical axis.
**LOESS Statement**

Creates a fitted loess curve.

**Example:**  
“About Loess Plots” on page 46

---

**Syntax**

```
LOESS X=numeric-variable Y=numeric-variable <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value`
  specifies the value of the ID variable in a discrete attribute map data set.
- `LINEATTRS=style-element <(options)> | (options)`
  specifies the appearance of the fit curve.
- `NOMARKERS`
  removes the scatter markers from the plot.
- `SMOOTH=numeric-value`
  specifies a smoothing parameter value.
- `TRANSPARENCY=value`
  specifies the degree of transparency for the plot.

**Axis options**

- `X2AXIS`
  assigns the X variable to the secondary (top) horizontal axis.
- `Y2AXIS`
  assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

- `TIP=(variable-list) | NONE`
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
- `TIPFORMAT=(format-list)`
  applies formats to the list of data tip variables that you specify in the TIP= option.
- `TIPLABEL=(label-list)`
  applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- `GROUP=variable`
  specifies a variable that is used to group the data.

**Label options**

- `CURVELABEL <=“text-string”>`
  adds a label for the curve.
- `CURVELABELATTRS=style-element <(options)> | (options)`
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the fit line in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLM <="text-string">
creates confidence limits.

CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.
Plot options

\texttt{ALPHA=numeric-value}

specifies the confidence level for the confidence limits.

\texttt{DEGREE=1 | 2}

specifies the degree of the local polynomials to use for each local regression.

\texttt{INTERPOLATION=CUBIC | LINEAR}

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

\texttt{MAXPOINTS=n}

specifies the maximum number of predicted points for the loess fit and the corresponding limits.

\texttt{REWEIGHT=n}

specifies the number of iterative reweighting steps to apply to the data.

\texttt{WEIGHT=numeric-variable}

specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

\texttt{NAME=“text-string”}

assigns a name to a plot statement.

Required Arguments

\texttt{X=numeric-variable}

specifies the variable for the x axis.

\texttt{Y=numeric-variable}

specifies the variable for the y axis.

Optional Arguments

\texttt{ALPHA=numeric-value}

specifies the confidence level for the confidence limits.

Default \hspace{1cm} .05

Range \hspace{1cm} 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you also specify the CLM option.

\texttt{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

\texttt{CLM<="text-string">}

creates confidence limits. The optional text string overrides the default legend label for the confidence limit.
CLMATTRS = style-element | (CLMAttributeOptions)

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAttributeOptions can be one or both of the following:

CLMFILLATTRS = style-element | (COLOR=color)

Specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

CLMLINEATTRS = style-element | (options)>

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Interaction
CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Interaction
The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY = numeric-value

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

Interaction
This option takes effect only if you also specify the CLM option.

CURVELABEL <="text-string”>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS = style-element | (options)>

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATRMS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATRMS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions

This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL.<variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default
1

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.
Interaction

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

GROUP=variable

specifies a variable that is used to group the data. A separate plot is created for each unique value of the category variable. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

INTERPOLATION=CUBIC | LINEAR

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default CUBIC

JITTER

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default" /></td>
<td><img src="image2.png" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

Default

Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes

This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL=“text-string”

specifies a label that identifies the fit line in the legend. By default, the label “Loess” is used, along with the value of the SMOOTH= option if specified.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit curve. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Defaults For grouped data, GraphData1 ... GraphData\(_n\) style elements in the
current style are used. The affected attributes are ContrastColor and
LineStyle. The LineThickness attribute comes from the GraphFit element
in the current style.

For ungrouped data, the GraphFit style element in the current style is
used. The affected attributes are ContrastColor, LineStyle, and
LineThickness.

Note If you overlay multiple Loess plots using ungrouped data, the procedure
uses GraphFit and GraphFit2 for the first two plots. If three or more plots
are requested, the GraphData1 ... GraphData\(_n\) style elements are used
instead for the ContrastColor and LineStyle attributes. In this case, the
LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page
1322.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(_n\) style elements in the current style for grouped
data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1325.

Default Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData\(_n\) style elements in the
current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

This option overrides any color that is specified with the
MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.

See For usage information and an example, see “Marker Fills and
Outlines” on page 1315.
MARKEROUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip: You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MAXPOINTS=n
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default: 201

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

REWEIGHT=n
specifies the number of iterative reweighting steps to apply to the data.

Default: 0

Interaction: This option has no affect if you do not specify the WEIGHT option.
SMOOTH=numeric-value
   specifies a smoothing parameter value. If you do not specify this option, a smoothing
   value is determined automatically.

SPLITCHAR=“character-list”
   specifies one or more characters used to split the text used for curve and data labels
   into multiple lines. The text value is split at every occurrence of the specified split
   character or characters.

   “character-list” is one or more characters with no delimiter between each character
   and enclosed in quotation marks. For example, to specify the split characters a, b,
   and c, use the following option:

   SPLITCHAR=“abc”

   When multiple split characters are specified, each character in the list is treated as a
   separate split character unless the specified characters appear consecutively in the
   value. In that case, all of the specified split characters together are treated as a single
   split character.

   If the value does not contain any of the specified split characters, a split does not
   occur.

   Default     Values are not split.

   Interactions This option has no effect unless either CURVELABEL or
                  DATALABEL is specified.

                  When the text is split, the split characters are not included in the
                  displayed value by default. If you want the split characters to appear in
                  the values, then also specify SPLITCHARNODROP.

                  You can specify the justification of the text by using the
                  SPLITJUSTIFY= option.

   Notes        When multiple characters are specified, the order of the characters in
                  the list is not significant.

                  The split characters are case sensitive.

   Tip          If you specify data labels and curve labels, this option affects both
                  types of labels. If you do not want to split both types with the same
                  split character, consider using an overlaid plot in your graph. You can
                  then split data labels in one plot and curve labels in the other.

   See          “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
   specifies that the split characters are included in the displayed value.

   Interaction This option has no effect unless SPLITCHAR= is also specified.

   See          “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
   specifies the horizontal alignment of the value text that is being split.

   Default     LEFT

   Interaction This option has no effect unless you specify the SPLITCHAR= option.
TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Details
For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]

NEEDLE Statement
Creates a plot with needles connecting each point to the baseline.
Restriction: The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

Example: “About Needle Plots” on page 35

Syntax

NEEDLE X=variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all needle lines from discrete X values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the needle lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the Y-intercept for the baseline.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped needles.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL=" text-string"
specifies a label that identifies the needle plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERS
adds markers to the tips of the needles.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
Overview of Attribute Maps

BASELINE=numeric-value
specifies the Y-intercept for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the axis.

Default: 0

Tips
The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default: 0.8

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.
DATALABEL <=variable=>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>POSITION</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>CENTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:
Table 7.16 DATA SKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 7.17 DATA SKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all needle lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X axis is discrete.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction: When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.
Tip

ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change the
maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped needles.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group
is represented by unique visual attributes derived from the GraphData1...
GraphData\textsubscript{n} style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category
axis is discrete. If necessary, use a TYPE=DISCRETE option on the
axis statement.

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and
GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect,
the size of the markers in each cluster might be reduced to no less than
5 pixels in order to display the cluster within the smallest effective
midpoint space. If you need larger markers in that case, use the
MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVersedDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVersedDATA

orders the groups within a category in the reverse data order of the group
variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to
later releases.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

DATA

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is
specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND
statement.
Notes | Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

| The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL= "text-string"

specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction | The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS= style-element <(options)> | (options)

specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default | GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS= style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default | GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction | This option has no effect unless you also specify the MARKERS option.

MARKERS

adds markers to the tips of the needles.

NAME= "text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note | The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informs: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.
PBSPLINE Statement

Creates a fitted penalized B-spline curve.

Example: “About Penalized B-Spline Plots” on page 47

Syntax

PBSPLINE X=numeric-variable Y=numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)| (options)>

specifies the appearance of the fitted curve.

NKNOTS=n
specifies the number of evenly spaced internal knots.

SMOOTH=numeric-value
specifies a smoothing parameter value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Label options

CURVELABEL <=“text-string”>

adds a label for the curve.

CURVELABELATTRS=style-element <(options)| (options)>

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>>
displays a label for each data point.

DATALABELATTRS=style-element <=(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend.

NOLEGCLI
hides the legend entry for the individual value prediction limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <="text-string">
creates prediction limits for the individual predicted values.

CLIATTRS =style-element | (CLILINEATTRS=style-element <=(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

CLM <="text-string">
creates confidence limits.

CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <=(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS= *style-element* *(COLOR=color)*
specifies the color of the marker fill.

MARKEROUTLINEATTRS= *style-element* *(options)*
specifies the appearance of the marker outlines.

NOMARKERS
removes the scatter markers from the plot.

PBSPLINE options

MAXPOINTS=n
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Plot options

ALPHA= *numeric-value*
specifies the confidence level for the confidence limits.

DEGREE= *non-negative-integer*
specifies the degree of the spline transformation.

FREQ= *numeric-variable*
specifies a variable for the frequency count for each observation in the input data.

GROUP= *variable*
specifies a variable that is used to group the data.

WEIGHT= *numeric-variable*
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME= *"text-string"*
assigns a name to a plot statement.

Required Arguments

X= *numeric-variable*
specifies the variable for the x axis.

Y= *numeric-variable*
specifies the variable for the y axis.

Optional Arguments

ALPHA= *numeric-value*
specifies the confidence level for the confidence limits.

<table>
<thead>
<tr>
<th>Default</th>
<th>Range</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>0.01 (complete confidence) to 0.99 (no confidence)</td>
<td>This option has no effect unless you specify the CLI or CLM option (or both).</td>
</tr>
</tbody>
</table>
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

CLI <="text-string”>
creates prediction limits for the individual predicted values. The optional text string
overrides the default legend label for the prediction limits.

CLIAATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS
style element or by specifying attributes for the outlines. The outline attributes can
be the following:

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default GraphPredictionLimits style element in the current style for ungrouped
data. The affected attributes are ContrastColor, LineStyle, and
LineThickness.

Default The default style element is GraphPredictionLimits.

Interaction The CLIATTRS = option has no effect unless you also specify the CLI
option.

CLM <="text-string”>
creates confidence limits. The optional text string overrides the default legend label
for the confidence limit.

CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style
element or by specifying fill and line attributes. CLMAttributeOptions can be one or
both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
Specify the color of the fill by using a style element or by using the COLOR=
suboption. You can specify colors using a number of different color-naming
schemes. For more information, see “Color-Naming Schemes” on page 1325.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the
appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific
appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.
Default

GraphConfidence style element in the current style for ungrouped data. GraphData1...GraphData\textsubscript{n} style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Interaction

The CLMATTRS= option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=\textit{numeric-value}

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default

0.0

Interaction

This option takes effect only if you also specify the CLM option.

CURVELABEL=\textit{<text-string>}

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=\textit{style-element <(options)> | (options)}

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText
CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.
Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=non-negative-integer
specifies the degree of the spline transformation.

Default 3

Ranges 0–174 in the first maintenance release of SAS 9.4 and earlier releases.

0–10 starting with the second maintenance release of SAS 9.4.

Restriction Starting with the second maintenance release of SAS 9.4, DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.
Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.
Defaults For grouped data, GraphData1 ... GraphData_n style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData_n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=

- **style-element (options)**
 - Specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 - For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

- **(options)**
 - For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERFILLATTRS=

- **style-element (<COLOR=color>) | (COLOR=color)**
 - Specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

- **(COLOR=color)**
 - For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=

- **style-element (options)**
 - Specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 - For the options, you can specify either or both of the following:
 - line color
 - line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MAXPOINTS\(=n\)

specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Default 201

NAME\(=\text{“text-string”}\)

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NKNOTS\(=n\)

specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots is usually enough to follow the functional form found in most data.

Default 100

Range 0 to 1000

NOLEGCLI

hides the legend entry for the individual value prediction limits.

NOLEGCLM

hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

NOMARKERS

removes the scatter markers from the plot.

SMOOTH\(=\text{numeric-value}\)

specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.
SPLITCHAR=“character-list”

specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR=“abc”
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(\textit{variable-list})
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

\textit{NONE}
suppresses the data tips from this plot.

\textit{Note:} This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the \texttt{IMAGEMAP=ON} option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

\begin{verbatim}
ODS GRAPHICS / IMAGEMAP=ON;
\end{verbatim}

Interaction
This option replaces all of the information that is displayed by default.

Note
The option affects only the scatter plot in this statement.

Tip
Use the \texttt{TIPFORMAT} and \texttt{TIPLABEL} options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the \textit{format-list} and the \textit{variable-list} that is specified for the TIP= option. A format must be provided for each variable, using the same order as the \textit{variable-list}. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
\textit{SAS Formats and Informats: Reference}

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction
Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Details
For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]
POLYGON Statement

Draws one or more polygons from data stored in a data set. This statement can be used with other basic plot and fit plot statements.

Restriction: You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax

POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BACKLIGHT=number
 specifies that label text should have a back light of a contrasting color.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

FILL | NOFILL
 specifies whether the polygon(s) are filled.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the polygon outline.

OUTLINE | NOOUTLINE
 specifies whether the polygon(s) have outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

ROTATE=numeric-column | number | expression
 specifies the angle of rotation for the polygon measured in degrees.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

X2AXIS
 assigns the response variable to the secondary (top) horizontal axis.

XOFFSET=numerical-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

YOFFSET= numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Data tip options

TIP=(variable-list**| NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list**)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list**)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is specified.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LABEL <=variable>
specifies a label for the polygon curve.

LABELATTRS=style-element <**(options)> | (options**
specifies the appearance of the labels in the plot.

LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE
specifies the location of the polygon label.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon’s label.

LEGENDLABEL=“text-string”
specifies the label that identifies the polygon in the legend.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

SPLITCHAR=“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=x-variable
specifies the variable for the X values.

Y=y-variable
specifies the variable for the Y values.

ID=id-variable
specifies the variable for the ID values that identify the polygon(s). All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

BACKLIGHT=number
specifies that label text should have a back light of a contrasting color. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defaults
0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

Range
0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note
This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

COLORMODEL= *style-element | (color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

 specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE= *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction
If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

| Table 7.18 DATASKIN Options for Filled Areas |
|---|---|---|
| NONE | CRISP | GLOSS |
| MATTE | PRESSED | SHEEN |

Default NONE
Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
Interaction If you also specify NOFILL, then the data skin is applied to the outlines.
See “Using Data Skins” on page 1343

FILL | NOFILL
specifies whether the polygon(s) are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.
Default NOFILL
Interactions Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of fill attributes, see “Fill Attributes” on page 1321.
Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data.
Interaction This option has no effect if you specify the NOFILL option.
Tip

The TRANSPARENCY= suboption sets the transparency for the polygon fill and the polygon outline. You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```plaintext
transparency=0.2
fillattrs=(transparency=0.6)
```

GROUP=variable

creates a separate polygon color or outline pattern for each unique grouping that is specified. The plot elements for each group value are automatically distinguished by different visual attributes.

The polygon attributes for each unique group value are derived from the GraphData1–GraphDataN and GraphMissing style elements. If the polygon is filled, then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR attribute is used for the polygon outline. If the polygon is not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

Interactions

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

This option is ignored if the COLORRESPONSE= option is also used.

LABEL <=variable>

specifies a label for the polygon curve.

Default

When no variable is provided, the ID variable is used for labels.

Interaction

If a variable is supplied, rows that have the same ID value are expected to have the same value. If they do not, the ID value’s first row determines the polygon label.

Tip

The font and color attributes for the label are specified by the LABELATTRS= option.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontWeight, and FontStyle.

Interaction

This option has no effect unless the LABEL= option is also specified.

Examples

```plaintext
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
LABELATTRS=GraphValueText
```

LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE

specifies the location of the polygon label.

INSIDEBOX

inside the polygon.
OUTSIDEBOX
outside the polygon but inside the plot area.

OUTSIDE
outside the plot area.

Default INSIDEBOX

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELPOS= option.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon’s label. Specify one of the following values:

CENTER
centers the label.

Interaction LABELPOS=CENTER has no effect if you also specify
LABELLOC=OUTSIDE or LABELLOC=OUTSIDEBOX. The
default label position is used in those cases.

XMIN
places the label at the part of the polygon closest to the minimum X axis value, centered in the Y axis range.

XMAX
places the label at the part of the polygon closest to the maximum X axis value, centered in the Y axis range.

YMIN
places the label at the part of the polygon closest to the minimum Y axis value, centered in the X axis range.

YMAX
places the label at the part of the polygon closest to the maximum Y axis value, centered in the X axis range.

Default CENTER

Interactions This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELLOC= option.

When LABELLOC=OUTSIDE, increasing the length of the label
might cause the available plot area to decrease. Also, when
LABELLOC=OUTSIDE, the label might collide with the axis ticks
and tick values.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the polygon outline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Defaults

For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attributes of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1 – GraphDataN style elements.

Interactions

This option is ignored if the NOOUTLINE option is also specified.

This option is ignored if the DATASKIN= option is also specified.

Note

If this option is used with grouped data, the COLOR= suboption has the effect of holding the polygon outline color constant across all group values.

NAME=“text-string”

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

OUTLINE | NOOUTLINE

specifies whether the polygon(s) have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default

OUTLINE

Interaction

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

Tip

Use the LINEATTRS= option to control the appearance of the outline.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

ROTATE= numeric-column | number | expression

specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.
Default
0 (no rotation is performed)

Interaction
When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEBOX and CENTER respectively.

Notes
An angle that exceeds 360 degrees in absolute value can be specified.

Rotating a polygon might cause clipping in some cases.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon. Specify one of the following:

AUTO
rotates the label with the rotation of the polygon.

NONE
does not rotate the label with the rotation of the polygon. The label position remains fixed regardless of the polygon rotation.

VERTICAL
rotates the label to a vertical position.

Default
AUTO

Interaction
If ROTATION= is also specified, then ROTATELABEL=VERTICAL is ignored.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

Default
A single space

Interactions
This option has no effect unless LABEL= is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
SPLITCHAR= specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Example

tipformat=(auto F5.2)

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;
For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

XOFFSET= numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

- **Default**: 0.0 (no offset)
- **Range**: –0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.
- **Requirement**: The X axis must be discrete.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

YOFFSET= numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

- **Default**: 0.0 (no offset)
- **Range**: –0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.
- **Requirement**: The Y axis must be discrete.

Details

Overview
The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point to the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.

Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.
Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.

Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
- specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.
- specify an HTML page to display when the selectable polygon is clicked.

Drawing a Single Polygon

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

```sas
data polydata;
  input id $1-2 x y;
datalines;
P1 40  100
P1 20  220
P1 160 200
P1 180 80
P1 40  100
;run;
proc sgplot data=polydata;
  polygon X=x Y=y ID=id / fill outline;
run;
```
The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.

Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

```latex
\begin{verbatim}
data polydata;
   input id x y;
datalines;
   1  0  0
   1 20  0
   1 20 30
   1  0 30
   1  0  0
   2 30  0
   2 50  0
   2 40 30
   2 30  0
   3 60  0
   3 80  5
   3 80 15
   3 70 30
   3 60 30
   3 60  0
;
run;
\end{verbatim}
```

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.
The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.

The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Examples

Example 1: Create a Single Filled Hexagon

This example shows creates a single filled hexagon.

```ods graphics / width=3in;

data polydata;
   input id $1-3 X Y;
   datalines;
   Tri 40 40
   Tri 30 70
   Tri 40 100
```

Example 2: Use a Polygon to Highlight Data in a Scatter Plot

This example shows you how to use the POLYGON statement to draw a filled polygon that highlights data in an iris petal dimension scatter plot. The polygon surrounds the markers for the Setosa species in order to highlight the data with a yellow highlight for that species.

/* Generate the data for the polygon */
data polydata;
 input polyID polyX polyY label $8-40;
datalines;
1 9 2 Setosa
1 13 5
1 16 7
1 17 6
1 20 5
1 20 1
1 17 1
1 15 0
1 14 0
1 11 0;
run;
/* Concatenate the SASHELP.IRIS and polygon data into data set IRIS */
data iris;
 set sashelp.iris polydata;
run;

/* Create the graph */
title "Iris Petal Dimensions";
proc sgplot data=iris;
 scatter x=petallength y=petalwidth / name="s" group=species;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.2
 name="p80" legendlabel="80%" lineattrs=graphconfidence;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.05
 name="p95" legendlabel="95%" lineattrs=graphconfidence2;
 polygon x=polyX y=polyY id=polyID / fill
 fillattrs=(color=yellow transparency=0.75)
 label=label labelloc=outsidebbox labelpos=ymax;
run;
title;

To draw a single polygon, the data set must provide an X, Y, and ID column. The data specifies the polygon points around the Setosa data in the clockwise direction. A LABEL column is added to provide a label for the polygon in the plot output.

In the POLYGON statement, the FILLATTRS= option specifies the fill color as yellow and a fill transparency of 0.75. The LABEL= option specifies the column in the data set that contains the polygon label text. The LABELLOC= and LABELPOS= options place the polygon label outside of and above the polygon’s bounding box.

To draw the polygon, the POLYGONPLOT statements starts at X=9, Y=2, and draws a segment between each point in data order. The last point, X=11, Y=0, does not close the polygon. To close the polygon, the POLYGON statement draws a segment between X=11, Y=0 and X=9, Y=2 automatically.

If you want to highlight the Versicolor data instead of the Setosa data, you need only modify the data in the POLYDATA data set to draw a polygon around the Versicolor data instead. You do not have to make any changes to the SG PLOT procedure.

REFLINE Statement

Creates a horizontal or vertical reference line.

Example: "About Reference Lines" on page 32

Syntax

```
REFLINE variable | value-1 <...value-n> / option(s);
```

Summary of Optional Arguments

Appearance options

```
DATA SKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
```

specifies a special effect to be used on the plot.

```
DISCRETEOFFSET=numeric-value
```
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS= <style-element <(options)> | (options)

specifies the appearance of the reference line.

NOCLIP

extends the plot axes to contain the reference lines.

TRANSPARENCY= <value>

specifies the degree of transparency for the plot.

Axis options

AXIS= <X | X2 | Y | Y2>

specifies the axis that contains the reference line values.

Label options

LABEL <= <variable> | <= (“text-string-1” ... “text-string-n”)

creates labels for each reference line.

LABELATTRS= <style-element <(options)> | (options)

specifies the appearance of the labels.

LABELLOC= <INSIDE | OUTSIDE>

specifies whether the labels are placed inside or outside of the plot area.

LABELPOS= <AUTO | MIN | MAX>

specifies the position of the labels.

LEGENDLABEL= <"text-string”>

specifies a label that identifies the plot in the legend.

SPLITCHAR= <"character-list”>

splits the text for labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY= <LEFT | CENTER | RIGHT>

specifies the horizontal alignment of the value text that is being split.

Plot reference options

NAME= <"text-string”>

assigns a name to a plot statement.

Required Arguments

variable

draws a reference line for each value of the specified variable.

value-1 ... value-n

draws one or more reference lines at the values that you specify.

Optional Arguments

AXIS= <X | X2 | Y | Y2>

specifies the axis that contains the reference line values. For example, if you specify **AXIS=** X, vertical reference lines are drawn at points on the X axis.

Default: **Y**

DATASKIN= <NONE | CRISP | GLOSS | MATTE | PRESSES | SHEEN>

specifies a special effect to be used on the plot.
Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 7.19 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X or Y axis is discrete.

LABEL <=variable> | <=("text-string-1" ... "text-string-n")>

creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

variable

a variable for the label value.

Restriction: This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

"text-string-1" ... "text-string-n"

a text string for the label value.

Restriction: The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1323.

** Defaults**
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1 through GraphDataN style elements.

** Interaction**
This option has no effect unless the LABEL option is also specified.

** Examples**
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

** LABELLOC=INSIDE | OUTSIDE**
specifies whether the labels are placed inside or outside of the plot area. The INSIDE option places the labels inside the plot area. The OUTSIDE option places the labels outside of the plot area.

Default OUTSIDE

** LABELPOS=AUTO | MIN | MAX**
specifies the position of the labels. MIN specifies the label is placed at the minimum value of the data axis. MAX specifies that the label is placed at the maximum value of the data axis. AUTO places the label automatically.

Default AUTO

** LEGENDLABEL="text-string"**
specifies a label that identifies the plot in the legend. By default, the label “Reference Line” is used.

** Interaction**
This option has no effect unless you also specify the NAME= option.

** LINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the reference line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

** NAME="text-string"**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

** Note**
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

** Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOCLIP
extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

SPLITCHAR="character-list"
splits the text for labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

REG Statement
Creates a fitted regression line or curve.

Interaction: A linear regression (DEGREE=1) cannot be used with logarithmic axes.

Examples: “About Regression Plots” on page 48
“Example 4: Adding Prediction and Confidence Bands to a Regression Plot” on page 1223

Syntax
REG X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL=“text-string”
specifies a label that identifies the regression curve in the legend.

NOLEGCLI
hides the legend entry for the individual value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <=“text-string”>
creates prediction limits for the individual predicted values.

CLIAATTRS =style-element | (CLILINEATTRS=style-element (options) | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

CLM <=“text-string”>
creates confidence limits.

CLMAATTRS =style-element | (CLMAAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

NOMARKERS
removes the scatter markers from the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

DEGREE=n
specifies the degree of the polynomial fit.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MAXPOINTS=n
specifies the maximum number of predicted points for the regression curve and for any confidence limits.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=numeric-variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

<table>
<thead>
<tr>
<th>Default</th>
<th>.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0.01 (complete confidence) to 0.99 (no confidence)</td>
</tr>
</tbody>
</table>
Interaction

This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

CLI <=“text-string”>

creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))

specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS=style-element <(options)> | (options)

Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Default The default style element is GraphPredictionLimits.

Interaction The CLIATTRS = option has no effect unless you also specify the CLI option.

CLM <=“text-string”>

creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS =style-element | (CLMAtributeOptions)

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAtributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)

Specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

CLMLINEATTRS=style-element <(options)> | (options)

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Interaction The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL. <“text-string”> adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options) specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.

MAX

places the label at the part of the curve closest to the maximum X axis value.

MIN

places the label at the part of the curve closest to the minimum X axis value.

START

places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS= *position*

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

Interaction

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE= *n*

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

Ranges 0–174 in the first maintenance release of SAS 9.4 and earlier releases.

0–10 starting with the second maintenance release of SAS 9.4.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ= *numeric-variable*

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated *n* times for computational purposes, where *n* is the value of the numeric variable.
Restriction
If the value of FREQ= for a given observation is missing or is less than
1, that observation is not used in the analysis.

Note
If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for each
unique value of the grouping variable. The plot elements for each group value are
automatically distinguished by different visual attributes.

Interaction
If you specify the GROUP= option in multiple fit plot statements, then
the first GROUP= variable is used for all of the fit plots that specify
GROUP=.

JITTER
specifies that data markers are offset when multiple observations have the same
response value. When the JITTER option is enabled, markers that represent the same
response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of jittering.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Image]</td>
<td>![JITTER Specified Image]</td>
</tr>
</tbody>
</table>

Default
Markers that represent the same response value are overlaid, which results
in some markers being obscured.

Notes
This option affects only how the scatter plot is drawn. It has no effect on
the REG curve.

By default, the width of the jitter space is 40% of the minimal interval
width of the axis. When the minimum data interval is very small, the jitter
offset might not be noticeable.

LEGENDLABEL="text-string"
specifies a label that identifies the regression curve in the legend. By default, the
label “Regression” is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.
Defaults

For grouped data, GraphData1 ... GraphData_n style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note

If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData_n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color

• line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MAXPOINTS= *n*
specifies the maximum number of predicted points for the regression curve and for any confidence limits.

NAME= *text-string*
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLI
hides the legend entry for the individual value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

SPLITCHAR= *character-list*
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

character-list is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR= "abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

A space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
ODS GRAPHICS / IMAGEMAP=ON;

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option replaces all of the information that is displayed by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>The option affects only the scatter plot in this statement.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.</td>
</tr>
</tbody>
</table>

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPLABEL= option to assign labels to the list of variables.</td>
</tr>
<tr>
<td>See</td>
<td>SAS Formats and Informats: Reference</td>
</tr>
</tbody>
</table>

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPFORMAT option to assign formats to the list of variables.</td>
</tr>
</tbody>
</table>

Example
tip=(age weight)
tipformat=(auto F5.2)
tiplabel=(auto "Class Weight")

922 Chapter 7 • SGPLOT Procedure
TRANSPARENCY=value
specifies the degree of transparency for the plot.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction Starting with the second maintenance release of SAS 9.4, when the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

SCATTER Statement

Creates a scatter plot.

Examples: "About Scatter Plots" on page 36
 "Example 1: Grouping a Scatter Plot" on page 1219
 "Example 5: Adding a Prediction Ellipse to a Scatter Plot" on page 1224
 "Example 6: Creating Lines and Bands from Pre-Computed Data" on page 1225

Syntax

SCATTER X=variable Y=variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLOREMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.
COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all markers from discrete X or Y values.

ERRORBARATTRS=style-element <(options)> | (options)
 specifies the appearance of the error bars in the plot.

LABELSTRIP
 strips leading and trailing blanks from marker characters or data labels with
 fixed positions before they are displayed in the plot.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

 X2AXIS
 assigns the X variable to the secondary (top) horizontal axis.

 Y2AXIS
 assigns the Y variable to the secondary (right) vertical axis.

Data tip options

 TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is
 positioned over the graphics element.

 TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
 option.

 TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options

 CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

 GROUP=variable
 specifies a variable that is used to group the data.

 GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped markers.

 GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

 NOERRORCAPS
 suppresses the serif cap on error bars, if error bars are displayed.

 NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the
 plot.

Label options

 DATALABEL <=variable>
 displays a label for each data point.
DATA

LABEL=ATTRS=

-specifies the appearance of the labels in the plot when you use the
-DAT

LABEL= option.

LABEL=POS=

-specifies the location of the data label with respect to the plot.

LABEL=LEGEND=

-specifies a label that identifies the markers from the plot in the legend.

LABEL=SPLITCHAR=

-splits the text for data labels at the specified character(s) when there is not

enough room to display the text normally.

LABEL=SPLITCHAR

-NODROP

-specifies that the split characters are included in the displayed value.

LABEL=SPLITJUSTIFY=

-LEFT | CENTER | RIGHT

-specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS

-specifies that markers have a fill and an outline.

JITTER

-specifies that data markers are offset when multiple observations have the

same response value.

JITTER=WIDTH=

-positive-number

-specifies the width of the jitter space as a fraction of either the midpoint

spacing or of the minimal interval width.

MARKER=ATTRS=

-specifies the appearance of the markers in the plot.

MARKER=CHAR=

-variable

-specifies a variable whose values replace the marker symbols in the plot.

MARKER=CHAR

-ATTRS=

-specifies the appearance of the markers in the plot when you use the

MARKER= option.

MARKER=FILL

-ATTRS=

-specifies the color of the marker fill.

MARKER=OUTLINE

-ATTRS=

-specifies the appearance of the marker outlines.

Plot options

FREQ=numeric-variable

-specifies a variable for the frequency count for each observation in the input
data.

URL=character-variable

-specifies an HTML page to be displayed when parts of the plot are selected.

XERRORLOWER=numeric-variable

-specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable

-specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=numeric-variable

-specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable

-specifies a variable that contains the upper endpoints for the Y error bars.
Plot reference options

\[\text{NAME=“text-string”} \]
assigns a name to a plot statement.

Required Arguments

\[\text{X=variable} \]
specifies the variable for the x axis.

\[\text{Y=variable} \]
specifies the variable for the y axis.

Optional Arguments

\[\text{ATTRID=character-value} \]
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\[\text{CLUSTERWIDTH=numeric-value} \]
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

\[\text{COLORMODEL=style-element | (color-list)} \]
specifies a color ramp that is to be used with the COLORRESPONSE= option.

\[\text{style-element} \]
specifies the name of a style element. The style element should contain these style attributes:

\[\text{STARTCOLOR} \]
specifies the color for the smallest data value of the COLORRESPONSE= column.

\[\text{NEUTRALCOLOR} \]
specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

\[\text{ENDCOLOR} \]
specifies the color for the highest data value of the COLORRESPONSE= column.

Example \text{colormodel=TwoColorRamp}
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example `colormodel=(blue yellow green)`

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples `DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)`

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

Table 7.20 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>None</th>
<th>Crisp</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matte</th>
<th>Pressed</th>
<th>Sheen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
You can use the MARKERATTRS= option to specify a filled marker symbol.

See
“Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).
Requirement This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)

specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:

COLOR=color

specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.

PATTERN=line-pattern

specifies the line pattern for the line. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default The default line pattern is specified by the LineStyle attribute of the GraphError style element in the current style.

THICKNESS=n <units>

specifies the thickness of the line. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Default The default line thickness is specified by the LineThickness attribute of the GraphError style element in the current style.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numirc-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped markers.

CLUSTER
 grouped items are drawn adjacent to each other.

OVERLAY
 grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData style elements in the current style.

Default
 OVERLAY

Restriction
 GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions
This option is ignored unless GROUP= is specified.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
 orders the groups within a category in data order of the group variable.

REVERSEDATA
 orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
 orders the groups within a category in ascending order of the group variable.

DESCENDING
 orders the groups within a category in descending order of the group variable.
Default DATA

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JITTER

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.

Table 7.21 X Axis Is Discrete and Y Axis Is Linear

In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and the Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.
Table 7.22 Both Axes Are Linear

Default	When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.
Interaction	This option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.
Note	By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JITTERWIDTH= positive-number

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default 0.85

Notes The specified number can be greater than 1.

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.

Interactions This option affects marker strings only when the MARKERCHAR= option is specified.

This option affects data labels only when DATALABEL is specified.

Tip Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.
LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERCHAR=variable
specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6. format is used.

Interaction The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

MARKERCHARATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1 ... GraphData_n style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples MARKERCHARATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
MARKERCHARATTRS=GraphValueText

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The appearance of the error bars is controlled by the ERRORBARATTRAITS= option.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
 “Overview of Attribute Maps” on page 1383

SPLITCHAR=“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=“abc”

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default: LEFT

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See: “Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement: You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction: This option replaces all of the information that is displayed by default.

Tip: Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example: tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips. A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference
TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default: By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.
XERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the X error bars.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

YERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.

SERIES Statement

Creates a line plot.

Examples:

“About Series Plots” on page 38

“Example 3: Plotting Three Series” on page 1221

Syntax

```
SERIES X=variable Y=variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ARROWHEADPOS=** START | END | BOTH

specifies a position for arrowheads.

- **ARROWHEADSCALE=** positive-number

specifies an arrowhead scale factor based on the thickness of the arrow line.

- **ARROWHEADSHAPE=** OPEN | FILLED | BARBED

specifies a shape for arrowheads.

- **ATTRID=** character-value

specifies the value of the ID variable in a discrete attribute map data set.

- **COLORMODEL=** style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=** numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=** numeric-value

specifies an amount to offset all lines from discrete X or Y values.

- **LINEATTRS=** style-element <(options)> | (options)

specifies the appearance of the series line.

- **RATTRID=** character-value

specifies the value of the ID variable in a range attribute map data set.

- **THICKMAX=** dimension
specifies the maximum line thickness when a response variable is used to
determine the line thickness.

\texttt{THICKMAXRESP=} \texttt{numeric-value}

specifies the response value that corresponds to the maximum line thickness.

\texttt{THICKRESP=} \texttt{numeric-variable}

specifies a response variable that is used to map a line thickness to each
group value.

\texttt{TRANSPARENCY=} \texttt{value}

specifies the degree of transparency for the plot.

\textbf{Axis options}

\texttt{X2AXIS}

assigns the X variable to the secondary (top) horizontal axis.

\texttt{Y2AXIS}

assigns the Y variable to the secondary (right) vertical axis.

\textbf{Data tip options}

\texttt{TIP=} \texttt{(variable-list)} | \texttt{NONE}

specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

\texttt{TIPFORMAT=} \texttt{(format-list)}

applies formats to the list of data tip variables that you specify in the \texttt{TIP=}
option.

\texttt{TIPLABEL=} \texttt{(label-list)}

applies labels to the list of data tip variables that you specify in the \texttt{TIP=}
option.

\textbf{Group options}

\texttt{CLUSTERWIDTH=} \texttt{numeric-value}

specifies the width of the group clusters as a fraction of the midpoint spacing.

\texttt{GROUP=} \texttt{variable}

specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=} \texttt{CLUSTER | OVERLAY}

specifies how to display grouped lines.

\texttt{GROUPLC=} \texttt{variable}

specifies a variable that determines the line colors for a grouped plot
independently of the \texttt{GROUP=} variable.

\texttt{GROUPLP=} \texttt{variable}

specifies a variable that determines the line patterns for a grouped plot
independently of the \texttt{GROUP=} variable.

\texttt{GROUPMC=} \texttt{variable}

specifies a variable that determines the marker colors for a grouped plot
independently of the \texttt{GROUP=} variable.

\texttt{GROUPMS=} \texttt{variable}

specifies a variable that determines the marker symbols for a grouped plot
independently of the \texttt{GROUP=} variable.

\texttt{GROUPORDER=} \texttt{DATA | REVERSEDATA | ASCENDING | DESCENDING}

specifies the ordering of the groups within a category.

\texttt{LCATTRID=} \texttt{discrete-attr-variable}

specifies an attribute map ID variable to be associated with the \texttt{GROUPLC=} variable.
LPATTRID=`discrete-attr-variable`
specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=`discrete-attr-variable`
specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID=`discrete-attr-variable`
specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL `<“text-string”>`
adds a label for the curve.

CURVELABELATTRS=`style-element (options)` | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL `<variable>`
displays a label for each data point.

DATALABELATTRS=`style-element (options)` | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=positional
specifies the location of the data label with respect to the plot.

LEGENDLABEL=`“text-string”`
specifies a label that identifies the series plot in the legend.

SPLITCHAR=`“character-list”`
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=`style-element (options)` | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=`style-element COLOR=color>` | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=`style-element (options)` | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the series plot data points.

Plot options

- **BREAK**
 creates a break in the line for each missing value for the Y variable.
- **URL=character-variable**
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

- **NAME="text-string"**
 assigns a name to a plot statement.

Series options

- **SMOOTHCONNECT**
 specifies that a smoothed line passes through all vertices.

Required Arguments

- **X=variable**
 specifies the variable for the x axis.
- **Y=variable**
 specifies the variable for the y axis.

Optional Arguments

- **ARROWHEADDSCALE=positive-number**
 specifies an arrowhead scale factor based on the thickness of the arrow line.

 Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

 The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

 - **START** displays an arrowhead at the starting point of each line.
 - **END** displays an arrowhead at the ending point of each line.
 - **BOTH** displays an arrowhead at each end of each line.

 Default
 No arrowheads are displayed when this option is not specified

 See
 “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

- **ARROWHEADPOS=START | END | BOTH**
 specifies a position for arrowheads.

 Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

 The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

 - **START** displays an arrowhead at the starting point of each line.
 - **END** displays an arrowhead at the ending point of each line.
 - **BOTH** displays an arrowhead at each end of each line.

 Default
 No arrowheads are displayed when this option is not specified

 See
 “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.
Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

```
| OPEN  | FILLED | BARBED |
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ATTRID= *character-value*
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH= *numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

COLORMODEL= *style-element | (color-list)*
specifies a color ramp that is to be used with the COLORRESPONSE= option.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the `COLORRESPONSE=` column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the `COLORRESPONSE=` column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the `COLORRESPONSE=` column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as `GraphData3:Color`. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the `COLORRESPONSE=` option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction
If the `GROUP=` option is also specified, then the `GROUP=` option is ignored.

Tip
The color ramp is specified by the `COLORMODEL=` option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

CURVELABEL <=”text-string”>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
If you specify `VALUES=`, `MAX=`, or `MIN=` in an axis statement, the points used to determine the position of the curve label might fall
outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction

This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END
Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.
Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 7.23 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 7.24 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1,... GraphData_n style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData_n style elements based on the GROUPLC= variable instead of the GROUP= variable.
GROUP= option

The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips

Use the GROUPLP= option to set the line pattern.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

You can also use LINEATTRS= option to set the line pattern and thickness.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

GROUPLP= variable

specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tips

Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

GROUPMC= variable

specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphDataN style elements based on the GROUPMC= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.
This option overrides the COLOR= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPMC= variable with an attribute map ID.

See
“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

GROUPMS=variable
specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphDataN style elements based on the GROUPMS= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMC= option to set the marker color. You can also use the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable with an attribute map ID.

See
“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.
DATA

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LCATTRID=discrete-attr-variable

specifies an attribute map ID variable to be associated with the GROUPLC= variable. This option enables the plot to associate an attribute map with the line color group. The option specifies the value of the ID variable that maps attributes to LINECOLOR in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement

The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions

This option is ignored unless the GROUPLC= option is specified.

This option overrides the COLOR= suboption of the LINEATRMS= option.

Note

Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

Chapter 15, “Using Discrete Attribute Maps,” on page 1387

LEGENDLABEL="text-string"

specifies a label that identifies the series plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATRMS=style-element <(options)> | (options)

specifies the appearance of the series line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData1n style elements in the current style for grouped...
data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

LPATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLP= variable. This option enables the plot to associate an attribute map with the line pattern group. The option specifies the value of the ID variable that maps attributes to LINEPATTERN in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions
- This option is ignored unless the GROUPLP= option is specified.
- This option overrides the PATTERN= suboption of the LINEATTRS= option.

Note
Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See
- “Example: Using Group Options, and Group Options with an Attribute Map” on page 958
- Chapter 15, “Using Discrete Attribute Maps,” on page 1387

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default
- GraphDataDefault style element in the current style for ungrouped data.
- GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interactions
This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
- Color attribute of the GraphDataDefault style element in the current style for ungrouped data.
- GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.
Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERS
adds data point markers to the series plot data points.

MCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker color group. The option specifies the value of the ID variable that maps attributes to MARKERCOLOR in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement
The procedure statement must specify the attribute map data set using the DATATRMAP= option.

Interactions
This option is ignored unless the GROUPMC= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Note
Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.
See “Example: Using Group Options, and Group Options with an Attribute Map” on page 958

Chapter 15, “Using Discrete Attribute Maps,” on page 1387

MSATTRID= *discrete-attr-variable*

specifies an attribute map ID variable to be associated with the GROUPMS= variable. This option enables the plot to associate an attribute map with the marker symbol group. The option specifies the value of the ID variable that maps attributes to MARKERSYMBOL in the attribute map.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Requirement
The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions
This option is ignored unless the GROUPMS= option is specified.
This option is ignored unless the MARKERS option is specified.
This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 958

Chapter 15, “Using Discrete Attribute Maps,” on page 1387

NAME= *text-string*

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

RATTRID= *character-value*

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=“abc”

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1312
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default The maximum value in the response column that is specified in the THICKRESP= option.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.
If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See
“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)
TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS assigns the Y variable to the secondary (right) vertical axis.

Example: Using Group Options, and Group Options with an Attribute Map

When you specify the GROUP= option, you specify a variable that is used to group the lines of your series plot. The plot lines and markers, if enabled, for each group value are automatically distinguished by different visual attributes.

The SERIES plot statement also includes four group options that give you additional control over grouped output:

- GROUPLC= specifies a variable that determines the line colors for the grouped series plot.
- GROUPLP= specifies a variable that determines the line patterns for the grouped series plot.
- GROUPMC= specifies a variable that determines the marker colors for the grouped series plot.
- GROUPMS= specifies a variable that determines the marker symbols for the grouped series plot.

When you specify one or more of these group options, you override the particular attribute (line color, line pattern, marker color, or marker symbol) from the GROUP= option.

The following example shows line attributes that are specified using the GROUP= and GROUPLC= options. The GROUPLC option is used to distinguish Microsoft stock close values from IBM and Intel stock close values. The Microsoft values have red lines.
data stocks;
 set sashelp.stocks;
 emphasis = 2;
 if stock eq 'Microsoft' then emphasis=1;
run;

title 'Microsoft Compared to IBM and Intel';
proc sgplot data=stocks (where=(date >= "01jan2003"d));
 series x=date y=close /
 group=stock grouplc=emphasis;
run;
title;

Starting with the third maintenance release of SAS 9.4, you can associate group variables with an attribute map.

Use the following attribute ID variables:

• LCATTRID= associates the GROUPLC= variable with an attribute map ID.
• LPATTRID= associates the GROUPLP= variable with an attribute map ID.
• MCATTRID= associates the GROUPMC= variable with an attribute map ID.
• MSATTRID= associates the GROUPMS= variable with an attribute map ID.

Here is a simple example that shows attribute mapping of grouped markers.

 /* Create the data set. */
data myclass;
 set sashelp.class;
 length type $10;
 if age > 12 then type='Teen';
 else type='Pre-Teen';
 label type="Age Group";
run;

 /* Create the attribute map. */
data mymap;
 retain id "mytest";
The series plots show markers that are determined by an attribute map.

```
input value $ markersymbol $;
datalines;
  Pre-Teen triangle
  Teen square
; run;
```

```
proc sgplot data=myclass dattrmap=mymap;
  series x=name y=weight / markers
       markerattrs=(size=10pt)
       group=sex name="a"
       groupms=type msattrid=mytest;
  keylegend "a" / type=markersymbol;
  keylegend "a" / type=linecolor;
run;
```

```
proc sgpanel data=myclass dattrmap=mymap;
  panelby sex / uniscale=row;
  series x=name y=weight / markers
       markerattrs=(size=10pt)
       group=sex name="a"
       groupms=type msattrid=mytest;
  keylegend "a" / type=markersymbol;
  keylegend "a" / type=linecolor;
run;
```

SPLINE Statement

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

Notes:

The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 973.

This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Example:

“About Spline Plots” on page 39

Syntax

```
SPLINE X=variable Y=variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

```
ARROWHEADPOS= START | END | BOTH
```
specifies a position for arrowheads.
ARROWHEADSCALE= *positive-number*
specifies an arrowhead scale factor based on the thickness of the arrow line.
ARROWHEADSHAPE= *OPEN | FILLED | BARBED*
specifies a shape for arrowheads.
ATTRID= *character-value*
specifies the value of the ID variable in a discrete attribute map data set.
COLORMODEL= *style-element | (color-list)*
specifies a color ramp that is to be used with the COLORRESPONSE= option.
COLORRESPONSE= *numeric-column*
specifies the numeric column that is used to map colors to a gradient legend.
DATASKIN= *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*
specifies a special effect to be used on the plot.
DISCRETEOFFSET= *numeric-value*
specifies an amount to offset all lines from discrete X or Y values.
LINEATTRS= *style-element <(options)> | (options)*
specifies the appearance of the spline line.
RATTRID= *character-value*
specifies the value of the ID variable in a range attribute map data set.
THICKMAX= *dimension*
specifies the maximum line thickness when a response variable is used to determine the line thickness.
THICKMAXRESP= *numeric-value*
specifies the response value that corresponds to the maximum line thickness.
THICKRESP= *numeric-variable*
specifies a response variable that is used to map a line thickness to each group value.
TRANSPARENCY= *value*
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP= *(variable-list) | NONE*
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT= *(format-list)*
applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL= *(label-list)*
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH= *numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped lines.

GROUPLC=variable
 specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
 specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options
 CURVELABEL <=“text-string”>
 adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
 specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
 specifies the location of the curve label.

LEGENDLABEL="text-string”
 specifies a label that identifies the spline plot in the legend.

SPLITCHAR="character-list”
 specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Plot options
 BREAK
 creates a break in the line for each missing value for the Y variable.

SEGPLNTS=positive-integer
 specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
 NAME="text-string”
 assigns a name to a plot statement.
Required Arguments

\[X=\text{variable}\]

specifies the variable for the x axis.

\[Y=\text{variable}\]

specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= \(\text{START} | \text{END} | \text{BOTH}\)

specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

- **START** displays an arrowhead at the starting point of each line.
- **END** displays an arrowhead at the ending point of each line.
- **BOTH** displays an arrowhead at each end of each line.

Default: No arrowheads are displayed when this option is not specified.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSCALE= \(\text{positive-number}\)

specifies an arrowhead scale factor based on the thickness of the arrow line.

Default: 1.0

Interaction: **ARROWHEADPOS=** must also be specified for this option to have any effect.

Tip: Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEAHEADSHAPE= \(\text{OPEN} | \text{FILLED} | \text{BARBED}\)

specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

```
OPEN  ────>
FILLED    ───>
BARBED  ────>
```

Default: OPEN

Interaction: **ARROWHEADPOS=** must also be specified for this option to have any effect.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.
COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

- **Interaction** If the GROUP= option is also specified, then the GROUP= option is ignored.
- **Tip** The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.
- **See** “GRADLEGEND Statement” on page 715
 “Using Gradient Color Legends” on page 1310

CURVELABEL. <=“text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

- **Interactions** If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.
- When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

- **Defaults** GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.
 - Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
 - Interaction This option has no effect unless the CURVELABEL option is also specified.
 - **Examples** CURVELABELATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)

| Here is an example that specifies a style element: |
| CURVELABELATTRS=GraphTitleText |

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

- **Default** INSIDE
CURVELABELPOS= AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 7.25 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).
Default

0.0 (no offset)

Requirement

This option is applicable only when the X or Y axis is discrete.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDatan style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction

This option is ignored unless GROUP= is specified.

GROUPLC=variable

specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips

Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 958
GROUPLP=variable

specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData_n style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tip

Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 958

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Interactions

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element (<options>) | (options)

specifies the appearance of the spline line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME=“text-string”
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction
This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See
Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SEGPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

Default
20

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[SPLITCHAR=“abc”\]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Default	Values are not split.
Interactions | This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes	When multiple characters are specified, the order of the characters in the list is not significant.
The split characters are case sensitive.

Tip | If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See | “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction | This option has no effect unless SPLITCHAR= is also specified.

See | “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default | LEFT

Interaction | This option has no effect unless you specify the SPLITCHAR= option.

See | “Overview of Collision Avoidance” on page 1312

THICKMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default | Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interaction | The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.
If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

| See | “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option. |

THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

<table>
<thead>
<tr>
<th>Default</th>
<th>The maximum value in the response column that is specified in the THICKRESP= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
<tr>
<td></td>
<td>The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.</td>
</tr>
<tr>
<td></td>
<td>If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
</tbody>
</table>

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

<table>
<thead>
<tr>
<th>Default</th>
<th>The GraphDataDefault style element LineThickness attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.</td>
</tr>
<tr>
<td>Requirement</td>
<td>The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.</td>
</tr>
<tr>
<td>Interactions</td>
<td>When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.</td>
</tr>
<tr>
<td></td>
<td>The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.</td>
</tr>
</tbody>
</table>

| See | “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option. |

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.
Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

TIPFORMAT=(format-list)

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPLABEL= option to assign labels to the list of variables.
See	SAS Formats and Informats: Reference
Example	`tipformat=(auto F5.2)`

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
Example

\texttt{tiplabel=(auto "Class Weight")}

TRANSPARENCY=\textit{value}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

URL=\textit{character-variable}

specifies an HTML page to be displayed when parts of the plot are selected.

\textit{character-variable}

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

\texttt{http://www.sas.com/en_us/home.html}

| Default | By default, no HTML links are created. |

Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

\texttt{ODS GRAPHICS ON / IMAGEMAP=ON;}

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

Details

Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.
STEP Statement

Creates a step plot.

Restriction: The vertical axis that is used with the STEP statement cannot be a discrete axis.

Example: “About Step Plots” on page 40

Syntax

```
STEP X=variable Y=numeric-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ARROWHEADPOS=** START | END | BOTH
 - specifies a position for arrowheads.
- **ARROWHEADSCALE=** positive-number
 - specifies an arrowhead scale factor based on the thickness of the arrow line.
- **ARROWHEADSHAPE=** OPEN | FILLED | BARBED
 - specifies a shape for arrowheads.
- **ATTRID=** character-value
 - specifies the value of the ID variable in a discrete attribute map data set.
- **DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 - specifies a special effect to be used on the plot.
- **DISCRETEOFFSET=** numeric-value
 - specifies an amount to offset all step lines from discrete X values.
- **ERRORBARATTRS=** style-element <(options)> | (options)
 - specifies the appearance of the error bars in the plot.
- **JUSTIFY=** LEFT | CENTER | RIGHT
 - specifies the location of each step relative to its data point.
- **LINEATTRS=** style-element <(options)> | (options)
 - specifies the appearance of the step line.
THICKMAX= *dimension*
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP= *numeric-value*
specifies the response value that corresponds to the maximum line thickness.

THICKRESP= *numeric-variable*
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY= *value*
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP= *(variable-list) | NONE*
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT= *(format-list)*
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL= *(label-list)*
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH= *numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP= *variable*
specifies a variable that is used to group the data.

GROUPDISPLAY= CLUSTER | OVERLAY
specifies how to display grouped step lines.

GROUPORDER= DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL= "*text-string*"
adds a label for the curve.

CURVELABELATTRS= *(style-element <(options)> | (options))*
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC= OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATRBS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the step plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data
labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATRBS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATRBS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATRBS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the step plot data points.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Step options

BREAK
creates a break in the line for each missing value for the Y variable.

Required Arguments

X=variable
specifies the variable for the x axis.
Y=numeric-variable

specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH

specifies a position for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

- **START** displays an arrowhead at the starting point of each line.
- **END** displays an arrowhead at the ending point of each line.
- **BOTH** displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSCALE=positive-number

specifies an arrowhead scale factor based on the thickness of the arrow line.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

ARROWHEADSHAPE= OPEN | FILLED | BARBED

specifies a shape for arrowheads.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following figure shows each of the arrowhead shapes.

```
<table>
<thead>
<tr>
<th>OPEN</th>
<th>FILLED</th>
<th>BARBED</th>
</tr>
</thead>
</table>
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

CURVELABEL <="text-string">
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the "ContrastColor" attribute of the GraphData1...GraphData\text{n} style elements.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option has no effect unless the CURVELABEL option is also specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>CURVELABELATTRS=(Color=Green Family=Arial Size=8</td>
</tr>
<tr>
<td></td>
<td>Style=Italic Weight=Bold)</td>
</tr>
<tr>
<td></td>
<td>Here is an example that specifies a style element:</td>
</tr>
<tr>
<td></td>
<td>CURVELABELATTRS=GraphTitleText</td>
</tr>
</tbody>
</table>

CURVELABELLOC=OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START

specifies the location of the curve label. Specify one of the following values:

- **AUTO** places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This value takes effect only when CURVELABELLOC=OUTSIDE.</th>
</tr>
</thead>
</table>

- **END** places the curve label at the last point on the curve.

- **MAX** places the label at the part of the curve closest to the maximum X axis value.

- **MIN** places the label at the part of the curve closest to the minimum X axis value.

- **START** places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <=(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=

position

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>TopLeft</td>
<td>TopRight</td>
</tr>
</tbody>
</table>

Interaction
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=

NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

Table 7.26 **DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>None</th>
<th>Crisp</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matte</td>
<td>Pressed</td>
<td>Sheen</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.
Table 7.27 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>DATASKIN Options</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all step lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

FILLEDOUMLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions: This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See “Marker Fills and Outlines” on page 1315.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped step lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.
Default DATA

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JUSTIFY=LEFT | CENTER | RIGHT

specifies the location of each step relative to its data point. Figure 7.6 on page 983 shows the effect of each option:

Figure 7.6 Values for JUSTIFY=

LEGENDLABEL="text-string"

specifies a label that identifies the step plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the step line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData style elements in the current style for
grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction
This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS= `style-element `<(COLOR=`color`)> | (COLOR=`color`) specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKEROUTLINEATTRS= `style-element `<(options)> | (options) specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

MARKERS
adds markers to the step plot data points.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Interaction The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1312

THICKMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See

“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

The maximum value in the response column that is specified in the THICKRESP= option.
Interactions

The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default

The GraphDataDefault style element LineThickness attribute.

Restriction

The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions

When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See

“Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

**Interaction**

This option replaces all of the information that is displayed by default.
### Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

<table>
<thead>
<tr>
<th>Example</th>
<th>tip=(age weight)</th>
</tr>
</thead>
</table>

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
</tbody>
</table>

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

| Requirement | A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable. |
| Interaction | This option has no effect unless TIP= is also specified. |

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>
**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SYMBOLCHAR Statement

Defines a marker symbol using a Unicode character that can be referenced in other statements.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax

```symbolchar name=identifier
char=’hex-string’x | keyword <option(s)>;
```

Summary of Optional Arguments

- **HOFFSET=offset**
 specifies a horizontal offset for the marker symbol.

- **ROTATE=number**
 specifies the angle of rotation for the marker symbol in degrees.

- **SCALE=double**
specifies a scale factor for the marker symbol as a percentage.

TEXTATTRS=`style-element <(options)> | (options)`
specifies the appearance of the text in the marker symbol.

VOFFSET=`offset`
specifies a vertical offset for the marker symbol.

Required Arguments

NAME=`identifier`
specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique identifier. The identifier is not case-sensitive.

Interaction

If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See Figure 11.2 on page 1323.

Note

Do not enclose the identifier in quotation marks.

CHAR=`"hex-string"x | keyword`
specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

"hex-string"x

specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the Unicode hexadecimal constants at the following URL: http://www.unicode.org/charts/charindex.html

keyword
specifies a SAS keyword for a Unicode character, such as alpha or alpha_u. See Appendix 2, “Reserved Keywords and Unicode Values,” on page 1537.

Note: The “_u” in a keyword makes the character uppercase.

TIP

This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.

Optional Arguments

HOFFSET=`offset`
specifies a horizontal offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol to the right while a negative offset moves it to the left.

ROTATE=`number`
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.
Default 0 (no rotation is performed)

Note An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double

specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character’s height.

Default 1.0 (100%)

Range Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

TEXTATTRS=style-element (options) | (options)

specifies the appearance of the text in the marker symbol. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Note: Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The color and size text attributes are derived from the MARKERATTRS= option in the plot statement.

Default GraphUnicodeText style element in the current style. The affected attributes are FontFamily, FontStyle, and FontWeight.

Examples TEXTATTRS=(Family=Arial Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TEXTATTRS=GraphDataText

VOFFSET=offset

specifies a vertical offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol up while a negative offset moves it down.

Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statements. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This enables you to use SYMBOLCHAR statements in IF/ELSE statements. Symbol specifications also are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.
You can modify the appearance of markers that are created by the SYMBOCHAR statement in the following ways:

- use the \texttt{COLOR=}, \texttt{SIZE=}, and \texttt{TRANSPARENCY=} suboptions of the \texttt{MARKERATTRS=} option in the plot statement.

 \textit{Note:} The \texttt{WEIGHT=} suboption has no effect on these markers.

- use the \texttt{FAMILY=}, \texttt{WEIGHT=}, and \texttt{STYLE=} suboptions of the \texttt{TEXTATTRS=} option in the SYMBOCHAR statement to format the symbol character. The color and size are controlled using the \texttt{MARKERATTRS=} option.

When you use the \texttt{SCALE=} option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the \texttt{MARKERATTRS=} option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the \texttt{SCALE=} option
3. clips the markers to the size that is specified in the \texttt{MARKERATTRS=} option in the plot statement
4. rotates the markers, if \texttt{ROTATE=} is specified

\section*{Examples}

\textbf{Example 1: Simple SYMBOCHAR Example}

This example specifies the SAS keyword \texttt{DELTA_U}, which produces the delta (\textcircled{\textDelta}) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.

\begin{verbatim}
proc sgplot data=sashelp.class;
 symbolchar name=sym1 char=delta_u / rotate=180 textattrs=(Weight=Bold);
\end{verbatim}
Example 2: SYMBOLCHAR Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign colors and symbols for each grouping of the variable SIZE.

In the example, the following marker symbols are used:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>indicates students who weigh 60 pounds or more</td>
</tr>
<tr>
<td>✗</td>
<td>indicates students who weigh less than 60 pounds</td>
</tr>
</tbody>
</table>

The procedure uses two SYMBOLCHAR statements to identify the marker symbols used in the plot. The example creates marker symbols from the Unicode check mark, heavy character ('2714'x) and the Ballot X character ('2717'x). The example then shows how to use the symbols in a scatter plot.

/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns colors and symbols for each grouping of SIZE. */
data myattrmap;
input ID $ value $ markercolor $ markersymbol $;
datalines;
myid Short green greeny
myid Tall red redx
;
run;

/* Specify the marker symbols used in the scatter plot,
 and apply the SG attribute map. */
proc sgplot data=classHeight (where=(age >= 12)) dattrmap=myattrmap ;
symbolchar name=redx char='2714'x;
symbolchar name=greeny char='2717'x;
scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;

SYMBOLIMAGE Statement

Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Syntax

SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" <option(s)>;

Summary of Optional Arguments

- **HOFFSET=offset**
 Specifies a horizontal offset for the marker symbol.
- **ROTATE=number**
 Specifies the angle of rotation for the marker symbol in degrees.
- **SCALE=double**
 Specifies a scale factor for the marker symbol as a percentage.
- **VOFFSET=offset**
 Specifies a vertical offset for the marker symbol.

Required Arguments

- **NAME=identifier**
 Specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLIMAGE statements are used in a procedure, each statement must have a unique identifier. The name identifier is not case-sensitive.

 Interaction
 If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See Figure 11.2 on page 1323.

 Note
 Do not enclose the identifier in quotation marks.
IMAGE=“image-file-specification”
specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements
The image file specification must be enclosed in quotation marks.

The image file must be located on the local file system. URL access is not supported.

Example
image="c:\temp\mylogo.gif"

Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

Default
0 (the marker symbol is centered on its data point)

Range
-0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note
A positive offset moves the marker symbol to the right while a negative offset moves it to the left.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default
0 (no rotation is performed)

Note
An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default
1.0 (100%)

Range
Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

VOFFSET=offset
specifies a vertical offset for the marker symbol.

Default
0 (the marker symbol is centered on its data point)

Range
-0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note
A positive offset moves the marker symbol up while a negative offset moves it down.

Details

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.
The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUTLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLIMAGE Example

This example specifies the image file for a triangle (▽). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.
Example 2: SYMBOLIMAGE Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>indicates students who weigh 60 pounds or more</td>
</tr>
<tr>
<td>✗</td>
<td>indicates students who weigh less than 60 pounds</td>
</tr>
</tbody>
</table>

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markersymbol $;
 datalines;
 myid Short greeny
 myid Tall redx
; run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgplot data=classHeight (where=(16> age >= 12)) datattrmap=myattrmap;
 symbolimage name=redx image='c:\temp\redCheck.png';
 symbolimage name=greeny image='c:\temp\greenX.png';
 scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;

TEXT Statement
Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

Example: “About Text Plots” on page 41

Syntax

```
TEXT X=variable Y=variable TEXT=variable <!option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value`
 specifies the value of the ID variable in a discrete attribute map data set.

- `BACKFILL`
 displays filled bounding boxes around the text.

- `BACKLIGHT=number`
 specifies that the text should have a back light of a contrasting color.

- `COLORMODEL=style-element | (color-list)`
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
 specifies the numeric column that is used to map colors to a gradient legend.

- `CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)`
 specifies whether this plot's space requirements contribute to the calculation of the axis offsets.

- `DISCRETEOFFSET=numeric-value`
 specifies an amount to offset all markers from discrete X or Y values.

- `FILLATTRS=style-element <(options)> | (options)`
 specifies the fill color and transparency.

- `OUTLINE`
 displays outlined bounding boxes around the text.

- `OUTLINEATTRS=style-element <(options)> | (options)`
 specifies the appearance of the outlines around the text boxes.

- `PAD=dimension<units> | (pad-options)`
 specifies the amount of extra space that is added inside the text-marker border.

- `RATTRID=character-value`
 specifies the value of the ID variable in a range attribute map data set.

- `TRANSPARENCY=value`
 specifies the degree of transparency for the plot.

Axis options

- `CLUSTERAXIS= X | Y`
 specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.
X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Legend options
LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.

Plot options
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Text options
POSITION=position-option
specifies the position of the text with respect to the location of the data point.

ROTATE=number | numeric-column
specifies the angle of rotation in degrees for the text markers.

SIZEMAX=dimension<unit>
specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size for text markers.

SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable is used to size the font for text values.

SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

SPLITCHAR="character-list"
splits the text at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text.

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

Required Arguments

X=variable
specifies the variable for the x axis.

Y=variable
specifies the variable for the y axis.

TEXT=variable
specifies the variable for the text values that are used for the markers.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BACKFILL
displays filled bounding boxes around the text.

Tips
Use the OUTLINE option to specify outlined boxes around the text.
Use the TRANSPARENCY= option to change the transparency of the backfill and the text. To change the transparency of only the backfill, use the TRANSPARENCY= suboption of the FILLATTRS= OPTION.

BACKLIGHT=number

specifies that the text should have a back light of a contrasting color. The effect is applied to the marker text only. *number* specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

Range

0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note

This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

Default

Uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

Interaction

The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. The GROUP= option must also be used.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default

0.8
Interaction This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

color-list
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

CONTRIBUTE OFFSETS=ALL | NONE | (axis-offset-list)
specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.
The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTE OFFSETS= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL
the space requirements for this plot are contributed to the axis offset calculations.

NONE
the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)
a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

- **XMAX** the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.
- **XMIN** the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.
- **YMAX** the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.
- **YMIN** the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default **ALL**

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

CLUSTER
 grouped items are drawn adjacent to each other.

OVERLAY
 grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE
displays outlined bounding boxes around the text.

Tip Use the BACKFILL option to display filled bounding boxes around the text.
OUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the outlines around the text boxes. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1320. Note, however, that you cannot specify a line pattern for the outline.

Default
GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and
LineThickness

Interaction
This option has no effect unless OUTLINE is also specified.

PAD=dimension(units) | (pad-options)
specifies the amount of extra space that is added inside the text-marker border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom
of the text-marker border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options
enclosed in parentheses:

LEFT=dimension(units) TOP=dimension(units)
RIGHT=dimension(units) BOTTOM=dimension(units)

Default
Padding is a fraction of the font height.

Note
Sides that are not assigned padding are padded with the default amount.

Tips
This option is meaningful only when you also specify OUTLINE,
BACKFILL, or both.

Use pad-options to create non-uniform padding.

Note
The default units for dimension are pixels. If you want to specify values in
other units, then you must specify the desired units with the value. For a list
of measurement units that are supported, see “Units of Measurement” on page
1325.

POSITION=position-option
specifies the position of the text with respect to the location of the data point. Specify
one of the following position options:

BOTTOM CENTER TOP
BOTTOMLEFT LEFT TOPLEFT
BOTTOMRIGHT RIGHT TOPRIGHT

The VCENTER= option specifies whether the position is relative to the text bound
box or the text baseline. By default, the positions are relative to the text bounding
The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

<table>
<thead>
<tr>
<th>POSITION= When VCENTER=BBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>BOTTOMEFT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>CENTER</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>LEFT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>RIGHT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>TOP</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>TOPLEFT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>TOPRIGHT</td>
</tr>
<tr>
<td>Text</td>
</tr>
</tbody>
</table>

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.

<table>
<thead>
<tr>
<th>POSITION= When VCENTER=BASELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>LEFT</td>
</tr>
<tr>
<td>Text</td>
</tr>
<tr>
<td>RIGHT</td>
</tr>
<tr>
<td>Text</td>
</tr>
</tbody>
</table>

Default CENTER

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

ROTATE=number | numeric-column

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0

SIZEMAX=dimension<unit>

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

Default
Three times the size specified in the GraphDataText style element for the maximum response variable value marker.

Interactions
The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips
Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size for text markers.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction
The SIZERESPONSE= option must be specified for this option to have any effect.

Note
When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.
SIZEMIN=\texttt{dimension\langle unit\rangle}

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The following table contains the units that are available:

\textbf{Table 7.29 Measurement Units}

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

\textbf{Default}

The size specified in the GraphDataText style element for the minimum response column value marker.

\textbf{Interaction}

The SIZERESPONSE= option must be specified for this option to have any effect.

\textbf{Tip}

Use the SIZEMAX= option to specify the maximum text size.

SIZERESPONSE=\texttt{numeric-variable}

specifies a response variable that is used to determine the font size for each text value.

\textit{Note:} This feature applies to the third maintenance release of SAS 9.4 and to later releases.

\textbf{Default}

The size specified in the GraphDataText style element for all text values.

\textbf{Notes}

When the variable value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value.

When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on.

When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

\textbf{Tip}

Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.
SPLITCHAR=“character-list”
splits the text at the specified character(s) when there is not enough room to display
the text normally. The text value is split at every occurrence of the specified split
character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

NONE does not split the text for text markers that collide.

SPLIT splits the marker text at a split character only if a split is needed at that character
in order to make the text fit the available space. No split occurs at split characters
that occur where a split is not needed. If the text does not contain any of the
specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.

See See the SPLITCHAR= option for information about specifying the split characters.

SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See See the SPLITCHAR= option for information about specifying the split characters

Default NONE

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every width-in-characters characters.

Default Uses the width of the longest inter-split-character substring.

Restriction This option has effect only when SPLITPOLICY=SPLIT.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default Blanks are not stripped

Tip Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default:** 0.0
- **Range:** 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable** specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

- **Example**
  ```
  ```

- **Default:** By default, no HTML links are created.

- **Interactions**
 This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

 This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

  ```
  ODS GRAPHICS ON / IMAGEMAP=ON;
  ```

 For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

- **BBOX** vertically centers the text with respect to its bounding box.

- **BASELINE** vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

- **Restriction**
 This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

- **Default:** BBOX
Tip Use the POSITION= option to specify the text position with respect to the
text bounding box or the text baseline.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

VBAR Statement

Creates a vertical bar chart that summarizes the values of a category variable.

Interactions: The VBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1306.

When used with particular styles, the VBAR statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Tip: Starting with the third maintenance release for SAS 9.4, bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

Examples:
- “About Bar Charts” on page 54
- “Example 10: Creating a Bar-Line Chart” on page 1231

Syntax

`VBAR category-variable <option(s)>;`

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value`
specifies the value of the ID variable in a discrete attribute map data set.

- `BARWIDTH=numeric-value`
specifies the width of the bars as a ratio of the maximum possible width.

- `BASELINEATTRS=style-element <(options)> | (options)`
specifies the appearance of the baseline.

- `COLORMODEL=style-element | (color-list)`
specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
specifies an amount to offset all bars from the category midpoints.

- `FILL | NOFILL`
specifies whether the bars are filled.

- `FILLATTRS=style-element <(options)> | (options)`
specifies the fill color and transparency.
FILLTYPE=SOLID | GRADIENT
 specifies the fill type that is applied to the chart.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the bar outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

 BASELINE=numeric-value
 specifies the response axis intercept for the baseline.

 X2AXIS
 assigns the category variable to the secondary (top) horizontal axis.

 Y2AXIS
 assigns the response variable to the secondary (right) vertical axis.

Bar options

 RESPONSE=response-variable
 specifies a numeric response variable for the plot.

Data tip options

 TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

 TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
 option.

 TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options

 CLUSTERWIDTH=numeric-value
 specifies the cluster width as a ratio of the maximum width.

 GROUP=variable
 specifies a variable that is used to group the data.

 GROUPDISPLAY=STACK | CLUSTER
 specifies how to display grouped bars.

 GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

Label options

 DATALABEL <=variable>
 displays a label for each bar.

 DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when
displayed.

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element (<(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list”
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options

LIMITATTRS=style-element (<(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.
Defaults

0.8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range

0.0 (narrowest) to 1.0 (widest)

Interaction

When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default

0

Interactions

If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)
CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default
By default, the plot is sorted in ascending order based on the category values.

Restrictions
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions
When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default
0.8

Interaction
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

color-list specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN specifies the statistic to use for computing the response colors.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When COLORRESPONSE= is not specified, the following values are valid:

- **FREQ** frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>sum values for the color response</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean values for the color response</td>
</tr>
</tbody>
</table>

Defaults

- SUM when you also specify the COLORRESPONSE= option.
- FREQ when do not specify the COLORRESPONSE= option.

Note

This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>

Displays a label for each bar. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Interaction

This option has no effect if you also specify the GROUPDISPLAY=STACK option.

DATALABELATTRS=style-element <(options)> | (options)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

- GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
- Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATALABELFITPOLICY=policy-value

 Specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- NONE
does not rotate the bar labels. Labels that are too long overlap.

- ROTATE
rotates the text 90 degrees, but only if collisions occur.

- SPLIT
splits the labels at the character or characters specified in the SPLITCHAR= option.
No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Tips
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Tips
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults
ROTATE if the column is numeric.

SPLIT if the column is character.

Interaction
This option has no effect unless DATALABEL= is also specified.

See
“Overview of Collision Avoidance” on page 1312

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label. Specify one of the following values:

DATA
places the label on the data primitives (at the upper boundary of the bars).

BOTTOM
places the label below the bars.

TOP
places the label above the bars.

Default
DATA

Interactions
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

This option does not support the splitting or rotation of data labels.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 7.30 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.
Default: FILL

Interactions: Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element (options) | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

0.0 transparency

Interaction: This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction: Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip: Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default: SOLID

Interaction: This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions: If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions: This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes: Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <options> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

BOTH
 adds lower and upper limit lines to the plot.

LOWER
 adds lower limit lines to the plot.
UPPER
adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
certainty limits

STDDEV
standard deviation

STDERR
standard error

Default CLM

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.
<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip
This option is useful when the bar chart baseline is suppressed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

RESPONSE=\texttt{response-variable} specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SEGLABEL displays a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

```
<table>
<thead>
<tr>
<th></th>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.04</td>
<td>28.544</td>
<td>24.222</td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>27.115</td>
<td>25.13</td>
<td></td>
</tr>
<tr>
<td>21.68</td>
<td>29.968</td>
<td>26.647</td>
<td></td>
</tr>
</tbody>
</table>
```

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTR\texttt{S}= option to modify the appearance of the label text.

Use the SEGLABELFORMAT\texttt{S}= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTR\texttt{S}=\texttt{style-element (options) | (options)} specifies the text properties of the bar segment label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
The GraphDataText style element.

This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT= *format*

specifies the text format used to display the bar segment labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR=“character-list”

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=“abc”

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
The default split character is a space.

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

When specifying the split characters, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN

the mean of the response variable.

For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN

the median of the response variable.

For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

For this value to take effect, you must also specify the RESPONSE= option.

SUM is the sum of the response variable. This is the default value when you specify the RESPONSE= option.

For this value to take effect, you must also specify the RESPONSE= option.

STATLABEL | NOSTATLABEL specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable**
 specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

<table>
<thead>
<tr>
<th>Default</th>
<th>By default, no HTML links are created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.</td>
</tr>
</tbody>
</table>

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

- **Requirement**
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

- **Interaction**
 If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.
Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

VBARBASIC Statement

Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Interaction: When used with particular styles, the VBARBASIC statement produces fill patterns for grouped bars. For more information about fill patterns, see "Using Fill Patterns to Distinguish Grouped Bar Charts" on page 1353.

Notes: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

When using the VBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

See: Basic plot types on page 1306

Example: "About Bar Charts" on page 54

Syntax

VBARBASIC category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `BARWIDTH=numeric-value` specifies the width of the bars as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element <(options)> | (options)` specifies the appearance of the baseline.
- `COLORMODEL=style-element | (color-list)` specifies a color ramp that is to be used with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column` specifies the numeric column that is used to map colors to a gradient legend.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value` specifies an amount to offset all bars from the category midpoints.
- `FILL | NOFILL` specifies whether the bars are filled.
- `FILLATTRS=style-element <(options)> | (options)` specifies the fill color and transparency.
- `FILLTYPE=SOLID | GRADIENT` specifies the fill type that is applied to the chart.
- `NOZEROBARS` suppresses zero-length bars.
OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

Data tip options

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by
the bars. The variable generates the midpoints to which each observation in the data
set contributes.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The
maximum width is equal to the distance between the center of each bar and the
centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If
you specify a width of .5, then the width of the bars is equal to the space between
the bars.

If this option is not specified, the bar width automatically adjusts based on the
number of bars to be displayed and the wall width.
Defaults

<table>
<thead>
<tr>
<th>Defaults</th>
<th>.8</th>
</tr>
</thead>
</table>

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range

<table>
<thead>
<tr>
<th>Range</th>
<th>0.0 (narrowest) to 1.0 (widest)</th>
</tr>
</thead>
</table>

Interaction

<table>
<thead>
<tr>
<th>Interaction</th>
<th>When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.</th>
</tr>
</thead>
</table>

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
</table>

Interaction

<table>
<thead>
<tr>
<th>Interaction</th>
<th>When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.</th>
</tr>
</thead>
</table>

Tips

<table>
<thead>
<tr>
<th>Tips</th>
<th>The appearance of the baseline is controlled by the BASELINEATTRS= option.</th>
</tr>
</thead>
</table>

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>The GraphAxisLines style element in the current style.</th>
</tr>
</thead>
</table>

Notes

<table>
<thead>
<tr>
<th>Notes</th>
<th>The baseline is always drawn by default.</th>
</tr>
</thead>
</table>

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

<table>
<thead>
<tr>
<th>Tip</th>
<th>To suppress the baseline, set the line thickness to 0 as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>baselineattrs=(thickness=0)</td>
</tr>
</tbody>
</table>

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>0.8</th>
</tr>
</thead>
</table>
Interaction This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

COLORMODEL=**style-element** | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:
FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL
displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default No label is shown

Tip The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.
DATALABELFORMAT=format
specifies the text format used to display the bar label.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 7.31 DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See: “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.
FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=
ent <options> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute
assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

<table>
<thead>
<tr>
<th>Tip</th>
<th>ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.</th>
</tr>
</thead>
</table>

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

- **STACK**
 - groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData_n style elements in the current style.

- **CLUSTER**
 - displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

 Note: CLUSTER is supported only when the category axis is discrete.

<table>
<thead>
<tr>
<th>Default</th>
<th>STACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option is ignored unless GROUP= is specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.</td>
</tr>
</tbody>
</table>

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

- **DATA**
 - orders the groups within a category in data order of the group variable.

- **REVERSEDATA**
 - orders the groups within a category in the reverse data order of the group variable.

- **ASCENDING**
 - orders the groups within a category in ascending order of the group variable.

- **DESCENDING**
 - orders the groups within a category in descending order of the group variable.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option is ignored unless GROUP= is specified.</th>
</tr>
</thead>
</table>

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

| Notes | Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting. The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For |
character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is "Frequency".

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default]</td>
<td>![NOZEROBARS Specified]</td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element *(options]*) | (options)

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

RESPONSE=response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Default: The GraphDataText style element.

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

Default: THIN

Interaction: This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION

specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:
For bar charts with a RESPONSE= variable, the following values are valid:

SUM sum values for the response

MEAN mean values for the response

Defaults
- SUM when you also specify the RESPONSE= option.
- FREQ when do not specify the RESPONSE= option.

Interaction
When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP= *(role-list) | NONE*
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(category response)

TIPFORMAT= *(format-list)*
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPLABEL option to assign labels to the list of roles.

TIPLABEL=(label-list)

Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips. A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of roles.

tipformat=(auto F5.2)

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

By default, no HTML links are created.

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

VBARPARM Statement

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interactions: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1306.

When used with particular styles, the VBARPARM statement produces fill patterns for grouped bars. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

Note: An important distinction between VBARPARM and VBAR is that the response variable is required for VBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 54

Syntax

```sas
VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element (<options>) | (options)**
 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 specifies the numeric column that is used to map colors to a gradient legend.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

NOZEROBARS
suppresses zero-length bars.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options
DATALABEL<=variable>
displays a label for each data point.

DATALABELATTRS=style-element<=(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when
displayed.

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element<=(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Limit options

LIMITATTRS=style-element<=(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines.

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

CATEGORY=category-variable
specifies the variable that categorizes the data. All values are treated as discrete
values. The input data for this variable should contain unique values. When the
category values are not unique, a warning is logged, and multiple bars are
superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Starting in the third maintenance release of SAS 9.4, interval bar charts are supported when the category axis is set to TYPE=LINEAR.

RESPONSE=numeric-variable
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Defaults

<table>
<thead>
<tr>
<th>BARWIDTH</th>
<th>Range</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>.8</td>
<td>0.0 (narrowest) to 1.0 (widest)</td>
<td>When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.</td>
</tr>
</tbody>
</table>

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Defaults

<table>
<thead>
<tr>
<th>BASELINE</th>
<th>Range</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0 (narrowest) to 1.0 (widest)</td>
<td>When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.</td>
</tr>
</tbody>
</table>
Interaction

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS= `style-element <(options)> | (options)`

specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When `style-element` is specified, only the style element’s COLOR, LIFESTYLE, and LINSTICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH= `numeric-value`

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default

0.8

Interaction

This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

COLORMODEL= `style-element | (color-list)`

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

style-element

specifies the name of a style element. The style element should contain these style attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTCOLOR</td>
<td>specifies the color for the smallest data value of the COLORRESPONSE= column.</td>
</tr>
</tbody>
</table>
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example
colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

DATALABEL <variable> displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options) specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
DATALABELATTRS=GraphLabelText
```

DATALABELFITPOLICY= `policy-value`
specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- **NONE**
 does not rotate the bar labels. Labels that are too long overlap.

- **ROTATE**
 rotates the text 90 degrees, but only if collisions occur.

- **SPLIT**
 splits the labels at the character or characters specified in the SPLITCHAR= option.

 No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

 Default
 The default split character is a space.

 Tips
 Use the SPLITCHAR= option to specify a split character.

 The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

- **SPLITALWAYS**
 always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

 Default
 The default split character is a space.

 Tips
 Use the SPLITCHAR= option to specify a split character.

 The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults
ROTATE if the column is numeric.
SPLIT if the column is character.

Interaction
This option has no effect unless DATALABEL= is also specified.
See “Overview of Collision Avoidance” on page 1312

\textbf{DATALABELPOS=DATA | BOTTOM | TOP}

specifies the location of the data label. Specify one of the following values:

- **DATA** places the label on the data primitives (at the upper boundary of the bars).
- **BOTTOM** places the label below the bars.
- **TOP** places the label above the bars.

Default is **DATA**.

\textbf{Interactions}

This option displays limit information when limits are specified. When limits are specified, the default data label position is **BOTTOM**.

This option displays group values for each category when **GROUP=** is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the **DATALABEL** option.

This option does not support the splitting or rotation of data labels.

\textbf{DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default is **NONE**.

\textbf{Restriction}

The ODS GRAPHICS option **DATASKINMAX=** controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the **DATASKINMAX=** option to increase or decrease the maximum limit.
Interactions
This option has no effect if the applied style uses a fill pattern and
FILL is disabled for the style. If the style enables both FILL and
FILLPATTERN, data skins work. For more information about fill
patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts”
on page 1353. For instructions about viewing the contents of style
templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the
outlines.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0 (no offset)</th>
</tr>
</thead>
</table>
| Range | -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the
distance between category ticks. |
| Interaction | If you specify the REVERSE option in the axis statement, then the
offset direction is also reversed. |

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the
bars. The NOFILL option hides the fill color for the bars.

<table>
<thead>
<tr>
<th>Default</th>
<th>FILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>Specifying FILL also hides the outlines.</td>
</tr>
</tbody>
</table>
| | If NOFILL and NOOUTLINE are both specified, then both options
are ignored. |

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

| Defaults | Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData n style elements in
the current style for grouped data. |
| | 0.0 transparency |
| Interaction | This option has no effect if you specify the NOFILL option. |

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later
releases.

SOLID
each bar is filled with the color that is assigned to the bar fill area.
GRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

Specifies how to display grouped bars.

STACK
Groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

CLUSTER
Displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

Specifies the ordering of the groups within a category.
DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.
The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions

If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default

The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions

If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.
Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

<table>
<thead>
<tr>
<th>OUTLINE</th>
<th>NOOUTLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.</td>
<td></td>
</tr>
</tbody>
</table>

Default

OUTLINE

Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=

```
style-element <(options)> | (options)
```

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=

```
character-value
```

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383
SEGLABEL

display a label inside each segment of a stacked bar.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

```
Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
```

SEGLABELATTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see "Text Attributes" on page 1323.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
NONE
no attempt is made to fit each segment label within its bar. Long bar segment
labels might overlap other graphical elements. The segment labels are not
considered when the axis ranges are computed. As a result, segment labels that
extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do
not fit within the plot area extend into the graph axis area and might overlap axis
elements.

THIN
drops any bar segment label that does not fit within its segment.
The label width must not exceed the bar width, and the text height must not
exceed the segment height.

Default THIN
Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later
releases.

Default The column format assigned to the RESPONSE= column, or BEST6 if
no format is assigned.
Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough
room to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

"character-list" is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default The default split character is a space.
Interaction This option has no effect unless Datalabel is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.
Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless **SPLITCHAR**= is also specified.

See
“Overview of Collision Avoidance” on page 1312

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement
You must specify the **IMAGEMAP=ON** option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the **TIPFORMAT** and **TIPLABEL** options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the **TIP=** option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the **format-list** and the **variable-list** that is specified for the **TIP=** option. A format must be provided for each variable, using the same order as the **variable-list**. If you do not want to apply a format to a variable, use the **AUTO** keyword instead.

Default
The column format of the tip variable, or **BEST6** if no format is assigned to a numeric column.

Requirement
A format or the keyword **AUTO** must be provided for each variable that is listed in the **TIP=** option.

Interaction
This option has no effect unless **TIP=** is also specified.
Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.
X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

VBOX Statement
Creates a vertical box plot that shows the distribution of your data.

Restriction: This plot has plot compatibility restrictions. See Table 10.2 on page 1307.
Interaction: The VBOX statement cannot be used together with other plot statements in the SGPLOT procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.
See: “Visual Description of Box Plot Percentile Boundaries” on page 1079
Example: “About Box Plots” on page 49

Syntax
VBOX numeric-analysis-variable <option(s)>;

Summary of Optional Arguments
Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
specifies the width of the box.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL | NOFILL
specifies whether the boxes are filled with color.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines.
MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box.

MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median.

NOCAPS
hides the cap lines for the whiskers.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOUTLIERS
hides the outliers from the plot.

NOTches
specifies that the boxes be notched.

OUTLIERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

WHISKERATTRS=style-element <(options)> | (options)
specifies the appearance of the whisker and cap lines.

WHISKERPCT=number
specifies the whisker length, in percentile units.

Axis options

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the analysis variable to the secondary (right) vertical axis.

Data tip options

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
adds data labels for the outlier markers.
DATALABELATRRS=style-element <(options)>(options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

LABELFAR
specifies that only the far outliers have data labels.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
specifies the category variable for the plot.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a box for it.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

SPREAD
relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the
calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY=
option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383
BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

CATEGORY=category-variable
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped
The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interactions

- This option takes effect only if the CONNECT= option is also specified.
- This option is ignored if the GROUP= option is also specified.

Examples

```
CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)
```

This example specifies a style element:

```
CONNECTATTRS=GraphData3
```

DATALABEL</variable>

Adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note

This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element <(options)> | (options)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

Specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 7.33 DATASKIN Options for Box Plots

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Though the figure shows horizontal boxes, the data skin for vertical boxes is identical.

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1343

DISCRETEOFFSET=numeric-value

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default 0.0 (no offset)

EXTREME

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

FILL | NOFILL

specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

FILLATTRS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.
Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPhICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1 ... GraphData\(n\) style elements in the current style.

Defaults
CLUSTER for a discrete category axis

OVERLAY for a linear axis

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction
This option is ignored unless GROUP= is specified.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA

Interactions
This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

Restriction
The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example
```
proc sgplot data=sashelp.class;
  vbox weight / category=height intboxwidth=20 ;
  xaxis type=linear;
  run;
```

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note
This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interactions: This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default: GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphBoxMedian style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction: This option is ignored if the NOMEDIAN option is also specified.

MISSING
for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string”
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
 hides the cap lines for the whiskers.

Interaction Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN
 hides the mean marker.

NOMEDIAN
 hides the median line.

NOOOUTLIERS
 hides the outliers from the plot.

NOTCHES
 specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

 \(\text{median} \pm 1.58 \left(\frac{\text{IQR}}{\sqrt{N}} \right) \)

For a visual description of the parts of a box plot, see “Details” on page 1079.

OUTLIERATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

 Default GraphOutlier style element in the current style for ungrouped data.
 GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
 specifies a method for computing the percentiles for the plot. For descriptions of each method, see “Calculating Percentiles” in the UNIVARIATE Procedure chapter of Base SAS Procedures Guide: Statistical Procedures.

 Default 5

SPLITCHAR=“character-list”
 splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

 “character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

 SPLITCHAR="abc"

 When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

SPREAD relocates outlier points that have identical values to prevent overlapping.

Note This option has no effect if your data does not contain two or more outliers
with identical values for the analysis variable.

TIP= (role-list) | NONE specifies the information to display when the cursor is positioned over a box or
whisker in the box plot.

(role-list) a space-separated list of unique box plot roles enclosed in parentheses. The box
plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and
Q3. Data tips are displayed using the data obtained from the specified roles.

NONE suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to
later releases.
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

TIPFORMAT=(format-list)

Applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the `format-list` and the `role-list` that is specified for the TIP= option. A format must be provided for each role, using the same order as the `role-list`. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

Example

```
tip=(mean median)
```

TIPLABEL=(label-list)

Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the `label-list` and the `role-list` that is specified for the TIP= option. A label must be provided for each role, using the same order as the `role-list`. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example

```
tiplabel=(auto "Class Weight")
```
TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numic-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element <(options)> | (options)

specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

WHISKERPCT=number

specifies the whisker length, in percentile units.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10th percentile low and the 90th percentile high
25 specifies the 25th percentile low and the 75th percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes When this option is specified, fences and far outliers are not drawn.
When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the analysis variable to the secondary (right) vertical axis.

Details

Statement Summary

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences (± 1.5 IQR). Outliers that are beyond upper and lower far fences (± 3 IQR) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

VECTOR Statement

Creates a vector plot that draws arrows from a point of origin to each data point.

Example:
“About Vector Plots” on page 44

Syntax

VECTOR X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options
ARROWDIRECTION=IN | OUT | BOTH
 specifies the location of the arrowheads for the vectors.

ARROWHEADSHAPE=shape
 specifies the shape of the arrowheads for the vectors.

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

LINEATTRS=style-element < (options) > | (options)
 specifies the appearance of the vector line.

NOARROWHEADS
 removes the arrowheads from the vectors.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
 specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
 specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
 specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

X2AXIS
 assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
 assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
 specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

- **DATALABEL <=variable>**
 displays a label for each data point.

- **DATALABELATTRS=style-element <(options)> | (options)**
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=position**
 specifies the location of the data label with respect to the plot.

- **LEGENDLABEL="text-string"**
 specifies a label that identifies the vector plot in the legend.

- **SPLITCHAR="character-list"**
 splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

- **SPLITCHARNODROP**
 specifies that the split characters are included in the displayed value.

- **SPLITJUSTIFY=LEFT | CENTER | RIGHT**
 specifies the horizontal alignment of the value text that is being split.

Plot options

- **XORIGIN=numeric-value | numeric-variable**
 specifies the X coordinate of the origin for the vectors.

- **YORIGIN=numeric-value | numeric-variable**
 specifies the Y coordinate of the origin for the vectors.

Plot reference options

- **NAME="text-string"**
 assigns a name to a plot statement.

Required Arguments

- **X=numeric-variable**
 specifies a numeric variable for the x axis.

- **Y=numeric-variable**
 specifies numeric variable for the y axis.

Optional Arguments

- **ARROWDIRECTION=IN | OUT | BOTH**
 specifies the location of the arrowheads for the vectors. Specify one of the following:

 - **IN**
 places the arrowheads at the origin of the vector.

 - **OUT**
 places the arrowheads at the ending point of the vector.

 - **BOTH**
 places arrowheads at both the origin and ending point of the vector.

 Default: OUT
VECTOR Statement

ARROWHEADSHAPE= *shape*

specifies the shape of the arrowheads for the vectors. Specify one of the following:

- **OPEN**
 - resembles the letter "V".

- **CLOSED**
 - an outline of a triangle.

- **FILLED**
 - a solid triangle.

- **BARBED**
 - a solid triangle with an indent at the base.

Default: **OPEN**

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

COLORMODEL= *style-element* | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

- **style-element**
 - specifies the name of a style element. The style element should contain these style attributes:

 - **STARTCOLOR**
 - specifies the color for the smallest data value of the COLORRESPONSE= column.

 - **NEUTRALCOLOR**
 - specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

 - **ENDCOLOR**
 - specifies the color for the highest data value of the COLORRESPONSE= column.

- **Example**
 - `colormodel=TwoColorRamp`

- **(color-list)**
 - specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as `GraphData3:Color`. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

- **Requirement**
 - The list of colors must be enclosed in parentheses.

- **Example**
 - `colormodel=(blue yellow green)`
The ThreeColorAltRamp style element

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.

If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 715

“Using Gradient Color Legends” on page 1310

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData$n style elements.

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
</tbody>
</table>
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>CRISP</td>
</tr>
<tr>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td>PRESSED</td>
</tr>
<tr>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

See
“Using Data Skins” on page 1343

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
LEGENDLABEL="text-string"
specifies a label that identifies the vector plot in the legend. By default, the label of
the Y variable or the group value for each plot element is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the vector line. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped
data. The effective attributes are: ContrastColor,LineStyle, and
LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOARROWHEADS
removes the arrowheads from the vectors.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough
room to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

"character-list" is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

<table>
<thead>
<tr>
<th>Default</th>
<th>Values are not split.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option has no effect unless DATALABEL is specified.</td>
</tr>
<tr>
<td></td>
<td>When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.</td>
</tr>
<tr>
<td></td>
<td>You can specify the justification of the text by using the SPLITJUSTIFY= option.</td>
</tr>
<tr>
<td>Notes</td>
<td>When multiple characters are specified, the order of the characters in the list is not significant.</td>
</tr>
<tr>
<td></td>
<td>The split characters are case sensitive.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

| Interaction | This option has no effect unless SPLITCHAR= is also specified. |
| See | “Overview of Collision Avoidance” on page 1312 |

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1312</td>
</tr>
</tbody>
</table>

THICKMAX=

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

<table>
<thead>
<tr>
<th>Default</th>
<th>Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
<tr>
<td></td>
<td>The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.</td>
</tr>
</tbody>
</table>
If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

THICKMAXRESP= numeric-value

specifies the response value that corresponds to the maximum line thickness.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP= numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

See “Example 12: Series Plot with Line-Thickness Response and Arrowheads” on page 1233 for an example of how to use this option.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

**TIPFORMAT=**(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

**TIPLABEL=**(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example:
```
tylabel=(auto "Class Weight")
```

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default**: 0.0
- **Range**: 0 (completely opaque) to 1 (completely transparent)

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**XORIGIN=numeric-value | numeric-variable**
specifies the X coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

- **Default**: 0

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**YORIGIN=numeric-value | numeric-variable**
specifies the Y coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

- **Default**: 0

---

**VLINE Statement**
Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR statement to create a bar-line chart.

**Interaction:** The VLINE statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Axes” on page 1307.

**Examples:**
- “About Line Charts” on page 61
- “Example 10: Creating a Bar-Line Chart” on page 1231

**Syntax**
```
VLINE category-variable <\option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**
- **ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set.
- **BREAK**
creates a break in the line for each missing value of the response variable.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete category values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

**Axis options**

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

**Label options**

CURVELABEL <=text-string>
adds a label for the line plot.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data
labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROVERRIDEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates a line for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Statistics options
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.

Required Argument
category-variable
specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments
ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

BREAK
creates a break in the line for each missing value of the response variable.

Notes The observation is excluded from the graph when there is a missing value for the category variable without the specification of the MISSING option. (No break occurs in the line.)

The observation is excluded from the graph when there is a missing value for the FREQ variable.
**CATEGORYORDER=RESPASC | RESPDESC**
specifies the order in which the categories are arranged. Specify one of the following values:

**RESPASC**
sorts by the response values in ascending order.

**RESPDESC**
sorts by the response values in descending order.

**Default**
By default, the plot is sorted in ascending order based on the category values.

**Restrictions**
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

**Interactions**
When a group variable is used with the CATEGORYORDER= option, the response values for each group segment become the sorting key. CATEGORYORDER sorts first by the response statistic and then displays the GROUP values sorted within each category.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

**Notes**
Starting with the first maintenance release for SAS 9.4, CATEGORYORDER= can be specified when a group variable is used. Previously, if GROUP= was specified, the CATEGORYORDER= option was ignored.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

**Default**
0.8

**Interaction**
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

**CURVELABEL <="text-string">>
adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

**Interaction**
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall
outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

**CURVELABELATTRS=style-element (options) | (options)**
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default**

INSIDE

**CURVELABELPOS=AUTO | END | MAX | MIN | START**
specifies the location of the curve label. Specify one of the following values:

**AUTO**
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**
This value takes effect only when CURVELABELLOC=OUTSIDE.

**END**
places the curve label at the last point on the curve.

**MAX**
places the label at the part of the curve closest to the maximum X axis value.

**MIN**
places the label at the part of the curve closest to the minimum X axis value.

**START**
places the curve label at the first point on the curve.

**Default**

**END**

**Interactions**
This option has no effect unless the CURVELABEL option is also specified.
The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**DATALABEL <=variable=>**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=DATA | BOTTOM | TOP**
specifies the location of the data label. Specify one of the following values:

DATA
places the label at the data points of the lines.

BOTTOM
places the label below the lines.

TOP
places the label above the lines.

**Default**
DATA

**Interactions**
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.
**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 7.35</th>
<th>DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

<table>
<thead>
<tr>
<th>Table 7.36</th>
<th>DATASKIN Options for Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**See** “Using Data Skins” on page 1343

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all lines from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default** 0.0 (no offset)

**Requirement** This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.
Requirement  The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions  This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See  For usage information and an example, see “Marker Fills and Outlines” on page 1315.

FREQ=numeric-variable specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions  If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction  If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions  If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Tip  ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY specifies how to display grouped lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData style elements in the current style.

Default  OVERLAY
Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

ASCENDING orders the groups within a category in ascending order of the group variable.

DESCENDING orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string" specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options) specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITS=BOTH | LOWER | UPPER**

adds limit lines to the plot. Specify one of the following values:

- **BOTH**
  - adds lower and upper limit lines to the plot.

- **LOWER**
  - adds lower limit lines to the plot.

- **UPPER**
  - adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction: Limit lines are displayed only when you specify STAT= MEAN.

**LIMITSTAT=CLM | STDDEV | STDERR**

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
  - confidence limits

- **STDDEV**
  - standard deviation

- **STDERR**
  - standard error

Default: CLM

Interaction: If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData<sub>n</sub> style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**MARKERATTRS=style-element <(options)> | (options)**

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.
### MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

Specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**Default**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

**Interaction**

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

**Tip**

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

### MARKEROUTLINEATTRS=style-element <(options)> | (options)

Specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

**Interaction**

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

**Tip**

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1315.

### MARKERS

Adds markers to the plot.
MISSING
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Interaction The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:
• If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
• If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.
PERCENT
the percentage, which is calculated as follows:

• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction
For this value to take effect, you must also specify the RESPONSE= option.

Defaults
SUM when you also specify the RESPONSE= option.
FREQ when do not specify the RESPONSE= option.

Restriction
If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction
When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults
The statistic is displayed for the response variable.
When a custom label is assigned to the response variable, the statistic is not displayed.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option has no effect unless the RESPONSE= option is specified.</th>
</tr>
</thead>
</table>

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

tsuppresses the data tips from this plot.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL= option to assign labels to the list of variables.

**See**

*SAS Formats and Informats: Reference*

**Example**

tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data
tips.
A one-to-one correspondence exists between the label-list and the variable-list that is
specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable
that is listed in the TIP= option. When AUTO is used, the label is
obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of variables.
Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify
applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each
plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS
HTML destination only. For more information about ODS
destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the
ODS GRAPHICS statement. For example, add the following
statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

For more information, see “Using the ODS GRAPHICS Statement”
on page 1371.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.
Each observation is weighted by the value of the specified numeric variable.
### Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

### Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

### X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

### Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

---

### WATERFALL Statement
Creates a waterfall chart computed from input data. In the chart, bars represent an initial value of $Y$ and a series of intermediate values identified by $X$ leading to a final value of $Y$.

Example:  “About Waterfall Charts” on page 62

### Syntax
WATERFALL CATEGORY=variable RESPONSE=numeric-variable <option(s)>;

### Summary of Optional Arguments

#### Appearance options

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
  specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element (options) | (options)**
  specifies the appearance of the baseline.

- **COLORGROUP=variable**
  specifies a variable that is used to discretely color the bars.

- **COLORMODEL=style-element | (color-list)**
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
  specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  specifies a special effect to be used on the plot.

- **FILL | NOFILL**
  specifies whether the bars are filled.

- **FILLATTRS=style-element | (COLOR=color)**
  specifies the color of the fill for the bars.

- **OUTLINE | NOOUTLINE**
  specifies whether the bars have outlines.

- **RATTRID=character-value**
  specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Final bar options

FINALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the final bar.

FINALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the final bar, if displayed.

Initial bar options

INITIALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the initial bar, if displayed.

INITIALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the initial bar, if displayed.

INITIALBARVALUE=number
specifies the value of the initial bar.

Label options

DATALABEL
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

STAT=MEAN | SUM
specifies the statistic for the response axis.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

CATEGORY=variable
specifies the variable for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.

RESPONSE=numeric-variable
specifies the variable for the response values.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest). For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default .8

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.
When `style-element` is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**COLORGROUP=**`variable`

specifies a variable that is used to discretely color the bars. Once the variable values are found, the transaction bar colors are taken from the GraphData1 ... GraphData`n` style elements in the current style. If the transaction bars are filled, then the COLOR attribute is used for the fill. The CONTRASTCOLOR attribute is used for the transaction bar outlines.

**COLORMODEL=**`style-element | (color-list)`

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

`style-element`

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

`(color-list)`

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default**
The ThreeColorAltRamp style element

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=**`numeric-column`

specifies the numeric column that is used to map colors to a gradient legend.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The fill colors are assigned according to the legend gradient.
**Interaction**
If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**
“GRADLEGEND Statement” on page 715
“Using Gradient Color Legends” on page 1310

**DATALABEL**
displays a label for each data point. The values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Default**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

| Table 7.37  DATASKIN Options for Filled Areas |
|---|---|---|
| NONE | CRISP | GLOSS |
| ![NONE](image) | ![CRISP](image) | ![GLOSS](image) |
| MATTE | PRESSED | SHEEN |
| ![MATTE](image) | ![PRESSED](image) | ![SHEEN](image) |

**Default**
NONE
Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. In the first maintenance release of SAS 9.4 and later releases, the maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interactions: This option has no effect if the applied style uses a fill pattern and FILL is disabled for the style. If the style enables both FILL and FILLPATTERN, data skins work. For more information about fill patterns, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353. For instructions about viewing the contents of style templates, see “About Styles and Style Elements” on page 1335.

If you also specify NOFILL, then the data skin is applied to the outlines.

See “Using Data Skins” on page 1343

**FILL | NOFILL**
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default: FILL

Interactions: Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=**

specifies the color of the fill for the bars.

You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Here is an example that specifies a style element: FILLATTRS=GraphData3

Here is an example that specifies a color name: FILLATTRS=(COLOR= "Very light red")

Default: For ungrouped data, the default color is specified by the Color attribute of the GraphDataDefault style element in the current style. For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction: This option has no effect if you also specify the NOFILL option.

**FINALBARATTRS=**

specifies the appearance of the final bar. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: The default color is specified by the Color attribute of the GraphFinal style element in the current style.
**FINALBARVALUE=**"text-string"

specifies the tick value used on the X axis for the final bar, if displayed.

- **Default** "Final"

**INITIALBARATTRS=style-element | (COLOR=color)**

specifies the appearance of the initial bar, if displayed. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

- **Default** The default color is specified by the Color attribute of the GraphInitial style element in the current style.

- **Interactions** This option has no effect if you specify the NOFILL option.

**MISSING**

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

**NAME=**"text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

- **Note** The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**OUTLINE | NOOUTLINE**

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

- **Default** OUTLINE

- **Interactions** Specifying OUTLINE also hides the fill color.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**RATTRID=** character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

**SPLITCHAR=** “character-list”

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

`SPLITCHAR="abc"`

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

STAT=MEAN | SUM
specifies the statistic for the response axis. Specify one of the following statistics:

MEAN
the mean of the response variable.

SUM
the sum of the response variable.

Default SUM

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Formats and Informats: Reference

Example `tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPFORMAT option to assign formats to the list of variables.

**Example** `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default** 0.0

**Range** 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable** specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example** `http://www.sas.com/en_us/home.html`

**Default** By default, no HTML links are created.

**Interactions** This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

**X2AXIS**
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

---

**XAXIS Statement**

Specifies the axis options for the X axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

---

**Syntax**

```plaintext
XAXIS option(s);
```

**Summary of Optional Arguments**

**Appearance options**

- **COLORBANDATTRS=style-element <(options)> | (options)**
  specifies the fill appearance of the color band.

- **COLORBANDS=NONE | EVEN | ODD**
  specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- **DISPLAY=ALL | NONE | (options)**
  specifies which features of the axis are displayed.

- **GRID**
  creates grid lines at each tick on the axis.

- **GRIDATTRS=style-element <(options)> | (options)**
  specifies the appearance of the grid lines.

- **MINORGRID**
  creates grid lines at each minor tick on the axis.

- **MINORGRIDATTRS=style-element <(options)> | (options)**
  specifies the appearance of the minor grid lines.

**Axis options**

- **DISCRETEORDER=DATA | FORMATTED | UNFORMATTED**
  specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

- **INTEGER**
specifies that only integers are used for tick mark values.

**INTERVAL=**`time-interval`

specifies the tick interval for a time axis.

**LOGBASE=**`2 | 10 | e`

specifies the base value for the logarithmic scale.

**LOGSTYLE=**`LINEAR | LOGEXPAND | LOGEXPONENT`

specifies how to scale and format the values for the major tick marks for logarithmic axes.

**LOGVTYPE=**`EXPANDED | EXPONENT`

specifies the scale that is used when interpreting the values in the **VALUES** option and the **MIN** and **MAX** options.

**MAX=**`numeric-value`

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**MIN=**`numeric-value`

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

**MINOR**

adds minor tick marks to a linear, log, or time axis.

**MINORCOUNT=**`numeric-value`

specifies the number of minor tick marks for the axis.

**MINORINTERVAL=**`time-interval`

specifies the time interval between minor ticks.

**NOTIMESPLIT**

prevents a time axis from splitting the time, date, or datetime values into two rows.

**OFFSETMAX=**`numeric-value`

specifies an offset that follows the highest data value on the axis.

**OFFSETMIN=**`numeric-value`

specifies an offset that precedes the lowest data value on the axis.

**RANGES=(**`start–end <start2–end2 startN–endN …>```

specifies the ranges for a broken axis.

**REFTICKS <=**(options)>

adds tick marks to the axis that is opposite from the specified axis.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**THRESHOLDMAX=**`numeric-value`

specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN=**`numeric-value`

specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE=**`DISCRETE | LINEAR | LOG | TIME`

specifies the type of axis.

**Text options**

**FITPOLICY=**`policy-value`

specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

**LABEL=**`"text-string"`

specifies a label for the axis.
LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels.

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) | ("string-list")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

Optional Arguments

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

This option applies to discrete axes only.

Interaction

Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.
Note  The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip  Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Interaction  This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default  UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:

NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips  This value hides the axis line, but has no effect on the graph border. To hide the border, specify NOBORDER in the PROC SGLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default  ALL
FITPOLICY=\textit{policy-value}

specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

\textbf{NONE}

does not split the values.

\textbf{ROTATE}

rotates the value text 45 degrees.

\textbf{T I P}

Use VALUESROTATE= to specify how the tick values are rotated on the axis.

\textbf{Note:} With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

\textbf{ROTATETHIN}

attempts to use ROTATE, and then THIN to fit the values.

\textbf{Note:} With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

\textbf{SPLIT}

splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default} The default split character is a space.

\textbf{Tip} You can specify the split character using the SPLITCHAR= option.

\textbf{SPLITALWAYS}

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default} The default split character is a space.

\textbf{Restriction} This option has no effect unless the axis is discrete.

\textbf{Tip} You can specify the split character using the SPLITCHAR= option.

\textbf{SPLITROTATE}

attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

\textbf{Note:} This option has no effect on time axes.

\textbf{STAGGER}

shifts the values up and down.

\textbf{STAGGERROTATE}

attempts to use STAGGER, and then ROTATE to fit the values.

\textbf{Interaction} When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.
STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults
SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction
This option does not affect logarithmic axes.

See
“Fit Policies for Axes” on page 1314

GRID
creates grid lines at each tick on the axis.

Interaction
Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=time-interval
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:
### Table 7.38  Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

**Default**  AUTO

**LABEL=“text-string”**

specifies a label for the axis.

**LABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT

specifies the position of the axis label.

CENTER
centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

DATACENTER

centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.

LEFT

positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT

positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

CENTER

DATACENTER

The next figure shows the LEFT and RIGHT positions for the same axis labels.
**Default** CENTER

**LOGBASE=2 | 10 | e**
specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT**
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

**LOGEXPAND**
places the tick marks at integer powers of the base. For example, if you specified **LOGBASE=2**, the tick marks might be at 1, 2, 4, 8, 16. See **Figure 7.8 on page 1125**.

**Figure 7.8** Graph Axes with LOGEXPAND

**LOGEXPONENT**
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified **LOGBASE=10**, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See **Figure 7.9 on page 1125**.

**Figure 7.9** An Axis with LOGEXPONENT

**LINEAR**
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.
For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 7.10 on page 1126.

**Figure 7.10 An Axis with LINEAR**

```
10 40 200 400 600 800 1000 1200
```

**Default**

LOGEXPAND

**Interaction**

This option has no effect unless you also specify TYPE=LOG.

**LOGVTYPE=EXPANDED | EXPONENT**

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

- **EXPANDED**
  the values are interpreted as integer powers of the base (decimal numbers).

- **EXPONENT**
  the values are interpreted as integer exponents of the base.

**Default**

EXPANDED

**Interaction**

This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

**Tip**

This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

**Examples**

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**

This option affects linear, log, and time axes only.

**Interactions**

This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.
This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction This option has no effect on discrete axes.

Interaction This option has no effect if you specify the VALUES= option.

Tip Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction This option applies to linear and log axes only.

Note Starting with the second maintenance release for SAS 9.4, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.
MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 7.38 on page 1123.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**OFFSETMIN=numeric-value**

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

**Default**

The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**RANGES=(start–end <start2–end2 startN–endN …>)**

specifies the ranges for a broken axis.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**start**

specifies the start of a range. *start* can be one of the following:

- a number (linear axis only).
- the keyword MIN specifies the minimum data value.
- a SAS time, date, or date-time constant (time axis only).

**end**

specifies the end of a range. *end* can be one of the following:

- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.
As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**

This option is valid for linear and time axes only.

- Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.
- If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.
- When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**

All of the ranges must be enclosed in parenthesis.

- You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

- When this option is specified, the plot statement TIP= and URL= options are ignored.

- When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with the third maintenance release of SAS 9.4, when a range is specified, the data label font size is not scaled during label placement.

**Notes**

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

- Curve label positions are based on the non-broken axis data range.

- When curve labels are specified with a broken axis, the curve label positions might not be ideal.

**Tip**

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

**Examples**

ranges=(10-500 1000-5000 10000-50000)

ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

**REFTICKS <options>**

adds tick marks to the axis that is opposite from the specified axis. You can also specify **options**:

**LABEL**

in addition to the tick marks, displays the axis label.

**VALUES**

in addition to the tick marks, displays the values that are represented by the tick marks.
Note: This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR="character-list"**

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.

Restriction: This option has no effect unless the axis is discrete.

Interactions: This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See: “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

Default: LEFT
See “Overview of Collision Avoidance” on page 1312

### THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to linear axes only.</td>
</tr>
<tr>
<td>Tips</td>
<td>If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.</td>
</tr>
<tr>
<td></td>
<td>Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.</td>
</tr>
<tr>
<td></td>
<td>Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.</td>
</tr>
<tr>
<td></td>
<td>For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.</td>
</tr>
</tbody>
</table>

### THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 to 1</td>
</tr>
<tr>
<td>Restriction</td>
<td>This option applies to linear axes only.</td>
</tr>
<tr>
<td>Tips</td>
<td>If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.</td>
</tr>
<tr>
<td></td>
<td>Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.</td>
</tr>
<tr>
<td></td>
<td>Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.</td>
</tr>
<tr>
<td></td>
<td>For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.</td>
</tr>
</tbody>
</table>

### TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

**DISCRETE**
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

*Note:* Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

**LINEAR**
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.
LOG

specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction

A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions

Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME

specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=

 specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

VALUEATTRS=GraphTitleText

VALUES=

 specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

VALUES=(values-list) specifies tick values for linear, time, and logarithmic axes.

VALUES=(“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)

For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value
specifies the interval between the ticks. For example, \texttt{VALUES=(0 to 100 by 50)} creates tick marks at 0, 50, and 100.

\textit{Note:} If you omit the \texttt{increment-value}, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\texttt{<value ... value-n=value-1 TO value-2 BY increment-value <value ... value-n>}

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks.

For example, \texttt{VALUES=(-5 10 to 50 by 20 75)} creates tick marks at -5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

\texttt{value ...
...value-n>}

creates ticks for specific values. For example, \texttt{VALUES=("25MAY08"d
"04JUL08"d "23AUG08"d)} places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \\
\texttt{VALUES=("01JAN08"d to "01MAY08"d by month)} creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the \texttt{INTERVAL=} option.

Restrictions

This option has no effect on discrete axes.

If your \texttt{VALUES=} option creates more than 1000 values, then the option has no effect.

Interactions

For logarithmic axes, use the \texttt{LOGVTYPE} option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

Use the \texttt{VALUESDISPLAY=} option to specify string replacement text for the specified values.

\texttt{VALUES=("string-list")}

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.
The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

**Table 7.39  Axis with Specified Character Values**

```sas
proc sgplot data=sashelp.cars;
xaxis values=('GMC' 'Honda' 'Hyundai')
offsetmin=0.2 offsetmax=0.2;
scatter x=make y=mpg_city;
run;
```

**Restrictions**
This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

**Notes**
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

**Tip**
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

**Examples**
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
```
values=('Sedan' 'Sports' 'Wagon' 'SUV')
```

The following example specifies the axis tick values 10, 20, 30, and 40:
```
values=('10' '20' '30' '40')
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')
```

**TIP**
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.
### Restriction
This option applies only to linear and discrete axes.

### Interaction
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

### Example
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')
```

### VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

**Note:** Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.

**DATA**
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**
specifies a format to apply to the major tick values.

**Restriction**
This option currently honors most, but not every, SAS format. For more information, see “SAS Formats Not Supported” in *SAS Graph Template Language: Reference*.

**Note**
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

**Restriction**
For discrete axes, only character formats are supported.

**Interactions**
This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

### VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

**Interaction**
This option has no effect unless you also specify the VALUES= option.

### VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.
DIAGONAL
    rotates the tick values to a 45-degree diagonal position.

VERTICAL
    rotates the tick values to a 90-degree vertical position. The values are always
drawn from bottom to top.

Default: DIAGONAL

Interactions: This option works through the axis fit policy. If there are no tick
collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to
have any effect.

X2AXIS Statement

Specifies the axis options for the X2 axis. You can control the features of the axis (for example, the axis
label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data
range, data type, and tick mark values).

Syntax

X2AXIS option(s);

Summary of Optional Arguments

Appearance options

COLORBANDATTRS=style-element <(options)> | (options)
    specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
    specifies the display of alternating wall-color bands corresponding to the
discrete axis bins.

DISPLAY=ALL | NONE | (options)
    specifies which features of the axis are displayed.

GRID
    creates grid lines at each tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
    specifies the appearance of the grid lines.

MINORGRID
    creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
    specifies the appearance of the minor grid lines.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
    specifies the order in which discrete tick values are placed on the axis. This
option affects any plot with a discrete axis.

INTEGER
    specifies that only integers are used for tick mark values.
INTERVAL=\texttt{time-interval}  
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e  
specifies the base value for the logarithmic scale.

LOGSTYLE=\texttt{LINEAR} | \texttt{LOGEXPAND} | \texttt{LOGEXPONENT}  
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=\texttt{EXPANDED} | \texttt{EXPONENT}  
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=\texttt{numeric-value}  
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=\texttt{numeric-value}  
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR  
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=\texttt{numeric-value}  
specifies the number of minor tick marks for the axis.

MINORINTERVAL=\texttt{time-interval}  
specifies the time interval between minor ticks.

NOTIMESPLIT  
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=\texttt{numeric-value}  
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=\texttt{numeric-value}  
specifies an offset that precedes the lowest data value on the axis.

RANGES=(\texttt{start1–end1} < \texttt{start2–end2} \texttt{startN–endN} …>)  
specifies the ranges for a broken axis.

REFTICKS <=\texttt{(options)}>>  
adds tick marks to the axis that is opposite from the specified axis.

REVERSE  
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=\texttt{numeric-value}  
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=\texttt{numeric-value}  
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=\texttt{DISCRETE} | \texttt{LINEAR} | \texttt{LOG} | \texttt{TIME}  
specifies the type of axis.

**Text options**

FITPOLICY=\texttt{policy-value}  
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

LABEL="\texttt{text-string}"  
specifies a label for the axis.

LABELATTRS=\texttt{style-element <\texttt{(options)}>>} | \texttt{(options)}
specifies the appearance of the axis labels.

**LABELPOS=**CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

**SPLITCHAR=**"character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=**LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

**VALUEATTRS=**style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

**VALUES=(values-list ) | ("string-list" )**
specifies the values for the ticks on an axis.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

**VALUESFORMAT=**DATA | SAS-format
specifies how to format the values for major tick marks.

**VALUESHINT**
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

**VALUESROTATE=**DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

**Optional Arguments**

**COLORBANDS=**NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>Weight (Sum)</td>
<td>Weight (Sum)</td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

This option applies to discrete axes only.

**Interaction**

Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

**Note**

The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the
midpoint distance, and the last band ends at one-half of the midpoint
distance. When axis offsets are specified, the first and last color bands
on the axis might extend into their adjacent offsets by as much as half
the color-band width.

Tip Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Interaction This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option
affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of
the axis. NONE specifies that none of the features of the axis are displayed. You can
also hide specific features. options can be one or more of the following:

NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips This value hides the axis line, but has no effect on the graph border. To
hide the border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline,
such as bar charts and needle plots, you might need to suppress the
baseline. In the plot statement, use the BASELINEATTRS= option to set
the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)
FITPOLICY=\textit{policy-value} specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

**NONE**

does not split the values.

**ROTATE**

rotates the value text 45 degrees.

\textbf{TIP} Use VALUESROTATE= to specify how the tick values are rotated on the axis.

\textit{Note}: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**ROTATETHIN**

attempts to use ROTATE, and then THIN to fit the values.

\textit{Note}: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**SPLIT**

splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default} The default split character is a space.

\textbf{Tip} You can specify the split character using the SPLITCHAR= option.

**SPLITALWAYS**

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default} The default split character is a space.

\textbf{Restriction} This option has no effect unless the axis is discrete.

\textbf{Tip} You can specify the split character using the SPLITCHAR= option.

**SPLITROTATE**

attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

\textit{Note}: This option has no effect on time axes.

**STAGGER**

shifts the values up and down.

**STAGGERROTATE**

attempts to use STAGGER, and then ROTATE to fit the values.

\textbf{Interaction} When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

**STAGGERTHIN**

attempts to use STAGGER, and then THIN to fit the values.
THIN
removes some of the values from the axis. This is the default for linear and time
axes.

Defaults
SPLITROTATE for discrete axes.

Restriction
THIN for linear and time axes.

See
“Fit Policies for Axes” on page 1314

GRID
creates grid lines at each tick on the axis.

Interaction
Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default
GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=\textit{time-interval}
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:
### Table 7.40  Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

**LABEL=“text-string”**

specifies a label for the axis.

**LABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

**LABELPOS=** CENTER | DATACENTER | LEFT | RIGHT

specifies the position of the axis label.

**CENTER**

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

**DATACENTER**

centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.

**LEFT**

positions the label to the left of the axis area. The label is centered vertically in the axis area.

**RIGHT**

positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

---

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph 1" /></td>
<td><img src="image2.png" alt="Graph 2" /></td>
</tr>
</tbody>
</table>

The next figure shows the LEFT and RIGHT positions for the same axis labels.
**LOGBASE=2 | 10 | e**
specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT**
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

**LOGEXPAND**
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 7.11 on page 1145.

**Figure 7.11 Graph Axes with LOGEXPAND**

**LOGEXPONENT**
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 7.12 on page 1145.

**Figure 7.12 An Axis with LOGEXPONENT**

**LINEAR**
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.
For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 7.13 on page 1146.

**Figure 7.13** An Axis with LINEAR

---

**LOGVTYPE=EXPANDED | EXPONENT**

specifies the scale that is used when interpreting the values in the `VALUES` option and the `MIN` and `MAX` options. This option enables you to choose your preferred way of specifying log-axis values regardless of the `LOGSTYLE=` option value. Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.

---

**Examples**

The following example specifies `MIN=` and `MAX=` as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies `VALUES=` as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

---

**MAX=numeric-value**

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**
This option affects linear, log, and time axes only.

**Interactions**
This option has no effect if you specify the `VALUES=` option and you do not also specify the `VALUESHINT` option.
This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

**Tip**
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

### MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**
This option affects linear, log, and time axes only.

**Interactions**
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

**Tip**
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

### MINOR
adds minor tick marks to a linear, log, or time axis.

**Restriction**
This option has no effect on discrete axes.

**Interaction**
This option has no effect if you specify the VALUES= option.

**Tip**
Use MINORCOUNT= to specify the number of tick marks.

### MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

**Restriction**
This option applies to linear and log axes only.

**Note**
Starting with the second maintenance release for SAS 9.4, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

### MINORGRID
creates grid lines at each minor tick on the axis.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Interaction

This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element<(options)> | (options)

specifies the appearance of the minor grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default

GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction

This option has no effect unless MINORGRID is also specified.

Tip

You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples

MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 7.40 on page 1143.

Default

AUTO

Restriction

This option applies to time axes only.

Note

This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction

This option applies to time axes only.

OFFSETMAX=numeric-value

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

OFFSETMIN=numeric-value

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

RANGES=(start–end <start2–end2 startN–endN ...>)

specifies the ranges for a broken axis.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

start

specifies the start of a range. start can be one of the following:

- a number (linear axis only).
- the keyword MIN specifies the minimum data value.
- a SAS time, date, or date-time constant (time axis only).

end

specifies the end of a range. end can be one of the following:

- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.
As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**

This option is valid for linear and time axes only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**

All of the ranges must be enclosed in parenthesis.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with the third maintenance release of SAS 9.4, when a range is specified, the data label font size is not scaled during label placement.

**Notes**

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

**Tip**

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

**Examples**

```plaintext
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS <=(options)>**

adds tick marks to the axis that is opposite from the specified axis. You can also specify `options`:

**LABEL**

in addition to the tick marks, displays the axis label.

**VALUES**

in addition to the tick marks, displays the values that are represented by the tick marks.
Note  This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR=“character-list”**

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**  Values are not split.

**Restriction**  This option has no effect unless the axis is discrete.

**Interactions**  This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**  “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**  This option has no effect unless SPLITCHAR= is also specified.

**See**  “Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Default**  LEFT
See “Overview of Collision Avoidance” on page 1312

<table>
<thead>
<tr>
<th>THRESHOLDMAX=numeric-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies a threshold for displaying one more tick mark at the high end of the axis.</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Restriction</td>
</tr>
<tr>
<td>Tips</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THRESHOLDMIN=numeric-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies a threshold for displaying one more tick mark at the low end of the axis.</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Restriction</td>
</tr>
<tr>
<td>Tips</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE=DISCRETE</th>
<th>LINEAR</th>
<th>LOG</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the type of axis. Specify one of the following values:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.
LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.
Use the LOGBASE= option to specify the base value.
Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list ) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

• VALUES=(values-list) specifies tick values for linear, time, and logarithmic axes.

• VALUES=(“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)
For values on a linear axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value
specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\( <value \ldots value-n> \) \text{TO} \ value-2 \ BY \ increment-value \ \langle value \ldots value-n\rangle\) creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \text{value-1} and the end of the range is specified by \text{value-2}. The \text{increment-value} specifies the interval between the ticks.

For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at -5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

\text{value} \ ... \ \text{value-n}\)

creates ticks for specific values. For example, VALUES=("25MAY08"d "04JUL08"d "23AUG08"d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\text{value-1} \ \text{TO} \ \text{value-2} \ \text{BY} \ \text{increment-value}\)

creates ticks for a range of values. The start of the value range is specified by \text{value-1} and the end of the range is specified by \text{value-2}. The \text{increment-value} specifies the interval between the ticks. For example, VALUES=("01JAN08"d to "01MAY08"d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions

This option has no effect on discrete axes.

- If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions

For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

- If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

VALUES=(“string-list”)

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.
The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

Table 7.41  Axis with Specified Character Values

```sas
proc sgplot data=sashelp.cars;
 xaxis values=('GMC' 'Honda' 'Hyundai')
 offsetmin=0.2 offsetmax=0.2;
 scatter x=make y=mpg_city;
run;
```

Restrictions  This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes  If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip  Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```sas
values=('Sedan' 'Sports' 'Wagon' 'SUV')
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```sas
values=('10' '20' '30' '40')
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```sas
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')
```

**TIP**  Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**  specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.
Restriction: This option applies only to linear and discrete axes.

Interaction: This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example: The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=(*"14" *"15") valuesdisplay=(*"fourteen" *"fifteen")
```

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note: Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.

DATA uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format specifies a format to apply to the major tick values.

Restriction: This option currently honors most, but not every, SAS format. For more information, see “SAS Formats Not Supported” in SAS Graph Template Language: Reference.

Note: If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Restriction: For discrete axes, only character formats are supported.

Interaction: This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction: This option has no effect unless you also specify the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL specifies how the tick values are rotated on the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.
DIAGONAL  
rotates the tick values to a 45-degree diagonal position.

VERTICAL  
rotates the tick values to a 90-degree vertical position. The values are always drawn from bottom to top.

Default       DIAGONAL

Interactions  This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

---

**XAXISTABLE Statement**

Creates an event plot of input data along the axis, placing data values at specific locations inside or outside of the axis. The SGPLOT procedure can contain multiple XAXISTABLE statements.

**Interactions:** When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with an XAXISTABLE statement, the XAXISTABLE statement is rejected with a message. Axis tables are separate plots and are unaware of the options specified in the accompanying plots. Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

**Syntax**

XAXISTABLE variable <…variable-n> ]<option(s)>;

**Summary of Optional Arguments**

**Appearance options**

ATTRID=character-value  
specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable  
specifies a variable that is used to determine the color of the table values.

DROPONMISSING  
specifies that the entire axis table is dropped when all of the values are missing.

INDENT=dimension[unit]  
specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

INDENTWEIGHT=numeric-variable  
specifies the indentation weight (multiplier) for each observation.

LOCATION=OUTSIDE | INSIDE
specifies whether the axis table is placed outside or inside the axis area.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.

POSITION=BOTTOM | TOP
specifies the position of the axis table at the bottom or top of the graph.

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis table values.

Axis options
X2AXIS
assigns the table to the secondary (top) horizontal axis.

Class options
CLASS=variable
creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Label options
LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden.

LABELATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the axis table label.

LABELPOS=LEFT | RIGHT
specifies the position of the labels at the left or right side of the axis table.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

Plot options
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table.

X=variable
specifies the X variable to use to align the table values to the X or X2 axis.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Title options

TITLE="text-string"
specifies a title for the axis table.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title for the axis table.

Required Argument

variable <…variable-n>
specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are stacked one on the other. Any options that you add to the statement apply to all the variables that are specified in that statement.

Note When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

CLASS=variable
creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction If NOLABEL is also specified, then the class labels are removed.

Tips Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.
Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

STACK
displays the class values vertically at each midpoint value on the X axis.
CLUSTER
displays the class values horizontally at each midpoint value on the X axis.

Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default DATA

Restriction This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

Interaction For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.
**INDENT=dimension<unit>**

Specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The default units for *dimension* are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

<table>
<thead>
<tr>
<th>Default</th>
<th>1/8 inch</th>
</tr>
</thead>
</table>

**Restriction**

Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARAM, VBARPARM, SERIES, or SCATTER.

**Interaction**

The INDENTWEIGHT= option must be specified for this option to have any effect.

**INDENTWEIGHT=numeric-variable**

Specifies the indentation weight (multiplier) for each observation.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**Restriction**

Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPARAM, VBARPARM, SERIES, or SCATTER.

**Interaction**

For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indentation for that observation’s value.

**LABEL | NOLABEL | LABEL="text-string"**

Specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

*Note:* The ability to specify a text string applies to the third maintenance release of SAS 9.4 and to later releases.

**Defaults**

LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

**Tip**

Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

**LABELATTRS=style-element<(options)> | (options)**

Specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.
Defaults

For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Restriction

Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions

This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELPOS=LEFT | RIGHT

specifies the position of the labels at the left or right side of the axis table.

Default  LEFT

LOCATION=OUTSIDE | INSIDE

specifies whether the axis table is placed outside or inside the axis area.

Default  OUTSIDE

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR

suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOMISSINGCLASS

specifies that missing values of the class variable are not included in the table.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Interaction  For this option to have any effect, the CLASS= option must be specified.

PAD=dimension | (pad-options)

specifies the amount of extra space that is added inside the table border.

Note:  This feature applies to the third maintenance release of SAS 9.4 and to later releases.
dimension
specifies a dimension to use for the extra space at the table border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

TOP=dimension
specifies the amount of extra space added to the top.

Default 0 px

BOTTOM=dimension
specifies the amount of extra space added to the bottom.

Default 0 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

POSITION=BOTTOM | TOP
specifies the position of the axis table at the bottom or top of the graph.

Default BOTTOM

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

Interaction This option has no effect unless LOCATION=INSIDE is also specified.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

FREQ
the frequency of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).
PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM the sum of the axis table variable.

Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

STATLABEL forces the statistic to be displayed in the label.

Note This feature applies to the second maintenance release of SAS 9.4 and to later releases.

NOSTATLABEL removes the statistic from the label.

Defaults The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values
must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Interactions** The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP= option is ignored.

- When this option is specified, the COLORGROUP= option is ignored.

**See** “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

**TEXTGROUPID=attribute-map-id**
specifies an attribute ID for the TEXTGROUP= option.

*Note:* This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Default** If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

**See** “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

**TITLE=“text-string”**
specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

**Tip** Use the TITLEATTRS= option to modify the title text attributes.

**TITLEATTRS=style-element <(options)> | (options)**
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying text options. If you specify a style element, you can also specify text options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interactions** This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

**Examples** TITLEATTRS=(Color=Green Family=Ariel Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

**VALUEATTRS=**<sup>style-element</sup> <sup>(options)</sup> | <sup>(options)</sup>

specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData<sub>n</sub> style elements.

**Interaction**
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

**Examples**

```plaintext
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

**X=**<sup>variable</sup>

Specifies the X variable to use to align the table values to the X or X2 axis.

**Default**
X variable of the primary plot

**Interaction**
This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

**X2AXIS**

assigns the table to the secondary (top) horizontal axis.

**Example: XAXISTABLE Statements**

This example shows a table of values along the X axis of a scatter plot that plots student weight.
Here are the noteworthy features:

- The first axis table statement displays the age (in red) of each student above the X axis. The LOCATION=INSIDE option locates the axis table within the plot axes. The ages appear on different rows because the CLASS=AGE option is used.

- The second axis table statement specifies two variables, height and weight, and is located below the X axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;
proc sgplot data=sashelp.class (where=(age < 13));
scatter x=name y=height;
xaxistable age / class=age title="Student Age" location=inside
 valueattrs=(color=red)
 labelattrs=(color=red)
 titleattrs=(color=red);
xaxistable weight height / valueattrs=(color=blue);
run;
```

For an example that shows vertical axis tables, see “Example: YAXISTABLE Statements” on page 1218.

---

**YAXIS Statement**

Specifies the axis options for the Y axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

**Syntax**

```
YAXIS option(s);
```
Summary of Optional Arguments

Appearance options

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the
discrete axis bins.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This
option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=time-interval
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for
logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES
option and the MIN and MAX options.

MAX=numeric-value
specifies the maximum data value to include in the display (the value might
be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might
be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two
rows.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.

RANGES=(start1–end1 start2–end2 startN–endN …>)
specifies the ranges for a broken axis.

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the
axis.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the
axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis
when there is not enough room to draw them normally.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels.

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is
not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list ) | ("string-list")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in
the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed
on the axis.

VALUESHINT
specifies that the minimum and maximum axis values are determined
independently of the values that you specify in the VALUES= option.
**Optional Arguments**

**COLORBANDS=NONE | EVEN | ODD**

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Alice</td>
</tr>
<tr>
<td>Alice</td>
<td>James</td>
</tr>
<tr>
<td>James</td>
<td>Joyce</td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** This option applies to discrete axes only.

**Interaction** Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

**Note** The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

**Tip** Use the COLORBANDATTRS= option to customize the color bands.

**COLORBANDATTRS=style-element <(options)> | (options)**

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

**Interaction** This option has no effect unless COLORBANDS= is also specified.

**DISCRETEORDER=DATA | FORMATTED | UNFORMATTED**

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

**DATA**

places the values in the order in which they appear in the data.

**FORMATTED**

sorts the formatted values in ascending character order.

**UNFORMATTED**

sorts the unformatted values in ascending character order.

**Default** UNFORMATTED
DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of
the axis. NONE specifies that none of the features of the axis are displayed. You can
also hide specific features. options can be one or more of the following:

NOLABEL
  hides the axis label

NOLINE
  hides the axis line

Tips  This value hides the axis line, but has no effect on the graph border. To
      hide the border, specify NOBORDER in the PROC SGPLOT statement.

      This value has no effect on baselines. For plots that support a baseline,
      such as bar charts and needle plots, you might need to suppress the
      baseline. In the plot statement, use the BASELINEATTRS= option to set
      the line thickness to 0.

NOTICKS
  hides the tick marks on the axis

NOVALUES
  hides the tick mark values on the axis

Default  ALL

Example  DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there
is not enough room to draw them normally. Select one of the following values:

NONE
  does not split the values.

SPLIT
  splits the values at the character or characters specified in the SPLITCHAR= option.
  
  No split occurs at split characters that occur where a split is not needed. In that case,
  the split character is displayed with the text value. If the value does not contain any
  of the specified split characters, a split does not occur.

Default  The default split character is a space.

Tip  You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
  always splits the values at the character or characters specified in the
  SPLITCHAR= option. If the value does not contain any of the specified split
  characters, a split does not occur.

Default  The default split character is a space.

Restriction  This option has no effect unless the axis is discrete.

Tip  You can specify the split character using the SPLITCHAR= option.
THIN
removes some of the values from the axis.

Default THIN

See “Fit Policies for Axes” on page 1314

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction This option has no effect unless GRID is also specified.

Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=\(time\)-interval
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

**Default**: AUTO

**LABEL=**"text-string"

specifies a label for the axis.

**LABELATTRS=**style-element <(options)> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**: GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

| LABELATTRS= {Color=Green Family=Arial Size=8 Style=Italic Weight=Bold} |

Here is an example that specifies a style element:

| LABELATTRS= GraphTitleText |

**LABELPOS= BOTTOM | CENTER | DATACENTER | TOP**

specifies the position of the axis label.

**BOTTOM**

positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

**CENTER**

centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

**DATACENTER**

centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

**TOP**

positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.
The next figure shows the TOP and BOTTOM positions for the same axis labels.

**Default** CENTER

**LOGBASE=** 2 | 10 | e

specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=** LINEAR | LOGEXPAND | LOGEXPONENT

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

**LOGEXPAND**

places the tick marks at integer powers of the base. For example, if you specified **LOGBASE=** 2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 7.14 on page 1176.
LOGEXPONENT places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 7.15 on page 1176.

LINEAR places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 7.16 on page 1176.

LOGVTYPE=EXPANDED | EXPONENT specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT the values are interpreted as integer exponents of the base.

Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG.
This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

**Examples**

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=** `numeric-value`

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**

This option affects linear, log, and time axes only.

**Interactions**

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

**Tip**

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

**MIN=** `numeric-value`

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction**

This option affects linear, log, and time axes only.

**Interactions**

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

**Tip**

The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds
and the tick values computed by the plot statement, are used to
determine the axis tick values. To display the MIN= value as the
minimum tick value, use the VALUES= option.

**MINOR**

adds minor tick marks to a linear, log, or time axis.

**Restriction**

This option has no effect on discrete axes.

**Interaction**

This option has no effect if you specify the VALUES= option.

**Tip**

Use MINORCOUNT= to specify the number of tick marks.

**MINORCOUNT=numeric-value**

specifies the number of minor tick marks for the axis. This value determines
the number of minor tick marks for each interval on the axis.

**Restriction**

This option applies to linear and log axes only.

**Note**

Starting with the second maintenance release for SAS 9.4, this option
does not automatically add minor tick marks to the axis. Use the
MINOR option to add tick marks.

**MINORGRID**

creates grid lines at each minor tick on the axis.

**Note:**

This feature applies to the second maintenance release of SAS 9.4 and to later
releases.

**Interaction**

This option has no effect unless GRID is also specified for the axis.

**MINORGRIDATTRS=style-element *(options)* | *(options)*

specifies the appearance of the minor grid lines.

**Note:**

This feature applies to the second maintenance release of SAS 9.4 and to later
releases.

You can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override
specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1320.

**Default**

GraphMinorGridLines style element in the current style for ungrouped
data. GraphData1 ... GraphDataN style elements in the current style for
grouped data.

**Interaction**

This option has no effect unless MINORGRID is also specified.

**Tip**

You can use GRIDATTRS= to change the appearance of the major grid
lines.

**Examples**

MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

MINORGRIDATTRS=GraphAxisLines
MINORINTERVAL=\textit{time-interval}

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select \textit{AUTO}, \textit{SECOND}, \textit{MINUTE}, or \textit{HOUR}.

For information about the intervals that you can select, see Table 7.42 on page 1172.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

\textbf{NOTIMESPLIT}

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

\textbf{OFFSETMAX=numeric-value}

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

\textbf{OFFSETMIN=numeric-value}

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

\textbf{RANGES=(start–end <start2–end2 startN–endN ...>)}

specifies the ranges for a broken axis.

\textit{Note}: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

\textit{start}

specifies the start of a range. \textit{start} can be one of the following:

\begin{itemize}
  \item a number (linear axis only).
\end{itemize}
• the keyword MIN specifies the minimum data value.
• a SAS time, date, or date-time constant (time axis only).

end
specifies the end of a range. end can be one of the following:
• a number (linear axis only).
• the keyword MAX specifies the maximum data value.
• a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

Restrictions  
This option is valid for linear and time axes only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

Requirements  
All of the ranges must be enclosed in parenthesis.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions  
When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.
When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with the third maintenance release of SAS 9.4, when a range is specified, the data label font size is not scaled during label placement.

Notes

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples

```
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS** <=(options)>

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

- **LABEL** in addition to the tick marks, displays the axis label.
- **VALUES** in addition to the tick marks, displays the values that are represented by the tick marks.

Note: This option has no effect if the target axis already contains data.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR="character-list"**

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default: Values are not split.
Restriction
This option has no effect unless the axis is discrete.

Interactions
This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

See
“Overview of Collision Avoidance” on page 1312

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default
0.30

Range
0 to 1

Restriction
This option applies to linear axes only.

Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default
0.30
Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

\[
\text{VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}
\]

Here is an example that specifies a style element:

\[
\text{VALUEATTRS=GraphTitleText}
\]

\[
\text{VALUES=(values-list) | ("string-list")}
\]

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- \[
\text{VALUES=(values-list) specifies tick values for linear, time, and logarithmic}
\]

axes.

- \[
\text{VALUES=("string-list") specifies tick values for discrete axes. The values can}
\]

be character or numeric.

\[
\text{VALUES=(values-list)}
\]

For values on a linear axis, the values list can be one of the following:

\[
\text{value <...value-n>}
\]

creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

\[
\text{value-1 TO value-2 BY increment-value}
\]

creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

\text{Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.}

\[
\text{<value ... value-n>value-1 TO value-2 BY increment-value <value ... value-n>}
\]

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.

For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at -5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

\[
\text{value <...value-n>}
\]

creates ticks for specific values. For example, VALUES=(*25MAY08\d *04JUL08\d *23AUG08\d) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\[
\text{value-1 TO value-2 BY increment-value}
\]

creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=("01JAN08\d to "01MAY08\d by month) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.
For a list of the interval values that you can specify, see the INTERVAL= option.

**Restrictions**

This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

**Interactions**

For logarithmic axes, use the LOGVTYPE option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

**Tip**

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

**VALUES=(“string-list”)**

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

**Table 7.43 Axis with Specified Character Values**

```
proc sgplot data=sashelp.cars;
 xaxis values=("GMC" "Honda" "Hyundai")
 offsetmin=0.2 offsetmax=0.2;
 scatter x=make y=mpg_city;
run;
```

**Restrictions**

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

**Notes**

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.
Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

**Tip**

Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

**Restriction**

This option applies only to linear and discrete axes.

**Interaction**

This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

**Example**

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

**VALUESFORMAT=DATA | SAS-format**

specifies how to format the values for major tick marks.

**Note:** Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.

**DATA**

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**

specifies a format to apply to the major tick values.

**Restriction**

This option currently honors most, but not every, SAS format. For more information, see “SAS Formats Not Supported” in SAS Graph Template Language: Reference.

**Note**

If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not
align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

**Restriction**

For discrete axes, only character formats are supported.

**Interactions**

This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

**VALUESHALIGN=LEFT | CENTER | RIGHT**

specifies the horizontal alignment for all of the tick values that are displayed on the axis.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**Default** RIGHT

Interaction

This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

**VALUESHINT**

specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction

This option has no effect unless you also specify the VALUES= option.

---

**Y2AXIS Statement**

Specifies the axis options for the Y2 axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

**Syntax**

```
Y2AXIS option(s);
```

**Summary of Optional Arguments**

**Appearance options**

```
COLORBANDATTRS=style-element <(options)> | (options)
```

specifies the fill appearance of the color band.

```
COLORBANDS=NONE | EVEN | ODD
```

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.
DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=time-interval
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.

RANGES=(start–end <start2–end2 startN–endN …>)
specifies the ranges for a broken axis.

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

**THRESHOLDMAX=numeric-value**
Specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN=numeric-value**
Specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE=DISCRETE | LINEAR | LOG | TIME**
specifies the type of axis.

**Text options**

**FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN**
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

**LABEL=“text-string”**
specifies a label for the axis.

**LABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the axis labels.

**LABELPOS=BOTTOM | CENTER | DATACENTER | TOP**
specifies the position of the axis label.

**SPLITCHAR=“character-list”**
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the axis tick value labels.

**VALUES=(values-list) | (”string-list”)**
specifies the values for the ticks on an axis.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

**VALUESFORMAT=DATA | SAS-format**
specifies how to format the values for major tick marks.

**VALUESALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

**VALUESHINT**
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

**Optional Arguments**

**COLORBANDS=NONE | EVEN | ODD**
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:
Default  NONE

Restriction  This option applies to discrete axes only.

Interaction  Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note  The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip  Use the COLORBANDATTRS= option to customize the color bands.

**COLORBANDATTRS=**<style-element <(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1321.

Interaction  This option has no effect unless COLORBANDS= is also specified.

**DISCRETEORDER=**DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA  places the values in the order in which they appear in the data.

FORMATTED  sorts the formatted values in ascending character order.

UNFORMATTED  sorts the unformatted values in ascending character order.

Default  UNFORMATTED

**DISPLAY=**ALL | NONE | (options)

specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:

NOLABEL  hides the axis label
NOLINE
   hides the axis line

   **Tips**
   This value hides the axis line, but has no effect on the graph border. To hide the border, specify NOBORDER in the PROC SGPLOT statement.

   This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
   hides the tick marks on the axis

NOVALUES
   hides the tick mark values on the axis

   **Default** ALL

   **Example** DISPLAY=(NOTICKS NOVALUES)

   **FITPOLICY**=NONE | SPLIT | SPLITALWAYS | THIN
   specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:

   **NONE**
   does not split the values.

   **SPLIT**
   splits the values at the character or characters specified in the SPLITCHAR= option.

   No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

   **Default** The default split character is a space.

   **Tip** You can specify the split character using the SPLITCHAR= option.

   **SPLITALWAYS**
   always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

   **Default** The default split character is a space.

   **Restriction** This option has no effect unless the axis is discrete.

   **Tip** You can specify the split character using the SPLITCHAR= option.

   **THIN**
   removes some of the values from the axis.

   **Default** THIN

   **See** “Fit Policies for Axes” on page 1314

   **GRID**
   creates grid lines at each tick on the axis.
Interaction  Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip  You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default  GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction  This option has no effect unless GRID is also specified.

Examples  GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=TIME-INTERVAL
specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.

For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 7.44  Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

**Default**  
AUTO

**LABEL=**"text-string"

specifies a label for the axis.

**LABELATTRS=**style-element <options> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**  
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Examples**  
LABELATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

**LABELPOS=**BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.
BOTTOM
positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

CENTER
centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

TOP
positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the TOP and BOTTOM positions for the same axis labels.
LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.
Default 10
Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 7.17 on page 1195.

Figure 7.17  Graph Axes with LOGEXPAND

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 7.18 on page 1195.

Figure 7.18  An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.
For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 7.19 on page 1196.

**Figure 7.19** An Axis with LINEAR

```
0 40 200 400 600 800 1000 1200
```

**Default** LOGEXPAND

**Interaction** This option has no effect unless you also specify TYPE=LOG.

**LOGVTYPE=EXPANDED | EXPONENT**
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

**EXPANDED**
the values are interpreted as integer powers of the base (decimal numbers).

**EXPONENT**
the values are interpreted as integer exponents of the base.

**Default** EXPANDED

**Interaction** This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

**Tip** This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

**Examples**
The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```
yaxis type=log logbase=10 logstyle=logexpand
 logvtype=exponent
 min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```
xaxis type=log logbase=10 logstyle=logexponent
 logvtype=expanded
 values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

**Restriction** This option affects linear, log, and time axes only.

**Interactions** This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.
This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

\[\text{MIN=numeric-value}\]
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

\[\text{MINORCOUNT=}\text{numeric-value}\]
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
Starting with the second maintenance release for SAS 9.4, this option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.
Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Interaction**

This option has no effect unless GRID is also specified for the axis.

**MINORGRIDATTRS=style-element <(options)> | (options)**

specifies the appearance of the minor grid lines.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**

GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.

**Interaction**

This option has no effect unless MINORGRID is also specified.

**Tip**

You can use GRIDATTRS= to change the appearance of the major grid lines.

**Examples**

```
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)
```

Here is an example that specifies a style element:

```
MINORGRIDATTRS=GraphAxisLines
```

**MINORINTERVAL=time-interval**

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 7.44 on page 1192.

**Default**

AUTO

**Restriction**

This option applies to time axes only.

**Note**

This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**NOTIMESPLIT**

prevents a time axis from splitting the time, date, or datetime values into two rows.

**Restriction**

This option applies to time axes only.

**OFFSETMAX=numeric-value**

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction

For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

OFFSETMIN=numeric-value

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default

The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction

For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

RANGES=(start–end <start2–end2 startN–endN ...>)

specifies the ranges for a broken axis.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

start

specifies the start of a range. start can be one of the following:

  • a number (linear axis only).
  • the keyword MIN specifies the minimum data value.
  • a SAS time, date, or date-time constant (time axis only).

end

specifies the end of a range. end can be one of the following:

  • a number (linear axis only).
  • the keyword MAX specifies the maximum data value.
  • a SAS time, date, or date-time constant (time axis only).
The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph showing ranges not specified" /></td>
<td><img src="image2.png" alt="Graph showing ranges specified" /></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

**Restrictions**

This option is valid for linear and time axes only.

- Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.
- If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.
- When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

**Requirements**

All of the ranges must be enclosed in parenthesis.

- You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

**Interactions**

- When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.
- When this option is specified, the plot statement TIP= and URL= options are ignored.

**Notes**

- When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. Starting with the third maintenance release of SAS 9.4, when a range is specified, the data label font size is not scaled during label placement.
- When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots,
reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

**Tip**
To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

**Examples**
```
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

**REFTICKS <=(options)>**
adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

- **LABEL** in addition to the tick marks, displays the axis label.
- **VALUES** in addition to the tick marks, displays the values that are represented by the tick marks.

**Note** This option has no effect if the target axis already contains data.

**REVERSE** specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR="character-list"**
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default** Values are not split.

**Restriction** This option has no effect unless the axis is discrete.

**Interactions** This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the `SPLITJUSTIFY=` option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**
“Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**
“Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Default** LEFT

**See**
“Overview of Collision Avoidance” on page 1312

**THRESHOLDMAX=numeric-value**
Specifies a threshold for displaying one more tick mark at the high end of the axis.

**Default** 0.30

**Range** 0 to 1

**Restriction** This option applies to linear axes only.

**Tips**
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying `THRESHOLDMIN=0` and `THRESHOLDMAX=0` prevents the tick marks from extending beyond the data range.

Specifying `THRESHOLDMIN=1` and `THRESHOLDMAX=1` ensures that the data range is bounded by tick marks.

For the minimum axis length, set the `THRESHOLDMIN=` option and the `THRESHOLDMAX=` option to 0.

**THRESHOLDMIN=numeric-value**
Specifies a threshold for displaying one more tick mark at the low end of the axis.

**Default** 0.30

**Range** 0 to 1

**Restriction** This option applies to linear axes only.

**Tips**
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

**TYPE=DISCRETE | LINEAR | LOG | TIME**

specifies the type of axis. Specify one of the following values:

**DISCRETE**

specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

*Note:* Starting with the third maintenance release of SAS 9.4, bar charts support a linear category axis.

**LINEAR**

specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

**LOG**

specifies a logarithmic scale for the axis. This axis type is never a default.

**Restriction**

A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

**Interactions**

Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

**TIME**

specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

**VALUEATTRS=style-element <(options)> | (options)**

specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
Examples

\texttt{VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)}

Here is an example that specifies a style element:

\texttt{VALUEATTRS=GraphTitleText}

\texttt{VALUES=(values-list) | ("string-list")}

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- \texttt{VALUES=(values-list)} specifies tick values for linear, time, and logarithmic axes.
- \texttt{VALUES=("string-list")} specifies tick values for discrete axes. The values can be character or numeric.

\texttt{VALUES=(values-list)}

For values on a linear axis, the values list can be one of the following:

\texttt{value \ldots value-n}

creates ticks for specific values. For example, \texttt{VALUES=(0 50 100)} places tick marks at 0, 50, and 100.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=(0 to 100 by 50)} creates tick marks at 0, 50, and 100.

\textit{Note}: If you omit the \texttt{increment-value}, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\texttt{<value \ldots value-n>value-1 TO value-2 BY increment-value <value \ldots value-n>}

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks.

For example, \texttt{VALUES=(-5 10 to 50 by 20 75)} creates tick marks at -5, 10, 30, 50, and 75.

For values on a time axis, the values list can be one of the following:

\texttt{value \ldots value-n}

creates ticks for specific values. For example, \texttt{VALUES=("25MAY08"d
"04JUL08"d "23AUG08"d)} places tick marks at 25May08, 04Jul08, and 23Aug08.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=("01JAN08"d to "01MAY08"d by month)} creates tick marks at 01Jan08, 01Feb08, 01Mar08, 01Apr08, and 01May08.

For a list of the interval values that you can specify, see the \texttt{INTERVAL=} option.

\textbf{Restrictions}

This option has no effect on discrete axes.
If your `VALUES=` option creates more than 1000 values, then the option has no effect.

**Interactions**

For logarithmic axes, use the `LOGVTYPE` option to control whether the values are expanded or interpreted as exponents.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

**Tip**

Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.

**VALUES=(“string-list”)**

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

**Table 7.45 Axis with Specified Character Values**

```plaintext
cproc sgplot data=sashelp.cars;
 xaxis values=("GMC" "Honda" "Hyundai")
 offsetmin=0.2 offsetmax=0.2;
 scatter x=make y=mpg_city;
run;
```

**Restrictions**

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

**Notes**

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

**Tip**

Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.
Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
values=('Sedan' 'Sports' 'Wagon' 'SUV')

The following example specifies the axis tick values 10, 20, 30, and 40:
values=('10' '20' '30' '40')

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

TIP
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction
This option applies only to linear and discrete axes.

Interaction
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note: Starting with the third maintenance release of SAS 9.4, this option supports discrete and logarithmic axes.

DATA
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format
specifies a format to apply to the major tick values.

Restriction
This option currently honors most, but not every, SAS format. For more information, see “SAS Formats Not Supported” in SAS Graph Template Language: Reference.

Note
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.
Restriction  For discrete axes, only character formats are supported.

Interactions  This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Default  LEFT

Interaction  This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction  This option has no effect unless you also specify the VALUES= option.

YAXISTABLE Statement
Creates an event plot of input data along the axis, placing data values at specific locations inside or outside of the axis. The SG PLOT procedure can contain multiple YAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has a VBAR statement along with a YAXISTABLE statement, the YAXISTABLE statement is rejected with a message.

Axis tables are separate plots and are unaware of the options specified in the accompanying plots.

Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

Syntax

YAXISTABLE variable <…variable-n> <option(s)>;
Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
  specifies a variable that is used to determine the color of the table values.

DROPONMISSING
  specifies that the entire axis table is dropped when all of the values are missing.

INDENT=dimension<unit>
  specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

INDENTWEIGHT=numeric-variable
  specifies the indentation weight (multiplier) for each observation.

LOCATION=OUTSIDE | INSIDE
  specifies whether the axis table is placed outside or inside the axis area.

NOMISSINGCHAR
  suppresses the display of the MISSING character (.) for missing numeric values.

PAD=dimension | (pad-options)
  specifies the amount of extra space that is added inside the table border.

POSITION=LEFT | RIGHT
  specifies the position of the axis table at the left or right side of the graph.

SEPARATOR
  creates a separating line between the axis table or axis tables and the plot.

TEXTGROUP=attribute-map-group-variable
  specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
  specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element <(options)> | (options)
  specifies the appearance of the axis table values.

VALUEALIGN=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the axis table values relative to the column width in the table.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
  specifies the justification of the axis table values relative to the column width in the table.

Axis options

Y2AXIS
  assigns the table to the secondary vertical axis.

Class options

CLASS=variable
  creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
  specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the order in which the class values are displayed.
NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Label options

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden.
LABELATTRS=style-element<(options)> | (options)
specifies the color and font attributes of the axis table label.
LABELALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels, when displayed.
LABELJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the labels.
LABELPOS=BOTTOM | TOP
specifies the position of the labels at the bottom or top of the axis table.
STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table.
Y=variable
Specifies the variable to use to align the table values to the Y or Y2 axis.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Title options

TITLE="text-string"
specifies a title for the axis table.
TITLEATTRS=style-element<(options)> | (options)
specifies the appearance of the title for the axis table.
TITLEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column title, when displayed.
TITLEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column title, when displayed.

Required Argument

variable <...variable-n>
specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.

Add a note when the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.
**Optional Arguments**

**ATTRID=**<br>
character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 15, “Using Discrete Attribute Maps,” on page 1387

“Overview of Attribute Maps” on page 1383

**CLASS=**<br>
variable

creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction  The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction  If NOLABEL is also specified, then the class labels are removed.

Tips  Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

**CLASSDISPLAY=**<br>
STACK | CLUSTER

specifies how the class values are displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

STACK  displays the class values horizontally at each midpoint value on the Y axis.

CLUSTER  displays the class values vertically at each midpoint value on the Y axis.

Default  STACK

Interaction  For this option to have any effect, the CLASS= option must be specified.

**CLASSORDER=**<br>
DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the order in which the class values are displayed.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

DATA  displays the class values in the order in which they occur in the data.

REVERSEDATA  displays the class values in the reverse order from which they occur in the data.

Tip  This option is useful when the plot axis is reversed.

ASCENDING  displays the class values in ascending order.
DESCENDING

displays the class values in descending order.

**Default**

DATA

**Restriction**

This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

**Interaction**

For this option to have any effect, the CLASS= option must be specified.

**COLORGROUP=** *variable*

specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData *n* style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

**Interaction**

When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

**Note**

This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

**DROPONMISSING**

specifies that the entire axis table is dropped when all of the values are missing.

**Note:** This feature applies to the second maintenance release of SAS 9.4 and to later releases.

Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

**INDENT=** *dimension*<unit>

specifies a value to be used with the INDENTWEIGHT= option to determine the indention for each text value.

**Note:** This feature applies to the third maintenance release of SAS 9.4 and to later releases.

The default units for *dimension* are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

**Default**

1/8 inch

**Restriction**

Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, HBARPART, VBARPART, SERIES, or SCATTER.

**Interaction**

The INDENTWEIGHT= option must be specified for this option to have any effect.

**INDENTWEIGHT=** *numeric-variable*

specifies the indentation weight (multiplier) for each observation.
Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

Restriction Axis table indentation is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBAR BASIC, VBAR BASIC, HBAR PARM, VBAR PARM, SERIES, or SCATTER.

Interaction For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indentation for that observation's value.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Note: The ability to specify a text string applies to the third maintenance release of SAS 9.4 and to later releases.

Defaults LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

Tip Use the LABELATRIS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATRIS=style-element <(options)> | (options)
specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels, when displayed.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
PDF text
(pad-options)
a space-separated list of one or more of the following name-value-pair options,
enclosed in parentheses:

**LEFT=**\textit{dimension}
specifies the amount of extra space added to the left side.

\textbf{Default} \hspace{1cm} 4 px

**RIGHT=**\textit{dimension}
specifies the amount of extra space added to the right side.

\textbf{Default} \hspace{1cm} 4 px

\textbf{Note} Sides that are not assigned padding are padded with the default amount of
space.

\textbf{Tip} Use \textit{pad-options} to create non-uniform padding.

\textbf{Note} The default units for \textit{dimension} are pixels. If you want to specify values in
other units, then you must specify the desired units with the value. For a list
of measurement units that are supported, see “Units of Measurement” on page 1325.

**POSITION=**\textit{LEFT} | \textit{RIGHT}
specifies the position of the axis table at the left or right side of the graph.

\textbf{Default} \hspace{1cm} \textit{RIGHT}

**SEPARATOR**
creates a separating line between the axis table or axis tables and the plot.

\textbf{Interaction} This option has no effect unless \textit{LOCATION=}INSIDE is also specified.

**STAT=**\textit{FREQ} | \textit{MEAN} | \textit{MEDIAN} | \textit{PERCENT} | \textit{SUM}
specifies the statistic for the axis table. The statistic is applied only to numeric
variables. For non-categorical plots, only the \textit{SUM} and \textit{MEAN} statistics are
available.

Specify one of the following:

**FREQ**
the frequency of the axis table variable.

\textbf{Interaction} For this value to take effect, the graph must use a categorical plot
(bar chart, line chart, or dot plot).

**MEAN**
the mean of the axis table variable.

**MEDIAN**
the median of the axis table variable.

\textbf{Interaction} For this value to take effect, the graph must use a categorical plot
(bar chart, line chart, or dot plot).

**PERCENT**
the percentage of the sum of the axis table variable.
When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

**Alias**
PCT

**Interactions**
For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

**Note**
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**
the sum of the axis table variable.

**Default**
SUM

**Restrictions**
Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

**Interaction**
Any STAT= value specified in the chart has no effect on the axis table statistic.

**STATLABEL | NOSTATLABEL**
specifies whether the variable statistic is displayed in the table’s label.

**STATLABEL**
forces the statistic to be displayed in the label.

**Note**
This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**NOSTATLABEL**
removes the statistic from the label.

**Defaults**
The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

**Interaction**
This option has no effect unless the STAT= option is also specified in the axis table statement.

**TEXTGROUP=attribute-map-group-variable**
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable's values must correspond to the values in the VALUE variable in the attribute map data set.
For more information, see Chapter 15, “Using Discrete Attribute Maps,” on page 1387.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Interactions**

The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP= option is ignored.

When this option is specified, the COLORGROUP= option is ignored.

**See**

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

**TEXTGROUPID=attribute-map-id**

specifies an attribute ID for the TEXTGROUP= option.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

**Default**

If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

**See**

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

**TITLE="text-string"**

specifies a title for the axis table. If the axis table statement specifies more than one variable, the title is displayed for each variable.

**Tip**

Use the TITLEATTRS= option to modify the title text attributes.

**TITLEATTRS=style-element <(options)> | (options)**

specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying text options. If you specify a style element, you can also specify text options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

**Defaults**

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interactions**

This option has no effect unless TITLE= is also specified.

**Examples**

TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

**TITLEALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the column title, when displayed.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEALIGN= option specifies the alignment and also helps avoid clipping.

Default: LEFT

Interaction: This option takes effect only when TITLE= is also specified.

Tip: Use the TITLEJUSTIFY= option to specify justification for the title.

**TITLEJUSTIFY=LEFT | CENTER | RIGHT**
specifies the justification of the column title, when displayed.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEJUSTIFY= option specifies the justification and also helps avoid clipping.

Default: LEFT

Interaction: This option takes effect only when TITLE= is also specified.

Tip: Use the TITLEALIGN= option to specify title alignment.

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1323.

Defaults: GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction: If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples:

```
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
VALUEATTRS=GraphTitleText
```
VALUEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the axis table values relative to the column width in the table.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

This option aligns the text within the column based on the longest string.

Default Uses the effective value of the VALUEJUSTIFY= option.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the axis table values relative to the column width in the table.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

This option horizontally aligns the table values center, left, or right relative to the column width.

Default LEFT for text values or RIGHT for numeric values.

Y=variable
Specifies the variable to use to align the table values to the Y or Y2 axis.

Default Y variable of the primary plot

Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Y2AXIS
assigns the table to the secondary vertical axis.

Example: YAXISTABLE Statements
This example shows a table of values along the Y axis of a scatter plot that plots student weight.
Here are the noteworthy features:

- The first axis table statement displays the age (in red) of each student. The LOCATION=INSIDE option locates the axis table within the plot axes.

- The second axis table statement specifies two variables, height and weight, and is located to the right of the Y axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;
proc sgplot data=sashelp.class (where=(age > 13));
scatter y=name x=height;
yaxistable age / location=inside position=right
 valueattrs=(color=red)
 labelattrs=(color=red);
yaxistable weight height / valueattrs=(color=blue)
 labelattrs=(color=blue);
run;
```

For an example that shows horizontal axis tables, see “Example: XAXISTABLE Statements” on page 1166.

---

**Examples: SG PLOT Procedure**

**Example 1: Grouping a Scatter Plot**

**Features:** SCATTER statement

**Sample library member:** SGPLSCT
This example shows a simple scatter plot with grouped data.

Output

```
proc sgplot data=sashelp.class;
 scatter x=height y=weight / group=sex;
run;
```

**Program Description**

Create the scatter plot. In the SCATTER statement, the GROUP= option groups the data by the SEX variable.

```
proc sgplot data=sashelp.class;
 scatter x=height y=weight / group=sex;
run;
```

---

**Example 2: Clustering a Grouped Scatter Plot**

**Features:**
- SCATTER statement
- GROUPDISPLAY option
- CLUSTERWIDTH option

**Sample library member:** SGPLCLU

**Note:** For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.
This example shows a simple scatter plot with grouped data that is clustered.

Output

![Scatter plot with grouped data clustered](image)

Program

```latex
proc sgplot data=sashelp.revhub2;
scatter x=hub y=revenue /
 group=type groupdisplay=cluster clusterwidth=0.5;
xaxis type=discrete;
run;
```

Program Description

**Create the scatter plot.** In the SCATTER statement, the GROUP= option groups the data by the TYPE variable. The GROUPDISPLAY option specifies that the grouped markers are clustered. The CLUSTERWIDTH option specifies the width of the group clusters.

```latex
proc sgplot data=sashelp.revhub2;
scatter x=hub y=revenue /
 group=type groupdisplay=cluster clusterwidth=0.5;
xaxis type=discrete;
run;
```

Example 3: Plotting Three Series

**Features:** SERIES statement  
**Sample library member:** SGPLSER
Note: For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.

This example shows a series plot with three series on the Y axis.

Output

![Stock Trend Chart]

**Program**

```sas
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2000"d and stock = "IBM"));
title "Stock Trend";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
```

**Program Description**

Specify the data set and the title.

```sas
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2000"d and stock = "IBM"));
title "Stock Trend";
```

Create the series plots.

```sas
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
```
Example 4: Adding Prediction and Confidence Bands to a Regression Plot

**Features:**
- REG statement

**Sample library member:**
- SGPLREG

**Note:** For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a regression plot with prediction and confidence limits.

**Output**

![Regression Plot with Prediction and Confidence Bands](image)

**Program**

```sas
proc sgplot data=sashelp.class;
 reg x=height y=weight / CLM CLI;
run;
```

**Program Description**

**Create the regression plot.** The CLM option adds confidence limits for the mean predicted values. The CLI option adds confidence limits for the individual predicted values.

```sas
proc sgplot data=sashelp.class;
 reg x=height y=weight / CLM CLI;
```
Example 5: Adding a Prediction Ellipse to a Scatter Plot

Features:
- SCATTER statement
- ELLIPSE statement
- KEYLEGEND statement

Sample library member: SGPLELI

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a scatter plot with a prediction ellipse.

Output

```
iris Petal Dimensions
```

```
set the title and create the scatter plot.
```

Program

```sql
proc sgplot data=sashelp.iris;
 title "Iris Petal Dimensions";
 scatter x=petallength y=petalwidth;
 ellipse x=petallength y=petalwidth;
 keylegend / location=inside position=bottomright;
run;
```

Program Description

Set the title and create the scatter plot.
proc sgplot data=sashelp.iris;
title "Iris Petal Dimensions";
scatter x=petallength y=petalwidth;

Create the ellipse.

ellipse x=petallength y=petalwidth;

Position the Legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend at the bottom right.

keylegend / location=inside position=bottomright;
run;

Cancel the title.

title;

Example 6: Creating Lines and Bands from Pre-Computed Data

Features:
- BAND statement
- KEYLEGEND statement
- SCATTER statement
- SERIES statement

Sample library member: SGPLBND

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows how to use pre-computed data to create a scatter plot, fit line, and confidence bands. The data set was created by the REG procedure. This technique is useful for more complex fit models.
**Program**

```sas
proc sgplot data=sashelp.classfit;
 title "Fit and Confidence Band from Precomputed Data";
 band x=height lower=lower upper=upper /
 legendlabel="95% CLI" name="band1";
 band x=height lower=lowermean upper=uppermean /
 fillattrs=GraphConfidence2
 legendlabel="95% CLM" name="band2";
 scatter x=height y=weight;
 series x=height y=predict / lineattrs=GraphPrediction
 legendlabel="Predicted Fit" name="series";
 keylegend "series" "band1" "band2" / location=inside
 position=bottomright;
run;
title;
```

**Program Description**

**Set the title and create the first band plot.** The LEGENDLABEL= option in the BAND statement specifies the label for the band plot in the legend.

```sas
proc sgplot data=sashelp.classfit;
 title "Fit and Confidence Band from Precomputed Data";
 band x=height lower=lower upper=upper /
 legendlabel="95% CLI" name="band1";
```

**Create the second band plot.** The LEGENDLABEL= option specifies the label for the band plot in the legend. The FILLATTRS= option specifies the style element for the fill.

```sas
 band x=height lower=lowermean upper=uppermean /
 fillattrs=GraphConfidence2
 legendlabel="95% CLM" name="band2";
```
band x=height lower=lowermean upper=uppermean /
  fillattrs=GraphConfidence2
  legendlabel="95% CLM" name="band2"
scatter x=height y=weight;
series x=height y=predict / lineattrs=GraphPrediction
  legendlabel="Predicted Fit" name="series";

Create the scatter and series plots. The LINEATTRS= option in the SERIES statement specifies the style attribute for the series plot. The LEGENDLABEL= option in the SERIES statement specifies the legend label for the series plot.

Create a legend for the graph. The quoted strings specify the names of the plots that you want to include in the legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend in the bottom right corner of the graph.

   keylegend "series" "band1" "band2" / location=inside
   position=bottomright;
   run;

Cancel the title.

title;

Example 7: Adding Statistical Limits to a Dot Plot

Features: DOT statement
Sample library member: SGPLDOT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a dot plot with a response variable and statistical limits. Each dot represents the mean for each value of the category variable, and bands represent the standard deviation.
Program

```sas
proc sgplot data=sashelp.class(where=(age<16));
dot age / response=height stat=mean
 limitstat=stddev numstd=1;
run;
```

Program Description

Create the dot plot. The RESPONSE= option specifies the response variable. The
STAT= option specifies that the mean statistic is used to analyze the graph. The
LIMITSTAT= option specifies that the limit statistic is the standard deviation. The
NUMSTD= option specifies that one standard deviation is used.

```sas
proc sgplot data=sashelp.class(where=(age<16));
dot age / response=height stat=mean
 limitstat=stddev numstd=1;
run;
```

Example 8: Combining Histograms with Density Plots

Features: HISTOGRAM statement
          DENSITY statement
          KEYLEGEND statement

Sample library member: SGPLHST

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.
This example shows a histogram combined with two density plots. One density plot uses a normal density estimate and the other density plot uses a kernel density estimate.

Output

```
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution*;
 histogram cholesterol;
 density cholesterol;
 density cholesterol / type=kernel;
 keylegend / location=inside position=topright;
run;
```

Program Description

Set the title, set a label for the X axis, and create the histogram.

```
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution*;
 histogram cholesterol;
```

Create the density plots. The TYPE= option specifies which density equation is used.

```
density cholesterol;
 density cholesterol / type=kernel;
```

Position the Legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend at the top right.

```
keylegend / location=inside position=topright;
run;
```
Example 9: Creating a Horizontal Box Plot

Features:  
- HBOX statement

Sample library member:  
- SGPLBOX

Note:  
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a horizontal box plot.

Output

Program

```sas
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution by Weight Class";
 hbox cholesterol / category=weight_status;
run;
title;
```

Program Description

Create the box plot. The CATEGORY= option specifies the category variable.

```sas
proc sgplot data=sashelp.heart;
 title "Cholesterol Distribution by Weight Class";
 hbox cholesterol / category=weight_status;
run;
```
Example 10: Creating a Bar-Line Chart

**Features:**
- VBAR statement
- VLINE statement

**Sample library member:**
SGPLBAR

**Notes:**
For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.
You can also combine the HBAR and HLINE statements to create a horizontal bar-line chart.

This example creates a bar-line chart.

**Output**

![Bar-Line Chart Illustration](image)

**Program**

```sas
proc sgplot data=sashelp.stocks (where=(date >= "01jan2000"d and date <= "01jan2001"d and stock = "IBM"));
title "Stock Volume vs. Close";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
```
Program Description

**Create the Bar-line Chart.** The Y2AXIS option assigns the line plot to the Y2 axis.

```sas
proc sgplot data=sashelp.stocks (where=(date >= "01jan2000"d
and date <= "01jan2001"d
and stock = "IBM"));

 title "Stock Volume vs. Close";
 vbar date / response=volume;
 vline date / response=close y2axis;
run;
title;
```

Example 11: Creating a High-Low Chart

**Features:** HIGHLOW statement

**Sample library member:** SGPLHILO

**Note:** For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.

This example shows the high, low, and closing stock prices for a company during the year 2005.

**Output**

![Stock High, Low, and Close](image)

**Program**

```sas
 title "Stock High, Low, and Close";
```
proc sgplot data=sashelp.stocks;
  where Date >= '01JAN2005' and stock='IBM';
  highlow x=date high=high low=low
   / close=close;
run;
title;

Program Description

Create the high-low chart. The HIGH, LOW, and CLOSE variables are used in the
HIGHLOW statement. In addition, the plot subsets the data by year and by company.

title "Stock High, Low, and Close";
proc sgplot data=sashelp.stocks;
  where Date >= '01JAN2005' and stock='IBM';
  highlow x=date high=high low=low
   / close=close;
run;
title;

Example 12: Series Plot with Line-Thickness Response and Arrowheads

Features: SERIES statement

Note: For information about the SAS Sample Library, see “About the SASHELP and the
SAS Sample Library” on page 14.

Starting with the third maintenance release of SAS 9.4, you can specify a response
variable to control the thickness of the lines in your grouped series plot. You can also
add arrowheads to one or both ends of your grouped or ungrouped series lines.

This example creates a grouped series plot that shows the monthly closing price for
IBM, Intel, and Microsoft stock in 2001. The mean volume is computed for each stock
and is used to control the thickness of the series line for each stock. The maximum line
width is set to 7px. A barbed arrowhead, scaled to 1.25, is positioned at the end of each
series line. In order to position the arrowheads properly, the data must be sorted in
ascending order by date.
Program

data stocks;
   set sashelp.stocks(where=
      (date between "1jan02"d and "31dec02"d));
   volume = volume / 1000000;
   format date MONNAME3. volume 6.2;
run;

proc means data=stocks noprint;
   by stock notsorted;
   var volume;
   output out=meanvolume(keep=stock meanvolume) mean=meanvolume;
run;

data stocks;
   merge stocks meanvolume;
   by stock;
run;

proc sort data=stocks;
   by date;
run;

title "Stock Trends in 2001";
proc sgplot data=stocks;
   series x=date y=close / group=stock
      thickresp=meanvolume thickmax=7px
      arrowheadpos=end arrowheadshape=barbed
      arrowheadscale=1.25;
run;
title;
Program Description

Extract the 2001 data from SASHELP.STOCKS and convert volume to millions.
```
data stocks;
 set sashelp.stocks(where=(date between "1jan02"d and "31dec02"d));
 volume = volume / 1000000;
 format date MONNAME3. volume 6.2;
run;
```

Compute the average volume for each stock.
```
proc means data=stocks noprint;
 by stock notsorted;
 var volume;
 output out=meanvolume(keep=stock meanvolume) mean=meanvolume;
run;
```

Merge the average volume data with the stock data.
```
data stocks;
 merge stocks meanvolume;
 by stock;
run;
```

Sort the data by date.
```
proc sort data=stocks;
 by date;
run;
```

Create the series plot.
```
title "Stock Trends in 2001";
proc sgplot data=stocks;
 series x=date y=close / group=stock
 thickresp=meanvolume thickmax=7px
 arrowheadpos=end arrowheadshape=barbed
 arrowheadscale=1.25;
run;
title;
```
Chapter 8
SGRENDER Procedure

Overview: SGRENDER Procedure

The SGRENDER procedure produces graphical output from templates that are created with the Graph Template Language (GTL). The templates are referred to as StatGraph templates. The GTL is a comprehensive language for creating statistical graphics, which can be used to create customized layouts and graphs that are beyond the scope of the ODS Graphics procedures. For more information about the GTL, see the SAS Graph Template Language: Reference and the SAS Graph Template Language: User's Guide.

The SGRENDER procedure can also produce graphical output from SAS ODS Graphics Editor files. For more information about the editor, see the SAS ODS Graphics Editor: User's Guide.

Syntax: SGRENDER Procedure

PROC SGRENDER <option(s)>;
   DATTRVAR variable-assignment(s);
   DYNAMIC variable-assignment(s);

Global statements:
BY, FORMAT, LABEL, ODS GRAPHICS, WHERE
PROC SGRENDER Statement

Identifies the data set that contains the plot variables and the StatGraph template. You can also render a graph from a SAS ODS Graphics Editor (SGE) file. The statement also gives you the option to specify the name of the output object and the label for the output object.

**Requirement:** Requires an input data set and a template, or an SGE file.

**Syntax**

PROC SGRENDER TEMPLATE=statgraph-template <option(s)>
PROC SGRENDER SGE=fileref | "file-name" <option(s)>

**Summary of Optional Arguments**

**Render options**

- **DATA=** input-data-set
  - specifies the SAS data set that contains the variables to process.

- **DATTRMAP=** discrete-attr-map-data-set
  - specifies a map data set that contains discrete attribute map descriptions.

- **OBJECT=** object-name
  - specifies a name for the ODS output object.

- **OBJECTLABEL=** "text-string"
  - specifies a description for the output image.

- **SGANNO=** annotation-data-set
  - specifies the name of a SAS data set that contains annotation instructions.

- **SGE=** fileref | "file-name"
  - specifies the SAS ODS Graphics Editor (SGE) file to render.

**Required Argument**

- **TEMPLATE=** statgraph-template
  - specifies a StatGraph template that defines one or more graphs. The SGRENDER procedure applies the StatGraph template to your data to create the output graphs.

**Interaction**

This argument is required except when you use the SGE= option.

**Note**

Specifying a template that is not a StatGraph template is not supported. If you specify a non-StatGraph template, then the SGRENDER procedure might produce unpredictable results.

**Optional Arguments**

- **DATA=** input-data-set
  - specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

- **DATTRMAP=** discrete-attr-map-data-set
  - specifies a map data set that contains discrete attribute map descriptions. The attribute map descriptions are read from the data set and are rendered in the graph output. Use this option when the discrete attribute map is defined in a SAS data set.
rather than in a DISCRETEATTRMAP block in the StatGraph template to be rendered.

**Requirements**

Do either one of the following:
- specify the attribute map ID variable by using the DATTRVAR statement in the SGRENDER procedure.
- specify the attribute map ID variable using the DISCRETEATTRVAR variable in the StatGraph template.

If neither of these requirements is met, the descriptions in the attribute map data set are ignored.

The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

**Interactions**

If both the DATTRVAR and DISCRETEATTRVAR statements are used, then the DISCRETEATTRVAR statement takes precedence.

If the ID value in the data set has the same identifier as an existing DISCRETEATTRMAP statement’s NAME= option in the template, the definition in the template is used.

See

“Defining a Discrete Attribute Map” in *SAS Graph Template Language: Reference*

“Discrete Attribute Map Statements” in *SAS Graph Template Language: Reference*

“Key Concepts for Using Attribute Maps” in *SAS Graph Template Language: Reference*

---

**OBJECT=object-name**

specifies a name for the ODS output object.

**Alias**

NAME=

**Default**

SGRender

**Note**

To specify the filename of the output image, use the IMAGENAME= option in the ODS GRAPHICS statement.

**OBJECTLABEL=text-string**

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGRENDER Procedure”.

**Alias**

DES=, DESCRIPTION=

**SGANNO=annotation-data-set**

specifies the name of a SAS data set that contains annotation instructions. You specify this option only if you are rendering a template that contains one or more ANNOTATE statements. During rendering, when the ANNOTATE statement is
encountered in the template, the annotation instructions are read from the annotation data set and are rendered in the current context in the graph. If the template does not include the ANNOTATE statement, the annotations in the annotation data set are ignored.

See “ANNOTATE Statement” in *SAS Graph Template Language: Reference* “About the GTL Annotation Facility” in *SAS Graph Template Language: Reference*

SGE=fileref | “file-name”

specifies the SAS ODS Graphics Editor (SGE) file to render. Specify a fileref or a filename for the SGE file. This option enables you to render an SGE file to any supported ODS destination. The output type depends on the OUTPUTFMT option of the ODS GRAPHICS statement and the open ODS destination.

When you use this option to render an input SGE file, ODS does not produce an output SGE file even if the SGE=ON option is specified in the ODS statement.

For an example, see “Creating a Graph That Can Be Edited” on page 1377. For information about generating and editing SGE files, see the *SAS ODS Graphics Editor: User's Guide*.

Requirement Although SGE rendering does not require a data set, the SGRENDER procedure requires a data reference. You might need to specify DATA=/_NULL_/ in the SGRENDER procedure if the _LAST_ data set variable has not been set by the SAS system. This typically happens at the beginning of a SAS session, before the creation of a data set.

---

**DATTRVAR Statement**

Specifies one or more input variables to be associated with an attribute map at run time.

**Interactions:** This statement is used in conjunction with the DATTRMAP= option in the PROC SGRENDER statement to associate a discrete attribute map with the StatGraph template.

If the template that is specified in the SGRENDER statement's TEMPLATE= option uses a DISCRETEATTRVAR statement, the DISCRETEATTRVAR statement takes precedence over the DATTRVAR statement.

**Note:** You can specify multiple instances of this statement in the SGRENDER procedure. The variable-assignment(s) pairs from all of the DATTRVAR statements are accumulated.

**Syntax**

**DATTRVAR** variable-assignment(s);

**Required Argument**

**variable-assignment(s)** specifies the values for one or more variables. When multiple variable assignments are specified, separate each with a space.
Each variable assignment takes the following form:

```
group-variable-name="attrid"
```

**group-variable-name**

group variable to be associated with an attribute map at run time. The variable must exist in the data set that you specify with the DATA= option in the PROC SGRENDER statement.

The variable can be character or numeric, but the values must match the type of values that are specified in the attribute map. For numeric variables, all values are treated as discrete values.

**"attrid"**

an identifier for the attribute map. The attrid value must exist in the attribute map data set. This value must be a quoted string.

**Note** If a group-variable-name is not found or is of the wrong type for the attribute map, the group-variable-name="attrid" pair is ignored.

---

**Details**

The StatGraph template does not need to reference the discrete attribute map. Instead, the SGRENDER procedure statement associates the template with the attribute map.

The SGRENDER procedure does the following:

- specifies the name of the attribute map data set using the DATTRMAP= option
- in the DATTRVAR statement, associates the group variable with the attribute map ID

**Example**

This example shows how to associate a StatGraph template with a discrete attribute map that is specified in a SAS data set.

In this example, the SGRENDER procedure does the following:

- specifies the name of the attribute map data set using DATTRMAP=MYATTRMAP
associates the group variable (SEX) with the attribute map ID (MYID) in the DATTRVAR statement

```plaintext
/* Create the attribute map data set */
data myAttrMap;
 length markersymbol $13;
 retain ID "myid";
 input value $ markersymbol $ markercolor $;
datalines;
F DiamondFilled blue
M CircleFilled red
;
run;

/* Create a StatGraph template, and specify a group variable for the plot */
proc template;
define statgraph noattrmap;
begingraph;
 layout overlay;
 scatterplot x=height y=weight / name="scatter"
 group=sex;
 discretelegend "scatter";
 endlayout;
endgraph;
end;

/* Render the graph */
proc sgrender data=sashelp.class template=noattrmap dattrmap=myAttrMap;
dattrvar sex="myid";
run;
```

### DYNAMIC Statement

Defines the values for dynamic variables in your StatGraph template code.

**See:** “Example 2: Defining Dynamic Variables” on page 1245

#### Syntax

```
DYNAMIC variable-assignment(s);
```

#### Required Argument

**variable-assignment(s)**

specifies the values for one or more dynamic variables. The variables that you assign must also be declared in a DYNAMIC statement within the StatGraph template.

You can specify either a numeric value or a quoted text string. For example, the following statement defines one string variable and one numeric variable:

```
dynamic region="Europe" limit=3000;
```
Details

Description
The DYNAMIC statement defines values for dynamic variables that are used in your StatGraph template.

You can either specify variables on multiple DYNAMIC statements, or specify all of your variables on a single DYNAMIC statement.

Note: If your template uses a dynamic variable to specify a required attribute, such as a variable name, and the name is misspelled or not provided in the SGRENDER procedure, then a warning is issued and the respective plot statement drops out of the final graph. A graph is produced, but it might be a blank graph, or it might show the results of all statements except those that are in error.

Special Dynamic Variables
Some special dynamic variables can be declared and referenced in a StatGraph template and do not need to be assigned in the DYNAMIC statement of the SGRENDER procedure. The following table describes those dynamic variables.

Table 8.1 Special Dynamic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>LIBNAME</em></td>
<td>Represents the name of the library that contains the data set.</td>
</tr>
<tr>
<td><em>MEMNAME</em></td>
<td>Represents the name of the library member that contains the data set.</td>
</tr>
<tr>
<td><em>BYLINE</em></td>
<td>Represents the complete BY line, when you specify a BY statement.</td>
</tr>
<tr>
<td><em>BYFOOTNOTE</em></td>
<td>When the BYLINE=FOOTNOTE option is specified in the ODS Graphics statement, the BY line information is set in this dynamic. Typically, you use this dynamic with the ENTRYFOOTNOTE statement in your template.</td>
</tr>
<tr>
<td><em>BYTITLE</em></td>
<td>When the BYLINE=TITLE option is specified in the ODS Graphics statement, the BY line information is set in this dynamic. Typically, you use this dynamic with the ENTRYTITLE statement in your template.</td>
</tr>
<tr>
<td><em>BYVAR</em></td>
<td>Represents the name of the first BY variable, when you specify a BY statement.</td>
</tr>
<tr>
<td><em>BYVARn</em></td>
<td>Represents the name of the nth BY variable, when you specify a BY statement with multiple variables.</td>
</tr>
<tr>
<td><em>BYVAL</em></td>
<td>Represents the first BY value, when you specify a BY statement.</td>
</tr>
</tbody>
</table>
_BYVALn_ Represents the value of the nth BY variable, when you specify a BY statement with multiple variables.

Examples: SGRENDER Procedure

Example 1: Generating a Graph from a Simple GTL Template

Features: GTL template
Sample library member: SGRENDR

Note: For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.

This example creates a simple StatGraph template by using Graph Template Language and then generates a graph from the template by using the SGRENDER procedure.

Output

![Graph Output](image)

Program

```sas
proc template;
 define statgraph surface;
 begingraph;
 layout overlay3d;
 surfaceplotparm x=height y=weight z=density;
 endgraph;
end;
```
**Program Description**

Create the Statgraph Template.

```sas
proc template;
 define statgraph surface;
 begingraph;
 layout overlay3d;
 surfaceplotparm x=height y=weight z=density;
 endlayout;
 endgraph;
end;
run;
```

Generate the graphics output from the template.

```sas
proc sgrender data=sashelp.gridded template=surface;
run;
```

---

**Example 2: Defining Dynamic Variables**

**Features:** DYNAMIC Statement

**Sample library member:** SGREND1

**Note:** For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example uses dynamic variables to set values within the StatGraph template. By using dynamic variables to set the variable names, variable labels, and other parameters, the StatGraph template can be used with different data sets.

The first PROC SGRENDER statement generates a graph for the SASHHELP.HEART data set.

The second PROC SGRENDER statement generates multiple graphs for the CARS data set by using BY grouping.
Program Template and Heart Data

```
proc template;
 define statgraph distribution;
 dynamic VAR VARLABEL TITLE NORMAL _BYLINE_;
 begingraph;
 entrytitle TITLE;
 entrytitle _BYLINE_;
 layout lattice / columns=1 rows=2 rowgutter=2px
 rowweights=(.9 .1) columndatarange=union;
 columnaxes;
 columnaxis / label=VARLABEL;
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.035);
 layout gridded / columns=2 border=true autoalign=(topleft topright);
 entry halign=left "Nobs";
 entry halign=left eval(strip(put(n(VAR),8.)));)
 entry halign=left "Mean";
 entry halign=left eval(strip(put(mean(VAR),8.2)));)
 entry halign=left "StdDev";
 entry halign=left eval(strip(put(stddev(VAR),8.3)));)
 endlayout;
 histogram VAR / scale=percent;
 if (exists(NORMAL))
 densityplot VAR / normal();
 endif;
 fringeplot VAR / datatransparency=.7;
 endlayout;
 boxplot y=VAR / orient=horizontal;
 endlayout;
 endgraph;
 end;
run;
```
Example 2: Defining Dynamic Variables

Generate the first graphics output from the template using the SASHELP.HEART data set. The DYNAMIC statement defines dynamic variables in the template.

```sas
proc sgrender data=sashelp.heart template=distribution;
 dynamic var="cholesterol" varlabel="Cholesterol (LDL)" normal="yes"
 title="Framingham Heart Study";
run;
title;
```
Output with Grouped Cars Data

**Program for Grouped Cars Data**

```sas
proc sort data=sashelp.cars out=cars;
 by origin;
run;

proc sgrender data=cars template=distribution;
 by origin;
 dynamic var="weight" varlabel="Weight in LBS"
 title="Distribution of Vehicle Weight";
run;
title;
```

**Program Description**

**Sort the SASHELP.CARS data set.** The data set must be sorted by the same variable that the following PROC SGRENDER block uses in its BY statement.

```sas
proc sort data=sashelp.cars out=cars;
 by origin;
run;
```

**Generate the second graphics output from the template using the WORK.CARS data set.** The BY statement generates multiple graphs for each value of the BY variable. The DYNAMIC statement defines dynamic variables in the template.

```sas
proc sgrender data=cars template=distribution;
 by origin;
 dynamic var="weight" varlabel="Weight in LBS"
 title="Distribution of Vehicle Weight";
run;
title;
```
### Overview: SGSCATTER Procedure

The SGSCATTER procedure creates a paneled graph of scatter plots for multiple combinations of variables, depending on the plot statement that you use. You can use options to overlay fit plots and ellipses on your scatter plots.
Here are examples of some types of graphs that the SGSCATTER procedure can create.

**Table 9.1 Examples of Graphs That Can Be Generated by the SGSCATTER Procedure**

The following code creates a paneled graph of scatter plots:

```plaintext
proc sgscatter data=sashelp.cars;
plot mpg_highway*weight msrp*horsepower
 / group=type;
run;
```

The following code creates a paneled graph of scatter plots with shared axes:

```plaintext
proc sgscatter data=sashelp.cars;
compare y=mpg_highway
 x=(weight enginesize horsepower)
 / group=type;
run;
```

The following code creates a scatter plot matrix with prediction ellipses and a diagonal with histograms and density plots:

```plaintext
proc sgscatter data=sashelp.iris
 (where=(species eq "Virginica");
matrix petallength petalwidth sepallength
 / ellipse=(type=mean)
 diagonal=(histogram kernel);
run;
```

**Note:** The graphs that you create with the SGSCATTER procedure can have many individual graph cells. As the number of cells increases, the overall graph size does not automatically increase. To increase the graph size, use the HEIGHT= and WIDTH= options of the ODS GRAPHICS statement.
Statements for Creating Panels

About Creating Panels
The SGSCATTER procedure contains three statements that you can use to create a paneled graph of scatter plots:

- PLOT
- COMPARE
- MATRIX

Each of the statements is specialized for creating a different type of paneled graph.

PLOT Statement
The PLOT statement is used to create a paneled graph of scatter plots where each graph cell has its own independent set of axes. Each variable pair that you specify in the PLOT statement creates an independent graph cell. You can also overlay fit plots and ellipses on each cell by using options.

For example, Figure 9.1 on page 1251 shows a graph that contains two independent cells. Each cell contains a scatter plot and a loess curve.

Figure 9.1  Example Graph from the PLOT Statement

By default, the axis ranges of each cell are independent from the other cells. However, you can use the UNISCALE= option to specify that all of the cells use the same axis ranges for the X axis, the Y axis, or both axes.
Note: It is possible to create a single scatter cell with the PLOT statement, but the SGPLOT procedure is better suited to creating a single-celled graph.

**COMPARE Statement**
The COMPARE statement is used to create a shared axis panel, also called an MxN matrix. The list of X and Y variables are crossed to create each cell in the graph. All cells in a row share the same row axis range. All cells in a column share the same column axis range.

When using the COMPARE statement, you can add fit plots and confidence ellipses to each cell in the panel by using options.

The COMPARE statement can also be used to do simple X or Y axis sharing by specifying only one X or Y variable, as in the following example:

**Figure 9.2  Example Graph from the COMPARE Statement**

![Example Graph from the COMPARE Statement](image)

**MATRIX Statement**
The MATRIX statement is used to create a scatter plot matrix. Each of the variables that you specify are graphed against each other to create the graph. You can use the ELLIPSE option to overlay a confidence ellipse on each cell in the panel.

The MATRIX statement also has an option called DIAGONAL= that enables you to display the distribution of your variables in the diagonal cells of the matrix. You can place histograms in the diagonal cells, and overlay those histograms with normal density curves or kernel density estimates.
For example, the following example shows a graph with histograms and normal density curves in the diagonal cells.

**Figure 9.3  Example Graph from the MATRIX Statement**

---

**Legends in the SGSCATTER Procedure**

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend.

For all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

You can also generate a continuous color legend, which maps the data range of a response variable to a range of colors. For more information, see “Using Gradient Color Legends” on page 1310.

---

**Syntax: SGSCATTER Procedure**

**Requirement:** One COMPARE, MATRIX, or PLOT statement is required.

**Global statements:** BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE
**PROC SGSCATTER** <options>;

**COMPARE**

X=variable | (variable-1 ... variable-n)
Y=variable | (variable-1 ... variable-n) <options>;

**MATRIX**

variable-1 variable-2 < ... variable-n > <options>;

**PLOT**

plot-request(s) <options>;

---

**PROC SGSCATTER Statement**

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description and write template code to a file.

**Requirement:** An input data set is required.

---

**Syntax**

PROC SGSCATTER <options>;

**Summary of Optional Arguments**

**BACKCOLOR=color**

specifies the background color of the graph area.

**DATA=input-data-set**

specifies the SAS data set that contains the variables to process.

**DATACOLORS=(color-list)**

specifies the fill colors for the graphics elements, such as CLM bands and filled markers.

**DATACONTRASTCOLORS=(color-list)**

specifies the contrast colors for the graphics elements, such as lines and markers.

**DATALINEPATTERNS=(line-pattern-list)**

specifies the list of line patterns for the graph data lines.

**DATASYMBOLS=(marker-symbol-list)**

specifies the list of marker symbol for the graph data.

**DATATTRMAP=discrete-attribute-map-data-set**

specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure.

**DESCRIPTION="text-string"**

specifies a description for the output image.

**NOSUBPIXEL | SUBPIXEL**

specifies whether subpixel rendering should be used for rendering curved lines.

**OPAQUE | NOOPAQUE**

specifies whether the graph background is opaque or transparent.

**PAD=dimension<units> | (pad-options)**

specifies the amount of extra space that is reserved inside the border of an annotated graph.

**RATTRMAP=range-attribute-map-data-set**

specifies the range attribute map data set that you want to use with the procedure.

**SGANNO=annotation-data-set**
specifies the SG annotation data set that you want to use.

`TMPLOUT="filename"`

specifies a file destination for the template code that is generated by the SGSCATTER procedure.

`WALLCOLOR=color`

specifies the color of the plot wall area.

**Optional Arguments**

**BACKCOLOR=color**

specifies the background color of the graph area.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**Default**

The Color attribute of the GraphBackground style element

**Examples**

```
backcolor=CXFF0000
```

```
backcolor=light_blue
```

**DATA=input-data-set**

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

**DATACOLORS=(color-list)**

specifies the fill colors for the graphics elements, such as CLM bands and filled markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**Default**

The colors that are defined in the GraphData1 ... GraphData$n style elements in the current style are used.

**Requirements**

The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

**Note**

When this option is specified, the colors cycle through `color-list` rather than the line patterns that are defined in the GraphData1 ... GraphData$n style elements. When the colors in `color-list` are exhausted, the colors repeat.

**Example**

```
datacolors=(CXFF0000 green blue)
```

**DATACONTRASTCOLORS=(color-list)**

specifies the contrast colors for the graphics elements, such as lines and markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**Default**

The colors that are defined in the GraphData1 ... GraphData$n style elements in the current style are used.
Requirements
The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction
Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

Note
When this option is specified, the colors cycle through color-list rather than the colors that are defined in the GraphData1 ... GraphDataN style elements. When the colors in color-list are exhausted, the colors repeat.

Example
datacontrastcolors=(orange cyan #FF0000)

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default
The line patterns that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

Requirements
The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction
Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

Note
When this option is specified, the line patterns cycle through line-pattern-list rather than the line patterns that are defined in the GraphData1 ... GraphDataN style elements. When the patterns in line-pattern-list are exhausted, the patterns repeat.

Example
datalinepatterns=(dot solid longdash 26)

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See Figure 11.2 on page 1323.

Default
The line patterns that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

Requirements
The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the GROUP= option.

Interaction
Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.
Note

When this option is specified, the symbols cycle through marker-symbol-list rather than the line patterns that are defined in the GraphData1 ... GraphDataN style elements. When the patterns in marker-symbol-list are exhausted, the patterns repeat.

Example
datasymbols=(circle square triangle star)

DATTRMAP=

specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Requirement

The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See

Chapter 15, “Using Discrete Attribute Maps,” on page 1387
“Overview of Attribute Maps” on page 1383

DESCRIPTION="text-string"

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGSCATTER Procedure”.

Alias DES

Notes

You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering curved lines. Subpixel rendering produces smoother curves.

NOSUBPIXEL

never uses subpixel rendering for rendering curved lines.

SUBPIXEL

always uses subpixel rendering, when applicable, for rendering curved lines.

Defaults

When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Starting with the third maintenance release of SAS 9.4, subpixel rendering is always enabled for vector-graphics output.

Restriction

When this option is in effect, only the line-based plots use subpixel rendering. The affected plots are ELLIPSE, LOESS, REG, and PBSPLINE.
### Requirement
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the `ANTIALIAS=ON` option in the ODS GRAPHICS statement.

### Interaction
Starting with the third maintenance release of SAS 9.4, if the `SUBPIXEL` option is explicitly set in the ODS GRAPHICS statement, that setting is used.

### Tip
For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the `ANTIALIASMAX=` option in the ODS GRAPHICS statement.

### See
“Subpixel Rendering” on page 1346


### OPAQUE | NOOPAQUE
specifies whether the graph background is opaque or transparent.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

**Default**
OPAQUE

**Restriction**
The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an `OUTPUTFMT=` override to an image format, including PNG).

**Interaction**
When NOOPAQUE is specified, the background color is not used.

### PAD=`dimension<units>` | (pad-options)
specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

*pad-options* can be one or more of the following:

- **LEFT=`dimension<units>`**
  - specifies the amount of extra space to add to the left edge.

- **RIGHT=`dimension<units>`**
  - specifies the amount of extra space to add to the right edge.
TOP= dimension<units>
specifies the amount of extra space to add to the top edge.

BOTTOM= dimension<units>
specifies the amount of extra space to add to the bottom edge.

RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Requirement The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See Chapter 16, “Using Range Attribute Maps,” on page 1403
“Overview of Attribute Maps” on page 1383

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 17, “Annotating ODS Graphics,” on page 1415.

TMPLOUT=filename
specifies a file destination for the template code that is generated by the SGSCATTER procedure.

WALLCOLOR=color
specifies the color of the plot wall area.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default The Color attribute of the GraphWalls style element

Examples

wallcolor=CXFF0000

wallcolor=light_blue

COMPARE Statement
Creates a comparative panel of scatter plots with shared axes.

Examples: “Example 3: Creating a Simple Comparative Panel” on page 1302
“Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses” on page 1303

Syntax

COMPARE X=variable | (variable-1 … variable-n)
Y=variable | (variable-1 …variable-n) <options>;


Summary of Optional Arguments

Appearance options

ATTRID=variable
specifies the value of the ID variable in an attribute map data set.

GRID
creates grid lines for each tick on both axes.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on both axes.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

NOWALL
turns off the display of the graph wall’s fill and outline.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

SPACING =n
specifies the amount of spacing (in pixels) that is placed between the cells in the graph.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components.

Axis options

REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of the graph.

Data tip options

TIP=(variable-list)
displays data tips using the data obtained from the specified variables.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

GROUP= variable
specifies a classification variable to divide the values into groups.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Legend options

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a continuous color legend.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used.

NOLEGEND
removes the legend from the plot.

Marker options

FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.

JITTER
 specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ELLIPSE <=(options)>
 Adds a confidence or prediction ellipse to the scatter plot.

JOIN <=(options)>
specifies that line segments join all of the scatter points.

LOESS <=(options)>
 Adds a loess fit to the scatter plot.

PBSPLINE <=(options)>
 adds a fitted, penalized B-spline curve to the scatter plot.

REG <=(options)>
 adds a regression fit to the scatter plot.

Required Arguments

X=variable | (variable-1) ... (variable-n)
specifies one or more variables for the X axis. To specify more than one variable, enclose the list of variables in parentheses.
Y=variable | (variable-1) ... (variable-n)  
specifies the one or more variables for the Y axis. To specify more than one variable,  
enclose the list of variables in parentheses.

Optional Arguments

ATTRID=variable  
specifies the value of the ID variable in an attribute map data set. You specify this  
option only if you are using an attribute map to control visual attributes of the graph.  
For more information, see Chapter 14, “Using Attribute Maps to Control Visual  
Attributes,” on page 1383.

COLORMODEL=style-element | (color-list)  
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element  
specifies the name of a style element. The style element should contain these  
style attributes:

  STARTCOLOR  
  specifies the color for the smallest data value of the  
  COLORRESPONSE= column.

  NEUTRALCOLOR  
  specifies the color for the midpoint of the range of the  
  COLORRESPONSE= column. This attribute is not  
  required when you specify a two-color ramp model.

  ENDCOLOR  
  specifies the color for the highest data value of the  
  COLORRESPONSE= column.

Example  
  colormodel=TwoColorRamp

(color-list)  
specifies a space-separated list of colors to use in the color ramp. You can use  
style attribute references such as GraphData3:Color, color names, or RGB,  
CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can  
contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For  
more information, see “Color-Naming Schemes” on page 1325.

Requirement  
The list of colors must be enclosed in parentheses.

Example  
  colormodel=(blue yellow green)

Default  
The ThreeColorAltRamp style element

Interaction  
For this option to take effect, the COLORRESPONSE= option must  
also be specified.

COLORRESPONSE=numeric-column  
specifies the numeric column that is used to map colors to a continuous color legend.

Interactions  
If the GROUP= option is also specified, then the GROUP= option is  
ignored.

The GRADLEGEND= option controls the title, position, and border of  
the legend. If you want only the colors and not the legend, then you  
can specify NOGRADLEGEND.
This option is ignored when the JOIN option is also specified.

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “Using Gradient Color Legends” on page 1310

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, the value of the Y variable is used for the data label.

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
<th>CENTER</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>TOP</th>
<th>TOPLEFT</th>
<th>TOPRIGHT</th>
</tr>
</thead>
</table>

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

This option does not support the splitting or rotation of data labels.

ELLIPSE <=(options)>
Adds a confidence or prediction ellipse to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value
specifies the confidence level for the ellipse. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

CLIP
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

TYPE=MEAN | PREDICTED
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.
Restriction
To use this option, all of the X and Y variables must be numeric.

Interaction
The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

Tip
If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the COMPARE statement to make the markers more transparent.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

options can be one or more of the following:

BORDER
adds a border around the legend.

INTEGER
specifies that integers are used for the gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOTITLE
removes the default title. The default title is the name of the response variable.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT

TITLE="text-string"
specifies the label for the legend.

Default If you do not specify this option, the name of the response variable is displayed as the title.

Interaction This option has no effect unless the COLORRESPONSE= option is also specified.
Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

GRID
creates grid lines for each tick on both axes.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default  GraphGridLines style element in the current style for ungrouped data.  GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction  This option has no effect unless GRID is also specified.

Examples  GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

GROUP= variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Image" /></td>
<td><img src="image2.png" alt="JITTER Specified Image" /></td>
</tr>
</tbody>
</table>
Markers that represent the same response value are overlaid, which results in some markers being obscured.

This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**JOIN <=(options)>**

specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.

You can specify the following options:

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**SMOOTHCONNECT**

specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default Series" /></td>
<td><img src="image2" alt="SMOOTHCONNECT Specified" /></td>
</tr>
</tbody>
</table>

**LEGEND=(options)**

specifies the appearance of the legend for the scatter plot. *options* can be one or more of the following:

**ACROSS=n**

specifies the number of columns in the legend.

**AUTOITEMSIZE**

specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.
The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Legend Example" /></td>
<td><img src="image2" alt="Legend Example (AUTOITEMSIZE)" /></td>
</tr>
</tbody>
</table>

**DOWN=n**
specifies the number of rows in the legend.

**Interaction** If you specify both the ACROSS= and DOWN= suboptions, then the DOWN= suboption has no effect.

**NOBORDER**
removes the border from the legend.

**NOTITLE**
removes the label from the legend.

**POSITION=position-value**
specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
  places the legend at the bottom of the graph.

- **LEFT**
  places the legend at the left side of the graph.

- **RIGHT**
  places the legend at the right side of the graph.

- **TOP**
  places the legend at the top of the graph.

**Default** BOTTOM

**Note** If you specify more than one legend with the same position, then all of your legends are placed at that position.

**SORTORDER=ASCENDING | DESCENDING**
specifies the sort order to use for the legend entry labels.

**Note**: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**TITLE="text-string"**
specifies the label for the legend. By default, the label of the group variable is used.

**LOESS <=(options)>**
Adds a loess fit to the scatter plot. You can specify the following options:

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

**Default** .05
Interaction  This option has no effect if you do not specify the CLM option.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default  1

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default  CUBIC

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default  GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NOGROUP
specifies that the fit does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify a value, the value is determined automatically.

Restriction  To use this option, all of the X and Y variables must be numeric.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default  GraphData\textsubscript{Default} style element in the current style for ungrouped data.
GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.
Default  ContrastColor attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

\textbf{Interactions} \noindent This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

\begin{itemize}
  \item This option overrides any color that is specified with the MARKERATTRS= option.
\end{itemize}

\textbf{Tip} \noindent You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

\textbf{See} \noindent For usage information and an example, see “Marker Fills and Outlines” on page 1315.

\begin{verbatim}
MARKEROUTLINEATTRS=style-element <(options)> | (options)
\end{verbatim}

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

\begin{itemize}
  \item line color
  \item line thickness
\end{itemize}

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

\textbf{Default} \noindent GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The effective attributes are ContrastColor and LineThickness.

\textbf{Interaction} \noindent This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

\textbf{Tip} \noindent You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

\textbf{See} \noindent For usage information and an example, see “Marker Fills and Outlines” on page 1315.

\begin{verbatim}
MINORGRID
\end{verbatim}

creates grid lines at each minor tick on both axes.

\textbf{Note:} \noindent This feature applies to the second maintenance release of SAS 9.4 and to later releases.

\textbf{Interaction} \noindent This option has no effect unless GRID is also specified for the axis.

\begin{verbatim}
MINORGRIDATTRS=style-element <(options)> | (options)
\end{verbatim}

specifies the appearance of the minor grid lines.

\textbf{Note:} \noindent This feature applies to the second maintenance release of SAS 9.4 and to later releases.
You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

**Interaction**
This option has no effect unless MINORGRID is also specified.

**Tip**
You can use GRIDATTRS= to change the appearance of the major grid lines.

**Examples**
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

**NOGRADLEGEND**
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

**NOLEGEND**
removes the legend from the plot.

**NOWALL**
turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

**PBSPLINE <=(options)>**
adds a fitted, penalized B-spline curve to the scatter plot. options can be one or more of the following:

**ALPHA=numeric-value**
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

**Default** .05

**Interaction**
This option has no effect if you do not specify either the CLI option or the CLM option.

**CLI**
creates confidence limits for individual predicted values for each observation.

**CLM**
creates confidence limits for a mean predicted value for each observation.

**DEGREE=n**
specifies the degree of the spline transformation.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the curve line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default: GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor,LineStyle, and LineThickness.

NKNOTS=n
specifies the number of evenly spaced internal knots.

Default: 100

NOGROUP
specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify this option, then a smoothing value is determined automatically.

Restriction: To use this option, all of the X and Y variables must be numeric.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of the graph. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

REG <=(options)>
adds a regression fit to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default: .05
Interaction

This option has no effect if you do not specify either the CLI option or the CLM option.

CLI

creates confidence limits for individual predicted values for each observation.

CLM

creates confidence limits for a mean predicted value for each observation.

DEGREE=n

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NOGROUP

specifies that the fit does not use the group variable from the scatter plot.

Restriction To use this option, all of the X and Y variables must be numeric.

SPACING =n

specifies the amount of spacing (in pixels) that is placed between the cells in the graph.

Default 0

SPLITCHAR="character-list”

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.
Interactions
This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Overview of Collision Avoidance” on page 1312

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1312

TIP=(variable-list)
displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Note
The option affects only the scatter plot in this statement.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
```
tip=(age weight)
```

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL option to assign labels to the list of variables.

See: SAS Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=numeric-value

specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

MATRIX Statement

Creates a scatter plot matrix.

Example: “Example 1: Creating a Scatter Plot Matrix” on page 1299

Syntax

MATRIX numeric-variable-1 numeric-variable-2 < … numeric-variable-n> <options>;

Summary of Optional Arguments

Appearance options

ATTRID=variable
specifies the value of the ID variable in an attribute map data set.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components.

Data tip options

TIP=(variable-list)
displays data tips using the data obtained from the specified variables.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a classification variable to divide the values into groups.

Label options

DATALABEL=variable
specifies a variable that is used to create data labels for each point in the plot.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a continuous color legend.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used.
NOLEGEND
removes the legend from the graph.

Marker options

**MARKERATTRS=**\(<\text{style-element} \ <\text{options}>\) | \(<\text{options}>\)
specifies the appearance of the markers in the plot.

Plot options

**DIAGONAL=**\(<\text{graph-list}>\)
adds graphs to the diagonal cells of the plot matrix.

**ELLIPSE \(<\text{options}>\)**
Adds a confidence or prediction ellipse to each cell that contains a scatter plot.

**START=**\(<\text{BOTTOMLEFT} | \text{TOPLEFT}>\)
specifies whether the diagonal starts in the top left corner or the bottom left corner.

**Required Argument**

**numeric-variable-1 numeric-variable-2 < ... numeric-variable-n >**
specifies two or more numeric variables for the matrix.

**Optional Arguments**

**ATTRID=**\(<\text{variable}>\)
specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

**COLORMODEL=**\(<\text{style-element} | \text{color-list}>\)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

**STARTCOLOR**
specifies the color for the smallest data value of the COLORRESPONSE= column.

**NEUTRALCOLOR**
specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

**ENDCOLOR**
specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
\begin{verbatim}
colormodel=TwoColorRamp
\end{verbatim}

**color-list**
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.
Requirement  The list of colors must be enclosed in parentheses.

Example  \texttt{colormodel=(blue yellow green)}

Default  The ThreeColorAltRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.

\textbf{COLORRESPONSE=}\textit{numeric-column}

specifies the numeric column that is used to map colors to a continuous color legend.

Interactions  If the \texttt{GROUP=} option is also specified, then the \texttt{GROUP=} option is ignored.

The \texttt{GRADLEGEND=} option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify \texttt{NOGRADLEGEND}.

Tip  The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values

See  “Using Gradient Color Legends” on page 1310

\textbf{DATALABEL=}\textit{variable}

specifies a variable that is used to create data labels for each point in the plot.

\textbf{DATALABELPOS=}\textit{position}

specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>position</th>
<th>position</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions  This option has no effect unless you also specify the DATALABEL= option.

This option displays group values for each category when \texttt{GROUP=} is also specified.

\textbf{DIAGONAL=}\textit{(graph-list)}

adds graphs to the diagonal cells of the plot matrix. If you do not specify the DIAGONAL option, the diagonal cells contain the variable names.

graph-list can be one or more of the following:

\texttt{HISTOGRAM}  specifies a histogram.

\texttt{KERNEL}  specifies a kernel density estimate.
NORMAL
specifies a normal density curve.

ELLIPSE <=(options)>
Adds a confidence or prediction ellipse to each cell that contains a scatter plot.

options can be one or more of the following:

ALPHA=numeric-value
specifies the confidence level for the ellipse. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

CLIP
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

TYPE=MEAN | PREDICTED
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

Default PREDICTED

Interaction The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

Tip If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the MATRIX statement to make the markers more transparent.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

options can be one or more of the following:

BORDER
adds a border around the legend.

INTEGER
specifies that integers are used for the gradient legend.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOTITLE
removes the default title. The default title is the name of the response variable.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT
TITLE="text-string"
specifies the label for the legend.

Default
If you do not specify this option, the name of the response variable is displayed as the title.

Interaction
This option has no effect unless the COLORRESPONSE= option is also specified.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

GROUP=variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

options can be one or more of the following:

ACROSS=n
specifies the number of columns in the legend.

DOWN=n
specifies the number of rows in the legend.

Interaction
If you specify both the ACROSS= and DOWN= suboptions, then the DOWN= suboption has no effect.

NOBORDER
removes the border from the legend.

NOTITLE
removes the label from the legend.

POSITION=position-value
specifies the position of the legend within the graph. The values are as follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default
BOTTOM

Note
If you specify more than one legend with the same position, then all of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.
TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is used.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

Default

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData\n style elements in the current style for grouped data. The effective attributes are ContrastColor and MarkerSymbol.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND
removes the legend from the graph.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1312

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

**SPLITJUSTIFY=** *LEFT | CENTER | RIGHT*

specifies the horizontal alignment of the value text that is being split.

**Default**  
**LEFT**

**Interaction**

This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

**START=** *BOTTOMLEFT | TOPLEFT*

specifies whether the diagonal starts in the top left corner or the bottom left corner.

**Default**  
**TOPLEFT**

**TIP=** *(variable-list)*

displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Note**

The option affects only the scatter plot in this statement.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```
tip=(age weight)
```

**TIPFORMAT=** *(format-list)*

applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of variables.

**See**

*SAS Formats and Informats: Reference*

**Example**

tipformat=(auto F5.2)

**TIPLABEL**=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.

**Requirement**

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of variables.

**Example**

tiplabel=(auto "Class Weight")

**TRANSPARENCY**=numeric-value

specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

**Default**

0.0

---

**PLOT Statement**

Creates a paneled graph that contains multiple independent scatter plots.

**Example:**

“Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves” on page 1300
Syntax

PLOT plot-request(s) </options>;

Summary of Optional Arguments

Appearance options

- **ASPECT=** `positive-number`
  - specifies the aspect ratio of the plot’s wall area.
- **ATTRID=** `variable`
  - specifies the value of the ID variable in an attribute map data set.
- **COLUMNS=** `n`
  - specifies the number of columns in the graph.
- **GRID**
  - creates grid lines for each tick on both axes.
- **GRIDATTRS=** `style-element <(options)> | (options)`
  - specifies the appearance of the grid lines.
- **MINORGRID**
  - creates grid lines at each minor tick on both axes.
- **MINORGRIDATTRS=** `style-element <(options)> | (options)`
  - specifies the appearance of the minor grid lines.
- **NOBORDER**
  - removes the border from each plot in the panel.
- **NOWALL**
  - turns off the display of the graph wall’s fill and outline.
- **RATTRID=** `character-value`
  - specifies the value of the ID variable in a range attribute map data set.
- **ROWS=** `n`
  - specifies the number of rows in the graph.
- **SPACING =** `n`
  - specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.
- **TRANSPARENCY=** `numeric-value`
  - specifies the degree of transparency for the plot components.

Axis options

- **AXISEXTENT=** `FULL | DATA`
  - specifies the extent of the axis line for the axes.
- **REFTICKS <=(options)>**
  - duplicates the tick marks from the X and Y axes on the opposite sides of each cell.
- **UNISCALE=X | Y | ALL**
  - specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph.

Data tip options

- **TIP=(variable-list)**
  - displays data tips using the data obtained from the specified variables.
- **TIPFORMAT=(format-list)**
  - applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP=
  option.

Group options
  GROUP=variable
  specifies a classification variable to divide the values into groups.

Label options
  DATALABEL <=variable>
  displays a label for each data point.
  DATALABELPOS=position
  specifies the location of the data label with respect to the plot.
  SPLITCHAR="character-list”
  splits the text for data labels at the specified character(s) when there is not
  enough room to display the text normally.
  SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.
  SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Legend options
  COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE=
  option.
  COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a continuous color
  legend.
  GRADLEGEND=(options)
  specifies the appearance of a continuous color legend when the
  COLORRESPONSE= option is used.
  LEGEND=(options)
  specifies the appearance of the legend for the scatter plot.
  NOGRADLEGEND
  turns off the display of the continuous color legend that appears when the
  COLORRESPONSE= option is used.
  NOLEGEND
  removes the legend from the graph.

Marker options
  FILLEDOUTLINEDMARKERS
  specifies that markers have a fill and an outline.
  JITTER
  specifies that data markers are offset when multiple observations have the
  same response value.
  MARKERATTRS=style-element <(options)> | (options)
  specifies the appearance of the markers in the plot.
  MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
  specifies the color of the marker fill.
  MARKEROUTLINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the marker outlines.
Plot options

ELLIPSE <=(options)> 
adds a confidence or prediction ellipse to the scatter plot.

JOIN <=(options)> 
specifies that line segments join all of the scatter points.

LOESS <=(options)> 
adds a loess fit to the scatter plot.

PBSPLINE <=(options)> 
adds a fitted, penalized B-spline curve to the scatter plot.

REG <=(options)> 
adds a regression fit to the scatter plot.

Required Argument

plot-request-1 < ... plot-request-n> 
specifies one or more plot requests. Each plot request specifies the variables to plot and produces a separate cell. All variables must be in the input data set. Multiple plot requests are separated with blanks. You can plot character or numeric variables. A plot request can be either of these:

y-variable*x-variable 
plots the values of two variables.

y-variable 
variable plotted on the left vertical axis.

x-variable 
variable plotted on the horizontal axis.

(y-variable(s))* (x-variable(s)) 
plots the values of two or more variables and produces a separate cell for each combination of Y and X variables. That is, each Y*X pair is plotted on a separate set of axes.

y-variable(s) 
variables plotted on the left vertical axes.

x-variable(s) 
variables plotted on the horizontal axes.

If you use only one y-variable or only one x-variable, omit the parentheses for that variable, for example,

plot (temp rain)*month;

This plot request produces two cells, one for TEMP and MONTH and one for RAIN and MONTH.

Optional Arguments

ASPECT= positive-number 
specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall-height divided by wall-width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.
The wall area is sized to the maximum area that can fill the available space.

**ATTRID=variable**

specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

**AXISEXTENT=FULL | DATA**

specifies the extent of the axis line for the axes.

*Note:* This feature applies to the third maintenance release of SAS 9.4 and to later releases.

This option turns off the wall border so that the axis lines can be clearly seen.

**FULL**

the axis lines extend along the entire length of the axis.

**DATA**

the axis lines extend through the data range from the minimum data point to the maximum data point.

The following figure shows a simple example of each value for the X and Y axis lines.

---

**COLORELEMENT=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

**STARTCOLOR**

specifies the color for the smallest data value of the COLORRESPONSE= column.

**NEUTRALCOLOR**

specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

**ENDCOLOR**

specifies the color for the highest data value of the COLORRESPONSE= column.

*Example*  

```
colormodel=TwoColorRamp
```
(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>The list of colors must be enclosed in parentheses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>colormodel=(blue yellow green)</td>
</tr>
</tbody>
</table>

Default: The ThreeColorAltRamp style element

Interaction: For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a continuous color legend.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>If the GROUP= option is also specified, then the GROUP= option is ignored.</th>
</tr>
</thead>
</table>

The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

<table>
<thead>
<tr>
<th>Note</th>
<th>This option is ignored when the JOIN option is also specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values</td>
</tr>
</tbody>
</table>

See “Using Gradient Color Legends” on page 1310

COLUMNS=n specifies the number of columns in the graph.

DATALABEL <=variable> displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, the value of the Y variable is used for the data label.

DATALABELPOS=position specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interactions</th>
<th>This option has no effect unless you also specify the DATALABEL option.</th>
</tr>
</thead>
</table>
This option displays group values for each category when GROUP= is also specified.

This option does not support the splitting or rotation of data labels.

**ELLIPSE <=(options)>**

adds a confidence or prediction ellipse to the scatter plot. *options* can be one or more of the following:

**ALPHA=** n
specifies the confidence level for the ellipse. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

**CLIP**
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

**TYPE=MEAN | PREDICTED**
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

Default PREDICTED

**Requirement**
To use this option, all of the X and Y variables must be numeric.

**Interaction**
The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

**Tip**
If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the PLOT statement to make the markers more transparent.

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interaction**
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

**GRADLEGEND=(options)**
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.
options can be one or more of the following:

BORDER
  adds a border around the legend.

INTEGER
  specifies that integers are used for the gradient legend.
  
  Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

NOTITLE
  removes the default title. The default title is the name of the response variable.

POSITION=TOP | BOTTOM | LEFT | RIGHT
  specifies the position of the legend within the graph.
  
  Default RIGHT

TITLE="text-string"
  specifies the label for the legend.
  
  Default If you do not specify this option, the name of the response variable is displayed as the title.

  Interaction This option has no effect unless the COLORRESPONSE= option is also specified.

  Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

GRID
  creates grid lines for each tick on both axes.

GRIDATTRS=style-element <(options)> | (options)
  specifies the appearance of the grid lines.
  
  Note: This feature applies to the second maintenance release of SAS 9.4 and to later releases.

  You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

  For a description of the line options, see “Line Attributes and Patterns” on page 1320.

  Default GraphGridLines style element in the current style for ungrouped data.
  GraphData1 ... GraphDataN style elements in the current style for grouped data.

  Interaction This option has no effect unless GRID is also specified.

  Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

  Here is an example that specifies a style element:
  GRIDATTRS=GraphAxisLines
GROUP=variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Default" /></td>
<td><img src="image" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JOIN <=(options)>
specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.

You can specify the following options:

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for
grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**SMOOTHCONNECT**
specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Series]</td>
<td>![SMOOTHCONNECT Specified]</td>
</tr>
</tbody>
</table>

**LEGEND=(options)**
specifies the appearance of the legend for the scatter plot. *options* can be one or more of the following:

**ACROSS=n**
specifies the number of columns in the legend.

**AUTOITEMSIZE**
specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Marker Size]</td>
<td>![AUTOITEMSIZE Used in the Statement]</td>
</tr>
</tbody>
</table>

**DOWN=n**
specifies the number of rows in the legend.

**LOCATION=CELL | OUTSIDE**
specifies whether the legend is placed inside an empty cell (CELL) in the plot area or outside of the plot area (OUTSIDE). The LOCATION=CELL suboption should be specified only when the graph contains an empty cell.

**NOBORDER**
removes the border from the legend.

**NOTITLE**
removes the label from the legend.

**POSITION=position-value**
specifies the position of the legend within the graph. The positions are as follows:
BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default: BOTTOM

Interaction: This suboption has no effect if you also specify LOCATION=CELL.

Note: If you specify more than one legend with the same position, then all
of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

Note: This feature applies to the second maintenance release of SAS 9.4 and to
later releases.

TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is
used.

LOESS <=(options)>  
adds a loess fit to the scatter plot. You can specify the following options:

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number
between 0.00 (100% confidence) and 1.00 (0% confidence).

Default: .05

Interaction: This option has no effect if you do not specify the CLM option.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression. 1
specifies a linear fit and 2 specifies a quadratic fit.

Default: 1

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending
local polynomial fits at the kd tree vertices.

Default: CUBIC

LINEATTRS=style-element <=(options)> | (options)
specifies the appearance of the fit line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element,
you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Defaults**
- GraphFit style element in the current style. The effective attributes are ContrastColor, LineStyle, and LineThickness.
- GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NOGROUP**
specifies that the fit does not use the group variable from the scatter plot.

**SMOOTH=numeric-value**
specifies a smoothing parameter value. If you do not specify a value, then a smoothing value is determined automatically.

**Restriction**
To use this option, all of the X and Y variables must be numeric.

**MARKERATTRS=style-element <(options)> | (options)**
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1322.

**Default**
- GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data. The effective attributes are ContrastColor and MarkerSymbol.

**MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)**
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**Default**
ContrastColor attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data.

**Interactions**
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

**Tip**
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

**MARKEROUTLINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The effective attributes are ContrastColor and LineThickness

**Interaction**
This option has no effect unless FILLEDOUTLINEMARKERS is also specified.

**Tip**
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1315.

### MINORGRID
Creates grid lines at each minor tick on both axes.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

**Interaction**
This option has no effect unless GRID is also specified for the axis.

**MINORGRIDATTRS=style-element <(options)> | (options)**
specifies the appearance of the minor grid lines.

*Note:* This feature applies to the second maintenance release of SAS 9.4 and to later releases.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1320.

**Default**
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data.

**Interaction**
This option has no effect unless MINORGRID is also specified.

**Tip**
You can use GRIDATTRS= to change the appearance of the major grid lines.

**Examples**
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

### NOBORDER
removes the border from each plot in the panel.
NOGRADLEGEND  
    turns off the display of the continuous color legend that appears when the 
    COLORRESPONSE= option is used. This option might be useful when you map 
    plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND  
    removes the legend from the graph.

NOWALL  
    turns off the display of the graph wall’s fill and outline. This option might be useful 
    when your graph contains an annotation, and the wall color interferes with that 
    annotation.

    For most styles, the wall outline is the same as the axis lines, and it is impossible to 
    see the difference. Also, the wall fill color is often the same as the graph background. 
    However, if this is not the case with the style that you use for a graph, then you 
    might want to suppress the wall fill and outline.

PBSPLINE <=(options)>  
    adds a fitted, penalized B-spline curve to the scatter plot. options can be one or more 
    of the following:

    ALPHA=numeric-value  
        specifies the confidence level for the confidence limits. Specify a number 
        between 0.00 (100% confidence) and 1.00 (0% confidence). 
        Default .05 

        Interaction This option has no effect if you do not specify either the CLI option 
        or the CLM option.

    CLI  
        creates confidence limits for individual predicted values for each observation.

    CLM  
        creates confidence limits for a mean predicted value for each observation.

    DEGREE=n  
        specifies the degree of the spline transformation. 
        Default 3 

    LINEATTRS=style-element <(options)> | (options)  
        specifies the appearance of the curve line. You can specify the appearance by 
        using a style element or by specifying specific options. If you specify a style 
        element, you can also specify options to override specific appearance attributes. 
        For a description of the line options, see “Line Attributes and Patterns” on page 
        1320. 
        Default GraphFit style element in the current style for ungrouped data. 
        GraphData1 ... GraphData# style elements in the current style for 
        grouped data. The effective attributes are: ContrastColor, LineStyle, 
        and LineThickness.

    NKNOTS=n  
        specifies the number of evenly spaced internal knots. 
        Default 100
NOGROUP

specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=numeric-value

specifies a smoothing parameter value. If you do not specify this option, then a
smoothing value is determined automatically.

Restriction To use this option, all of the X and Y variables must be numeric.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later
releases.

See Chapter 16, “Using Range Attribute Maps,” on page 1403

“Overview of Attribute Maps” on page 1383

REFTICKS <=(options)>

duplicates the tick marks from the X and Y axes on the opposite sides of each cell.
You can also specify options:

LABEL

in addition to the tick marks, displays the axis label.

VALUES

in addition to the tick marks, displays the values that are represented by the tick
marks.

REG <=(options)>

adds a regression fit to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number
between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interaction This option has no effect if you do not specify either the CLI option
or the CLM option.

CLI

creates confidence limits for individual predicted values for each observation.

CLM

creates confidence limits for a mean predicted value for each observation.

DEGREE=n

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2
specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the fit line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element,
you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1320.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor,LineStyle, and LineThickness.

NOGROUP specifies that the fit does not use the group variable from the scatter plot.

Restriction To use this option, all of the X and Y variables must be numeric.

\textbf{ROWS=}\(n\) specifies the number of rows in the graph.

Interaction This option has no effect if you specify the COLUMNS= option.

\textbf{SPACING =}\(n\) specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.

Default 10

\textbf{SPLITCHAR=}“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR=“abc”}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interaction This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1312

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1312

TIP=(variable-list)
displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of variables.
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

UNISCALE=X | Y | ALL
specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph. By default, no scaling is performed. If this option is used, then all variables on the specified axis must be of the same type (all numeric or all character). In addition, mixing character and numeric variables with this option can cause blank plots to occur.

Examples: SGSCATTER Procedure

Example 1: Creating a Scatter Plot Matrix

Features:
- MATRIX statement
- GROUP option

Sample library member:
SGSCMAT

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a scatter plot matrix with grouped data.
Output

Program

```
proc sgscatter data=sashelp.iris;
 title "Scatterplot Matrix for Iris Data";
 matrix sepallength petallength sepalwidth petalwidth
 / group=species;
run;
title;
```

Program Description

Set the title and footnote and create the scatter plot matrix. In the MATRIX statement, the GROUP = option groups the data by the SPECIES variable.

```
proc sgscatter data=sashelp.iris;
 title "Scatterplot Matrix for Iris Data";
 matrix sepallength petallength sepalwidth petalwidth
 / group=species;
run;
title;
```

Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves

Features: PLOT statement
Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves

PBSPLINE option

Sample library member: SGSCPLT

Note: For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 14.

This example shows a graph with multiple independent scatter plots with fitted splines.

Output

![Multi-Celled Spline Curve for Species Virginica](image)

Program

```sas
proc sgscatter data=sashelp.iris(where=(species="Virginica"));
 title "Multi-Celled Spline Curve for Species Virginica";
 plot (sepallength sepalwidth)*(petallength petalwidth) / pbspline;
run;
title;
```

Program Description

Create the scatter plots. In the PLOT statement, the PBSPLINE option fits the spline curves to the scatter points.

```sas
proc sgscatter data=sashelp.iris(where=(species="Virginica"));
 title "Multi-Celled Spline Curve for Species Virginica";
 plot (sepallength sepalwidth)*(petallength petalwidth)
 / pbspline;
run;
title;
```
Example 3: Creating a Simple Comparative Panel

Features:  
- COMPARE statement
- GROUP option

Sample library member:  
- SGSCCMP

Note:  
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a comparative scatter plot with grouped data.

Output

Program

```sas
proc sgscatter data=sashelp.iris;
 title "Iris Data: Length and Width";
 compare x=(sepallength petallength)
 y=(sepalwidth petalwidth)
 / group=species;
run;
title;
```
Create the scatter plot. In the COMPARE statement, the GROUP= option groups the data by the SPECIES variable.

```sas
proc sgscatter data=sashelp.iris;
 title "Iris Data: Length and Width";
 compare x=(sepallength petallength) y=(sepalwidth petalwidth)
 / group=species;
run;
title;
```

Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses

Features:
- COMPARE statement
- REG option
- ELLIPSE option
- SPACING option

Sample library member: SGSCCM1

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 14.

This example shows a comparative panel of scatter plots with regression fits and confidence ellipses.
Program

```sas
proc sgscatter data=sashelp.iris(where=(species="Versicolor"));
title "Versicolor Length and Width";
compare y=(sepalwidth petalwidth)
 x=(sepallength petallength)
 / reg ellipse=(type=mean) spacing=4;
run;
title;
```

Program Description

Create the scatter plot. In the COMPARE statement, the REG option fits the regression lines and the ELLIPSE option creates the confidence ellipses and sets the ellipse type to MEAN. The SPACING= option adds spacing between plots.

```sas
proc sgscatter data=sashelp.iris(where=(species="Versicolor"));
title "Versicolor Length and Width";
compare y=(sepalwidth petalwidth)
 x=(sepallength petallength)
 / reg ellipse=(type=mean) spacing=4;
run;
title;
```
Chapter 10
Common Concepts

Overview of the Common Concepts

These topics describe concepts that are similar among the SGPANEL, SGPLOT, and SGSCATTER procedures.

Note: The SGDESIGN and SGRENDER procedures do not apply to the topics here. Both of those procedures produce a graph that has been defined outside of the ODS Graphics Procedures.

Table 10.1  Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1306)</td>
<td></td>
</tr>
<tr>
<td>“Plot Axes” (p. 1307)</td>
<td></td>
</tr>
<tr>
<td>“Legends” (p. 1308)</td>
<td></td>
</tr>
</tbody>
</table>

“Plot Type Compatibility” explains which types of plots can be used together in a graph.

“Plot Axes” describes the axis types that are supported by the procedure.

“Legends” explains how legends are created automatically, and how to create customized legends.
“Automatic Differentiation of Visual Attributes” (p. 1312) explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned.

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1312) describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally.

“Marker Fills and Outlines” (p. 1315) describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.

### Plot Type Compatibility

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SG PLOT</td>
</tr>
</tbody>
</table>

There are four basic types of plots that you can create with the SG PLOT and SGPANEL procedures.

**Basic plots:**

- BAND
- HBAR PARM
- NEEDLE
- SPLINE
- BUBBLE
- HEATMAP
- POLYGON
- STEP
- BLOCK
- HEATMAP PARM
- REFLINE
- TEXT
- DROPLINE
- HIGH LOW
- SCATTER
- VBAR PARM
- FRINGE
- LINE PARM
- SERIES
- VECTOR

**Fit and confidence plots:**

- ELLIPSE*
- LOESS
- PBSPLINE
- REG

**Distribution plots:**

- DENSITY
- HBOX
- HISTOGRAM
- VBOX

**Categorization plots:**

- DOT
- HLINE
- VLINE
- HBAR
- VBAR
- WATERFALL*
- HBAR BASIC
- VBAR BASIC

* The plot or chart is available only in the SG PLOT procedure.
Not all of the plot types can be used together in the same PROC SG PLOT or PROC SGPANEL step. The following table shows which of the plot types can be used together:

<table>
<thead>
<tr>
<th></th>
<th>Basic</th>
<th>Fit and Confidence</th>
<th>Distribution</th>
<th>Categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit and Confidence</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Categorization</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

All overlays must have the same orientation. For example, you cannot specify an HBAR statement with a VLINE statement. However, you can specify HBAR with an HLINE statement.

Here are exceptions to plot type compatibility:

- FRINGE plots can be combined with all plots except for box plots and categorical plots.
- HBAR PARM and VBAR PARM charts cannot be combined with fit and confidence plots.
- REFLINE statements can be combined with all the plot types.
- Starting with the first maintenance release for SAS 9.4, box plots can be combined with basic plot types, reference lines, and other box plots.
- Starting with the third maintenance release for SAS 9.4, bar charts can be combined with basic plot types using the HBAR BASIC and VBAR BASIC statements.
- Waterfall charts can be combined with basic plot types.

If you submit a PROC SG PLOT or PROC SGPANEL step that combines two incompatible plot statements, then an error appears in the log.

The procedure draws the plots in your graph in the same order that you specify the plot statements. Because of this, it is important to consider the order of your plot statements so that your plots do not obscure one another. For example, if you specify a BAND statement after a SCATTER statement, then the band plot might obscure the markers in your scatter plot. To correct this, you can reverse the order of the plot statements in your program. (You can also avoid obscuring your data by using the TRANSPARENCY= option to make your plots partially transparent.)

---

**Plot Axes**

| Applicable Procedures | SGPANEL | SGPLOT |
The SGPANEL and SGPlot procedures contain the following statements that enable
you to change the type and appearance for the axes of the graph.

<table>
<thead>
<tr>
<th>SGPANEL Procedure</th>
<th>SGPlot Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLAXIS</td>
<td>XAXIS</td>
</tr>
<tr>
<td>ROWAXIS</td>
<td>X2AXIS</td>
</tr>
<tr>
<td></td>
<td>YAXIS</td>
</tr>
<tr>
<td></td>
<td>Y2AXIS</td>
</tr>
</tbody>
</table>

By default, the type of each axis is determined by the types of plots that use the axis and
the data that is applied to the axis.

The procedures support the following axis types:

- **Discrete**
  - The axis contains independent data values rather than a range of numeric values.
  - Each distinct value is represented by a tick mark. Discrete is the default axis type for
    character data.

- **Linear**
  - The axis contains a linear range of numeric values. Linear is the default axis type for
    numeric data.

- **Logarithmic**
  - The axis contains a logarithmic range of values. The logarithmic axis type is not used
    as a default.

- **Time**
  - The axis contains a range of time values. Time is the default axis type for data that
    uses a SAS time, date, or datetime format.

Some types of plot do not support all of the axis types. For example, needle plots cannot
use a discrete vertical axis. See the documentation for each plot statement to determine
whether any axis type restrictions apply.

---

**Legends**

**Some of the Uses for a Legend**

A graphical legend provides a key to the marker symbols, lines, and other data elements
that are displayed in a graph. Here are some of the situations where legends are useful:

- when a plot contains grouped markers (scatter plots, for example).
- when a plot contains lines that differ by color, marker symbol, or line pattern (series
  plots or step plots, for example).
- when a plot contains one or more lines or bands that require identification or
  explanation.
- when series plots with different data are overlaid in the graph, or fit lines are
  displayed with confidence bands, or density plots with different distributions are
  generated.
• when markers vary in color to show the values of a response variable. For this case, you would generate a continuous color legend.

The procedures do not automatically generate legends for all of the above situations. However, the mechanism for creating legends is simple and flexible.

Using Discrete Legends

| Applicable Procedures | SGPANEL | SGPLOT | SGSCATTER |

The SGPANEL and SGPLOT procedures create a legend automatically based on the plot statements and options that you specify. The automatic legend functionality determines which information is likely to be useful in the legend. For example, in non-group situations, if there are two or more plot overlays, a legend is generated automatically and the plots are added to the legend.

You can create customized legends by using one or more KEYLEGEND statements. You can use the KEYLEGEND statement to control the contents, title, position, and border of the legend.

You can specify the labels that represent your plots in the legend by using the LEGENDLABEL= option in the corresponding plot statements.

You can override the automatic legend functionality in several ways. In the SGPANEL and SGPLOT procedures, legends are not generated automatically when you specify any of the following:

• KEYLEGEND statement
• NOAUTOLEGEND option in the procedure statement
• CURVELABEL= option for a plot
• a single plot or chart with no overlay and no group variable

In the SGSCATTER procedure, you can prevent legends by using the NOLEGEND option in the PLOT, COMPARE, and MATRIX statements.

The following rules apply to the content of an auto-generated legend:

• If a group variable is used, the first statement using a group variable is added to the legend. All other statements are ignored.
• You can suppress features of a legend that is generated for a fit plot (LOESS, REG, PBSPLINE) using options such as NOLEGCLI, NOLEGCLM, and NOLEGFIT.

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend. For all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

See Also

• “KEYLEGEND Statement” on page 315 (SGPANEL procedure)
• “KEYLEGEND Statement” on page 839 (SGPLOT procedure)
Using Gradient Color Legends

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th>SGPANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGLOT</td>
</tr>
<tr>
<td></td>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

A gradient color legend maps the data range of a response variable to a range of colors. Gradient legends can be used with the following plot statements in the SGPLOT and SGPANEL procedures.

- BUBBLE
- DOT
- HBAR
- HBARBASIC
- HBARPARAM
- HEATMAP
- SCATTER
- HIGHLOW
- POLYGON
- VBAR
- VBARBASIC
- VBARPARAM
- SERIES
- VECTOR
- SPLINE
- WATERFALL

Note:

- For heat maps, the gradient legend appears automatically.
- The WATERFALL chart applies to the SGPLOT procedure only.

In addition, gradient legends can be used with the PLOT, COMPARE, and MATRIX statements in the SGSCATTER procedure.

To generate the gradient legend, specify the COLORRESPONSE= option in any of those statements. The COLORRESPONSE= option indicates the numeric variable that is used to map colors to a continuous gradient. The COLORRESPONSE= option is used in conjunction with the GRADLEGEND feature.

The GRADLEGEND feature operates in different ways, depending on the procedure.

Table 10.3 GRADLEGEND Feature

<table>
<thead>
<tr>
<th>Procedure</th>
<th>GRADLEGEND Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL and SGPLOT</td>
<td>The procedures support one or more GRADLEGEND statements. The GRADLEGEND statement can associate the gradient legend with a plot statement and can specify options for the legend. For example, you can use the GRADLEGEND statement to control the title, position, tick values, and border of the legend.</td>
</tr>
<tr>
<td>SGSCATTER</td>
<td>The PLOT, COMPARE, and MATRIX statements support a GRADLEGEND= option that controls the title, position, and border of the legend.</td>
</tr>
</tbody>
</table>

The following rules apply to a continuous color legend:

- The COLORRESPONSE= option must be specified in order for the legend to appear.
- The GRADLEGEND feature is responsible for creating the legend.
The GRADLEGEND feature has auto-legend capabilities. If you specify a COLORRESPONSE= option, a gradient legend automatically appears even if you do not specify the GRADLEGEND feature. For heat maps, the gradient legend appears automatically without specifying the COLORRESPONSE= option.

You can override the automatic legend functionality in two ways. Legends are not generated automatically when you specify either of the following:

- KEYLEGEND statement in the SGPLOT and SGPANEL procedures
- NOGRADLEGEND option in the PLOT, COMPARE, or MATRIX statements in the SGSCATTER procedure

The following examples create an automatic legend in the SGPLOT, SGPANEL, and SGSCATTER procedures:

```plaintext
proc sgplot data=sashelp.class;
 scatter x=weight y=height / colorresponse=age;
run;
```

```plaintext
proc sgpanel data=sashelp.class;
 panelby sex;
 bubble x=weight y=height size= age /
 colorresponse=age;
run;
```

```plaintext
proc sgscatter data=sashelp.class;
 plot (weight height) * age / colorresponse=age
 loess reg;
run;
```

The COLORMODEL= option, available in the plot statements, enables you to control the appearance of the color ramp that is used.
Automatic Differentiation of Visual Attributes

Depending on the plots and options that you specify, the SGPLOT and SGPANEL procedures can automatically assign different style attributes to the plots in your graph. For example, if you specify two series plots, then each series plot automatically uses a different line color by default.

If different attributes are not assigned by default, then you can force the procedure to use different style attributes. You can accomplish this by using the CYCLEATTRS option in the PROC SGPLOT or PROC SGPANEL statement. For example, you can use the CYCLEATTRS option to assign different colors to a series plot and a scatter plot. You can also disable automatic attribute differentiation by using the NOCYCLEATTRS option in the PROC SGPLOT statement.

For all three procedures, grouped data values by default use the GraphData style elements for the presentation of each unique group value. You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified. For more information, see “Grouped Data” on page 1351.

See Also

- “CYCLEATTRS | NOCYCLEATTRS” on page 123 (SGPANEL procedure)
- “CYCLEATTRS | NOCYCLEATTRS” on page 639 (SGPLOT procedure)
Plot statements that support data labels or curve labels includes the ability to split the text for those labels when there is not enough room to display the text normally. Similarly, you can split the text for axis tick mark values. The text is split into two or more lines.

The following table lists the tasks that you can perform along with the option that is used to perform each task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>split the text at one or more characters that you specify</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>specify that the split characters are included in the displayed value</td>
<td>SPLITCHARNODROP</td>
</tr>
<tr>
<td>align the text horizontally (center, left, or right)</td>
<td>SPLITJUSTIFY=</td>
</tr>
</tbody>
</table>

These options are available for most of the plot statements in the SGPANEL and SGPLOT procedures. In the SGSCATTER procedure, the COMPARE, MATRIX, and PLOT statements support the options.

In the following example, the DATA step creates a column named SPEC with two values: Teen and Pre-Teen.

```latex
\begin{verbatim}
data class;
 set sashelp.class;
 where sex="F";
 length label $10;
 if age > 12 then label='Teen';
 else label='Pre-Teen';
run;
\end{verbatim}
```

In this bar chart example, the procedure splits Pre-Teen at the hyphen (-) whenever the text does not fit within the bar width.

```latex
\begin{verbatim}
ods graphics / width=4.5in;
proc sgplot data=class;
 vbar name / response=weight
datalabel=label splitchar="-";
run;
\end{verbatim}
```

Notice that the split character does not appear in the labels. To force the split character to appear, specify the SPLITCHARNODROP option.
Fit Policies for Axes

For axes in the SGPANEL and SGPLOT procedures, you can specify split options for the fit policy. The FITPOLICY= option specifies the method that is used to fit tick mark values on the axis when there is not enough room to draw them normally.

The FITPOLICY= option supports a number of values that split, stagger, and rotate the values. FITPOLICY= also combines these options. For example, FITPOLICY=SPLITROTATE first attempts to use SPLIT and then ROTATE to fit the values.

The following examples use the fit policy to split axis values. The default split character is a space. You can override the default and specify the split character using the SPLITCHAR= option (not shown in the example). All three of these examples use the SPLITALWAYS fit policy. You might instead specify FITPOLICY=SPLIT if you want splitting to occur only on collision.

```sas
ods graphics / width=4in;
proc sgplot data=sashelp.heart;
 hbar deathcause;
 yaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;
```

```sas
ods graphics / width=4in;
proc sgplot data=sashelp.heart;
 vbar deathcause;
 xaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;
```

```sas
ods graphics / width=4in;
proc sgpanel data=sashelp.heart;
 panelby sex;
 hbar deathcause;
 rowaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;
```
**Fit Policies for Bar Charts**

In vertical bar charts, fit policies are available for data labels that appear above the bars. The DATALABELFITPOLICY= option specifies the method that is used to fit the data labels when the bars are not wide enough to display the labels normally.

The DATALABELFITPOLICY= option specifies whether the labels are rotated or split, or whether they are allowed to collide.

---

**Marker Fills and Outlines**

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

When your graph contains markers, such as those found in scatter plots, the MARKERATTRS= option enables you to specify the marker color, size, and symbol. However, you might want to change the appearance of both the marker fill and its outline.

There are additional options that enable you to specify attributes for the fill and outlines of your markers.

- FILLEDOUTLINEDMARKERS specifies that markers have a fill and an outline.
- MARKERFILLATTRS= specifies the color of the marker fill.
- MARKEROUTLINEATTRS= specifies the color and thickness of the marker outline.

These options are available for the dot and scatter plots, series and step plots, line and needle plots, and fit plots in the SGPANEL and SGPLOT procedures. They are also available for the PLOT and COMPARE statements in the SGSCATTER procedure.

The options are typically used along with the MARKERATTRS= option and enable markers to be more customized. The options have a cumulative, overriding effect when used with MARKERATTRS=.

To specify attributes for marker fills and outlines, do the following:

1. Specify FILLEDOUTLINEDMARKERS in the plot statement.
   - For PROC SGSCATTER, specify FILLEDOUTLINEDMARKERS in the PLOT or COMPARE statement.

2. Make sure the marker uses a filled symbol. The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. For example, the marker might be CircleFilled, DiamondFilled, TriangleFilled, and so on.
   - For a list of marker symbols, see Figure 11.2 on page 1323.

If the above two conditions are met, then you can use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options.

The marker attributes are obtained as follows:
• **MARKERATTRS=** provides the marker size and symbol. This option does not provide the marker fill color.

• **MARKERFILLATTRS=** provides the marker fill color.

• **MARKEROUTLINEATTRS=** provides the color and thickness of the marker outline.

The following table shows this information at a glance:

<table>
<thead>
<tr>
<th>Option</th>
<th>Color</th>
<th>Size</th>
<th>Symbol</th>
<th>Outline Color</th>
<th>Outline Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKERATTRS</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKERFILLATTRS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKEROUTLINEATTRS</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how the three options work together to produce a scatter plot with yellow markers and red outlines.

```plaintext
ods graphics on / reset=all;
odds graphics on / width=4in;
```

**Table 10.4**  **Yellow Markers with Red Outlines**

```plaintext
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markeroutlineattrs=(color=red thickness=2)
markerattrs=(symbol=circlefilled size=25);
run;
```

In the following example, the **MARKERFILLATTRS=** option is not specified. Because this option determines marker color when **FILLEDOUTLINEDMARKERS** is used, the marker color becomes the default color for the style (HTMLBlue). (The **COLOR** attribute in the **MARKERATTRS=** option is ignored.)
Table 10.5  Marker Color Uses the Default Value

In the following example, the markers are specified as CIRCLE, which is not filled. As a result, the options used to specify the fill and outline attributes are ignored.

Table 10.6  Markers Not Filled, Defaults Used

Note: The following code produces the same result as the previous example. In the following code, the SYMBOL= option is not specified, and the default marker symbol is used. Because the graph uses the HTMLBlue ODS style, the default marker symbol is CIRCLE.
Chapter 11
Commonly Used Attribute Options

General Syntax for Attribute Options

Most statements provide options that enable you to specify attributes for the lines, fills, data markers, or text that is used in the display. For example, many plots provide a DATALABELATTRS= option that specifies the attributes of the data labels. This section discusses the general syntax for those options and the valid values that they accept.

A statement’s attribute options use the following general syntax:

\texttt{OPTION-NAME= style-element | style-element (options) | (options)}

\texttt{style-element}

name of a style element.

A style element is a named collection of style attributes that affects specific parts of your output. For example, a style element might specify the color and font properties of title text or the fill properties of a bar chart. An ODS style is a collection of style elements that provides specific visual attributes for your SAS output.

Only style attributes relevant for rendering the fill, line, data marker, or text are used.
See “Specifying a Style Element” on page 1340

Example density height / lineattrs=graphfit2;

**style-element (options)**
name of a style element, plus individual options to be used as style overrides. Any options not specified are derived from the specified style-element.

See “Specifying a Style Element with Hardcoded Values” on page 1342

Example density height / lineattrs=graphfit2 (pattern=dashdashdot);

**(options)**
individual options. Any options not specified are derived from the default style element.

See “Specifying Hardcoded Values” on page 1341

Example density height / lineattrs= (pattern=dashdashdot color=red);

Depending on the attribute option used, the options might be one of the following commonly used option types:

- “Line Attributes and Patterns” on page 1320
- “Fill Attributes” on page 1321
- “Marker Attributes and Symbols” on page 1322
- “Text Attributes” on page 1323

**See Also**

“Style Elements for Use with ODS Graphics” on page 1357

---

**Line Attributes and Patterns**

Line options and patterns specify the appearance of particular lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

```plaintext
(pattern=dashdashdot color=red);
```

Options can be one or more of the following attributes.

- **COLOR= color** specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

- **PATTERN= line-pattern** specifies the line pattern for the line. Line patterns can be specified as a pattern name or pattern number.
The following list shows the line patterns that you can use:

**Figure 11.1  List of Line Patterns**

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>1</td>
</tr>
<tr>
<td>ShortDash</td>
<td>2</td>
</tr>
<tr>
<td>MediumDash</td>
<td>4</td>
</tr>
<tr>
<td>LongDash</td>
<td>5</td>
</tr>
<tr>
<td>MediumDashShortDash</td>
<td>8</td>
</tr>
<tr>
<td>DashDashDot</td>
<td>14</td>
</tr>
<tr>
<td>DashDotDot</td>
<td>15</td>
</tr>
<tr>
<td>Dash</td>
<td>20</td>
</tr>
<tr>
<td>LongDashShortDash</td>
<td>26</td>
</tr>
<tr>
<td>Dot</td>
<td>34</td>
</tr>
<tr>
<td>ThinDot</td>
<td>35</td>
</tr>
<tr>
<td>ShortDashDot</td>
<td>41</td>
</tr>
<tr>
<td>MediumDashDotDot</td>
<td>42</td>
</tr>
</tbody>
</table>

**THICKNESS= n <units>**

specifies the thickness of the line. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

**Table 11.1  Measurement Units**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

**See Also**

- “General Syntax for Attribute Options” on page 1319
- “Style Elements for Use with ODS Graphics” on page 1357

**Fill Attributes**

Fill options specify the appearance of an area fill in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

```
(color=red transparency=0.5);
```

options can be one or more of the following attributes.

**COLOR=**

specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**TRANSPARENCY=**

specifies the degree of the transparency of the filled area.

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
<tr>
<td>Note</td>
<td>Not all fill options enable you to specify the transparency attribute. For example, the FILLATTRS= option in the BAND statement does not support transparency. The reason is that the BAND plot statement includes its own TRANSPARENCY= option.</td>
</tr>
</tbody>
</table>

**Example**

```
fillattrs=(transparency=0.5)
```

See Also

- “General Syntax for Attribute Options” on page 1319
- “Style Elements for Use with ODS Graphics” on page 1357

**Marker Attributes and Symbols**

Marker options specify the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

```
(symbol=diamond color=red);
```

options can be one or more of the following attributes.

**COLOR=**

specifies the color of the markers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**SIZE=**

specifies the size of the markers. You can also specify the unit of measurement. The default unit is pixels.
The following table contains the units that are available:

**Table 11.2 Measurement Units**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

**SYMBOL= symbol-name**

specifies the symbol for the markers.

The following list shows the marker symbols that you can use:

**Figure 11.2 List of Marker Symbols**

See Also

- “General Syntax for Attribute Options” on page 1319
- “Style Elements for Use with ODS Graphics” on page 1357

---

**Text Attributes**

Text options specify the appearance of particular text elements in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a `name=value` pair format enclosed in parentheses. If you specify more than one `name=value` pair, separate them by a space. For example:

```
(family="Arial" size=10pt color=red);
```
options can be one or more of the following attributes.

**COLOR=**style-reference | color

specifies the color of the text. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

**FAMILY=**“font-family”

specifies the font family for the text. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in SAS Language Reference: Concepts.

**SIZE=** n <units>

specifies the font size of the text. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

**STYLE=** ITALIC | NORMAL

specifies the font style of the text.

**WEIGHT=** BOLD | NORMAL

specifies the font weight of the text.

System fonts can be used by the SAS ODS Graphics procedures. These fonts include TrueType, Type1, and Opentype fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial. System fonts must be installed on the operating system, and then registered with SAS using the FONTREG procedure. For more information, see “FONTREG” in Base SAS Procedures Guide.

**See Also**

- “General Syntax for Attribute Options” on page 1319
- “Style Elements for Use with ODS Graphics” on page 1357
Units of Measurement

Some options enable you to specify the unit of measurement as part of the value.
For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Color-Naming Schemes

Introduction to Color-Naming Schemes
The valid color-naming schemes are as follows:

- RGB (red green blue)
- CMYK (cyan magenta yellow black)
- HLS (hue lightness saturation)
- HSV (hue saturation brightness), also called HSB
- Gray scale
- SAS color names (from the SAS Registry)
- SAS Color Naming System (CNS)
**RGB Color Codes**

An RGB color code defines a color by combining red, green, and blue colors in different ratios. All the colors combined together create white. The absence of all color creates black.

Color names are in the form CXrrggbb, where the following is true:

- **CX** indicates to SAS that this is an RGB color specification.
- **rr** is the red component.
- **gg** is the green component.
- **bb** is the blue component.

The components are given as hexadecimal numbers in the range 00 through FF (0% to 100%). Each hexadecimal number indicates how much of the red, green, or blue is included in the color. Lower percentage values are darker and higher values are lighter. This scheme allows for up to 256 levels of each color component (more than 16 million different colors).

**Table 11.5  Examples of RGB Color Values**

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>CXFF0000</td>
</tr>
<tr>
<td>Green</td>
<td>CX00FF00</td>
</tr>
<tr>
<td>Blue</td>
<td>CX0000FF</td>
</tr>
<tr>
<td>White</td>
<td>CXFFFFFF</td>
</tr>
<tr>
<td>Black</td>
<td>CX000000</td>
</tr>
</tbody>
</table>

**CMYK Color Codes**

CMYK is a color-naming scheme used in four-color printing. CMYK is based on the principles of objects reflecting light. Combining equal values of cyan, magenta, and yellow produces process black, which might not appear as pure black. The black component (K) of CMYK can be used to specify the level of blackness in the output. A lack of all colors produces white, when the output is printed on white paper.

Color names are of the form ccmmyykk, where the following is true:

- **cc** is the cyan component.
- **mm** is the magenta component.
- **yy** is the yellow component.
- **kk** is the black component.

The components are given as hexadecimal numbers in the range 00 through FF, where higher values are darker and lower values are brighter. This scheme allows for up to 256
levels of each color component. Quotation marks are required when the color value starts with a number instead of a letter.

**Table 11.6 Examples of CMYK Color Values**

<table>
<thead>
<tr>
<th>Color</th>
<th>CMYK Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>00FFFF00</td>
</tr>
<tr>
<td>Green</td>
<td>FF00FF00</td>
</tr>
<tr>
<td>Blue</td>
<td>FFFF0000</td>
</tr>
<tr>
<td>White</td>
<td>00000000</td>
</tr>
<tr>
<td>Process black (using cyan, magenta, and yellow ink)</td>
<td>FFFFFF00</td>
</tr>
<tr>
<td>Pure black (using only black ink)</td>
<td>000000FF</td>
</tr>
</tbody>
</table>

*Note:* You can specify a CMY value by making the $kk$, the color's black component, zero (00).

CMYK color specifications are for devices that support four colors. If a CMYK color is used on a three-color device, the device processes the color specification. The resulting colors might not be as expected. Different CMYK colors might map to the same device color because a four-color space supports more colors than a three-color space.

**HLS Color Codes**

With the HLS color naming-scheme, you specify colors in terms of hue, lightness, and saturation levels.

HLS color names are of the form $Hhhhlss$, where the following is true:

- $H$ indicates that this is an HLS color specification.
- $hhh$ is the hue component.
- $ll$ is the lightness component.
- $ss$ is the saturation component.

The components are given as hexadecimal numbers. The hue component has the range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal). Both the lightness and saturation components are hexadecimal and scaled to a range of 0 to 255 expressed with values of 00 through FF (0% to 100%). Thus, they provide 256 levels for each component.

**Table 11.7 Examples of HLS Color Codes**

<table>
<thead>
<tr>
<th>Color</th>
<th>HLS Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>H07880FF</td>
</tr>
<tr>
<td>Green</td>
<td>H0F080FF</td>
</tr>
</tbody>
</table>
Color | HLS Color Code
---|---
Blue | H00080FF
Light gray | H000BB00
White* | H000FF00, such as H000FF00
Black* | H0000000 such as H0000000

* When the saturation is set to 00, the color is a shade of gray that is determined by the lightness value. Therefore, white is defined as H000FF00 and black as H0000000, where XXX can be any hue.

**HSV (or HSB) Color Codes**

Specify the HSV color-naming scheme in terms of hue, saturation, and value (or brightness) components.

HSV color names are of the form Vhhhssvv, where the following is true:

- V indicates that this is an HSV color specification.
- hhh is the hue component.
- ss is the saturation component.
- vv is value or brightness component.

The components are given as hexadecimal numbers. The hue component has the range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal). Both the saturation and value (brightness) components are hexadecimal, scaled to a range of 0 to 255, and expressed with values of 00 through FF. Thus, they provide 256 levels for each component.

**Table 11.8  Examples of HSV (or HSB) Color Codes**

<table>
<thead>
<tr>
<th>Color</th>
<th>HSV Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>V000FFFF</td>
</tr>
<tr>
<td>Green</td>
<td>V078FFFF</td>
</tr>
<tr>
<td>Blue</td>
<td>V0F0FFFF</td>
</tr>
<tr>
<td>Light gray*</td>
<td>Vxxx00BB such as V07900BB</td>
</tr>
<tr>
<td>White*</td>
<td>Vxxx00FF such as V07900FF</td>
</tr>
<tr>
<td>Black*</td>
<td>Vxxx0000 such as V0790000</td>
</tr>
</tbody>
</table>

* When the saturation is set to 00, the color is a shade of gray. The value component determines the intensity of gray level. The xxx can be any hue.
Gray-Scale Color Codes

Specify the lightness or darkness of gray using the word GRAY and a lightness value. Gray-scale color codes are of the form GRAYll. The value ll is the lightness of the gray and is given as a hexadecimal number in the range 00 through FF. This scheme allows for 256 levels on the gray scale.

Note: GRAY, without a lightness value, is a SAS color name defined in the SAS registry. (See “SAS Color Names and RGB Values in the SAS Registry” on page 1329.) Its value is CX808080. Invalid color specifications are mapped to GRAY.

Table 11.9  Examples of Gray-Scale Color Codes

<table>
<thead>
<tr>
<th>Color</th>
<th>Gray-Scale Color Codes</th>
<th>RGB Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>GRAYFF</td>
<td>CXFFFFFF</td>
</tr>
<tr>
<td>light gray</td>
<td>GRAYC0</td>
<td>CXC0C0C0</td>
</tr>
<tr>
<td>dark gray</td>
<td>GRAY40</td>
<td>CX404040</td>
</tr>
<tr>
<td>Black</td>
<td>GRAY00</td>
<td>CX000000</td>
</tr>
</tbody>
</table>

SAS Color Names and RGB Values in the SAS Registry

In the SAS Registry, SAS provides a set of color names and RGB values that you can use to specify colors. These color names and RGB values are common to most web browsers. You can specify the name itself or the RGB value associated with that color name. To view the color names as associated RGB values that are defined in the registry, submit the following code;

```plaintext
proc registry list
 startat="COLORNAMES";
run;
```

SAS prints the output in the SAS log.

You can also create your own color values by adding them to the registry. For information about viewing and modifying the list of color names, see “Using the SAS Registry to Control Color” in SAS Language Reference: Concepts.

Color Naming System (CNS) Values

With CNS, you specify a color value by specifying lightness, saturation, and hue, in that order, using the terms shown in the following table.

Table 11.10  Color Naming System Values

<table>
<thead>
<tr>
<th>Lightness</th>
<th>Saturation</th>
<th>Hue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Gray</td>
<td>Blue</td>
</tr>
</tbody>
</table>
### Lightness | Saturation | Hue
---|---|---
Very Dark | Grayish | Purple
Dark | Moderate | Red
Medium | Strong | Orange/Brown
Light | Vivid | Yellow
Very Light |  | Green
White |  | 

Follow these rules when you are determining the CNS color name:

- The lightness values black and white should not be used with saturation or hue values.
- If not specified, medium is the default lightness value and vivid is the default saturation value.
- Gray is the only saturation value that can be used without a hue.
- Unless the color that you want is black, white, or some form of gray, you must specify at least one hue.

One or two hue values can be used in the CNS color name. When using two hue values, the hues must be adjacent to each other in the following list: blue, purple, red, orange/brown, yellow, green, and then returning to blue. When two hues are used, the resulting color is a combination of both colors. Use the suffix *ish* to reduce the effect of a hue when two hues are combined. Reddish purple is less red than red purple. If you are using a color with an *ish* suffix, this color must precede the color without the *ish* suffix.

Color names can be written in the following ways:
- without space separators between words
- with an underscore to separate words
- with a space to separate words, enclosed in quotation marks

For example, the following are all valid color specifications:
- verylightmoderatexpurplishblue
- very_light_moderate_purplish_blue
- “very light moderate purplish blue”

**Note:** If a CNS color name is also a color name in the SAS Registry, the SAS Registry color value takes precedence. Some CNS color names and color names in the SAS Registry have different color values. To use a CNS color value when the color name is also in the SAS Registry, do the following:

- Include a space to separate the words.
- Enclose the entire color name in quotation marks.
Part 3

Controlling the Procedure Output

Chapter 12
Controlling the Appearance of Your Graphs ................. 1333

Chapter 13
Managing Your Graphics with ODS ......................... 1367
Chapter 12
Controlling the Appearance of Your Graphs

Overview
Along with table and page attributes, ODS styles contain a collection of graphical attributes such as color, marker shape, line pattern, fonts, and so on. Many carefully designed styles are shipped with SAS that enhance the visual impact of the graphics.

In addition to creating visually appealing graphics, many key elements of effective graphics are built into the various elements of the styles, such as the following:

• provide maximum contrast between backgrounds and data
• provide for ease of discrimination among different groups
• provide equal emphasis for data with equal importance

The ODS styles are used to produce professional looking graphics without the need for further modification. However, you have several options for modifying the appearance of your graphs if you choose to do so.

You can customize your graphical output at three levels.

The following table shows the three levels of customization.

Table 12.1  Levels of Customization

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Level of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change the style. See “Specifying Styles” on page 1338.</td>
<td>Specify a style with the STYLE= option on the ODS destination statement to change the appearance of the entire graph. Requires no further modification. The active style affects all SAS output and remains in effect until the ODS style or destination is changed.</td>
<td>low</td>
</tr>
<tr>
<td>Change attributes for graphs that specify a group variable. See “Grouped Data” on page 1351.</td>
<td>Change group colors, markers, and so on, within the procedure, without having to change the ODS style template. The appearance options override the corresponding defaults from the current style. The appearance options affect only the procedure in which they are specified.</td>
<td>low</td>
</tr>
</tbody>
</table>
| Use plot options. See “Using Plot Options to Control Graph Appearance” on page 1339. | Specify an appearance option in one or more plot statements to change various aspects of your graph. The appearance options override the corresponding defaults from the current style.  
  *Note:* Not all appearance attributes can be specified in this way. The appearance options affect only the plot statement in which they are specified. | low                 |
| Modify individual style elements. See “Modifying Style Templates” on page 1352. | Specify or change style attributes in order to modify a style element. This requires the use of PROC TEMPLATE style statements. The active style affects all SAS output and remains in effect until the ODS style or destination is changed. | high                |
Understanding Styles

About Styles and Style Elements

ODS styles are produced from compiled STYLE templates written in PROC TEMPLATE style syntax. An ODS style template is a collection of style elements that provides specific visual attributes for your SAS output.

The style elements of a style are designed to ensure the goals of effective graphics. Each style element is a named collection of style attributes such as color, marker symbol, line style, font face, as well as many others. Each graphical element of a plot, such as a marker, a bar, a line or a title, derives its visual attributes from a specific style element from the active style.

Changing the style for an ODS destination is the easiest way to change a graph's appearance. Changing the current style requires only the use of the STYLE= option on an ODS destination statement. For more information, see “Specify a Style for an ODS Destination” on page 1338.

Note: The style that a destination uses is applied to tabular output as well as graphical output.

About the Default Styles

Every ODS output destination is associated with a default style. These default styles are different for each destination. Therefore, your output might look different depending on which destination you use. For example, the default style for the PRINTER destination is “Printer” while the default style for the HTML destination is “HTMLBlue.”

For a table that lists the default styles for ODS destinations, see “Working with Styles” in SAS Output Delivery System: Procedures Guide.

You can display a list of the available styles by submitting the following PROC TEMPLATE statements:

```
proc template;
 list styles;
run;
```

You can change the default style for a destination by modifying the SAS Preferences or the SAS Registry.

See Also

- “Change the Default Style for the HTML Destination” on page 1338
- “Changing a Default Style in the SAS Registry” on page 1339

Recommended Styles

SAS ships a set of styles that have been designed by GUI experts to address the needs of different situations, while ensuring the principles of effective graphics.
The following table shows a subset of the styles shipped with SAS that are particularly suitable for statistical graphics.

**Note:**
- HTMLBlue is the default style for the ODS HTML destination.
- Journal2 and Journal3 by default render grouped bars with fill patterns. For more information, see “Using Fill Patterns to Distinguish Grouped Bar Charts” on page 1353.

**Table 12.2  Recommended ODS Styles**

<table>
<thead>
<tr>
<th>Style</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTING</td>
<td><img src="image" alt="Listing Style" /></td>
</tr>
</tbody>
</table>
| • white background  
• white wall  
• sans-serif fonts  
• color used for lines, markers, and filled areas  
• other colors the same as DEFAULT style |

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th><img src="image" alt="Default Style" /></th>
</tr>
</thead>
</table>
| • gray background  
• white wall  
• sans-serif fonts |

<table>
<thead>
<tr>
<th>STATISTICAL</th>
<th><img src="image" alt="Statistical Style" /></th>
</tr>
</thead>
</table>
| • white background  
• white wall  
• sans-serif fonts  
• contrasting color scheme of blues, reds, greens for markers, lines, and filled areas |
<table>
<thead>
<tr>
<th>Style</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HTMLBLUE</strong></td>
<td><img src="image1" alt="HTMLBlue Style" /></td>
</tr>
<tr>
<td>• white background</td>
<td></td>
</tr>
<tr>
<td>• white wall</td>
<td></td>
</tr>
<tr>
<td>• sans-serif fonts</td>
<td></td>
</tr>
<tr>
<td>• table colors match the graph colors</td>
<td></td>
</tr>
<tr>
<td>• group distinctions based on color rather than marker or line styles</td>
<td></td>
</tr>
<tr>
<td>• a lighter color scheme for HTML content</td>
<td></td>
</tr>
</tbody>
</table>

**ANALYSIS**	![Analysis Style](image2)
• light tan background	
• white wall	
• sans-serif fonts	
• muted color scheme of tans, greens, yellows, oranges and browns for lines, markers, and filled areas	

**JOURNAL and JOURNAL3**	![Journal3 Style](image3)
• white background	
• white wall	
• sans-serif fonts	
• gray-scale color scheme for markers, lines, and filled areas	
• gray-scale pattern and color scheme for bar fill patterns (JOURNAL3 only)	

**JOURNAL2**	![Journal2 Style](image4)
• white background	
• white wall	
• sans-serif fonts	
• black-only scheme for markers, lines, and bar fill patterns	
• no solid filled areas—a minimal ink style	
Viewing a Style Template

In the SAS windowing environment, you can view the styles that SAS provides by using the command line or the graphical interface.

To use the graphical interface, follow these steps:
1. In the Results window, select the Results folder. Right-click and select Templates to open the Templates window.
2. Double-click Sashelp.Tmplmst to view the contents of that directory.
3. Double-click Styles to view the contents of that directory.
4. Double-click the style template that you want to view. For example, the HTMLBlue style template is the template store for HTML output.

To use the command line, follow these steps:
1. To view the Templates window, submit this command in the command line:
   `odstemplates`
   The Templates window contains the item stores Sasuser.Templat and Sashelp.Tmplmst.
2. Double-click Sashelp.Tmplmst to expand the list of directories where ODS templates are stored.
3. To view the style templates that SAS provides, double-click the Styles item store.
4. Right-click the style template that you want to view and select Open. The style template is displayed in the Template Browser window.

Specifying Styles

Specify a Style for an ODS Destination

Each ODS destination has a default style that is set by SAS. By specifying STYLE=style-template in your ODS destination statement, you can create an entirely different appearance for your graphs.

For example, you can specify that ODS apply the Styles.Journal style to all HTML output with one of the following statements:

```
ods html style=styles.journal;
ods html style=journal;
```

This style is applied to all output for that destination until you change the style or start a new SAS session.

*Note:* HTML is the default destination. If you close this destination and do not open another destination, then no destinations are open.

Change the Default Style for the HTML Destination

The default style for the HTML destination is HTMLBlue.
To change the default style in the SAS windowing environment:
1. Select **Tools** ⇒ **Options** ⇒ **Preferences**.
2. Select the **Results** tab.
3. Select a new default style from the **Style** list box.
4. Click **OK**.

To change the default style in SAS Studio:
1. Select the More application options button and select **Preferences**.
2. Click **Results**.
3. Select a new default style from the list boxes. There is a separate list box for HTML, PDF, and RTF output.
4. Click **Save**.

**Changing a Default Style in the SAS Registry**

By default, the SAS registry is configured to apply a default style to the output for each ODS destination. To permanently change the default style for a destination, you can change the setting of **Selected Style** in the SAS registry.


---

**Using Plot Options to Control Graph Appearance**

**Overview of the Appearance Options**

ODS styles enable you to control the overall appearance of the graphs. The ODS Graphics procedures also enable you to control the appearance of particular graphics elements in a graph. Graphics elements include lines, bars, markers, text, and so on.

Many ODS Graphics procedure statements have options and suboptions that control the appearance of different parts of a plot or graph. Default visual attributes of various graphics elements are derived from the specific style elements of the active style. By using appearance options in your procedure statements, you can change the appearance of one or more aspects of your graph without changing the overall style.

For example, the following statement specifies that the mean value confidence limits (for a regression plot) using the GraphConfidence2 style element instead of the default GraphConfidence style element:

```sas
reg x=height y=weight / clmattrs=GraphConfidence2;
```

You can specify values for appearance options by using three different methods:

- specify a style element.

  ```sas
density height / lineattrs=graphfit2;
```

  **Note:** This is the preferred method.

See “Specifying a Style Element” on page 1340.
• specify hardcoded values.

    density height / lineattrs=(pattern=dashdashdot color=red);

This method overrides one or more attributes of the style element. See “Specifying Hardcoded Values” on page 1341.

• specify a style element, but override one or more attributes with hardcoded values.
This method combines the first two methods.

    density height / lineattrs=graphfit2 {pattern=dashdashdot};

See “Specifying a Style Element with Hardcoded Values” on page 1342.

The appearance options and their values are specific to each statement. For complete documentation about the statements and their options, see the syntax section for the appropriate procedure and statement.

See Also
“About Styles and Style Elements” on page 1335

Specifying a Style Element

You can change the visual attributes that are used for a graphics element by specifying a particular style element for any appearance option. Graphics elements include lines, bars, markers, text, and so on.

For example, the graph shown here is a histogram with a normal density curve. By default, the visual attributes of the density curve are specified by the style attributes within the style element GraphFit.

Table 12.3 Histogram with Density Curve That Uses the Default Style Element

<table>
<thead>
<tr>
<th>Height</th>
<th>Bars</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

proc sgplot data=sashelp.class
  noautolegend;
  histogram height;
  density height;
run;

You can use the LINEATTRS= option in the DENSITY statement to change the style element that is used for the line attributes. For example, when you are using the HTMLBlue style, specifying the GraphFit2 style element changes the density curve line to an orange color.

    density height / lineattrs=graphfit2;
The full code is below.

**Table 12.4  Histogram with Density Curve That Specifies a Style Element**

```
proc sgplot data=sashelp.class
 noautolegend;
 histogram height;
 density height / lineattrs=graphfit2;
run;
```

Specifying a style element is the preferred way to change the appearance of a graphics element. Visual attributes that are referenced by the style element are chosen to provide consistency and appropriate emphasis based on display principles for statistical graphics. If you later change the style for the graph, the graphics element is compatible with the new style.

**See Also**

- “About Styles and Style Elements” on page 1335
- “Style Elements for Use with ODS Graphics” on page 1357

**Specifying Hardcoded Values**

In some cases it is important to have a specific visual effect, but it is not necessary for the plot to be reused with different styles. In such a case, you can specify hardcoded values for the visual attributes in the appearance option.

For example, you could use the following statement to set the density curve attributes:

```
density height / lineattrs=(pattern=dashdashdot color=red);
```

**Table 12.5  Using Hardcoded Values**

```
proc sgplot data=sashelp.class
 noautolegend;
 histogram height;
 density height / lineattrs=(pattern=dashdashdot color=red);
run;
```

The result is a red density curve with a DashDashDot pattern.

In general, it is recommended that you specify the style element rather than hardcoded values. Style elements are designed to derive all of the relevant visual attributes from the
applied style. When you specify a hardcoded value for the line color, as in this example, the color is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new style. Also, a hardcoded color could be exactly the same color as the wall color of another style, and become indistinguishable from the wall.

For example, if you change the overall style to Journal, which only uses gray-scale colors, the color for the curve is still red. This result might not be desirable.

You use a standard syntax to hardcode colors, line thickness, line patterns, and marker symbols.

For more information about this syntax, see the following topics:

- “Color-Naming Schemes” on page 1325
- “Units of Measurement” on page 1325
- List of Line Patterns on page 1321
- List of Marker Symbols on page 1323

### Specifying a Style Element with Hardcoded Values

You can specify a style element, but override one or more attributes of that style element with hardcoded values.

This example modifies a density curve. The example specifies the GraphFit2 style element for line attributes, but also specifies a particular line pattern with a hardcoded value.

```plaintext
density height / lineattrs=graphfit2 (pattern=dashdashdot);
```

### Table 12.6 Using a Hardcoded Value with a Style Element, Default Style

<table>
<thead>
<tr>
<th>Density Height</th>
<th>Lineattrs=GraphFit2 (Pattern=DashDashDot)</th>
</tr>
</thead>
</table>

If you change the overall style to Journal, the color for this curve changes as well. However, the pattern remains DashDashDot because it was hardcoded.

Always be careful when you hardcode a value. When you specify a hardcoded value for the line pattern, as in this example, the pattern is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new style.
Using Data Skins

Data skins add a heightened visual effect to two-dimensional plots. Each skin uses shading, highlighting, and shadowing to give the appearance of contour and depth to certain elements of a graph, including the legend. For plots, the effect is generated by filters and is applied to filled areas, markers, and lines. When a data skin is applied to a filled area, it does not change the underlying fill color and pattern of the area. Typically, a data skin sets the area fill outline color to black. The outline color is controlled by the filters that generate the skin and is not controlled by the ODS style attributes or any custom outline attributes that are specified. For very small or very narrow filled areas, the data skin might not draw an outline around the filled area. For filled outlined markers, the outline color is determined by the ODS style attributes or by any custom marker attributes that are specified.

The effect that a data skin has on a filled area depends on the skin type, and on the size and color of the filled area. Because the ODS style determines the fill color by default, the effect can depend on the ODS style. Some skins have a greater effect than others. Most of the skins work best with lighter colors over a medium to large filled area. Over small filled areas and with some fill colors, the effect can be significantly reduced.

Note: Some ODS styles such as JOURNAL2 and MONOCHROMPRINTER use pattern fill for certain areas rather than color fill. For these styles, data skins have no effect on the pattern-filled areas.

You can apply data skins to filled areas, markers, and lines in a plot. The data skins include CRISP, GLOSS, MATTE, PRESSSED, and SHEEN. The following figure shows the effect of each data skin on filled bars and bubbles with the default HTMLBlue ODS style. A display with no data skin applied is included for comparison.

Figure 12.1 Data Skins Applied to Filled Bars and Bubbles

The next figure shows each of the data skins applied to large HOMEDOWNFILLED markers.
The effect of a data skin on filled markers is more apparent when the markers are enlarged.

Except for the GLOSS data skin, the data skins also affect the appearance of plot lines and the outlines for unfilled markers and bubbles. They do not affect the outlines of unfilled bars, boxes, and so on. As with filled areas, the effect of data skins on lines varies with skin type and line color. It is also more apparent when the thickness of the lines is increased. The skins do not change the color of the lines. They add subtle effects such as drop shadows that enhance their appearance. The following figures show each of the data skins applied to plot lines, unfilled bubbles, and unfilled markers.

**Figure 12.2  Data Skins Applied to HOMEDOWNFILLED Markers**

**Figure 12.3  Data Skins Applied to Plot Lines**
For all plots that support data skins, the GraphSkin:DataSkin style element in the active style specifies by default the data skin that is applied. For an individual plot, you can use the DATASKIN= option in the plot statement to override the data skin that is specified by the current style. You can set the following values for the style GraphSkin:DataSkin element and the DATASKIN= options: NONE, SHEEN, GLOSS, PRESSED, CRISP, or MATTE.

In many cases, the maximum number of skinned graphical elements is limited to 200 per plot for performance reasons. For graphs that contain multiple plots, this limit applies to each plot and not to the entire graph. A skinned graphical element can be a bar, bubble, marker, series line, and so on. It does not necessarily correlate with the number of observations in the plot data. If this limit is exceeded for a plot, the specified data skin is not applied to that plot, and the following warning appears in the SAS log:

NOTE: Data skin has been disabled because the threshold has been reached. You can set DATASKINMAX=nnn in the ODS GRAPHICS statement to restore data skin.
In that case, you can use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the threshold to the value specified in the note (nnn) or to a higher value.

*Note:* A plot that contains a large number of skinned graphical elements might take several minutes to render.

---

### Subpixel Rendering

You can specify subpixel rendering in order to generate smooth curves and more precise bar spacing.

In the second maintenance release of SAS 9.4 and in earlier releases, subpixel rendering is available for line-based plots and bar charts in the procedures. Starting with the third maintenance release of SAS 9.4, subpixel rendering is available for all plots and charts.

Starting with the third maintenance release of SAS 9.4, the ODS GRAPHICS statement includes support for subpixel rendering. If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used. Otherwise, the system applies subpixel rendering when the option makes sense for the graph.

The ODS Graphics procedures can override the default setting by using their own SUBPIXEL option.

- To enable subpixel rendering, include the SUBPIXEL option in your PROC SGPANEL, PROC SGPLOT, or PROC SGSCATTER statement.
- To disable subpixel rendering, include the NOSUBPIXEL option in those statements.

In the following example, the curved lines can appear slightly jagged. The partial graph images show the effect of applying SUBPIXEL on curved lines.

*Table 12.7 Effect of Subpixel Rendering on Curves*

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

In the previous example, the subpixel rendering produces smoother lines.

Subpixel rendering also has an effect on bar charts. When charts have a large number of bars that are very close together, slight variations in spacing between the bars that occur due to integer rounding can become more obvious. For more precise bar spacing, enable subpixel rendering.

*Table 12.8 Effect of Subpixel Rendering on Spaces between Bars*

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="Chart" /></td>
<td><img src="image4.png" alt="Chart" /></td>
</tr>
</tbody>
</table>
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

**Output for Grouped versus Non-Grouped Data**

### Non-Grouped Data

**The Default Appearance of Non-Grouped Output**

For the SGPLOT and SGPANEL procedures, many plots use the same style element, GraphDataDefault, for graphics elements such as lines, bars, and markers. These plots have the same default appearance.

In the graph that is produced by the following code, the bar chart and line chart use visual attributes from the GraphDataDefault element. The visual attributes for the line (and markers if specified) are designed to coordinate with the bar fill areas.

**Table 12.9  Default Appearance of Non-Grouped Bars and Lines**

However, when identical plot types are overlaid, the procedures instead use style elements named GraphData1 to GraphData\(n\) (where \(n=12\) for most styles).
In the following graph, the series lines have different colors and are easy to distinguish. The plots use the GraphData1, GraphData2, and GraphData3 style elements.

**Table 12.10 Default Appearance When Three Series Plots Are Overlaid**

```ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
(where=(date >= "01jan2004"d
and stock = "IBM"));
title "Stock Trend";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
ods graphics / reset=all;
```

The GraphData style elements use different marker symbols and fill colors to ensure that the plots differ in appearance. All line and marker colors are of different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another. Fill colors are based on the same hue but have less saturation, making them similar but more muted than the corresponding contrast colors.

Line patterns can also vary depending on the style that is used for the graph. Some styles vary line patterns so that elements in color plots can be distinguished even when the plot is sent to a black-and-white printer. Line patterns do not vary for the HTMLBlue style or any style that is defined with the ATTRPRIORITY="Color" option.

**Note:** If you have a bar-line overlay with multiple lines, the lines cycle through GraphData, whereas the bar remains GraphDataDefault.

Other plots use more specialized style elements for their appearance. For example, the line attributes for density, loess, PBSpline, and regression curves are determined by the GraphFit style element.

Here are some interactions for plots with specialized style elements:

- If you have a histogram with multiple density curves, the curve style pattern changes with the number of curves. For one curve, GraphFit is used. For two curves, GraphFit and GraphFit2 are used. For three or more, all curves switch over to GraphData. The histogram uses GraphDataDefault.

- If you have multiple fit plots (loess, regression, or PBSpline), the behavior is like the density curves. For one fit, GraphFit is used. For two fits, GraphFit and GraphFit2 are used. For three or more, all fits switch to GraphData. (This behavior also applies to the SGSCATTER procedure when multiple fits are specified.)

- If multiple ellipses are overlaid on another plot (such as a scatter), the ellipses cycle through GraphData, whereas the plot uses GraphDataDefault.

In general, if all of the plots have the same statement name (all scatter, all series, and so on), then the plots automatically cycle.

The CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SGPANEL procedure statements can be used to manually control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. The NOCYCLEATTRS option forces cycling to be off. These options are described in the next section.
Changing the Appearance of Non-Grouped Output

You can use plot options to specify particular GraphData style elements for your plots in order to achieve a different appearance.

In the following graph, the style elements GraphData3, GraphData4, and GraphData5 are used to change the default appearance of the series lines in the graph.

Table 12.11 Overlaid Series Plots with Particular GraphData Elements Specified

```ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM"));
title "Stock Trend";
series x=date y=close
 / lineattrs= GraphData3;
series x=date y=low
 / lineattrs= GraphData4;
series x=date y=high
 / lineattrs= GraphData5;
run;
title;
ods graphics / reset=all;
```

Note: To achieve a different appearance for the series lines, you can use any style element that has line properties. However, the GraphData style elements are very suitable for this purpose. The GraphData style elements have been carefully constructed with different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another.

For more information, see “Specifying a Style Element” on page 1340.

Sometimes, you might want to control one or more attributes of a style element. You can use plot options to override, or hardcode, an attribute in the style element.

The following two graphs show the same plots before and after the PATTERN= option is used. The PATTERN= option is used with two series lines to force a different line pattern.

Table 12.12 The Effect of Specifying a Hardcoded Line Pattern

```ods html style=journal;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM"));
title "Default Journal Style";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
ods html style=htmlblue;
```
Note: In SAS Studio, you can specify the style in the Preferences window.
For more information, see “Specifying Hardcoded Values” on page 1341 and “Specifying a Style Element with Hardcoded Values” on page 1342.

You can also use the CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SG PANEL procedure statements to control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. If the plots do not have unique attributes by default, then you can specify the CYCLEATTRS option to force unique attributes for each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

The following two graphs show the same plots before and after the CYCLEATTRS option is used.

Table 12.13  The Effect of Specifying the CYCLEATTRS Option
In the second graph, the procedure retrieves the attributes from GraphData1 and GraphData2. The first graph retrieves all of its data attributes from GraphDataDefault.

**Note:** Depending on the size of your graph, the output might not look identical to what is shown here. See “About the Examples in This Book” on page 13.

### Grouped Data

**The Appearance of Grouped Output**

The GROUP= option is used to plot data when a classification or grouping variable is available. By default, this option automatically uses the GraphData\textit{n} style elements for the presentation of each unique group value.

You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified.

To specify appearance options for a procedure, do the following:

- In the SGPLOT and SGPANEL procedures, use the STYLEATTRS statement. Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options.
- Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options in the PROC SGSCATTER statement.

You can also use attribute maps to specify particular visual attributes for group values of the data. Attribute mapping does not require the input data set to be ordered by the group variable. Attribute mapping is explained in the following section.

**Making the Appearance of Grouped Data Independent of Data Order**

When unique group values are gathered, they are internally recorded in the order in which they appear in the data. They are not subsequently sorted. This means that if an input data source is modified, sorted, or filtered, the order of the group values and their associations with GraphData\textit{n} might change.

The following two graphs show the same plots before and after the data is sorted.

<table>
<thead>
<tr>
<th>Table 12.14 The Effect That Sorting Has on Grouped Plot Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Default Graph" /></td>
</tr>
<tr>
<td><code>ods graphics on / width=4.5in;</code></td>
</tr>
<tr>
<td><code>proc sgplot data=sashelp.stocks;</code></td>
</tr>
<tr>
<td><code>where date &gt;= &quot;01jun2004&quot;d;</code></td>
</tr>
<tr>
<td><code>title &quot;Default Graph&quot;;</code></td>
</tr>
<tr>
<td><code>series x=date y=close / group= stock;</code></td>
</tr>
<tr>
<td><code>run;</code></td>
</tr>
<tr>
<td><code>title;</code></td>
</tr>
</tbody>
</table>
Because the position of the data in the sorted data set has changed, the sorted graph uses different GraphData style elements for the group values.

In many cases, this might not be a problem if you do not care which line pattern, marker symbols, or colors are associated with particular group values. However, in some cases you might care. For example, if you create many plots grouped by gender, you might want a consistent set of visual properties for females and males across plots, regardless of the input data order.

SG attribute maps enable you to ensure that particular visual attributes are applied to the data independent of data order.

The following output shows a bar chart that uses the MYATTRMAP discrete attribute map data set for its pink and blue bar colors. The FILLCOLOR= values determine the color of the bars, and the LINECOLOR= values determine the color of the border edges around the bars.

```sas
data myattrmap;
 length linecolor $ 9 fillcolor $ 9;
 input ID $ value $ linecolor $ fillcolor $;
 datalines;
 myid F pink pink
 myid M lightblue lightblue
 ;
run;
proc sgplot data=sashelp.class
dattrmap=myattrmap;
 vbar age / response=height group=sex
groupdisplay=cluster attrid=myid;
run;
```

For complete information about attribute maps, see Chapter 14, “Using Attribute Maps to Control Visual Attributes,” on page 1383.

---

**Modifying Style Templates**

Style templates are created and modified with the TEMPLATE procedure. You can use the DEFINE STYLE statement to create your own style from scratch or from an existing style. When you create styles from existing styles, you can modify the individual style elements.
For example, the following program shows the style element GraphDataDefault, as defined in the Default style:

```sas
proc template;
 define style Styles.Default;
 ...
 class GraphDataDefault /
 endcolor = GraphColors("gramp3cend")
 neutralcolor = GraphColors("gramp3cneutral")
 startcolor = GraphColors("gramp3cstart")
 markersize = 7px
 markersymbol = "circle"
 linethickness = 1px
 linestyle = 1
 contrastcolor = GraphColors("gcdata")
 color = GraphColors("gdata");
end;
run;
```

You can use the DEFINE STYLE statement to create a new style from the Default style and modify the GraphDataDefault style element.

The following program creates the new style MyStyleDefault, which inherits all of its style elements and style attributes from the Default style, and customizes the GraphDataDefault style element:

```sas
proc template;
 define style MyStyleDefault;
 parent=Styles.Default;
 style GraphDataDefault from GraphDataDefault /
 markersize = 10px
 markersymbol = "square";
 end;
run;
```

For complete documentation on using PROC TEMPLATE to modify and create styles, see the *SAS Output Delivery System: User's Guide*.

**Using Fill Patterns to Distinguish Grouped Bar Charts**

Some SAS styles display fill patterns for grouped bars. Fill patterns help distinguish between different categories when you are producing or printing black and white output.

The fill patterns appear for grouped data in the following types of plots, whether generated using the SGPLOT procedure or the SGPANEL procedure:

- HBAR
- HBARPARM
- VBARBASIC
- HBARBASIC
- VBAR
- VBARPARM
Here is example output that was generated using the JOURNAL2 style.

*Figure 12.6 Fill Pattern for Grouped Bars*

The following code was used to produce the example output.

```sas
ods html style=journal2;
proc sgplot data=sashelp.class;
 hbar age / group= sex;
run;
ods html style=htmlblue;
```

*Note*: In SAS Studio, you can specify the style in the Preferences window.

Here are the SAS styles that by default render grouped bars with fill patterns:

- **JOURNAL2**
- **JOURNAL3** (uses gray and the fill pattern)
- **MONOCHROMEPINTER**

These styles use the GRAPHBAR style element for the fill pattern. If you customize a style in the GTL, then you can add the GRAPHBAR style element to your custom style.

The following example shows a graph that uses a custom style. The style, based on the Journal2 style (which uses the GRAPHBAR element), adds color style elements. The result combines patterns, colors, and skins.
The following code was used to produce the output.

```plaintext
/* Specify a path for the ODS output. Replace output-path
with your path. See the Note following this code. */
filename odsout "output-path";
proc template;
define style Styles.MyJournal2;
 parent = styles.journal2;
 style GraphColors from GraphColors /
 'gdata'=cffffff
 'gdata1'=cffffff
 'gdata2'=cxc0c0c0
 'gdata3'=cx0e0e0e0
 'gdata4'=cxa0a0a0
 'gdata5'=cx909090
 'gdata6'=cffffff
 'gdata7'=cxc0c0c0
 'gdata8'=cx0e0e0e0
 'gdata9'=cxa0a0a0
 'gdata10'=cx909090
 'gdata11'=cffffff
 'gdata12'=cxc0c0c0
 'gdata13'=cx0e0e0e0
 'gdata14'=cxa0a0a0
 'gdata15'=cx909090;
 style GraphHistogram from GraphComponent /
 displayopts = "outline";
 style GraphEllipse from GraphComponent /
```

Figure 12.7  Fill Pattern with Color
displayopts = "outline";
style GraphBand from GraphComponent / displayopts = "outline";
style GraphBox from GraphComponent / displayopts = "caps median mean outliers"
connect = "mean"
capstyle = "serif";
style GraphBar from GraphComponent / displayopts = "outline fillpattern";
style GraphData1 from GraphData1 / fillpattern = "L1";
style GraphData2 from GraphData2 / fillpattern = "X1";
style GraphData3 from GraphData3 / fillpattern = "R1";
style GraphData4 from GraphData4 / fillpattern = "L2";
style GraphData5 from GraphData5 / fillpattern = "X2";
style GraphData6 from GraphData6 / fillpattern = "R2";
style GraphData7 from GraphData7 / fillpattern = "L3";
style GraphData8 from GraphData8 / fillpattern = "X3";
style GraphData9 from GraphData9 / fillpattern = "R3";
style GraphData10 from GraphData10 / fillpattern = "L4";
style GraphData11 from GraphData11 / fillpattern = "X4";
style GraphData12 from GraphData12 / fillpattern = "R4";
style GraphData13 from GraphComponent / fillpattern = "L5";
style GraphData14 from GraphComponent / fillpattern = "X5";
style GraphData15 from GraphComponent / fillpattern = "R5";
end;

define style Styles.MyJournal3;
parent = styles.MyJournal2;
style GraphBar from GraphComponent / displayopts = "fill outline fillpattern";
style GraphColors from GraphColors / 'gdata'=cffffff
'gdata1'=cxa0c0f0
'gdata2'=cxf0c0a0
'gdata3'=cxa0f0c0;
end;
run;

/* Specify the output environment, including the style. */
ods _all_ close;
ods html path=odsout file="MyBarPatterns.htm" style=MyJournal3;
ods graphics / reset imagename="MyBarPatterns";

/* Generate the bar chart. */
proc sgplot data=sashelp.cars;
  vbar type / group= origin dataskin= pressed;
run;
ods graphics / reset=all;
ods html close;
ods html; /* Not required in SAS Studio */

Note: In SAS Studio, when you customize the output environment, it is useful to specify an output path for the ODS output. Depending on your deployment, you might not have Write permission for the default working directory. For more information about customizing the SAS Studio output environment, see “SAS Studio and ODS” in SAS Output Delivery System: User's Guide.

Tip In the SAS windowing environment, you might specify odsout "." to reference your home directory. In SAS Studio, you would specify odsout "&_SASWS_" to reference your home directory.

### Style Elements for Use with ODS Graphics

Style elements affect ODS graphics and can be specified by GTL appearance options or used in styles. Attribute values can be changed with the TEMPLATE procedure.

In the ODS Graphics procedures, you can specify style elements to override the default appearance of particular graphics elements, such as data labels. Certain style elements were created to be used with specific plots. For example, the style element GraphFit2 is best used to modify secondary fit lines. The style element GraphConfidence2 was created to modify secondary confidence bands. However, many plots provide the option to override the style element with a different style element, or to specify particular attributes for a style element.

Here are examples that specify a style element and an attribute of a style element:

- GraphData2 is an example of a style element.
- GraphData2:Color is an example of a style attribute.

The tables below list each style element, the portion of the graph that it affects, and the applicable attributes. For more information about the attributes, see “Style Attributes” in SAS Output Delivery System: User's Guide.

#### Table 12.15  Graph Style Elements: General Graph Appearance

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
</table>
| Graph         | Graph size and outer border appearance | OutputWidth  
|               |                           | OutputHeight  
|               |                           | BorderColor  
|               |                           | BorderWidth  
|               |                           | CellPadding  
<p>|               |                           | CellSpacing  |</p>
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAnnoLine</td>
<td>Annotation lines</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphAnnoShape</td>
<td>Annotation closed shapes such as circles, and squares</td>
<td>Color, ContrastColor, LineThickness, LineStyle, Transparency</td>
</tr>
<tr>
<td>GraphAnnoText</td>
<td>Annotation text</td>
<td>Font or font-attributes, Color, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphAxisLines</td>
<td>X, Y and Z axis lines</td>
<td>ContrastColor, LineStyle, LineThickness, TickDisplay</td>
</tr>
<tr>
<td>GraphBackground</td>
<td>Background of the graph</td>
<td>Color, Transparency</td>
</tr>
<tr>
<td>GraphBorderLines</td>
<td>Border around graph wall, legend border, borders to complete axis frame</td>
<td>ContrastColor, LineThickness, LineStyle</td>
</tr>
<tr>
<td>GraphDataText</td>
<td>Text font and color for point and line labels</td>
<td>Font or font-attributes, Color</td>
</tr>
<tr>
<td>GraphFootnoteText</td>
<td>Text font and color for footnote(s)</td>
<td>Font or font-attributes, Color</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>Color, ContrastColor, DisplayOpts, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphHeaderBackground</td>
<td>Background color of the legend title</td>
<td>Color</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>GraphLabelText</td>
<td>Text font and color for axis labels and legend titles</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphLegendBackground</td>
<td>Background color of the legend</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td>GraphMinorGridLines</td>
<td>Appearance of the grid lines.</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayOpts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphOutlines</td>
<td>Outline properties for fill areas such as bars, pie slices, box plots, ellipses, and histograms</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphReference</td>
<td>Horizontal and vertical reference lines and drop lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphTitleText</td>
<td>Text font and color for title(s)</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphUnicodeText</td>
<td>Text font for Unicode values</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphValueText</td>
<td>Text font and color for axis tick values and legend values</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphWalls</td>
<td>Vertical wall(s) bounded by axes</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
</tbody>
</table>

*Font-attributes* can be one of the following: **FONTFAMILY=**, **FONTSIZE=**, **FONTSTYLE=**, **FONTWEIGHT=**.
Table 12.16  Style Elements Affecting Graphical Data Representation

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphBoxMean</td>
<td>Marker for mean</td>
<td>ContrastColor, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphBoxMedian</td>
<td>Line for median</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphBoxWhisker</td>
<td>Box whiskers and serifs</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConfidence</td>
<td>Primary confidence lines and bands, colors for bands and lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConfidence2</td>
<td>Secondary confidence lines and bands, color for bands, and contrast color for lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConnectLine</td>
<td>Line for connecting boxes or bars</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items, colors for filled areas, markers, and lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness, StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>GraphCutLine</td>
<td>Cutline attributes for a dendogram</td>
<td>Color, LineStyle</td>
</tr>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items, colors for filled areas, markers, and lines</td>
<td>Color, ContrastColor, MarkerSymbol, MarkerSize, LineStyle, LineThickness, StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>GraphError</td>
<td>Error line or error bar fill, ContrastColor for lines, Color for bar fill</td>
<td>CapStyle, ContrastColor, Color, LineStyle, Transparency</td>
</tr>
<tr>
<td>GraphFit</td>
<td>Primary fit lines such as a normal density curve</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphFit2</td>
<td>Secondary fit lines such as a kernel density curve</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphFinal</td>
<td>Final data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------------------------------------------</td>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>GraphInitial</td>
<td>Initial data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphMissing</td>
<td>Properties for graph items representing missing values</td>
<td>ContrastColor, Color, MarkerSymbol, MarkerSize, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphOther</td>
<td>Other data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphOverflow</td>
<td>Overflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphOutlier</td>
<td>Outlier data for the graph</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphPrediction</td>
<td>Prediction lines</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>GraphPredictionLimits</td>
<td>Fills for prediction limits</td>
<td>ContrastColor, Color, MarkerSize, Markersymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphUnderflow</td>
<td>Underflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, Markersymbol, TextColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphSelection</td>
<td>For interactive graphs, visual properties of selected item. Color for selected fill area, ContrastColor for selected marker or line.</td>
<td>ContrastColor, Color, MarkerSymbol, MarkerSize, LineStyle, LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThreeColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThreeColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TwoColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TwoColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, EndColor</td>
</tr>
</tbody>
</table>
### Table 12.17  Graphical Style Elements: Data Related (Grouped)

<table>
<thead>
<tr>
<th>Style Elements</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphData1</td>
<td>Primitives related to the first 7 grouped data items. Color applies to filled areas.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData2</td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td>GraphData3</td>
<td></td>
<td>FillPattern*</td>
</tr>
<tr>
<td>GraphData4</td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphData5</td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td>GraphData6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData8</td>
<td>Primitives related to the 8th through 11th grouped data items.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData9</td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td>GraphData10</td>
<td></td>
<td>FillPattern*</td>
</tr>
<tr>
<td>GraphData11</td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphData12</td>
<td>Primitives related to the 12th grouped data item.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData13*</td>
<td>Primitives related to the 13th through 15th grouped data items.</td>
<td>FillPattern</td>
</tr>
<tr>
<td>GraphData14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Style attribute FillPattern and style elements GraphData13–GraphData15 are available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles.

### Table 12.18  Display Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAltBlock</td>
<td>Alternate fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gablock&quot;)</td>
</tr>
<tr>
<td>GraphBand</td>
<td>Display options for confidence bands</td>
<td>DisplayOpts</td>
<td>&quot;Fill&quot;</td>
</tr>
<tr>
<td>GraphBar</td>
<td>Display options for bar charts</td>
<td>DisplayOpts</td>
<td>&quot;Fill outline&quot;</td>
</tr>
<tr>
<td>GraphBox</td>
<td>Display options for box plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill caps mean&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CapStyle</td>
<td>&quot;Median outliers&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect</td>
<td>&quot;Serif&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Mean&quot;</td>
</tr>
<tr>
<td>GraphBlock</td>
<td>Fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gblock&quot;)</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
<td>Possible Values</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>GraphEllipse</td>
<td>Display options for confidence ellipses</td>
<td>Display_OPTS</td>
<td>&quot;Outline&quot;</td>
</tr>
<tr>
<td>GraphHistogram</td>
<td>Display options for histograms</td>
<td>Display_OPTS</td>
<td>&quot;Fill outline&quot;</td>
</tr>
<tr>
<td>GraphSkins</td>
<td>One or more display features</td>
<td>DataSkin</td>
<td>CRISP GLOSS MATTE NONE PRESSED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KpiSkin</td>
<td>BASIC MODERN NONE ONYX SATIN</td>
</tr>
</tbody>
</table>
Chapter 13
Managing Your Graphics with ODS

Introduction to Managing Your Graphics with ODS

The Output Delivery System (ODS) manages all output created by procedures and enables you to display the output in a variety of formats, such as HTML, PDF, and RTF. The SAS ODS Graphics procedures and many SAS Analytical procedures use ODS Graphics for creation of their graphs.

ODS provides options for controlling many relevant features using the following statements:

- ODS destination statements. For more information, see “ODS Destination Statement Options Affecting ODS Graphics” on page 1369.
• the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

---

**Specifying ODS Destinations**

**Opening and Closing Destinations**

ODS can send your graphs to a number of different destinations, including RTF (rich text format), HTML (hypertext markup language), LISTING (the SAS LISTING destination), and PDF (portable document format). To send your graph to one of these destinations, you open the destination.

You use an ODS statement to open a destination, as in the following examples:

```ods html;```
```ods rtf;```
```ods listing;```
```ods pdf;```

For creation of ODS graphics, a valid ODS destination must be active. In Windows and UNIX operating environments, HTML is the default destination. The HTML destination remains open until you close it.

*Note:* For a list of valid ODS destinations, see “Supported File Types for Output Destinations” on page 92.

Graphs rendered to the LISTING destination are not automatically displayed in the Results Viewer. To view these graphs, go to the Results window and select a graph. (To open the Results window, select View ⇒ Results.)

Graphs rendered to the RTF and PDF destinations are not displayed until you close their destinations.

You can close destinations individually, as in the following examples:

```ods html close;```
```ods rtf close;```
```ods listing close;```
```ods pdf close;```

The following statement closes all open destinations:

```ods _all_ close;```

CAUTION:

Take care when closing destinations. As mentioned previously, at least one ODS destination must be active in order to generate ODS graphics.

Closing unneeded destinations makes your jobs run faster and creates fewer files. Because a graph is created for every open destination, your jobs consume fewer resources when you close unneeded destinations.

For a table that lists ODS destinations and the formatted output that results from each destination, see “Understanding ODS Destinations” in *SAS Output Delivery System: User's Guide.*

See Also

“ODS Destination Statement Options Affecting ODS Graphics” on page 1369
About Destination Options

You can use ODS destination statement options to control aspects of ODS graphic output. These options are specified in ODS destination statements using the following form:

ODS destination <option(s)>

For example, you can use ODS destination statements to control the following:

- the style that is applied to a graph. For more information, see “Specifying Styles” on page 1338.
- the image resolution in dots per inch. For more information, see “Controlling Image Resolution” on page 1375.

Specifying the Name and Location of Output Files

You can use ODS destination statement options to specify where you want your output to be displayed and where you want your image files to be stored.

The ODS HTML statement below specifies the following:

- the name of the output file
- the folder where images and the HTML file are stored

```ods html file="BoxPlot-Body.html" path="C:\myfiles" (url=none);
...
```

The output is written to the file `BoxPlot-Body.html`. The HTML file and images created by the output are stored in the folder "C:\myfiles". (An images subfolder is created there for the images.) The (URL=NONE) suboption specifies that no information from the PATH= option appears in the links or references to the output files. This suboption is useful for building output files that can be moved from one location to another.

If you do not specify a filename for your output, then SAS provides a default file that is determined by the ODS destination. You can check the SAS log to verify the name of the file in which your output is saved.

When the procedures are executed in the SAS windowing environment, if you do not specify a directory for the file, the file is saved in the directory that corresponds to your SAS Work library. The default directory for batch mode is the SAS current directory.

TIP You can verify the location of the current SAS Work library by opening the Libraries folder in the SAS Explorer window. Right-click Work and select Properties from the pop-up menu.

ODS Destination Statement Options Affecting ODS Graphics

Each ODS destination has options that govern aspects of your ODS Graphics output. The following table shows the options for the most commonly used destinations.
Table 13.1 ODS Destination Options That Affect ODS Graphics

<table>
<thead>
<tr>
<th>ODS Destination</th>
<th>Options for ODS Graphics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTING</td>
<td></td>
<td>Creates a stand-alone image. The default image format is PNG. (See also “Using a Universal Printer with ODS PRINTER to Control the Image Format” in SAS Graph Template Language: User's Guide.)</td>
</tr>
<tr>
<td></td>
<td>GPATH="directory-spec"</td>
<td>Indicates the directory where images are created. The default is the current working directory.</td>
</tr>
</tbody>
</table>
| | IMAGE_DPI=number | Specifies the image resolution in dots per inch for output images. IMAGE_DPI=96 is the default.
Note: For TIFF output in the second maintenance release of SAS 9.4 and in earlier releases, the DPI property for the TIFF image might show 100 DPI instead of the IMAGE_DPI= setting. The actual image resolution is the IMAGE_DPI= setting. This issue is fixed starting with the third maintenance release of SAS 9.4. |
| | STYLE= style-definition | Specifies the style to use. STYLE=LISTING is the default. |
| PDF | | Creates an embedded image or images in a PDF document. |
| | DPI=number | Specifies the image resolution in dots per inch for output images. DPI=150 is the default. |
| | STYLE= style-definition | Specifies the style to use. STYLE=PEARL is the default. |
| RTF | | Creates an embedded image or images in an RTF document. The default image format is EMF. |
| | IMAGE_DPI=number | Specifies the image resolution in dots per inch for output images. IMAGE_DPI=200 is the default. |
| | STYLE= style-definition | Specifies the style to use. STYLE=RTF is the default. |
ODS Destination | **Options for ODS Graphics** | **Description**
---|---|---
HTML | | Creates a stand-alone image or images and the HTML page. Images are referenced in the HTML page. The default image format is PNG.

PATH="directory-spec" | Indicates the directory where HTML files and graph images are created.

IMAGE_DPI=number | Specifies the image resolution in dots per inch for output images. IMAGE_DPI=96 is the default.

STYLE= *style-definition* | Specifies the style to use. STYLE=HTMLBLUE is the default.

See Also

“Understanding ODS Destinations” in *SAS Output Delivery System: User’s Guide*

Using the ODS GRAPHICS Statement

Introduction to Using the ODS GRAPHICS Statement

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. The settings that you specify remain in effect for all graphics in the current session until you change or reset these settings with another ODS GRAPHICS statement.

When you use the SAS ODS Graphics procedures in the SAS Windowing environment, ODS GRAPHICS is ON by default. In batch mode, ODS GRAPHICS is OFF by default.

You can use the ODS GRAPHICS statement to control many features, including the following:

- the size of the image
- the type and name of the image created
- whether features such as data tips, scaling, and anti-aliasing are used

The basic syntax for the ODS GRAPHICS statement is as follows:

```
ODS GRAPHICS < OFF | ON> </option(s)>;
```

Note: For the complete statement syntax, see “ODS GRAPHICS Statement” on page 71.

Sample Program That Uses the ODS GRAPHICS Statement

The following program uses the ODS GRAPHICS statement to illustrate several techniques for controlling your graphics.

These techniques are discussed in the following sections:

- “Controlling the Size of Your Graph” on page 1373
Example Code 13.1 Controlling Graphics with the ODS GRAPHICS Statement

```plaintext
ods graphics on /
   width=3.25in
   outputfmt=gif
   imagemap=on
   imagename="MyBoxplot"
   border=off;

ods html file="Boxplot-Body.html"
   style=journal;

proc sgplot data=sashelp.heart;
   title "Cholesterol Distribution by Weight Class";
   hbox cholesterol / category=weight_status;
run;

ods html style=htmlblue;
ods graphics on / reset=all;
```

Figure 13.1 3.25 Inch Graph with Data Tips and No Border

See Also

“ODS GRAPHICS Statement” on page 71
Controlling the Size of Your Graph

Overview of Controlling the Size of Your Graph

The output size of a graph is determined by the following:

- For SGRENDER output, the design size for the graph is specified in the STATGRAPH template that you are rendering.

 The default sizes are:

 - Default design width=640px
 - Default design height=480px
 - Default aspect ratio is 4/3

 These default values are specified in the SAS Registry.

- For SGPLOT, SGPANEL, or SGSCATTER output, the preceding default sizes are used from the SAS Registry.

- DPI settings for the output destinations can be specified by the IMAGE_DPI= or DPI= options. For more information, see Table 13.1 on page 1370.

- Settings for width and height can be specified by the WIDTH= option and the HEIGHT= option for the ODS GRAPHICS statement. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 71.

Specifying Output Size with the ODS GRAPHICS Statement

You can control the output size of a graph by specifying the WIDTH= or HEIGHT= options in the ODS GRAPHICS statement, as shown in the following examples:

```ods graphics on / width=6in;
ods graphics on / height=4in;
```

The dimensions of the graph can be specified in pixels (for example, 200PX), inches (for example, 3IN), centimeters (for example, 8CM), or other units. The default dimensions of ODS Graphics are 640 pixels wide and 480 pixels high, and these values determine the default aspect ratio. The actual size of the graph in inches depends on your printer or display device. For example, if the resolution of your printer is 100 dots per inch and you want a graph that is 4 inches wide, you should set the width to 4in or 400px.

In the ODS GRAPHICS statement below, taken from Example Code 13.1 on page 1372, the WIDTH= option changes the width of the graph to 3.25 inches:

```ods graphics on /
   width=3.25in
   outputfmt=gif
   imagemap=on
   imagename="MyBoxplot"
   border=off;
```
Retaining the Aspect Ratio

It is possible to specify both the width and height in the ODS GRAPHICS statement, as shown in the following example:

```ods graphics on / width=4.5in height=3.5in;```

However, it is highly recommended that only one of these options be specified at a time. Using one option at a time ensures that the design aspect ratio of the graph is maintained. For the aspect ratio, height = 0.75 x width.

For example, when only width is specified, SAS uses the design aspect ratio of the graph to compute the appropriate height. Retaining the design aspect ratio of the graph is important in many cases as the graph might have a specific layout. For example, a plot that has multiple columns, or that has a statistics table on the side needs a wide aspect ratio. Changing the aspect ratio for this plot by specifying both width and height might produce unpredictable results.

Graph Scaling for User-Specified Image Size

When the size or resolution (DPI) of a graph is changed due to a change in output destination or user specification, the graph is scaled accordingly. For example, when you use the WIDTH= option in the ODS GRAPHICS statement, the output size of the graph is computed based on the new size and the active DPI. All graphical elements such as marker size, line thickness, and font sizes are also scaled accordingly. This is done to prevent rapid shrinking or growth of the fonts and markers.

You can suppress this scaling with the ODS GRAPHICS statement options NOSCALE or SCALE=OFF.

For example:

```ods graphics on / scale=off;```

If you want to shrink your graph and keep the default sizes for fonts, use the NOSCALE or SCALE=OFF option in the ODS GRAPHICS statement.

Tip for Embedding Graph Images in Documents

When including graphs in a paper or presentation, it is recommended that you create your graphs by using the exact size that is used to display the graphs in your paper. In other words, avoid generating them at one size and then expanding or shrinking them for inclusion into your document.

It is often useful to produce a graph that fits in one column of a two-column page. In this case, the column size might be 3.25 inches wide. You can place a default output image, which is 640 by 480 pixels, in this space, but then all graphical elements scale down. This results in small markers and unreadable small fonts.

In this case, it is useful to render the graph to the exact size required, and specify the correct DPI. In the situation above, you would specify a width of 3.25 inches and use the IMAGE_DPI= destination statement option to specify a DPI of 200. Then, the graph produced can be placed in the 3.25" wide column and the fonts and markers are readable.

Note: To get exactly the specified font sizes, use the NOSCALE option in the ODS GRAPHICS statement.
Controlling Image Resolution

All ODS destinations use a default DPI (dots per inch) setting when creating ODS Graphics output. For example, by default HTML uses 96 dpi. Graphs that are rendered at higher DPI have greater resolution and larger file size. Although DPI can be set to large values such as 1200, from a practical standpoint, settings larger than 300 dpi are seldom necessary for most applications. Also, setting an unrealistically large DPI like 1200 could cause an out-of-memory condition.

Note: The ODS option for setting DPI is not the same for all destinations. For the LISTING, HTML, and RTF destinations, use the IMAGE_DPI= option. For the PDF destination, use the DPI= option.

Here is an example for the LISTING destination:

```
ods listing image_dpi=300;
```

For more information about the DPI for a destination, see the appropriate destination statement in the *SAS Output Delivery System: User's Guide*.

See Also

“ODS Destination Statement Options Affecting ODS Graphics” on page 1369

Adding Data Tips and Other Features

With ODS GRAPHICS statement options, you can control borders and data tips. In the ODS GRAPHICS statement below, taken from *Example Code 13.1 on page 1372*, the BORDER=OFF option hides the border around the graph. The IMAGEMAP=ON option enables the generation of data tips and drill downs:

```
ods graphics on /
   width=3.25in
   outputfmt=gif
   imagemap=on
   imagename="MyBoxplot"
   border=off;
```

When viewing HTML output, data tips appear when you move a mouse over certain features of the graph. Data tips and URL drill down functionality are available only for the HTML destination. You can also specify the maximum number of distinct mouse over areas allowed before data tips are disabled by using the TOOLTIPMAX= option. There are many other ODS GRAPHICS options that you can use to control other aspects of your graphics. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 71.

TIP Many plot statements include a TIP= option to specify the data tip information to be displayed when you specify IMAGEMAP=ON. In addition, the labels and formats for the TIP variables can be controlled with the TIPLABEL= and TIPFORMAT= options. You can also specify TIP=NONE to suppress the data tip for a particular plot in a graph overlay.
Controlling the Image Name and Image Format

For ODS Graphics output, by default, the ODS object name is used as the “root” name for the image output file. You can specify names for your graphics image files and the directory in which you want to save them. The IMAGENAME= option specifies the base image filename.

The default image file format is determined by the ODS destination. You can use the OUTPUTFMT= option to specify a different image file format. The formats that are allowed depend on the specified destination.

Note: For a table that shows which formats are allowed for each ODS destination, see “Specifying the Image Format” on page 90.

In the ODS GRAPHICS statement below, taken from Example Code 13.1 on page 1372, the OUTPUTFMT= option specifies that the file type is a GIF, and the IMAGENAME= option specifies that the name of the image is "MyBoxplot":

```sas
ods graphics on /
   width=3.25in
   outputfmt=gif
   imagemap=on
   imagename="MyBoxplot"
   border=off;
```

The resulting filename for the image created is MyBoxplot.GIF. If there is more than one image, they are named MyBoxplot1.GIF, MyBoxplot2.GIF, and so on, with an increasing index counter. All graphs in this example are GIF images.

You can use the PATH= or GPATH= option in the ODS destination statement to specify where the output is created. For more information, see “ODS Destination Statement Options Affecting ODS Graphics” on page 1369. See also the documentation for a destination statement in the SAS Output Delivery System: User's Guide.

See Also

- “Supported File Types for Output Destinations” on page 92
- “Description of Supported File Types” on page 92

Resetting ODS GRAPHICS Options

You can specify the RESET option to change the values for these options back to their defaults. In Example Code 13.1 on page 1372, the second ODS GRAPHICS statement uses the RESET=ALL option to set options back to their defaults for a new graph:

```sas
ods graphics on / reset=all;
```

You can also reset some of the ODS GRAPHICS options individually.
For example:

```sas
ods graphics on / reset=width;
```

For the complete statement syntax, see “ODS GRAPHICS Statement” on page 71.

Creating a Graph That Can Be Edited

SAS provides an application called the ODS Graphics Editor that can be used to post-process ODS Graphics output. With the editor, you can edit the following features in a graph that was created using ODS Graphics:

- change, add, or remove titles and footnotes
- change style, marker symbols, line patterns, axis labels, and so on
- highlight or explain graph content by adding annotation, such as text, lines, arrows, and circles

To create ODS Graphics output that can be edited, you must specify the SGE=ON option in the destination statement before creating the graph, as shown in the following example. The editable graph feature remains active in the SAS session until you specify SGE=OFF or close the ODS destination.

```sas
/* Specify a path for the ODS output. Replace output-path with your path. See the Note following this code. */
filename odsout "output-path";

/* Specify the output environment, including SGE=ON. */
ods _all_ close;
ods html path=odsout file="mySGEfile.htm" sge=on;
ods graphics / reset width=4.5in imagename="editableImage";

/* Generate the plot. */
proc sgplot data=sashelp.class;
    scatter x=weight y=height;
run;

ods graphics / reset=all;
ods html close;
ods html; /* Not required in SAS Studio */
```

Note: In SAS Studio, when you customize the output environment, it is useful to specify an output path for the ODS output. Depending on your deployment, you might not have Write permission for the default working directory. For more information about customizing the SAS Studio output environment, see “SAS Studio and ODS” in SAS Output Delivery System: User’s Guide.

Tip: In the SAS windowing environment, you might specify `odsout "."` to reference your home directory. In SAS Studio, you would specify `odsout "&_SASWS_"` to reference your home directory.
Here is the output from the example.

Note: All destinations that support ODS Graphics support the SGE= option. For more information about which destinations support ODS Graphics, see “Supported File Types for Output Destinations” on page 92.

When SGE=ON is in effect, a file with an extension of SGE is created in addition to the image file normally produced. From the Results window, you can open the SGE file in the ODS Graphics Editor. You can also open the SGE file directly from the Windows file system. The SGE file is always created in the same location as the image output.

The following figure shows the output in the ODS Graphics Editor after the graph has been edited and annotated.

You can save your modified graph as an SGE file or as an image file. If you save it as an SGE file, you can open it again for further editing. You can also render the SGE file using the SGRENDER procedure.

For example:

```plaintext
proc sgrender sge="MyExample.sge" data=_null_; run;
```

After you are finished creating editable graphics, you should either close the ODS destination (in this case HTML) or specify SGE=OFF to discontinue producing SGE files and avoid the extra computational resources used to generate the extra SGE files.
ods html sge=off;

See Also

Part 4

SG Attribute Maps

Chapter 14
Using Attribute Maps to Control Visual Attributes 1383

Chapter 15
Using Discrete Attribute Maps .. 1387

Chapter 16
Using Range Attribute Maps .. 1403
Overview of Attribute Maps

The attribute map feature provides a mechanism for controlling the visual attributes that are applied to specific data values in your graphs.

By default, many of the graphical attributes of a plot vary with the plot data. For example, when plots display grouped values, by default, the graphical attributes for each group value are selected from the GraphData1–GraphDataN style elements in data order. Changes in the data order can significantly change the appearance of the plot.

Attribute maps enable you to assign the same graphical properties to specific values or ranges of values regardless of data order or the data range. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data instead of the position of the data in the data set. For more information, see “Making the Appearance of Grouped Data Independent of Data Order” on page 1351.

The ODS Graphics procedures support two types of attribute maps:

discrete attribute map
 maps discrete data values to graphical properties.

range attribute map
 maps ranges of continuous numeric values to graphical properties.

Note: Range attribute maps apply to the third maintenance release of SAS 9.4 and later releases.

About Discrete Attribute Maps

A discrete attribute map maps discrete values to graphical properties. For example, consider the following plot of student height grouped by sex. You can use a discrete
attribute map to assign pink bars to females and blue bars to males, as shown in the following figure.

Regardless of data order, the same plot colors are applied to the group values.

See Also

Chapter 15, “Using Discrete Attribute Maps,” on page 1387

About Range Attribute Maps

A range attribute map maps numeric values or ranges of numeric values to graphical properties.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

For example, consider the following plot of height and weight distribution. You can use a range attribute map to assign colors to the markers based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green.
See Also

Chapter 16, “Using Range Attribute Maps,” on page 1403
Chapter 15
Using Discrete Attribute Maps

Main Tasks for Discrete Attribute Mapping

A discrete attribute map maps discrete values to graphical properties. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country by name. Discrete attribute maps apply only to group data.

Two main tasks are required for discrete attribute mapping:

1. Create a discrete attribute map data set, which associates data values with particular visual attributes. Each observation defines the attributes for a group value. For more information, see “Discrete Attribute Map Data Sets” on page 1388.

2. Modify the procedure and its plot statements to use the data in the discrete attribute map. You can use attribute maps in the SGPLOT, SGPIANEL, and SGSCATTER procedures (not all plot statements support attribute maps). For more information, see “Modify the Procedure to Use the Discrete Attribute Map Data Set” on page 1394.

See Also

“About Discrete Attribute Maps” on page 1383
Discrete Attribute Map Data Sets

About the Discrete Attribute Map Data Set

Attribute map data sets are used in the procedures to associate data values with visual attributes.

When you have determined which attributes you want to apply to the group data in a graph, you can create a discrete attribute map data set. Each observation defines the attributes for a particular data group.

Each observation uses reserved variable names for the attribute map identifier (ID), the group value (VALUE), and the attributes:

- **The ID variable identifies the attribute map that you want to use.** A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

- **The VALUE variable associates a group value in your graph data with visual attributes in the attribute map.**

 For example, suppose that you are graphing fruit sales. The variable in your graph data set that you want to use for grouping is FRUIT. Your plot statement specifies the GROUP=FRUIT option. Then in your attribute map, specify a VALUE column. The first observation might have VALUE=APPLE, the second observation might have VALUE=BANANA, and so on.

- **The attribute variables associate visual attributes with an observation in the discrete attribute map data set.** Some reserved variables are FILLCOLOR=, LINECOLOR=, LINEPATTERN=, and so on. In the example, you apply attributes to each observation to make sure that all apples in the graph are red, all bananas are yellow, and so on.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the discrete attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data group. The most commonly used method for creating data sets is with a DATA step. For more information about the DATA step, see *SAS Language Reference: Concepts*.

Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

Here is an example of a discrete attribute map data set called MYATTRMAP. The observations in this data set contain the attribute map identifier (ID), the group value (VALUE), and the attributes (LINECOLOR, FILLCOLOR).

Figure 15.1 Listing of the Discrete Attribute Map Data Set MYATTRMAP

<table>
<thead>
<tr>
<th>Obs</th>
<th>linecolor</th>
<th>fillcolor</th>
<th>ID</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pink</td>
<td>pink</td>
<td>myid</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>lightblue</td>
<td>lightblue</td>
<td>myid</td>
<td>M</td>
</tr>
</tbody>
</table>
The data set has these characteristics:

- All variables listed are CHAR variables.
- The value of the ID variable, MYID in this case, is referenced in one or more plot statements within the procedure. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.
- The values of the VALUE variable are valid data group values. These values are case sensitive. The data group is assigned in the plot statement with the GROUP= option.
- The values for LINECOLOR= and FILLCOLOR= are valid SAS colors. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

The following output shows a bar chart that uses the MYATTRMAP data set for its pink and blue bar colors. The FILLCOLOR= values determine the color of the bars, and the LINECOLOR= values determine the color of the border edges around the bars.

The chart was produced with the SGPLOT procedure. The name of the data set is referenced in the procedure statement.

Figure 15.2 Example Output That Uses a Discrete Attribute Map

This DATA step creates the discrete attribute map data set MYATTRMAP. The ID values for the attribute map are MYID.

```
data myattrmap;
  length linecolor $ 9 fillcolor $ 9;
  input ID $ value $ linecolor $ fillcolor $;
datalines;
myid  F pink pink
myid  M lightblue lightblue
;run;
```
This procedure generates the graph. The SGPLOT statement references the SASHELP.CLASS data set and the MYATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```
proc sgplot data=sashelp.class dattrmap=myattrmap;
   vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

For more information about the highlighted options that are used in the procedure, see “Modify the Procedure to Use the Discrete Attribute Map Data Set” on page 1394.

You use a standard syntax to specify colors, line thickness, line patterns, and marker symbols. For more information about this syntax, see the following topics:

- “Color-Naming Schemes” on page 1325
- “Units of Measurement” on page 1325
- List of Line Patterns on page 1321
- List of Marker Symbols on page 1323

Data Sets That Contain Multiple Discrete Attribute Maps

A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a discrete attribute map data set contains multiple attribute maps:

- The ID variable has more than one value.
- The VALUE variable has different values that correspond to different data groups.
- The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

Note: Plots that specify different ID values must also specify different groups. A group variable can be associated with only one attribute map ID. If a group is associated with more than one attribute map ID value, the graph produces incorrect attribute mapping and a warning is written to the SAS log.

For an example, see “Example: Combine Multiple Discrete Attribute Maps in a Graph” on page 1397.

Reserved Discrete Attribute Map Variables

About the Reserved Discrete Attribute Map Variables

When a discrete attribute map data set is processed, the procedure looks at the values of specific variables in the discrete attribute map data set. The procedure uses these values to associate visual attributes with group data. Variables in the discrete attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.
Variables That Have Style Values
For some variables, you can specify a style element or a style attribute as the value.

Here are examples:

- GraphData2 is an example of a style element.
- GraphData2:Color is an example of a style attribute.

For more information about style elements, see “Style Elements for Use with ODS Graphics” on page 1357.

For a table of the style elements and attributes that you can use with ODS Statistical Graphics, see “Style Elements Affecting Template-Based Graphics” in SAS Output Delivery System: Procedures Guide. This table contains each style element, the portion of the graph that it affects, and the default attribute values.

Required Reserved Variables
The ID and VALUE variables are required for every discrete attribute map data set. If they are not found, a warning is written to the SAS log, and the data set is ignored. The remaining attribute variables are used as applicable to the plot type.

Descriptions of the Reserved Variables
The following list describes each reserved variable.

FILLCOLOR= “color”
- specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

FILLSTYLE= “style-element”
- specifies the style element for fill attributes. If you specify the style element, you can also specify the FILLCOLOR variable to override the color.

FILLTRANSPARENCY=value
- specifies the degree of transparency for the fill.

 Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

 Default 0.0
 Range 0 (completely opaque) to 1 (completely transparent)

ID= “text-string”
- (required) specifies the ID of the attribute map. This value is referenced from the ATTRID option on one or more plot statements.

 Though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes.

LINECOLOR= “color”
- specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

 The color that you specify here also applies to the line labels, if displayed.

LINEPATTERN= “line-pattern”
- specifies a line pattern for lines and outlines. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.
Note: This variable has no effect on bar chart outlines.

LINESTYLE= "style-element"

specifies the style element for line attributes. If you specify the style element, you can also specify the LINEPATTERN and LINECOLOR variables to override specific appearance attributes.

LINETHICKNESS= numeric-value

specifies the line thickness in pixels.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

MARKERCOLOR= "color"

specifies the color for the markers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

The color that you specify here also applies to the marker labels, if displayed.

MARKERSIZE= numeric-value

specifies the size of the marker in pixels.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

MARKERSTYLE= "style-element"

specifies the style element for marker attributes. If you specify the style element, you can also specify the MARKERSYMBOL, MARKERCOLOR, and MARKERSIZE variables to override specific appearance attributes.

MARKERSYMBOL= "symbol-name"

specifies the symbol for the markers. See Figure 11.2 on page 1323.

MARKERTRANSPARENCY= value

specifies the degree of transparency for the markers.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

- Default 0.0
- Range 0 (completely opaque) to 1 (completely transparent)

NOCASE= “TRUE” | “FALSE”

specifies whether value comparisons in the attribute map are case sensitive.

- **“TRUE”**
 - The value comparisons are not case sensitive.

- **“FALSE”**
 - The value comparisons are case sensitive. Each instance of a value must have the exact same capitalization.

- Default “FALSE”

SHOW= “ATTRMAP” | “DATA”

specifies whether values in the attribute map are displayed in the legend.

- **“ATTRMAP”**
 - displays all attribute map values in the legend.
“DATA” displays only the map values for which there is data.

Default “DATA”

TEXTCOLOR=“color”
specifies the color of the text in an axis table. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Restriction This attribute can be applied only to axis tables.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TEXTFAMILY=“font-family”
specifies the font family for the text in an axis table. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in *SAS Language Reference: Concepts*.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Restriction This attribute can be applied only to axis tables.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TEXTSTYLE=“NORMAL” | “ITALIC”
specifies the style of the text in an axis table.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Restriction This attribute can be applied only to axis tables.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

TEXTSTYLEELEMENT=“style-element”
specifies the style element for the text in an axis table. If you specify the style element, you can also specify the TEXTCOLOR, TEXTFAMILY, TEXTSTYLE, and TEXTWEIGHT variables to override specific appearance attributes.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Restriction This attribute can be applied only to axis tables.

TEXTWEIGHT=“NORMAL” | “BOLD”
specifies the weight of the text in an axis table.

Note: This feature applies to the first maintenance release of SAS 9.4 and to later releases.

Restriction This attribute can be applied only to axis tables.
See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1400

VALUE= “text-string”

(required) specifies the group data value that is assigned to the attributes. The value must be valid for the data group that is assigned in the plot statement with the GROUP= option. You can provide different values in the data set if your plots specify different group variables.

Notes

By default, the group values are case sensitive. Each instance of a value must have the exact same capitalization. To make the values case insensitive, specify NOCASE="TRUE".

If the group value is formatted, then the `text-string` in the attribute map data set must contain the formatted value.

VALUE= also accepts the _MISSING_ and _OTHER_ keywords. The keyword _OTHER_ in the column can be used to define the attributes of any values that are not explicitly defined in the map. The _MISSING_ keyword is used to define attributes when the data contains missing values. These keywords are not case sensitive.

Modify the Procedure to Use the Discrete Attribute Map Data Set

After you have created a discrete attribute map data set, you can modify the discrete procedure and its plot statements to reference the discrete attribute map data. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To reference attribute map data in a procedure:

1. Add the DATTRMAP= option to the procedure statement and specify the name of the discrete attribute map data set.

2. For each plot statement that maps attributes, perform these steps:
 - Specify the GROUP= option. The group’s values must correspond to the values in the VALUE variable in the attribute map data set.
 - Specify the ATTRID= option. This option specifies the value of the ID variable in the discrete attribute map data set.

If the discrete attribute map data set contains more than one ID value, then the plot statements can specify different ATTRID values. However, plots that specify different ATTRID values must also specify different groups. A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1390.

If the ATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the ATTRID is ignored.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.
In the SGPLOT and SGPANEL procedures, any plot statement that supports GROUP variables supports discrete attribute mapping. The following plot statements support discrete attribute mapping:

- BAND
- BLOCK
- BUBBLE
- DENSITY
- DOT
- FRINGE
- HBAR
- HBARBASIC
- HBARPARM
- HBOX
- HEATMAPPARM
- HIGHLOW
- HLINE
- VBAR
- LINEPARAM
- LOESS
- NEEDLE
- PBSPLINE
- POLYGON
- REG
- SPLINE
- STEP
- VBARBASIC
- VBARPARM
- VECTOR
- VBOX
- XAXISTABLE
- YAXISTABLE
- COLAXISTABLE
- ROWAXISTABLE
- WATERFALL

*applies to the SGPLOT procedure only

**applies to the SGPANEL procedure only

Here is an example of an SGPLOT procedure that references the discrete attribute map data set shown in the example Figure 15.1 on page 1388. The options that reference the attribute map (data set and ID) are highlighted.

```plaintext
proc sgplot data=sashelp.class dattrmap=myattrmap;
vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

Example: Create a Plot That Uses a Single Discrete Attribute Map

This example creates a simple bar chart that uses a discrete attribute map.
Here is the SAS code that creates the input data set, the attribute map data set, and the SGPLOT procedure output.

This DATA step creates the data that is used for the graph. The FRUIT variable is used in the procedure to group the data.

```sas
data fruit_sales;
  input Fruit $ Sales;
datalines;
Apples   40
Pears    25
Oranges  50
Grapes   30
Bananas  60
run;
```

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are FRUIT.

```sas
data attrmapfruit;
  retain linecolor "black";
  input id $ value $ fillcolor $;
datalines;
fruit Apples red
fruit Pears green
fruit Oranges orange
fruit Grapes purple
fruit Bananas yellow
run;
```
Example: Combine Multiple Discrete Attribute Maps in a Graph

This example uses a discrete attribute map data set that contains two attribute maps. Here are the noteworthy characteristics of the attribute map data set and the procedure:

- The attribute map data set has these features:
 - The ID variable has two values.
 - The VALUE variable has different values that correspond to two different data groups.
 - The ID values in the attribute map data set are continuous (in a sorted order). If they were not, the example would use the SORT procedure to sort the data set by ID (in ascending or descending order).

- In the procedure, the plot statements specify different ATTRID= values in order to use the different attribute maps. The plot statements also specify different GROUP= values. (A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1390.)
Figure 15.4 Output That Uses Two Discrete Attribute Maps

Here is the SAS code that creates the attribute map data set and uses the SGPLOT procedure to generate the graph.

This DATA step creates the data that is used for the graph. The STATE and TYPE variables are used in the procedure to group the data.

```sas
data finances;
  format income dollar8. expense dollar8.;
  length expensetype $ 9;
  input Year incometype $ income expensetype $ expense;
  datalines;
  2000 Salary 20000 Utilities 4000
  2000 Bonus 2000 Rent 7000
  2000 Gifts 500 Food 8000
  2001 Salary 25000 Utilities 5000
  2001 Bonus 1000 Rent 8000
  2001 Gifts 200 Food 6000
  2002 Salary 23000 Utilities 4500
  2002 Bonus 500 Rent 9000
  2002 Gifts 500 Food 7000
; run;
```

This DATA step creates the discrete attribute map data set. The data set contains two attribute maps. Each attribute map is specified by an ID value: INCOME or EXPENSE.

```sas
data attrmap;
  length value $ 9 fillcolor $ 9;
  retain linecolor "black";
  input id $ value $ fillcolor $;
  datalines;
  income Salary blue
  income Bonus gray
```
PROC step generates the graph. The SGPLOT statement references the FINANCES data set and the ATTRMAP attribute map data set. Each plot statement references an attribute map ID. The plot statements also specify different GROUP= values.

```plaintext
proc sgplot data=finances dattrmap=attrmap;
yaxis label="Dollars";
vbarparm category=year response=income / group=incometype attrid=income
   barwidth=0.4 groupdisplay=stack
discreteoffset=-0.2 name="income";
vbarparm category=year response=expense / group=expensetype attrid=expense
   barwidth=0.4 groupdisplay=stack
discreteoffset=0.2 name="expense";
keylegend "income" / position=bottomleft title="Income";
keylegend "expense" / position=bottomright title="Expenses";
run;
```

Example: Create a Panel That Uses an Attribute Map

This example uses the SGPANEL procedure to generate discrete attribute map output.

Figure 15.5 Panel That Uses a Discrete Attribute Map
Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are MYID.

```sas
data attrmap;
retain ID "myid";
retain markersymbol "circlefilled";
input value $ markercolor $ linecolor $ linepattern $;
datalines;
F orange orange solid
M blue blue solid
;
run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the ATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
title "Height and Weight by Age";
proc sgpanel data=sashelp.class dattrmap=attrmap;
panelby age;
reg x=weight y=height / group=sex attrid=myid;
run;
title;
```

Example: Use a Discrete Attribute Map with an Axis Table

This example creates a simple bar chart along with an axis table. Both the chart and the axis table use a discrete attribute map.
Here is the SAS code that creates the attribute map data set and the SGPLOT procedure output.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable.

```
data myattrmap;
  id="myid"; value="M";
  linecolor="blue"; fillcolor="blue";
  textcolor="blue"; textstyle="normal";
  textweight="normal";
  output;

  id="myid"; value="F";
  linecolor="red"; fillcolor="pink";
  textcolor="red"; textstyle="italic";
  textweight="bold";
  output;
run;
```

This PROC step generates the graph. The plot statement references the attribute map ID (MYID).

```
proc sgplot data=sashelp.class dattrmap=myattrmap;
  vbar age / response=height group=sex stat=mean
      groupdisplay=cluster attrid=myid;
  xaxistable weight / textgroup=sex
      textgroupid=myid;
run;
```
Chapter 16
Using Range Attribute Maps

Main Tasks for Range Attribute Mapping

A range attribute map maps numeric values or ranges of numeric values to graphical properties.

Two main tasks are required for range attribute mapping:

1. Create a range attribute map data set, which associates data values with particular visual attributes. For more information, see “Range Attribute Map Data Sets” on page 1404.

2. Modify the procedure and its plot statements to use the data in the range attribute map. You can use attribute maps in the SG PLOT, SGPANEL, and SGSCATTER procedures (not all plot statements support attribute maps). For more information, see “Modify the Procedure to Use the Range Attribute Map Data Set” on page 1409.

Note: This feature applies to the third maintenance release of SAS 9.4 and to later releases.

See Also

“About Range Attribute Maps” on page 1384
Range Attribute Map Data Sets

About the Range Attribute Map Data Set

When you have determined which attributes you want to apply to the data in a graph, you can create a range attribute map data set. Each observation defines the color attributes for a particular range.

Each observation uses reserved variable names for the attribute map identifier (ID), one or two variables that define the range (MIN and MAX), and the color attributes:

• The ID variable identifies the attribute map that you want to use. A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different plots in a graph.

• The MIN and MAX variables define the ranges in the attribute map. The MIN variable is always required. The MAX variable is sometimes required depending on the value that you provide for the MIN variable.

In addition, two variables (EXCLUDEMIN, EXCLUDEMAX) enable you to exclude the first or last end points in a range, respectively. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.

• The attribute variables associate color attributes with an observation in the range attribute map data set.

There are three ways to assign colors to a range:

• assign a single color to a range.

• specify a reference to an ODS style element that contains color ramp start and end colors (with an optional neutral color).

• use variable names COLORMODEL1 – COLORMODELn to specify several consecutive colors for the range. This list of colors creates a gradient across the range. See “Example: Create a Panel That Uses COLORMODELn Variables” on page 1410.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that a range attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data range. The most commonly used method for creating data sets is with a DATA step. For more information about the DATA step, see SAS Language Reference: Concepts.

Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

The following output shows a scatter plot that uses a range attribute map to assign marker colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green. The chart was produced with the SGPLOT procedure.
Here is the code for the example.

The DATA step creates the range attribute map data set MYRATTRMAP. The ID values for the attribute map are MYID. Three ranges are defined.

```sas
data myrattrmap;
retain id "myID";
length min $ 5 max $ 5;
input min $ max $ color $ altcolor $;
datalines;
  _min_ 80    purple purple
  80    100   gold   gold
  100   _max_ green  green
; run;
```

The following procedure generates the graph. The SGPLOT statement references the SASHELP.CLASS data set and the MYRATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class rattrmap=myrattrmap;
  scatter x=height y=weight /
    colorresponse=weight rattrid=myID;
run;
```

Note: The COLORRESPONSE= option must be specified in order for the attribute map to be applied to the plot.

Data Sets That Contain Multiple Range Attribute Maps

A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a range attribute map data set contains multiple attribute maps:

- The ID variable has more than one value.
The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

Reserved Range Attribute Map Variables

About the Reserved Range Attribute Map Variables
When a range attribute map data set is processed, the procedure looks at the values of specific variables in the attribute map data set. The procedure uses these values to associate visual attributes with the range data. Variables in the attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

Required Reserved Variables
Each observation in the data set requires the ID variable and one or two variables that define the range (MIN and MAX). If the required variables are not found, a warning is written to the SAS log, and the data set is ignored.

Note: For helpful information about defining ranges, see “Tips for Defining Ranges” on page 1409.

The following list describes the required variables.

ID= “text-string”
specifies the ID of the attribute map. This value is referenced from the RATTRID option in one or more plot statements.

Even though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes. See “Data Sets That Contain Multiple Range Attribute Maps” on page 1405.

MIN=numeric-value | “keyword”
defines the minimum value of the range specification. You can specify a numeric value, or you can specify one of several accepted keywords. The keywords are character values.

You can specify one of the following keywords as the minimum value:

MIN indicates the minimum data value for the response variable.
NEGMAX indicates -MAX
NEGMAXABS indicates -max(abs(MIN), abs(MAX))

Rather than specifying a low value, you can use one of the following keywords for the range specification.

Note: When you specify one of the following four keywords, the value in the MAX column is not required.

MISSING indicates a mapping for missing values. The visual attributes for this setting are obtained from the GraphMissing style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include missing values.
OTHER creates a category for all other column values not explicitly assigned to a range. The _OTHER_ values can be composed of several non-contiguous ranges. The visual attributes for this setting are obtained from the GraphOther style element.

OVER creates a range for all data between the highest mapped value and the highest actual data value. The visual attributes for this setting are obtained from the GraphOverflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include overflow values.

UNDER creates a range for all data values between the lowest mapped value and the lowest actual data value. The visual attributes for this setting are obtained from the GraphUnderflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include underflow values.

Tip Use the EXCLUDEMIN optional variable to exclude the lowest end point in the range. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.

MAX=numeric-value | “keyword”
defines the maximum value of the range specification. You can specify a numeric value, or you can specify one of two accepted keywords. The keywords are character values.

This variable is required unless one of the special four keywords is specified for the MIN variable (_MISSING_, _OTHER_, _OVER_, _UNDER_).

You can specify one of the following keywords as the maximum value:

- _MAX_ indicates the maximum data value for the response variable.
- _MAXABS_ indicates max(abs(MIN), abs(MAX))

Tip Use the EXCLUDEMAX optional variable to exclude the highest end point in the range.

Optional Reserved Variables
The following list describes each optional reserved variable.

ALTCOLOR= “color”
assigns a single color to the lines, markers, or both in a range. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

ALTCOLORMODEL1–N
specifies several consecutive line and marker colors for the range. This list of colors creates a gradient across the range.

Requirement The columns must be contiguous (ALTCOLORMODEL1, ALTCOLORMODEL2, and so on). Any gaps prevent the remaining colors from being used.

ALTCOLORMODELSTYLE=“style-element”
specifies a style reference to a gradient style element.
style-element
specifies the name of a gradient style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value.
- **NEUTRALCOLOR** specifies the color for the midpoint of the data range. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value.

Interaction
This option is ignored if the ALTCOLOR= option is specified.

Tip
To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp.

See
“Style Elements for Use with ODS Graphics” on page 1357

Example
```
altcolormodelstyle=TwoColorRamp
```

COLOR=“color”
specifies the fill color for the range. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

COLORMODEL1–N
specifies several consecutive fill colors for the range. This list of colors creates a gradient across the range.

Requirement
The columns must be contiguous (COLORMODEL1, COLORMODEL2, and so on). Any gaps prevent the remaining colors from being used.

See
“Example: Create a Panel That Uses COLORMODELn Variables” on page 1410

COLORMODELSTYLE=“style-element”
specifies a style reference to a gradient style element.

style-element
specifies the name of a gradient style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value.
- **NEUTRALCOLOR** specifies the color for the midpoint of the data range. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value.

Interaction
This option is ignored if the COLOR= option is specified.
Tip
To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp.

See
“Style Elements for Use with ODS Graphics” on page 1357

Example
colormodelstyle=TwoColorRamp

Default
The ThreeColorAltRamp style element

EXCLUDEMAX="TRUE" | “FALSE” | 1 | 0
Specifies whether to exclude the maximum value from the range specification. This column can be character or numeric. If the column is character, you must use the values “TRUE” or “FALSE”. If the column is numeric, the values must be 1 or 0.

EXCLUDEMIN="TRUE" | “FALSE” | 1 | 0
Specifies whether to exclude the minimum value from the range specification. This column can be character or numeric. If the column is character, you must use the values “TRUE” or “FALSE”. If the column is numeric, the values must be 1 or 0.

Tips for Defining Ranges
Here are some helpful notes and tips for specifying ranges in the attribute map data set:

• If two ranges share a common endpoint (for example, 10–20 and 20–30) and you do not use EXCLUDEMIN or EXCLUDEMAX, then the common endpoint belongs to the lower encountered range (10–20 in this case). The order of the specification does not matter.

• If two or more ranges define colors to associate with the same numeric values or ranges, then the first range’s settings are used.

• If any range overlaps another range (for example, 10–20 and 15–25), then the entire attribute map is ignored and default coloring is used.

• To set a single numeric value, specify the same value for both the low value and the high value.

• If the low value is not less than or equal to the high value, then the range specification is invalid, and the range is ignored in the attribute map.

• If a range is not defined for keyword MIN=“_OTHER_”, then gaps within the attribute map ranges are assigned the default color that is defined by the GraphOther:ContrastColor style reference.

Modify the Procedure to Use the Range Attribute Map Data Set

After you have created a range attribute map data set, you can modify the procedure and its plot statements to reference the attribute map data. You can use range attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.
To reference attribute map data in a procedure:

1. Add the RATTRMAP= option to the procedure statement and specify the name of the range attribute map data set.
2. For each plot statement that maps attributes, perform these steps:
 • Specify the RATTRID= option. This option specifies the value of the ID variable in the range attribute map data set.
 If the range attribute map data set contains more than one ID value, then the plot statements can specify different RATTRID values. For more information, see “Data Sets That Contain Multiple Range Attribute Maps” on page 1405.
 If the RATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the RATTRID option is ignored.
 • Specify the COLORRESPONSE= option.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.

In the SGPLOT and SGPANEL procedures, the following plot statements support range attribute mapping:

- BUBBLE
- HEATMAPPARM
- TEXT
- DOT
- HIGHLOW
- VBAR
- HBAR
- POLYGON
- VBARBASIC
- HBARBASIC
- SCATTER
- VBARPARM
- HBARPARM
- SERIES
- VECTOR
- HEATMAP
- SPLINE
- WATERFALL*

*applies to the SGPLOT procedure only

Here is an example of an SGPLOT procedure that references the range attribute map data set shown in Figure 16.1 on page 1405. The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class rattrmap=myrattrmap;
scatter x=height y=weight /
   colorresponse=weight rattrid=myID;
run;
```

Example: Create a Panel That Uses COLORMODELn Variables

This example uses the SGPANEL procedure to generate range attribute map output. The graph uses a range attribute map to assign fill colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as a gradient of red, orange, and yellow.
Figure 16.2 Panel That Uses a Range Attribute Map

Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

A DATA step creates the range attribute map data set. The data set contains one attribute map, which is specified by the ID variable. The data set defines three ranges. The third range uses the COLORMODEL1 – COLORMODEL3 variables to specify a custom gradient of three colors.

```sas
data clrresp;
  retain id "myid";
  length min $ 5 max $ 5;
  input min $ max $ color $ altcolor $ colormodel1 $ colormodel2 $ colormodel3 $;
  datalines;
  _min_ 90    purple purple .    .      .
  90    100   gold   gold   .    .      .
  100   _max_ .      .      red  orange yellow
; run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the CLRRESP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
proc sgpanel data=sashelp.class rattrmap=clrresp;
  panelby sex;
  vbar age / colorresponse=weight rattrid=myid
    response=weight stat=mean colorstat=mean;
run;
```
Part 5

SG Annotation

Chapter 17
Annotating ODS Graphics .. 1415

Chapter 18
SG Annotation Function Dictionary 1423

Chapter 19
SG Annotation Macro Dictionary 1477
Chapter 17
Annotating ODS Graphics

Overview of SG Annotation

The ODS Statistical Graphics (SG) procedures provide a mechanism for adding shapes, images, and other annotations to graph output.

You can add the following annotation elements to a graph:

- text labels
- lines and arrows
- ovals (including circles)
- rectangles (including squares)
- polygons
- images

There are two main tasks required to add annotation elements to a graph:

1. Create an SG annotation data set, which contains the commands for creating the annotation elements. For more information, see “About the SG Annotation Data Set” on page 1416.

2. Modify the SG procedure to use the SG annotation data set. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures. For more information, see “Modifying an SG Procedure to Use the SG Annotation Data Set” on page 1419.
SG Annotation Data Sets

About the SG Annotation Data Set

Once you have determined which annotation you want and how you want it to appear in the output, you can create the SG annotation data set. This data set contains the commands for creating one or more annotation elements. The annotations drawn by these commands can be added to SG procedure output.

Each observation represents a command to draw an annotation element or to continue an element. Reserved keywords are used for functions that specify the drawing operation.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the SG annotation data set uses reserved keywords for its variable names, and each observation represents a command to draw an annotation element.

Note: The most commonly used method for creating data sets is with a DATA step. For more information about the DATA step, see SAS Language Reference: Concepts.

Here is an example of an SG annotation data set named LINE. The observations in this data set contain the commands that create a blue text label and a blue line.

Figure 17.1 LINE SG Annotation Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>function</th>
<th>x1</th>
<th>y1</th>
<th>label</th>
<th>x2</th>
<th>y2</th>
<th>textcolor</th>
<th>linecolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>text</td>
<td>20</td>
<td>70</td>
<td>Average Height 62 Inches</td>
<td>.</td>
<td>.</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>line</td>
<td>10</td>
<td>60</td>
<td></td>
<td>99</td>
<td>60</td>
<td></td>
<td>blue</td>
</tr>
</tbody>
</table>

A blank denotes a missing value for a character variable. A '.' denotes a missing value for a numeric variable.

Each observation in this data set contains complete instructions for drawing an annotation. The value of the FUNCTION variable determines what the observation does. Other variables control how the function is performed.

This list describes each observation in LINE and the task that it performs:

1. This instruction writes a blue text inset at position (20,70). The value of the FUNCTION variable (TEXT) tells the program what to do. The values of the coordinate variables X1 and Y1 tell where to do it. The value of the attribute variable TEXTCOLOR specifies the color of the text inset.

 Note: The default drawing space for both observations is the graph area. For more information about drawing spaces, see “Controlling the Drawing Space” on page 1420.

2. This instruction draws a blue line that begins at position (10,60) and ends at (99,60). The value of the FUNCTION variable (LINE) tells the program what to do. The values of the coordinate variables X1, Y1, X2, and Y2 tell where to do it. The value of the attribute variable LINECOLOR specifies the color of the line.
The following figure shows the blue text and line annotations created by the LINE data set displayed with an SGPLOT procedure that specifies a scatter plot.

Figure 17.2 LINE SG Annotation Output

SG Annotation Variables

When an SG annotation data set is processed, the SG procedure looks at the values of specific variables in order to draw annotation elements. Variables in the SG annotation data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

The variables can be categorized into the following main types:

- A FUNCTION variable specifies which annotation element to draw. For more information, see “SG Annotation Functions” on page 1418.
Position variables specify the point or points at which to draw the graphics element.

Coordinate system variables specify the drawing space to use for the annotation. For more information, see “Controlling the Drawing Space” on page 1420.

Attribute variables specify the characteristics of the graphics element (for example, color, size, line style, text font).

All variables are described in the context of the functions that support the variables. For more information about the functions, see Chapter 18, “SG Annotation Function Dictionary,” on page 1423.

SG Annotation Functions

In an SG annotation data set, the FUNCTION variable accepts a set of predefined values (functions) that insert annotation elements into the graph. The value of the FUNCTION variable specifies what drawing action the observation performs. These functions act in conjunction with other variables that determine where and how to perform the action.

The following table summarizes the functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROW</td>
<td>Draws an arrow annotation. For more information, see “ARROW Function” on page 1423.</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Specifies a graphic file to use for an image annotation. For more information, see “IMAGE Function” on page 1429.</td>
</tr>
<tr>
<td>LINE</td>
<td>Draws a line annotation. For more information, see “LINE Function” on page 1435.</td>
</tr>
<tr>
<td>OVAL</td>
<td>Draws an oval or circle annotation. For more information, see “OVAL Function” on page 1440.</td>
</tr>
<tr>
<td>POLYCONT</td>
<td>Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. For more information, see “POLYCONT Function” on page 1445.</td>
</tr>
<tr>
<td>POLYGON</td>
<td>Specifies the beginning point of a polygon. For more information, see “POLYGON Function” on page 1447.</td>
</tr>
<tr>
<td>POLYLINE</td>
<td>Specifies the beginning point of a polyline, which is a connected series of line segments. For more information, see “POLYLINE Function” on page 1451.</td>
</tr>
<tr>
<td>RECTANGLE</td>
<td>Draws a rectangle or square annotation. For more information, see “RECTANGLE Function” on page 1455.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Places text in the graph output. For more information, see “TEXT Function” on page 1460.</td>
</tr>
</tbody>
</table>
Using Variables as Arguments

The function parameters are either numeric or character. Numeric parameters can be numeric constants or numeric column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable column names for parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the data. See “Example 3: Create Custom Labels” on page 1472.

Modifying an SG Procedure to Use the SG Annotation Data Set

After you have created an SG annotation data set, you can modify the SG procedure to reference the annotation data. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To modify the procedure to use the SG annotation data set, add the following option to the procedure statement.

SGANNO= annotation-data-set

specifies the SG annotation data set that you want to use. For more information about SG annotation data sets, see “SG Annotation Data Sets” on page 1416.

You can also create margins around the graph by using the PAD= option.

PAD= dimension<units> | (pad-options)

specifies the amount of extra space that is reserved along the edges of the graph. This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1325.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

LEFT= dimension<units>

specifies the amount of extra space to add to the left edge.

RIGHT= dimension<units>

specifies the amount of extra space to add to the right edge.

TOP= dimension<units>

specifies the amount of extra space to add to the top edge.

BOTTOM= dimension<units>

specifies the amount of extra space to add to the bottom edge.
Controlling the Drawing Space

About the Drawing Space

You can control the position and scaling of your annotations by specifying the drawing space and units in the SG annotation data set. You have the option to specify the drawing space for the X or Y axes individually, or for both axes.

All annotations are rendered in one of four drawing areas:

- **graph area**: the entire region of the graph image. The graph area contains the axes, titles, footnotes, legends, and one or more cells.
- **layout area**: the area of the layout, not including any titles and footnotes.
- **wall area**: the area within the axes, including offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)
- **data area**: the area within the axes, not including offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)

Annotations can be rendered in the drawing areas using one of three units:

- percentage
- pixels
- data value (data area only)

Drawing Space Variables

You can specify the drawing space values for the following variables in the SG annotation data set:

Table 17.2 Data Set Variables That Are Used to Specify Drawing Space

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Supported Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWSPACE</td>
<td>specifies the drawing space for the annotation</td>
<td>all except POLYCONT and TEXTCONT</td>
</tr>
<tr>
<td>X1SPACE</td>
<td>specifies the drawing space of the annotation’s X coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>X2SPACE</td>
<td>specifies the drawing space of the annotation’s second X coordinate.</td>
<td>ARROW, LINE</td>
</tr>
<tr>
<td>Y1SPACE</td>
<td>specifies the drawing space of the annotation’s Y coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Supported Functions</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Y2SPACE</td>
<td>specifies the drawing space of the annotation’s second Y coordinate.</td>
<td>ARROW, LINE</td>
</tr>
</tbody>
</table>

Drawing Space Values

Here are the values that are used in the SG annotation data set to control the drawing space.

Note: For more information about the data, graph, layout, or wall areas, see “About the Drawing Space” on page 1420.

DATAPERCENT
- positioned and scaled as a percentage with respect to the data area.

DATAPIXEL
- positioned and scaled as pixels with respect to the data area.

DATA VALUE
- positioned and scaled with respect to the data values.

GRAPHPERCENT
- positioned and scaled as a percentage of the graph area.

 Note: GRAPHPERCENT is the default value.

GRAPHPIXEL
- positioned and scaled as pixels with respect to the graph area.

LAYOUTPERCENT
- positioned and scaled as a percentage of the layout area.

LAYOUTPIXEL
- positioned and scaled as pixels with respect to the layout area.

WALLPERCENT
- positioned and scaled as a percentage of the wall area.

WALLPIXEL
- positioned and scaled as pixels with respect to the wall area.

Note: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
Chapter 18
SG Annotation Function
Dictionary

Dictionary

ARROW Function
Draws an arrow annotation from the specified (X1, Y1) coordinates to the specified (X2, Y2) coordinates.

Syntax

FUNCTION= "ARROW";

Required Variables

X1= numeric-value | XC1= "text-string"

specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.
XC1 = "text-string"
 specifies the X coordinate for character data.

Default none

X2 = numeric-value | XC2 = "text-string"
 specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2 = numeric-value
 specifies the X coordinate for numeric data.

XC2 = "text-string"
 specifies the X coordinate for character data.

Default none

Y1 = numeric-value | YC1 = "text-string"
 specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1 = numeric-value
 specifies the Y coordinate for numeric data.

YC1 = "text-string"
 specifies the Y coordinate for character data.

Default none

Y2 = numeric-value | YC2 = "text-string"
 specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2 = numeric-value
 specifies the Y coordinate for numeric data.

YC2 = "text-string"
 specifies the Y coordinate for character data.

Default none

Optional Variables

DIRECTION = "BOTH" | "IN" | "OUT"
 specifies the direction for arrows.

"BOTH"
 Places the arrowhead at both ends of the line.

"IN"
 Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

"OUT"
 Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default OUT
DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

DRAWSPACE= ”draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See
For more information about these values, see “Drawing Space Values” on page 1421.

AYER= ”BACK” | ”FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default
COLOR attribute in the graph’s current style

LINEPATTERN= \textit{\textquotedblleft line-pattern\textquotedblright}

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default
LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= \textit{\textquotedblleft style-element\textquotedblright}

specifies a style element for the line. Here is an example of a style element:

GraphData2

See
“Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= \textit{n}

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default
LineThickness attribute in the graph’s current style

SCALE= \textit{numeric-value}

specifies a scale factor for the arrowheads. Specify a positive number.

Default
determined by the procedure

SHAPE= \textit{\textquotedblleft BARBED\textquotedblright} | \textit{\textquotedblleft CLOSED\textquotedblright} | \textit{\textquotedblleft FILLED\textquotedblright} | \textit{\textquotedblleft OPEN\textquotedblright}

specifies the shape of the arrowheads. Specify one of the following:

- **“BARBED”**

a solid triangle with an indent at the base.

- **“CLOSED”**

an outline of a triangle.

- **“FILLED”**

a solid triangle.

- **“OPEN”**

a triangle that resembles the letter “V”.

Default
OPEN

TRANSPARENCY= \textit{numeric-value}

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

URL=\textit{character-variable}

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default
By default, no HTML links are created.
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

Default

GRAPHPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1421.

X2SPACE= “draw-space-value”

specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2”
specifies which X axis to use for data space annotations.

Y1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.
Y2SPACE= **“draw-space-value”**
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default
GRAPHPERCENT

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= **“Y” | “Y2”**
specifies which Y axis to use for data space annotations.

Default
Y

IMAGE Function

Specifies a graphic file to use for an image annotation. If no (X1, Y1) coordinates are provided, the image appears in the center of the graph.

Syntax

FUNCTION= **“IMAGE”**;

Required Variable

IMAGE= **“file-name”**
specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.
If you do not specify the full path, then the procedure looks for the file in the SAS current working directory. The SAS current directory is the same directory in which you start your SAS session. If you are running SAS with the windowing environment in the Windows operating system, then the current directory is displayed in the status bar at the bottom of the main SAS window.

For a list of image formats that can be used, see “Supported File Types for Output Destinations” on page 92.

Optional Variables

ANCHOR= "TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"

specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER= "TRUE" | "FALSE"

turns the border on and off.

Default FALSE

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)
Restriction For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values”
on page 1421.

HEIGHT= numeric-value
specifies the height of the annotation. Specify a positive number greater than zero.
You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default Determined by the system

HEIGHTUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

IMAGESCALE= “FIT” | “FITHEIGHT” | “FITWIDTH” | “TILE”
specifies how the image is scaled within the width and height. You can specify the
WIDTH and HEIGHT variables.

Defaults FITWIDTH or FITHEIGHT if no size or if one size (either the width or
the height) is specified (to preserve aspect)

FIT if width and height are both specified

LAYER= “BACK” | “FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK)
the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to
disable the wall display. You can use the NOWALL option in the PROC
SGPLOT statement (SGPLOT procedure) or in the PANELBY
statement (SGPANEL procedure). The NOWALL option is also
available in the PLOT and COMPARE statements of the SGSCATTER
procedure.

LINECOLOR= “color” | “style-attribute”
specifies a color of the border around the image, if displayed. You can specify a color
or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern”
specifies a line pattern of the border around the image, if displayed. You can
reference SAS patterns by number or by name. For a list of line patterns, see Figure
11.1 on page 1321.

Default LineStyle attribute in the graph’s current style
LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:
GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n
specifies the thickness of the border around the image, if displayed. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

ROTATE= degrees
rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0

Note When this option is used with a vector graph, the graph is rendered as an image.

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WIDTH= numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default: Determined by the system

WIDTHUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
 specifies the X coordinate for numeric data.

- **XC1= “text-string”**
 specifies the X coordinate for character data.

Default: none

X1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1421.
XAXIS= “X” | “X2”

specifies which X axis to use for data space annotations.

Default X

Y1= numeric-value | YC1= “text-string”

specifies the Y coordinate of the annotation. Use one of the following arguments:

- **Y1= numeric-value**

 specifies the Y coordinate for numeric data.

 Default 50

- **YC1= “text-string”**

 specifies the Y coordinate for character data.

 Default none

Y1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= “Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default Y
LINE Function

Draws a line annotation from the specified (X1, Y1) coordinates to the specified (X2,Y2) coordinates.

Syntax

FUNCTION= “LINE”;

Required Variable

X1= numeric-value | XC1= “text-string”
 specifies the first X coordinate of the annotation.
 Use one of the following arguments:
 X1= numeric-value
 specifies the X coordinate for numeric data.
 XC1= “text-string”
 specifies the X coordinate for character data.
 Default none

X2= numeric-value | XC2= “text-string”
 specifies the second X coordinate of the annotation.
 Use one of the following arguments:
 X2= numeric-value
 specifies the X coordinate for numeric data.
 XC2= “text-string”
 specifies the X coordinate for character data.
 Default none

Y1= numeric-value | YC1= “text-string”
 specifies the first Y coordinate of the annotation.
 Use one of the following arguments:
 Y1= numeric-value
 specifies the Y coordinate for numeric data.
 YC1= “text-string”
 specifies the Y coordinate for character data.
 Default none

Y2= numeric-value | YC2= “text-string”
 specifies the second Y coordinate of the annotation.
 Use one of the following arguments:
 Y2= numeric-value
 specifies the Y coordinate for numeric data.
 YC2= “text-string”
 specifies the Y coordinate for character data.
Optional Variables

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= “draw-space-value”

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1421.

LAYER= “BACK” | “FRONT”

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction

For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.
LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern”
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESYLEELEMENT= “style-element”
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1421.

X2SPACE= “draw-space-value”

specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.
See For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2”
specifies which X axis to use for data space annotations.
Default X

Y1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.
draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT

Restriction For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the **Y2SPACE=** value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.

Y2SPACE= “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.
draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
• GRAPHPERCENT
• GRAPHPIXEL
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= “Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default Y

OVAL Function

Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

Tip: An easy way to draw a circle is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

FUNCTION= “OVAL”;

Required Variables

HEIGHT= numeric-value

specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
 specifies the X coordinate for numeric data.

XC1= “text-string”
 specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
 specifies the Y coordinate of the annotation.
Use one of the following arguments:

Y1= numeric-value
 specifies the Y coordinate for numeric data.

YC1= “text-string”
 specifies the Y coordinate for character data.

Default none

Optional Variables

DISCRETEOFFSET= numeric-value
 specifies an amount to offset the annotation from a discrete value in data space.
 Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= “ALL” | “FILL” | “OUTLINE”
 specifies the fill and outline properties. You can specify that the annotation be filled
 (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= “draw-space-value”
 specifies the drawing space and units for the annotation. DRAWSPACE can be used
 rather than specify X1SPACE and Y1SPACE individually.

 draw-space-value can be one of the following:
 • DATAPERCENT
 • DATAPIXEL
 • DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the
 annotation value must be a formatted value on the axis. Use the XC1 or YC1
 columns for those values.
 • GRAPHPERCENT
 • GRAPHPIXEL
 • LAYOUTPERCENT
 • LAYOUTPIXEL
 • WALLPERCENT
 • WALLPIXEL
Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR= “color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= “style-element”
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY= numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

HEIGHTUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

LAYER= “BACK” | “FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT="style-element"

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

ROTATE=degrees

rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=T0P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

TRANSPARENCY=numeric-value

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WIDTHUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2”
specifies which X axis to use for data space annotations.

Default X

Y1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= “Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default: Y

POLYCONT Function

Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. POLYCONT specifies each successive point in the polygon or polyline.

Syntax

FUNCTION= “POLYCONT”;

Required Variables

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= “text-string”

specifies the X coordinate for character data.

Default: none

Y1= numeric-value | YC1= “text-string”

specifies the Y coordinate of the annotation.
Use one of the following arguments:

\[\texttt{Y1= numeric-value} \]

specifies the Y coordinate for numeric data.

\[\texttt{YC1= "text-string"} \]

specifies the Y coordinate for character data.

Default none

Optional Variables

\[\texttt{X1SPACE= "draw-space-value"} \]

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- \[\texttt{DATAPERCENT} \]
- \[\texttt{DATAPIXEL} \]
- \[\texttt{DATAVALUE} \]

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- \[\texttt{GRAPHPERCENT} \]
- \[\texttt{GRAPHPIXEL} \]
- \[\texttt{LAYOUTPERCENT} \]
- \[\texttt{LAYOUTPIXEL} \]
- \[\texttt{WALLPERCENT} \]
- \[\texttt{WALLPIXEL} \]

Default \[\texttt{GRAPHPERCENT} \]

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1421.

\[\texttt{Y1SPACE= "draw-space-value"} \]

specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- \[\texttt{DATAPERCENT} \]
- \[\texttt{DATAPIXEL} \]
- \[\texttt{DATAVALUE} \]

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- \[\texttt{GRAPHPERCENT} \]
- \[\texttt{GRAPHPIXEL} \]
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

POLYGON Function

Specifies the beginning point of a polygon, which is a connected series of lines that form a closed shape. This function is used in conjunction with two or more POLYCONT functions to define vertex points for the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines the polygon.

Requirement: The SG annotation data set must also specify at least two instances of the POLYCONT function immediately after the POLYGON function.

Syntax

FUNCTION= “POLYGON”;

Required Variable

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= “text-string”

specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”

specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value

specifies the Y coordinate for numeric data.

YC1= “text-string”

specifies the Y coordinate for character data.

Default none
Optional Variables

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= “ALL” | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= “draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR= “color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.
FILLSTYLEELEMENT= "style-element"
specifies a style element for the fill. Here is an example of a style element:
GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY= numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

LAYER= "BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern”
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= “style-element”
specifies a style element for the line. Here is an example of a style element:
GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style
TRANSPARENCY= \textit{numeric-value}

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL= \textit{character-variable}

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

\textbf{X1SPACE=} \textit{“draw-space-value”}

specifies the drawing space of the annotation’s X coordinate.

\textit{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

\textit{Note: } When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

\textbf{XAXIS=} \textit{“X”} | \textit{“X2”}

specifies which X axis to use for data space annotations.

Default X

\textbf{Y1SPACE=} \textit{“draw-space-value”}

specifies the drawing space of the annotation’s Y coordinate.
draw-space-value can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

<table>
<thead>
<tr>
<th>Default</th>
<th>GRAPHPERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.</td>
</tr>
<tr>
<td>See</td>
<td>For more information about these values, see “Drawing Space Values” on page 1421.</td>
</tr>
</tbody>
</table>

YAXIS= “Y” | “Y2”

specifies which Y axis to use for data space annotations.

| Default | Y |

POLYLINE Function

Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more POLYCONT functions to draw a series of connected straight lines.

Requirement: The SG annotation data set must also specify at least one instance of the POLYCONT function immediately after the POLYLINE function.

Note: The POLYLINE object is similar to a POLYGON, except that the POLYLINE object does not need to be a closed shape.

Syntax

FUNCTION= “POLYLINE”;

Required Variables

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
 specifies the X coordinate for numeric data.

XC1= “text-string”
 specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
 specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
 specifies the Y coordinate for numeric data.

YC1= “text-string”
 specifies the Y coordinate for character data.

Default none

Optional Variables

DISCRETEOFFSET= numeric-value
 specifies an amount to offset the annotation from a discrete value in data space.
 Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= “draw-space-value”
 specifies the drawing space and units for the annotation. DRAWSPACE can be used
 rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:
 • DATAPERCENT
 • DATAPIXEL
 • DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the
 annotation value must be a formatted value on the axis. Use the XC1 or YC1
 columns for those values.
 • GRAPHPERCENT
 • GRAPHPIXEL
 • LAYOUTPERCENT
 • LAYOUTPIXEL
 • WALLPERCENT
 • WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space,
 such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only
 GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
 LAYOUTPIXEL values are valid.
See For more information about these values, see “Drawing Space Values” on page 1421.

LAYER= “BACK” | “FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern”
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

DefaultLineStyle attribute in the graph’s current style

LINESTYLEELEMENT= “style-element”
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

\[\text{X1SPACE} = \text{"draw-space-value"} \]

specifies the drawing space of the annotation’s X coordinate.

\[\text{draw-space-value} \]

can be one of the following:

- \[\text{DATAPERCENT} \]
- \[\text{DATAPIXEL} \]
- \[\text{DATAVALUE} \]

\[\text{Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.} \]

- \[\text{GRAPHPERCENT} \]
- \[\text{GRAPHPIXEL} \]
- \[\text{LAYOUTPERCENT} \]
- \[\text{LAYOUTPIXEL} \]
- \[\text{WALLPERCENT} \]
- \[\text{WALLPIXEL} \]

Default \[\text{GRAPHPERCENT} \]

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1421.

\[\text{XAXIS} = \text{"X"} | \text{"X2"} \]

specifies which X axis to use for data space annotations.

Default \[\text{X} \]

\[\text{Y1SPACE} = \text{"draw-space-value"} \]

specifies the drawing space of the annotation’s Y coordinate.

\[\text{draw-space-value} \]

can be one of the following:

- \[\text{DATAPERCENT} \]
- \[\text{DATAPIXEL} \]
- \[\text{DATAVALUE} \]

\[\text{Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.} \]

- \[\text{GRAPHPERCENT} \]
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= “Y” | “Y2”
specifies which Y axis to use for data space annotations.

Default Y

RECTANGLE Function

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

Tip: An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

FUNCTION= “RECTANGLE”;

Required Variables

HEIGHT= numeric-value
 specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= numeric-value
 specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= “text-string”
 specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.
Default none

Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.
Use one of the following arguments:
Y1= numeric-value
specifies the Y coordinate for numeric data.
YC1= “text-string”
specifies the Y coordinate for character data.
Default none

Optional Variables

ANCHOR= “TOPLEFT” | “TOP” | “TOPRIGHT” | “RIGHT” | “BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.
Default CENTER

CORNERRADIUS= numeric-value
specifies the roundness of the corners of rectangles. Specify a value from 0.0 (completely rectangular) to 1.0 (oval).
Default 0.0

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).
Default 0.0 (no offset)

DISPLAY= “ALL” | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).
Default OUTLINE

DRAWSPACE= “draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.
draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVEC
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

Default

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see "Drawing Space Values" on page 1421.

FILLCOLOR= "color" | "style-attribute"

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1325.

Default

COLOR attribute in the graph’s current style

Interaction

This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= "style-element"

specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note

Only the COLOR attribute of the style element applies to the fill.

See

"Style Elements for Use with ODS Graphics" on page 1357

FILLTRANSPARENCY= numeric-value

specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default

0.0

HEIGHTUNIT= "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the HEIGHT value.

Default

PERCENT

LAYER= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

```sas
GraphData2:Color
```

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

LINEPATTERN= "line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

LINESTYLEELEMENT= "style-element"

specifies a style element for the line. Here is an example of a style element:

```sas
GraphData2
```

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

ROTATE= degrees

rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTATE=90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTATE=180</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTATE=270</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Positive angles rotate the annotation counter clockwise, and negative angles rotate
the annotation clockwise. The angle specification can exceed 360 degrees in absolute
value.

Default 0 (no rotation)

\textbf{TRANSPARENCY= numeric-value}

specifies the degree of transparency for the annotation. Specify a value from 0.0
(completely opaque) to 1.0 (completely transparent).

Default 0.0

\textbf{URL=character-variable}

specifies a character variable that contains URLs for web pages to be displayed when
parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

\textbf{VARWIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"}

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

\textbf{X1SPACE= "draw-space-value"}

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

\textbf{Note:} When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2”

specifies which X axis to use for data space annotations.

Default X

Y1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS= “Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default Y

TEXT Function

Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the (X1, Y1) coordinates, the text is placed in the center of the graph.
Syntax

FUNCTION= "TEXT";

Required Variable

LABEL= "text-string"

specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escampelement notation. Here is a simple example:

data anno;
 function="text";
 label="This label is rich(*ESC*){sup '2'}";
run;
proc sgplot data=sashelp.class sganno=anno;
 scatter x=weight y=height;
run;

You can invoke a macro that returns a string. For example: \texttt{label=\%mylabel}, where \texttt{mylabel} is the name of the macro.

\textit{Note}: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, \texttt{label=\%95&Conf Interval} and \texttt{label=\%95\%Conf Interval} both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: \texttt{label=\%95\%Conf Interval}.
- use the %NRQUOTE macro function. For example: \texttt{label=\%95\%nrquote(&)Conf Interval}.

Optional Variables

ANCHOR= “TOPLEFT” | “TOP” | “TOPRIGHT” | “RIGHT” | “BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”

specifies the anchor position of the annotation. This point is placed on the specified \texttt{X1} and \texttt{Y1} positions.

\texttt{Default} CENTER

BORDER= “TRUE” | “FALSE”

turns the border on and off.

\texttt{Default} FALSE

dISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

\texttt{Default} 0.0 (no offset)
DRAWSPACE= "draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR= "color" | "style-attribute"

specifies the background color for the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: COLOR attribute in the graph’s current style

FILLTRANSPARENCY= numeric-value

specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

JUSTIFY= "CENTER" | "LEFT" | "RIGHT"

specifies the text justification.

Default: LEFT

LAYER= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”

specifies a line color for the border of the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: COLOR attribute in the graph’s current style

Interaction: This option takes effect only if BORDER= “TRUE”.

LINEPATTERN= “line-pattern”

specifies a line pattern for the border of the text annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default: LineStyle attribute in the graph’s current style

Interaction: This option takes effect only if BORDER= “TRUE”.

LINESTYLEELEMENT= “style-element”

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= n

specifies the line thickness of the border of the text annotation. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

Interaction: This option takes effect only if BORDER= “TRUE”.

ROTATE= degrees

rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.
Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

TEXTCOLOR= “color” | “style-attribute”
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT= “font-family”
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in *SAS Language Reference: Concepts*.

Default FontFamily attribute of the GraphAnnoText style element in the current style

TEXTSIZE= n
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style

TEXTSTYLE= “ITALIC” | “NORMAL”
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style

TEXTSTYLEELEMENT= “style-element”
specifies a style element for the text. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

TEXTWEIGHT= “BOLD” | “NORMAL”
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).
Default FontWeight attribute of the GraphAnnoText style element in the current style.

TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

WIDHT= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

WIDTHUNIT= “DATA” | “PERCENT” | “PIXEL”

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**

specifies the X coordinate for numeric data.

- **XC1= “text-string”**

specifies the X coordinate for character data.

Default none

X1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATA
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2” specifies which X axis to use for data space annotations.

Y1= numeric-value | YC1= “text-string” specifies the Y coordinate of the annotation. Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

Default 50

YC1= “text-string” specifies the Y coordinate for character data.

Default none

Y1SPACE= “draw-space-value” specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
TEXTCONT Function

Continues a text string that was started using the TEXT function. You can set the continued text apart from the main text by specifying different text attributes.

Syntax

FUNCTION= "TEXTCONT";

Required Variable

LABEL= "text-string"

specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. Here is a simple example:

data anno;
 infile datalines dlm="#";
 length function $8 label $35;
 input function $ label $ textcolor $;
 datalines;
 text # This label is rich(*ESC*){sup '2'} # black
 textcont # rich(*ESC*){sup '2'} green # green
 ;
 run;

proc sgplot data=sashelp.class sganno=anno;
 scatter x=weight y=height;
 run;

You can invoke a macro that returns a string. For example: label="%mylabel",
where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, label="95&Conf Interval" and label="95%Conf Interval" both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

• add a space after the % or & character.
• escape the % character with a second % character. For example:
 \texttt{label=\texttt{95\%Conf Interval}}
• use the %NRQUOTE macro function. For example:
 \texttt{label=\texttt{95\%nrquote(\&)Conf Interval}}

Default none

Optional Variables

TEXTCOLOR= “color” | “style-attribute”
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT= “font-family”
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in SAS Language Reference: Concepts.

Default FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE= \(n\)
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE= “ITALIC” | “NORMAL”
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.

TEXTSTYLEELEMENT= “style-element”
specifies a style element for the text. Here is an example of a style element:
GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

TEXTWEIGHT= “BOLD” | “NORMAL”
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default FontWeight attribute of the GraphAnnoText style element in the current style.
Example 1: Create an Arrow in a Paneled Graph

Features: ARROW

This example uses the SGPANEL procedure to create an arrow near the middle data point for the height variable in each panel.

Output

```
program

data annoArrow;
retain drawspace "layoutpercent" linecolor "blue";
input function $ x1 y1 x2 y2 shape $ direction $;
datalines;
arrow 30 50 40 50 barbed in
arrow 65 63 75 63 barbed out;
run;

proc sgpanel data=sashelp.class sganno=annoArrow;
panelby sex;
scatter x=weight y=height;
run;
```
Program Description

Create an SG annotation data set.

```sas
data annoArrow;
  retain drawspace "layoutpercent" linecolor "blue";
  input function $ x1 y1 x2 y2 shape $ direction $;
  datalines;
  arrow 30 50 40 50 barbed in
  arrow 65 63 75 63 barbed out
; run;
```

Create the panel with the annotation.

```sas
proc sgpolygon data=sashelp.class sganno=annoArrow;
  panelby sex;
  scatter x=weight y=height;
run;
```

Example 2: Create a Tabular Text Annotation

Features:
- TEXT annotation
- PAD option

This example uses the SGPlot procedure to create an axis-aligned table to the right of a horizontal bar chart.

Output

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip</td>
<td>72</td>
<td>150.0</td>
<td>16</td>
</tr>
<tr>
<td>Ahmed</td>
<td>86</td>
<td>112.5</td>
<td>14</td>
</tr>
<tr>
<td>Ronald</td>
<td>67</td>
<td>133.0</td>
<td>15</td>
</tr>
<tr>
<td>Mary</td>
<td>80.5</td>
<td>112.0</td>
<td>15</td>
</tr>
<tr>
<td>William</td>
<td>80.5</td>
<td>112.0</td>
<td>15</td>
</tr>
<tr>
<td>Barbara</td>
<td>88.3</td>
<td>98.0</td>
<td>13</td>
</tr>
<tr>
<td>Robert</td>
<td>64.8</td>
<td>128.0</td>
<td>12</td>
</tr>
<tr>
<td>Judy</td>
<td>84.2</td>
<td>128.0</td>
<td>12</td>
</tr>
<tr>
<td>Henry</td>
<td>90.0</td>
<td>102.5</td>
<td>14</td>
</tr>
<tr>
<td>Carol</td>
<td>82.8</td>
<td>102.5</td>
<td>14</td>
</tr>
<tr>
<td>Janet</td>
<td>102.5</td>
<td>112.5</td>
<td>15</td>
</tr>
<tr>
<td>Jeffrey</td>
<td>92.5</td>
<td>90.0</td>
<td>13</td>
</tr>
<tr>
<td>Jane</td>
<td>92.5</td>
<td>84.0</td>
<td>13</td>
</tr>
<tr>
<td>John</td>
<td>99.5</td>
<td>84.5</td>
<td>12</td>
</tr>
<tr>
<td>Thomas</td>
<td>76</td>
<td>99.5</td>
<td>12</td>
</tr>
<tr>
<td>James</td>
<td>57.5</td>
<td>95.0</td>
<td>11</td>
</tr>
<tr>
<td>Alice</td>
<td>55.5</td>
<td>83.0</td>
<td>12</td>
</tr>
<tr>
<td>Louise</td>
<td>58.3</td>
<td>84.0</td>
<td>13</td>
</tr>
<tr>
<td>Joyce</td>
<td>61.2</td>
<td>77.0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.5</td>
<td>11</td>
</tr>
</tbody>
</table>
```
Program

```sas
data anno;
  length y1space $ 12 label $ 6;
  set sashelp.class (keep=name weight);
  rename name=yc1;
  retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
    textcolor "black" textweight "normal" y1 . anchor "right";
  label=put(weight, F5.1);
run;

data temp;
  length y1space $ 12 label $ 6;
  set sashelp.class (keep=name age);
  rename name=yc1;
  retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
    textcolor "black" textweight "normal";
  label=put(age, F2.0);
run;

data headers;
  length textweight $ 6;
  retain y1space "graphpercent" x1space "graphpercent" function "text" y1 90
    textcolor "black" textweight "bold";
  x1=87;
  label="WEIGHT";
  output;
  x1=95;
  label="AGE";
  output;
run;

proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;
proc append base=anno (drop=weight) data=headers force nowarn;
run;
title1 "Class Statistics";
title2 " ";
proc sgplot data=sashelp.class sganno=anno pad=(right=25%);
hbar name / response=height datalabel nostatlabel
  categoryorder=respdesc;
run;
title1;
```

Program Description

Create a data set with the Weight column. Use annotation variables to define attributes for the weight text.

```sas
data anno;
  length y1space $ 12 label $ 6;
  set sashelp.class (keep=name weight);
  rename name=yc1;
  retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
    textcolor "black" textweight "normal" y1 . anchor "right";
  label=put(weight, F5.1);
```
Create a data set with the Age column. Use annotation variables to define attributes for the age text.

```sas
data temp;
length y1space $ 12 label $ 6;
set sashelp.class (keep=name age);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
   textcolor "black" textweight "normal";
label=put(age, F2.0);
run;
```

Create the positions for the two columns of the table in the graph area.

```sas
data headers;
length textweight $ 6;
retain y1space "graphpercent" x1space "graphpercent" function "text" y1 90
   textcolor "black" textweight "bold";
x1=87;
label="WEIGHT";
output;
x1=95;
label="AGE";
output;
run;
```

Append the observations of TEMP to ANNO, and then append the observations of HEADERS.

```sas
proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;
proc append base=anno (drop=weight) data=headers force nowarn;
run;
```

Create the plot with the annotation.

```sas
title1 "Class Statistics";
title2 " ";
proc sgplot data=sashelp.class sganno=anno pad=(right=25%);
hbar name / response=height datalabel nostatlabel
   categoryorder=respdesc;
run;
title1;
```

Example 3: Create Custom Labels

Overview

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of
the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.

The following figure shows the final graph.

![Average Highway Mileage by Vehicle Type](image)

Program

```sas
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
  class type;
  var mpg_highway;
  output out=mileage mean(mpg_highway) = mpg_highway;
run;

/* Create the annotation data set. */
data anno;
  retain function "text" drawspace "datavalue"
    textfont "Arial" textweight "bold"
    textcolor "GraphData1:contrastColor"
    width 100 widthunit "pixel"
    anchor "left" x1 2
    discreteoffset 0.1;
  set mileage(keep=type);
  rename type=yc1;
  length label $12;
  label=type;
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
  hbarparm category=type response=mpg_highway /
    dataskin=sheen;
  xaxis label="Average Highway MPG";
  yaxis display=none;
run;
title;
```
Program Description

Summarize the highway mileage data in Sashelp.Cars. Because a label is needed for each unique value of vehicle type, the data in Sashelp.Cars is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type. See “Listing of the Mileage Data Set” on page 1475.

```sas
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
   class type;
   var mpg_highway;
   output out=mileage mean(mpg_highway) = mpg_highway;
run;
```

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column and is then renamed to YC1. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

```sas
/* Create the annotation data set. */
data anno;
   retain function "text" drawspace "datavalue"
         textfont "Arial" textweight "bold"
         textcolor "GraphData1:contrastColor"
         width 100 widthunit "pixel"
         anchor "left" x1 2
         discreteoffset 0.1;
   set mileage(keep=type);
   rename type=yc1;
   length label $12;
   label=type;
run;
```

Create the plot. The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

```sas
/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
   hbarparm category=type response=mpg_highway /
      dataskin=sheen;
   xaxis label="Average Highway MPG";
   yaxis display=none;
run;
title;
```
Listing of the Mileage Data Set

Here is a listing of the Mileage data set.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th>TYPE</th>
<th>FREQ</th>
<th>mpg_city</th>
<th>highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>24</td>
<td>16.5000</td>
<td>21.0000</td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
</tr>
</tbody>
</table>
Chapter 19
SG Annotation Macro Dictionary

About the SG Annotation Macros

You can use SG annotation macros within a SAS DATA step to simplify the process of creating annotation observations. With a macro, you specify a function and assign variable values in one step without having to write explicit variable assignment statements. You can mix assignment statements and macro calls in the same DATA step.

The following sections describe all of the annotation macros and include information about accessing and using macros.
Using the SG Annotation Macros

Macro Structure

The general form of an SG annotation macro is

\%MACRO \{parameters\};

In general, the macro name represents a function and the parameters contain the values for the variables that can be used with the function.

The parameters can be specified in any order.

Each of the parameters in the SGANNO macros corresponds to a variable in the SG annotation data set.

The parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable names that have been initialized to the appropriate value. Character parameters must be enclosed in quotation marks or specified as character variable names. For more information about specifying variable names, see “Data-Driven Macro Parameters” on page 1481.

The SG annotation facility assigns the parameter values to the corresponding annotation variables. Therefore, the observations in an annotation data set that is created with macros look the same as the ones that you create with assignment statements. For example, the following two statements are equivalent:

\%sgtext \{x1=10, y1=15, label="My Text", justify="center"\};

function="text"; x1=10; y1=15; label="My Text"; justify="center"; output;

Making the Macros Available

To use the SG annotation macros, you must compile the macros by issuing the \%SGANNO macro:

\%SGANNO

The %SGANNO macro must be run before any other SG annotation macros are used in a SAS session. A message appears in the SAS log indicating that the SG annotation macros are available.

Example

The following sample program identifies the basic elements of an annotation program.
The `%SGANNO` macro compiles all of the SG annotation macros and makes them available.

The DATA step creates the annotation data.

The `%SGRECTANGLE` macro draws a 30-by-40 rectangle, starting from point (50, 50). By default, the rectangle is positioned and scaled as a percentage of the graph area.

The `%SGARROW` macro draws a red arrow from point (51, 50) to point (30, 35). The X1 value overrides the X1 value that was specified in the call to `%SGRECTANGLE`. The Y1 parameter is not specified, so the arrow uses the Y1 value that was specified in the call to `%SGRECTANGLE`.

By default, the rectangle and the arrow are positioned and scaled as a percentage of the graph area.

The SGPLOT procedure statement uses the SGANNO= option to reference the annotation data set.

Here is the graphics output:

Here is the SGANNODATA data set:

<table>
<thead>
<tr>
<th>Obs</th>
<th>FUNCTION</th>
<th>LINECOLOR</th>
<th>X1</th>
<th>Y1</th>
<th>HEIGHT</th>
<th>WIDTH</th>
<th>X2</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RECTANGLE</td>
<td></td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>ARROW</td>
<td>red</td>
<td>51</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>
Resetting Parameter Values

By default, a macro call retains all variable values that were set in previous macro calls. You have two options for resetting the values:

- To reset individual variable values on a subsequent macro call, set new values for the corresponding parameters in that macro call.
- To re-initialize all variable values on any macro call, specify `RESET=“ALL”` among the macro's parameters.

For example, the `%SGARROW` macro draws an arrow between two points and requires values for both points: `(x1,y1)` and `(x2,y2)`. To draw two arrows from the same starting point but to different end points, you can omit the `X1` and `Y1` parameters in the second macro call.

```plaintext
%sgarrow(x1=34, y1=30, x2=62, y2=64, linecolor="red");
%sgarrow(x2=45, y2=40, linecolor="green");
%sgarrow(reset="all", x1=60, y1=83, x2=79, y2=83);
```

In the previous example:

- The first macro call draws a red arrow from point (34, 30) to point (62, 64).
- The second macro call draws a green arrow from point (34, 30) to point (45, 40).
- The third macro call resets all macro-variable values and draws a default-colored arrow from point (60, 83) to point (79, 83).

SG Annotation Macro Summary

The following table summarizes the tasks performed by the Annotate macros.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%SGANNO_HELP</td>
<td>displays help for using the SG annotation macros</td>
</tr>
<tr>
<td>%SGARROW</td>
<td>draws an arrow</td>
</tr>
<tr>
<td>%SGIMAGE</td>
<td>draws an image</td>
</tr>
<tr>
<td>%SGLINE</td>
<td>draws a line from one point to another</td>
</tr>
<tr>
<td>%SGOVAL</td>
<td>draws an oval or a circle</td>
</tr>
<tr>
<td>%SGPOLYCONT</td>
<td>continues drawing a polygon or a polyline</td>
</tr>
<tr>
<td>%SGPOLYGON</td>
<td>draws a polygon</td>
</tr>
<tr>
<td>%SGPOLYLINE</td>
<td>draws a polyline</td>
</tr>
<tr>
<td>%SGRECTANGLE</td>
<td>draws a rectangle or a square</td>
</tr>
<tr>
<td>%SGTEXT</td>
<td>begins drawing text</td>
</tr>
</tbody>
</table>
Data-Driven Macro Parameters

The macro parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable names for macro parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the second data set.

For an example of using variable names, see “Example: Create Custom Labels” on page 1530.

Dictionary

%SGANNO_HELP Macro

Displays help for using the SG annotation macros.

Syntax

%SGANNO_HELP(macro-name) | (ALL)

Required Argument

(macro-name) | (ALL)

- To request help for a specific macro, use the form %SGANNO_HELP(macro-name), where macro-name is the name of the desired macro. For example:

 %sganno_help(sgrectangle);

- To request help for all of the SG annotation macros, use the form %SGANNO_HELP(ALL).

%SGARROW Macro

Draws an arrow from (X1, Y1) to (X2,Y2).

Requirement: You must run the %SGANNO macro before using any other SG annotation macros.

For more information, see “Making the Macros Available” on page 1478.
Syntax

\%SGARROW (X1=\text{numeric-value} | XC1=\text{"text-string"},
Y1=\text{numeric-value} | YC1=\text{"text-string"},
X2=\text{numeric-value} | XC2=\text{"text-string"},
Y2=\text{numeric-value} | YC2=\text{"text-string"},
<options>)

Required Arguments

X1= \text{numeric-value} | XC1= \text{“text-string”}
 specifies the first X coordinate of the annotation.
Use one of the following arguments:

X1= \text{numeric-value}
 specifies the X coordinate for numeric data.

XC1= \text{“text-string”}
 specifies the X coordinate for character data.

Default none

X2= \text{numeric-value} | XC2= \text{“text-string”}
 specifies the second X coordinate of the annotation.
Use one of the following arguments:

X2= \text{numeric-value}
 specifies the X coordinate for numeric data.

XC2= \text{“text-string”}
 specifies the X coordinate for character data.

Default none

Y1= \text{numeric-value} | YC1= \text{“text-string”}
 specifies the first Y coordinate of the annotation.
Use one of the following arguments:

Y1= \text{numeric-value}
 specifies the Y coordinate for numeric data.

YC1= \text{“text-string”}
 specifies the Y coordinate for character data.

Default none

Y2= \text{numeric-value} | YC2= \text{“text-string”}
 specifies the second Y coordinate of the annotation.
Use one of the following arguments:

Y2= \text{numeric-value}
 specifies the Y coordinate for numeric data.

YC2= \text{“text-string”}
 specifies the Y coordinate for character data.

Default none
Optional Arguments

DIRECTION="BOTH" | "IN" | "OUT"

specifies the direction for arrows.

"BOTH"
Places the arrowhead at both ends of the line.

"IN"
Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

"OUT"
Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default OUT

DISCRETEOFFSET=numeric-value

specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1421.
ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

SCALE=numeric-value
specifies a scale factor for the arrowheads. Specify a positive number.

Default determined by the procedure
SHAPE="BARBED" | "CLOSED" | "FILLED" | "OPEN"
specifies the shape of the arrowheads. Specify one of the following:

"BARBED"
 a solid triangle with an indent at the base.

"CLOSED"
 an outline of a triangle.

"FILLED"
 a solid triangle.

"OPEN"
 a triangle that resembles the letter "V".

Default OPEN

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.

<table>
<thead>
<tr>
<th>X2SPACE=draw-space-value</th>
<th>specifies the drawing space of the annotation’s second X coordinate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw-space-value</td>
<td>can be one of the following:</td>
</tr>
<tr>
<td>• DATAPERCENT</td>
<td>• DATAPIXEL</td>
</tr>
<tr>
<td>• DATAVALE</td>
<td>• GRAPHPERCENT</td>
</tr>
<tr>
<td>• GRAPHPIXEL</td>
<td>• LAYOUTPERCENT</td>
</tr>
<tr>
<td>• LAYOUTPIXEL</td>
<td>• WALLPERCENT</td>
</tr>
<tr>
<td>• WALLPIXEL</td>
<td>• GRAPHPERCENT</td>
</tr>
</tbody>
</table>

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.

<table>
<thead>
<tr>
<th>XAXIS=X</th>
<th>“X2”</th>
<th>specifies which X axis to use for data space annotations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y1SPACE=draw-space-value</th>
<th>specifies the drawing space of the annotation’s second Y coordinate.</th>
</tr>
</thead>
</table>
draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1421.

Y2SPACE=draw-space-value

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

GRAPHPERCENT
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS=“Y” | “Y2” specifies which Y axis to use for data space annotations.

Default Y

%SGIMAGE Macro displays an image.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax

\%SGIMAGE (IMAGE=“file-specification” <x1, y1, options>)

Required Argument

IMAGE=“file-specification” specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.

If you do not specify the full path, then the procedure looks for the file in the SAS current working directory. The SAS current directory is the same directory in which you start your SAS session. If you are running SAS with the windowing environment in the Windows operating system, then the current directory is displayed in the status bar at the bottom of the main SAS window.

For a list of image formats that can be used, see “Supported File Types for Output Destinations” on page 92.

Optional Arguments

ANCHOR=“TOLEFT” | “TOP” | “TOPRIGHT” | “RIGHT” | “BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER” specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER=“TRUE” | “FALSE” turns the border on and off.
DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

HEIGHT=numeric-value
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default Determined by the system

HEIGHTUNIT=“DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

ID=“annotation-identifier”
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the
annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

IMAGESCALE= “FIT” | “FITHEIGHT” | “FITWIDTH” | “TILE” specifies how the image is scaled within the width and height. You can specify the WIDTH and HEIGHT variables.

Defaults FITWIDTH or FITHEIGHT if no size or if one size (either the width or the height) is specified (to preserve aspect)

FIT if width and height are both specified

LAYER= “BACK” | “FRONT” specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute” specifies a color of the border around the image, if displayed. You can specify a color or a style element attribute. Here is an example of a style attribute:

```
GraphData2:Color
```

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern” specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= “style-element” specifies a style element for the line. Here is an example of a style element:

```
GraphData2
```

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS= \(n \) specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style
RESET=“ALL”
Re-initializes all variables.

ROTATE= degrees
rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.

![Rotation With ANCHOR=T0P](image)

Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0

Note When this option is used with a vector graph, the graph is rendered as an image.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=“text-string”
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system
WIDTHUNIT=“DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

X1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS=“X” | “X2”
specifies which X axis to use for data space annotations.

Default X

Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.
Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Y1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the YSPACE= value, then the second Y coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS=“Y” | “Y2”
specifies which Y axis to use for data space annotations.

Default Y

%SGLINE Macro

Draws a line from (X1, Y1) to (X2, Y2).

Requirement: You must run the %SGANNO macro before using any other SG annotation macros.

For more information, see “Making the Macros Available” on page 1478.
Syntax

%SGLINE (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", X2=numeric-value | XC2="text-string", Y2=numeric-value | YC2="text-string", <options>)

Required Arguments

X1= numeric-value | XC1= “text-string”
specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

X2= numeric-value | XC2= “text-string”
specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2= numeric-value
specifies the X coordinate for numeric data.

XC2= “text-string”
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Y2= numeric-value | YC2= “text-string”
specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2= numeric-value
specifies the Y coordinate for numeric data.

YC2= “text-string”
specifies the Y coordinate for character data.

Default none
Optional Arguments

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT
Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR=“*color*” | “*style-attribute*”

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN=“*line-pattern*”

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT=“*style-element*”

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=*n*

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET=“ALL”

Re-initializes all variables.

TRANSPARENCY=*numeric-value*

specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=“*text-string*”

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1421.

X2SPACE=“draw-space-value”
specifies the drawing space of the annotation’s second X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS= “X” | “X2”
specifies which X axis to use for data space annotations.

Default X

Y1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.

Y2SPACE= “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:
- DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS="Y" | “Y2"
specifies which Y axis to use for data space annotations.

Default Y

%SGOVAL Macro
Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax
%SGOVAL (HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments
HEIGHT=numeric-value
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none
WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.
Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.
Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Optional Arguments

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY=“ALL” | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE=“draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE
Note: When a DATA VALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the X1 or Y1 columns for those values.

- GRAPHPERCENT
- GRAPHPX
- LAYOUTPERCENT
- LAYOUTPIX
- WALLPERCENT
- WALLPIX

Default: GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPX, LAYOUTPERCENT, and LAYOUTPIX values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR="color" | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: COLOR attribute in the graph’s current style

Interaction: This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT="style-element"
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note: Only the COLOR attribute of the style element applies to the fill.

See: “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

HEIGHTUNIT="DATA" | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation
identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYERT | **“BACK”** | **“FRONT”**
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR | **“color”** | **“style-attribute”**
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN | **“line-pattern”**
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT | **“style-element”**
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS | **n**
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET | **“ALL”**
Re-initializes all variables.

ROTATE | **degrees**
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.
Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default
0 (no rotation)

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

URL=“text-string”
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

WIDTHUNIT=“DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default
PERCENT

X1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS=“X” | “X2”

specifies which X axis to use for data space annotations.

Default: X

Y1SPACE=“draw-space-value”

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.
%SGPOLYCONT Macro

Continues drawing a polygon that was begun with the %SGPOLYGON macro, or a line that was begun with the %SGPOLYLINE macro. %SGPOLYCONT specifies each successive point in the polygon or polyline.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax

```
%SGPOLYCONT (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)
```

Required Arguments

- **X1= numeric-value | XC1="text-string"**
 - Specifies the X coordinate of the annotation.
 - Use one of the following arguments:
 - **X1= numeric-value**
 - Specifies the X coordinate for numeric data.
 - **XC1= "text-string"**
 - Specifies the X coordinate for character data.
 - Default: none

- **Y1= numeric-value | YC1="text-string"**
 - Specifies the Y coordinate of the annotation.
 - Use one of the following arguments:
 - **Y1= numeric-value**
 - Specifies the Y coordinate for numeric data.
 - **YC1= "text-string"**
 - Specifies the Y coordinate for character data.
 - Default: none

Optional Arguments

- **ID="annotation-identifier"**
 - Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation
identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default

All of the annotations in the SGANNO data set are drawn.

RESET=“ALL”

Re-initializes all variables.

X1SPACE=“draw-space-value”

Specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

GRAPHPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1421.

Y1SPACE=“draw-space-value”

Specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y2SPACE= value, then the second Y
coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values”
on page 1421.

%SGPOLYGON Macro

Specifies the beginning point of a polygon, which is a connected series of lines that form a closed shape.
This function is used in conjunction with two or more %SGPOLYCONT functions to define vertex points for
the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines
the polygon.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros.
For more information, see “Making the Macros Available” on page 1478.

Syntax

%SGPOLYGON (X1=numeric-value | XC1=“text-string”,
Y1=numeric-value | YC1=“text-string”, <options>)

Required Arguments

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.
Use one of the following arguments:
X1= numeric-value
specifies the X coordinate for numeric data.
XC1= “text-string”
specifies the X coordinate for character data.
Default none

Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.
Use one of the following arguments:
Y1= numeric-value
specifies the Y coordinate for numeric data.
YC1= “text-string”
specifies the Y coordinate for character data.
Optional Arguments

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR="color" | "style-attribute"
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.
Default
- **COLOR attribute in the graph’s current style**

Interaction
- This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT="style-element"
- Specifies a style element for the fill. Here is an example of a style element:
  ```plaintext
  GraphData2
  ```
- **Note** Only the COLOR attribute of the style element applies to the fill.
- **See** “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY=numeric-value
- Specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).
- **Default** 0.0

ID="annotation-identifier"
- Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.
- **Default** All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
- Specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.
- **Default** FRONT
- **Interaction** For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
- Specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:
  ```plaintext
  GraphData2:Color
  ```
- You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.
- **Default** COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
- Specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.
- **Default** LineStyle attribute in the graph’s current style
LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:
GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

 This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation's first X coordinate.

draw-space-value can be one of the following:

 • DATAPERCENT
 • DATAPIXEL
 • DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

 • GRAPHPERCENT
 • GRAPHPIXEL
 • LAYOUTPERCENT
 • LAYOUTPIXEL
 • WALLPERCENT
 • WALLPIXEL
XAXIS="X" | “X2”
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1421.
%SGPOLYLINE Macro

Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more %SGPOLYCONT functions to draw a series of connected straight lines.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax

%SGPOLYLINE (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Optional Arguments

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.
draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default
GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See
For more information about these values, see “Drawing Space Values” on page 1421.

ID=“annotation-identifier”

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default
All of the annotations in the SGANNO data set are drawn.

LAYER=“BACK” | “FRONT”

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default
FRONT

Interaction
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR=“color” | “style-attribute”

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

```
GraphData2:Color
```
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEP**A**TT**E**R**N**=“line-pattern”
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESTY**L**E**E**LE**M**E**N**T**=“style-element”
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=\(n\)
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET=“ALL”
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=“text-string”
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only. For more information about ODS destinations, see “Specifying ODS Destinations” on page 1368.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For more information, see “Using the ODS GRAPHICS Statement” on page 1371.

X1**S**PACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS=“X” | “X2”
specifies which X axis to use for data space annotations.

Default: X

Y1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
%SGRECTANGLE Macro

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Tip: An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

```plaintext
%SGRECTANGLE (HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)
```

Required Arguments

- **HEIGHT=numeric-value**
 - Specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.
 - Default: none

- **WIDTH=numeric-value**
 - Specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.
 - Default: none

- **X1= numeric-value | XC1="text-string"**
 - Specifies the X coordinate of the annotation.
 - Use one of the following arguments:
 - **X1= numeric-value**
 - Specifies the X coordinate for numeric data.
 - **XC1="text-string"**
 - Specifies the X coordinate for character data.
Y1= numeric-value | YC1= “text-string”
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Optional Arguments

ANCHOR="TOPLEFT" | “TOP” | “TOPRIGHT” | “RIGHT” |
“BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

CORNERRADIUS=numeric-value
specifies the roundness of the corners of rectangles. Specify a value from 0.0 (completely rectangular) to 1.0 (oval).

Default 0.0

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
GRAPHPIXEL
LAYOUTPERCENT
LAYOUTPIXEL
WALLPERCENT
WALLPIXEL

Default: GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR=“color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: COLOR attribute in the graph’s current style

Interaction: This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT=“style-element”
specifies a style element for the fill. Here is an example of a style element: GraphData2

Note: Only the COLOR attribute of the style element applies to the fill.

See: “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

HEIGHTUNIT=“DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

ID=“annotation-identifier”
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.
LAYERS="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style

LINESYLETELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINEDTHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.
Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

TRANSPARENCY=numeric-value

specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=“text-string”

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

WIDTHUNIT=

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1SPACE=

specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
Restriction
For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

Note
If you do not also specify the X2SPACE= value, then the second X
coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values”
on page 1421.

XAXIS="X" | “X2"
specifies which X axis to use for data space annotations.

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the
 annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Restriction
For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y2SPACE= value, then the second Y
coordinate uses the default drawing space.
See For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS="Y" | “Y2”
specifies which Y axis to use for data space annotations.

Default Y

%SGTEXT Macro

Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the (X1, Y1) coordinates, the text is placed in the center of the graph.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax

%SGTEXT (LABEL="text-string", <options>)

Required Argument

LABEL="text-string"
specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*) {sup '2'}

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, label="95&Conf Interval" and label="95%Conf Interval" both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

• add a space after the % or & character.
• escape the % character with a second % character. For example: label="95%%Conf Interval"
• use the %NRQUOTE macro function. For example: label="95%nrquote(&)Conf Interval"

Default none

Optional Arguments

ANCHOR="TOPLEFT" | “TOP” | “TOPRIGHT” | “RIGHT” | “BOTTOMRIGHT” | "BOTTOM" | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER
BORDER=“TRUE” | “FALSE”
turns the border on and off.

Default FALSE

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE=“draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See
For more information about these values, see “Drawing Space Values” on page 1421.

FILLCOLOR=“color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

Interaction
This option takes effect only if the DISPLAY option is specified as FILLED or ALL.
FILLSTYLEELEMENT="style-element"
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1357

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

JUSTIFY= "CENTER" | "LEFT" | "RIGHT"
specifies the text justification.

Default LEFT

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. For a list of line patterns, see Figure 11.1 on page 1321.

Default LineStyle attribute in the graph’s current style
LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:
GraphData2

See “Style Elements for Use with ODS Graphics” on page 1357

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default: 0 (no rotation)

TEXTCOLOR="color" | "style-attribute"
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default: COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT="font-family"
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in SAS Language Reference: Concepts.

Default: FontFamily attribute of the GraphAnnoText style element in the current style

TEXTSIZE=n
specifies the font size of the annotation.
TEXTSTYLE="ITALIC" | "NORMAL"
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

TEXTWEIGHT="BOLD" | "NORMAL"
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the WIDTH value.

X1= numeric-value | XC1= "text-string"
specifies the X coordinate of the annotation. Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= "text-string"
specifies the X coordinate for character data.
X1SPACE="draw-space-value"

specifies the drawing space of the annotation’s first X coordinate.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

GRAPHPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1421.

XAXIS="X" | “X2”

specifies which X axis to use for data space annotations.

Default

X

Y1= numeric-value | YC1= “text-string”

specifies the Y coordinate of the annotation.

Use one of the following arguments:

- `Y1= numeric-value`
 specifies the Y coordinate for numeric data.

- `YC1= “text-string”`
 specifies the Y coordinate for character data.

Default

none

Y1SPACE="draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
• DATAVALUE

 Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default

GRAPHPERCENT

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note

If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See

For more information about these values, see “Drawing Space Values” on page 1421.

YAXIS=“Y” | “Y2”

specifies which Y axis to use for data space annotations.

Default

Y

%SGTEXTCONT Macro

Continues a text string that was begun with the TEXT macro. You can set the continued text apart from the main text by specifying different text attributes.

Requirement:

You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1478.

Syntax

%SGTEXTCONT (LABEL="text-string", <options>)

Required Argument

LABEL="text-string"

specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*){sup '2'}

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.
Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, `label="95&Conf Interval"` and `label="95%Conf Interval"` both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: `label="95%%Conf Interval"`
- use the %NRQUOTE macro function. For example: `label="95%nrquote(&)Conf Interval"

Default none

Optional Arguments

ID=“annotation-identifier”

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

RESET=“ALL”

Re-initializes all variables.

TEXTCOLOR=“color” | “style-attribute”

specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1325.

Default COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT=“font-family”

specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts. For more information, see “TrueType Fonts Supplied by SAS” in SAS Language Reference: Concepts.

Default FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE=n

specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE=“ITALIC” | “NORMAL”

specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.
Example: Create Custom Labels

Overview

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.

The following figure shows the final graph.

Program

```sas
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
   class type;
   var mpg_highway;
   output out=mileage mean(mpg_highway) = mpg_highway;
run;
```
Program Description

Summarize the highway mileage data in Sashelp.Cars. Because a label is needed for each unique value of vehicle type, the data in Sashelp.Cars is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type. See “Listing of the Mileage Data Set” on page 1532.

%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
 set mileage;
 %sgText(label=type,
 x1=2,y1=type,drawspace="datavalue",
 textfont="Arial",textweight="bold",
 textcolor="GraphData1:contrastColor",width=100,
 widthunit="pixel",anchor="left",discreteoffset=0.1);
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
 hbarparm category=type response=mpg_highway /
 dataskin=sheen;
 xaxis label="Average Highway MPG";
 yaxis display=none;
run;
title;

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
 set mileage;
 %sgText(label=type,
 x1=2,y1=type,drawspace="datavalue",
 textfont="Arial",textweight="bold",
 textcolor="GraphData1:contrastColor",width=100,
 widthunit="pixel",anchor="left",discreteoffset=0.1);
run;
Create the plot. The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

```/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
    hbarparm category=type response=mpg_highway /
        dataskin=sheen;
    xaxis label="Average Highway MPG";
    yaxis display=none;
run;
title;
```

Listing of the Mileage Data Set

Here is a listing of the Mileage data set.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th>TYPE</th>
<th>FREQ</th>
<th>mpg_city</th>
<th>highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>49</td>
<td>16.5000</td>
<td>21.0000</td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
</tr>
</tbody>
</table>
Part 6

Appendix

Appendix 1
- Units of Measurement ... 1535

Appendix 2
- Reserved Keywords and Unicode Values 1537

Appendix 3
- ODS Graphics Software ... 1541

Appendix 4
- Comparisons with the SAS/GRAPH Procedures 1543
Some options enable you to specify the unit of measurement as part of the value.

For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
Appendix 2
Reserved Keywords and Unicode Values

Overview

The tables in this section show some of the reserved keywords and Unicode values that can be used with the UNICODE text command. For information about rendering Unicode characters, see “Managing the String on Text Statements” in Chapter 7 of SAS Graph Template Language: User's Guide.

Note the following:

- Keywords and Unicode values are not case-sensitive: "03B1"x is the same code point as "03b1"x.
- The word blank is the keyword for a blank space.

Lowercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
<td>03B1</td>
<td>lowercase alpha</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
<td>03B2</td>
<td>lowercase beta</td>
</tr>
<tr>
<td>gamma</td>
<td>γ</td>
<td>03B3</td>
<td>lowercase gamma</td>
</tr>
<tr>
<td>delta</td>
<td>δ</td>
<td>03B4</td>
<td>lowercase delta</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
<td>03B5</td>
<td>lowercase epsilon</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
<td>03B6</td>
<td>lowercase zeta</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
<td>03B7</td>
<td>lowercase eta</td>
</tr>
<tr>
<td>theta</td>
<td>θ</td>
<td>03B8</td>
<td>lowercase theta</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
<td>03B9</td>
<td>lowercase iota</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
<td>03BA</td>
<td>lowercase kappa</td>
</tr>
<tr>
<td>lambda</td>
<td>λ</td>
<td>03BB</td>
<td>lowercase lambda</td>
</tr>
</tbody>
</table>
Uppercase Greek Letters

Table A2.1 Uppercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_u</td>
<td>A</td>
<td>0391</td>
<td>uppercase alpha</td>
</tr>
<tr>
<td>beta_u</td>
<td>B</td>
<td>0392</td>
<td>uppercase beta</td>
</tr>
<tr>
<td>gamma_u</td>
<td>Г</td>
<td>0393</td>
<td>uppercase gamma</td>
</tr>
<tr>
<td>delta_u</td>
<td>Δ</td>
<td>0394</td>
<td>uppercase delta</td>
</tr>
<tr>
<td>epsilon_u</td>
<td>Ε</td>
<td>0395</td>
<td>uppercase epsilon</td>
</tr>
<tr>
<td>zeta_u</td>
<td>Z</td>
<td>0396</td>
<td>uppercase zeta</td>
</tr>
<tr>
<td>eta_u</td>
<td>Η</td>
<td>0397</td>
<td>uppercase eta</td>
</tr>
<tr>
<td>theta_u</td>
<td>Θ</td>
<td>0398</td>
<td>uppercase theta</td>
</tr>
</tbody>
</table>
Reserved Keywords and Unicode Values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iota_u</td>
<td>I</td>
<td>0399</td>
<td>uppercase iota</td>
</tr>
<tr>
<td>kappa_u</td>
<td>Κ</td>
<td>039A</td>
<td>uppercase kappa</td>
</tr>
<tr>
<td>lambda_u</td>
<td>Λ</td>
<td>039B</td>
<td>uppercase lambda</td>
</tr>
<tr>
<td>mu_u</td>
<td>Μ</td>
<td>039C</td>
<td>uppercase mu</td>
</tr>
<tr>
<td>nu_u</td>
<td>N</td>
<td>039D</td>
<td>uppercase nu</td>
</tr>
<tr>
<td>xi_u</td>
<td>Ξ</td>
<td>039E</td>
<td>uppercase xi</td>
</tr>
<tr>
<td>omicron_u</td>
<td>Ο</td>
<td>039F</td>
<td>uppercase omicron</td>
</tr>
<tr>
<td>pi_u</td>
<td>Π</td>
<td>03A0</td>
<td>uppercase pi</td>
</tr>
<tr>
<td>rho_u</td>
<td>Ρ</td>
<td>03A1</td>
<td>uppercase rho</td>
</tr>
<tr>
<td>sigma_u</td>
<td>Σ</td>
<td>03A3</td>
<td>uppercase sigma</td>
</tr>
<tr>
<td>tau_u</td>
<td>Τ</td>
<td>03A4</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>upsilon_u</td>
<td>Υ</td>
<td>03A5</td>
<td>uppercase upsilon</td>
</tr>
<tr>
<td>phi_u</td>
<td>Φ</td>
<td>03A6</td>
<td>uppercase phi</td>
</tr>
<tr>
<td>chi_u</td>
<td>Χ</td>
<td>03A7</td>
<td>uppercase chi</td>
</tr>
<tr>
<td>psi_u</td>
<td>Ψ</td>
<td>03A8</td>
<td>uppercase psi</td>
</tr>
<tr>
<td>omega_u</td>
<td>Ω</td>
<td>03A9</td>
<td>uppercase omega</td>
</tr>
</tbody>
</table>

Special Characters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime</td>
<td>‘</td>
<td>00B4</td>
<td>single prime sign</td>
</tr>
<tr>
<td>bar</td>
<td>–</td>
<td>0305</td>
<td>combining overline’</td>
</tr>
<tr>
<td>bar2</td>
<td>‘</td>
<td>033F</td>
<td>combining double overline’</td>
</tr>
<tr>
<td>tilded</td>
<td>~</td>
<td>0303</td>
<td>combining tilde’</td>
</tr>
<tr>
<td>Keyword</td>
<td>Glyph</td>
<td>Unicode</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>hat</td>
<td>̂</td>
<td>0302</td>
<td>combining circumflex accent*</td>
</tr>
</tbody>
</table>

* This is an overstriking character that requires a Unicode font to render properly.
Appendix 3

ODS Graphics Software

SAS ODS Graphics is an extension of the SAS Output Delivery System (ODS). ODS manages all output created by procedures and enables you to display the output in a variety of forms, such as HTML, PDF, and others.

For graphical output, ODS Graphics use the Graph Template Language (GTL) syntax, which provides the power and flexibility to create many complex graphs. The GTL is a comprehensive language for defining statistical graphics.

The ODS Graphics system contains the following software:

SAS ODS Graphics procedures provide a concise syntax for creating effective statistical graphs. The procedures provide a traditional SAS procedure interface for the most commonly used features of the SAS Graph Template Language.

ODS GRAPHICS statement adds graphics capabilities to many SAS analytical and Base procedures. The statement enables or disables ODS graphics processing and sets graphics environment options. ODS Graphics is enabled by default on all platforms except z/OS.

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. For example, you can use options to specify the size and format of your output images. The settings that you specify remain in effect for all graphics until you change or reset these settings with another ODS GRAPHICS statement.

SAS Graph Template Language (GTL) provides a comprehensive language for creating statistical graphics. You can use the Graph Template Language to create customized layouts and graphs that are beyond the scope of the ODS Graphics procedures.

SAS ODS Graphics Editor enables you to edit and enhance graphs that are produced by the ODS Graphics procedures or by the Graph Template Language.

The ODS graphics editor is an interactive editor that enables you to modify the elements of a graph or to add new features, such as titles, arrows, and text boxes.

SAS ODS Graphics Designer enables you to create and design custom graphs. The ODS Graphics Designer provides a graphical user interface for designing graphs easily without having to know the details of the Graph Template Language.

See Also

- “ODS GRAPHICS Statement” on page 71
- SAS Graph Template Language: User's Guide
• *SAS Graph Template Language: Reference*
• *SAS ODS Graphics Editor: User's Guide*
• *SAS ODS Graphics Designer: User's Guide*
Appendix 4
Comparisons with the SAS/GRAPH Procedures

SAS/GRAPH Output versus ODS Graphics ... 1543
Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures .. 1544

SAS/GRAPH Output versus ODS Graphics

SAS produces graphics using two very distinct systems. SAS/GRAPH produces graphics using a device-based system. Base SAS produces graphics through the Output Delivery System (ODS) using a template-based system.

device-based graphics (SAS/GRAPH output)
output that is produced by SAS/GRAPH, which uses devices to generate output. Devices determine the type of output. Examples of device drivers are SVG, PNG, GIF, ACTIVEX, and SASPRTC. Device drivers supplied by SAS are stored in the SASHELP.DEVICES catalog. Most procedures that produce device-based graphics also produce GRSEG catalog entries in addition to any image files, vector files, or displayed output that are produced. SAS/GRAPH procedures that produce device-based graphics and GRSEG catalog entries include the GCHART, GPLOT, GMAP, GBARLINE, GCONTOUR, and G3D procedures. The device-based procedures that do not produce GRSEG catalog entries are the GAREABAR, GKPI, and GTILE procedures. For device-based graphics, you can use the GOPTIONS statement to control the graphical environment. For example, you can specify which device is used to generate SAS/GRAPH output by specifying the DEVICE= option in the GOPTIONS statement. Information about device-based graphics is in this document, SAS/GRAPH: Reference.

template-based graphics (ODS Graphics)
output that is produced from a compiled ODS template of type STATGRAPH. Templates supplied by SAS are stored in SASHELP.TMPLMST. Device drivers and most SAS/GRAPH global statements (such as AXIS, LEGEND, PATTERN, and SYMBOL) have no effect on template-based graphics. The Base SAS procedures that produce template-based graphics are the SGPLOT, SG PANEL, SGSCATTER, S GDESIGN, and SGRENDER procedures. Many SAS/STAT, SAS/ETS, and SAS/QC procedures also produce template-based graphics automatically by default. Template-based graphics are always produced as image files and never as GRSEG catalog entries. For template-based graphics, you must use the ODS GRAPHICS statement to control the graphical environment. For example, you can specify the type of image file (SVG, PNG, GIF, and so on) that is produced by specifying the OUTPUTFMT= option in the ODS GRAPHICS statement. Template-based graphics

Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

SAS produces graphics using two very distinct systems. SAS/GRAPH produces graphics using a device-based system. The Graph Template Language and ODS Graphics produce graphics through the Output Delivery System (ODS) using a template-based system.

Though the ODS Graphics procedures do not require SAS/GRAPH, you might have SAS/GRAPH installed. For more information about SAS/GRAPH, see *SAS/GRAPH: Reference*.

The following table lists some of the differences between the ODS Graphics procedures and SAS/GRAPH:

Table A4.1 Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

<table>
<thead>
<tr>
<th>ODS Graphics Procedures</th>
<th>SAS/GRAPH Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates image files. GRSEGs and device drivers are not used. You can select your image format by using the OUTPUTFMT= option in the ODS GRAPHICS statement.</td>
<td>Most SAS/GRAPH procedures produce a GRSEG entry in a SAS catalog. Other output formats, such as an image or metagraphics file, can be created by selecting an appropriate device driver.</td>
</tr>
<tr>
<td>User control over visual properties is set with statements or options within the procedure.</td>
<td>Properties for text, markers, and lines can be set with global statements such as GOPTIONS, AXIS, LEGEND, PATTERN, SYMBOL, and NOTE.</td>
</tr>
<tr>
<td>The plot type is determined by the plot statement only.</td>
<td>For some graphs, the plot type is determined by global options. For example, the INTERPOL= option in the SYMBOL statement might determine whether a graph is a scatter plot or a box plot.</td>
</tr>
<tr>
<td>The size, format, and name of output images can be controlled with the HEIGHT=, WIDTH=, OUTPUTFMT=, and IMAGENAME= options in the ODS GRAPHICS statement. The ODS GRAPHICS statement is similar in purpose to the GOPTIONS statement, but it is used with the ODS Graphics procedures only.</td>
<td>The size and format of graphical output is controlled with options such as the HSIZE=, VSIZE=, and DEVICE= options in the GOPTIONS statement.</td>
</tr>
</tbody>
</table>
Differences between the ODS Graphics Procedures and SAS/GRAPH Procedures

<table>
<thead>
<tr>
<th>ODS Graphics Procedures</th>
<th>SAS/GRAPH Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of the ODS destinations are supported. For the LISTING destination, an image node is created for the graph in the Results tree.</td>
<td>All of the ODS destinations are supported. For the LISTING destination, a GRSEG node is created in the Results tree and the image appears in the graph window.</td>
</tr>
<tr>
<td>Some options for the TITLE and FOOTNOTE statements are not supported. See “TITLE and FOOTNOTE Statements” on page 95.</td>
<td>All options for the TITLE and FOOTNOTE statements are supported.</td>
</tr>
<tr>
<td>Only system fonts are supported.</td>
<td>SAS/GRAPH supports SAS/GRAPH fonts (such as SWISSB), device-resident fonts, and system fonts (such as Arial).</td>
</tr>
<tr>
<td>Marker symbols can be selected only from a predefined set of named marker symbols. The named marker symbols are different from the named marker symbols in SAS/GRAPH.</td>
<td>Marker symbols can be either created from fonts or selected from a predefined set of named marker symbols.</td>
</tr>
<tr>
<td>Scaling of fonts and markers is on by default. This means that the sizes of fonts and markers are adjusted as appropriate to the size of your graph. You can disable scaling by using the NOSCALE option in the ODS GRAPHICS statement.</td>
<td>Scaling of fonts and markers is not supported.</td>
</tr>
<tr>
<td>RUN-group processing is not supported.</td>
<td>Some procedures support RUN-group processing.</td>
</tr>
<tr>
<td>An SG Annotation facility is supported. The ODS Graphics procedures do not support the SAS/GRAPH Annotate facility. You can also use the ODS Graphics Editor to annotate your graphs.</td>
<td>The SAS/GRAPH Annotate facility is supported.</td>
</tr>
</tbody>
</table>
Recommended Reading

Here is the recommended reading list for this title:

- *Getting Started with the SAS Output Delivery System*
- *ODS Graphics Tip Sheet*
- *SAS ODS Graphics: Getting Started with Business and Statistical Graphics*
- *Statistical Graphics in SAS: An Introduction to the Graph Template Language and the Statistical Graphics Procedures*
- *Statistical Graphics Procedures by Example: Effective Graphs Using SAS*
- SAS offers instructor-led training and self-paced e-learning courses to help you get started with SAS ODS Graphics. For more information about the courses available, see sas.com/training.

For a complete list of SAS publications, go to sas.com/store/books. If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books
Glossary

axis
a line that represents the midpoints (for a discrete axis) or the scale (for a continuous or interval axis) for graphing variable or data values. An axis typically consists of an axis line with tick marks, tick values (or midpoint values), and a label.

cell
in ODS graphics, a distinct rectangular subregion of a graph that can contain plots, text, or legends. For example, a graph created with the SGPLOT procedure contains only one cell, whereas a graph created with the SGPANEL procedure contains more than one cell.

classification panel
a multi-cell graph in which the cell data is driven by the values of one or more classification variables. The number of the cells is determined by the unique values of the classification variables. Each cell of the panel has the same types of plots.

classification variable
a variable whose values are used to group (or classify) the observations in a data set into different groups that are meaningful for analysis.

dynamic variable
a variable defined in a template with the DYNAMIC statement that can be initialized at template run time.

global statement
a SAS statement that you can specify anywhere in a SAS program.

Graph Template Language
an extension to the Output Delivery System (ODS) that enables users to create sophisticated analytical graphs. Short form: GTL.

GTL
See Graph Template Language.

ODS
See Output Delivery System.

ODS Graphics
an extension to ODS that is used to create analytical graphs using the Graph Template Language.
Output Delivery System
a component of SAS software that can produce output in a variety of formats such as markup languages (HTML, XML), PDF, listing, RTF, PostScript, other formats, and SAS data sets. Short form: ODS.

panel
a graph with multiple cells.

plot
a visual representation of data such as a scatter plot, a series line, or a histogram. Multiple plots can be overlaid in a cell to create a graph.

SGD file
an ODS Graphics Designer file. Users can open this file in the designer and change the graph. Users can also render the graph to an ODS destination by using the SGDESIGN procedure.

style attribute
a visual property such as a color, line pattern, or font property that has a reserved name. For example, COLOR, FONTFAMILY, FONTSIZE, FONTWEIGHT, and FONTSTYLE are all attributes of style elements such as GraphTitleText, GraphLabelText, and so on. Style attributes are collectively referenced by a style element within a style template.

style element
a named collection of style attributes that affects specific parts of ODS output. For example, a style element might specify the color and font properties of title text or other text in a table or graph.

system font
a font that can be used by any SAS procedure and by other software such as Microsoft Word. These fonts include TrueType and Type1 fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial.
Index

Special Characters
#BYLINE option
 TITLE and FOOTNOTE statements 95
#BYVAL option
 TITLE and FOOTNOTE statements 95
#BYVAR option
 TITLE and FOOTNOTE statements 95
%SGANNO_HELP annotation macro 1481
%SGARROW annotation macro 1481
%SGIMAGE annotation macro 1488
%SGLINE annotation macro 1493
%SGOVAL annotation macro 1499
%SGPOLYCONT annotation macro 1505
%SGPOLYGON annotation macro 1507
%SGPOLYLINE annotation macro 1512
%SGRECTANGLE annotation macro 1516
%SGTEXT annotation macro 1522
%SGTEXTCONT annotation macro 1528
REG statement (SGPANEL) 382
REG statement (SGPLOT) 913
VBAR statement (SGPANEL) 482
VBAR statement (SGPLOT) 1017
VLINE statement (SGPANEL) 556
VLINE statement (SGPLOT) 1093
ALTCOLOR=
 range attribute map 1407
ALTCOLORMODE1–N=
 range attribute map 1407
ALTCOLORMODELSTYLE=
 range attribute map 1407
ALTERNATE option
 COLAXIS statement (SGPANEL) 572
 ROWAXIS statement (SGPANEL) 599
ALTFILLATTRS= option
 BLOCK statement (SGPANEL) 150
 BLOCK statement (SGPLOT) 661
annotation
 about 1415
 ARROW function 1423
 controlling the drawing space 1420
data sets 1416
drawing space variables 1420
examples 1469, 1470
functions 1418
IMAGE function 1429
LINE function 1435
macro example 1478
macros for 1477, 1478, 1480
macros, how to use 1478, 1480
OVAL function 1440
PAD= option 1419
POLYCONT function 1445
POLYGON function 1447
POLYLINE function 1451
RECTANGLE function 1455
SGANNO= option 1419
specifying in a procedure 1419
TEXT function 1460
TEXTCONT function 1467
variables 1417
annotation macros
%SGANNO_HELP 1481

A
ABSSCALE option
 BUBBLE statement (SGPANEL) 158
 BUBBLE statement (SGPLOT) 671
ACROSS= option
 KEYLEGEND statement (SGPANEL) 317
 KEYLEGEND statement (SGPLOT) 841
ALPHA= option
 DOT statement (SGPANEL) 175
 DOT statement (SGPLOT) 689
 ELLIPSE statement (SGPLOT) 708
 HBAR statement (SGPANEL) 204
 HBAR statement (SGPLOT) 722
 HLINE statement (SGPANEL) 299
 HLINE statement (SGPLOT) 822
 LOESS statement (SGPANEL) 330
 LOESS statement (SGPLOT) 857
 PBSPLINE statement (SGPANEL) 351
 PBSPLINE statement (SGPLOT) 879
 REG statement (SGPANEL) 382
 REG statement (SGPLOT) 913
 VBAR statement (SGPANEL) 482
 VBAR statement (SGPLOT) 1017
 VLINE statement (SGPANEL) 556
 VLINE statement (SGPLOT) 1093
 ALTCOLOR=
 range attribute map 1407
 ALTCOLORMODE1–N=
 range attribute map 1407
 ALTCOLORMODELSTYLE=
 range attribute map 1407
 ALTERNATE option
 COLAXIS statement (SGPANEL) 572
 ROWAXIS statement (SGPANEL) 599
 ALTFILLATTRS= option
 BLOCK statement (SGPANEL) 150
 BLOCK statement (SGPLOT) 661
annotation
 about 1415
 ARROW function 1423
 controlling the drawing space 1420
data sets 1416
drawing space variables 1420
examples 1469, 1470
functions 1418
IMAGE function 1429
LINE function 1435
macro example 1478
macros for 1477, 1478, 1480
macros, how to use 1478, 1480
OVAL function 1440
PAD= option 1419
POLYCONT function 1445
POLYGON function 1447
POLYLINE function 1451
RECTANGLE function 1455
SGANNO= option 1419
specifying in a procedure 1419
TEXT function 1460
TEXTCONT function 1467
variables 1417
annotation macros
%SGANNO_HELP 1481

1551
Index

%SGARROW 1481
%SGIMAGE 1488
%SGLINE 1493
%SGOVAL 1499
%SGPOLYCONT 1505
%SGPOLYGON 1507
%SGPOLYLINE 1512
%SGRECTANGLE 1516
%SGTEXT 1522
%SGTEXTCONT 1528
ANTIALIAS option
 ODS GRAPHICS statement 74
ANTIALIAS= option
 ODS GRAPHICS statement 74
ANTIALIASMAX= option
 ODS GRAPHICS statement 74
appearance of graphs
 See also ODS styles
 procedure options 1339
 subpixel rendering 1346
ARROW function
 SG annotation 1423
ARROWDIRECTION= option
 VECTOR statement (SGPANEL) 546
 VECTOR statement (SGPLOT) 1082
ARROWHEADPOS= option
 SERIES statement (SGPANEL) 409
 SERIES statement (SGPLOT) 941
 SPLINE statement (SGPANEL) 429
 SPLINE statement (SGPLOT) 963
 STEP statement (SGPANEL) 442
 STEP statement (SGPLOT) 977
ARROWHEADSCALE= option
 SERIES statement (SGPANEL) 410
 SERIES statement (SGPLOT) 941
 SPLINE statement (SGPANEL) 429
 SPLINE statement (SGPLOT) 963
 STEP statement (SGPANEL) 442
 STEP statement (SGPLOT) 977
ARROWHEADSHAPE= option
 SERIES statement (SGPANEL) 410
 SERIES statement (SGPLOT) 942
 SPLINE statement (SGPANEL) 429
 SPLINE statement (SGPLOT) 963
 STEP statement (SGPANEL) 443
 STEP statement (SGPLOT) 977
 VECTOR statement (SGPANEL) 546
 VECTOR statement (SGPLOT) 1083
aspect ratio 1374
ASPECT= option
 PLOT statement (SGSCATTER) 1285
 PROC SGPANEL statement 123
 PROC SGPLOT statement 639
attribute maps
 about 1383
 DATTRMAP= option (SGRENDER) 1238
 rendering in statgraph template code 1240
 attribute maps, discrete
 See discrete attribute maps
 attribute maps, range
 See range attribute maps
 attribute, style element 1357
 attributes
 See options
 ATTRID= option 1394
 COMPARE statement (SGSCATTER) 1262
 MATRIX statement (SGSCATTER) 1276
 PLOT statement (SGSCATTER) 1286
 ATTRPRIORITIY= option
 AUTOITEMSIZE option
 KEYLEGEND statement (SGPANEL) 317
 KEYLEGEND statement (SGPLOT) 841
 AUTOOUTLINE= option
 KEYLEGEND statement (SGPANEL) 317
 KEYLEGEND statement (SGPLOT) 841
axes
 discrete 1308
 fit policy 1312
 inset inside plot axes 312
 linear 1308
 logarithmic 1308
 paneled scatter plot with shared axes 1249, 1259
 SGPANEL and SGPLOT procedures 1307
 text box inside plot axes 836
 time axes 1308
 axis options 569, 597
 axis statements 20
 AXIS= option
 REFLINE statement (SGPANEL) 376
 REFLINE statement (SGPLOT) 907
 AXISBREAK= option
 STYLEATTRS statement (SGPLOT) 645
 AXISEXTENT= option
 PLOT statement (SGSCATTER) 1286
 STYLEATTRS statement (SGPLOT) 646
B
B-spline curves
See also penalized B-spline plots
fitted penalized (SGPANEL) 348
fitted penalized (SGPLOT) 877
BACKCOLOR= option
INSET statement (SGPANEL) 313
PROC SGSCATTER statement 1255
STYLEATTRS statement (SGPANEL) 646
STYLEATTRS statement (SGPLOT)
BACKFILL option
TEXT statement (SGPANEL) 466
TEXT statement (SGPLOT) 1001
BACKLIGHT= option
POLYGON statement (SGPANEL) 363
POLYGON statement (SGPLOT) 892
TEXT statement (SGPANEL) 467
TEXT statement (SGPLOT) 1002
BAND statement
about band plots 25
equivalent 25, 1225
SGPANEL procedure 140
SGPLOT procedure 651
bands
about band plots 25
equivalent 25, 1225
highlighting plots (SGPANEL) 140
highlighting plots (SGPLOT) 651
bar charts
about 54
equivalent 54, 116, 627, 632, 1231
fill patterns 1353
horizontal (SGPANEL) 201, 219
horizontal (SGPLOT) 719, 738
parameterized horizontal (SGPANEL) 233
parameterized horizontal (SGPLOT) 752
parameterized vertical (SGPANEL) 513
parameterized vertical (SGPLOT) 1049
vertical (SGPANEL) 479, 499
vertical (SGPLOT) 1014, 1035
bar-line charts 1090
equivalent 1231
BARWIDTH= option
HBAR statement (SGPANEL) 204
HBAR statement (SGPLOT) 722
HBARPARM statement (SGPANEL) 222
HBARPARM statement (SGPLOT) 741
HBARPARM statement (SGPANEL) 236
HBARPARM statement (SGPLOT) 755
HIGHLOW statement (SGPANEL) 279
HIGHLOW statement (SGPLOT) 802
VBAR statement (SGPANEL) 482
VBAR statement (SGPLOT) 1017
VBARBASIC statement (SGPANEL) 502
VBARBASIC statement (SGPLOT) 1037
VBARPARM statement (SGPANEL) 516
VBARPARM statement (SGPLOT) 1052
WATERFALL statement (SGPLOT) 1109
BASELINE= option
HBAR statement (SGPANEL) 204
HBAR statement (SGPLOT) 722
HBARPARM statement (SGPANEL) 222
HBARPARM statement (SGPLOT) 741
HBARPARM statement (SGPANEL) 237
HBARPARM statement (SGPLOT) 756
NEEDLE statement (SGPANEL) 341
NEEDLE statement (SGPLOT) 869
VBAR statement (SGPANEL) 482
VBAR statement (SGPLOT) 1018
VBARBASIC statement (SGPANEL) 502
VBARBASIC statement (SGPLOT) 1038
VBARPARM statement (SGPANEL) 517
VBARPARM statement (SGPLOT) 1052
BASELINEATTRS= option
HBAR statement (SGPANEL) 205
HBAR statement (SGPLOT) 723
HBARPARM statement (SGPANEL) 223
HBARPARM statement (SGPLOT) 741
HBARPARM statement (SGPANEL) 237
HBARPARM statement (SGPLOT) 756
NEEDLE statement (SGPANEL) 341
NEEDLE statement (SGPLOT) 869
VBAR statement (SGPANEL) 483
VBAR statement (SGPLOT) 1018
VBARBASIC statement (SGPANEL) 503
VBARBASIC statement (SGPLOT) 1038
VBARPARM statement (SGPANEL) 517
VBARPARM statement (SGPLOT) 1052
VBARPARM statement (SGPLOT)
1053
WATERFALL statement (SGPLOT)
1109
basic plots
about 24
compatible plot types 1306
batch jobs
 ODS GRAPHICS statement for 89
BCOLOR= option
 TITLE and FOOTNOTE statements 95
BINSTART= option
 HISTOGRAM statement (SGPANEL)
292
HISTOGRAM statement (SGPLOT)
815
BINWIDTH= option
 HISTOGRAM statement (SGPANEL)
292
HISTOGRAM statement (SGPLOT)
815
block plots
about 26
example 26
BLOCK statement
about block plots 26
example 26
SGPANEL procedure 148
SGPLOT procedure 659
BLOCKLABEL= option
 BLOCK statement (SGPANEL)
150
BLOCK statement (SGPLOT)
662
BOLD option
 TITLE and FOOTNOTE statements 95
BORDER option
 GRADLEGEND statement (SGPANEL)
198
GRADLEGEND statement (SGPLOT)
716
INSET statement (SGPANEL)
313
INSET statement (SGPLOT)
837
KEYLEGEND statement (SGPANEL)
317
KEYLEGEND statement (SGPLOT)
841
ODS GRAPHICS statement
75
PANELBY statement (SGPANEL)
128
BORDER= option
 ODS GRAPHICS statement
75
borders
 controlling with ODS GRAPHICS statement 1375
BOUNDARY= option
 HISTOGRAM statement (SGPANEL)
292
HISTOGRAM statement (SGPLOT)
815
box plots
about 49
example 49, 116, 632, 1230
horizontal (SGPLOT)
248
horizontal (SGPLOT)
768
percentiles 261, 543, 781, 1079
statement summary 261, 542, 781, 1079
vertical (SGPANEL)
530
vertical (SGPLOT)
1066
BOX= option
 TITLE and FOOTNOTE statements 95
BOXWIDTH= option
 HBOX statement (SGPANEL)
251
HBOX statement (SGPLOT)
770
VBOX statement (SGPANEL)
532
VBOX statement (SGPLOT)
1069
BRADIUSMAX= option
 BUBBLE statement (SGPANEL)
158
BUBBLE statement (SGPLOT)
672
BRADIUSMIN= option
 BUBBLE statement (SGPANEL)
158
BUBBLE statement (SGPLOT)
672
BREAK option
 HLINE statement (SGPANEL)
299
HLINE statement (SGPLOT)
823
SERIES statement (SGPANEL)
411
SERIES statement (SGPLOT)
942
SPLINE statement (SGPANEL)
430
SPLINE statement (SGPLOT)
964
STEP statement (SGPANEL)
443
STEP statement (SGPLOT)
978
VLINE statement (SGPANEL)
556
VLINE statement (SGPLOT)
1093
BSPACE= option
 TITLE and FOOTNOTE statements 95
bubble plots
about bubble plots
27
example 27
SGPANEL procedure
155
SGPLOT procedure
669
BUBBLE statement
about bubble plots
27
example 27
SGPANEL procedure
155
SGPLOT procedure
669
BY groups
creating graphs for each BY group
66
BY lines
67
substituting values in a text string
100
BY statement
66
with SGPLOT procedure
67
with TITLE and FOOTNOTE statements
67
BY-group processing
data preparation for 67
BYLINE= option
ODS GRAPHICS statement 75

C
CAPSHAPE= option
HBOX statement (SGPANEL) 251
HBOX statement (SGPLOT) 771
VBOX statement (SGPANEL) 532
VBOX statement (SGPLOT) 1069
categorization plots
about 54
compatible plot types 1306
CATEGORY= option
HBOX statement (SGPANEL) 251
HBOX statement (SGPLOT) 771
VBOX statement (SGPANEL) 533
VBOX statement (SGPLOT) 1069
CATEGORYORDER= option
DOT statement (SGPLOT) 689
CATEGORYORDER= option
DOT statement (SGPANEL) 175
HBAR statement (SGPANEL) 205
HBAR statement (SGPLOT) 723
HLINE statement (SGPANEL) 299
HLINE statement (SGPLOT) 823
VBAR statement (SGPANEL) 483
VBAR statement (SGPLOT) 1019
VLINE statement (SGPANEL) 557
VLINE statement (SGPLOT) 1094

cell 5
creating multi-cell graphs 8
creating paneled scatter plots 9
creating single-cell graphs 7, 634
charts
element, bar charts 627
element, bar-line charts 1231
element, high-low charts 1232
element, line charts 629
element, vertical bar charts 116
horizontal bar charts (SGPANEL) 201, 219
horizontal bar charts (SGPLOT) 719, 738
horizontal line (SGPANEL) 296
horizontal line (SGPLOT) 819
parameterized bar charts (SGPANEL) 233
parameterized bar charts (SGPLOT) 752, 1049
parameterized bar charts (SGPANEL) 513
vertical bar charts (SGPANEL) 479, 499
vertical bar charts (SGPLOT) 1014, 1035
vertical line (SGPANEL) 553
vertical line (SGPLOT) 1090
waterfall charts 1107
CLASS= option
BLOCK statement (SGPANEL) 151
BLOCK statement (SGPLOT) 662
COLAXISTABLE statement
(SGPANEL) 590
ROWAXISTABLE statement
(SGPANEL) 617
XAXISTABLE statement (SGPLOT)
1159
YAXISTABLE statement (SGPLOT)
1210
CLASSDISPLAY= option
COLAXISTABLE statement
(SGPANEL) 590
ROWAXISTABLE statement
(SGPANEL) 617
XAXISTABLE statement (SGPLOT)
1159
YAXISTABLE statement (SGPLOT)
1210
classification variables
for panels 127
CLASSORDER= option
COLAXISTABLE statement
(SGPANEL) 590
ROWAXISTABLE statement
(SGPANEL) 617
XAXISTABLE statement (SGPLOT)
1160
YAXISTABLE statement (SGPLOT)
1210
CLI option
PBSPLINE statement (SGPANEL) 351
PBSPLINE statement (SGPLOT) 880
REG statement (SGPANEL) 383
REG statement (SGPLOT) 914
CLIATTRS= option
PBSPLINE statement (SGPANEL) 351
PBSPLINE statement (SGPLOT) 880
REG statement (SGPANEL) 383
REG statement (SGPLOT) 914
CLIP option
ELLIPSE statement (SGPLOT) 709
CLIP= option
LINEPARM statement (SGPANEL) 324
LINEPARM statement (SGPLOT) 851
CLIPCAP option
HIGHLow statement (SGPANEL) 279, 803
CLIPCAPSHAPE= option
HIGHLOW statement (SGPANEL) 280, 803
CLM option
LOESS statement (SGPANEL) 330
LOESS statement (SGPLOT) 857
PBSPLINE statement (SGPANEL) 352
PBSPLINE statement (SGPLOT) 880
REG statement (SGPANEL) 383
REG statement (SGPLOT) 914
CLMATTRS= option
LOESS statement (SGPANEL) 330
LOESS statement (SGPLOT) 858
PBSPLINE statement (SGPANEL) 352
PBSPLINE statement (SGPLOT) 880
REG statement (SGPANEL) 383
REG statement (SGPLOT) 914
CLMTRANSPARENCY= option
LOESS statement (SGPANEL) 331
LOESS statement (SGPLOT) 858
PBSPLINE statement (SGPANEL) 352
PBSPLINE statement (SGPLOT) 881
REG statement (SGPANEL) 384
REG statement (SGPLOT) 915
CLOSE= option
HIGHLOW statement (SGPANEL) 280
HIGHLOW statement (SGPLOT) 803
CLUSTERAXIS= option
TEXT statement (SGPANEL) 467
TEXT statement (SGPLOT) 1002
clustering
data example 1220
CLUSTERWIDTH= option
DOT statement (SGPANEL) 176
DOT statement (SGPLOT) 690
HBAR statement (SGPANEL) 206
HBAR statement (SGPLOT) 724
HBARBASIC statement (SGPANEL) 223
HBARBASIC statement (SGPLOT) 742
HBARPARAM statement (SGPANEL) 237
HBARPARAM statement (SGPLOT) 756
HBOX statement (SGPANEL) 251
HBOX statement (SGPLOT) 771
HIGHLOW statement (SGPANEL) 280
HIGHLOW statement (SGPLOT) 804
HLINE statement (SGPANEL) 300, 823
NEEDLE statement (SGPANEL) 341
NEEDLE statement (SGPLOT) 869
SCATTER statement (SGPANEL) 394
SCATTER statement (SGPLOT) 926
SERIES statement (SGPANEL) 411
SERIES statement (SGPLOT) 942
SPLINE statement (SGPANEL) 430
SPLINE statement (SGPLOT) 964
STEP statement (SGPANEL) 443
STEP statement (SGPLOT) 978
TEXT statement (SGPANEL) 467
TEXT statement (SGPLOT) 1002
VBAR statement (SGPANEL) 484
VBAR statement (SGPLOT) 1019
VBARBASIC statement (SGPANEL) 503
VBARBASIC statement (SGPLOT) 1038
VBARPARAM statement (SGPANEL) 518
VBARPARAM statement (SGPLOT) 1053
VBOX statement (SGPANEL) 533
VBOX statement (SGPLOT) 1069
VLINE statement (SGPANEL) 557
VLINE statement (SGPLOT) 1094
CMYK color codes 1326
CNS (SAS Color Naming Scheme) 1329
COLAXIS statement
SGPANEL procedure 569
COLAXISTABLE statement
SGPANEL procedure 587
COLHEADERPOS= option
PANELBY statement (SGPANEL) 128
color gradient legends
See gradient legends
COLOR=
range attribute map 1408
COLOR= attribute
for fills 1322
for lines 1320
for markers 1322
for text 1324
COLOR= option
TITLE and FOOTNOTE statements 95
COLOR= suboption
BLOCK statement (SGPANEL) 151
BLOCK statement (SGPLOT) 662
COLORBAND= option
COLAXIS statement (SGPANEL) 572
ROWAXIS statement (SGPANEL) 599
X2AXIS statement (SGPLOT) 1139
Y2AXIS statement (SGPLOT) 1189
YAXIS statement (SGPLOT) 1170
COLORBANDATTRS= option
COLAXIS statement (SGPANEL) 572
ROWAXIS statement (SGPANEL) 600
X2AXIS statement (SGPLOT) 1140
XAXIS statement (SGPLOT) 1120
Y2AXIS statement (SGPLOT) 1190
YAXIS statement (SGPLOT) 1170
COLORBANDS= option
XAXIS statement (SGPLOT) 1119
COLORGROUP= option
COLAXISTABLE statement (SGPANEL) 591
HEATMAPPARM statement (SGPLOT) 271, 794
ROWAXISTABLE statement (SGPANEL) 618
WATERFALL statement (SGPLOT) 1110
XAXISTABLE statement (SGPLOT) 1160
YAXISTABLE statement (SGPLOT) 1211
COLORMODEL= option
BUBBLE statement (SGPANEL) 159
BUBBLE statement (SGPLOT) 672
COMPARE statement (SGSCATTER) 1262
DOT statement (SGPANEL) 176
DOT statement (SGPLOT) 690
HBAR statement (SGPANEL) 206
HBAR statement (SGPLOT) 724
HBARBASIC statement (SGPANEL) 223
HBARBASIC statement (SGPLOT) 742
HBARPARM statement (SGPANEL) 238
HBARPARM statement (SGPLOT) 757
HEATMAP statement (SGPANEL) 264
HEATMAP statement (SGPLOT) 784
HEATMAPPARM statement (SGPANEL) 272
HEATMAPPARM statement (SGPLOT) 794
HIGHLOW statement (SGPANEL) 281
HIGHLOW statement (SGPLOT) 804
MATRIX statement (SGSCATTER) 1276
PLOT statement (SGSCATTER) 1286
POLYGON statement (SGPANEL) 364
POLYGON statement (SGPLOT) 893
SCATTER statement (SGPANEL) 395
SCATTER statement (SGPLOT) 926
SERIES statement (SGPANEL) 411
SERIES statement (SGPLOT) 942
SPLINE statement (SGPANEL) 430
SPLINE statement (SGPLOT) 964
TEXT statement (SGPANEL) 468
TEXT statement (SGPLOT) 1003
VBAR statement (SGPANEL) 484
VBAR statement (SGPLOT) 1019
VBARBASIC statement (SGPANEL) 503
VBARBASIC statement (SGPLOT) 1039
VBARPARM statement (SGPANEL) 518
VBARPARM statement (SGPLOT) 1053
VECTOR statement (SGPANEL) 546
VECTOR statement (SGPLOT) 1083
WATERFALL statement (SGPLOT) 1110
COLORMODEL1–N=
range attribute map 1408
COLORMODELSYMBOL=
range attribute map 1408
COLORRESPONSE= option
BUBBLE statement (SGPANEL) 159
BUBBLE statement (SGPLOT) 673
COMPARE statement (SGSCATTER) 1262
DOT statement (SGPANEL) 177
DOT statement (SGPLOT) 691
HBAR statement (SGPANEL) 207
HBAR statement (SGPLOT) 725
HBARBASIC statement (SGPANEL) 224
HBARBASIC statement (SGPLOT) 743
HBARPARM statement (SGPANEL) 238
HBARPARM statement (SGPLOT) 757
HEATMAP statement (SGPANEL) 265
HEATMAP statement (SGPLOT) 785
HEATMAPPARM statement (SGPANEL) 271
HEATMAPPARM statement (SGPLOT) 794
HIGHLOW statement (SGPANEL) 281
HIGHLOW statement (SGPLOT) 804
MATRIX statement (SGSCATTER) 1277
PLOT statement (SGSCATTER) 1287
POLYGON statement (SGPANEL) 365
POLYGON statement (SGPLOT) 893
SCATTER statement (SGPANEL) 395
SCATTER statement (SGPLOT) 927
SERIES statement (SGPANEL) 412
SERIES statement (SGPLOT) 943
SPLINE statement (SGPANEL) 430
SPLINE statement (SGPLOT) 965
TEXT statement (SGPANEL) 468
TEXT statement (SGPLOT) 1003
VBAR statement (SGPANEL) 485
VBAR statement (SGPLOT) 1020
VBARBASIC statement (SGPANEL) 504
VBARBASIC statement (SGPLOT) 1039
VBARPARM statement (SGPANEL) 518
VBARPARM statement (SGPLOT) 1054
VECTOR statement (SGPANEL) 547
VECTOR statement (SGPLOT) 1084
WATERFALL statement (SGPLOT) 1110

colors
CMYK codes 1326
Color Naming System values (CNS) 1329
gray-scale codes 1329
HLS codes 1327
HSB codes 1328
HSV codes 1328
naming schemes 1325
RGB codes 1326
SAS color names and RGB values 1329
COLORSTAT= option
DOT statement (SGPANEL) 177
DOT statement (SGPLOT) 691
HBAR statement (SGPANEL) 207
HBAR statement (SGPLOT) 725
HBARBASIC statement (SGPANEL) 224
HBARBASIC statement (SGPLOT) 743
HEATMAP statement (SGPANEL) 265
HEATMAP statement (SGPLOT) 785
VBAR statement (SGPANEL) 485
VBAR statement (SGPLOT) 1020
VBARBASIC statement (SGPANEL) 504
VBARBASIC statement (SGPLOT) 1039
COLUMNS= option
PANELBY statement (SGPANEL) 129
PLOT statement (SGSCATTER) 1287
combining plots
example 1221
comparative scatter plots
with grouped data 1302
with regression fits and confidence ellipses 1303
with shared axes 1259
COMPARE statement
SGSCATTER procedure 1252, 1259
compatible plot types
SGPANEL and SGPLOT procedures 1306
components of a graph 5
confidence bands
example, adding to regression plots 1223
confidence ellipse 707, 1303
about ellipse plots 45
CONNECT= option
HBOX statement (SGPANEL) 252
HBOX statement (SGPLOT) 771
VBOX statement (SGPANEL) 533
VBOX statement (SGPLOT) 1069
CONNECTATTRS= option
HBOX statement (SGPANEL) 252
HBOX statement (SGPLOT) 771
VBOX statement (SGPANEL) 533
VBOX statement (SGPLOT) 1069
CONTENT option
PROC SGDESIGN statement 109
continuous color legends
See gradient legends
CONTRIBUTE OFFSETS= option
TEXT statement (SGPANEL) 468
TEXT statement (SGPLOT) 1003
CURVELABEL= option
DENSITY statement (SGPANEL) 167
DENSITY statement (SGPLOT) 681
HLINE statement (SGPANEL) 300
HLINE statement (SGPLOT) 824
LINEPARAM statement (SGPANEL) 325
LINEPARAM statement (SGPLOT) 851
LOESS statement (SGPANEL) 331
LOESS statement (SGPLOT) 858
PBSPLINE statement (SGPANEL) 353
PBSPLINE statement (SGPLOT) 881
REG statement (SGPANEL) 384
REG statement (SGPLOT) 915
SERIES statement (SGPANEL) 412
SERIES statement (SGPLOT) 943
SPLINE statement (SGPANEL) 431
SPLINE statement (SGPLOT) 965
STEP statement (SGPANEL) 443
STEP statement (SGPLOT) 978
VLINE statement (SGPANEL) 557
VLINE statement (SGPLOT) 1094
CURVELABELATTRS= option
BAND statement (SGPANEL) 142
BAND statement (SGPLOT) 653
DENSITY statement (SGPANEL) 168
DENSITY statement (SGPLOT) 681
HLINE statement (SGPANEL) 300
HLINE statement (SGPLOT) 824
LINEPARAM statement (SGPANEL) 325
LINEPARAM statement (SGPLOT) 852
LOESS statement (SGPANEL) 331
LOESS statement (SGPLOT) 858
PBSPLINE statement (SGPANEL) 353
PBSPLINE statement (SGPLOT) 881
REG statement (SGPANEL) 384
REG statement (SGPLOT) 915
SERIES statement (SGPANEL) 412
SERIES statement (SGPLOT) 944
SPLINE statement (SGPANEL) 431
SPLINE statement (SGPLOT) 965
STEP statement (SGPANEL) 444
STEP statement (SGPLOT) 978
VLINE statement (SGPANEL) 558
VLINE statement (SGPLOT) 1095
CURVELABELLOC= option
BAND statement (SGPLOT) 653
DENSITY statement (SGPLOT) 682
HLINE statement (SGPLOT) 824
LINEPARM statement (SGPLOT) 852
LOESS statement (SGPLOT) 859
PBSPLINE statement (SGPLOT) 882
REG statement (SGPLOT) 916
SERIES statement (SGPLOT) 944
SPLINE statement (SGPLOT) 965
STEP statement (SGPLOT) 979
VLINE statement (SGPLOT) 1095
CURVELABELLOLOWER= option
BAND statement (SGPANEL) 143
BAND statement (SGPLOT) 654
CURVELABELPOS= option
BAND statement (SGPANEL) 143
BAND statement (SGPLOT) 143
DENSITY statement (SGPANEL) 168
DENSITY statement (SGPLOT) 682
HLINE statement (SGPANEL) 301
HLINE statement (SGPLOT) 824
LINEPARM statement (SGPANEL) 325
LINEPARM statement (SGPLOT) 852
LOESS statement (SGPANEL) 331
LOESS statement (SGPLOT) 859
PBSPLINE statement (SGPANEL) 353
PBSPLINE statement (SGPLOT) 882
REG statement (SGPANEL) 384
REG statement (SGPLOT) 916
SERIES statement (SGPANEL) 413
SERIES statement (SGPLOT) 944
SPLINE statement (SGPANEL) 431
SPLINE statement (SGPLOT) 966
STEP statement (SGPANEL) 444
STEP statement (SGPLOT) 979
VLINE statement (SGPANEL) 558
VLINE statement (SGPLOT) 1095
CURVELABELUPPER= option
BAND statement (SGPANEL) 143
BAND statement (SGPLOT) 654
customizing graphics output 1333
levels of customization 1334
CYCLEATTRS option
PROC SGPANEL statement 123
PROC SGPLOT statement 639

D

data preparation
for BY-group processing 67
data skins 1343
appearance in bar and pie charts 1343
appearance in scatter plots 1343
data tips 1375

DATA= option
PROC SGDESIGN statement 109
PROC SGPANEL statement 123
PROC SGPLOT statement 639
PROC SGRENDER statement 1238
PROC SGSCATTER statement 1255

DATACOLORS= option
PROC SGSCATTER statement 1255
STYLEATTRS statement (SGPLOT) 136, 647

DATACONTRASTCOLORS= option
PROC SGSCATTER statement 1255
STYLEATTRS statement (SGPLOT) 137, 647

DATALABEL option
HISTOGRAM statement (SGPANEL) 292
HISTOGRAM statement (SGPLOT) 816
SCATTER statement (SGPANEL) 396
DATALABEL= option
BUBBLE statement (SGPANEL) 159
BUBBLE statement (SGPLOT) 673
COMPARE statement (SGSCATTER) 1263

DOT statement (SGPANEL) 177
DOT statement (SGPLOT) 692
HBAR statement (SGPANEL) 207
HBAR statement (SGPLOT) 726
HBARBASIC statement (SGPANEL) 225

HBARBASIC statement (SGPLOT) 743
HBARPARM statement (SGPANEL) 239
HBARPARM statement (SGPLOT) 758
HBARPARM statement (SGPANEL) 252
HBOX statement (SGPANEL) 252
HBOX statement (SGPLOT) 772
HLINE statement (SGPANEL) 301
HLINE statement (SGPLOT) 825
LOESS statement (SGPANEL) 332
LOESS statement (SGPLOT) 859

MATRIX statement (SGSCATTER) 1277
NEEDLE statement (SGPANEL) 342
NEEDLE statement (SGPLOT) 870
PBSPLINE statement (SGPANEL) 354
PBSPLINE statement (SGPLOT) 882
PLOT statement (SGSCATTER) 1287
REG statement (SGPANEL) 385
REG statement (SGPLOT) 916
SCATTER statement (SGPANEL) 413
SCATTER statement (SGPLOT) 927
SERIES statement (SGPANEL) 413
SERIES statement (SGPLOT) 945
STEP statement (SGPANEL) 444
STEP statement (SGPLOT) 979
VBAR statement (SGPANEL) 486
VBAR statement (SGPLOT) 1021
VBARBASIC statement (SGPANEL) 504
VBARBASIC statement (SGPLOT) 1040
VBARPARM statement (SGPANEL) 519
VBARPARM statement (SGPLOT) 1054
VBOX statement (SGPANEL) 534
VBOX statement (SGPLOT) 1070
VECTOR statement (SGPANEL) 547
VECTOR statement (SGPLOT) 1084
VLINE statement (SGPANEL) 558
VLINE statement (SGPLOT) 1096
WATERFALL statement (SGPLOT) 1111
DATALABELATTRS= option
DATALABELFORMAT= option
HBAR statement (SGPANEL) 208, 239
HBAR statement (SGPLOT) 726
HBARBASIC statement (SGPANEL) 225
HBARBASIC statement (SGPLOT) 744
HBARPARM statement (SGPANEL) 239
HBARPARM statement (SGPLOT) 758
HBOX statement (SGPANEL) 252
HBOX statement (SGPLOT) 772
HLINE statement (SGPANEL) 301
HLINE statement (SGPLOT) 825
LOESS statement (SGPANEL) 332
LOESS statement (SGPLOT) 860
NEEDLE statement (SGPANEL) 342
NEEDLE statement (SGPLOT) 870
PBSPLINE statement (SGPANEL) 354
PBSPLINE statement (SGPLOT) 882
REG statement (SGPANEL) 385
REG statement (SGPLOT) 916
SCATTER statement (SGPANEL) 396
SCATTER statement (SGPLOT) 927
SERIES statement (SGPANEL) 413
SERIES statement (SGPLOT) 945
STEP statement (SGPANEL) 444
STEP statement (SGPLOT) 979
VBAR statement (SGPANEL) 486
VBAR statement (SGPLOT) 1021
VBARBASIC statement (SGPANEL) 505
VBARBASIC statement (SGPLOT) 1040
VBARPARM statement (SGPANEL) 519
VBARPARM statement (SGPLOT) 1054
VBOX statement (SGPLOT) 1070
VECTOR statement (SGPANEL) 547
VECTOR statement (SGPLOT) 1084
VLINE statement (SGPANEL) 558
VLINE statement (SGPLOT) 1096
WATERFALL statement (SGPLOT) 1111
DATALABELFITPOLICY= option
DATALABELPOS= option
BUBBLE statement (SGPANEL) 160
BUBBLE statement (SGPLOT) 674
COMPARE statement (SGSCATTER) 1263
DOT statement (SGPANEL) 178
DOT statement (SGPLOT) 692
HBAR statement (SGPLOT) 726
HBARPARM statement (SGPLOT) 758
HLINE statement (SGPANEL) 301
HLINE statement (SGPLOT) 825
REG statement (SGPLOT) 917

density curves
See density plots
density plots
about 51
density plots example 7, 51, 116, 635, 1228
kernel density function 172
kernel density weight functions 172
normal density function 172
panel of graph cells 625
scatter plot matrix with 1249
SGPANEL procedure 166
SGPLOT procedure 680
DENSITY statement
about density plots 51
density plots example 7, 51, 116, 635, 1228
SGPANEL procedure 166
SGPLOT procedure 680
kerneldensity function 172
kerneldensity weight functions 172
normal density function 172
panel of graph cells 625
scatter plot matrix with 1249
SGPANEL procedure 166
SGPLOT procedure 680
DENSITY statement
about density plots 51
density plots example 7, 51, 116, 635, 1228
SGPANEL procedure 166
SGPLOT procedure 680
DES= option
PROC SGPANEL statement 123
PROC SGPLOT statement 639
DESCENDING option
BY statement 66
DESCRIPTION= option
PROC SGDESIGN statement 110
PROC SGPANEL statement 123
PROC SGPLOT statement 639
PROC SGSCATTER statement 1257
descriptor labels
associating with variables 71
destinations, ODS
See ODS destinations
DIAGONAL= option
MATRIX statement (SGSCATTER) 1277
discrete attribute maps
about 1383
ATTRID= option 1394
data sets 1388
DATATTRMAP= option 1394
examples 1395, 1397, 1399, 1400
main tasks 1387
reserved variables 1390
specifying in a procedure 1394
discrete axes 1308
DISCRETEMAX= option
ODS GRAPHICS statement 76
DISCRETEOFFSET= option
BAND statement (SGPANEL) 143
BAND statement (SGPLOT) 654
DOT statement (SGPANEL) 179
DOT statement (SGPLOT) 693
DROPLINE statement (SGPANEL) 190
DROPLINE statement (SGPLOT) 704
HBAR statement (SGPANEL) 209
HBAR statement (SGPLOT) 728
HBARBASIC statement (SGPANEL) 226
HBARBASIC statement (SGPLOT) 745
HBARPARM statement (SGPANEL) 240
HBARPARM statement (SGPLOT) 759
HBOX statement (SGPANEL) 253
HBOX statement (SGPLOT) 773
HIGHLow statement (SGPANEL) 283
HIGHLow statement (SGPLOT) 806
HLINE statement (SGPANEL) 303
HLINE statement (SGPLOT) 826
NEEDLE statement (SGPANEL) 343
NEEDLE statement (SGPLOT) 871
REFLINE statement (SGPANEL) 377
REFLINE statement (SGPLOT) 908
SCATTER statement (SGPANEL) 397
SCATTER statement (SGPLOT) 928
SERIES statement (SGPANEL) 415
SERIES statement (SGPLOT) 946
SPLINE statement (SGPANEL) 432
SPLINE statement (SGPLOT) 966
STEP statement (SGPANEL) 446
STEP statement (SGPLOT) 981
TEXT statement (SGPANEL) 469
TEXT statement (SGPLOT) 1004
VBAR statement (SGPANEL) 488
VBAR statement (SGPLOT) 1023
VBARBASIC statement (SGPANEL) 506
VBARBASIC statement (SGPLOT) 1041
VBARPARM statement (SGPANEL) 521
VBARPARM statement (SGPLOT) 1057
VBOX statement (SGPANEL) 535
VBOX statement (SGPLOT) 1071
VLINE statement (SGPANEL) 560
VLINE statement (SGPLOT) 1097
DISCRETEORDER= option
COLAXIS statement (SGPANEL) 572
ROWAXIS statement (SGPANEL) 600
X2AXIS statement (SGPLOT) 1140
XAXIS statement (SGPLOT) 1120
Y2AXIS statement (SGPLOT) 1190
YAXIS statement (SGPLOT) 1170
DISCRETETEX option
HEATMAP statement (SGPANEL) 265
HEATMAP statement (SGPLOT) 785
HEATMAPPARM statement (SGPANEL) 272
HEATMAPPARM statement (SGPLOT) 795
INDEX

Page dimensions: 594.0x792.0

DISCRETEY option
HEATMAP statement (SGPANEL) 265
HEATMAP statement (SGPLOT) 785
HEATMAPPARM statement (SGPANEL) 273
HEATMAPPARM statement (SGPLOT) 795
display attributes
 fills 1321
 lines 1320
 markers 1322
 text 1323
DISPLAY= option
 X2AXIS statement (SGPLOT) 1140
 XAXIS statement (SGPLOT) 1120
 Y2AXIS statement (SGPLOT) 1190
 YAXIS statement (SGPLOT) 1171
distribution plots
 about 49
 compatible plot types 1306
documents
 embedding images in 1374
dot plots
 about 59
 example 59, 1227
 SGPANEL procedure 172
 SGPLOT procedure 686
DOT statement
 about dot plots 59
 example 59, 1227
 SGPANEL procedure 172
 SGPLOT procedure 686
DOWN= option
 KEYLEGEND statement (SGPANEL) 318
 KEYLEGEND statement (SGPLOT) 842
DPI scaling 1374
DPI= option
 ODS PDF destination 1370
DRAWORDER= option
 BUBBLE statement (SGPANEL) 161
 BUBBLE statement (SGPLOT) 675
drill down 1375
DRILLTARGET= option
 ODS GRAPHICS statement 77
drop lines
 about lines 33
 example 33
 SGPANEL procedure 188
 SGPLOT procedure 702
DROPLINE statement
 about drop lines 33
 example 33
 SGPANEL procedure 188
 SGPLOT procedure 702
DROPONMISSING option
 COLAXISTABLE statement (SGPANEL) 591
 ROWAXISTABLE statement (SGPANEL) 618
 XAXISTABLE statement (SGPLOT) 1160
 YAXISTABLE statement (SGPLOT) 1211
DROPTO= option
 DROPLINE statement (SGPANEL) 190
 DROPLINE statement (SGPLOT) 704
DYNAMIC statement
 SGDESIGN procedure 110
 SGDESIGN procedure example 112
 SGRENDER procedure 1242
dynamic variables
 in statgraph template code 1242
 setting values in statgraph templates 1245
 SGDESIGN procedure 110
 SGDESIGN procedure concepts 107
 SGDESIGN procedure example 112

E editable graph
 creating and rendering 1377
ELLIPSE option
 COMPARE statement (SGSCATTER) 1263
 MATRIX statement (SGSCATTER) 1278
 PLOT statement (SGSCATTER) 1288
ellipses
 about 45
 example 45, 632
 example, adding to scatter plots 1224
ELLIPSE statement
 about ellipse plots 45
 example 45, 632, 1224
 SGPLOT procedure 707
eMBEDDING images in documents 1374
ERRORBARATTRS= option
 SCATTER statement (SGPANEL) 397
 SCATTER statement (SGPLOT) 929
 STEP statement (SGPANEL) 446
 STEP statement (SGPLOT) 981
example SASHELP library 14
examples on the web 14
EXCLUDE= option
 KEYLEGEND statement (SGPANEL) 318
 KEYLEGEND statement (SGPLOT) 842
EXCLUDEMAX= range attribute map 1409
EXCLUDEMIN= range attribute map 1409
EXTENDMISSING option
 BLOCK statement (SGPANEL) 151
 BLOCK statement (SGPLOT) 662
EXTRACTSCALE= option
 GRADLEGEND statement (SGPANEL) 198
 GRADLEGEND statement (SGPLOT) 716
EXTREME option
 HBOX statement (SGPANEL) 254
 HBOX statement (SGPLOT) 773
 VBOX statement (SGPANEL) 535
 VBOX statement (SGPLOT) 1071

F
FAMILY= attribute
 for text 1324
fill attributes
 See fill options
FILL option
 BAND statement (SGPANEL) 143
 BAND statement (SGPLOT) 654
 BLOCK statement (SGPANEL) 151
 BLOCK statement (SGPLOT) 662
 BUBBLE statement (SGPANEL) 161
 BUBBLE statement (SGPLOT) 675
 ELLIPSE statement (SGPLOT) 709
 HBAR statement (SGPANEL) 209
 HBAR statement (SGPLOT) 728
 HBARBASIC statement (SGPANEL) 226
 HBARBASIC statement (SGPLOT) 745
 HBARPARM statement (SGPANEL) 240
 HBARPARM statement (SGPLOT) 760
 HBOX statement (SGPANEL) 254
 HBOX statement (SGPLOT) 773
 HISTOGRAM statement (SGPANEL) 294
 HISTOGRAM statement (SGPLOT) 817
 POLYGON statement (SGPANEL) 365
 POLYGON statement (SGPLOT) 894
 VBAR statement (SGPANEL) 488
 VBAR statement (SGPLOT) 1023
 VBARBASIC statement (SGPANEL) 506
 VBARBASIC statement (SGPLOT) 1042
 VBARPARM statement (SGPANEL) 521
 VBARPARM statement (SGPLOT) 1057
 VBOX statement (SGPANEL) 535
 VBOX statement (SGPLOT) 1071
 WATERFALL statement (SGPLOT) 1112
fill options 1321
 color 1322
 patterns for bar charts 1353
 transparency 1322
fill patterns 1353
FILL= option
 HIGHLOW statement (SGPANEL) 283
 HIGHLOW statement (SGPLOT) 806
FILLASPECT= option
 KEYLEGEND statement (SGPANEL) 318
 KEYLEGEND statement (SGPLOT) 842
FILLATTRS= option
 BAND statement (SGPANEL) 144
 BAND statement (SGPLOT) 655
 BLOCK statement (SGPANEL) 151
 BLOCK statement (SGPLOT) 662
 BUBBLE statement (SGPANEL) 162
 BUBBLE statement (SGPLOT) 675
 ELLIPSE statement (SGPLOT) 709
 HBAR statement (SGPANEL) 209
 HBAR statement (SGPLOT) 728
 HBARBASIC statement (SGPANEL) 227
 HBARBASIC statement (SGPLOT) 745
 HBARPARM statement (SGPANEL) 241
 HBARPARM statement (SGPLOT) 760
 HBOX statement (SGPANEL) 254
 HBOX statement (SGPLOT) 773
 HEATMAP statement (SGPANEL) 265
 HEATMAP statement (SGPLOT) 785
 HEATMAPPARM statement (SGPANEL) 273
 HEATMAPPARM statement (SGPLOT) 795
 HIGHLOW statement (SGPANEL) 283
 HIGHLOW statement (SGPLOT) 806
 HISTOGRAM statement (SGPANEL) 294
 HISTOGRAM statement (SGPLOT) 817
 POLYGON statement (SGPANEL) 366
 POLYGON statement (SGPLOT) 894
 TEXT statement (SGPANEL) 469
 TEXT statement (SGPLOT) 1004
<table>
<thead>
<tr>
<th>Statement</th>
<th>SGPanel Page</th>
<th>SGPLOT Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBAR statement</td>
<td>488</td>
<td>1024</td>
</tr>
<tr>
<td>VBARBASIC statement</td>
<td>506</td>
<td>1042</td>
</tr>
<tr>
<td>VBARPARM statement</td>
<td>521</td>
<td>1057</td>
</tr>
<tr>
<td>VBOX statement</td>
<td>535</td>
<td>1071</td>
</tr>
<tr>
<td>WATERFALL statement</td>
<td>1112</td>
<td></td>
</tr>
<tr>
<td>FILLCOLOR=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discrete attribute map</td>
<td>1391</td>
<td></td>
</tr>
<tr>
<td>FILLEDOUTLINEDMARKERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>option</td>
<td>1264</td>
<td></td>
</tr>
<tr>
<td>COMPARE statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGSCATTER)</td>
<td>1288</td>
<td></td>
</tr>
<tr>
<td>DOT statement</td>
<td>179</td>
<td>693</td>
</tr>
<tr>
<td>HLINE statement</td>
<td>303</td>
<td>827</td>
</tr>
<tr>
<td>LOESS statement</td>
<td>333</td>
<td>860</td>
</tr>
<tr>
<td>LOESS statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td>355</td>
<td>883</td>
</tr>
<tr>
<td>PBSPLINE statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPANEL)</td>
<td>355</td>
<td>883</td>
</tr>
<tr>
<td>PLOT statement</td>
<td>1288</td>
<td></td>
</tr>
<tr>
<td>REG statement</td>
<td>386</td>
<td>917</td>
</tr>
<tr>
<td>REG statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td>386</td>
<td>917</td>
</tr>
<tr>
<td>VBARBASIC statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPANEL)</td>
<td>506</td>
<td>1042</td>
</tr>
<tr>
<td>VBARPARM statement</td>
<td>521</td>
<td>1057</td>
</tr>
<tr>
<td>VBARPARM statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td>521</td>
<td>1057</td>
</tr>
<tr>
<td>HBARPARM statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPANEL)</td>
<td>241</td>
<td>760</td>
</tr>
<tr>
<td>HBARPARM statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td>241</td>
<td>760</td>
</tr>
<tr>
<td>FITPOLICY=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLAXIS statement</td>
<td>573</td>
<td>600</td>
</tr>
<tr>
<td>(SGPANEL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXIS statement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SGPANEL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2AXIS statement</td>
<td>1141</td>
<td>1121</td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXIS statement</td>
<td>1121</td>
<td>1121</td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2AXIS statement</td>
<td>1191</td>
<td>1171</td>
</tr>
<tr>
<td>(SGPLOT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAXIS statement</td>
<td>1171</td>
<td>1171</td>
</tr>
<tr>
<td>fitted loess plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compatible plot types</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about 1306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fit policies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>axes values, curve labels,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about 1312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fitted penalized B-spline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See also penalized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-spline plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fitted regression curves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See also regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fitted regression curves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See also regression plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE and FOOTNOTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>substituting BY line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>values in a text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>footnotes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index 1565
FORMAT statement 68
 formats
 associating with variables 68
FREQ= option
DENSITY statement (SGPANEL) 168
DENSITY statement (SGPLOT) 682
DOT statement (SGPANEL) 179
DOT statement (SGPLOT) 694
ELLIPSE statement (SGPLOT) 709
HBAR statement (SGPANEL) 210
HBAR statement (SGPLOT) 729
HBOX statement (SGPANEL) 254
HBOX statement (SGPLOT) 774
HEATMAP statement (SGPANEL) 266
HEATMAP statement (SGPLOT) 785
HISTOGRAM statement (SGPANEL) 294
HISTOGRAM statement (SGPLOT) 818
HLINE statement (SGPANEL) 303
HLINE statement (SGPLOT) 827
PBSPLINE statement (SGPANEL) 355
PBSPLINE statement (SGPLOT) 883
REG statement (SGPANEL) 386
REG statement (SGPLOT) 917
SCATTER statement (SGPANEL) 398
SCATTER statement (SGPLOT) 929
VBAR statement (SGPANEL) 489
VBAR statement (SGPLOT) 1024
VBOX statement (SGPANEL) 535
VBOX statement (SGPLOT) 1072
VLINE statement (SGPANEL) 560
VLINE statement (SGPLOT) 1098
fringe plots
 about fringe plots 28
 example 28
 SGPANEL procedure 192
 SGПLOT procedure 710
FRINGE statement
 about fringe plots 28
 example 28
 SGPANEL procedure 192
 SGПLOT procedure 710

G
global statements 20
 global statements, overview 65
glyphs
 lowercase Greek letters 1537
 special characters 1539
 uppercase Greek letters 1538
GPATH= option
 ODS HTML destination 1371
 ODS LISTING destination 1370
gradient legends

about 1310
 SGPANEL procedure 196
 SGПLOT procedure 715
GRADLEGEND statement
 SGPANEL procedure 196
 SGПLOT procedure 715
GRADLEGEND= option
 COMPARE statement (SGSCATTER) 1264
 MATRIX statement (SGSCATTER) 1278
 PLOT statement (SGSCATTER) 1288
graph appearance
 See also ODS styles
 procedure options 1339
 subpixel rendering 1346
 graph components 5
Graph Template Language (GTL) 3, 1237,
 1541
 See also SGRENDER procedure
 creating statgraph templates 1244
 modifying styles 1357
 SGПLOT (TMPLOUT= option) 643
graphics
 smoothing 74
 template-based 71
GRAPHICS 1371
graphics output
 customizing 1333
 from templates 1237
GRAPHPERCENT (annotation space) 1421
GRAPHPIXEL (annotation space) 1421
graphs
 accessing as separate image files 1376
 creating, for each BY group 66
 output size 1373
 scaling for DPI 1374
 size of 1373
 gray-scale color codes 1329
GRID option
 COLAXIS statement (SGPANEL) 574
 COMPARE statement (SGSCATTER) 1265
 PLOT statement (SGSCATTER) 1289
 ROWAXIS statement (SGPANEL) 601
 X2AXIS statement (SGPLOT) 1142
 XAXIS statement (SGPLOT) 1122
 Y2AXIS statement (SGPLOT) 1191
 YAXIS statement (SGPLOT) 1172
GRIDATTRS= option
 COLAXIS statement (SGPANEL) 574
 COMPARE statement (SGSCATTER) 1265
 PLOT statement (SGSCATTER) 1289
 ROWAXIS statement (SGPLOT) 601
example 30
SGPANEL procedure 277
SGPLOT procedure 800
HIGHCAP= option
HIGHLOW statement (SGPANEL) 285
HIGHLOW statement (SGPLOT) 808
HIGHLABEL= option
HIGHLOW statement (SGPANEL) 285
HIGHLOW statement (SGPLOT) 808
highlighting plots 140, 651
example 1225
HIGHLOW statement
about high-low plots 30
example 30, 1232
SGPANEL procedure 277
SGPLOT procedure 800
HISTOGRAM statement
about histograms 52
example 52, 116, 625, 632, 1228
SGPANEL procedure 290
SGPLOT procedure 813
histograms
about 52
example 52, 116, 625, 632, 1228
scatter plot matrix with 1249
SGPANEL procedure 290
SGPLOT procedure 813
HLINE statement
about line charts 61
example 61
SGPANEL procedure 296
SGPLOT procedure 819
HLS color codes 1327
HOFFSET= option
SYMBOLCHAR statement (SGPANEL) 455
SYMBOLCHAR statement (SGPLOT) 990
SYMBOLIMAGE statement (SGPANEL) 460
SYMBOLIMAGE statement (SGPLOT) 995
horizontal bar charts
about bar charts 54
example 54, 627
parameterized (SGPANEL) 233
parameterized (SGPLOT) 752
SGPANEL procedure 201, 219
SGPLOT procedure 719, 738
horizontal bar-line charts
example 1231
horizontal box plots
about 49
example 49, 116, 632, 1230
percentiles 261, 781
SGPANEL procedure 248
SGPLOT procedure 768
statement summary 261, 781
horizontal line
SGPANEL procedure 322
SGPLOT procedure 849
horizontal line charts
about 61
example 61
SGPANEL procedure 296
SGPLOT procedure 819
HSB color codes 1328
HSV color codes 1328
ID=
discrete attribute map 1391
range attribute map 1406
image filenames 79
image files
accessing graphs as separate files 1376
resetting index counter 82
image format 81
IMAGE function
SG annotation 1429
IMAGE_DPI= option
ODS HTML destination 1371
ODS LISTING destination 1370
ODS RTF destination 1370
IMAGemap option
ODS GRAPHICS statement 78
IMAGemap= option
ODS GRAPHICS statement 78
IMAGENAME= option
ODS GRAPHICS statement 79
images
embedding in documents 1374
INDENT= option
XAXISTABLE statement (SGPLOT) 1161
YAXISTABLE statement (SGPLOT) 1211
INDENTWEIGHT= option
XAXISTABLE statement (SGPLOT) 1161
YAXISTABLE statement (SGPLOT) 1211
index counter
resetting 82
INITIALBARATRrs= option
WATERFALL statement (SGPLOT) 1113
INITIALBARTICKVALUE= option
WATERFALL statement (SGPLOT) 1113
INITIALBArVALUE= option
INDEX

WATERFALL statement (SGPLOT) 1113
INSET statement about text insets 42 example 42
SGPANEL procedure 312
SGPLOT procedure 836
INTBOXWIDTH= option
HBOX statement (SGPANEL) 255
HBOX statement (SGPLOT) 775
VBOX statement (SGPANEL) 537
VBOX statement (SGPLOT) 1073
INTEGER option
COLAXIS statement (SGPANEL) 575
GRADLEGEND statement (SGPANEL) 717
GRADLEGEND statement (SGPLOT) 717
ROWAXIS statement (SGPANEL) 602
X2AXIS statement (SGPLOT) 1142
XAXIS statement (SGPLOT) 1122
Y2AXIS statement (SGPLOT) 1192
YAXIS statement (SGPLOT) 1172
INTERPOLATION= option
LOESS statement (SGPANEL) 333
LOESS statement (SGPLOT) 861
INTERVAL= option
COLAXIS statement (SGPANEL) 575
ROWAXIS statement (SGPANEL) 602
X2AXIS statement (SGPLOT) 1142
XAXIS statement (SGPLOT) 1122
Y2AXIS statement (SGPLOT) 1192
YAXIS statement (SGPLOT) 1172
INTERVALBARWIDTH= option
HIGHLOW statement (SGPANEL) 286
HIGHLOW statement (SGPLOT) 809
intra-quartile range (IQR)
horizontal box plots 262, 543, 782, 1080
ITALIC option
TITLE and FOOTNOTE statements 95

J
JITTER option
COMPARE statement (SGSCATTER) 1265
LOESS statement (SGPANEL) 333
LOESS statement (SGPLOT) 861
PBSPLINE statement (SGPANEL) 355
PBSPLINE statement (SGPLOT) 884
PLOT statement (SGSCATTER) 1290
REG statement (SGPANEL) 386
REG statement (SGPLOT) 918
SCATTER statement (SGPANEL) 400
SCATTER statement (SGPLOT) 931
JITTERWIDTH= option
SCATTER statement (SGPANEL) 401
SCATTER statement (SGPLOT) 932
JOIN option
COMPARE statement (SGSCATTER) 1266
PLOT statement (SGSCATTER) 1290
JUSTIFY= option
STEP statement (SGPANEL) 448
STEP statement (SGPLOT) 983
TITLE and FOOTNOTE statements 95

K
kernel density curves
See also density plots example 7, 635
kernel density function 172
ekernel density weight functions 172
KEYLEGEND statement example 1224, 1225, 1228
SGPANEL procedure 315
SGPLOT procedure 839

L
LABEL option
BLOCK statement (SGPANEL) 151
BLOCK statement (SGPLOT) 663
COLAXISTABLE statement (SGPANEL) 591
DROPLINE statement (SGPANEL) 190
DROPLINE statement (SGPLOT) 704
POLYGON statement (SGPANEL) 895
REFLINE statement (SGPANEL) 377
REFLINE statement (SGPLOT) 908
ROWAXISTABLE statement (SGPANEL) 618
XAXISTABLE statement (SGPLOT) 1161
YAXISTABLE statement (SGPLOT) 1212
LABEL statement 71
LABEL= option
COLAXIS statement (SGPANEL) 576
POLYGON statement (SGPANEL) 366
ROWAXIS statement (SGPANEL) 603
X2AXIS statement (SGPLOT) 1143
XAXIS statement (SGPLOT) 1123
Y2AXIS statement (SGPLOT) 1193
YAXIS statement (SGPLOT) 1173
LABELALIGN= option
INSET statement (SGPLOT) 837
LABELATTRS= option
BLOCK statement (SGPANEL) 152
labels associating with variables 71
LABELSTRIP option
SCATTER statement (SGPANEL) 401
SCATTER statement (SGPLOT) 932
language elements
PROC steps 18
used by programs 17
lattice layout style 118
example 116
layout types, panels 118, 127
LAYOUT= option
PANELBY statement (SGPANEL) 129
LAYOUTPERCENT (annotation space) 1421
LAYOUTPIXEL (annotation space) 1421
LCATTRID= option
SERIES statement (SGPANEL) 418
SERIES statement (SGPLOT) 950
legend statements
SGPANEL procedure 196, 315
SGPLOT procedure 715, 839
LEGEND= option
COMPARE statement (SGSCATTER) 1266
MATRIX statement (SGSCATTER) 1279
PLOT statement (SGSCATTER) 1291
LEGENDAREAMAX= option
ODS GRAPHICS statement 80
LEGENDLABEL= option
BAND statement (SGPANEL) 144
BAND statement (SGPLOT) 655
BUBBLE statement (SGPANEL) 162
BUBBLE statement (SGPLOT) 676
density statement (SGPANEL) 169
density statement (SGPLOT) 683
dot statement (SGPANEL) 181
dot statement (SGPLOT) 695
dropline statement (SGPANEL) 191
dropline statement (SGPLOT) 705
ELLIPSE statement (SGPLOT) 709
FRINGE statement (SGPLOT) 713
FRINGE statement (SGPANEL) 194
HBAR statement (SGPANEL) 212
HBAR statement (SGPLOT) 730
HBARBASIC statement (SGPANEL) 228
HBARBASIC statement (SGPLOT) 747
HBARPARM statement (SGPANEL) 243
HBARPARM statement (SGPLOT) 762
HBOX statement (SGPANEL) 256
HBOX statement (SGPLOT) 775
HIGHLIGHT statement (SGPANEL) 286
HIGHLIGHT statement (SGPLOT) 809
HISTOGRAM statement (SGPANEL) 295
HISTOGRAM statement (SGPLOT) 818
HLINE statement (SGPANEL) 304
HLINE statement (SGPLOT) 828
LINEPARM statement (SGPANEL) 325
LINEPARM statement (SGPLOT) 853
LOESS statement (SGPANEL) 334
LOESS statement (SGPLOT) 861
NEEDLE statement (SGPANEL) 345
NEEDLE statement (SGPLOT) 873
PBSPLINE statement (SGPANEL) 356
PBSPLINE statement (SGPLOT) 884
POLYGON statement (SGPANEL) 368
POLYGON statement (SGPLOT) 896
REFLINE statement (SGPANEL) 378
REFLINE statement (SGPLOT) 909
REG statement (SGPANEL) 387
REG statement (SGPLOT) 918
SCATTER statement (SGPANEL) 401
SCATTER statement (SGPLOT) 933
SERIES statement (SGPANEL) 419
SERIES statement (SGPLOT) 950
SPLINE statement (SGPANEL) 434
SPLINE statement (SGPLOT) 968
STEP statement (SGPANEL) 448
STEP statement (SGPLOT) 983
TEXT statement (SGPANEL) 470
TEXT statement (SGPLOT) 1005
VBAR statement (SGPANEL) 490
VBAR statement (SGPLOT) 1026
VBARBASIC statement (SGPANEL) 508
VBARBASIC statement (SGPLOT) 1044
VBARPARM statement (SGPANEL) 523
VBARPARM statement (SGPLOT) 1059
VBOX statement (SGPANEL) 537
VBOX statement (SGPLOT) 1073
VECTOR statement (SGPANEL) 549
VECTOR statement (SGPLOT) 1086
VLINE statement (SGPANEL) 562
VLINE statement (SGPLOT) 1099

Legends 1308
about 19
discrete 1309
examples 1224, 1225, 1228
gradient color 1310
SGPANEL procedure 196, 315
SGPLOT procedure 715, 839
SGSCATTER procedure 1253
LIBNAME= option
PROC SGDESIGN statement 110
LIMITATTRS= option
DOT statement (SGPANEL) 181
DOT statement (SGPLOT) 695
HBAR statement (SGPANEL) 212
HBAR statement (SGPLOT) 730
HBARPARM statement (SGPANEL) 243
HBARPARM statement (SGPLOT) 762
HLINE statement (SGPANEL) 305
HLINE statement (SGPLOT) 829
VBAR statement (SGPANEL) 491
VBAR statement (SGPLOT) 1026
VBARPARM statement (SGPANEL) 523
VBARPARM statement (SGPLOT) 1059
VLINE statement (SGPANEL) 562
VLINE statement (SGPLOT) 1099
LIMITLOWER= option
HBARPARM statement (SGPANEL) 243
HBARPARM statement (SGPLOT) 762
VLINE statement (SGPANEL) 562
VLINE statement (SGPLOT) 1099
LIMITSTAT= option
DOT statement (SGPANEL) 181
DOT statement (SGPLOT) 695
HBAR statement (SGPANEL) 212
HBAR statement (SGPLOT) 731
HLINE statement (SGPANEL) 305
HLINE statement (SGPLOT) 829
VBAR statement (SGPANEL) 491
VBAR statement (SGPLOT) 1026
VBARPARM statement (SGPANEL) 524
VBARPARM statement (SGPLOT) 1059
LIMITS= option
DOT statement (SGPANEL) 181
DOT statement (SGPLOT) 695
HBAR statement (SGPANEL) 212
HBAR statement (SGPLOT) 731
HLINE statement (SGPANEL) 305
HLINE statement (SGPLOT) 829
VBAR statement (SGPANEL) 491
VBAR statement (SGPLOT) 1026
VLINE statement (SGPANEL) 562
VLINE statement (SGPLOT) 1100
LIMITSTAT= option
<table>
<thead>
<tr>
<th>Statement/Option</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT statement (SGPANEL)</td>
<td>181</td>
</tr>
<tr>
<td>DOT statement (SGPLOT)</td>
<td>696</td>
</tr>
<tr>
<td>HBAR statement (SGPLOT)</td>
<td>213</td>
</tr>
<tr>
<td>HBAR statement (SGPANEL)</td>
<td>829</td>
</tr>
<tr>
<td>HLINE statement (SGPANEL)</td>
<td>305</td>
</tr>
<tr>
<td>HLINE statement (SGPLOT)</td>
<td>731</td>
</tr>
<tr>
<td>VBAR statement (SGPANEL)</td>
<td>491</td>
</tr>
<tr>
<td>VBAR statement (SGPLOT)</td>
<td>1027</td>
</tr>
<tr>
<td>VLINE statement (SGPANEL)</td>
<td>563</td>
</tr>
<tr>
<td>VLINE statement (SGPLOT)</td>
<td>1100</td>
</tr>
<tr>
<td>LIMITUPPER= option</td>
<td></td>
</tr>
<tr>
<td>HBARPARM statement (SGPANEL)</td>
<td>243</td>
</tr>
<tr>
<td>HBARPARM statement (SGPLOT)</td>
<td>762</td>
</tr>
<tr>
<td>VBARPARM statement (SGPANEL)</td>
<td>524</td>
</tr>
<tr>
<td>VBARPARM statement (SGPLOT)</td>
<td>1060</td>
</tr>
<tr>
<td>LINECOLOR=</td>
<td></td>
</tr>
<tr>
<td>LINELENGTH=</td>
<td></td>
</tr>
<tr>
<td>LINEATTRS= option</td>
<td></td>
</tr>
<tr>
<td>LINECOLOR= discrete attribute map</td>
<td>1391</td>
</tr>
<tr>
<td>LINELENGTH=</td>
<td></td>
</tr>
<tr>
<td>KEYLEGEND statement (SGPANEL)</td>
<td>319</td>
</tr>
<tr>
<td>KEYLEGEND statement (SGPLOT)</td>
<td>843</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td></td>
</tr>
<tr>
<td>LINEPATTERN= discrete attribute map</td>
<td>1391</td>
</tr>
<tr>
<td>LINESTYLe=</td>
<td></td>
</tr>
<tr>
<td>LINESTYLe= discrete attribute map</td>
<td>1392</td>
</tr>
<tr>
<td>LINESTYLe=</td>
<td></td>
</tr>
<tr>
<td>LINESTYLe= discrete attribute map</td>
<td>1392</td>
</tr>
</tbody>
</table>
discrete attribute map 1392
LOCATION= option
KEYLEGEND statement (SGPLOT) 843
XAXISTABLE statement (SGPLOT) 1162
YAXISTABLE statement (SGPLOT) 1213
loess curves
See loess plots
LOESS option
COMPARE statement (SGSCATTER) 1267
PLOT statement (SGSCATTER) 1292
loess plots
about 46
example 46, 116
SGPANEL procedure 327
SGPLOT procedure 855
LOESS statement
about loess plots 46
example 46, 116
SGPANEL procedure 327
SGPLOT procedure 855
LOESSMAXOBS= option
ODS GRAPHICS statement 80
LOESSOBSMAX= option
ODS GRAPHICS statement 80
logarithmic axes 1308
LOGBASE= option
COLAXIS statement (SGPANEL) 577
ROWAXIS statement (SGPANEL) 604
X2AXIS statement (SGPLOT) 1145
XAXIS statement (SGPLOT) 1125
Y2AXIS statement (SGPLOT) 1195
YAXIS statement (SGPLOT) 1175
LOGSTYLE= option
COLAXIS statement (SGPANEL) 578
ROWAXIS statement (SGPANEL) 604
X2AXIS statement (SGPLOT) 1145
XAXIS statement (SGPLOT) 1125
Y2AXIS statement (SGPLOT) 1195
YAXIS statement (SGPLOT) 1175
LOGVTYP = option
COLAXIS statement (SGPANEL) 578
ROWAXIS statement (SGPANEL) 605
LOGVTYP= option
X2AXIS statement (SGPLOT) 1146
XAXIS statement (SGPLOT) 1126
Y2AXIS statement (SGPLOT) 1196
YAXIS statement (SGPLOT) 1176
LOWCAP= option
HIGHLow statement (SGPANEL) 287
HIGHLow statement (SGPLOT) 810
LOWER= argument
BAND statement (SGPANEL) 142
BAND statement (SGPLOT) 653
LOWLABEL= option
HIGHLow statement (SGPANEL) 287
HIGHLow statement (SGPLOT) 810
LPATTRID= option
SERIES statement (SGPANEL) 419
SERIES statement (SGPLOT) 951
LSPACE= option
TITLE and FOOTNOTE statements 95

M
marker attributes
See marker options
marker fills and outlines 1315
marker options 1322
color 1322
size 1322
specifying fills and outlines 1315
symbol 1323
marker symbols 1322, 1323
MARKERATTR= option
COMPARE statement (SGSCATTER) 1268
DOT statement (SGPANEL) 182
DOT statement (SGPLOT) 696
HLINE statement (SGPANEL) 306
HLINE statement (SGPLOT) 830
LOESS statement (SGPANEL) 334
LOESS statement (SGPLOT) 862
MATRIX statement (SGSCATTER) 1280
NEEDLE statement (SGPANEL) 345
NEEDLE statement (SGPLOT) 873
PBSPLINE statement (SGPANEL) 356
PBSPLINE statement (SGPLOT) 885
PLOT statement (SGSCATTER) 1293
REG statement (SGPANEL) 387
REG statement (SGPLOT) 919
SCATTER statement (SGPANEL) 401
SCATTER statement (SGPLOT) 933
SERIES statement (SGPANEL) 419
SERIES statement (SGPLOT) 951
STEP statement (SGPANEL) 449
STEP statement (SGPLOT) 983
VLINE statement (SGPANEL) 563
VLINE statement (SGPLOT) 1100
MARKERCHAR= option
SCATTER statement (SGPANEL) 402
SCATTER statement (SGPLOT) 933
MARKERCHARATTRS= option
SCATTER statement (SGPANEL) 402
SCATTER statement (SGPLOT) 933
MARKERCOLOR= discrete attribute map 1392
MARKERFILLATTRS= option
<table>
<thead>
<tr>
<th>Statement</th>
<th>SGSCATTER</th>
<th>SGPANEL</th>
<th>SGPLOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARE statement</td>
<td>1268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT statement</td>
<td>182</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>HLINE statement</td>
<td>306</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>LOESS statement</td>
<td>334</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>PLOT statement</td>
<td>1293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REG statement</td>
<td>388</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>SCATTER statement</td>
<td>402</td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>SERIES statement</td>
<td>420</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>STEP statement</td>
<td>449</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>VLINE statement</td>
<td>563</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>MARKEROUTLINEATTRS= option</td>
<td>1269</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MARKERSTYLE=
- discrete attribute map (1392)

MARKERSYMBOL=
- discrete attribute map (1392)

MARKERTRANSPARENCY=
- discrete attribute map (1392)

MAX=
- range attribute map (1407)
- option
 - COLAXIS statement (SGPANEL) (579)
 - ROWAXIS statement (SGPANEL) (606)
 - X2AXIS statement (SGPLOT) (1146)
 - XAXIS statement (SGPLOT) (1126)
 - Y2AXIS statement (SGPLOT) (1196)
 - YAXIS statement (SGPLOT) (1177)

MAXLEGENDAREA=
- option

MAXPOINTS=
- option

MCATTRID=
- SERIES statement (SGPANEL) (421)
- SERIES statement (SGPLOT) (952)

MEANATTRS=
- option

MEDIANATTRS=
- option

MIN=
- range attribute map (1406)
- option

MINOR option
- COLAXIS statement (SGPANEL) (580)
- ROWAXIS statement (SGPANEL) (607)
- X2AXIS statement (SGPLOT) (1147)
- XAXIS statement (SGPLOT) (1127)
Y2AXIS statement (SGPLOT) 1197
YAXIS statement (SGPLOT) 1178
MINORCOUNT= option
COLAXIS statement (SGPANEL) 580
ROWAXIS statement (SGPANEL) 607
X2AXIS statement (SGPLOT) 1147
XAXIS statement (SGPLOT) 1127
Y2AXIS statement (SGPLOT) 1197
YAXIS statement (SGPLOT) 1178
MINORGRID option
COLAXIS statement (SGPLOT) 580
COMPARE statement (SGSCATTER) 1269
PLOT statement (SGSCATTER) 1294
ROWAXIS statement (SGPLOT) 607
X2AXIS statement (SGPLOT) 1147
XAXIS statement (SGPLOT) 1128
Y2AXIS statement (SGPLOT) 1198
YAXIS statement (SGPLOT) 1178
MINORGRIDATTS= option
COLAXIS statement (SGPLOT) 580
COMPARE statement (SGSCATTER) 1269
PLOT statement (SGSCATTER) 1294
ROWAXIS statement (SGPLOT) 607
X2AXIS statement (SGPLOT) 1148
XAXIS statement (SGPLOT) 1128
Y2AXIS statement (SGPLOT) 1198
YAXIS statement (SGPLOT) 1178
MINORINTERVAL= option
COLAXIS statement (SGPANEL) 581
ROWAXIS statement (SGPANEL) 607
X2AXIS statement (SGPLOT) 1148
XAXIS statement (SGPLOT) 1128
Y2AXIS statement (SGPLOT) 1198
YAXIS statement (SGPLOT) 1179
MISSING option
DOT statement (SGPANEL) 183
DOT statement (SGPLOT) 697
HBAR statement (SGPANEL) 213
HBAR statement (SGPLOT) 731
HBARBASIC statement (SGPANEL) 229
HBARBASIC statement (SGPLOT) 747
HBARPARM statement (SGPANEL) 244
HBARPARM statement (SGPLOT) 763
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 776
HLINE statement (SGPANEL) 307
HLINE statement (SGPLOT) 831
PANELBY statement (SGPANEL) 130
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1027
VBARBASIC statement (SGPANEL) 509
VBARBASIC statement (SGPLOT) 1044
VBARPARM statement (SGPANEL) 524
VBARPARM statement (SGPLOT) 1060
VBOX statement (SGPANEL) 538
VBOX statement (SGPLOT) 1074
VLINE statement (SGPANEL) 564
VLINE statement (SGPLOT) 1102
WATERFALL statement (SGPLOT) 1113
MODELNAME= option
BAND statement (SGPANEL) 144
BAND statement (SGPLOT) 655
MSATTRID= option
SERIES statement (SGPANEL) 421
SERIES statement (SGPLOT) 953
multi-cell graphs 8
creating paneled scatter plots 9

N
NAME= option
BAND statement (SGPANEL) 145
BAND statement (SGPLOT) 656
BLOCK statement (SGPANEL) 152
BLOCK statement (SGPLOT) 664
BUBBLE statement (SGPANEL) 163
BUBBLE statement (SGPLOT) 676
COLAXISTABLE statement (SGPANEL) 592
DENSITY statement (SGPANEL) 169
DENSITY statement (SGPLOT) 683
DOT statement (SGPANEL) 183
DOT statement (SGPLOT) 697
DROPLINE statement (SGPANEL) 191
DROPLINE statement (SGPLOT) 705
ELLIPSE statement (SGPLOT) 710
FRINGE statement (SGPANEL) 195
FRINGE statement (SGPLOT) 713
HBAR statement (SGPANEL) 213
HBAR statement (SGPLOT) 731
HBARBASIC statement (SGPANEL) 229
HBARBASIC statement (SGPLOT) 747
HBARPARM statement (SGPANEL) 244
HBARPARM statement (SGPLOT) 763
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 776
HEATMAP statement (SGPANEL) 266
HEATMAP statement (SGPLOT) 786
HEATMAPPARM statement (SGPANEL) 273
HEATMAPPARM statement (SGPLOT) 796
HIGHLow statement (SGPANEL) 287
HIGHLow statement (SGPLOT) 810
HISTOGRAM statement (SGPANEL) 295
HISTOGRAM statement (SGPLOT) 818
HLINE statement (SGPANEL) 307
HLINE statement (SGPLOT) 831
LINEPARM statement (SGPANEL) 326
LINEPARM statement (SGPLOT) 853
LOESS statement (SGPANEL) 335
LOESS statement (SGPLOT) 863
NEEDLE statement (SGPANEL) 345
NEEDLE statement (SGPLOT) 873
PBSPLINE statement (SGPANEL) 357
PBSPLINE statement (SGPLOT) 886
POLYGON statement (SGPANEL) 368
POLYGON statement (SGPLOT) 897
REFLINE statement (SGPANEL) 378
REFLINE statement (SGPLOT) 909
REG statement (SGPANEL) 389
REG statement (SGPLOT) 920
ROWAXISTABLE statement (SGPANEL) 619
SCATTER statement (SGPANEL) 403
SCATTER statement (SGPLOT) 934
SERIES statement (SGPANEL) 421
SERIES statement (SGPLOT) 953
SPLINE statement (SGPANEL) 434
SPLINE statement (SGPLOT) 969
STEP statement (SGPANEL) 450
STEP statement (SGPLOT) 985
TEXT statement (SGPANEL) 470
TEXT statement (SGPLOT) 1005
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1027
VBARBASIC statement (SGPANEL) 509
VBARBASIC statement (SGPLOT) 1044
VBARPARM statement (SGPANEL) 524
VBARPARM statement (SGPLOT) 1060
VBOX statement (SGPANEL) 538
VBOX statement (SGPLOT) 1074
VECTOR statement (SGPANEL) 549
VECTOR statement (SGPLOT) 1086
VLINE statement (SGPANEL) 564
VLINE statement (SGPLOT) 1102
WATERFALL statement (SGPLOT) 1113
XAXISTABLE statement (SGPLOT) 1162
YAXISTABLE statement (SGPLOT) 1213
names
 color-naming schemes 1325
 colors 1329
NBINS= option
 HISTOGRAM statement (SGPANEL) 295
 HISTOGRAM statement (SGPLOT) 818
needle plots
 about needle plots 35
 example 35
 SGPANEL procedure 339
 SG PLOT procedure 866
NEEDLE statement
 about needle plots 35
 example 35
 SGPANEL procedure 339
 SG PLOT procedure 866
NKNOTS= option
 PBSPLINE statement (SGPANEL) 357
 PBSPLINE statement (SGPLOT) 886
NOANTIALIAS option
 ODS GRAPHICS statement 74
NOARROWHEADS option
 VECTOR statement (SGPANEL) 549
 VECTOR statement (SGPLOT) 1086
NOAUTOLEGEND option
 PROC SGPANEL statement 124
 PROC SGPLOT statement 640
NOBORDER option
 GRADLEGEND statement (SGPANEL) 198
 GRADLEGEND statement (SGPLOT) 716
INSET statement (SGPANEL) 313
INSET statement (SGPLOT) 837
KEYLEGEND statement (SGPANEL) 317
KEYLEGEND statement (SGPLOT) 841
ODS GRAPHICS statement 75
PANELBY statement (SGPANEL) 128
PROC SGPLOT statement 640, 1294
NOCAPS option
 HBOX statement (SGPANEL) 257
 HBOX statement (SGPLOT) 776
 VBOX statement (SGPANEL) 538
 VBOX statement (SGPLOT) 1075
NOCASE=
 discrete attribute map 1392
NOCLIP option
 DROPLINE statement (SGPANEL) 191
 DROPLINE statement (SGPLOT) 706
 REFLINE statement (SGPANEL) 379
 REFLINE statement (SGPLOT) 910
NOCYCLEATTRS option
 PROC SGPANEL statement 123
 PROC SGPLOT statement 639
NOERRORCAPS option
 SCATTER statement (SGPANEL) 403
 STEP statement (SGPANEL) 450
NOERRORCAPS= option
 SCATTER statement (SGPLOT) 934
 STEP statement (SGPLOT) 985
NOEXTEND option
 BAND statement (SGPANEL) 145
 BAND statement (SGPLOT) 656
 LINEPARM statement (SGPLOT) 853
NOEXTEND= option
 LINEPARM statement (SGPANEL) 326
NOFILL option
 BAND statement (SGPANEL) 143
 BAND statement (SGPLOT) 654
 BLOCK statement (SGPANEL) 151
 BLOCK statement (SGPLOT) 662
 BUBBLE statement (SGPANEL) 161
 BUBBLE statement (SGPLOT) 675
 ELLIPSE statement (SGPLOT) 709
 HBAR statement (SGPANEL) 209
 HBAR statement (SGPLOT) 728
 HBARBASIC statement (SGPANEL) 226
 HBARBASIC statement (SGPLOT) 745
 HBARPARM statement (SGPANEL) 240
 HBARPARM statement (SGPLOT) 760
 HBOX statement (SGPANEL) 254
 HBOX statement (SGPLOT) 773
 HISTOGRAM statement (SGPANEL) 294
 HISTOGRAM statement (SGPLOT) 817
 POLYGON statement (SGPANEL) 365
 POLYGON statement (SGPLOT) 894
 VBAR statement (SGPANEL) 488
 VBAR statement (SGPLOT) 1023
 VBARBASIC statement (SGPANEL) 506
 VBARBASIC statement (SGPLOT) 1042
 VBARPARM statement (SGPANEL) 521
 VBARPARM statement (SGPLOT) 1057
 VBOX statement (SGPANEL) 535
 VBOX statement (SGPLOT) 1071
 WATERFALL statement (SGPLOT) 1112
NOFILL= option
 HIGHLOW statement (SGPANEL) 283
 HIGHLOW statement (SGPLOT) 806
NOGRADLEGEND option
 COMPARE statement (SGSCATTER) 1270
 MATRIX statement (SGSCATTER) 1280
 PLOT statement (SGSCATTER) 1295
NOHEADER option
 PANELBY statement (SGPANEL) 130
 PANELBY statement (SGPANEL) 130
NOIMAGEMAP option
 ODS GRAPHICS statement 78
NOLABEL option
 BLOCK statement (SGPANEL) 151
 BLOCK statement (SGPLOT) 663
 COLAXISTABLE statement (SGPANEL) 591
 INSET statement (SGPANEL) 313
 ROWAXISTABLE statement (SGPANEL) 618
 XAXISTABLE statement (SGPLOT) 1161
 YAXISTABLE statement (SGPLOT) 1212
NOLEGCLI option
 PBSPLINE statement (SGPANEL) 358
 PBSPLINE statement (SGPLOT) 886
 REG statement (SGPANEL) 389
 REG statement (SGPLOT) 920
NOLEGCLM option
 LOESS statement (SGPANEL) 335
 LOESS statement (SGPLOT) 863
 PBSPLINE statement (SGPANEL) 358
 PBSPLINE statement (SGPLOT) 886
 REG statement (SGPANEL) 389
 REG statement (SGPLOT) 920
NOLEGEND option
 COMPARE statement (SGSCATTER) 1270
 MATRIX statement (SGSCATTER) 1280
 PLOT statement (SGSCATTER) 1295
NOLEGFIT option
 LOESS statement (SGPANEL) 335
 LOESS statement (SGPLOT) 863
 PBSPLINE statement (SGPANEL) 358
 PBSPLINE statement (SGPLOT) 886
REG statement (SGPANEL) 389
REG statement (SGPLOT) 920
NOMARKERS option
LOESS statement (SGPANEL) 335
LOESS statement (SGPLOT) 863
PBSPLINE statement (SGPANEL) 358
PBSPLINE statement (SGPLOT) 886
REG statement (SGPANEL) 389
REG statement (SGPLOT) 920
NOMEAN option
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
NOMEDIAN option
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
NOMISSINGCHAR option
COLAXISTABLE statement (SGPANEL) 592
ROWAXISTABLE statement (SGPANEL) 619
XAXISTABLE statement (SGPLOT) 1162
YAXISTABLE statement (SGPLOT) 1213
NOMISSINGCLASS option
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 664
XAXISTABLE statement (SGPANEL) 592
XAXISTABLE statement (SGPLOT) 1162
YAXISTABLE statement (SGPANEL) 619
YAXISTABLE statement (SGPLOT) 1213
NOMISSINGCOLOR option
HEATMAPPARAM statement (SGPANEL) 273
HEATMAPPARAM statement (SGPLOT) 796
NOMISSINGGROUP option
BAND statement (SGPANEL) 145
BAND statement (SGPLOT) 656
BUBBLE statement (SGPANEL) 163
BUBBLE statement (SGPLOT) 676
FRINGE statement (SGPANEL) 195
FRINGE statement (SGPLOT) 713
LINEPARAM statement (SGPANEL) 326
LINEPARAM statement (SGPLOT) 853
NEEDLE statement (SGPANEL) 346
NEEDLE statement (SGPLOT) 874
POLYGON statement (SGPANEL) 368
POLYGON statement (SGPLOT) 897
SCATTER statement (SGPANEL) 403
SCATTER statement (SGPLOT) 935
SERIES statement (SGPANEL) 422
SERIES statement (SGPLOT) 953
SPLINE statement (SGPANEL) 435
SPLINE statement (SGPLOT) 969
STEP statement (SGPANEL) 450
STEP statement (SGPLOT) 985
TEXT statement (SGPANEL) 470
TEXT statement (SGPLOT) 1005
VECTOR statement (SGPANEL) 549
VECTOR statement (SGPLOT) 1086
NOMISSINGGROUP= option
HIGHLOW statement (SGPANEL) 288
HIGHLOW statement (SGPLOT) 811
NOOPAQUE option
PROC SGPANEL statement 124
PROC SGPLOT statement 641
PROC SGSCATTER statement 1258
NOOUTLIERS option
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
NOOUTLINE option
BAND statement (SGPANEL) 145
BAND statement (SGPLOT) 656
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 664
BUBBLE statement (SGPLOT) 676
ELLIPSE statement (SGPLOT) 710
HBAR statement (SGPANEL) 214
HBAR statement (SGPLOT) 732
HBARBASIC statement (SGPANEL) 229
HBARBASIC statement (SGPLOT) 748
HISTOGRAM statement (SGPANEL) 295
HISTOGRAM statement (SGPLOT) 818
POLYGON statement (SGPANEL) 368
POLYGON statement (SGPLOT) 897
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1028
VBARBASIC statement (SGPANEL) 509
VBARBASIC statement (SGPLOT) 1044
WATERFALL statement (SGPLOT) 1113
NOOUTLINE= option
BUBBLE statement (SGPANEL) 163
HBARPARM statement (SGPANEL) 244
HBARPARM statement (SGPLOT) 763
HIGHLOW statement (SGPANEL) 288
HIGHLOW statement (SGPLOT) 811
VBARPARM statement (SGPANEL) 525
VBARPARM statement (SGPLOT) 1061

normal density curves 116
normal density function 172
NOSCALE option
ODS GRAPHICS statement 84
NOSCALEMARKERS option
ODS GRAPHICS statement 85
NOSTATLABEL option
COLAXISTABLE statement (SGPANEL) 594
DOT statement (SGPANEL) 185
DOT statement (SGPLOT) 700
HBAR statement (SGPANEL) 217
HBAR statement (SGPLOT) 736
HLINE statement (SGPANEL) 309
HLINE statement (SGPLOT) 833
ROWAXISTABLE statement (SGPANEL) 621
VBAR statement (SGPANEL) 497
VBAR statement (SGPLOT) 1032
VLINE statement (SGPANEL) 567
VLINE statement (SGPLOT) 1104
XAXISTABLE statement (SGPLOT) 1164
YAXISTABLE statement (SGPLOT) 1215

NOSUBPIXEL 1346
NOSUBPIXEL option
ODS GRAPHICS statement 87
PROC SGPANEL statement 124
PROC SGPLOT statement 640
PROC SGSCATTER statement 1257
NOTICES option
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
NOTIMESPLIT option
COLAXIS statement (SGPANEL) 581
ROWAXIS statement (SGPANEL) 608
X2AXIS statement (SGPLOT) 1148
XAXIS statement (SGPLOT) 1128
Y2AXIS statement (SGPLOT) 1198
YAXIS statement (SGPLOT) 1179
NOTITLE= option
GRADLEGEND statement (SGPANEL) 199
GRADLEGEND statement (SGPLOT) 717
NOTSORTED option
BY statement 66
NOVALUES option
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 664
NOVARNAME option
PANELBY statement (SGPANEL) 130
NOWALL option
COMPARE statement (SGSCATTER) 1270
PANELBY statement (SGPANEL) 130
PLOT statement (SGSCATTER) 1295
PROC SGPLOT statement 641
NOZEROBARS option
HBAR statement (SGPANEL) 213
HBAR statement (SGPLOT) 732
HBAR BASIC statement (SGPANEL) 229
HBAR BASIC statement (SGPLOT) 748
HBARPARM statement (SGPANEL) 244
HBARPARM statement (SGPLOT) 763
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1027
VBAR BASIC statement (SGPANEL) 509
VBAR BASIC statement (SGPLOT) 1044
VBARPARM statement (SGPANEL) 524
VBARPARM statement (SGPLOT) 1060

numeric variables
distribution of values (SGPANEL) 166
distribution of values (SGPLOT) 680
NUMSTD= option
DOT statement (SGPANEL) 183
DOT statement (SGPLOT) 697
HBAR statement (SGPANEL) 214
HBAR statement (SGPLOT) 732
HLINE statement (SGPANEL) 307
HLINE statement (SGPLOT) 831
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1028
VLINE statement (SGPANEL) 565
VLINE statement (SGPLOT) 1102
NXBINS= option
HEATMAP statement (SGPLOT) 786
NYBINS= option
HEATMAP statement (SGPLOT) 786
OBJECT= option
PROC SGRENDER statement 1239
OBJECTLABEL= option
PROC SGRENDER statement 1239
ODS (Output Delivery System)
managing graphs with 1367
ODS graphics procedures and 1541
ODS destination statements
changing current graph style 1338
STYLE= option 1338
ODS destinations
about 12
DPI= option 1370
GPATH= option 1370
HTML destination 1371
IMAGE_DPI= option 1370
LISTING destination 1370
options 1369
PDF destination 1370
RTF destination 1370
specifying 1368
STYLE= option 1370
ODS Graphics Editor 1541
ODS graphics procedures 3, 1541
compared with SAS/GRAPH
procedures 1544
controlling graph appearance 1339
global statements 65
hardcoded values for graph appearance 1341
ODS and 1541
style element references 1340
subpixel rendering 1346
ODS GRAPHICS statement 71, 1371, 1541
accessing graphs as separate image files 1376
adding data tips or borders 1375
for batch jobs 89
graph size 1373
resetting options 1376
syntax 1371
ODS statements 21
destinations 12
GRAPHICS 21
styles 12
ODS styles 1333, 1335
about 12
appearance option values 1339
changing current style 1338
changing default style 1338
changing default style, SAS Registry 1339
examples 1335
hardcoded values 1341
modifying templates 1352
ODS graphics procedures options 1339
recommended 1335
style element references 1340
style elements for ODS statistical
graphics 1357
style specification 1338
STYLEATTRS statement (SGPANEL) 136
STYLEATTRS statement (SGPLOT) 644
viewing templates 1338
OFFSETMAX= option
COLAXIS statement (SGPANEL) 581
ROWAXIS statement (SGPANEL) 608
X2AXIS statement (SGPLOT) 1148
XAXIS statement (SGPLOT) 1128
Y2AXIS statement (SGPLOT) 1198
YAXIS statement (SGPLOT) 1179
OFFSETMIN= option
COLAXIS statement (SGPANEL) 581
ROWAXIS statement (SGPANEL) 608
X2AXIS statement (SGPLOT) 1149
XAXIS statement (SGPLOT) 1129
Y2AXIS statement (SGPLOT) 1199
YAXIS statement (SGPLOT) 1179
ONEPANEL option
PANELBY statement (SGPANEL) 130
OPAQUE
INSET statement (SGPANEL) 313
OPAQUE option
KEYLEGEND statement (SGPLOT) 843
PROC SGPANEL statement 124
PROC SGPLOT statement 641
PROC SGSCATTER statement 1258
OPEN= option
HIGHLow statement (SGPANEL) 288
HIGHLow statement (SGPLOT) 811
options
fill attributes 1321
general syntax 1319
line attributes 1320
marker attributes 1322
text attributes 1323
OUTERPAD= option
GRADLEGEND statement (SGPANEL) 199
GRADLEGEND statement (SGPLOT) 717
KEYLEGEND statement (SGPANEL) 319
KEYLEGEND statement (SGPLOT) 843
OUTLIERATTRS= option
HBOX statement (SGPANEL) 257
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
OUTLINE option
BAND statement (SGPANEL) 145
BAND statement (SGPLOT) 656
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 664
BUBBLE statement (SGPLOT) 676
ELLIPSE statement (SGPLOT) 710
HBAR statement (SGPANEL) 214
HBAR statement (SGPLOT) 732
HBARBASIC statement (SGPANEL) 229
HBARBASIC statement (SGPLOT) 748
HEATMAP statement (SGPANEL) 266
HEATMAP statement (SGPLOT) 786
HEATMAPPARM statement (SGPANEL) 274
HEATMAPPARM statement (SGPLOT) 796
HEATMAPPARM statement (SGPLOT) 796
HISTOGRAM statement (SGPANEL) 295
HISTOGRAM statement (SGPLOT) 818
POLYGON statement (SGPANEL) 368
POLYGON statement (SGPLOT) 897
VBAR statement (SGPANEL) 492
VBAR statement (SGPLOT) 1028
VBARBASIC statement (SGPANEL) 509
VBARBASIC statement (SGPLOT) 1045
output
size of 1373
OUTPUTFMT= option
ODS GRAPHICS statement 81
OVAL function
SG annotation 1440
P
PAD option
PROC SGPLOT statement 641
PAD= option 1419
COLAXISTABLE statement (SGPANEL) 592
ROWAXISTABLE statement (SGPANEL) 620
TEXT statement (SGPANEL) 471
TEXT statement (SGPLOT) 1006
XAXISTABLE statement (SGPLOT) 1162
XAXISTABLE statement (SGPLOT) 1213
panel layout style 118
PANELBY statement
SGPANEL procedure 127
PANELCELLMAX= option
ODS GRAPHICS statement 81
panels 116
See also SGPANEL procedure
classification variables for 127
creating 8, 117
creating paneled scatter plots 9
dot plots 172
dot plots 172
example 116
example, bar charts 627
example, density plots 625
example, histograms 625
example, line charts 629
example, regression curves 626
histograms 290
layout styles 118, 127
layouts 116
legends 196, 1308
line charts, horizontal 296
line charts, vertical 553
parameterized vertical bar charts 513
scatter plots 1249
SGSCATTER procedure 1251
vertical bar charts 479
vertical box plots 530
parameterized lines
about parameterized lines 34
example 34
SGPANEL procedure 322
SGPLOT procedure 849
PATTERN= attribute
for lines 1320
patterns
line patterns 1320
PBSPLINE option
COMPARE statement (SGSCATTER) 1270
PLOT statement (SGSCATTER) 1295
PBSPLINE statement
about penalized B-spline plots 47
example 47
SGPANEL procedure 348
SGPLOT procedure 877
PCTLLEVEL= option
PROC SGPANEL statement 125
PROC SGPLOT statement 642
PCTNDEC= option
PROC SGPANEL statement 126
PROC SGPLOT statement 643
penalized B-spline curves
See penalized B-spline plots
penalized B-spline plots
about 47
example 47
SGPANEL procedure 348
SGPLOT procedure 877
PERCENTILE= option
HBOX statement (SGPANEL) 258
HBOX statement (SGPLOT) 777
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
percentiles
box plots 261, 543, 781, 1079
plot area 5
plot axes 569, 597
adding inset inside of 312
adding text box inside of 836
SGPANEL and SGPLOT procedures 1307
PLOT statement
SGSCATTER procedure 1251, 1282, 1300
plot statements
about 19
SGSCATTER procedure 1251, 1282, 1300
plot type compatibility
SGPANEL and SGPLOT procedures 1306
plots
See also scatter plots
See also scatter plots (text markers)
See also SGPANEL procedure
See also SGPLOT procedure
adding confidence or prediction ellipse to 707
block plots (SGPANEL) 148
block plots (SGPLOT) 659
bubble 155, 669
compatible plot types 1306
dot plots (SGPANEL) 172
dot plots (SGPLOT) 686
drop lines (SGPANEL) 188
drop lines (SGPLOT) 702
example, adding statistical limits to a dot plot 1227
example, bar-line charts 1231
example, combining histograms with density plots 1228
example, ellipse and scatter plots 1224
example, histograms and density plot 625
example, horizontal box plots 1230
example, line charts 629
example, line thickness and arrowheads 1233
example, plotting three series 1221
example, regression plots 1223
example, scatter plot with fit and confidence 1225
examples (SGPANEL) 116
examples (SGPLOT) 632
fit and confidence plots 1306
fringe plots 192, 710
heat maps (SGPANEL) 269
heat maps (SGPLOT) 262, 782, 792
high-low plots 277, 800
highlighting with bands 140, 651
horizontal box plots (SGPANEL) 248
horizontal box plots (SGPLOT) 768
horizontal line (SGPANEL) 296
horizontal line (SGPLOT) 819
legends on 315, 715, 839
prediction ellipse 707
line patterns 1320
about ellipse plots 45
marker symbols 1323
eexample, adding to scatter plots 1224
needle plots 339, 866
scatter plot matrix with 1249
class parameterized lines (SGPANEL) 322
parameterized lines (SGPLOT) 849
PROC SGDESIGN statement 108
reference lines (SGPANEL) 375
PROC SG PANEL statement 122
reference lines (SGPLOT) 906
PROC SG PLOT statement 638
series plots 406, 938
PROC SG RENDER statement 1238
step plots 439, 974
PROC SG SCATTER statement 1254
style attributes 1312
PROC steps 18
symbol characters 454, 989
PROC legend statements 19
symbol images 459, 994
PROC PANELBY statements 20
vector plots 544, 1080
PROC plot statements 19
vertical box plots (SGPANEL) 530
PROC procedure statements 19
vertical box plots (SGPLOT) 1066
statements required for SGSCATTER 20
vertical line (SGPANEL) 553
vertical line (SGPLOT) 1090
vertical line (SGPLOT) 1090
POLYCON T function
PROC adjustement 1445
POLYGON function
PROC SG annotation 1447
SG annotation
polygon plots
PROC SG PLOT procedure 361, 890
POLYGON statement
POLYGON procedure 361, 890
POLYLINE function
SG annotation 1451
POP option
about 94
ODS GRAPHICS statement 81
POSITION= option
PROC BLOCK statement (SGPLOT) 664
COLAXISTABLE statement
(SGPANEL) 593
GRADLEGEND statement (SGPANEL) 199
GRADLEGEND statement (SGPLOT) 717
INSET statement (SGPANEL) 313
INSET statement (SGPLOT) 838
KEYLEGEND statement (SGPANEL) 319
KEYLEGEND statement (SGPLOT) 844
ROWAXISTABLE statement
(SGPANEL) 620
TEXT statement (SGPANEL) 471
TEXT statement (SGPLOT) 1006
XAXISTABLE statement (SGPLOT) 1163
YAXISTABLE statement (SGPLOT) 1214
programs
R
 prediction example, adding to regression plots 1223
 a typical program 17
 axis statements 20
 global statements 20
 language elements used by 17
 legend statements 19
 ODS GRAPHICS statements 21
 ODS statements 21
 PANELBY statements 20
 plot statements 19
 PROC steps 18
 statements 19
 statements required for SGSCATTER 20
 PROC PANELBY statement (SGPANEL) 131
 Premiership
 about 94
 ODS GRAPHICS statement 81
 range attribute maps
 about 1384
 data sets 1404
 examples 1410
 main tasks 1403
 RATTRID= option 1409
RATTRMAP= option 1409
reserved variables 1406
specifying in a procedure 1409
RANGES= option
X2AXIS statement (SGPLOT) 1149
XAXIS statement (SGPLOT) 1129
Y2AXIS statement (SGPLOT) 1199
YAXIS statement (SGPLOT) 1179
RATTRID= option 1409
RATTRMAP= option 1409
PROC SGPANEL statement 127
PROC SGPLOT statement 643
PROC SGSCATTER statement 1259
RECTANGLE function
SG annotation 1455
reference lines
about reference lines 32
element 32
SGPANEL procedure 375
SGPLOT procedure 906
REFLINE statement
about reference lines 32
element 32
SGPANEL procedure 375
SGPLOT procedure 906
REFTICKS= option
COLAXIS statement (SGPANEL) 581
COMPARE statement (SGSCATTER) 1271
PLOT statement (SGSCATTER) 1296
ROWAXIS statement (SGPANEL) 608
X2AXIS statement (SGPLOT) 1150
XAXIS statement (SGPLOT) 1130
Y2AXIS statement (SGPLOT) 1201
YAXIS statement (SGPLOT) 1181
REG option
COMPARE statement (SGSCATTER) 1271
PLOT statement (SGSCATTER) 1296
REG statement
about regression plots 48
element 48, 626, 1223
SGPANEL procedure 380
SGPLOT procedure 911
regression curves
See regression plots
regression fits
comparative scatter plots with 1303
regression plots
about 48
element 48
example, adding prediction and confidence bands 1223
element, panel 626
SGPANEL procedure 380
SGPLOT procedure 911
RESET option
ODS GRAPHICS statement 82
RESET= option
ODS GRAPHICS statement 82
RESPONSE= option
DOT statement (SGPANEL) 183
DOT statement (SGPLOT) 698
HBAR statement (SGPANEL) 214
HBAR statement (SGPLOT) 733
HBARBASIC statement (SGPANEL) 230
HBARBASIC statement (SGPLOT) 749
HLINE statement (SGPANEL) 307
HLINE statement (SGPLOT) 831
VBAR statement (SGPANEL) 493
VBAR statement (SGPLOT) 1029
VBARBASIC statement (SGPANEL) 510
VBARBASIC statement (SGPLOT) 1045
VLINE statement (SGPANEL) 565
VLINE statement (SGPLOT) 1102
REVERSE option
COLAXIS statement (SGPANEL) 581
ROWAXIS statement (SGPANEL) 609
X2AXIS statement (SGPLOT) 1151
XAXIS statement (SGPLOT) 1131
Y2AXIS statement (SGPLOT) 1201
YAXIS statement (SGPLOT) 1181
REWEIGHT= option
LOESS statement (SGPANEL) 336
LOESS statement (SGPLOT) 863
RGB color codes 1326
SAS color names 1329
ROTATE= option
POLYGON statement (SGPANEL) 369
POLYGON statement (SGPLOT) 897
SYMBOLCHAR statement (SGPANEL) 456
SYMBOLCHAR statement (SGPLOT) 990
SYMBOLIMAGE statement (SGPANEL) 460
SYMBOLIMAGE statement (SGPLOT) 995
TEXT statement (SGPANEL) 472
TEXT statement (SGPLOT) 1007
ROTATELABEL= option
POLYGON statement (SGPANEL) 369
POLYGON statement (SGPLOT) 898
ROWAXIS statement
SGPANEL procedure 597
ROWAXISTABLE statement
SGPANEL procedure 614
ROWHEADERPOS= option
Index

PANELBY statement (SGPANEL) 131
ROWS= option
PLOT statement (SGSCATTER) 1297
ROWS= option
PANELBY statement (SGPANEL) 132

S
sample library 14
SAS Color Naming Scheme (CNS) 1329
SAS statements 20
SAS Studio
about 5
SAS/GRAPH procedures
compared with ODS graphics
procedures 1544
SASHELP library 14
SCALE option
ODS GRAPHICS statement 84
SCALE= option
DENSITY statement (SGPANEL) 169
DENSITY statement (SGPLOT) 683
HISTOGRAM statement (SGPANEL)
295
HISTOGRAM statement (SGPLOT)
819
KEYLEGEND statement (SGPANEL)
320
KEYLEGEND statement (SGPLOT)
844
ODS GRAPHICS statement 84
SYMBOLCHAR statement
(SGPANEL) 456
SYMBOLCHAR statement (SGPLOT)
991
SYMBOLIMAGE statement
(SGPANEL) 460
SYMBOLIMAGE statement (SGPLOT)
995
SCALEMARKERS= option
ODS GRAPHICS statement 85
scaling
for DPI 1374
scatter plot matrix 1274
diagonal with histograms and density
plots 1249
with grouped data 1299
with prediction ellipse 1249
scatter plots
See also SGSCATTER procedure
about scatter plots 36
comparative, with grouped data 1302
comparative, with regression fits and
confidence ellipse 1303
comparative, with shared axes 1259
example 36, 1219, 1220, 1224, 1225
paneled 1249
paneled, with multiple independent
plots 1282
paneled, with shared axes 1249
SGPANEL procedure 392
SGPLOT procedure 923
with fitted splines 1300
scatter plots (text markers)
about text scatter plots 41
example 41
SGPANEL procedure 464
SGPLOT procedure 998
SCATTER statement
about scatter plots 36
example 36, 1219, 1220, 1224, 1225
SGPANEL procedure 392
SGPLOT procedure 923
SEGLABEL option
HBAR statement (SGPANEL) 214
HBAR statement (SGPLOT) 733
HBARBASIC statement (SGPANEL)
230
HBARBASIC statement (SGPLOT)
749
HBARPARAM statement (SGPANEL)
245
HBARPARAM statement (SGPLOT) 764
VBAR statement (SGPANEL) 493
VBAR statement (SGPLOT) 1029
VBARBASIC statement (SGPANEL)
510
VBARBASIC statement (SGPLOT)
1045
VBARPARAM statement (SGPANEL)
526
VBARPARAM statement (SGPLOT)
1062
SEGLABELATTRS= option
HBAR statement (SGPANEL) 215
HBAR statement (SGPLOT) 733
HBARBASIC statement (SGPANEL)
230
HBARBASIC statement (SGPLOT)
749
HBARPARAM statement (SGPANEL)
245
HBARPARAM statement (SGPLOT) 765
VBAR statement (SGPANEL) 494
VBAR statement (SGPLOT) 1029
VBARBASIC statement (SGPANEL)
511
VBARBASIC statement (SGPLOT)
1046
VBARPARAM statement (SGPANEL)
526
VBARPARM statement (SGPLOT) 1062
SEGLABELFITPOLICY= option
HBAR statement (SGPANEL) 215
HBAR statement (SGPLOT) 734
HBARBASIC statement (SGPANEL) 231
HBARBASIC statement (SGPLOT) 749
HBARPARM statement (SGPANEL) 246
HBARPARM statement (SGPLOT) 765
VBAR statement (SGPANEL) 494
VBAR statement (SGPLOT) 1030
VBARBASIC statement (SGPANEL) 511
VBARBASIC statement (SGPLOT) 1046
SEGLABELFORMAT= option
HBAR statement (SGPANEL) 216
HBAR statement (SGPLOT) 734
HBARBASIC statement (SGPANEL) 231
HBARBASIC statement (SGPLOT) 750
HBARPARM statement (SGPANEL) 246
HBARPARM statement (SGPLOT) 765
VBAR statement (SGPANEL) 495
VBAR statement (SGPLOT) 1030
VBARBASIC statement (SGPANEL) 511
VBARBASIC statement (SGPLOT) 1046
VBARPARM statement (SGPANEL) 527
VBARPARM statement (SGPLOT) 1063
SEGPOINTS= option
SPLINE statement (SGPANEL) 435
SPLINE statement (SGPLOT) 969
SEPARATOR option
COLAXISTABLE statement (SGPANEL) 593
ROWAXISTABLE statement (SGPANEL) 620
XAXISTABLE statement (SGPLOT) 1163
YAXISTABLE statement (SGPLOT) 1214
SEPARATOR= option
INSET statement (SGPANEL) 313
series plots
about series plots 38
example 38, 632, 1221, 1225
example, line thickness and arrowheads 1233
SGPANEL procedure 406
SGPLOT procedure 938
SERIES statement
about series plots 38
example 38, 632, 1221, 1225
example, line thickness and arrowheads 1233
SGPANEL procedure 406
SGPLOT procedure 938
SG annotation
See annotation
SG attribute maps
See attribute maps
SGANNO= option 1419
PROC SGRENDER statement 1239
SGD= argument
PROC SGDESIGN statement 109
SGDESIGN procedure 105
about 11
concepts 106
DYNAMIC statement 110
dynamic variables 107
examples 111, 112
interaction with ODS Graphics Designer 106
PROC SGDESIGN statement 108
syntax 108
SGE= option
example usage 1377
PROC SGRENDER statement 1240
SGPANEL procedure 116
about 8
automatic differentiation of visual
attributes 1312
BAND statement 140
BLOCK statement 148
BUBBLE statement 155
COLAXIS statement 569
compatible plot types 1306
concepts 117
DENSITY statement 166
DOT statement 172
DROPLINE statement 188
example, bar charts 627
example, histograms and density plot 625
example, line charts 629
example, regression curves 626
fill options 1321
FRINGE statement 192
general syntax for attribute options 1319
GRADLEGEND statement 196
HBAR statement 201
HBARBASIC statement 219
HBARPARM statement 233
HBOX statement 248
HEATMAP statement 262
HEATMAPPARM statement 269
HIGHLow statement 277
HISTOGRAM statement 290
HLINE statement 296
INSET statement 312
KEYLEGEND statement 315
layout styles 118
layouts 116
line options and patterns 1320
LINEPARM statement 322
LOESS statement 327
marker options and symbols 1322
marker symbols 1323
measurement units 1325, 1535
NEEDLE statement 339
panel creation 117
panel legends 1308
PANELBY statement 127
PBSPLINE statement 348
plot axes 1307
PROC SGPANEL statement 122
REFLINE statement 375
REG statement 380
ROWAXIS statement 597
SCATTER statement 392
SERIES statement 406
SPLINE statement 426
STEP statement 439
STYLEATTRS statement 136
SYMBOLCHAR statement 454
SYMBOLIMAGE statement 459
syntax 120
text options 1323
TEXT statement 464
VBAR statement 479
VBARBASIC statement 499
VBARPARM statement 513
VBOX statement 530
VECTOR statement 544
VLINE statement 553
SGPLOT procedure
about 7, 634
automatic differentiation of visual attributes 1312
BAND statement 651
BLOCK statement 659
BUBBLE statement 669
BY statement with 67
COLAXISTABLE statement 587
compatible plot types 1306
concepts 634
DENSITY statement 680
DOT statement 686
DROPLINE statement 702
ELLIPSE statement 707
example, adding statistical limits to a dot plot 1227
example, bar-line charts 1231
example, clustering scatter plots 1220
example, combining histograms with density plots 1228
example, ellipse and scatter plots 1224
example, grouping scatter plots 1219
example, high-low charts 1232
example, horizontal box plots 1230
example, line thickness and arrowheads 1233
example, plotting three series 1221
example, regression plots 1223
example, scatter plot with fit and confidence 1225
examples 632
fill options 1321
FRINGE statement 710
general syntax for attribute options 1319
GRADLEGEND statement 715
HBAR statement 719
HBARBASIC statement 738
HBARPARM statement 752
HBOX statement 261, 542, 768, 781, 1079
HEATMAP statement 782
HEATMAPPARM statement 792
HIGHLow statement 800
HISTOGRAM statement 813
HLINE statement 819
INSET statement 836
KEYLEGEND statement 839
legends 1308
line options and patterns 1320
LINEPARM statement 849
LOESS statement 855
marker options and symbols 1322
marker symbols 1323
measurement units 1325, 1535
NEEDLE statement 866
PBSPLINE statement 877
plot axes 1307
POLYGON statement 361, 890
PROC SGPLOT statement 638
REFLINE statement 906
REG statement 911
ROWAXISTABLE statement 614
SCATTER statement 923
SERIES statement 938
SPLINE statement 960
STEP statement 974
STYLEATTRS statement 644
SYMBOLCHAR statement 989
SYMBOLIMAGE statement 994
syntax 636
text options 1323
TEXT statement 998
VBAR statement 1014
VBARBASE statement 1035
VBARPARM statement 1049
VBOX statement 1066
VECTOR statement 1080
VLINE statement 1090
WATERFALL statement 1107
X2AXIS statement 1137
XAXIS statement 1117
XAXISTABLE statement 1157
Y2AXIS statement 1187
YAXIS statement 1167
YAXISTABLE statement 1207
SGRENDER procedure 1237
about 10
DATTRVAR statement 1240
defining dynamic variables 1245
DYNAMIC statement 1242
examples 1244
graphs from GTL templates 1244
PROC SGRENDER statement 1238
syntax 1237
SGSCATTER procedure 1249
about 9
COMPARE statement 1252, 1259
concepts 1251
examples 1299
fill options 1321
general syntax for attribute options 1319
legends 1253, 1308
line options and patterns 1320
marker options and symbols 1322
marker symbols 1323
MATRIX statement 1252, 1274
measurement units 1325, 1535
PLOT statement 1251, 1282
PROC SGSCATTER statement 1254
statements for creating panels 1251
syntax 1253
text options 1323
SHOW option
ODS GRAPHICS statement 85
SHOW=
discrete attribute map 1392
SHOWBINS option
HISTOGRAM statement (SGPLOT) 819
SHOWXBINS option
HEATMAP statement (SGPANEL) 267
HEATMAP statement (SGPLOT) 787
HEATMAPPARM statement (SGPANEL) 274
HEATMAPPARM statement (SGPLOT) 797
SHOWYBINS option
HEATMAP statement (SGPANEL) 267
HEATMAP statement (SGPLOT) 787
HEATMAPPARM statement (SGPANEL) 274
HEATMAPPARM statement (SGPLOT) 797
single-cell graphs 7, 634
size of graphs 1373
SIZE= attribute
for markers 1322
for text 1324
SIZEMAX= option
TEXT statement (SGPANEL) 472
TEXT statement (SGPLOT) 1007
SIZEMAXRESPONSE= option
TEXT statement (SGPANEL) 473
TEXT statement (SGPLOT) 1008
SIZEMIN= option
TEXT statement (SGPANEL) 474
TEXT statement (SGPLOT) 1009
SIZERESPONSE= option
TEXT statement (SGPANEL) 474
TEXT statement (SGPLOT) 1009
skins
See data skins
SKIPEMPTYCELLS option
 PANELBY statement (SGPANEL) 132
SMOOTH= option
 LOESS statement (SGPANEL) 336
 LOESS statement (SGPLOT) 864
 PBSPLINE statement (SGPANEL) 358
 PBSPLINE statement (SGPLOT) 886
 SMOOTHCONNECT option
 SERIES statement (SGPANEL) 422
 SERIES statement (SGPLOT) 954
 smoothing graphics 74
SORT= option
 PANELBY statement (SGPANEL) 133
SORTORDER= option
 KEYLEGEND statement (SGPANEL) 320
 KEYLEGEND statement (SGPLOT) 845
SPACING= option
COMPARE statement (SGSCATTER) 1272
PANELBY statement (SGPANEL) 134
PLOT statement (SGSCATTER) 1297
SPARSE option
PANELBY statement (SGPANEL) 135
spline plots
about series plots 39
example 39
SPLINE statement
about spline plots 39
example 39
SGPANEL procedure 426
SGPLOT procedure 960
splines
scatter plots with fitted splines 1300
SPLITCHAR= option
BAND statement (SGPANEL) 145
BAND statement (SGPLOT) 656
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 665
BUBBLE statement (SGPANEL) 163
BUBBLE statement (SGPLOT) 677
COLAXIS statement (SGPANEL) 581
COMPARE statement (SGSCATTER) 1272
DENSITY statement (SGPANEL) 170
DENSITY statement (SGPLOT) 684
DOT statement (SGPANEL) 183
DOT statement (SGPLOT) 698
HBOX statement (SGPANEL) 258
HBOX statement (SGPLOT) 777
HLINE statement (SGPANEL) 307
HLINE statement (SGPLOT) 831
LINEPARM statement (SGPANEL) 326
LINEPARM statement (SGPLOT) 853
LOESS statement (SGPANEL) 336
LOESS statement (SGPLOT) 864
MATRIX statement (SGSCATTER) 1280
NEEDLE statement (SGPANEL) 346
NEEDLE statement (SGPLOT) 874
PBSPLINE statement (SGPANEL) 358
PBSPLINE statement (SGPLOT) 887
PLOT statement (SGSCATTER) 1297
POLYGON statement (SGPANEL) 369
POLYGON statement (SGPLOT) 898
REFLINE statement (SGPANEL) 379
REFLINE statement (SGPLOT) 910
REG statement (SGPANEL) 389
REG statement (SGPLOT) 920
ROWAXIS statement (SGPANEL) 609
SCATTER statement (SGPANEL) 404
SCATTER statement (SGPLOT) 935
SERIES statement (SGPANEL) 422
SERIES statement (SGPLOT) 954
SPLINE statement (SGPANEL) 435
SPLINE statement (SGPLOT) 969
STEP statement (SGPANEL) 450
STEP statement (SGPLOT) 985
TEXT statement (SGPANEL) 475
TEXT statement (SGPLOT) 1010
VBAR statement (SGPANEL) 495
VBAR statement (SGPLOT) 1030
VBARPARM statement (SGPANEL) 527
VBARPARM statement (SGPLOT) 1063
VBOX statement (SGPANEL) 539
VBOX statement (SGPLOT) 1075
VECTOR statement (SGPANEL) 550
VECTOR statement (SGPLOT) 1086
VLINE statement (SGPANEL) 565
VLINE statement (SGPLOT) 1102
WATERFALL statement (SGPLOT) 1114
X2AXIS statement (SGPLOT) 1151
XAXIS statement (SGPLOT) 1131
Y2AXIS statement (SGPLOT) 1201
YAXIS statement (SGPLOT) 1181
SPLITCHARNODROP option
BAND statement (SGPANEL) 146
BAND statement (SGPLOT) 657
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 665
BUBBLE statement (SGPANEL) 164
BUBBLE statement (SGPLOT) 677
COLAXIS statement (SGPANEL) 582
COMPARE statement (SGSCATTER) 1273
DENSITY statement (SGPANEL) 170
DENSITY statement (SGPLOT) 684
DOT statement (SGPANEL) 184
DOT statement (SGPLOT) 698
HBOX statement (SGPANEL) 258
HBOX statement (SGPLOT) 777
HLINE statement (SGPANEL) 308
HLINE statement (SGPLOT) 832
LINEPARM statement (SGPANEL) 327
LINEPARM statement (SGPLOT) 854
LOESS statement (SGPANEL) 336
LOESS statement (SGPLOT) 864
MATRIX statement (SGSCATTER) 1281
NEEDLE statement (SGPANEL) 346
NEEDLE statement (SGPLOT) 874
PBSPLINE statement (SGPANEL) 359
PBSPLINE statement (SGPLOT) 887
PLOT statement (SGSCATTER) 1298
POLYGON statement (SGPANEL) 370
POLYGON statement (SGPLOT) 899
REFLINE statement (SGPANEL) 379
<table>
<thead>
<tr>
<th>Referenced Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLINE statement</td>
<td>SGPLOT 910</td>
</tr>
<tr>
<td>REG statement</td>
<td>SGPANEL 390, SGPLOT 921</td>
</tr>
<tr>
<td>ROWAXIS statement</td>
<td>SGPANEL 609</td>
</tr>
<tr>
<td>SCATTER statement</td>
<td>SGPANEL 404, SGPLOT 935</td>
</tr>
<tr>
<td>SERIES statement</td>
<td>SGPANEL 423, SGPLOT 955</td>
</tr>
<tr>
<td>SPLINE statement</td>
<td>SGPANEL 436, SGPLOT 970</td>
</tr>
<tr>
<td>STEP statement</td>
<td>SGPANEL 451, SGPLOT 986</td>
</tr>
<tr>
<td>TEXT statement</td>
<td>SGPANEL 475, SGPLOT 1010</td>
</tr>
<tr>
<td>VBAR statement</td>
<td>SGPANEL 495, SGPLOT 1031</td>
</tr>
<tr>
<td>VBARPARM statement</td>
<td>SGPANEL 528, SGPLOT 1064</td>
</tr>
<tr>
<td>VBOX statement</td>
<td>SGPANEL 540, SGPLOT 1076</td>
</tr>
<tr>
<td>VECTOR statement</td>
<td>SGPANEL 550, SGPLOT 1087</td>
</tr>
<tr>
<td>VLINE statement</td>
<td>SGPANEL 565, SGPLOT 1103</td>
</tr>
<tr>
<td>WATERFALL statement</td>
<td>SGPLOT 1114</td>
</tr>
<tr>
<td>X2AXIS statement</td>
<td>SGPLOT 1151</td>
</tr>
<tr>
<td>XAXIS statement</td>
<td>SGPLOT 1131</td>
</tr>
<tr>
<td>Y2AXIS statement</td>
<td>SGPLOT 1202</td>
</tr>
<tr>
<td>YAXIS statement</td>
<td>SGPLOT 1182</td>
</tr>
<tr>
<td>SPLITJUSTIFY= option</td>
<td>SGPANEL 1273</td>
</tr>
<tr>
<td>BAND statement</td>
<td>SGPANEL 146, SGPLOT 657</td>
</tr>
<tr>
<td>BUBBLE statement</td>
<td>SGPANEL 164, SGPLOT 678</td>
</tr>
<tr>
<td>COLAXIS statement</td>
<td>SGPANEL 582, SGPLOT 1293</td>
</tr>
<tr>
<td>COMPARE statement</td>
<td>SGSCATTER 1273</td>
</tr>
<tr>
<td>DENSITY statement</td>
<td>SGPANEL 170, SGPLOT 684</td>
</tr>
<tr>
<td>DOT statement</td>
<td>SGPANEL 184, SGPLOT 699</td>
</tr>
<tr>
<td>HBOX statement</td>
<td>SGPANEL 258, SGPLOT 778</td>
</tr>
<tr>
<td>HLINE statement</td>
<td>SGPANEL 308, SGPLOT 832</td>
</tr>
<tr>
<td>LINEPARM statement</td>
<td>SGSCATTER 327, SGPANEL 854</td>
</tr>
<tr>
<td>LINEOSS statement</td>
<td>SGPANEL 337, SGPLOT 864</td>
</tr>
<tr>
<td>MATRIX statement</td>
<td>SGSCATTER 1281</td>
</tr>
<tr>
<td>NEEDLE statement</td>
<td>SGPANEL 346, SGPLOT 874</td>
</tr>
<tr>
<td>PBSPLINE statement</td>
<td>SGPANEL 359, SGPLOT 887</td>
</tr>
<tr>
<td>PLOT statement</td>
<td>SGSCATTER 1298</td>
</tr>
<tr>
<td>POLYGON statement</td>
<td>SGPANEL 370, SGPLOT 899</td>
</tr>
<tr>
<td>VBARPARM statement</td>
<td>SGPANEL 593, SGPLOT 1064</td>
</tr>
<tr>
<td>VBOX statement</td>
<td>SGPANEL 540, SGPLOT 1076</td>
</tr>
<tr>
<td>VECTOR statement</td>
<td>SGPANEL 550, SGPLOT 1087</td>
</tr>
<tr>
<td>VLINE statement</td>
<td>SGPANEL 565, SGPLOT 1103</td>
</tr>
<tr>
<td>WATERFALL statement</td>
<td>SGPLOT 1114</td>
</tr>
<tr>
<td>X2AXIS statement</td>
<td>SGPLOT 1151</td>
</tr>
<tr>
<td>XAXIS statement</td>
<td>SGPLOT 1131</td>
</tr>
<tr>
<td>Y2AXIS statement</td>
<td>SGPLOT 1202</td>
</tr>
<tr>
<td>YAXIS statement</td>
<td>SGPLOT 1182</td>
</tr>
<tr>
<td>SPLITPOLICY= option</td>
<td>SGPANEL 1281</td>
</tr>
<tr>
<td>TEXT statement</td>
<td>SGPANEL 475, SGPLOT 1010</td>
</tr>
<tr>
<td>SPLITWIDTH= option</td>
<td>SGPANEL 476, SGPLOT 1011</td>
</tr>
<tr>
<td>SPREAD option</td>
<td>SGPANEL 259, SGPLOT 778</td>
</tr>
<tr>
<td>HBOX statement</td>
<td>SGPANEL 540, SGPLOT 1076</td>
</tr>
<tr>
<td>VBOX statement</td>
<td>SGPANEL 540, SGPLOT 1076</td>
</tr>
<tr>
<td>STACKDEPTHMAX= option</td>
<td>SGPANEL 259, SGPLOT 778</td>
</tr>
<tr>
<td>ODS GRAPHICS statement</td>
<td>86</td>
</tr>
<tr>
<td>START= option</td>
<td>SGSCATTER 1281</td>
</tr>
<tr>
<td>MATRIX statement</td>
<td>SGSCATTER 1281</td>
</tr>
<tr>
<td>PANELBY statement</td>
<td>SGPANEL 135</td>
</tr>
<tr>
<td>STAT= option</td>
<td>SGSCATTER 1281</td>
</tr>
<tr>
<td>COLAXISTABLE statement</td>
<td>SGPANEL 337, SGPLOT 864</td>
</tr>
<tr>
<td>DOT statement</td>
<td>SGPANEL 184, SGPLOT 699</td>
</tr>
<tr>
<td>HBAR statement</td>
<td>SGPANEL 216</td>
</tr>
</tbody>
</table>
HBAR statement (SGPLOT) 734
HBARBASIC statement (SGPANEL) 750
HBARBASIC statement (SGPLOT) 231
HLINE statement (SGPANEL) 308
HLINE statement (SGPLOT) 832
ROWAXISTABLE statement (SGPANEL) 620
VBAR statement (SGPANEL) 496
VBAR statement (SGPLOT) 1031
VBARBASIC statement (SGPANEL) 511
VBARBASIC statement (SGPLOT) 1046
VLINE statement (SGPANEL) 566
VLINE statement (SGPLOT) 1103
WATERFALL statement (SGPLOT) 1115
XAXISTABLE statement (SGPLOT) 1163, 1214
HLINE statement (SGPLOT) 833
HLINE statement (SGPANEL) 309
ROWAXISTABLE statement (SGPANEL) 620
VLINE statement (SGPANEL) 567
VLINE statement (SGPLOT) 1104
XAXISTABLE statement (SGPLOT) 1115
YAXISTABLE statement (SGPLOT) 1215
statements
 global 20
 ODS 21
 ODS GRAPHICS 21
 SAS 20
 statgraph templates 1244
 attribute maps 1240
 creating 1244
 dynamic variable values 1242, 1245
 generating graphs from 1244
 STATIC option
 ODS GRAPHICS statement 81
 statistical limits
 example, adding to dot plots 1227
 STATLABEL option
 COLAXISTABLE statement (SGPANEL) 594
 DOT statement (SGPANEL) 185
 DOT statement (SGPLOT) 700
 HBAR statement (SGPANEL) 217
 HBAR statement (SGPLOT) 736
 HLINE statement (SGPANEL) 309
 HLINE statement (SGPLOT) 833
 ROWAXISTABLE statement (SGPANEL) 620
 VBAR statement (SGPANEL) 497
 VBAR statement (SGPLOT) 1032
 VLINE statement (SGPANEL) 567
 VLINE statement (SGPLOT) 1104
 XAXISTABLE statement (SGPLOT) 1115
 YAXISTABLE statement (SGPLOT) 1215
step plots
 about step plots 40
 example 40
 SGPANEL procedure 439
 SGPLOT procedure 974
STEP statement
 about step plots 40
 example 40
 SGPANEL procedure 439
 SGPLOT procedure 974
STRIPl= option
 TEXT statement (SGPANEL) 476
 TEXT statement (SGPLOT) 1011
style attributes
 automatic differentiation of 1312
 SGPANEL and SGPLOT procedures 1312
 style element 1357
 style element attribute 1357
 style reference
 fill options 1321
 line options and patterns 1320
 marker options 1322
 specifying a style element 1340, 1357
 specifying a style element attribute 1357
 text options 1323
 STYLE= attribute
 for text 1324
 STYLE= option
 changing current graph style 1338
 ODS HTML destination 1371
 ODS LISTING destination 1370
 ODS PDF destination 1370
 ODS RTF destination 1370
 STYLEATTRS statement
 SGPANEL procedure 136
 SGPLOT procedure 644
styles 1335
See also ODS styles
 changing current style 1338
 changing default 1338
 changing default, SAS Registry 1339
 default 1335
 default styles 1335
 examples 1335
 modifying templates 1352
 recommended 1335
 viewing templates 1338
SUBPIXEL 1346
 SUBPIXEL option
 ODS GRAPHICS statement 87
 PROC SGPANEL statement 124
 PROC SGPLOT statement 640
 PROC SGSCATTER statement 1257
symbol characters
 SGPANEL procedure 454
 SGPLOT procedure 989
symbol images
 SGPANEL procedure 459
 SGPLOT procedure 994
SYMBOL= attribute
 for markers 1323
SYMBOLCHAR statement
 SGPANEL procedure 454
 SGPLOT procedure 989
SYMBOLIMAGE statement
 SGPANEL procedure 459
 SGPLOT procedure 994
symbols, marker 1322

T
TEMPLATE procedure
 DEFINE STYLE statement 1352
 modifying styles 1352
TEMPLATE= argument
 PROC SGRENDER statement 1238
templates
 See statgraph templates
text
 special characters 1539
text attributes
 See text options
text box
 about text insets 42
 adding, inside panels 312
 adding, inside plot axes 836
 example 42
TEXT function
 SG annotation 1460
text options 1323
color 1324
font family 1324
size 1324
style 1324
weight 1324
TEXT statement
 about text scatter plots 41
 example 41
 SGPANEL procedure 464
 SGPLOT procedure 998
text strings
 substituting BY line values in 100
TEXT= argument
 TEXT statement (SGPANEL) 466
 TEXT statement (SGPLOT) 1001
TEXTATTRS= option
 INSET statement (SGPANEL) 314
 INSET statement (SGPLOT) 838
 SYMBOLCHAR statement
 (SGPANEL) 456
 SYMBOLCHAR statement (SGPLOT) 991
TEXTCOLOR=
 discrete attribute map 1393
TEXTCONT function
 SG annotation 1467
TEXTFAMILY=
 discrete attribute map 1393
TEXTGROUP= option
 COLAXISTABLE statement
 (SGPANEL) 594
 ROWAXISTABLE statement
 (SGPANEL) 621
 XAXISTABLE statement (SGPLOT) 1164
 YAXISTABLE statement (SGPLOT) 1215
TEXTGROUPID= option
 COLAXISTABLE statement
 (SGPANEL) 594
 ROWAXISTABLE statement
 (SGPANEL) 622
 XAXISTABLE statement (SGPLOT) 1165
 YAXISTABLE statement (SGPLOT) 1216
TEXTSTYLE=
 discrete attribute map 1393
TEXTSTYLEELEMENT=
 discrete attribute map 1393
TEXTWEIGHT=
 discrete attribute map 1393
THICKMAX= option
 SERIES statement (SGPANEL) 423
 SERIES statement (SGPLOT) 955
 SPLINE statement (SGPANEL) 436
 SPLINE statement (SGPLOT) 970
 STEP statement (SGPANEL) 451
 STEP statement (SGPLOT) 986
 VECTOR statement (SGPANEL) 550
 VECTOR statement (SGPLOT) 1087
THICKMAXRESP= option
 SERIES statement (SGPANEL) 424
 SERIES statement (SGPLOT) 955
 SPLINE statement (SGPANEL) 436
 SPLINE statement (SGPLOT) 971
 STEP statement (SGPANEL) 452
 STEP statement (SGPLOT) 986
 VECTOR statement (SGPANEL) 551
 VECTOR statement (SGPLOT) 1088
THICKNESS= attribute
 for lines 1321
THICKRESP= option
 SERIES statement (SGPANEL) 424
 SERIES statement (SGPLOT) 956
 SPLINE statement (SGPANEL) 437
 SPLINE statement (SGPLOT) 971
SPLINE statement (SGPLOT) 971
STEP statement (SGPLOT) 452
STEP statement (SGPLOT) 987
VECTOR statement (SGPANEL) 551
VECTOR statement (SGPLOT) 1088
THRESHOLDMAX= option
COLAXIS statement (SGPANEL) 582
ROWAXIS statement (SGPANEL) 610
X2AXIS statement (SGPLOT) 1152
XAXIS statement (SGPLOT) 1132
Y2AXIS statement (SGPLOT) 1202
YAXIS statement (SGPLOT) 1182
THRESHOLDMIN= option
COLAXIS statement (SGPANEL) 583
ROWAXIS statement (SGPANEL) 610
X2AXIS statement (SGPLOT) 1152
XAXIS statement (SGPLOT) 1132
Y2AXIS statement (SGPLOT) 1202
YAXIS statement (SGPLOT) 1182
TICKVALUEFORMAT= option
See VALUESFORMAT= option
time axes 1308
TIP= option
BAND statement (SGPANEL) 146
BAND statement (SGPLOT) 657
BUBBLE statement (SGPANEL) 164
BUBBLE statement (SGPLOT) 678
COMPARE statement (SGSCATTER) 1273
DOT statement (SGPANEL) 186
DOT statement (SGPLOT) 700
FRINGE statement (SGPANEL) 195
FRINGE statement (SGPLOT) 713
HBAR statement (SGPANEL) 217
HBAR statement (SGPLOT) 736
HBARBASIC statement (SGPANEL) 232
HBARBASIC statement (SGPLOT) 750
HBARPARM statement (SGPANEL) 246
HBARPARM statement (SGPLOT) 766
HBOX statement (SGPANEL) 259
HBOX statement (SGPLOT) 778
HEATMAP statement (SGPANEL) 267
HEATMAP statement (SGPLOT) 787
HEATMAPPARM statement (SGPANEL) 274
HEATMAPPARM statement (SGPLOT) 797
HIGHLOW statement (SGPANEL) 288
HIGHLOW statement (SGPLOT) 811
HLINE statement (SGPANEL) 310
HLINE statement (SGPLOT) 834
LOESS statement (SGPANEL) 337
LOESS statement (SGPLOT) 865
MATRIX statement (SGSCATTER) 1281
NEEDLE statement (SGPANEL) 347
NEEDLE statement (SGPLOT) 875
PBSPLINE statement (SGPANEL) 359
PBSPLINE statement (SGPLOT) 888
PLOT statement (SGSCATTER) 1298
POLYGON statement (SGPANEL) 370
POLYGON statement (SGPLOT) 899
REG statement (SGPANEL) 390
REG statement (SGPLOT) 921
SCATTER statement (SGPANEL) 404
SCATTER statement (SGPLOT) 936
SERIES statement (SGPANEL) 424
SERIES statement (SGPLOT) 956
SPLINE statement (SGPANEL) 437
SPLINE statement (SGPLOT) 971
STEP statement (SGPANEL) 452
STEP statement (SGPLOT) 987
TEXT statement (SGPANEL) 476
TEXT statement (SGPLOT) 1011
VBAR statement (SGPANEL) 497
VBAR statement (SGPLOT) 1032
VBARBASIC statement (SGPANEL) 512
VBARBASIC statement (SGPLOT) 1047
VBARPARM statement (SGPANEL) 528
VBARPARM statement (SGPLOT) 1064
VBOX statement (SGPANEL) 540
VBOX statement (SGPLOT) 1076
VECTOR statement (SGPANEL) 552
VECTOR statement (SGPLOT) 1088
VLINE statement (SGPANEL) 567
VLINE statement (SGPLOT) 1105
WATERFALL statement (SGPLOT) 1115
TIPFORMAT= option
BAND statement (SGPANEL) 147
BAND statement (SGPLOT) 657
BUBBLE statement (SGPANEL) 165
BUBBLE statement (SGPLOT) 678
COMPARE statement (SGSCATTER) 1273
DOT statement (SGPANEL) 186
DOT statement (SGPLOT) 701
FRINGE statement (SGPANEL) 195
FRINGE statement (SGPLOT) 714
HBAR statement (SGPANEL) 218
HBAR statement (SGPLOT) 736
HBARBASIC statement (SGPANEL) 232
HBARBASIC statement (SGPLOT) 751
HBARPARM statement (SGPANEL) 247
HBARPARM statement (SGPLOT) 766
HBOX statement (SGPANEL) 259
HBOX statement (SGPLOT) 779
HEATMAP statement (SGPANEL) 267
HEATMAP statement (SGPLOT) 787
HEATMAPPARM statement (SGPANEL) 275
HEATMAPPARM statement (SGPLOT) 797
HIGHLOW statement (SGPANEL) 289
HIGHLOW statement (SGPLOT) 812
HLINE statement (SGPANEL) 310
HLINE statement (SGPLOT) 834
LOESS statement (SGPANEL) 337
LOESS statement (SGPLOT) 865
MATRIX statement (SGSCATTER) 1281
NEEDLE statement (SGPANEL) 347
NEEDLE statement (SGPLOT) 875
PBSPLINE statement (SGPANEL) 359
PBSPLINE statement (SGPLOT) 888
PLOT statement (SGSCATTER) 1298
POLYGON statement (SGPANEL) 370
POLYGON statement (SGPLOT) 899
REG statement (SGPANEL) 390
REG statement (SGPLOT) 922
SCATTER statement (SGPANEL) 405
SCATTER statement (SGPLOT) 936
SERIES statement (SGPANEL) 425
SERIES statement (SGPLOT) 957
SPLINE statement (SGPANEL) 438
SPLINE statement (SGPLOT) 972
STEP statement (SGPANEL) 453
STEP statement (SGPLOT) 988
TEXT statement (SGPANEL) 477
TEXT statement (SGPLOT) 1012
VBAR statement (SGPANEL) 498
VBAR statement (SGPLOT) 1033
VBARBASIC statement (SGPANEL) 512
VBARBASIC statement (SGPLOT) 1047
VBARPARM statement (SGPANEL) 528
VBARPARM statement (SGPLOT) 1064
VBOX statement (SGPANEL) 541
VBOX statement (SGPLOT) 1077
VECTOR statement (SGPANEL) 552
VECTOR statement (SGPLOT) 1089
VLINE statement (SGPANEL) 568
VLINE statement (SGPLOT) 1105
WATERFALL statement (SGPLOT) 1115
TIPLABEL= option
BAND statement (SGPANEL) 147
BAND statement (SGPLOT) 658
BUBBLE statement (SGPANEL) 165
BUBBLE statement (SGPLOT) 679
COMPARE statement (SGSCATTER) 1274
DOT statement (SGPANEL) 187
DOT statement (SGPLOT) 701
FRINGE statement (SGPANEL) 196
FRINGE statement (SGPLOT) 714
HBAR statement (SGPANEL) 218
HBAR statement (SGPLOT) 737
VBARBASIC statement (SGPANEL) 232
VBARBASIC statement (SGPLOT) 751
HBARPARM statement (SGPANEL) 247
HBARPARM statement (SGPLOT) 766
HBOX statement (SGPANEL) 260
HBOX statement (SGPLOT) 779
HEATMAP statement (SGPANEL) 268
HEATMAP statement (SGPLOT) 788
HEATMAPPARM statement (SGPANEL) 275
HEATMAPPARM statement (SGPLOT) 798
HIGHLOW statement (SGPANEL) 289
HIGHLOW statement (SGPLOT) 812
HLINE statement (SGPANEL) 310
HLINE statement (SGPLOT) 835
LOESS statement (SGPANEL) 337
LOESS statement (SGPLOT) 865
MATRIX statement (SGSCATTER) 1282
NEEDLE statement (SGPANEL) 347
NEEDLE statement (SGPLOT) 875
PBSPLINE statement (SGPANEL) 359
PBSPLINE statement (SGPLOT) 888
PLOT statement (SGSCATTER) 1299
POLYGON statement (SGPANEL) 370
POLYGON statement (SGPLOT) 899
REG statement (SGPANEL) 390
REG statement (SGPLOT) 922
SCATTER statement (SGPANEL) 405
SCATTER statement (SGPLOT) 936
SERIES statement (SGPANEL) 425
SERIES statement (SGPLOT) 957
SPLINE statement (SGPANEL) 438
SPLINE statement (SGPLOT) 972
STEP statement (SGPANEL) 453
STEP statement (SGPLOT) 988
TEXT statement (SGPANEL) 477
TEXT statement (SGPLOT) 1012
VBAR statement (SGPANEL) 498
VBAR statement (SGPLOT) 1033
VBARBASIC statement (SGPANEL) 512
VBARBASIC statement (SGPLOT) 1047
VBARPARM statement (SGPANEL) 528
VBARPARM statement (SGPLOT) 1064
VBOX statement (SGPANEL) 541
VBOX statement (SGPLOT) 1077
VECTOR statement (SGPANEL) 552
VECTOR statement (SGPLOT) 1089
VLINE statement (SGPANEL) 568
VLINE statement (SGPLOT) 1105
WATERFALL statement (SGPLOT) 1115
VBAR statement (SGPLOT) 1033
VBARBASIC statement (SGPANEL) 512
VBARBASIC statement (SGPLOT) 1048
VBARPARM statement (SGPANEL) 529
VBARPARM statement (SGPLOT) 1065
VBOX statement (SGPANEL) 541
VBOX statement (SGPLOT) 1077
VECTOR statement (SGPANEL) 553
VECTOR statement (SGPLOT) 1089
VLINE statement (SGPANEL) 568
VLINE statement (SGPLOT) 1106
WATERFALL statement (SGPLOT) 1116
TIPMAX= option
ODS GRAPHICS statement
TITLE statement 95, 99
BY statement with measurement units 101
substituting BY line values in a text string 100
TITLE= option
COAXISTABLE statement (SGPANEL) 594
GRADLEGEND statement (SGPANEL) 199
GRADLEGEND statement (SGPLOT) 718
INSET statement (SGPANEL) 314
INSET statement (SGPLOT) 838
KEYLEGEND statement (SGPANEL) 320
KEYLEGEND statement (SGPLOT) 845
ROWAXISTABLE statement (SGPLOT) 1116
ROWAXISTABLE statement (SGPANEL) 622
XAXISTABLE statement (SGPLOT) 1165
YAXISTABLE statement (SGPLOT) 1216
TITLEALIGN= option
ROWAXISTABLE statement (SGPANEL) 622
YAXISTABLE statement (SGPLOT) 1217
TITLEJUSTIFY= option
ROWAXISTABLE statement (SGPANEL) 623
YAXISTABLE statement (SGPLOT) 1217
titles 99
TMPLOUT= option
PROC SGPLOT statement 643
PROC SGSCATTER statement 1259
TRANSPARENCY= attribute
for fills 1322
TRANSPARENCY= option
BAND statement (SGPANEL) 147
BAND statement (SGPLOT) 658
BUBBLE statement (SGPANEL) 165
BUBBLE statement (SGPLOT) 679
COMPARE statement (SGSCATTER) 1274
DENSITY statement (SGPANEL) 170
DENSITY statement (SGPLOT) 685
DOT statement (SGPANEL) 187
DOT statement (SGPLOT) 701
DROPLINE statement (SGPANEL) 191
DROPLINE statement (SGPLOT) 706
ELLIPSE statement (SGPLOT) 710
FRINGE statement (SGPANEL) 196
FRINGE statement (SGPLOT) 714
HBAR statement (SGPANEL) 154, 219
HBAR statement (SGPLOT) 665, 737
HBARBASIC statement (SGPANEL) 233
HBARBASIC statement (SGPLOT) 752
HVARPARM statement (SGPANEL) 248
HVARPARM statement (SGPLOT) 767
HBOX statement (SGPANEL) 260
HBOX statement (SGPLOT) 779
HEATMAP statement (SGPANEL) 268
HEATMAP statement (SGPLOT) 788
HEATMAPPARM statement (SGPANEL) 275
HEATMAPPARM statement (SGPLOT) 798
HIGHLOW statement (SGPANEL) 289
HIGHLOW statement (SGPLOT) 812
HISTOGRAM statement (SGPANEL) 296
HISTOGRAM statement (SGPLOT) 819
HLINE statement (SGPANEL) 311
HLINE statement (SGPLOT) 835
LINEPARM statement (SGPANEL) 327
LINEPARM statement (SGPLOT) 854
LOESS statement (SGPANEL) 338
LOESS statement (SGPLOT) 866
MATRIX statement (SGSCATTER) 1282
NEEDLE statement (SGPANEL) 348
NEEDLE statement (SGPLOT) 876
PBSPLINE statement (SGPANEL) 360
PBSPLINE statement (SGPLOT) 889
PLOT statement (SGSCATTER) 1299
POLYGON statement (SGPANEL) 371
POLYGON statement (SGPLOT) 900
REFLINE statement (SGPANEL) 380
REFLINE statement (SGPLOT) 911
REG statement (SGPANEL) 391
REG statement (SGPLOT) 923
SCATTER statement (SGPANEL) 406
SCATTER statement (SGPLOT) 937
SERIES statement (SGPANEL) 426
SERIES statement (SGPLOT) 957
SPLINE statement (SGPANEL) 438
SPLINE statement (SGPLOT) 973
STEP statement (SGPANEL) 454
STEP statement (SGPLOT) 988
TEXT statement (SGPANEL) 478
TEXT statement (SGPLOT) 1013
VBAR statement (SGPANEL) 498
VBAR statement (SGPLOT) 1034
VBARBASIC statement (SGPANEL) 513
VBARBASIC statement (SGPLOT) 1048
VBARPARM statement (SGPANEL) 529
VBARPARM statement (SGPLOT) 1065
VBOX statement (SGPANEL) 541
VBOX statement (SGPLOT) 1078
VECTOR statement (SGPANEL) 553
VECTOR statement (SGPLOT) 1090
VLINE statement (SGPANEL) 568
VLINE statement (SGPLOT) 1106
WATERFALL statement (SGPLOT) 1116
TYPE= option
BAND statement (SGPANEL) 147

BAND statement (SGPLOT) 658
COLAXIS statement (SGPANEL) 583
DENSITY statement (SGPANEL) 171
DENSITY statement (SGPLOT) 685
ELLIPSE statement (SGPLOT) 710
HIGHLOW statement (SGPANEL) 290
HIGHLOW statement (SGPLOT) 813
KEYLEGEND statement (SGPANEL) 321
KEYLEGEND statement (SGPLOT) 846
ROWAXIS statement (SGPANEL) 610
X2AXIS statement (SGPLOT) 1152
XAXIS statement (SGPLOT) 1132
Y2AXIS statement (SGPLOT) 1203
YAXIS statement (SGPLOT) 1183

U
Unicode values
 greek letters, lower case 1537
 greek letters, upper case 1538
 hexadecimal values 1537
 keywords 1537
 special characters 1539
UNIFORM= option
 PROC SGPLOT statement 643
UNISCALE= option
 PANELBY statement (SGPANEL) 135
 PLOT statement (SGSCATTER) 1299
UPPER= argument
 BAND statement (SGPANEL) 142
 BAND statement (SGPLOT) 653
URL drill down 1375
URL= option
 BUBBLE statement (SGPANEL) 165
 BUBBLE statement (SGPLOT) 679
 DOT statement (SGPANEL) 187
 HBAR statement (SGPANEL) 219
 HBAR statement (SGPLOT) 737
 HBARBASIC statement (SGPANEL) 233
 HBARBASIC statement (SGPLOT) 752
 HBARPARM statement (SGPANEL) 248
 HBARPARM statement (SGPLOT) 767
 HEATMAPPARM statement (SGPANEL) 276
 HEATMAPPARM statement (SGPLOT) 798
 HIGHLOW statement (SGPANEL) 290
 HIGHLOW statement (SGPLOT) 813
 NEEDLE statement (SGPANEL) 348
 NEEDLE statement (SGPLOT) 876
POLYGON statement (SGPLOT) 371, 900
SCATTER statement (SGPANEL) 406
SCATTER statement (SGPLOT) 311, 569, 702, 835, 937, 1106
SERIES statement (SGPANEL) 426
SERIES statement (SGPLOT) 957
SPLINE statement (SGPANEL) 438
SPLINE statement (SGPLOT) 973
STEP statement (SGPANEL) 454
STEP statement (SGPLOT) 989
TEXT statement (SGPANEL) 478
TEXT statement (SGPLOT) 1013
VBAR statement (SGPANEL) 498
VBAR statement (SGPLOT) 1034
VBARBASIC statement (SGPANEL) 513
VBARBASIC statement (SGPLOT) 1048
VBARPARM statement (SGPANEL) 529
VBARPARM statement (SGPLOT) 1065
WATERFALL statement (SGPLOT) 1116
user-defined formats
associating with variables 68

V
VALUE=
 discrete attribute map 1394
VALUEALIGN= option
INSET statement (SGPLOT) 839
VALUEATTRS= option
BLOCK statement (SGPANEL) 154
BLOCK statement (SGPLOT) 665
COLAXIS statement (SGPANEL) 584
COLAXISTABLE statement (SGPANEL) 595
KEYLEGEND statement (SGPANEL) 321
KEYLEGEND statement (SGPLOT) 846
ROWAXIS statement (SGPANEL) 611
ROWAXISTABLE statement (SGPANEL) 623
X2AXIS statement (SGPLOT) 1153
XAXIS statement (SGPLOT) 1133
XAXISTABLE statement (SGPLOT) 1166
YAXIS statement (SGPLOT) 1183
YAXISTABLE statement (SGPLOT) 1217
VALUEFITPOLICY= option
BLOCK statement (SGPANEL) 154
VALUEHALIGN= option
BLOCK statement (SGPANEL) 155
BLOCK statement (SGPLOT) 666
ROWAXISTABLE statement (SGPANEL) 623
YAXISTABLE statement (SGPLOT) 1218
VALUEJUSTIFY option
ROWAXISTABLE statement (SGPANEL) 623
YAXISTABLE statement (SGPLOT) 1218
VALUES option
BLOCK statement (SGPANEL) 153
BLOCK statement (SGPLOT) 664
VALUES= option
COLAXIS statement (SGPANEL) 584
ROWAXIS statement (SGPANEL) 611
X2AXIS statement (SGPLOT) 1153
XAXIS statement (SGPLOT) 1133
Y2AXIS statement (SGPLOT) 1204
YAXIS statement (SGPLOT) 1184
VALUESDISPLAY= option
COLAXIS statement (SGPANEL) 586
ROWAXIS statement (SGPANEL) 613
X2AXIS statement (SGPLOT) 1155
XAXIS statement (SGPLOT) 1135
Y2AXIS statement (SGPLOT) 1206
YAXIS statement (SGPLOT) 1186
VALUESFORMAT= option
COLAXIS statement (SGPANEL) 587
ROWAXIS statement (SGPANEL) 613
X2AXIS statement (SGPLOT) 1156
XAXIS statement (SGPLOT) 1136
Y2AXIS statement (SGPLOT) 1207
YAXIS statement (SGPLOT) 1187
VALUESHALIGN= option
ROWAXIS statement (SGPANEL) 614
Y2AXIS statement (SGPLOT) 1207
YAXIS statement (SGPLOT) 1187
VALUESHINT option
COLAXIS statement (SGPANEL) 587
ROWAXIS statement (SGPANEL) 614
X2AXIS statement (SGPLOT) 1157
XAXIS statement (SGPLOT) 1136
Y2AXIS statement (SGPLOT) 1207
YAXIS statement (SGPLOT) 1187
VALUESROTATE= option
COLAXIS statement (SGPANEL) 587
X2AXIS statement (SGPLOT) 1156
XAXIS statement (SGPLOT) 1136
VALUEVALIGN= option
BLOCK statement (SGPANEL) 155
BLOCK statement (SGPLOT) 667
variables
associating descriptive labels with 71
associating formats with 68

VBAR statement
about bar charts 54
example 54, 116, 632, 1231
SGPANEL procedure 479
SGPLOT procedure 1014

VBARBASIC statement
example 54
SGPANEL procedure 499
SGPLOT procedure 1035

VBARPARM statement
about bar charts 54
example 54
SGPANEL procedure 513
SGPLOT procedure 1049

VBOX statement
about box plots 49
example 49
SGPANEL procedure 530
SGPLOT procedure 1066

VCENTER= option
TEXT statement (SGPANEL) 478
TEXT statement (SGPLOT) 1013

vector plots
about vector plots 44
example 44
SGPANEL procedure 544
SGPLOT procedure 1080

VECTOR statement
about vector plots 44
example 44
SGPANEL procedure 544
SGPLOT procedure 1080

vertical bar charts
about bar charts 54
example 54, 116, 632
parameterized (SGPANEL) 513
parameterized (SGPLOT) 1049
SGPANEL procedure 479, 499
SGPLOT procedure 1014, 1035
vertical bar-line charts
example 1231
vertical box plots
about 49
example 49
percentiles 543, 1079
SGPANEL procedure 530
SGPLOT procedure 1066
statement summary 542, 1079
vertical line
SGPANEL procedure 322
SGPLOT procedure 849
vertical line charts
about 61
example 61, 629

SGPANEL procedure 553
SGPLOT procedure 1090
visual attributes
automatic differentiation of 1312

VLINE statement
about line charts 61
example 61, 1231
SGPANEL procedure 553
SGPLOT procedure 1090

VOFFSET= option
SYMBOLCHAR statement
(SGPANEL) 456
SYMBOLCHAR statement (SGPLOT) 991
SYMBOLIMAGE statement
(SGPANEL) 460
SYMBOLIMAGE statement (SGPLOT) 995

W
WALLCOLOR= option
PROC SGSCATTER statement 1259
STYLEATTRS statement (SGPANEL) 138
STYLEATTRS statement (SGPLOT) 648
WALLPERCENT (annotation space) 1421
WALLPIXEL (annotation space) 1421

waterfall charts
about waterfall charts 62
example 62
WATERFALL statement 1107
WATERFALL statement
about waterfall charts 62
example 62
SGPLOT procedure 1107
WEIGHT= attribute
for text 1324
WEIGHT= option
DENSITY statement (SGPANEL) 171
DENSITY statement (SGPLOT) 685
DOT statement (SGPANEL) 188
DOT statement (SGPLOT) 702
HBAR statement (SGPANEL) 219
HBAR statement (SGPLOT) 738
HBOX statement (SGPANEL) 260
HBOX statement (SGPLOT) 780
HEATMAP statement (SGPANEL) 268
HEATMAP statement (SGPLOT) 788
HISTOGRAM statement (SGPANEL) 296
HISTOGRAM statement (SGPLOT) 819
HLINE statement (SGPANEL) 311
HLINE statement (SGPLOT) 835
LOESS statement (SGPANEL) 338
LOESS statement (SGPLOT) 866
PBSPLINE statement (SGPANEL) 360
PBSPLINE statement (SGPLOT) 889
REG statement (SGPANEL) 391
REG statement (SGPLOT) 923
VBAR statement (SGPANEL) 499
VBAR statement (SGPLOT) 1034
VBOX statement (SGPANEL) 542
VBOX statement (SGPLOT) 1078
VLINE statement (SGPANEL) 569
VLINE statement (SGPLOT) 1106
WHERE statement 101
WHISKERATTRS= option
 HBOX statement (SGPANEL) 260
 HBOX statement (SGPLOT) 780
 VBOX statement (SGPANEL) 542
 VBOX statement (SGPLOT) 1078
WHISKERPCT= option
 HBOX statement (SGPANEL) 260
 HBOX statement (SGPLOT) 780
 VBOX statement (SGPANEL) 542
 VBOX statement (SGPLOT) 1078
whiskers
 box plots 261, 543, 781, 1079
_WIDTH= option
 ODS GRAPHICS statement 88

X
X= argument
 BAND statement (SGPANEL) 142
 BAND statement (SGPLOT) 653
 ELLIPSE statement (SGPLOT) 708
 LOESS statement (SGPANEL) 329
 LOESS statement (SGPLOT) 857
 NEEDLE statement (SGPANEL) 340
 PBSPLINE statement (SGPLOT) 879
 REG statement (SGPANEL) 382
 REG statement (SGPLOT) 913
 SCATTER statement (SGPANEL) 394
 SCATTER statement (SGPLOT) 926
 SERIES statement (SGPANEL) 409, 428
 SERIES statement (SGPLOT) 941
 STEP statement (SGPANEL) 442
 STEP statement (SGPLOT) 976
 TEXT statement (SGPANEL) 466
 TEXT statement (SGPLOT) 1001
 VECTOR statement (SGPANEL) 545
 VECTOR statement (SGPLOT) 1082
X= option
 COLAXISTABLE statement
 (SGPANEL) 595
 COMPARE statement (SGSCATTER) 1261
 XAXISTABLE statement (SGPLOT) 1166
X=argument
 NEEDLE statement (SGPLOT) 868
 PBSPLINE statement (SGPANEL) 351
X2AXIS option
 BAND statement (SGPLOT) 659
 BUBBLE statement (SGPLOT) 680
 DENSITY statement (SGPLOT) 686
 DROPLINE statement (SGPLOT) 706
 ELLIPSE statement (SGPLOT) 710
 FRINGE statement (SGPLOT) 714
 HBAR statement (SGPLOT) 738
 HBARBASIC statement (SGPLOT) 752
 HBARPARM statement (SGPLOT) 767
 HBOX statement (SGPLOT) 780
 HEATMAP statement (SGPLOT) 789
 HEATMAPPARM statement (SGPLOT) 799
 HIGHLow statement (SGPLOT) 813
 HISTOGRAM statement (SGPLOT) 819
 HLINE statement (SGPLOT) 836
 LOESS statement (SGPLOT) 866
 NEEDLE statement (SGPLOT) 876
 PBSPLINE statement (SGPLOT) 889
 POLYGON statement (SGPLOT) 901
 REG statement (SGPLOT) 923
 SCATTER statement (SGPLOT) 937
 SERIES statement (SGPLOT) 958
 SPLINE statement (SGPLOT) 973
 STEP statement (SGPLOT) 989
 TEXT statement (SGPLOT) 1014
 VBAR statement (SGPLOT) 1034
 VBARBASIC statement (SGPLOT) 1049
 XAXISTABLE statement (SGPLOT) 1166
X2AXIS= option
 BLOCK statement 667
 LINEPARM statement (SGPLOT) 854
 WATERFALL statement (SGPLOT) 1117
XAXIS statement
 SGPLOT procedure 1137
XAXIS= option
 BLOCK statement 667
 LINEPARM statement (SGPLOT) 854
 WATERFALL statement (SGPLOT) 1117
XAXISTABLE statement
 SGPLOT procedure 1117
XAXISTABLE statement

1600 Index
HEATMAP statement (SGPLOT) 789
YBINSTART= option
HEATMAP statement (SGPANEL) 269
HEATMAP statement (SGPLOT) 789
YENDLABELS option
HEATMAP statement (SGPANEL) 269
HEATMAP statement (SGPLOT) 789
YERRORLOWER= option
SCATTER statement (SGPANEL) 406
SCATTER statement (SGPLOT) 938
STEP statement (SGPANEL) 454
STEP statement (SGPLOT) 989
YERRORUPPER= option
SCATTER statement (SGPANEL) 406
SCATTER statement (SGPLOT) 938
STEP statement (SGPANEL) 454
STEP statement (SGPLOT) 989
YOFFSET= option
POLYGON statement (SGPANEL) 372
POLYGON statement (SGPLOT) 901
YORIGIN= option
VECTOR statement (SGPANEL) 553
VECTOR statement (SGPLOT) 1090
YVALUES= option
HEATMAPPARM statement (SGPANEL) 276
HEATMAPPARM statement (SGPLOT) 799